WO2019084838A1 - 一种用于移动终端的天线及具有该天线的移动终端 - Google Patents

一种用于移动终端的天线及具有该天线的移动终端 Download PDF

Info

Publication number
WO2019084838A1
WO2019084838A1 PCT/CN2017/108905 CN2017108905W WO2019084838A1 WO 2019084838 A1 WO2019084838 A1 WO 2019084838A1 CN 2017108905 W CN2017108905 W CN 2017108905W WO 2019084838 A1 WO2019084838 A1 WO 2019084838A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
antenna
circuit
feeding
feed
Prior art date
Application number
PCT/CN2017/108905
Other languages
English (en)
French (fr)
Inventor
章富洪
阮勇
胡澈
吕伟
Original Assignee
深圳传音制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音制造有限公司 filed Critical 深圳传音制造有限公司
Priority to PCT/CN2017/108905 priority Critical patent/WO2019084838A1/zh
Priority to CN201780096527.0A priority patent/CN111316501B/zh
Publication of WO2019084838A1 publication Critical patent/WO2019084838A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present invention relates to the field of antennas, and in particular, to an antenna for a mobile terminal and a mobile terminal having the same.
  • the antenna comprises a feeding circuit, and the feeding circuit is composed of components such as a resistor, a capacitor and an inductor.
  • a parameter of the feeding circuit with the best performance, that is, find a set of resistors, capacitors and inductors.
  • the parameters match the operating frequency band of the antenna.
  • the prior art adopts a method of matching using adjustable devices, such as adjustable capacitors, adjustable resistors, adjustable inductors, etc., and changes the parameter values of the adjustable components and observes the experimental results during the test. Thereby finding the optimal parameter value and using it in the mass produced antenna.
  • All frequency bands are matched and debugged by a set of feeding circuits. Because the frequency band span is large, when a certain frequency band is debugged, the impedance characteristics of other frequency bands are greatly affected, thereby affecting the antenna performance of other frequency bands;
  • an object of the present invention is to provide an antenna for a mobile terminal and a mobile terminal having the same, by setting a switch, selecting different feed circuit components to enter a working state, and achieving matching of different frequency bands. To improve the technical performance of the antenna performance.
  • an antenna for a mobile terminal includes a radiator and a feed end, and a switch, the switch includes a fixed end connected to the radiator and at least two a free end, switching the fixed end and one of the free ends in an on state; at least two sets of feeding circuits, one end of the feeding circuit is connected to one of the free ends of the switching switch, and the other end is connected to the feeding
  • the switch is connected to the radiator, and the radiator receives a wireless signal and generates a feed signal at the feed end via the feed circuit.
  • the feeding circuit is three groups, respectively: a first feeding circuit, the working frequency band is 600 MHz to 960 MHz; the second feeding circuit has a working frequency band of 1700 MHz to 2200 MHz; and the third feeding circuit has a working frequency band of 2300MHz to 2700MHz.
  • the first feeding circuit, the second feeding circuit and the third feeding circuit each comprise at least two sets of sub-feed circuits connected in parallel; each of the sub-feed circuits operates in different frequency bands.
  • the first feeding circuit includes a first switching sub-switch, a fixed end of the first switching sub-switch is connected to a free end of the switching switch, and a free end of the first switching sub-switch respectively and at least Two sets of sub-feed circuits are connected;
  • the second feed circuit includes a second switch sub-switch, a fixed end of the second switch sub-switch is connected to a free end of the switch, and a second switch sub-switch The free ends are respectively connected to at least two sets of sub-feed circuits;
  • the third feed circuit includes a third switch sub-switch, and the fixed end of the third switch sub-switch is connected to the free end of the switch, the The free ends of the three switching sub-switches are respectively connected to at least two sets of sub-feed circuits.
  • the feed circuit comprises any one of a ⁇ -shaped circuit, an L-shaped circuit or a ⁇ +L-shaped circuit.
  • the feeding circuit and the feeding end are respectively connected by an impedance cable with a resistance value of 50 ohms.
  • the antenna is any one of a slit type, a unipolar type, or an inverted F type.
  • the switch is embedded with control logic, and the preset free end is connected to the fixed end according to the frequency band of the wireless signal received by the radiator.
  • a mobile terminal including the antenna described above.
  • the signal of the whole frequency band is divided into multiple combinations or multiple single frequency bands for input, and the matching flexibility of the feeding circuit is good;
  • FIG. 1 is a schematic structural diagram of an antenna for a mobile terminal in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an antenna for a mobile terminal according to another preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an antenna for a mobile terminal according to still another preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a feeding circuit in accordance with a preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a mobile terminal in accordance with a preferred embodiment of the present invention.
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information without departing from the scope of the present disclosure.
  • second information may also be referred to as first information.
  • word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
  • FIG. 1 is a schematic structural diagram of an antenna for a mobile terminal according to a preferred embodiment of the present invention, where the antenna includes:
  • the radiator 1 is used to transmit or receive a radio signal, and the antenna is supported to operate on a plurality of frequency bands.
  • the radiator 1 is an antenna in a narrow sense, which is a transducer that converts a signal propagating on a wired medium into an electromagnetic wave propagating in an unbounded medium (usually free space), or vice versa;
  • the antennas are reversible, that is, the same antenna can be used as both a transmitting antenna and a receiving antenna; the same characteristic parameters of the same antenna as transmitting or receiving are the same; that is, the reciprocity theorem of the antenna.
  • the antenna has a richer content than a narrow antenna, and further includes a feeding circuit and a feeding end 2 that cooperate with the radiator 1 .
  • the antenna works in a frequency band of a mobile communication network, and includes multiple network standards such as 2G, 3G, and 4G, and supports the mobile terminal to perform information interaction with the outside.
  • the radiator 1 is designed in a different configuration.
  • the radiator 1 in the mobile terminal must be designed according to the structural characteristics of the mobile terminal, for example, using a mobile terminal.
  • the metal casing and the gap on the casing realize electromagnetic vibration to realize miniaturization of the radiator 1.
  • the radiator 1 is also used for laboratory testing of the antenna, which must be designed according to the laboratory environment, can cover various frequency bands required for the experiment, and has less restrictions on the size.
  • the feed end 2 is connected to a feed line to become a signal input end or an output end of the antenna.
  • the feed end 2 receives an electrical signal sent by a signal source and passes the feed.
  • the electrical circuit and the radiator 1 form a radio signal to be transmitted; when the antenna receives the signal, the wireless signal received by the radiator 1 is fed by the The electrical circuit is converted into an electrical signal, which is then transmitted by the feed terminal 2 to other components for processing.
  • the feeding end 2 is often connected to a radio frequency chip or a baseband chip, and processes the received radio frequency signal to be converted into a digital signal.
  • the changeover switch 3 includes a fixed end 31 and at least two free ends 32.
  • the fixed end 32 is connected to the radiator 1 .
  • the switch 3 can control the fixed end 31 to be connected to one of the free ends 32 to realize the communication between the two sides of the circuit, and the unconnected free end 32 is in a floating state.
  • the changeover switch 3 may be a single-pole double-throw switch, a single-pole three-throw switch, or the like having a switching function.
  • the feed circuit has at least two groups, one end of the feed circuit is connected to one of the free ends of the changeover switch 3, and the other end is connected to the feed end 2. That is, different feeding circuits are in a parallel relationship, and only one feeding circuit is connected to the radiator 1 through the switching switch 3 at the same time.
  • the feeding circuit is composed of a component such as a resistor, a capacitor, an inductor, etc., and can be oscillated with the radiator 1 and transmitted in the form of electromagnetic waves through the radiator 1 or wirelessly received by the radiator 1 The signal is converted to an electrical signal.
  • the role of the feed circuit in the antenna is critical. Without the feed circuit, the antenna cannot oscillate and cannot transmit or receive electromagnetic wave signals.
  • each of the feeding circuits adopts different parameters and operates on different frequency bands.
  • the switch 3 selects one of the feed circuits to be connected to the radiator 1 , and the radiator 1 receives a wireless signal and generates a signal through the feed circuit at the feed end 2 .
  • Feed signal At the time of the experimental test, the feed signal on the feed end 2 can be detected using a detection instrument to demonstrate the performance of the antenna when the feed circuit is in operation.
  • the component parameters within the feed circuit can also be continually adjusted to find the best matching parameters.
  • only one feeding circuit is in an operating state, and is not interfered by other feeding circuits, and can find parameters corresponding to the optimal antenna performance in the working frequency band corresponding to the feeding circuit. To provide parameter selection technical support for the mass production of the antenna.
  • the feeding circuit is three groups, respectively:
  • the working frequency band of the first feeding circuit 4 is 600 MHz to 960 MHz, and the frequency band is a low frequency band in mobile communication.
  • the working frequency band of the second feeding circuit 5 is 1700 MHz to 2200 MHz, and the frequency band is a middle frequency band in mobile communication.
  • the operating frequency band of the third feeding circuit 6 is 2300 MHz to 2700 MHz, which is a high frequency band in mobile communication.
  • the changeover switch 3 there are three free ends 32 of the changeover switch 3 in the embodiment, which are respectively connected to the first feed circuit 4, the second feed circuit 5, and the third feed circuit 6.
  • the switch 3 selects the feed circuit, the antennas respectively operate in a low frequency band, a middle frequency band, and a high frequency band.
  • the performance of the antenna in three frequency bands can be separately tested, and The optimal feed circuit parameters are matched.
  • the feeding circuit and the switching switch 3, the feeding circuit and the feeding end 2 are respectively connected by an impedance cable having a resistance value of 50 ohms.
  • the improvement further defines the connection manner between the components in the antenna.
  • the impedance of the signal line plays a vital role in signal transmission and anti-interference.
  • a 50 ohm impedance line is selected.
  • the cable is connected to the feed circuit and the switch 3, and the feed circuit and the feed terminal 2 are connected, which can reduce signal crosstalk on the transmission line and reduce the distortion of the signal.
  • the antenna is any one of a slit type, a unipolar type, or an inverted F type.
  • the preferred embodiment is preferred for the type of antenna.
  • a slot antenna is a common antenna for a mobile terminal, and a gap needs to be formed on the mobile terminal.
  • the slot itself is insulated, and the two sides of the slot are metal regions, and the feeding circuit is bridged.
  • On the slit a radiator 1 is disposed on one side of the slit, and a feeding end 2 is disposed on the other side.
  • the monopole antenna that is, the radiator 1 of the antenna has a unipolar extension, and has no physical structure extending left and right, and the working frequency band of the monopole antenna is relatively concentrated.
  • the radiating body 1 of the inverted F-type antenna is generally in a lying F shape, wherein two laterally extending ends of the "F" are respectively connected to the feeding circuit, and the inverted F-type antenna can be adapted to a plurality of frequency ranges, if matched with the switch 3 , can switch a variety of frequency bands.
  • the changeover switch 3 is a single-pole multi-throw switch of a microelectromechanical process.
  • Micro-electromechanical process is a hot spot in the development of manufacturing technology in recent years.
  • the manufactured equipment or components are also called MEMS, MEMS for short, and Micro-Electro-Mechanical System.
  • the microelectromechanical system is also called microelectromechanical system, microsystem, micromachined, etc., and refers to a high-tech device with a size of a few millimeters or even smaller.
  • the internal structure of the microelectromechanical system is generally on the order of micrometers or even nanometers, and is an independent smart system.
  • Microelectromechanical systems are developed on the basis of microelectronics technology (semiconductor manufacturing technology), combining high-tech electronic machinery made by lithography, etching, thin film, LIGA, silicon micromachining, non-silicon micromachining and precision machining. Device. Since the available space resources in the mobile terminal are tight, the components produced by the microelectromechanical process have the advantage of small volume, and the cut
  • the changeover switch 3 is also referred to as a MEMS switch.
  • the concept of MEMS switches was introduced in the late 1980s and early 1990s and is of great appeal to RF engineers. Their potential includes reducing the total area of chips, power consumption and device cost. Common MEMS switches are single-pole four-throw (SP4T) MEMS switches of the ADGM1304.
  • the switch 3 is a single-pole multi-throw switch, wherein the single-pole is connected to the fixed end 31, and different free ends 32 can be selected for the throwing connection, and finally a one-to-many selection mode can be realized, according to the feeding circuit.
  • the number of switches 3 has a number of corresponding free ends 32.
  • the switch 3 embeds control logic, and the preset free end 32 is connected to the fixed end 31 according to the radio signal band received by the radiator 1 .
  • the switch 3 is a programmable logic control device and has the capability of identifying the frequency band of the signal received by the fixed terminal 31.
  • control logic can be written in the switch 3 in advance, for example, when the received signal band is in a low frequency band, the free end 32 corresponding to the first feed circuit 4 is selected and The fixed end 31 is connected; when the received signal frequency band is the middle frequency band, the free end 32 corresponding to the second feeding circuit 5 is selected to be connected to the fixed end 31; and so on, the feeding circuit corresponding to different frequency bands is realized.
  • the choice is to achieve optimal antenna performance matching in this band.
  • the first feeding circuit 4, the second feeding circuit 5, and the third feeding circuit 6 each include at least two Groups of sub-feed circuits are connected; each of the sub-feed circuits operates in different frequency bands.
  • the improved embodiment further subdivides the operating frequency band of the feeding circuit on the basis of FIG. 1, and allows the antenna to perform performance testing of a further small frequency range.
  • the first feeding circuit 4 can be divided into sub-feed circuits with operating frequency bands of 600 MHz to 700 MHz, 700 MHz to 860 MHz, and 860 MHz to 960 MHz;
  • the second feeding circuit 5 can be divided into working frequency bands of 1700 MHz to 1850 MHz, A sub-feed circuit of 1850 MHz to 1900 MHz and 1900 MHz to 2200 MHz;
  • the third feed circuit 6 can be divided into sub-feed circuits having operating frequencies of 2300 MHz to 2400 MHz, 2400 MHz to 2500 MHz, and 2500 MHz to 2700 MHz.
  • the switch 3 selects a model whose number of free ends 32 satisfies the number of sub-feed circuits, or selects a plurality of switch 3s to run in parallel; one end of each sub-feed circuit is connected to the free end 32, and the other end is connected The feed ends 2 are connected.
  • the first feeding circuit 4 includes:
  • the fixed end of the first switching sub-switch 41 is connected to the free end 32 of the changeover switch 3, the first cut The free ends of the changeover switches 41 are respectively connected to at least two sets of sub-feed circuits.
  • the first switching sub-switch 41 selectively turns on only the sub-feed circuit in the first feeding circuit 4.
  • the fixed end of the second switching sub-switch 51 is connected to the free end 32 of the switching switch 3, and the free ends of the first switching sub-switch 51 are respectively connected to at least two sets of sub-feed circuits.
  • the second switching sub-switch 51 selectively turns on only the sub-feed circuit in the second feeding circuit 5.
  • the fixed end of the third switching sub-switch 61 is connected to the free end 32 of the changeover switch 3, and the free ends of the third switching sub-switch 61 are respectively connected to at least two sets of sub-feed circuits.
  • the third switching sub-switch 61 selectively turns on only the sub-feed circuit in the third feeding circuit 6.
  • the mode of the two-stage switch is selected, the first stage is still the switch 3, and each feed circuit is selected; the second stage is passed by the first switch sub-switch 41, the second switch sub-switch 51, The three switching sub-switches 61 respectively select the respective sub-feed circuit connections.
  • the feed circuit includes any one of a ⁇ -shaped circuit, an L-shaped circuit, or a ⁇ +L-shaped circuit.
  • the ⁇ -shaped circuit is the circuit type of the first feed circuit 4 in FIG. 3, and includes three components, wherein one end of each of the two components is grounded, and the other end is connected to both ends of the third component.
  • the two ends of the third component are respectively connected to the free end 32 and the feed end 2, and the above three components constitute a " ⁇ shape".
  • the L-shaped circuit is the circuit type of the second feed circuit 5 in FIG.
  • the ⁇ +L-shaped circuit combines a ⁇ -shaped circuit and an L-shaped circuit in series.
  • the components in the feeding circuit may be a combination of a resistor, a capacitor and an inductor. Different resistance values, capacitance values, and inductance values may affect the working frequency band of the feeding circuit, and each resistor, capacitor, and inductor select a fixed parameter value. Components can reduce energy losses relative to tunable components.
  • Each feeding circuit of the antenna may adopt the same circuit structure, or may adopt different circuit structures respectively, and perform selection and arrangement according to the working frequency band and the working space in the mobile terminal.
  • a mobile terminal includes the above antenna.
  • the mobile terminal further includes:
  • the radio frequency chip 7 is responsible for radio frequency transceiver, frequency synthesis, and power amplification.
  • the radio frequency chip is simply a receiving signal and a transmitting signal, and is a component that communicates with the base station when the mobile terminal picks up a call and receives a short message. Place
  • the radio frequency chip 7 has a radio frequency signal interface and is connected to the feed end 2.
  • the mobile terminal can be implemented in various forms.
  • the terminal described in the present invention may include a mobile terminal such as a mobile phone, a smart phone, a notebook computer, a PDA (Personal Digital Assistant), a PAD (Tablet), a PMP (Portable Multimedia Player), a navigation device, and the like, and such as Fixed terminal for digital TV, desktop computer, etc.
  • a mobile terminal such as a mobile phone, a smart phone, a notebook computer, a PDA (Personal Digital Assistant), a PAD (Tablet), a PMP (Portable Multimedia Player), a navigation device, and the like
  • the terminal is a mobile terminal.
  • those skilled in the art will appreciate that configurations in accordance with embodiments of the present invention can be applied to fixed type terminals in addition to components that are specifically for mobile purposes.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transceivers (AREA)

Abstract

本发明提供了一种用于移动终端的天线及具有该天线的移动终端,所述天线包括辐射体及馈电端,以及切换开关,所述切换开关包括与所述辐射体连接的固定端及至少二个自由端,切换所述固定端与其中一个自由端处于接通状态;至少二组馈电电路,所述馈电电路一端与所述切换开关的其中一个自由端连接,另一端与所述馈电端连接;所述切换开关选择一馈电电路与所述辐射体连接,所述辐射体接收一无线信号后经过所述馈电电路于所述馈电端产生一馈电信号。本发明的技术方案将全频段的信号分为多个组合或者多个单个频段进行输入,馈电电路的匹配灵活性好;相比可调元器件信号的损耗小;可使单个频段性能达到最优,提高天线性能。

Description

一种用于移动终端的天线及具有该天线的移动终端 技术领域
本发明涉及天线领域,尤其涉及一种用于移动终端的天线及具有该天线的移动终端。
背景技术
如今,随着通信技术的发展,2G、3G、4G、WIFI、GPS网络共存,为了兼容不同网络,移动设备的天线需要能够工作在多个频段上。在移动终端设备领域中,天线的设计环境非常复杂,空间有限,并且须考虑与其他的功能组件共享空间结构。其中一个限制就是单纯地设计所述的任一种天线无法覆盖所需的所有频带,为了满足在多个频段上工作的需求,就必须设计多个天线单元,并对所述天线进行全频段的测试。所述天线包括馈电电路,所述馈电电路由电阻、电容、电感等元器件组成,在测试过程中需要找出性能最优的馈电电路参数,也就是找到一组电阻、电容、电感的参数与所述天线的工作频段匹配。现有技术采用的办法是使用可调器件来进行匹配,例如可调电容、可调电阻、可调电感等可调元器件,在测试过程中改变可调元器件的参数值并观测实验结果,从而找出最优的参数值并在批量生产的天线中使用该参数值。
现有技术通过使用可调元器件实现天线的参数匹配,然而仍存在以下问题:
1.全部频段通过一组馈电电路匹配调试,因频段跨度较大,当调试某一段频段时,其他频段阻抗特性受到较大影响,从而影响其他频段的天线性能;
2.用一组馈电电路进行全频段的匹配调试,为了兼顾对其他频段的影响,匹配灵活性差;
3.可调元器件的成本较高,且参数值难以获取。
因此需要设计一种适用于移动终端的天线,能够满足多个频段的匹配需求,同时减少元器件成本。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种用于移动终端的天线及具有该天线的移动终端,通过设置切换开关,选择不同的馈电电路件进入工作状态,实现对不同频段进行匹配以提升天线性能的技术效果。
本申请的第一方面,公开了一种用于移动终端的天线,所述天线包括辐射体及馈电端,以及切换开关,所述切换开关包括与所述辐射体连接的固定端及至少二个自由端,切换所述固定端与其中一个自由端处于接通状态;至少二组馈电电路,所述馈电电路一端与所述切换开关的其中一个自由端连接,另一端与所述馈电端连接;所述切换开关选择一馈电电路与所述辐射体连接,所述辐射体接收一无线信号后经过所述馈电电路于所述馈电端产生一馈电信号。
优选地,所述馈电电路为三组,分别为:第一馈电电路,工作频段为600MHz至960MHz;第二馈电电路,工作频段为1700MHz至2200MHz;第三馈电电路,工作频段为2300MHz至2700MHz。
优选地,所述第一馈电电路、第二馈电电路及第三馈电电路各包括至少二组并接的子馈电电路;各所述子馈电电路工作于不同的频段范围。
优选地,所述第一馈电电路包括第一切换子开关,所述第一切换子开关的固定端与所述切换开关的自由端连接,所述第一切换子开关的自由端分别与至少二组子馈电电路连接;所述第二馈电电路包括第二切换子开关,所述第二切换子开关的固定端与所述切换开关的自由端连接,所述第二切换子开关的自由端分别与至少二组子馈电电路连接;所述第三馈电电路包括第三切换子开关,所述第三切换子开关的固定端与所述切换开关的自由端连接,所述第三切换子开关的自由端分别与至少二组子馈电电路连接。
优选地,所述馈电电路包括π形电路、L形电路或者π+L形电路中的任一种。
优选地,所述馈电电路与所述切换开关之间、所述馈电电路与所述馈电端之间分别通过电阻值为50欧姆的阻抗线缆连接。
优选地,所述天线为缝隙型、单极型或倒F型中的任一种。
优选地,所述切换开关内嵌控制逻辑,根据所述辐射体接收的无线信号频段选择预设的自由端与所述固定端连接。
本申请的第二方面,公开了一种移动终端,包括上述的天线。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.将全频段的信号分为多个组合或者多个单个频段进行输入,馈电电路的匹配灵活性好;
2.相比可调元器件信号的损耗小;
3.可使单个频段性能达到最优,提高天性能。
附图说明
图1为符合本发明一优选实施例中用于移动终端的天线的结构示意图;
图2为符合本发明另一优选实施例中用于移动终端的天线的结构示意图;
图3为符合本发明再一优选实施例中用于移动终端的天线的结构示意图;
图4为符合本发明一优选实施例中馈电电路的结构示意图;
图5为符合本发明一优选实施例中移动终端的结构示意图。
附图标记:
1-辐射体、2-馈电端、3-切换开关、31-固定端、32-自由端、4-第一馈电电路、5-第二馈电电路、6-第三馈电电路、41-第一切换子开关、51-第二切换子开关、61-第三切换子开关、7-射频芯片。
具体实施方式
以下结合附图与具体实施例进一步阐述本发明的优点。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基 于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,“模块”与“部件”可以混合地使用。
参阅图1,为符合本发明一优选实施例中用于移动终端的天线的结构示意图,所述天线包括:
-辐射体1
所述辐射体1用于发送或接收无线电信号,支持所述天线工作在多个频段上。所述辐射体1是狭义上的天线,它是一种变换器,它把有线介质上传播的信号,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换;是在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。通常天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线;同一天线作为发射或接收的基本特性参数是相同的;即天线的互易定理。本实施例中,所述天线的内涵比狭义的天线要丰富,还包括了与所述辐射体1配合工作的馈电电路及馈电端2。所述天线工作在移动通信网络的频段,包括2G、3G、4G等多种网络制式,支持所述移动终端与外部进行信息交互。根据工作频段和应用场合的不同,所述辐射体1被设计为不同的构造,例如在所述移动终端内的辐射体1则须根据移动终端的构造特点进行相应的设计,例如利用移动终端的金属外壳及外壳上的缝隙实现电磁震荡,实现辐射体1的小型化。再例如所述辐射体1也会被用于实验室测试的天线,须根据实验室环境进行设计,能够覆盖实验所需的各种频段,对尺寸的限制较少。
-馈电端2
所述馈电端2与一馈线连接,成为所述天线的信号输入端或输出端,当所述天线发射信号时,所述馈电端2接收信号源发来的电信号并通过所述馈电电路及辐射体1形成无线电信号发射出去;当所述天线接收信号时,所述辐射体1接收的无线信号经所述馈 电电路转换为电信号,再由所述馈电端2传输至其他部件进行处理。所述馈电端2常与射频芯片或基带芯片连接,对接收的射频信号进行处理,转换为数字信号。
-切换开关3
所述切换开关3包括固定端31和至少两个自由端32。所述固定端32与所述辐射体1连接。所述切换开关3能够控制所述固定端31分别与其中一个自由端32连接,实现两侧电路的联通,未被连接的自由端32处于悬空状态。所述切换开关3可以是单刀双掷开关、单刀三掷开关等具有切换功能的通断器件。
-馈电电路
所述馈电电路至少有二组,所述馈电电路的一端与所述切换开关3的其中一个自由端连接,另一端与所述馈电端2连接。即不同的馈电电路处于并行的关系,同一时间内只有一个馈电电路通过所述切换开关3与所述辐射体1连接。所述馈电电路由电阻、电容、电感等元器件组成,能够与所述辐射体1产生震荡并通过所述辐射体1以电磁波的形式发送出去,也可以将所述辐射体1接收的无线信号转换为电信号。所述馈电电路在所述天线中的作用是至关重要的,没有所述馈电电路,所述天线就无法产生震荡,也就无法发送或接收电磁波信号。所述馈电电路的结构及电气参数不同,会对其工作频段造成影响,也会影响天线的性能,因此通过改变所述馈电电路的元器件的参数可以对天线的性能进行优化调整。本实施例中各所述馈电电路采用了不同的参数,工作于不同的频段上。
所述天线工作时,所述切换开关3选择其中一路馈电电路与所述辐射体1连接,所述辐射体1接收一无线信号后经过所述馈电电路于所述馈电端2产生一馈电信号。在实验测试时,可使用检测仪器检测所述馈电端2上的馈电信号,展示所述天线在所述馈电电路工作时的性能。还可不断地对所述馈电电路内的元器件参数进行调整以找出最佳匹配的参数。本实施例中所述天线工作时仅有一路馈电电路处于工作状态,不会受到其他馈电电路的干扰,并能够在该馈电电路对应的工作频段上找出最佳天线性能对应的参数,为该天线的量产提供参数选型技术支持。
作为上述天线的进一步改进,所述馈电电路为三组,分别为:
-第一馈电电路4
所述第一馈电电路4的工作频段为600MHz至960MHz,该频段为移动通信中的低频段。
-第二馈电电路5
所述第二馈电电路5的工作频段为1700MHz至2200MHz,该频段为移动通信中的中频段。
-第三馈电电路6
所述第三馈电电路6的工作频段为2300MHz至2700MHz,该频段为移动通信中的高频段。
相应地,本实施例中所述切换开关3的自由端32有三个,分别与所述第一馈电电路4、第二馈电电路5、第三馈电电路6连接。当所述切换开关3分别选择上述馈电电路时,所述天线分别工作在低频段、中频段及高频段上,在实验测试中可分别测试所述天线在三个频段上的性能,并找出最优的馈电电路参数进行匹配。
作为所述天线的进一步改进,所述馈电电路与所述切换开关3之间、所述馈电电路与所述馈电端2之间分别通过电阻值为50欧姆的阻抗线缆连接。本改进对所述天线内各部件之间的连接方式作了进一步限定,在天线中,信号线路的阻抗对信号的传输及抗干扰有着至关重要的作用,本实施例选用50欧姆的阻抗线缆连接所述馈电电路与所述切换开关3,以及连接所述馈电电路与所述馈电端2,能够减少传输线路上的信号串扰,减小信号的失真度。
作为所述天线的进一步改进,所述天线为缝隙型、单极型或倒F型中的任一种。本优选实施例对所述天线的类型进行了优选。缝隙型天线是常见的一种用于移动终端的天线,需要在所述移动终端上形成一道缝隙,所述缝隙本身是绝缘的,所述缝隙两侧为金属区域,所述馈电电路跨接于所述缝隙上,所述缝隙的一侧布设辐射体1,另一侧布设馈电端2。所述单极型天线即所述天线的辐射体1呈单极延伸,没有左右延伸的物理结构,单极型天线的工作频段较为集中。倒F型天线的辐射体1整体呈躺倒的F型,其中“F”的两个横向延伸端分别与馈电电路连接,倒F型天线能够适应多种频段范围,若与切换开关3配合,可以实现多种频段的切换。
作为所述天线的进一步改进,所述切换开关3为微机电工艺的单刀多掷开关。微机电工艺是近年来制造技术发展的热门,制造出的设备或元器件也被称为微机电系统,英文简称MEMS,英文全称Micro-Electro-Mechanical System。所述微机电系统也叫做微电子机械系统、微系统、微机械等,指尺寸在几毫米乃至更小的高科技装置,微机电系统其内部结构一般在微米甚至纳米量级,是一个独立的智能系统。微机电系统是在微电子技术(半导体制造技术)基础上发展起来的,融合了光刻、腐蚀、薄膜、LIGA、硅微加工、非硅微加工和精密机械加工等技术制作的高科技电子机械器件。由于所述移动终端内的可用空间资源紧张,因此采用微机电工艺生产的元器件具有体积小的优点,所述切 换开关3也被称为MEMS开关。MEMS开关的概念是在20世纪80年代末期90年代初期被提出的,对射频工程师具有巨大的吸引力,它们的潜力包括减少芯片的总面积、功耗和器件成本。常见的MEMS开关有型号为ADGM1304的单刀四掷(SP4T)MEMS开关,还具有静电保护的特性,相比射频继电器,MEMS开关的体积缩小多达95%,可靠性提升10倍,速度提升30倍,功耗降低10倍。所述切换开关3为单刀多掷开关,其中的单刀与所述固定端31连接,并且能够选择不同的自由端32进行投掷连接,最终实现一对多的选择方式,可根据所述馈电电路的数量选取具有相应自由端32数量的切换开关3。
作为所述天线的进一步改进,所述切换开关3内嵌控制逻辑,根据所述辐射体1接收的无线信号频段选择预设的自由端32与所述固定端31连接。所述切换开关3为可编程的逻辑控制器件,并具备识别固定端31接收的信号频段的能力。使用所述切换开关3时,可预先在所述切换开关3内写入控制逻辑,例如当接收的信号频段为低频段时,选择所述第一馈电电路4对应的自由端32与所述固定端31连接;当接收的信号频段为中频段时,选择所述第二馈电电路5对应的自由端32与所述固定端31连接;以此类推,实现对不同频段对应的馈电电路的选择,实现在该频段上的天线性能匹配最优。
参阅图2,为符合本发明另一优选实施例中用于移动终端的天线的结构示意图,所述第一馈电电路4、第二馈电电路5及第三馈电电路6各包括至少二组并接的子馈电电路;各所述子馈电电路工作于不同的频段范围。本改进实施例在图1的基础上进一步对馈电电路的工作频段进行细分,允许所述天线进行更进一步的小频段范围的性能测试。例如所述第一馈电电路4可分为工作频段为600MHz至700MHz、700MHz至860MHz、860MHz至960MHz的子馈电电路;所述第二馈电电路5可分为工作频段为1700MHz至1850MHz、1850MHz至1900MHz、1900MHz至2200MHz的子馈电电路;所述第三馈电电路6可分为工作频段为2300MHz至2400MHz、2400MHz至2500MHz、2500MHz至2700MHz的子馈电电路。相应地,所述切换开关3选用自由端32数量满足子馈电电路数量的型号,或选用多个切换开关3并列运行;各子馈电电路的一端与所述自由端32连接,另一端与所述馈电端2连接。
参阅图3,为符合本发明再一优选实施例中用于移动终端的天线的结构示意图,所述第一馈电电路4包括:
-第一切换子开关41
所述第一切换子开关41的固定端与所述切换开关3的自由端32连接,所述第一切 换子开关41的自由端分别与至少二组子馈电电路连接。所述第一切换子开关41仅对所述第一馈电电路4内的子馈电电路进行选择接通。
-第二切换子开关51
所述第二切换子开关51的固定端与所述切换开关3的自由端32连接,所述第一切换子开关51的自由端分别与至少二组子馈电电路连接。所述第二切换子开关51仅对所述第二馈电电路5内的子馈电电路进行选择接通。
-第三切换子开关61
所述第三切换子开关61的固定端与所述切换开关3的自由端32连接,所述第三切换子开关61的自由端分别与至少二组子馈电电路连接。所述第三切换子开关61仅对所述第三馈电电路6内的子馈电电路进行选择接通。
本实施例选用了二级切换开关的方式,第一级仍为所述切换开关3,对各馈电电路进行选择;第二级通过第一切换子开关41、第二切换子开关51、第三切换子开关61分别选择各子馈电电路连接。
参阅图4,为符合本发明一优选实施例中馈电电路的结构示意图,所述馈电电路包括π形电路、L形电路或者π+L形电路中的任一种。所述π形电路即为图3中的第一馈电电路4的电路类型,包括3个元器件,其中两个元器件的一端分别接地,另一端与第三个元器件的两端连接,第三个元器件的两端分别与所述自由端32和馈电端2连接,上述3个元器件组成一个“π形”。所述L形电路即为图3中的第二馈电电路5的电路类型,由2个元器件组成,第一个元器件串接于所述自由端32与所述馈电端2之间,第二个元器件分别与所述馈电端2和地连接。所述π+L形电路则是将π形电路和L形电路串联起来组合使用。上述馈电电路中的元器件可以是电阻、电容、电感的组合,选取不同的电阻值、电容值、电感值能够影响该馈电电路的工作频段,各电阻、电容、电感选用固定参数值的元器件,相对于可调元器件能够减小能量损耗。所述天线的各馈电电路可以采用相同的电路结构,也可分别采用不相同的电路结构,根据其工作频段及在所述移动终端内的工作空间进行选型布置。
参阅图4,为符合本发明一优选实施例中移动终端的结构示意图,一种移动终端,包括上述的天线。所述移动终端还包括:
-射频芯片7
所述射频芯片7负责射频收发、频率合成、功率放大。射频芯片简单的说就是接收信号和发送信号,是在所述移动终端接打电话和接收短信时主管与基站通信的部件。所 述射频芯片7具有射频信号接口,与所述馈电端2连接。随着集成电路技术的发展,很多厂商会将所述射频芯片7集成在通信基带芯片内,将信号的收发和处理集成在一起完成。
移动终端可以以各种形式来实施。例如,本发明中描述的终端可以包括诸如移动电话、智能电话、笔记本电脑、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、导航装置等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。下面,假设终端是移动终端。然而,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本发明的实施方式的构造也能够应用于固定类型的终端。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种用于移动终端的天线,所述天线包括辐射体及馈电端,其特征在于,所述天线还包括:
    切换开关,包括与所述辐射体连接的固定端及至少二个自由端,切换所述固定端与其中一个自由端处于接通状态;
    至少二组馈电电路,所述馈电电路一端与所述切换开关的其中一个自由端连接,另一端与所述馈电端连接;
    所述切换开关选择一馈电电路与所述辐射体连接,所述辐射体接收一无线信号后经过所述馈电电路于所述馈电端产生一馈电信号。
  2. 如权利要求1所述的天线,其特征在于,
    所述馈电电路为三组,分别为:
    第一馈电电路,工作频段为600MHz至960MHz;
    第二馈电电路,工作频段为1700MHz至2200MHz;
    第三馈电电路,工作频段为2300MHz至2700MHz。
  3. 如权利要求2所述的天线,其特征在于,
    所述第一馈电电路、第二馈电电路及第三馈电电路各包括至少二组并接的子馈电电路;各所述子馈电电路工作于不同的频段范围。
  4. 如权利要求3所述的天线,其特征在于,
    所述第一馈电电路包括第一切换子开关,所述第一切换子开关的固定端与所述切换开关的自由端连接,所述第一切换子开关的自由端分别与至少二组子馈电电路连接;
    所述第二馈电电路包括第二切换子开关,所述第二切换子开关的固定端与所述切换开关的自由端连接,所述第二切换子开关的自由端分别与至少二组子馈电电路连接;
    所述第三馈电电路包括第三切换子开关,所述第三切换子开关的固定端与所述切换开关的自由端连接,所述第三切换子开关的自由端分别与至少二组子馈电电路连接。
  5. 如权利要求1-4任一项所述的天线,其特征在于,
    所述馈电电路包括π形电路、L形电路或者π+L形电路中的任一种。
  6. 如权利要求1-4任一项所述的天线,其特征在于,
    所述馈电电路与所述切换开关之间、所述馈电电路与所述馈电端之间分别通过电阻值为50欧姆的阻抗线缆连接。
  7. 如权利要求1-4任一项所述的天线,其特征在于,
    所述天线为缝隙型、单极型或倒F型中的任一种。
  8. 如权利要求1-4任一项所述的天线,其特征在于,
    所述切换开关为微机电工艺的单刀多掷开关。
  9. 如权利要求1-4任一项所述的天线,其特征在于,
    所述切换开关内嵌控制逻辑,根据所述辐射体接收的无线信号频段选择预设的自由端与所述固定端连接。
  10. 一种移动终端,其特征在于,包括如权利要求1所述的天线。
PCT/CN2017/108905 2017-11-01 2017-11-01 一种用于移动终端的天线及具有该天线的移动终端 WO2019084838A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/108905 WO2019084838A1 (zh) 2017-11-01 2017-11-01 一种用于移动终端的天线及具有该天线的移动终端
CN201780096527.0A CN111316501B (zh) 2017-11-01 2017-11-01 一种用于移动终端的天线及具有该天线的移动终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108905 WO2019084838A1 (zh) 2017-11-01 2017-11-01 一种用于移动终端的天线及具有该天线的移动终端

Publications (1)

Publication Number Publication Date
WO2019084838A1 true WO2019084838A1 (zh) 2019-05-09

Family

ID=66331262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108905 WO2019084838A1 (zh) 2017-11-01 2017-11-01 一种用于移动终端的天线及具有该天线的移动终端

Country Status (2)

Country Link
CN (1) CN111316501B (zh)
WO (1) WO2019084838A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976600A (zh) * 2022-06-27 2022-08-30 Oppo广东移动通信有限公司 天线组件、中框组件以及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115118302B (zh) * 2021-03-23 2023-11-10 Oppo广东移动通信有限公司 天线装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080166980A1 (en) * 2006-04-26 2008-07-10 Hitachi Metals, Ltd. High-frequency circuit, high-frequency device, and communication apparatus
CN103296385A (zh) * 2013-05-29 2013-09-11 上海安费诺永亿通讯电子有限公司 一种可调式多频天线系统
CN103579757A (zh) * 2012-07-24 2014-02-12 华为终端有限公司 一种改变天线工作频率的方法、天线及终端
CN105244620A (zh) * 2015-07-23 2016-01-13 广东欧珀移动通信有限公司 天线装置及具有该天线装置的移动终端

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0015374D0 (en) * 2000-06-23 2000-08-16 Koninkl Philips Electronics Nv Antenna arrangement
JP2003158468A (ja) * 2001-11-20 2003-05-30 Toshiba Corp 携帯無線装置
US6995716B2 (en) * 2004-04-30 2006-02-07 Sony Ericsson Mobile Communications Ab Selectively engaged antenna matching for a mobile terminal
JP2011015345A (ja) * 2009-07-06 2011-01-20 Panasonic Corp 携帯無線装置
US9024836B2 (en) * 2011-10-21 2015-05-05 Htc Corporation Electronic device for processing radio frequency signals and matching circuit for providing variable impedance
CN103187628A (zh) * 2011-12-28 2013-07-03 北京光宝移动电子电信部件有限公司 接收无线电广播信号的天线装置
TWI504057B (zh) * 2012-05-23 2015-10-11 Cho Yi Lin 可攜式通訊裝置
ES2556007T3 (es) * 2013-01-16 2016-01-12 Huawei Device Co., Ltd. Dispositivo de ajuste de alimentación de una antena multifrecuencia, una antena multifrecuencia y un equipo de comunicación inalámbrico
US20160126618A1 (en) * 2014-10-29 2016-05-05 Mediatek Singapore Pte. Ltd. Integrated circuit, wireless communication unit, and method for antenna matching
CN205509017U (zh) * 2016-02-22 2016-08-24 深圳市金立通信设备有限公司 多频天线及通信终端
CN206412480U (zh) * 2016-12-23 2017-08-15 歌尔科技有限公司 一种天线双工作频率切换电路以及电子设备
CN106961021A (zh) * 2017-03-14 2017-07-18 珠海市魅族科技有限公司 智能选择模块及终端天线频率范围的智能选择方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080166980A1 (en) * 2006-04-26 2008-07-10 Hitachi Metals, Ltd. High-frequency circuit, high-frequency device, and communication apparatus
CN103579757A (zh) * 2012-07-24 2014-02-12 华为终端有限公司 一种改变天线工作频率的方法、天线及终端
CN103296385A (zh) * 2013-05-29 2013-09-11 上海安费诺永亿通讯电子有限公司 一种可调式多频天线系统
CN105244620A (zh) * 2015-07-23 2016-01-13 广东欧珀移动通信有限公司 天线装置及具有该天线装置的移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976600A (zh) * 2022-06-27 2022-08-30 Oppo广东移动通信有限公司 天线组件、中框组件以及电子设备

Also Published As

Publication number Publication date
CN111316501A (zh) 2020-06-19
CN111316501B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US10158381B2 (en) Wireless communication device
CN102185623B (zh) 一种移动终端及其多天线实现方法
TWI665824B (zh) 電子裝置及其多頻段天線
US10290940B2 (en) Broadband switchable antenna
CN101667680A (zh) 一种单级射频天线
US7855984B2 (en) Wireless communication device
US10270163B2 (en) Communication module and communication device including same
CN105720380B (zh) 可调多频段天线和天线调试方法
CN103428314A (zh) 一种调整移动终端辐射方向的方法及移动终端
CN102075207B (zh) 一种蓝牙和Wi-Fi单天线的实现装置及方法
CN207705379U (zh) 一种移动终端的天线及具有该天线的移动终端
WO2019084838A1 (zh) 一种用于移动终端的天线及具有该天线的移动终端
CN112838351A (zh) 一种射频装置和电子设备
CN207409659U (zh) 一种集成天线
US20180090836A1 (en) Interface Module for Antenna of Communication Device
US8368598B2 (en) Multiband antenna
WO2019084837A1 (zh) 一种用于移动终端的天线及具有该天线的移动终端
TWI566533B (zh) 無線通訊裝置
WO2014205929A1 (zh) 一种天线、天线装置及终端
CN207199821U (zh) 一种移动终端的天线及具有该天线的移动终端
CN206878156U (zh) 一种移动通讯设备及其双天线射频模块
CN110971246A (zh) 射频电路及其控制方法、移动终端
CN202145652U (zh) 移动通信装置
CN202997059U (zh) 高低频分散式天线结构
US11158957B1 (en) Co-located antennas with coupled arms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930359

Country of ref document: EP

Kind code of ref document: A1