WO2019084902A1 - Devices and methods for data transfer in wireless network - Google Patents

Devices and methods for data transfer in wireless network Download PDF

Info

Publication number
WO2019084902A1
WO2019084902A1 PCT/CN2017/109270 CN2017109270W WO2019084902A1 WO 2019084902 A1 WO2019084902 A1 WO 2019084902A1 CN 2017109270 W CN2017109270 W CN 2017109270W WO 2019084902 A1 WO2019084902 A1 WO 2019084902A1
Authority
WO
WIPO (PCT)
Prior art keywords
donas
message
data transfer
nas
mme
Prior art date
Application number
PCT/CN2017/109270
Other languages
French (fr)
Inventor
Jinyin Zhu
Zhiwei Qu
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to PCT/CN2017/109270 priority Critical patent/WO2019084902A1/en
Publication of WO2019084902A1 publication Critical patent/WO2019084902A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/32Release of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/14Interfaces between hierarchically different network devices between access point controllers and backbone network device

Definitions

  • the disclosure relates generally to wireless communications, and more particularly, to devices and methods for data transfer in a wireless network.
  • Control Plane CIoT EPS optimization i.e. DoNAS, Data over Non-Access Stratum
  • DoNAS is used for infrequent small data transfer to avoid overuse of signaling radio bearer resources for data transfer.
  • UE User Equipment
  • MME Mobility Management Entity
  • S1-U data transfer based on e.g. data size.
  • UE and MME can trigger the switching from Control Plane CIoT EPS optimization (i.e. DoNAS) to S1-U data transfer (refer to section 5.3.4B. 4 of 3GPP TS23.401) if both UE and the network support S1-U data transfer.
  • the UE or MME does not have knowledge of overall usage of signaling radio bearer resources in a cell and cannot perform the switching to S1-U data transfer timely and automatically. Therefore, it is difficult to protect the signaling radio bearer resources in a cell from being overused.
  • the disclosure proposes to provide an instruction by a network device (such as eNB) , which has the knowledge of the usage of signaling radio bearer resources in a cell, to the MME so as to perform the switching from DoNAS to S1-U data transfer.
  • a network device such as eNB
  • a method in a network device comprises generating a message including a DoNAS restriction indication if it is determined that usage of signaling radio bearer resources in a cell reaches a threshold.
  • the method further comprises transmitting the message to a Mobility Management Entity, MME.
  • the DoNAS restriction indication may indicate that usage of DoNAS for data transfer is not preferred.
  • the DoNAS restriction indication may indicate that usage of DoNAS for data transfer is restricted.
  • the network device may receive, during NAS connection establishment, a NAS message from a User Equipment, UE.
  • the NAS message may comprise a Control Plane Service Request, an Attach Request, or a TAU Request, etc.
  • the network device may generate an S1-AP message by combining the NAS message with the DoNAS restriction indication.
  • the network device may directly generate an S1-AP message including the DoNAS restriction indication when DoNAS is being used for data transfer.
  • the S1-AP message may comprise an Initial UE message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, etc.
  • a method in a Mobility Management Entity comprises receiving a message including a DoNAS restriction indication.
  • the method further comprises performing operations associated with data transfer based at least upon the DoNAS restriction indication.
  • the message may comprise an Initial UE message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, etc.
  • the DoNAS restriction indication may indicate that DoNAS is not preferred.
  • user plane bearers may be established if both the UE and the MME support S1-U data transfer. Otherwise, usage of DoNAS for data transfer may be maintained.
  • the DoNAS restriction indication may indicate that DoNAS is restricted. In this situation, usage of DoNAS for data transfer may be restricted, and user plane bearers may be established if both the UE and the MME support S1-U data transfer.
  • user plane bearers may be established by setting up S1-U bearers and data radio bearers. Usage of DoNAS may be inhibited by rejecting a NAS message from the UE and triggering S1 release procedure, or triggering S1 release procedure.
  • a network device which comprises a processor and a memory.
  • the memory contains instructions executable by the processor whereby the network device is operative to perform the methods in accordance with the aspects of the disclosure.
  • a Mobility Management Entity which comprises a processor and a memory.
  • the memory contains instructions executable by the processor whereby the MME is operative to perform the methods in accordance with the aspects of the disclosure.
  • a computer program comprising computer program code means.
  • the computer program code means may cause, when executed by at least one processor, the at least one processor to perform the methods in accordance with the aspects of the disclosure.
  • a computer readable medium has stored thereon the computer program in accordance with the aspects of the disclosure.
  • the switching from DoNAS to S1-U data transfer can be performed automatically according to usage of signaling radio bearer resources, and thus the signaling radio bearer resources can be protected from being overused.
  • Fig. 1 is a flowchart illustrating a method in a network device according to an embodiment of the disclosure
  • Fig. 2 is a flowchart illustrating a method in an MME according to an embodiment of the disclosure
  • Fig. 3 is a schematic diagram showing signaling among a plurality of network nodes during NAS connection establishment
  • Fig. 4 is a schematic diagram showing signaling among a plurality of network nodes when DoNAS is being used
  • Fig. 5 is a block diagram of a network device according to an embodiment of the disclosure.
  • Fig. 6 is a block diagram of an MME according to an embodiment of the disclosure.
  • Fig. 7 is a block diagram of a computer readable medium having stored thereon a computer program comprising computer program code means according to an embodiment of the disclosure.
  • wireless communication network refers to a network following any suitable communication standards, such as LTE-Advanced (LTE-A) , LTE, Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on.
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communications between a terminal device and a network device in the wireless communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • the term “device” refers to a network device or a terminal device in a wireless communication network.
  • the term “network device” refers to a device in a wireless communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device refers a base station (BS) , an access point (AP) , a Mobile Management Entity (MME) , Multi-cell/Multicast Coordination Entity (MCE) , a gateway, a server, a controller or any other suitable device in the wireless communication network.
  • BS base station
  • AP access point
  • MME Mobile Management Entity
  • MCE Multi-cell/Multicast Coordination Entity
  • the BS may be, for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a gNB, a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB a NodeB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a low power node such as a femto, a pico, and so forth.
  • network device include multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, Multi-cell/multicast Coordination Entities (MCEs) , core network nodes (e.g., MSCs, MMEs) , O&M nodes, OSS nodes, SON nodes, positioning nodes (e.g., E-SMLCs) , and/or MDTs.
  • MSR multi-standard radio
  • RNCs radio network controllers
  • BSCs base station controllers
  • BTSs base transceiver stations
  • MCEs Multi-cell/multicast Coordination Entities
  • core network nodes e.g., MSCs, MMEs
  • O&M nodes e.g., OSS nodes
  • SON nodes e.g., SON nodes
  • positioning nodes
  • network device may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to the wireless communication network or to provide some service to a terminal device that has accessed the wireless communication network.
  • terminal device refers to any end device that can access a wireless communication network and receive services therefrom.
  • the terminal device refers to a mobile terminal, UE, or other suitable device.
  • the UE may be, for example, a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • the terminal device may include, but not limited to, portable computers, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, a mobile phone, a cellular phone, a smart phone, a tablet, a wearable device, a personal digital assistant (PDA) , a vehicle, and the like.
  • PDA personal digital assistant
  • the terminal device may support device-to-device (D2D) communication, for example by implementing a 3GPP standard for sidelink communication, and may in this case be referred to as a D2D communication device.
  • D2D device-to-device
  • a terminal device may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another terminal device and/or a network equipment.
  • the terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device.
  • M2M machine-to-machine
  • MTC machine-type communication
  • the terminal device may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard.
  • NB-IoT narrow band internet of things
  • a terminal device may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
  • Fig. 1 is a flowchart illustrating a method 100 in a network device (for example, an eNB) according to an embodiment of the disclosure.
  • the method 100 as shown in Fig. 1 includes the following blocks.
  • the network device determines, based upon knowledge of usage of signaling radio bearer resources in a cell, whether the usage of signaling radio bearer resources in the cell reaches a threshold. If so, the network device may generate a message including a Data over Non-Access Stratum, DoNAS, restriction indication.
  • the DoNAS restriction indication may indicate that usage of DoNAS for data transfer is not preferred or is restricted.
  • the network device may receive, during NAS connection establishment, a NAS message from a User Equipment, UE.
  • the NAS message may comprise a Control Plane Service Request, an Attach Request, or a TAU Request, etc.
  • the network device may generate an S1-AP message by combining the received NAS message with the DoNAS restriction indication.
  • the network device may directly generate an S1-AP message including the DoNAS restriction indication.
  • the S1-AP message may comprise an Initial UE message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, to name a few.
  • the network device transmitted the message generated at block 110 to a Mobility Management Entity, MME.
  • MME Mobility Management Entity
  • new information element DoNAS Restriction Indication may be added in messages such as Initial UE Message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, to name a few.
  • messages incorporating the element DoNAS Restriction Indication are given below.
  • Fig. 2 is a flowchart illustrating a method 200 in an MME according to an embodiment of the disclosure.
  • the method 200 as shown in Fig. 2 includes the following blocks.
  • the MME receives a message including a DoNAS restriction indication from, e.g., a network device (such as an eNB) .
  • the DoNAS restriction indication may indicate that usage of DoNAS for data transfer is not preferred or restricted.
  • the message may be one of an Initial UE message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, etc.
  • the MME performs operations associated with data transfer based at least upon the received DoNAS restriction indication. For example, if the DoNAS restriction indication indicates that DoNAS is not preferred, user plane bearers may be established if both the UE and the MME support S1-U data transfer. Otherwise, usage of DoNAS for data transfer may be maintained. For example, user plane bearers may be established by setting up S1-U bearers and data radio bearers.
  • DoNAS restriction indication indicates that DoNAS is restricted
  • usage of DoNAS for data transfer may be restricted and user plane bearers may be established if both the UE and the MME support S1-U data transfer.
  • usage of DoNAS may be inhibited by rejecting a NAS message from the UE and triggering S1 release procedure during NAS connection establishment, or triggering S1 release procedure when DoNAS is being used.
  • MME releases the S1 connection after uplink data delivery without additional action based on DoNAS Restriction Indication. Otherwise,
  • MME establishes user plane bearers regardless of the UE’s preference on DoNAS; otherwise,
  • MME establishes user plane bearers
  • MME rejects the Control Plane Service Request or MME releases the existing S1 connection.
  • a network device which has the knowledge of the usage of signaling radio bearer resources in a cell may provide an instruction to the MME so as to perform the switching from DoNAS to S1-U data transfer.
  • the switching from DoNAS to S1-U data transfer can be performed automatically according to usage of signaling radio bearer resources, and thus the signaling radio bearer resources can be protected from being overused.
  • Fig. 3 is a schematic diagram showing signaling among a plurality of network nodes during NAS connection establishment.
  • Fig. 3 illustrates that an eNB instructs switching to S1-U data transfer by providing DoNAS Restriction Indication during NAS connection establishment.
  • Block 1 The UE establishes a RRC connection.
  • Block 2 If eNB determines that signaling radio bearer resource needs to be protected, it includes DoNAS Restriction Indication in an S1-AP Initial UE Message and sends the message to MME. It is noted that If UE sends Service Request for the NAS connection setup, then MME just establishes user plane bearers without checking the DoNAS Restriction Indication.
  • Block 3 MME decides whether to establish user plane bearers or use DoNAS or reject the Control Plane Service Request based on DoNAS Restriction Indication and other parameters, as have been described above with reference to Fig. 2.
  • Blocks 4a-4c will be selectively performed based upon the determination of the MME. However, if S1 connection should be released according to Release Assistance Information after the delivery of the uplink data contained in the NAS ESM Data Transport message carried in Initial UE message, MME would release the S1 connection after uplink data delivery and the following blocks 4a-4c and 5 will not be performed.
  • Blocks 4a If MME decides to establish user plane bearers, S1-U and radio bearer can be setup.
  • Block 4b If MME decides to use DoNAS for data transfer, S11-U tunnel can be setup.
  • Block 4c If MME decides to reject Control Plane Service Request, a Service Reject can be sent to UE and S1 connection is released.
  • the uplink and downlink data may be transferred using S1-U data transfer or DoNAS if service request is not rejected.
  • Fig. 4 is a schematic diagram showing signaling among a plurality of network nodes when DoNAS is being used.
  • Fig. 4 illustrates that an eNB instructs switching to S1-U data transfer by providing DoNAS Restriction Indication when DoNAS is being used.
  • Block 1 The uplink and downlink data is being transferred using DoNAS.
  • eNB determines that signaling radio bearer resource needs to be protected, it includes DoNAS Restriction Indication in an S1-AP Initial UE Message and sends the message to MME which is used for uplink data delivery or for downlink data delivery report.
  • the S1-AP message may be one of UPLINK NAS TRANSPORT, NAS NON DELIVERY INDICATION or NAS DELIVERY INDICATION, etc.
  • Block 3 MME decides whether to establish user plane bearers or keep DoNAS or release S1 connection based on DoNAS Restriction Indication and other parameters, as have been described above with reference to Fig. 2. Blocks 4a-4b will be selectively performed based upon the determination of the MME (no extra action is needed if MME decides to keep DoNAS) . However, if S1 connection should be released according to Release Assistance Information after the delivery of the uplink data contained in the NAS ESM Data Transport message carried in the S1-AP message, MME would release the S1 connection after uplink data delivery and the following blocks 4a-4b and 5 will not be performed.
  • Block 4a If MME decides to establish user plane bearers, S1-U and radio bearer can be setup.
  • Block 4b If MME decides to release S1 connection, S1 release procedure is triggered.
  • Block 5 Uplink and downlink data is transferred using S1-U data transfer or DoNAS if S1 connection is not released.
  • Fig. 5 is a block diagram of a network device according to an embodiment of the disclosure.
  • the network device 500 comprises a processor 510 and a memory 520 storing instructions executable by the processor 510.
  • the processor 510 may be implemented by a CPU (Central processing unit) , and could also be implemented by other types of components.
  • Various embodiments of the present disclosure may be implemented by computer program executable by one or more of the processors 510, software, firmware, hardware or in a combination thereof.
  • the processor 510 may be implemented by general purpose microprocessors, instruction set processors and/or special purpose microprocessors such as Application Specific Integrated Circuit (ASICs) and processors based on multicore processor architecture, as non-limiting examples.
  • ASICs Application Specific Integrated Circuit
  • Fig. 6 is a block diagram of an MME according to an embodiment of the disclosure.
  • the MME 600 comprises a processor 610 and a memory 620 storing instructions executable by the processor 610.
  • the processor 610 may be implemented by a CPU (Central processing unit) , and could also be implemented by other types of components.
  • Various embodiments of the present disclosure may be implemented by computer program executable by one or more of the processors 610, software, firmware, hardware or in a combination thereof.
  • the processor 610 may be implemented by general purpose microprocessors, instruction set processors and/or special purpose microprocessors such as Application Specific Integrated Circuit (ASICs) and processors based on multicore processor architecture, as non-limiting examples.
  • ASICs Application Specific Integrated Circuit
  • Fig. 7 is a block diagram of a computer readable medium having stored thereon a computer program comprising computer program code means according to an embodiment of the disclosure.
  • a computer readable medium 702 has stored thereon a computer program 701.
  • the computer program 701 comprises computer program code means 700 for performing, when executed by at least one processor, the methods according to the disclosure as mentioned above.
  • the computer readable medium 702 may have the form of a non-volatile or volatile memory, e.g., an Electrically Erasable Programmable Read-Only Memory (EEPROM) , a flash memory, a floppy disk, and a hard drive, etc.
  • the computer program code means 700 may include codes/computer readable instructions in any format.
  • an apparatus implementing one or more functions of a corresponding apparatus described with an embodiment includes not only prior art means, but also means for implementing the one or more functions of the corresponding apparatus described with the embodiment and it may include separate means for each separate function, or means that may be configured to perform two or more functions.
  • these techniques may be implemented in hardware (one or more apparatuses) , firmware (one or more apparatuses) , software (one or more modules) , or combinations thereof.
  • firmware or software implementation may be made through modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by various means including hardware, software, firmware, and a combination thereof.
  • each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations can be implemented by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functions specified in the flowchart block or blocks.
  • first and second refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”

Abstract

A method in a network device is provided. The method comprises generating a message including a DoNAS restriction indication if it is determined that usage of signaling radio bearer resources in a cell reaches a threshold. The method further comprises transmitting the message to a Mobility Management Entity, MME. Other devices and methods are also provided.

Description

DEVICES AND METHODS FOR DATA TRANSFER IN WIRELESS NETWORK TECHNICAL FIELD
The disclosure relates generally to wireless communications, and more particularly, to devices and methods for data transfer in a wireless network.
BACKGROUND
According to 3GPP standard, Control Plane CIoT EPS optimization (i.e. DoNAS, Data over Non-Access Stratum) is designed to increase data transfer efficiency. Generally, DoNAS is used for infrequent small data transfer to avoid overuse of signaling radio bearer resources for data transfer. When DoNAS is used for data transfer, a User Equipment, UE, or a Mobility Management Entity, MME, can decide to switch to S1-U data transfer based on e.g. data size. For example, UE and MME can trigger the switching from Control Plane CIoT EPS optimization (i.e. DoNAS) to S1-U data transfer (refer to section 5.3.4B. 4 of 3GPP TS23.401) if both UE and the network support S1-U data transfer.
SUMMARY
The summary is provided to introduce a selection of concepts in a simplified form that are further described below in detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Nevertheless, the UE or MME does not have knowledge of overall usage of signaling radio bearer resources in a cell and cannot perform the switching to S1-U data transfer timely and automatically. Therefore, it is difficult to protect the signaling radio bearer resources in a cell from being overused.
The disclosure proposes to provide an instruction by a network device (such as eNB) , which has the knowledge of the usage of signaling radio bearer resources in a cell, to the MME so as to perform the switching from DoNAS to  S1-U data transfer.
In an aspect of the disclosure, a method in a network device is provided. The method comprises generating a message including a DoNAS restriction indication if it is determined that usage of signaling radio bearer resources in a cell reaches a threshold. The method further comprises transmitting the message to a Mobility Management Entity, MME.
In an embodiment, the DoNAS restriction indication may indicate that usage of DoNAS for data transfer is not preferred. Alternatively, the DoNAS restriction indication may indicate that usage of DoNAS for data transfer is restricted.
In an embodiment, the network device may receive, during NAS connection establishment, a NAS message from a User Equipment, UE. The NAS message may comprise a Control Plane Service Request, an Attach Request, or a TAU Request, etc. The network device may generate an S1-AP message by combining the NAS message with the DoNAS restriction indication.
In an embodiment, the network device may directly generate an S1-AP message including the DoNAS restriction indication when DoNAS is being used for data transfer. For example, the S1-AP message may comprise an Initial UE message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, etc.
In another aspect of the disclosure, a method in a Mobility Management Entity, MME, is provided. The method comprises receiving a message including a DoNAS restriction indication. The method further comprises performing operations associated with data transfer based at least upon the DoNAS restriction indication. Preferably, the message may comprise an Initial UE message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, etc.
In an embodiment, the DoNAS restriction indication may indicate that DoNAS is not preferred. In this situation, user plane bearers may be established if both the UE and the MME support S1-U data transfer. Otherwise, usage of DoNAS for data transfer may be maintained.
In an embodiment, the DoNAS restriction indication may indicate that DoNAS is restricted. In this situation, usage of DoNAS for data transfer may be restricted, and user plane bearers may be established if both the UE and the MME support S1-U data transfer.
In an embodiment, user plane bearers may be established by setting up S1-U bearers and data radio bearers. Usage of DoNAS may be inhibited by rejecting a NAS message from the UE and triggering S1 release procedure, or triggering S1 release procedure.
In a further aspect of the disclosure, a network device is provided which comprises a processor and a memory. The memory contains instructions executable by the processor whereby the network device is operative to perform the methods in accordance with the aspects of the disclosure.
In a further aspect of the disclosure, a Mobility Management Entity, MME, is provided which comprises a processor and a memory. The memory contains instructions executable by the processor whereby the MME is operative to perform the methods in accordance with the aspects of the disclosure.
In a further aspect of the disclosure, a computer program comprising computer program code means is provided. The computer program code means may cause, when executed by at least one processor, the at least one processor to perform the methods in accordance with the aspects of the disclosure.
In a further aspect of the disclosure, a computer readable medium is provided. The computer readable medium has stored thereon the computer program in accordance with the aspects of the disclosure.
With the proposed schemes of the disclosure, the switching from DoNAS to S1-U data transfer can be performed automatically according to usage of signaling radio bearer resources, and thus the signaling radio bearer resources can be protected from being overused.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages will be more apparent from the following description of embodiments with reference to the figures, in which:
Fig. 1 is a flowchart illustrating a method in a network device according to an embodiment of the disclosure;
Fig. 2 is a flowchart illustrating a method in an MME according to an embodiment of the disclosure;
Fig. 3 is a schematic diagram showing signaling among a plurality of network nodes during NAS connection establishment;
Fig. 4 is a schematic diagram showing signaling among a plurality of network nodes when DoNAS is being used;
Fig. 5 is a block diagram of a network device according to an embodiment of the disclosure;
Fig. 6 is a block diagram of an MME according to an embodiment of the disclosure;
Fig. 7 is a block diagram of a computer readable medium having stored thereon a computer program comprising computer program code means according to an embodiment of the disclosure.
DETAILED DESCRIPTION
In the discussion that follows, specific details of particular embodiments of the present disclosure are set forth for purposes of explanation and not limitation. It will be appreciated by those skilled in the art that other embodiments may be employed apart from these specific details. Furthermore, in some instances detailed descriptions of well-known methods, nodes, interfaces, circuits, and devices are omitted so as not to obscure the description with unnecessary detail.  Those skilled in the art will appreciate that the functions described may be implemented in one or several nodes.
As used herein, the term “wireless communication network” refers to a network following any suitable communication standards, such as LTE-Advanced (LTE-A) , LTE, Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on. Furthermore, the communications between a terminal device and a network device in the wireless communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
The term “device” refers to a network device or a terminal device in a wireless communication network.
The term “network device” refers to a device in a wireless communication network via which a terminal device accesses the network and receives services therefrom. The network device refers a base station (BS) , an access point (AP) , a Mobile Management Entity (MME) , Multi-cell/Multicast Coordination Entity (MCE) , a gateway, a server, a controller or any other suitable device in the wireless communication network. The BS may be, for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a gNB, a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
Yet further examples of network device include multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, Multi-cell/multicast Coordination Entities (MCEs) , core network nodes (e.g., MSCs, MMEs) , O&M nodes, OSS  nodes, SON nodes, positioning nodes (e.g., E-SMLCs) , and/or MDTs. More generally, however, network device may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to the wireless communication network or to provide some service to a terminal device that has accessed the wireless communication network.
The term “terminal device” refers to any end device that can access a wireless communication network and receive services therefrom. By way of example and not limitation, the terminal device refers to a mobile terminal, UE, or other suitable device. The UE may be, for example, a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, portable computers, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, a mobile phone, a cellular phone, a smart phone, a tablet, a wearable device, a personal digital assistant (PDA) , a vehicle, and the like.
The terminal device may support device-to-device (D2D) communication, for example by implementing a 3GPP standard for sidelink communication, and may in this case be referred to as a D2D communication device.
As yet another specific example, in an Internet of Things (IOT) scenario, a terminal device may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another terminal device and/or a network equipment. The terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device. As one particular example, the terminal device may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, e.g.  refrigerators, televisions, personal wearables such as watches etc. In other scenarios, a terminal device may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
Now some exemplary embodiments of the present disclosure will be described below with reference to the figures. Reference is first made to Fig. 1 which is a flowchart illustrating a method 100 in a network device (for example, an eNB) according to an embodiment of the disclosure. The method 100 as shown in Fig. 1 includes the following blocks.
At block S110, the network device determines, based upon knowledge of usage of signaling radio bearer resources in a cell, whether the usage of signaling radio bearer resources in the cell reaches a threshold. If so, the network device may generate a message including a Data over Non-Access Stratum, DoNAS, restriction indication. The DoNAS restriction indication may indicate that usage of DoNAS for data transfer is not preferred or is restricted.
In an example, the network device may receive, during NAS connection establishment, a NAS message from a User Equipment, UE. The NAS message may comprise a Control Plane Service Request, an Attach Request, or a TAU Request, etc. The network device may generate an S1-AP message by combining the received NAS message with the DoNAS restriction indication.
In another example, when DoNAS is being used for data transfer, the network device may directly generate an S1-AP message including the DoNAS restriction indication. For example, the S1-AP message may comprise an Initial UE message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, to name a few.
At block S120, the network device transmitted the message generated at block 110 to a Mobility Management Entity, MME. Thus the MME may perform the switching from DoNAS to S1-U data transfer.
For S1-C interface (between MME and eNB) , new information element DoNAS Restriction Indication may be added in messages such as Initial UE Message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, to name a few. Several examples of messages incorporating the element DoNAS Restriction Indication are given below.
(1) . Initial UE Message incorporating DoNAS Restriction Indication
Figure PCTCN2017109270-appb-000001
(2) . Uplink NAS Transport message incorporating DoNAS Restriction Indication
Figure PCTCN2017109270-appb-000002
(3) . NAS Non Delivery Indication message incorporating DoNAS Restriction Indication
Figure PCTCN2017109270-appb-000003
(4) . NAS Delivery Indication message incorporating DoNAS Restriction Indication
Figure PCTCN2017109270-appb-000004
Fig. 2 is a flowchart illustrating a method 200 in an MME according to an embodiment of the disclosure. The method 200 as shown in Fig. 2 includes the following blocks.
At block S210, the MME receives a message including a DoNAS restriction indication from, e.g., a network device (such as an eNB) . The DoNAS restriction indication may indicate that usage of DoNAS for data transfer is not preferred or restricted. The message may be one of an Initial UE message, an Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message, etc.
At block S220, the MME performs operations associated with data transfer based at least upon the received DoNAS restriction indication. For example, if the DoNAS restriction indication indicates that DoNAS is not preferred, user plane bearers may be established if both the UE and the MME support S1-U data transfer. Otherwise, usage of DoNAS for data transfer may be maintained. For example, user plane bearers may be established by setting up S1-U bearers and data radio bearers.
On the other hand, if the DoNAS restriction indication indicates that DoNAS is restricted, usage of DoNAS for data transfer may be restricted and user plane bearers may be established if both the UE and the MME support S1-U data transfer. For example, usage of DoNAS may be inhibited by rejecting a NAS message from the UE and triggering S1 release procedure during NAS connection establishment, or triggering S1 release procedure when DoNAS is being used.
In an example, if S1 connection should be released according to Release Assistance Information after the delivery of the uplink data contained in the NAS ESM Data Transport message carried in S1-AP message, MME releases the S1 connection after uplink data delivery without additional action based on DoNAS Restriction Indication. Otherwise,
- If DoNAS Restriction Indication indicates that DoNAS is not preferred:
i. if both UE and MME support S1-U data transfer, MME establishes user plane bearers regardless of the UE’s preference on DoNAS; otherwise,
ii. DoNAS is used or kept.
- If DoNAS Restriction Indication indicates that DoNAS is restricted:
i. If both UE and MME support S1-U data transfer, MME establishes user plane bearers; otherwise,
ii. MME rejects the Control Plane Service Request or MME releases the existing S1 connection.
It is noted that the above description is based on SGi PDN. The person skilled in the art would understand that similar principles apply to SCEF associated PDN except that S1-U data transfer is not supported in SCEF associated PDN.
With the methods shown in Figs. 1-2, a network device which has the knowledge of the usage of signaling radio bearer resources in a cell may provide an instruction to the MME so as to perform the switching from DoNAS to S1-U data transfer. As such, the switching from DoNAS to S1-U data transfer can be performed automatically according to usage of signaling radio bearer resources, and thus the signaling radio bearer resources can be protected from being overused.
In the next, more details of the proposed principles will be given in connection with Fig. 3 and Fig. 4.
Fig. 3 is a schematic diagram showing signaling among a plurality of network nodes during NAS connection establishment. In particular, Fig. 3 illustrates that an eNB instructs switching to S1-U data transfer by providing DoNAS Restriction Indication during NAS connection establishment.
Block 1: The UE establishes a RRC connection.
Block 2: If eNB determines that signaling radio bearer resource needs to be protected, it includes DoNAS Restriction Indication in an S1-AP Initial UE Message and sends the message to MME. It is noted that If UE sends Service Request for the NAS connection setup, then MME just establishes user plane bearers without checking the DoNAS Restriction Indication.
Block 3: MME decides whether to establish user plane bearers or use DoNAS or reject the Control Plane Service Request based on DoNAS Restriction Indication and other parameters, as have been described above with reference to Fig. 2. Blocks 4a-4c will be selectively performed based upon the determination of the MME. However, if S1 connection should be released according to Release Assistance Information after the delivery of the uplink data contained in the NAS ESM Data Transport message carried in Initial UE message, MME would release the S1 connection after uplink data delivery and the following blocks 4a-4c and 5 will not be performed.
Blocks 4a: If MME decides to establish user plane bearers, S1-U and radio bearer can be setup.
Block 4b: If MME decides to use DoNAS for data transfer, S11-U tunnel can be setup.
Block 4c: If MME decides to reject Control Plane Service Request, a Service Reject can be sent to UE and S1 connection is released.
Block 5: The uplink and downlink data may be transferred using S1-U data transfer or DoNAS if service request is not rejected.
Fig. 4 is a schematic diagram showing signaling among a plurality of network nodes when DoNAS is being used. In particular, Fig. 4 illustrates that an  eNB instructs switching to S1-U data transfer by providing DoNAS Restriction Indication when DoNAS is being used.
Block 1: The uplink and downlink data is being transferred using DoNAS.
Block 2: If eNB determines that signaling radio bearer resource needs to be protected, it includes DoNAS Restriction Indication in an S1-AP Initial UE Message and sends the message to MME which is used for uplink data delivery or for downlink data delivery report. The S1-AP message may be one of UPLINK NAS TRANSPORT, NAS NON DELIVERY INDICATION or NAS DELIVERY INDICATION, etc.
Block 3: MME decides whether to establish user plane bearers or keep DoNAS or release S1 connection based on DoNAS Restriction Indication and other parameters, as have been described above with reference to Fig. 2. Blocks 4a-4b will be selectively performed based upon the determination of the MME (no extra action is needed if MME decides to keep DoNAS) . However, if S1 connection should be released according to Release Assistance Information after the delivery of the uplink data contained in the NAS ESM Data Transport message carried in the S1-AP message, MME would release the S1 connection after uplink data delivery and the following blocks 4a-4b and 5 will not be performed.
Block 4a: If MME decides to establish user plane bearers, S1-U and radio bearer can be setup.
Block 4b: If MME decides to release S1 connection, S1 release procedure is triggered.
Block 5: Uplink and downlink data is transferred using S1-U data transfer or DoNAS if S1 connection is not released.
Fig. 5 is a block diagram of a network device according to an embodiment of the disclosure. As shown in Fig. 5, the network device 500 comprises a processor 510 and a memory 520 storing instructions executable by the processor 510. The processor 510 may be implemented by a CPU (Central processing unit) , and could also be implemented by other types of components. Various embodiments of the present disclosure may be implemented by computer program executable by one or more of the processors 510, software, firmware, hardware or in a combination thereof. For example, the processor 510 may be implemented by general purpose microprocessors, instruction set processors and/or special purpose microprocessors such as Application Specific Integrated Circuit (ASICs) and processors based on multicore processor architecture, as non-limiting examples.
Fig. 6 is a block diagram of an MME according to an embodiment of the disclosure. As shown in Fig. 6, the MME 600 comprises a processor 610 and a memory 620 storing instructions executable by the processor 610. The processor 610 may be implemented by a CPU (Central processing unit) , and could also be implemented by other types of components. Various embodiments of the present disclosure may be implemented by computer program executable by one or more of the processors 610, software, firmware, hardware or in a combination thereof. For example, the processor 610 may be implemented by general purpose microprocessors, instruction set processors and/or special purpose microprocessors such as Application Specific Integrated Circuit (ASICs) and processors based on multicore processor architecture, as non-limiting examples.
Fig. 7 is a block diagram of a computer readable medium having stored thereon a computer program comprising computer program code means according to an embodiment of the disclosure. As shown in Fig. 7, a computer readable medium 702 has stored thereon a computer program 701. The computer program 701 comprises computer program code means 700 for performing, when executed by at least one processor, the methods according to the disclosure as mentioned above. The computer readable medium 702 may have the form of a non-volatile or volatile memory, e.g., an Electrically Erasable  Programmable Read-Only Memory (EEPROM) , a flash memory, a floppy disk, and a hard drive, etc. The computer program code means 700 may include codes/computer readable instructions in any format.
The techniques described herein may be implemented by various means so that an apparatus implementing one or more functions of a corresponding apparatus described with an embodiment includes not only prior art means, but also means for implementing the one or more functions of the corresponding apparatus described with the embodiment and it may include separate means for each separate function, or means that may be configured to perform two or more functions. For example, these techniques may be implemented in hardware (one or more apparatuses) , firmware (one or more apparatuses) , software (one or more modules) , or combinations thereof. For a firmware or software, implementation may be made through modules (e.g., procedures, functions, and so on) that perform the functions described herein.
Example embodiments herein have been described above with reference to block diagrams and flowchart illustrations of methods and apparatuses. It will be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by various means including hardware, software, firmware, and a combination thereof. For example, in one embodiment, each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations can be implemented by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functions specified in the flowchart block or blocks.
Further, while operations are depicted in a particular order, this should not  be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the subject matter described herein, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Conditional language used herein, such as ″can, ″ ″might, ″ ″may, ″ ″e.g., ″ and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprises, ” ″comprising, ″ ″including, ″ “includes, ” ″having, ″ and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term ″or″ is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term ″or″ means one, some, or all of the elements in the list. Further, the term ″each, ″ as used herein, in addition to having its ordinary meaning, can mean any  subset of a set of elements to which the term ″each″ is applied.
The terms “first” and “second” refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” Other definitions, explicit and implicit, may be included below.
In addition, language such as the phrase ″at least one of X, Y and Z, ″ unless specifically stated otherwise, is to be understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z, or a combination thereof. Unless otherwise explicitly stated, articles such as ″a″ or ″an″ should generally be interpreted to include one or more described items. Accordingly, phrases such as ″a device configured to″ are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations.
The disclosure has been described with reference to embodiments and drawings. It should be understood that various modifications, alternations and additions can be made by those skilled in the art without departing from the spirits and scope of the disclosure. Such modifications, alternations and additions are considered to be within the scope of the disclosure and the appended claims. Therefore, the scope of the disclosure is not limited to the above particular embodiments but only defined by the claims as attached and equivalents thereof.

Claims (17)

  1. A method (100) in a network device, the method comprising:
    generating (S110) a message including a Data over Non-Access Stratum, DoNAS, restriction indication if it is determined that usage of signaling radio bearer resources in a cell reaches a threshold; and
    transmitting (S120) the message to a Mobility Management Entity, MME.
  2. The method (100) according to claim 1, wherein the DoNAS restriction indication indicates that usage of DoNAS for data transfer is not preferred.
  3. The method (100) according to claim 1, wherein the DoNAS restriction indication indicates that usage of DoNAS for data transfer is restricted.
  4. The method (100) according to claim 1, wherein generating (S110) the message comprises receiving a NAS connection request message from a User Equipment, UE, and generating an S1-AP message by combining the NAS connection request message with the DoNAS restriction indication.
  5. The method (100) according to claim 1, wherein generating (S110) the message comprises generating an S1-AP message including the DoNAS restriction indication.
  6. The method (100) according to claim 4, wherein the NAS connection request message comprises any of a Control Plane Service Request, an Attach Request, or a TAU Request.
  7. The method (100) according to claim 5, wherein the S1-AP message comprises any of an Initial UE message, Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message.
  8. A method (200) in a Mobility Management Entity, MME, the method comprising:
    receiving (S210) a message including a Data over Non-Access Stratum, DoNAS, restriction indication; and
    performing (S220) operations associated with data transfer based at least upon the DoNAS restriction indication.
  9. The method (200) according to claim 8, wherein the DoNAS restriction indication indicates that DoNAS is not preferred, and wherein performing (S220) operations associated with data transfer comprises:
    establishing user plane bearers if both the UE and the MME support S1-U data transfer; or
    maintaining usage of DoNAS for data transfer.
  10. The method (200) according to claim 8, wherein the DoNAS restriction indication indicates that DoNAS is restricted, and wherein performing (S220) operations associated with data transfer comprises:
    restricting usage of DoNAS for data transfer; or
    establishing user plane bearers if both the UE and the MME support S1-U data transfer.
  11. The method (200) according to claim 9 or claim 10, wherein establishing user plane bearers comprises setting up S1-U bearers and data radio bearers.
  12. The method (200) according to claim 10, wherein restricting usage of DoNAS comprises:
    rejecting a NAS message from the UE and triggering S1 release procedure; or
    triggering S1 release procedure.
  13. The method (200) according to claim 8, wherein the message comprises any of an Initial UE message, Uplink NAS Transport message, a NAS Non Delivery Indication message or a NAS Delivery Indication message.
  14. A network device (500) , comprising:
    a processor (510) ; and
    a memory (520) containing instructions executable by the processor (510) whereby said network device (500) is operative to perform the method (100) according to any one of claim 1-7.
  15. A Mobility Management Entity (600) , MME, comprising:
    a processor (610) ; and
    a memory (620) containing instructions executable by the processor (610) whereby said MME (600) is operative to perform the method (200) according to any one of claim 8-13.
  16. A computer program (701) comprising computer program code means (700) which, when executed on at least one processor, cause the at least one processor to carry out the method (100, 200) according to any one of claims 1-13.
  17. A computer readable medium (702) having stored thereon a computer program (701) according to claim 16.
PCT/CN2017/109270 2017-11-03 2017-11-03 Devices and methods for data transfer in wireless network WO2019084902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109270 WO2019084902A1 (en) 2017-11-03 2017-11-03 Devices and methods for data transfer in wireless network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109270 WO2019084902A1 (en) 2017-11-03 2017-11-03 Devices and methods for data transfer in wireless network

Publications (1)

Publication Number Publication Date
WO2019084902A1 true WO2019084902A1 (en) 2019-05-09

Family

ID=66331184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109270 WO2019084902A1 (en) 2017-11-03 2017-11-03 Devices and methods for data transfer in wireless network

Country Status (1)

Country Link
WO (1) WO2019084902A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387495A (en) * 2010-08-30 2012-03-21 电信科学技术研究院 Data transmission processing method and equipment for machinery class communication equipment
US20150103766A1 (en) * 2012-03-30 2015-04-16 Telefonaktiebolaget L M Ericsson (Publ) Technique for Data-Over-NAS Signalling
EP2911443A1 (en) * 2012-10-16 2015-08-26 ZTE Corporation Method and device for controlling data transmission via signaling by user equipment
WO2016004301A1 (en) * 2014-07-03 2016-01-07 Convida Wireless, Llc Application data delivery service for networks supporting multiple transport mechanisms

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387495A (en) * 2010-08-30 2012-03-21 电信科学技术研究院 Data transmission processing method and equipment for machinery class communication equipment
US20150103766A1 (en) * 2012-03-30 2015-04-16 Telefonaktiebolaget L M Ericsson (Publ) Technique for Data-Over-NAS Signalling
EP2911443A1 (en) * 2012-10-16 2015-08-26 ZTE Corporation Method and device for controlling data transmission via signaling by user equipment
WO2016004301A1 (en) * 2014-07-03 2016-01-07 Convida Wireless, Llc Application data delivery service for networks supporting multiple transport mechanisms

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NEC: "S2-161566, CIoT Control Plane Load Control", SA WG2 MEETING #1134, 26 February 2016 (2016-02-26), XP051086406 *
ZTE: "R2-160415, RRC aspects for NB-IoT signaling optimization solution", 3GPP TSG-RAN WG2 NB-IOT AH, 21 January 2016 (2016-01-21), XP051054705 *
ZTE: "R3-160230, Solution2 and Solutionl8 selection and switching", 3GPP TSG-RAN WG3 #91, 19 February 2016 (2016-02-19), XP051056105 *

Similar Documents

Publication Publication Date Title
EP2673979B1 (en) Method and apparatus to reduce signaling overhead in the presence of network overload condition
EP3457747A1 (en) Bandwidth limited device and communication method therefor, and computer storage medium
TW201831002A (en) Device and Method for Handling New Radio Capacities
KR102240644B1 (en) Data transmission/reception apparatus and method, and communication system
AU2011358879A1 (en) Method and apparatus to reduce signaling overhead in the presence of network overload condition
US20210099912A1 (en) Rate control method, apparatus, and system
US20220248268A1 (en) Method for relay transmission, relay user equipment, and remote user equipment
US11438943B2 (en) Method and device for device-to-device (D2D) communication
US9258711B2 (en) Wireless communication system and authentication method thereof
US20210007019A1 (en) State switching method, network device and terminal device
US20220159502A1 (en) Method, Apparatus for Synchronization of Status of QoS Flow in Communication System
WO2022056693A1 (en) Method, device and computer storage medium of communication
US11671969B2 (en) Corresponding configuration for simultaneous physical uplink control channel PUCCH and physical uplink shared channel PUSCH transmission
US11503664B2 (en) Method, system and computer programs for the transmission of infrequent small data in a telecommunication system
WO2021147030A1 (en) Methods, devices, and medium for communication
WO2019084902A1 (en) Devices and methods for data transfer in wireless network
WO2017011941A1 (en) Transmission method for uplink data packet, terminal device, base station and communication system
WO2019104525A1 (en) Methods and network nodes for priority service differentiation
WO2018082039A1 (en) Method, device and system of signaling transmission
US11451996B2 (en) Methods and apparatuses for PLMN rate control
US20220159466A1 (en) Methods for handling security of early mobile-terminated data transmissions
WO2022082686A1 (en) Method and apparatus for reporting beam failure information
WO2023065109A1 (en) Information sending method and apparatus, information receiving method and apparatus, and system
US11166149B2 (en) Device-to-device communication method, terminal device, and network device
CN114731544A (en) Data transmission method, device and system based on network slice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930716

Country of ref document: EP

Kind code of ref document: A1