WO2019084954A1 - 不停产安装好氧三相分离器的装置及方法 - Google Patents

不停产安装好氧三相分离器的装置及方法 Download PDF

Info

Publication number
WO2019084954A1
WO2019084954A1 PCT/CN2017/109533 CN2017109533W WO2019084954A1 WO 2019084954 A1 WO2019084954 A1 WO 2019084954A1 CN 2017109533 W CN2017109533 W CN 2017109533W WO 2019084954 A1 WO2019084954 A1 WO 2019084954A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerobic
phase separator
water
overflow
water level
Prior art date
Application number
PCT/CN2017/109533
Other languages
English (en)
French (fr)
Inventor
刘淑杰
刘旭
陈福明
Original Assignee
深圳市清研环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市清研环境科技有限公司 filed Critical 深圳市清研环境科技有限公司
Priority to PCT/CN2017/109533 priority Critical patent/WO2019084954A1/zh
Publication of WO2019084954A1 publication Critical patent/WO2019084954A1/zh
Priority to US16/748,780 priority patent/US11292736B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0027Floating sedimentation devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0024Inlets or outlets provided with regulating devices, e.g. valves, flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0066Settling tanks provided with contact surfaces, e.g. baffles, particles with a meandering flow pattern of liquid or solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2427The feed or discharge opening located at a distant position from the side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2444Discharge mechanisms for the classified liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations

Definitions

  • the present invention relates to the field of sewage treatment technology, and in particular, to an apparatus and method for in-situ modification of an existing sewage treatment plant, which requires the use of a non-stop production of an aerobic three-phase separator.
  • Providing a device for non-stop production of aerobic three-phase separator comprising an aeration tank, the top of the aeration tank is provided with a plurality of aerobics which can be aerated at the bottom and have gas-blocking parts at the sludge outlet Three-phase separator, each of which
  • the aerobic three-phase separator includes an overflow gutter, and the bottom of the overflow gutter is provided with a drain pipe leading to the outer side of the bottom end of the aerobic three-phase separator, and each of the drain pipe and a water outlet hose
  • One end of each of the outlet hoses is connected to a water outlet manifold, one end of the water outlet manifold is a sealed end, and the other end is bent downward and leads to a water level tank, and the upper part of the water level tank is provided with an overflow.
  • the minimum overflow height of the overflow or overflow pipe is lower than the water level height of the aerobic three-phase separator precipitation zone, and the water discharge main pipe is provided
  • the evacuation system includes: an air observation cylinder, an air suction pump, an exhaust pipe, a check valve, and an automatic control device, wherein the exhaust pipe and the check valve are disposed in the water discharge pipe and are close to The sealing end, the exhaust pipe and the check valve are connected to the air pump through a pipeline, and the air pump is connected to the water outlet pipe through the air observation tube, and the air observation tube is provided with The float level is used to control the opening and closing of the pump.
  • a top of the aeration tank wall is provided with a mounting frame for placing the aerobic three-phase separator
  • the minimum overflow height of the overflow port is lower than the water level of the precipitation zone of the aerobic three-phase separator by more than 0.5 m.
  • the effective volume of the water level pool is greater than twice the volume of the water outlet manifold.
  • the outlet pipe is bent downward into the water tank, and the end port position of the water level tank is at least lower than the minimum overflow height of the overflow port by more than lm, and is at least 0.2 m higher than the bottom of the water level pool.
  • the present invention also provides a method for non-stop production of aerobic three-phase separator, comprising the following steps:
  • Step 1 A water level tank with an overflow port is arranged on the water outlet end side of the aeration tank;
  • Step 2 Install a water outlet pipe at the top of the aeration tank, one end of the water outlet pipe is a sealed end, and the other end is bent downward and then leads to a water level pool, and the water outlet pipe is bent downward to penetrate one end port of the water level pool.
  • the position is at least lower than the minimum overflow height of the overflow port by more than lm, and is at least 0.2 m higher than the bottom of the water level pool;
  • Step 3 Set an evacuation system on the water outlet pipe
  • Step 4 Assemble a plurality of aerobic three-phase separators outside the aeration tank, and connect each aerobic three-phase separator to one end of the outlet hose;
  • Step 5 Lift a number of aerobic three-phase separator to the top of the aeration tank, and connect the other end of the outlet hose to the outlet manifold; [0017] Step 6. Fill the water level pool with clean water;
  • Step 7 Adjust the level of the aerobic three-phase separator, so that each aerobic three-phase separator is in an overflow state, start the evacuation system, and create a siphon condition for the outlet main;
  • Step 8 After the aerobic three-phase separator is normally discharged, the evacuation system is closed.
  • the aerobic three-phase separator in the present invention is suspended in an aeration tank, the aeration tank is aerated upward, and the aerobic three-phase separator is provided with a gas-blocking member at the sludge outlet to prevent the aeration from entering. Inside the aerobic three-phase separator, it can realize aerobic wastewater treatment outside the aerobic three-phase separator and internal anaerobic wastewater treatment.
  • the siphon is manufactured by the evacuation system, and the sewage can be discharged from the outlet hose in the aerobic three-phase separator disposed at the top of the aeration tank to the outlet main pipe and finally discharged to the water level tank. This can meet the needs of non-stop production and transformation of sewage treatment.
  • the air observation window provided by the invention is convenient for the worker to judge the air leakage condition of the pipeline during the debugging and observing the water level change.
  • the installation frame in the invention can be made according to the actual size of the aeration tank, and can meet the non-stop production transformation of the aeration tanks in different places, and has a wide application range.
  • FIG. 1 is a schematic view showing the overall structure of a device for installing an aerobic three-phase separator without stopping production of the present invention.
  • FIG. 2 is a schematic view of a water level of a device for installing aerobic three-phase separator without stopping production of the present invention.
  • FIG. 3 is a schematic view showing the overall structure of an aerobic three-phase separator in the present invention.
  • FIG. 4 is a cross-sectional, cross-sectional structural view of the aerobic three-phase separator of FIG. 3.
  • FIG. 5 is a schematic structural view of a mounting frame in the present invention.
  • the device for non-stop production of aerobic three-phase separator in the present embodiment including an aeration tank 1
  • the top of the aeration tank 1 is provided with a plurality of aerobic three-phase separators 2 which are aerated at the bottom and provided with gas blocking members at the sludge outlet, and each of the aerobic three-phase separators 2 includes an overflow weir a trough 22, a bottom of the overflow chute 22 is provided with a drain pipe leading to the outer side of the bottom end of the aerobic three-phase separator, and each of the drain pipes is connected with one end of a water outlet hose 5, each of which is connected
  • the other end of the water hose 5 is connected to a water main pipe 3, the 3 end of the water main pipe is a sealed end, and the other end is bent downward and then leads to the water level tank 4, and the top end side of the water level tank 4 is overflowed.
  • the lowest overflow height of the overflow port 41 is lower than the water level height of the precipitation zone of the aerobic three-phase separator 2, and the exhaust pipe and the exhaust pipe are disposed near the sealed end.
  • the check valve, the exhaust pipe and the check valve are connected to the air pump 62 through a pipe, and the air pump 62 is connected to the water main pipe 3 through an air observation cylinder 61, and the air observation cylinder 61
  • the float liquid level is disposed therein for controlling the opening and closing of the air pump 62, and the effective volume of the water level pool 4 is large.
  • the water mains 2 times 3 volume.
  • the minimum overflow height h of the overflow port 41 is 0.5-0.8 m lower than the water level height H of the precipitation zone of the aerobic three-phase separator 2; It is stated that the end of the water main pipe 3 bent downward into the water level tank 4 is at least lower than the minimum overflow height h of the overflow port 41 by more than lm, and is at least 0.5 m higher than the bottom of the water level tank 4.
  • the aerobic three-phase separator 2 of the present embodiment includes two end plates 23 integrally formed by a bottom inverted trapezoidal plate and a top rectangular plate, respectively, and the second The two sides of the end plate 23 are perpendicularly connected to the baffle plate 25 having a rectangular cavity at the top, and the bottom ends of the two baffles 25 are respectively folded inwardly and vertically connected to the two sides of the inverted trapezoidal plate at the bottom of the end plate 23.
  • a sloping plate 4 having a bottom tapered cavity of the sludge outlet 27, an overflow weir 22 disposed between the two end plates 25 at the top horizontal axis of the rectangular cavity, and a bottom portion of the weir 22
  • the drain pipe 29 and the weir groove 22 disposed between the swash plate 26 and the baffle plate 25 on both sides of the weir groove 22 are symmetrically disposed with sediments respectively extending downward along the top of the two end plates 25.
  • the baffle 21, the sludge sedimentation zone A1 formed between the sedimentation baffles 21, the flow guiding zone A2 formed between the sedimentation baffle 21 and the baffle 25, and the underwater extension of the baffle 25 are folded inwardly.
  • a gas barrier member 28 is disposed at the tapered sludge bucket region A3 formed by the swash plate and at the sludge outlet.
  • the installation frame shown in FIG. 5 can be made according to the structural size of the aeration tank 1.
  • the aerobic three-phase separator 2 is mounted on the mounting frame and then hoisted to the top of the aeration tank 1 together with the mounting frame.
  • the mounting frame An interconnected beam 71 and stringer 72 are provided that are equidistantly spaced and commensurate with the size of the aerobic three-phase separator 2.
  • the installation method for the embodiment is:
  • Step 1 On the side of the water outlet end of the aeration tank 1 is provided with a water level tank 4 with an overflow port 41;
  • Step 2 Install the water main pipe 3 at the top of the aeration tank 1, the 3-end end of the water outlet pipe is a sealed end, and the other end is bent downward and then leads to the water level tank 4, and the water discharge main pipe 3 is bent downward.
  • the end port position of the water level tank 4 is at least lower than the minimum overflow height of the overflow port 41 by more than lm, and is at least 0.5 m higher than the bottom of the water level pool 4;
  • Step 3 An evacuation system is disposed on the water outlet manifold 3, and the evacuation system includes an air observation cylinder 61, an air pump 62, an exhaust pipe, a check valve, and an automatic control device, and is disposed in the water outlet pipe 3 near the end of the exhaust pipe and sealing the check valve, the check valve connected to the exhaust pipe and through the pipe 62 to a suction pump, a suction pump 62 connected to the cylinder 61 through the air outlet manifold 3 observation, observation is provided inside the air cylinder 61 with a float level Shaoguan, used to control the opening and closing of the air pump 62;
  • Step 4 Assemble a plurality of aerobic three-phase separators 2 outside the aeration tank 1, and connect each aerobic three-phase separator 2 to the outlet end of the water outlet hose;
  • Step 5 Lift a number of aerobic three-phase separators 2 to the top of the aeration tank 1, and connect the other end of the outlet hose 5 to the outlet manifold 3;
  • Step 6 Fill the water level pool 4 with clean water
  • Step 7 Each aerobic three-phase separator 2 is in an overflow state, the power of the pumping system is exhausted, and the pumping system manufactures a siphon condition. Since there is no water in the water outlet pipe 3, the air pump 62 will automatically start. Exhaust air until the air observation cylinder 61 is fully filled with the water suction pump 62, and the water level tank 4 automatically discharges water;
  • Step 8 Carefully observe the change in the water level in the air observation cylinder 61. If the water level drops too fast, it indicates that there is a leak in the pipeline, and the leak is detected and blocked.
  • the sewage treatment device can start normal operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

一种不停产安装好氧三相分离器的装置及方法,包括曝气池(1),曝气池(1)顶部设有若干可在底部曝气且污泥出口处设有挡气部件的好氧三相分离器(2),每个好氧三相分离器(2)包括溢流堰槽(22),溢流堰槽(22)底部设有通向好氧三相分离器(2)底端外侧的排水管,每根排水管与一出水软管(5)的一端相连通,每根出水软管(5)的另一端与一出水总管(3)相连,出水总管(3)一端为密封端,另一端向下弯折后通向水位池(4),水位池(4)顶端侧面设有溢流口(41),溢流口(41)的最低溢流高度低于好氧三相分离器(2)沉淀区的水位高度,出水总管(3)内设置有用于制造虹吸条件的抽空系统。

Description

不停产安装好氧三相分离器的装置及方法 技术领域
[0001] 本发明涉及污水处理技术领域, 尤其涉及一种对现有污水处理厂进行原位改造 吋需要用到的不停产安装好氧三相分离器的装置及方法。
背景技术
[0002] 随着我国城市化进程及工业的加速发展, 环保问题, 特别是城市污水处理已成 为各国研究的热点。 然而随着大量的生活与工业污水流入江河、 湖泊或地下水 中, 给水体造成严重污染, 对渔业用水、 生活用水等产生影响。 城市污水污染 已成为制约国家发展的重要因素之一, 因此国家对污水处理厂的排放标准也愈 发严格。 越来越多的城市污水处理厂为响应国家节能减排号召, 排放标准由原 来的 《城镇污水处理厂污染物排放标准》 GB18918-2002中的一级 B标准提升为一 级 A或者更高标准。 为达到更高的排放标准, 许多水厂由于设计原因, 原有的处 理单元已无法满足现有要求, 所以对污水处理厂的提标改造也不得不提上日程 。 对现有污水处理厂进行提标改造吋, 一般不能停产, 原先的曝气生化池中充 满污水, 且要满足正常曝气, 正常处理污水, 因此需要一种满足不停产改造的 污水处理装置。 将好氧三相分离器安装在现有的曝气池中构建反应沉淀一体式 环流生物反应器, 可以达到原位提标的效果。 但在曝气池不停产的情况下, 好 氧三相分离器的出水管道按照常规的方法是无法安装的。
技术问题
[0003] 本发明的目的是提供一种能够满足污水处理厂进行不停产的情况下安装好氧三 相分离器的装置及方法。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明采用如下技术方案:
[0005] 提供一种不停产安装好氧三相分离器的装置, 包括曝气池, 所述曝气池顶部设 有若干可在底部曝气且污泥出口处设有挡气部件的好氧三相分离器, 每个所述 好氧三相分离器包括溢流堰槽, 所述溢流堰槽底部设有通向所述好氧三相分离 器底端外侧的排水管, 每根所述排水管与一出水软管的一端相连通, 每根所述 出水软管的另一端与一出水总管相连, 所述出水总管一端为密封端, 另一端向 下弯折后通向水位池, 所述水位池上部设有溢流口或溢流管, 所述溢流口或溢 流管的最低溢流高度低于所述好氧三相分离器沉淀区的水位高度, 所述出水总 管上设有用于制造虹吸条件的抽空系统。
[0006] 优选地, 所述抽空系统包括: 空气观察筒、 抽气泵、 排气管、 逆止阀和自控装 置, 所述排气管和所述逆止阀设置在所述出水总管内且靠近所述密封端, 所述 排气管和所述逆止阀通过管道连接到所述抽气泵, 所述抽气泵通过所述空气观 察筒与所述出水总管相连, 所述空气观察筒内设置有浮球液位幵关, 用于控制 抽气泵的启闭。
[0007] 优选地, 所述曝气池池壁顶端搭建有用于放置所述好氧三相分离器的安装框架
[0008] 优选地, 所述溢流口的最低溢流高度比所述好氧三相分离器沉淀区水位高度低 0.5m以上。
[0009] 优选地, 所述水位池的有效容积大于所述出水总管容积的 2倍。
[0010] 优选地, 所述出水总管向下弯折深入所述水位池的一端端口位置比所述溢流口 的最低溢流高度至少低大于 lm, 且比水位池池底高至少 0.2m。
[0011] 本发明还提供一种不停产安装好氧三相分离器的方法, 包括以下步骤:
[0012] 步骤 1.在曝气池的出水端一侧设置带有溢流口的水位池;
[0013] 步骤 2.在曝气池顶部安装出水总管, 出水总管一端为密封端, 另一端向下弯折 后通向水位池, 所述出水总管向下弯折深入所述水位池的一端端口位置比所述 溢流口的最低溢流高度至少低大于 lm, 且比水位池池底高至少 0.2m;
[0014] 步骤 3.在出水总管上设置一抽空系统;
[0015] 步骤 4.在曝气池外组装好若干好氧三相分离器, 并将每个好氧三相分离器与出 水软管一端连接;
[0016] 步骤 5.将若干好氧三相分离器吊装到曝气池顶部, 将出水软管另一端连接到出 水总管上; [0017] 步骤 6.向水位池注满清水;
[0018] 步骤 7.调节好氧三相分离器的水平高度, 使每个好氧三相分离器均处于溢流状 态, 启动抽空系统, 为出水总管制造虹吸条件;
[0019] 步骤 8.好氧三相分离器正常出水后, 关闭抽空系统。
发明的有益效果
有益效果
[0020] 本发明中的好氧三相分离器悬挂在曝气池里, 曝气池向上曝气, 而好氧三相分 离器的污泥出口处设置有挡气部件, 实现阻止曝气进入好氧三相分离器内部, 能够实现好氧三相分离器外部的好氧污水处理、 内部的厌氧污水处理。
[0021] 当曝气池改造无法排除污水吋, 通过抽空系统制造虹吸, 污水可从设置在曝气 池顶部的好氧三相分离器中的出水软管汇流至出水总管最后流向水位池排出, 这样可以同吋满足污水处理不停产和改造的需要。
[0022] 本发明设有的空气观察窗方便工作人员在调试吋观测水位变化判断管道的漏气 情况。
[0023] 本发明中的安装框架可根据曝气池的实际大小制作, 能够满足不同场所曝气池 的不停产改造, 适用范围大。
对附图的简要说明
附图说明
[0024] 图 1是本发明不停产安装好氧三相分离器的装置整体结构示意图。
[0025] 图 2是本发明不停产安装好氧三相分离器的装置水位示意图。
[0026] 图 3是本发明中的好氧三相分离器整体结构示意图。
[0027] 图 4是图 3中的好氧三相分离器的横切剖面结构示意图。
[0028] 图 5是本发明中的安装框架结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0029] 下面结合附图与具体实施例来对本发明作进一步描述。
[0030] 请参阅图 1所示, 本实施中的不停产安装好氧三相分离器的装置, 包括曝气池 1 , 所述曝气池 1顶部设有若干可在底部曝气且污泥出口处设有挡气部件的好氧三 相分离器 2, 每个所述好氧三相分离器 2包括溢流堰槽 22, 所述溢流堰槽 22底部 设有通向所述好氧三相分离器底端外侧的排水管, 每根所述排水管与一出水软 管 5的一端相连通, 每根所述出水软管 5的另一端与一出水总管 3相连, 所述出水 总管 3—端为密封端, 另一端向下弯折后通向水位池 4, 所述水位池 4顶端侧面设 有溢流口 41, 所述溢流口 41的最低溢流高度低于所述好氧三相分离器 2沉淀区的 水位高度, 所述出水总管内设置有靠近所述密封端的所述排气管和所述逆止阀 , 所述排气管和所述逆止阀通过管道连接到所述抽气泵 62, 所述抽气泵 62通过 空气观察筒 61与所述出水总管 3相连, 所述空气观察筒 61内设置有浮球液位幵关 , 用于控制抽气泵 62的启闭, 所述水位池 4的有效容积大于所述出水总管 3容积 的 2倍。
[0031] 请参阅图 2所示, 在本实施例中, 所述溢流口 41的最低溢流高度 h比所述好氧三 相分离器 2沉淀区水位高度 H低 0.5-0.8m; 所述出水总管 3向下弯折深入所述水位 池 4的一端端口位置比所述溢流口 41的最低溢流高度 h至少低大于 lm, 且比水位 池 4池底高至少 0.5m。
[0032] 请参阅图 3和图 4所示, 本实施中的好氧三相分离器 2包括包括二平行设置由底 部倒梯形板与顶部矩形板一体成型的端板 23、 分别与所述二端板 23的二侧边垂 直连接顶部为矩形腔体的导流板 25、 所述二导流板 25底端分别向内折叠并与所 述端板 23底部倒梯形板的二侧边垂直连接为具有污泥出口 27的底部锥形腔的斜 板 4、 位于顶部所述矩形腔体水平轴线的所述二端板 25之间设置的溢流堰 22、 所 述溢流堰 22底部与所述斜板 26之间设置的排水管 29、 溢流堰槽 22与所述溢流堰 槽 22两侧的导流板 25之间对称设有分别沿二端板 25顶部向下悬伸的沉淀隔板 21 、 所述沉淀隔板 21之间成型的污泥沉淀区 Al、 沉淀隔板 21与导流板 25之间成型 的导流区 A2、 由导流板 25的水下延长向内折叠斜板构成的锥形污泥斗区 A3、 所 述污泥出口处设置有挡气部件 28。
[0033] 请参阅图 5所示, 当所述曝气池 1尺寸不能直接吊装所述好氧三相分离器 2吋, 可根据曝气池 1的结构尺寸制作如图 5所示的安装框架, 将所述好氧三相分离器 2 安装到该安装框架上后再连同安装框架一起吊装到曝气池 1顶部。 所述安装框架 包括若干根等距分布且与所述好氧三相分离器 2尺寸相适应的相互连接的横梁 71 和纵梁 72。
[0034] 针对本实施例的安装方法为:
[0035] 步骤 1.在曝气池 1的出水端一侧设置带有溢流口 41的水位池 4;
[0036] 步骤 2.在曝气池 1顶部安装出水总管 3, 出水总管 3—端为密封端, 另一端向下弯 折后通向水位池 4, 所述出水总管 3向下弯折深入所述水位池 4的一端端口位置比 所述溢流口 41的最低溢流高度至少低大于 lm, 且比水位池 4池底高至少 0.5m;
[0037] 步骤 3.在出水总管 3上设置一抽空系统, 所述抽空系统包括空气观察筒 61、 抽气 泵 62、 排气管、 逆止阀和自控装置, 在出水总管 3内设置靠近所述密封端的排气 管和逆止阀, 排气管和逆止阀通过管道连接到抽气泵 62, 抽气泵 62通过空气观 察筒 61与出水总管 3相连, 空气观察筒 61内设置有浮球液位幵关, 用于控制抽气 泵 62的启闭;
[0038] 步骤 4.在曝气池 1外组装好若干好氧三相分离器 2, 并将每个好氧三相分离器 2与 出水软管 5—端连接;
[0039] 步骤 5.将若干好氧三相分离器 2吊装到曝气池 1顶部, 将出水软管 5另一端连接到 出水总管 3上;
[0040] 步骤 6.向水位池 4注满清水;
[0041] 步骤 7.每个好氧三相分离器 2均处于溢流状态吋, 打幵抽空系统的电源, 抽空系 统制造虹吸条件, 因出水总管 3中没有水, 抽气泵 62会自动幵启排出空气, 直至 空气观察筒 61充满水抽气泵 62自动停止, 此吋水位池 4自动出水;
[0042] 步骤 8.仔细观察空气观察筒 61内的水位变化, 如果其水位下降过快, 说明管道 中有漏气的地方, 査出漏气处并堵漏。
[0043] 完成以上步骤后, 该污水处理装置即可幵始正常运行。
工业实用性
[0044] 以上所描述的仅为本发明的较佳实施例, 上述具体实施例不是对本发明的限制 。 在本发明的技术思想范畴内, 可以出现各种变形及修改, 凡本领域的普通技 术人员根据以上描述所做的润饰、 修改或等同替换, 均属于本发明所保护的范 围。

Claims

权利要求书
一种不停产安装好氧三相分离器的装置, 包括曝气池, 其特征在于, 所述曝气池顶部设有若干可在底部曝气且污泥出口处设有挡气部件的 好氧三相分离器, 每个所述好氧三相分离器包括溢流堰槽, 所述溢流 堰槽底部设有通向所述好氧三相分离器底端外侧的排水管, 每根所述 排水管与一出水软管的一端相连通, 每根所述出水软管的另一端与一 出水总管相连, 所述出水总管一端为密封端, 另一端向下弯折后通向 水位池, 所述水位池上部设有溢流口或溢流管, 所述溢流口或溢流管 的最低溢流高度低于所述好氧三相分离器沉淀区的水位高度, 所述出 水总管上设有用于制造虹吸条件的抽空系统。
根据权利要求 1所述的不停产安装好氧三相分离器的装置, 其特征在 于, 所述抽空系统包括: 空气观察筒、 抽气泵、 排气管、 逆止阀和自 控装置, 所述排气管和所述逆止阀设置在所述出水总管内且靠近所述 密封端, 所述排气管和所述逆止阀通过管道连接到所述抽气泵, 所述 抽气泵通过所述空气观察筒与所述出水总管相连, 所述空气观察筒内 设置有浮球液位幵关, 用于控制抽气泵的启闭。
根据权利要求 1所述的不停产安装好氧三相分离器的装置, 其特征在 于, 所述曝气池池壁顶端搭建有用于放置所述好氧三相分离器的安装 框架。
根据权利要求 1所述的不停产安装好氧三相分离器的装置, 其特征在 于, 所述溢流口的最低溢流高度比所述好氧三相分离器沉淀区水位高 度低 0.5m以上。
根据权利要求 1所述的不停产安装好氧三相分离器的装置, 其特征在 于, 所述水位池的有效容积大于所述出水总管容积的 2倍。
根据权利要求 1所述的不停产改造的污水处理装置, 其特征在于, 所 述出水总管向下弯折深入所述水位池的一端端口位置比所述溢流口的 最低溢流高度至少低大于 lm, 且比水位池池底高至少 0.2m。
一种不停产安装好氧三相分离器的方法, 其特征在于, 应用于权利要 求 1-6所述的任一种不停产改造的污水处理装置, 包括以下步骤: 步骤 1.在曝气池的出水端一侧设置带有溢流口的水位池;
步骤 2.在曝气池顶部安装出水总管, 出水总管一端为密封端, 另一端 向下弯折后通向水位池, 所述出水总管向下弯折深入所述水位池的一 端端口位置比所述溢流口的最低溢流高度至少低大于 lm, 且比水位 池池底高至少 0.2m;
步骤 3.在出水总管上设置一抽空系统;
步骤 4.在曝气池外组装好若干好氧三相分离器, 并将每个好氧三相分 离器与出水软管一端连接;
步骤 5.将若干好氧三相分离器吊装到曝气池顶部, 将出水软管另一端 连接到出水总管上;
步骤 6.向水位池注满清水;
步骤 7.调节好氧三相分离器的水平高度, 使每个好氧三相分离器均处 于溢流状态, 启动抽空系统, 为出水总管制造虹吸条件;
步骤 8.好氧三相分离器正常出水后, 关闭抽空系统。
PCT/CN2017/109533 2017-11-06 2017-11-06 不停产安装好氧三相分离器的装置及方法 WO2019084954A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/109533 WO2019084954A1 (zh) 2017-11-06 2017-11-06 不停产安装好氧三相分离器的装置及方法
US16/748,780 US11292736B2 (en) 2017-11-06 2020-01-21 Device and method for installing aerobic three-phase separator without interruption of production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109533 WO2019084954A1 (zh) 2017-11-06 2017-11-06 不停产安装好氧三相分离器的装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/748,780 Continuation US11292736B2 (en) 2017-11-06 2020-01-21 Device and method for installing aerobic three-phase separator without interruption of production

Publications (1)

Publication Number Publication Date
WO2019084954A1 true WO2019084954A1 (zh) 2019-05-09

Family

ID=66332016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109533 WO2019084954A1 (zh) 2017-11-06 2017-11-06 不停产安装好氧三相分离器的装置及方法

Country Status (2)

Country Link
US (1) US11292736B2 (zh)
WO (1) WO2019084954A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159535A1 (en) * 1984-04-10 1985-10-30 Nippon Sangyo Kikai Kabushiki Kaisha Septic tank
CN102863122A (zh) * 2012-09-29 2013-01-09 重庆大学 一种生活污水处理方法及装置
CN106145316A (zh) * 2016-08-12 2016-11-23 深圳市清研环境科技有限公司 带导流管的好氧三相分离器及其在污水处理中的应用方法
CN205973953U (zh) * 2016-08-12 2017-02-22 深圳市清研环境科技有限公司 带导流管的好氧三相分离器
CN107827234A (zh) * 2017-11-06 2018-03-23 深圳市清研环境科技有限公司 一种不停产安装好氧三相分离器的装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180170769A1 (en) * 2015-03-31 2018-06-21 ClearCove Systems, Inc. Method for processing waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159535A1 (en) * 1984-04-10 1985-10-30 Nippon Sangyo Kikai Kabushiki Kaisha Septic tank
CN102863122A (zh) * 2012-09-29 2013-01-09 重庆大学 一种生活污水处理方法及装置
CN106145316A (zh) * 2016-08-12 2016-11-23 深圳市清研环境科技有限公司 带导流管的好氧三相分离器及其在污水处理中的应用方法
CN205973953U (zh) * 2016-08-12 2017-02-22 深圳市清研环境科技有限公司 带导流管的好氧三相分离器
CN107827234A (zh) * 2017-11-06 2018-03-23 深圳市清研环境科技有限公司 一种不停产安装好氧三相分离器的装置及方法

Also Published As

Publication number Publication date
US11292736B2 (en) 2022-04-05
US20200156974A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
CN106395938A (zh) 一种老城区雨污水处理工艺及系统
CN104196118A (zh) 一种水池自动真空冲洗清淤装置及方法
CN107827234A (zh) 一种不停产安装好氧三相分离器的装置及方法
CN102747775B (zh) 一种初期雨水源头截流井
WO2019084954A1 (zh) 不停产安装好氧三相分离器的装置及方法
CN107720045A (zh) 一种垃圾吊抓斗检修孔的密封结构
CN110862147A (zh) 一种渗滤液厌氧uasb处理系统的脉冲布水装置
CN201436475U (zh) 水封罐虹吸管
CN114101240B (zh) 一种真空泵站自动清淤系统及方法
CN212835837U (zh) 一种雨水调蓄池的排水系统及调蓄池系统
CN206090805U (zh) 一种无沉积式污水提升泵站
CN211644895U (zh) 一种废水处理系统
CN211690686U (zh) 一种用于雨水排口的截流井装置
CN219952165U (zh) 感潮路段电力通信人井排水管道
CN220336089U (zh) 截流泵站
CN217105494U (zh) 一种污水处理装置和系统
CN101092821B (zh) 无负压罐
CN214940720U (zh) 一种适用大体量公共建筑的真空排水系统
CN218264206U (zh) 一体化玻璃钢雨污截流集成泵站
CN220999484U (zh) 混凝土、砖砌式化粪池专用密封盖
CN213448814U (zh) 带反冲洗的外置密闭污水提升装置
CN215166404U (zh) 一种市政雨污分流装置
CN220598672U (zh) 一种煤气水装置废水收集池异味处理系统
CN213233668U (zh) 一种立管用截流装置、截流系统
CN219429741U (zh) 一种实验室污水处理设备安装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM XXXX DATED 30/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17931034

Country of ref document: EP

Kind code of ref document: A1