WO2019083282A1 - Apparatus for battery balancing and battery pack including same - Google Patents

Apparatus for battery balancing and battery pack including same

Info

Publication number
WO2019083282A1
WO2019083282A1 PCT/KR2018/012666 KR2018012666W WO2019083282A1 WO 2019083282 A1 WO2019083282 A1 WO 2019083282A1 KR 2018012666 W KR2018012666 W KR 2018012666W WO 2019083282 A1 WO2019083282 A1 WO 2019083282A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery cells
balancing
battery
voltage
Prior art date
Application number
PCT/KR2018/012666
Other languages
French (fr)
Korean (ko)
Inventor
윤호병
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180120021A external-priority patent/KR102236384B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880020263.5A priority Critical patent/CN110447157B/en
Priority to EP18869854.2A priority patent/EP3618221B1/en
Priority to US16/493,420 priority patent/US11283274B2/en
Priority to JP2019549533A priority patent/JP7049564B2/en
Publication of WO2019083282A1 publication Critical patent/WO2019083282A1/en
Priority to US17/670,092 priority patent/US11699913B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus for balancing a plurality of battery cells connected in series and a battery pack including the apparatus.
  • the secondary rechargeable batteries are nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, and lithium secondary batteries.
  • lithium secondary batteries have almost no memory effect compared to nickel- It is very popular because of its low self-discharge rate and high energy density.
  • a battery pack mounted on a battery pack includes a plurality of battery modules, and a plurality of battery cells connected in series are generally included in each battery module.
  • the charging state between the battery cells becomes unbalanced as the charging and discharging of the battery pack is repeated. Repeated charging and discharging of the battery pack continuously without suppressing such unbalance not only reduces the usable capacity of the battery pack, but also accelerates degradation of the battery cells included therein.
  • Patent Document 1 as a conventional technique for solving the above problem is to forcibly discharge a battery cell having a relatively high charge state among the battery cells to equalize the state of charge between the battery cells.
  • a balancing circuit including the same number of resistance elements as the plurality of battery cells is required, the overall size of the battery pack can not be increased.
  • Patent Document 1 Korean Patent Laid-Open Publication No. 10-2015-0089627 (Published Date: Aug. 05, 2015)
  • the present invention has been made to solve the above problems and it is an object of the present invention to provide a battery pack that can discharge one or two or more of a plurality of battery cells by using a smaller number of resistance elements than the number of battery cells included in the battery pack And an object of the present invention is to provide a battery pack including the apparatus and the apparatus.
  • An apparatus for balancing a plurality of battery cells includes: a monitoring unit for detecting a voltage of the plurality of battery cells; A balancing portion including a first common resistance element and a switching module connected between the first common node and the second common node; And a control unit operatively coupled to the monitoring unit and the switching module.
  • the switching module is configured to selectively connect the positive terminal of each battery cell to the first common node and selectively connect the negative terminal of each battery cell to the second common node.
  • control unit determines a balancing object including at least one of the plurality of battery cells based on a voltage of each of the plurality of battery cells and then determines a current path between the first common resistance element and the balancing object And to control the switching module.
  • the switching module includes: a first switching circuit including a plurality of positive polarity switching elements provided between a positive terminal of each battery cell and the first common node; And a second switching circuit including a plurality of cathode switching elements provided between a cathode terminal of each battery cell and the second common node.
  • control unit includes a positive polarity switching element connected to the positive polarity terminal of the balancing object among the plurality of positive polarity switching elements and a negative polarity switching element connected to the negative polarity terminal among the plurality of negative polarity switching elements, And to turn on any one of the anode switching elements connected to the cathode terminal of the balancing object.
  • control unit is configured to control one of the plurality of positive polarity switching elements connected to the highest potential electrode of the balancing object among the plurality of positive polarity switching elements, And to turn on any one of the cathode switching elements connected to the lowest potential electrode of the balancing object among the cathode switching elements.
  • the controller may be configured to determine a state of charge of the plurality of battery cells based on the voltages of the plurality of battery cells.
  • the balancing object may include a battery cell having a maximum charge state among the plurality of battery cells.
  • the balancing object may further include another battery cell adjacent to the battery cell having the maximum charge state.
  • the charging state of the other battery cells may be greater than the minimum charging state of the plurality of battery cells.
  • the controller may determine the maximum number of battery cells that can be included in the balancing object based on the resistance of the first common resistance element and the voltage of the plurality of battery cells.
  • the balancing unit includes: a first selection switch connected in series to the first common resistance element between the first common node and the second common node; A second common resistance element having a resistance smaller than a resistance of the first common resistance element; And a second selection switch connected in series to the second common resistance element between the first common node and the second common node.
  • the control unit may be configured to control the first selection switch and the second selection switch based on a difference between the voltage of the balancing object and the minimum voltage of the plurality of battery cells.
  • the control unit may be configured to turn on the first selection switch and turn off the second selection switch when the difference between the voltage of the balancing object and the minimum voltage is greater than the first threshold voltage.
  • the control unit may be configured to turn off the first selection switch and turn on the second selection switch when the difference between the voltage of the balancing object and the minimum voltage is equal to or less than the first threshold voltage.
  • a battery pack according to another aspect of the present invention includes the above apparatus.
  • any one or two or more of the plurality of battery cells can be selectively discharged by using a smaller number of resistance elements than the number of battery cells included in the battery pack.
  • the overall size of the battery pack can be reduced compared with the prior art in which at least one resistance element is required for each battery cell.
  • the present invention by limiting the number of battery cells to be balanced at the same time based on the voltages of the plurality of battery cells, it is possible to suppress overheating due to balancing without adding a heat- can do.
  • FIG. 1 is a schematic view of a battery pack according to a first embodiment of the present invention. Referring to FIG. 1
  • FIG. 2 is a first table illustrating an exemplary result of measuring a voltage of a plurality of battery cells shown in FIG. 1. Referring to FIG.
  • FIG. 3 is a diagram referred to explain the balancing operation based on the first table of FIG.
  • FIG. 4 is a second table illustrating a result of measuring a voltage of a plurality of battery cells shown in FIG. 1;
  • FIG. 5 is a diagram referred to explain the balancing operation based on the second table of FIG.
  • FIG. 6 is a view schematically showing a configuration of a battery pack according to a second embodiment of the present invention.
  • FIG. 7 is a view schematically showing a configuration of a battery pack according to a third embodiment of the present invention.
  • FIG. 8 is a view schematically showing a configuration of a battery pack according to a fourth embodiment of the present invention.
  • " control unit " as described in the specification means a unit for processing at least one function or operation, and may be implemented by hardware or software, or a combination of hardware and software.
  • FIG. 1 is a schematic view of a battery pack according to a first embodiment of the present invention. Referring to FIG. 1
  • a battery pack 10 includes a battery module 20 and an apparatus 100.
  • the battery module 20 includes a plurality of battery cells (Cell 1 to Cell n ) connected in series with each other.
  • Symbol n used as a reference numeral denotes an integer of 2 or more and represents the total number of battery cells (Cells).
  • the apparatus 100 is configured to balance the state of charge between a plurality of battery cells (Cell 1 to Cell n ).
  • the apparatus 100 includes a monitoring unit 110, a balancing unit BU, and a control unit 130.
  • the monitoring unit 110 may include a voltage detection circuit, and may further include a temperature detection circuit.
  • the voltage detection circuit may include at least one voltage sensor.
  • the voltage detection circuit is electrically connected to the positive terminal and the negative terminal of each of the plurality of battery cells (Cell 1 to Cell n ) included in the battery module 20 through the sensing line, so that the voltage of each battery cell And can transmit the voltage signal indicating the detected voltage to the control unit 130.
  • the balancing portion BU includes a common resistance element R 1 and a switching module SM.
  • the common resistance element R 1 may have a predetermined resistance.
  • the common resistance element R 1 is connected between the first common node N 1 and the second common node N 2 . That is, the first end and the second end of the common resistance element R 1 are connected to the first common node N 1 and the second common node N 1 , respectively.
  • the switching module SM is configured to selectively connect the positive terminal of each battery cell Cell to the first common node N 1 .
  • the switching module SM is configured to selectively connect the negative terminal of each battery cell to the second common node N 2 .
  • the switching module SM includes a first switching circuit SC 1 and a second switching circuit SC 2 .
  • the first switching circuit SC 1 includes a plurality of anode switching elements PS 1 to PS n .
  • One end of each of the plurality of positive polarity switching elements PS 1 to PS n is electrically connected to the first common node N 1 .
  • the total number of the anode switching elements PS may be equal to the total number of battery cells.
  • the second switching circuit SC 2 includes a plurality of cathode switching elements NS 1 to NS n .
  • One end of each of the plurality of cathode switching elements (NS 1 to NS n ) is electrically connected to the second common node (N 2 ).
  • Each of the anode switching elements PS and each of the cathode switching elements NS may be a semiconductor switching element (e.g., a MOSFET) controllable by a switching signal.
  • the total number of the cathode switching elements NS may be equal to the total number of battery cells.
  • the anode switching element PS i When the anode switching element PS i is turned on, the anode terminal of the battery cell Cell i is electrically coupled to the first end of the common resistance element R 1 through the anode switching element PS i .
  • the positive electrode switching element PS i is turned off, the positive terminal of the battery cell Cell i is electrically disconnected from the first end of the common resistance element R 1 .
  • the cathode switching element NS i is provided between the anode terminal of the battery cell Cell i and the second end of the common resistance element R 1 .
  • the cathode switching element NS i When the cathode switching element NS i is turned on, the anode terminal of the battery cell Cell i is electrically coupled to the second end of the common resistance element R 1 through the cathode switching element NS i .
  • the negative switching elements (NS i) is turned off, the cathode terminal of the battery cell (Cell i) is electrically isolated from the second end of the common resistance element (R 1).
  • the control unit 130 is operatively coupled to the monitoring unit 110 and the switching module SM.
  • the controller 130 may be implemented in hardware as application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs) microprocessors, and other electronic units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the control unit 130 may include a memory.
  • the memory stores flash memory type, hard disk type, SSD type (solid state disk type), and the like, which store data, instructions and software required for the overall operation of the apparatus 100.
  • a SDD type Silicon Disk Drive type
  • a multimedia card micro type a random access memory (RAM), a static random access memory (SRAM), a read-only memory (ROM) electrically erasable programmable read-only memory (PROM), and programmable read-only memory (PROM).
  • RAM random access memory
  • SRAM static random access memory
  • ROM read-only memory
  • PROM electrically erasable programmable read-only memory
  • PROM programmable read-only memory
  • the control unit 130 receives a voltage signal representing the voltages of the plurality of battery cells Cell 1 to Cell n from the monitoring unit 110 and generates a first switching circuit SC 1 ) and the second switching circuit SC 2 can be separately controlled. At this time, when one of the positive polarity switching elements included in the first switching circuit SC 1 is turned on, all the remaining positive polarity switching elements can be controlled to be turned off. When one of the cathode switching elements included in the second switching circuit SC 2 is turned on, all the remaining cathode switching elements can be controlled to be turned off.
  • the control unit 130 includes a plurality of battery cells (Cell 1 ⁇ Cell n) voltage (e.g., open-circuit voltage) as a base, a plurality of battery cells (Cell 1 ⁇ Cell n) of determining the balancing target comprising at least one .
  • the voltage signal used by the control unit 130 to determine the balancing object may be an open circuit voltage (OCV) of a plurality of battery cells (Cell 1 to Cell n ). SOC map recorded in advance in the memory, based on the voltages of the plurality of battery cells (Cell 1 to Cell n ) indicated by the voltage signal from the monitoring unit 110 1 to Cell n ) can be determined.
  • the control unit 130 may include the battery cell having the maximum charge state among the plurality of battery cells (Cell 1 to Cell n ) as a balancing object. That is, the balancing object may include a battery cell having at least a full charge state.
  • the controller 130 can determine the maximum number of battery cells that can simultaneously be included in the balancing object based on the resistance of the common resistance element R 1 and the voltages of the plurality of battery cells Cell 1 to Cell n .
  • the balancing part BU is implemented in the form of an integrated circuit, the upper limit value of the balancing current that can flow through the common resistance element R 1 can be predetermined, and when a balancing current larger than the upper limit value flows, BU) may be damaged. Accordingly, the controller 130 can simultaneously set only the maximum number of battery cells of the plurality of battery cells (Cell 1 to Cell n ) to be balanced, in the order of greatest charge state.
  • the controller 130 can determine only the battery cell (Cell k ) to be balanced by determining 1 as the maximum number. This is because the balancing current is (5.1 V + 5.0 V) / 1 k? 10 mA when the battery cell (Cell k + 1 ) is to be balanced.
  • the controller 130 may determine the battery cell Cell k and the battery cell Cell k + 1 to be balanced at the same time by determining 2 as the maximum number. This is because, even if the battery cell (Cell k ) and the battery cell (Cell k + 1 ) are determined to be balanced at the same time, the balancing current is (5.0 V + 4.9 V) / 1 k?
  • the control unit 130 may control the switching module SM such that the balancing object is connected in parallel to the common resistance element R 1 . That is, the control unit 130 may control the switching module SM such that a current path is formed between the common resistance element R 1 and the balancing object.
  • FIG. 2 is a first table showing an exemplary result of measuring a voltage of a plurality of battery cells shown in FIG. 1, and FIG. 3 is a diagram referred to explain a balancing operation based on the first table of FIG. 2 .
  • the voltages of two battery cells (Cell 1 , Cell k + 1 ) among the plurality of battery cells (Cell 1 to Cell n ) are higher than the minimum voltage of 3.2 V and the remaining battery cells (Cell 2 to Cell k , Cell k + 2 to Cell n ) are the same at 3.2 V.
  • the controller 130 may include a cell k + 1 having the highest voltage among the plurality of battery cells Cell 1 to Cell n as a balancing target.
  • the OCV-SOC map corresponds to a one-to-one correspondence of voltage and charge state, and a relatively high voltage corresponds to a relatively high charge state. Therefore, among the plurality of battery cells (Cell 1 to Cell n ), the highest voltage and the highest charging state may be the same.
  • the control unit 130 may determine that the battery cell (Cell k + 1 ) having the higher voltage of 3.6 V among the two battery cells (Cell 1 , Cell k ) is to be balanced. Since the voltage of 3.5 V of the battery cell Cell 1 is higher than the minimum voltage of 3.2 V but the battery cell Cell 1 is not connected to the battery cell Cell k + 1 , 1 ) is not determined as a balancing target. That is, in a state where the voltages of the plurality of battery cells (Cell 1 to Cell n ) are as shown in FIG. 2, the balancing object determined by the controller 130 includes only the battery cell (Cell k ).
  • the control unit 130 controls the first and second ends of the common resistance element R 1 so that the positive terminal and the negative terminal of the battery cell Cell k + 1 determined as the balancing target are electrically coupled to the first and second ends of the common resistance element R 1 , respectively. Only the positive electrode switching element PS k + 1 included in the circuit SC 1 and the negative electrode switching element NS k + 1 included in the second switching circuit SC 2 are turned on. At this time, the controller 130 can turn on the positive switching element PS k + 1 and the negative switching element NS k + 1 at the same time, or turn on the other one and turn on the other one.
  • control unit 130 is the remaining positive electrode switching element (PS 1 ⁇ PS k, PS k + 2 ⁇ PS n) and the negative switching elements (NS 1 ⁇ NS k, N k + 2 ⁇ NS n) , as described above Can be turned off.
  • FIG. 4 is a second table showing an exemplary result of measuring a voltage of a plurality of battery cells shown in FIG. 1, and FIG. 5 is a diagram referred to explain a balancing operation based on the second table of FIG. 4 .
  • the voltages of the two battery cells (Cell k , Cell k + 1 ) among the plurality of battery cells (Cell 1 to Cell n ) are higher than the minimum voltage of 3.2 V, Cell 2 to Cell k-1 , Cell k + 2 to Cell n ) are the same at 3.2 V.
  • the controller 130 includes a battery cell (Cell k + 1 ) having the highest voltage of 3.6 V among the plurality of battery cells (Cell 1 to Cell n ) . Also, the controller 130 may determine whether the battery cell (Cell k + 1 ) is connected adjacent to the battery cell (Cell k ). As shown, the battery cell (Cell k + 1), and because the other battery cell among the battery cells (Cell k) is not connected, the control unit 130, the battery cell (Cell k) and the battery cell (Cell k + 1 ) Are electrically connected adjacently to each other.
  • the controller 130 can determine the two battery cells (Cell k , Cell k + 1 ) to be balanced. That is, the control unit 130, the plurality of battery cells (Cell 1 ⁇ Cell n), the battery cell of with the maximum state of charge (Cell k) and the battery cell (Cell k) the at least one battery cell (Cell k is connected adjacent to the +1 ) can be included in the balancing object. At this time, the charging state of the battery cell (Cell k + 1 ) included in the balancing object is larger than the minimum charging state of the plurality of battery cells (Cell 1 to Cell n ).
  • the control unit 130 includes a positive polarity switching element PS K connected to the highest potential electrode of the balancing object Cell k , Cell k + 1 among the plurality of positive polarity switching elements PS 1 to PS n , a NS NS 1 ⁇ n) balancing target (Cell k, negative switching elements (NS k + 1) connected to the lowest potential of the electrode Cell k + 1) in turn may onhal.
  • a positive polarity switching element PS K connected to the highest potential electrode of the balancing object Cell k , Cell k + 1 among the plurality of positive polarity switching elements PS 1 to PS n , a NS NS 1 ⁇ n) balancing target (Cell k, negative switching elements (NS k + 1) connected to the lowest potential of the electrode Cell k + 1) in turn may onhal.
  • the balancing target "lowest potential electrode, of the (Cell k, Cell k + 1), the balancing target (Cell k, Cell k + 1) battery cells (Cell k + 1), at which point the lowest potential is formed in the Cathode terminal.
  • the control unit 130 two or more battery cells included in the balancing target (Cell k, Cell k + 1), the battery cell at the positive electrode and the lowest portion of the battery cell (Cell k) positioned at the root of the (Cell either one of the positive electrode switching element containing a negative electrode terminal of the k + 1) to the common resistance element (R 1) a first end and a second, so that each electrically coupled to a second end the first switching circuit (SC 1) of the (PS k And only one of the cathode switching elements NS k + 1 included in the second switching circuit SC 2 is turned on.
  • the controller 130 may turn on the cathode switch PS k and the anode switch NS k + 1 at the same time or sequentially turn on the cathode switch NS k + 1 one by one.
  • the control unit 130 supplies the remaining positive polarity switching elements PS 1 to PS k-1 , PS k + 1 to PS n and the negative polarity switching elements NS 1 to NS k , N k + n ) can be turned off.
  • FIG. 6 is a view schematically showing a configuration of a battery pack according to a second embodiment of the present invention.
  • the battery pack 10 shown in FIG. 6 will not be described again with respect to the contents common to those of the first embodiment described above with reference to FIG. 1, and the differences will be mainly described.
  • the difference between the battery pack 10 of the second embodiment and the battery pack 10 of the first embodiment is that the device 100 includes the first and second balancing parts BU 1 and BU 2 instead of the balancing part BU .
  • the first balancing unit BU 1 is used for balancing the first battery group Cell 1 to Cell k among the plurality of battery cells Cell 1 to Cell n and the second balancing unit BU 2 is used for balancing the battery cells Can be used for balancing the second battery group (Cell k + 1 to Cell n ) among the cell groups (Cell 1 to Cell n ).
  • the first battery group (Cell 1 ⁇ Cell k ) and the second battery group (Cell k + 1 ⁇ Cell n ) may be connected in series.
  • the first balancing unit BU 1 includes a first common resistance element R 1 and a first switching module SM 1 .
  • the common resistance element R 1 may have a predetermined resistance.
  • the first switching module SM 1 is configured to selectively connect the positive terminal of one of the plurality of battery cells Cell 1 to Cell k to the first end of the first common resistor R 1 .
  • the first switching module SM 1 is configured to selectively connect any negative terminal of the plurality of battery cells (Cell 1 to Cell k ) to the second end of the first common resistance element R 1 do.
  • the first switching module SM 1 includes a third switching circuit SC 3 and a fourth switching circuit SC 4 .
  • the third switching circuit SC 3 includes a plurality of anode switching elements PS 1 to PS k .
  • the fourth switching circuit SC 4 includes a plurality of cathode switching elements NS 1 to NS k .
  • the anode switching element PS j When the anode switching element PS j is turned on, the positive terminal of the battery cell Cell j is electrically coupled to the first end of the common resistance element R 1 .
  • the positive polarity switching element PS j Conversely, when the positive polarity switching element PS j is turned off, the positive terminal of the battery cell Cell j is electrically disconnected from the first end of the common resistance element R 1 .
  • the negative electrode switching element NS j is provided between the negative terminal of the battery cell Cell j and the second end of the common resistance element R 1 .
  • the cathode switching element NS j When the cathode switching element NS j is turned on, the negative terminal of the battery cell Cell j is electrically coupled to the second end of the common resistance element R 1 . Conversely, when the cathode switching element NS j is turned off, the cathode terminal of the battery cell Cell j is electrically disconnected from the second end of the common resistance element R 1 .
  • the second balancing portion BU 2 includes a second common resistance element R 2 and a second switching module SM 2 .
  • the common resistance element R 2 may have a predetermined resistance equal to or different from the resistance of the common resistance element R 1 .
  • the second switching module SM 2 is configured to selectively connect the positive terminal of any one of the plurality of battery cells Cell k + 1 to Cell n to the first end of the second common resistor R 2 .
  • the second switching module SM 2 selectively connects the negative terminal of one of the plurality of battery cells (Cell k + 1 to Cell n ) to the second end of the second common resistor R 2 .
  • the second switching module SM 2 includes a fifth switching circuit SC 5 and a sixth switching circuit SC 6 .
  • the fifth switching circuit SC 5 includes a plurality of anode switching elements PS k + 1 to PS n .
  • the sixth switching circuit SC 6 includes a plurality of cathode switching elements NS k + 1 to NS n .
  • the anode switching element PS m When the anode switching element PS m is turned on, the positive terminal of the battery cell Cell m is electrically coupled to the first end of the second common resistance element R 2 .
  • the positive polarity switching element PS m is turned off, the positive terminal of the battery cell Cell m is electrically disconnected from the first end of the second common resistance element R 2 .
  • Negative switching elements is, it is provided in between the second end of the negative electrode terminal and the second common resistance element (R 2) of the battery cell (Cell m).
  • the cathode switching element NS m When the cathode switching element NS m is turned on, the negative terminal of the battery cell Cell m is electrically coupled to the second end of the second common resistance element R 2 . Conversely, when the cathode switching element NS m is turned off, the cathode terminal of the battery cell Cell m is electrically disconnected from the second end of the second common resistance element R 1 .
  • the control unit 130 is operatively coupled to the monitoring unit 110, the first switching module SM 1 , and the second switching module SM 2 .
  • the control unit 130 receives a voltage signal representing the voltages of the plurality of battery cells Cell 1 to Cell n from the monitoring unit 110 and generates a first switching module SM 1 and a second switching module
  • the second to sixth switching circuits SC 3 to SC 6 included in the second to sixth switching circuits SM 2 to SM 6 can be individually controlled.
  • the controller 130 determines the two battery cells (Cell 1 , Cell k + 1 ) .
  • the control unit 130 controls the third switching circuit SC 3 so that the positive terminal and the negative terminal of the balancing object Cell 1 are electrically coupled to the first end and the second end of the first common resistance element R 1 , Turns on any one of the cathode switching elements PS 1 and NS 1 included in the fourth switching circuit SC 4 included in the fourth switching circuit SC 4 .
  • the controller 130 may turn on both the positive switching element PS 1 and the negative switching element NS 1 .
  • the control unit 130 controls the first and second ends of the second common resistance element R 2 so that the positive terminal and the negative terminal of the balancing object Cell k +1 are electrically coupled to the first and second ends of the second common resistance element R 2 , a switching circuit (SC 5) any one of the positive switching elements (PS k + 1) and the sixth switching circuit one of the negative switching elements (NS k + 1) contained in the (SC 6) contained in the thus turned on.
  • the controller 130 may turn on the positive polarity switching element PS k + 1 and the negative polarity switching element NS k + 1 simultaneously.
  • balancing of two battery cells (Cell 1 , Cell k + 1 ) can be performed at the same time.
  • the controller 130 determines the two battery cells Cell k and Cell k + 1 to be balanced .
  • the controller 130 controls the third switching circuit SC 3 so that the positive terminal and the negative terminal of the balancing object Cell k are electrically coupled to the first and second ends of the first common resistance element R 1 , (PS k ) and any one of the cathode switching elements (NS k ) included in the fourth switching circuit (SC 4 ).
  • the control unit 130 may be a switching device turns on the anode (PS k) and the negative switching elements (NS k) at the same time.
  • the control unit 130 controls the first and second ends of the second common resistance element R 2 so that the positive terminal and the negative terminal of the balancing object Cell k +1 are electrically coupled to the first and second ends of the second common resistance element R 2 , a switching circuit (SC 5) any one of the positive switching elements (PS k + 1) and the sixth switching circuit one of the negative switching elements (NS k + 1) contained in the (SC 6) contained in the thus turned on.
  • the controller 130 may turn on the positive polarity switching element PS k + 1 and the negative polarity switching element NS k + 1 simultaneously.
  • two battery cells (Cell k , Cell k + 1 ) adjacent to each other can be discharged at the same time.
  • FIG. 7 is a view schematically showing a configuration of a battery pack according to a third embodiment of the present invention.
  • the battery pack 10 shown in FIG. 7 will not be repeatedly described in common with the first embodiment described above with reference to FIG. 1, and the differences will be mainly described.
  • the difference between the battery pack 10 of the third embodiment and the battery pack 10 of the first embodiment is that the balancing part BU has the second common resistance element R 2 , the first selection switch SS 1 , a selection switch (SS 2) is that it further includes.
  • the resistance of the first common resistance element R 1 may be equal to or greater than or less than the resistance of the second common resistance element R 2 .
  • the first common resistance element R 1 and the first selection switch SS 1 are connected in series.
  • the first common resistance element R 1 is connected between the first common node N 1 and the second common node N 2 through the first selection switch SS 1 .
  • one end of the first selection switch SS 1 is connected to the first common node N 1
  • one end of the first common resistance element R 1 is connected to the second common node N 2
  • the other end of the first selection switch SS 1 may be connected to the other end of the first common resistance element R 1 .
  • the second common resistance element R 2 and the second selection switch SS 2 are connected in series.
  • the second common resistance element R 2 is connected between the first common node N 1 and the second common node N 2 through the second selection switch SS 2 .
  • one end of the second selection switch SS 2 is connected to the first common node N 1
  • one end of the second common resistance element R 2 is connected to the second common node N 2
  • the other end of the second selection switch SS 2 may be connected to the other end of the second common resistance element R 2 . That is, the first common resistance element R 2 and the second common resistance element R 2 are connected between the first common node N 1 and the second common node N 2 through the first selection switch SS 1 ) And the second selection switch SS 2 .
  • the control unit 130 controls the first selection switch SS 1 and the second selection switch SS 2 on the basis of the difference between the voltage to be balanced and the minimum voltage. Will be described in detail.
  • the control unit 130 outputs a first selection switch SS 1 connected in series to the first common resistance element R 2 when the difference between the voltage to be balanced and the minimum voltage is greater than the first threshold voltage And the second selection switch SS 2 can be turned off. 2, when the difference between the voltage 3.6V and the minimum voltage 3.2V of the battery cell (Cell k + 1 ) to be balanced is larger than the first threshold voltage (e.g., 0.3V) The first selection switch SS 1 is turned on to discharge the battery cell Cell k + 1 .
  • the control unit 130 outputs the second selection switch SS 2 connected in series to the second common resistance element R 2 when the difference between the voltage to be balanced and the minimum voltage is equal to or less than the first threshold voltage the turn-on of the first selection switches (SS 1) can be turned off.
  • the first common resistance element (R 1) instead of the second battery cell (Cell k by the common resistance element (R 2) From the time when a voltage of 3.5V of the battery cell (Cell k + 1) target balancing +1 ) is discharged.
  • the control unit 130 can keep the second selection switch SS 2 in the on state until the difference between the voltage of the battery cell Cell k + 1 and the minimum voltage of 3.2 V reaches 0 V.
  • the control unit 130 may control the voltage of the battery cell (Cell k + 1 ) from the time when the difference between the voltage of the battery cell (Cell k + 1 ) and the minimum voltage of 3.2 V reaches a second threshold voltage
  • the first selection switch SS 1 and the second selection switch SS 2 can be both turned on until the difference between the voltage of the cell k + 1 and the minimum voltage of 3.2 V reaches 0 V.
  • the voltage of the electric energy stored in the battery cell (Cell k + 1) is the first common resistance element (R 2) and second common resistance element (R 2) a battery cell (Cell k + 1) as consumed by the 3.5V to a minimum voltage of 3.2V.
  • the total resistance between the first common node N 1 and the second common node N 2 is such that the first select switch SS 1 and the second select switch SS 2 are turned The ON state is smaller than when only one of the first selection switch SS 1 and the second selection switch SS 2 is turned on.
  • the apparatus 100 The less the difference between the balancing target voltage and the minimum voltage of the first common node (N 1) and a second common node (N 2) By stepwise reducing the total resistance, there is an advantage that the current flowing through the balancing object is stabilized.
  • FIG. 8 is a view schematically showing a configuration of a battery pack according to a fourth embodiment of the present invention.
  • the balancing part BU further includes a third selection switch SS 3 and a fourth selection switch SS 4 It is a point.
  • the third selection switch SS 3 is connected to the first selection switch SS 1 and the first common resistance element R 1 in series between the first common node N 1 and the second common node N 2 do.
  • the fourth selection switch SS 4 is connected in series between the first common node N 1 and the second common node N 2 to the second selection switch SS 2 and the second common resistance element R 2 do.
  • the third selection switch SS 3 is provided to protect the battery module 20 and the first common resistance element R 1 from a short fault of the first selection switch SS 1 .
  • a short-circuit failure refers to a state in which the switch is made non-openable.
  • the controller 130 in the case of turning on the first selection switches (SS 1), the can be configured to three-selection switch (SS 3) also turned on.
  • the controller 130 in the case of turning off the first selection switches (SS 1), the can be configured to three-selection switch (SS 3) also turned off. Therefore, even if the first selection switch SS 1 is short-circuited, the flow of current through the first common resistance element R 1 can be cut off by turning off the third selection switch SS 3 .
  • the fourth selection switch SS 4 is provided to protect the battery module 20 and the second common resistance element R 2 from a short-circuit failure of the second selection switch SS 2 .
  • the controller 130 in the case of 2 turns on the selection switch (SS 2), a may be configured to four select switches (SS 4) also turned on.
  • the controller 130 in the case of turning off the second selection switch (SS 2), a may be configured to four select switches (SS 4) also turned off. Therefore, even if the second selection switch SS 2 is short-circuited, the flow of current through the second common resistance element R 2 can be cut off by turning off the fourth selection switch SS 4 .

Abstract

An apparatus for battery balancing and a battery pack including the apparatus are provided. An apparatus according to one embodiment of the present invention comprises: a monitoring unit for detecting voltages of multiple battery cells; a balancing unit comprising a switching module and a first shared resistor element connected between a first common node and a second common node; and a control unit operably connected to the monitoring unit and the switching module. The control unit is configured to: determine a balancing object including at least one of the multiple battery cells on the basis of the voltage of each of the multiple battery cells; and then control the switching module to form a current path between the first shared resistor element and the balancing object.

Description

배터리 밸런싱을 위한 장치 및 그것을 포함하는 배터리팩Devices for battery balancing and battery packs containing them
본 발명은 직렬 연결된 복수의 배터리 셀을 밸런싱하기 위한 장치 및 상기 장치를 포함하는 배터리팩에 관한 것이다.The present invention relates to an apparatus for balancing a plurality of battery cells connected in series and a battery pack including the apparatus.
본 출원은 2017년 10월 27일자로 출원된 한국 특허출원 번호 제10-2017-0141282호 및 2018년 10월 08일자로 출원된 한국 특허출원 번호 제10-2018-0120021호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.This application claims priority to Korean Patent Application No. 10-2017-0141282 filed on October 27, 2017 and Korean Patent Application No. 10-2018-0120021 filed on October 08, 2018 , The disclosure of which is incorporated herein by reference in its entirety.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.2. Description of the Related Art In recent years, demand for portable electronic products such as notebook computers, video cameras, and portable telephones has been rapidly increased, and electric vehicles, storage batteries for energy storage, robots, and satellites have been developed in earnest. Are being studied actively.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.The secondary rechargeable batteries are nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, and lithium secondary batteries. Among them, lithium secondary batteries have almost no memory effect compared to nickel- It is very popular because of its low self-discharge rate and high energy density.
최근 전기 자동차 등에서 고출력이 요구됨에 따라, 이에 탑재되는 배터리팩에는 복수의 배터리 모듈이 포함되고, 각 배터리 모듈에는 서로 직렬 연결된 복수의 배터리 셀이 포함되는 것이 일반적이다. 그런데, 배터리 셀들은 완벽하게 동일한 특성을 가질 수는 없기 때문에, 배터리팩의 충방전이 반복될수록 배터리 셀들 간의 충전 상태에 불균형이 발생할 수 밖에 없다. 이러한 불균형을 억제하기 않고 계속적으로 배터리팩의 충방전을 반복할 경우, 배터리팩의 가용 용량이 감소할 뿐만 아니라, 이에 포함된 배터리 셀들의 퇴화가 가속화된다.2. Description of the Related Art [0002] In recent years, a battery pack mounted on a battery pack includes a plurality of battery modules, and a plurality of battery cells connected in series are generally included in each battery module. However, since the battery cells can not have completely the same characteristics, the charging state between the battery cells becomes unbalanced as the charging and discharging of the battery pack is repeated. Repeated charging and discharging of the battery pack continuously without suppressing such unbalance not only reduces the usable capacity of the battery pack, but also accelerates degradation of the battery cells included therein.
위와 같은 문제를 해결하기 위한 종래기술로서의 특허문헌 1은, 배터리 셀들 중에서 상대적으로 높은 충전 상태를 가지는 것을 강제적으로 방전시킴으로써 배터리 셀들 사이의 충전 상태를 균일화한다. 그러나, 특허문헌 1의 도 2에 도시된 바와 같이, 복수의 배터리 셀과 동일한 개수의 저항 소자를 포함하는 밸런싱 회로가 필수적으로 요구되므로, 배터리팩의 전체적인 사이즈가 커질 수 밖에 없다. 또한, 복수의 배터리 셀들에 대한 밸런싱이 동시에 수행될 때 많은 열이 급격하게 방출되는 상황에 대비하여 배터리팩 내에 방열 구조를 추가하는 것이 바람직하지만, 공간적인 제약이 따르게 된다. Patent Document 1 as a conventional technique for solving the above problem is to forcibly discharge a battery cell having a relatively high charge state among the battery cells to equalize the state of charge between the battery cells. However, as shown in Fig. 2 of Patent Document 1, since a balancing circuit including the same number of resistance elements as the plurality of battery cells is required, the overall size of the battery pack can not be increased. In addition, it is preferable to add a heat dissipation structure in the battery pack in order to cope with a situation where a large amount of heat is suddenly discharged when the balancing of a plurality of battery cells is performed at the same time.
(특허문헌 1)대한민국 공개특허공보 제10-2015-0089627호(공개일자: 2015년 08월 05일)(Patent Document 1) Korean Patent Laid-Open Publication No. 10-2015-0089627 (Published Date: Aug. 05, 2015)
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 배티리팩에 포함된 배터리 셀의 개수보다 적은 개수의 저항 소자를 이용하여 복수의 배터리 셀 중 하나 또는 둘 이상을 선택적으로 방전시킬 수 있는 장치 및 상기 장치를 포함하는 배터리팩을 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems and it is an object of the present invention to provide a battery pack that can discharge one or two or more of a plurality of battery cells by using a smaller number of resistance elements than the number of battery cells included in the battery pack And an object of the present invention is to provide a battery pack including the apparatus and the apparatus.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.Other objects and advantages of the present invention will become apparent from the following description, and it will be understood by those skilled in the art that the present invention is not limited thereto. It is also to be understood that the objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations thereof.
상기 목적을 달성하기 위한 본 발명의 다양한 실시예는 다음과 같다.Various embodiments of the present invention for achieving the above object are as follows.
본 발명의 일 측면에 따른 복수의 배터리 셀을 밸런싱하기 위한 장치는, 본 발명의 일 실시예에 따른 장치는, 상기 복수의 배터리 셀의 전압을 검출하는 모니터링부; 제1 공통 노드 및 제2 공통 노드의 사이에 연결된 제1 공용 저항 소자 및 스위칭 모듈을 포함하는 밸런싱부; 및 상기 모니터링부 및 상기 스위칭 모듈에 동작 가능하게 결합된 제어부를 포함한다. 상기 스위칭 모듈은, 상기 각 배터리 셀의 양극 단자를 상기 제1 공통 노드에 선택적으로 연결하고, 상기 각 배터리 셀의 음극 단자를 상기 제2 공통 노드에 선택적으로 연결하도록 구성된다. 상기 제어부는, 상기 복수의 배터리 셀 각각의 전압을 기초로, 상기 복수의 배터리 셀 중 적어도 하나를 포함하는 밸런싱 대상을 결정한 다음, 상기 제1 공용 저항 소자와 상기 밸런싱 대상 간의 전류 경로가 형성되도록 상기 스위칭 모듈을 제어하도록 구성된다.An apparatus for balancing a plurality of battery cells according to an aspect of the present invention includes: a monitoring unit for detecting a voltage of the plurality of battery cells; A balancing portion including a first common resistance element and a switching module connected between the first common node and the second common node; And a control unit operatively coupled to the monitoring unit and the switching module. The switching module is configured to selectively connect the positive terminal of each battery cell to the first common node and selectively connect the negative terminal of each battery cell to the second common node. Wherein the control unit determines a balancing object including at least one of the plurality of battery cells based on a voltage of each of the plurality of battery cells and then determines a current path between the first common resistance element and the balancing object And to control the switching module.
상기 스위칭 모듈은, 상기 각 배터리 셀의 양극 단자와 상기 제1 공통 노드의 사이에 설치되는 복수의 양극 스위칭 소자를 포함하는 제1 스위칭 회로; 및 상기 각 배터리 셀의 음극 단자와 상기 제2 공통 노드의 사이에 설치되는 복수의 음극 스위칭 소자를 포함하는 제2 스위칭 회로를 포함할 수 있다.Wherein the switching module includes: a first switching circuit including a plurality of positive polarity switching elements provided between a positive terminal of each battery cell and the first common node; And a second switching circuit including a plurality of cathode switching elements provided between a cathode terminal of each battery cell and the second common node.
상기 제어부는, 상기 복수의 배터리 셀 중 어느 하나를 상기 밸런싱 대상으로 결정 시, 상기 복수의 양극 스위칭 소자 중에서 상기 밸런싱 대상의 양극 단자에 연결된 어느 하나의 양극 스위칭 소자 및 상기 복수의 음극 스위칭 소자 중에서 상기 밸런싱 대상의 음극 단자에 연결된 어느 하나의 양극 스위칭 소자를 턴 온시키도록 구성될 수 있다.Wherein the control unit includes a positive polarity switching element connected to the positive polarity terminal of the balancing object among the plurality of positive polarity switching elements and a negative polarity switching element connected to the negative polarity terminal among the plurality of negative polarity switching elements, And to turn on any one of the anode switching elements connected to the cathode terminal of the balancing object.
상기 제어부는, 상기 복수의 배터리 셀 중 서로 인접한 둘 이상의 배터리 셀을 상기 밸런싱 대상으로 결정 시, 상기 복수의 양극 스위칭 소자 중에서 상기 밸런싱 대상의 최고 전위 전극에 연결된 어느 하나의 양극 스위칭 소자 및 상기 복수의 음극 스위칭 소자 중에서 상기 밸런싱 대상의 최저 전위 전극에 연결된 어느 하나의 음극 스위칭 소자를 턴 온시키도록 구성될 수 있다.Wherein the control unit is configured to control one of the plurality of positive polarity switching elements connected to the highest potential electrode of the balancing object among the plurality of positive polarity switching elements, And to turn on any one of the cathode switching elements connected to the lowest potential electrode of the balancing object among the cathode switching elements.
상기 제어부는, 상기 복수의 배터리 셀의 전압을 기초로, 상기 복수의 배터리 셀의 충전 상태를 결정하도록 구성될 수 있다. 상기 밸런싱 대상은, 상기 복수의 배터리 셀 중 최대 충전 상태를 가지는 배터리 셀을 포함할 수 있다.The controller may be configured to determine a state of charge of the plurality of battery cells based on the voltages of the plurality of battery cells. The balancing object may include a battery cell having a maximum charge state among the plurality of battery cells.
상기 밸런싱 대상은, 상기 최대 충전 상태를 가지는 배터리 셀에 인접하게 연결된 다른 배터리 셀을 더 포함할 수 있다. 상기 다른 배터리 셀의 충전 상태는, 상기 복수의 배터리 셀의 최소 충전 상태보다 클 수 있다.The balancing object may further include another battery cell adjacent to the battery cell having the maximum charge state. The charging state of the other battery cells may be greater than the minimum charging state of the plurality of battery cells.
상기 제어부는, 상기 제1 공용 저항 소자의 저항 및 상기 복수의 배터리 셀의 전압을 기초로, 상기 밸런싱 대상에 포함 가능한 배터리 셀의 최대 개수를 결정할 수 있다.The controller may determine the maximum number of battery cells that can be included in the balancing object based on the resistance of the first common resistance element and the voltage of the plurality of battery cells.
상기 밸런싱부는, 상기 제1 공통 노드와 상기 제2 공통 노드 사이에서 상기 제1 공용 저항 소자에 직렬 연결되는 제1 선택 스위치; 상기 제1 공용 저항 소자의 저항보다 작은 저항을 가지는 제2 공용 저항 소자; 및 상기 제1 공통 노드와 상기 제2 공통 노드 사이에서 상기 제2 공용 저항 소자에 직렬 연결되는 제2 선택 스위치를 더 포함할 수 있다.Wherein the balancing unit includes: a first selection switch connected in series to the first common resistance element between the first common node and the second common node; A second common resistance element having a resistance smaller than a resistance of the first common resistance element; And a second selection switch connected in series to the second common resistance element between the first common node and the second common node.
상기 제어부는, 상기 밸런싱 대상의 전압과 상기 복수의 배터리 셀의 최소 전압 간의 차이를 기초로, 상기 제1 선택 스위치 및 상기 제2 선택 스위치를 제어하도록 구성될 수 있다.The control unit may be configured to control the first selection switch and the second selection switch based on a difference between the voltage of the balancing object and the minimum voltage of the plurality of battery cells.
상기 제어부는, 상기 밸런싱 대상의 전압과 상기 최소 전압 간의 차이가 제1 임계 전압보다 큰 경우, 상기 제1 선택 스위치를 턴 온시키고 상기 제2 선택 스위치를 턴 오프시키도록 구성될 수 있다.The control unit may be configured to turn on the first selection switch and turn off the second selection switch when the difference between the voltage of the balancing object and the minimum voltage is greater than the first threshold voltage.
상기 제어부는, 상기 밸런싱 대상의 전압과 상기 최소 전압 간의 차이가 상기 제1 임계 전압 이하인 경우, 상기 제1 선택 스위치를 턴 오프시키고 상기 제2 선택 스위치를 턴 온시키도록 구성될 수 있다.The control unit may be configured to turn off the first selection switch and turn on the second selection switch when the difference between the voltage of the balancing object and the minimum voltage is equal to or less than the first threshold voltage.
본 발명의 다른 측면에 따른 배터리팩은, 상기 장치를 포함한다.A battery pack according to another aspect of the present invention includes the above apparatus.
본 발명의 실시예들 중 적어도 하나에 의하면, 배티리팩에 포함된 배터리 셀의 개수보다 적은 개수의 저항 소자를 이용하여 복수의 배터리 셀 중 어느 하나 또는 둘 이상을 선택적으로 방전시킬 수 있다. 이에 따라, 각 배터리 셀마다 적어도 하나의 저항 소자가 요구되는 종래 기술에 비하여, 배터리팩의 전체적인 사이즈를 줄일 수 있다.According to at least one of the embodiments of the present invention, any one or two or more of the plurality of battery cells can be selectively discharged by using a smaller number of resistance elements than the number of battery cells included in the battery pack. As a result, the overall size of the battery pack can be reduced compared with the prior art in which at least one resistance element is required for each battery cell.
또한, 본 발명의 실시예들 중 적어도 하나에 의하면, 복수의 배터리 셀의 전압에 기초하여, 동시에 밸런싱하는 배터리 셀의 개수를 제한함으로써, 배터리팩 내에 방열 구조를 추가하지 않고도 밸런싱에 의한 과열을 억제할 수 있다.Further, according to at least one embodiment of the present invention, by limiting the number of battery cells to be balanced at the same time based on the voltages of the plurality of battery cells, it is possible to suppress overheating due to balancing without adding a heat- can do.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description of the claims.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and, together with the description of the invention given below, serve to further the understanding of the technical idea of the invention. And should not be construed as limiting.
도 1은 본 발명의 제1 실시예에 따른 배터리 팩의 구성을 개략적으로 나타낸 도면이다.FIG. 1 is a schematic view of a battery pack according to a first embodiment of the present invention. Referring to FIG.
도 2는 도 1에 도시된 복수의 배터리 셀의 전압을 측정한 결과를 예시적으로 보여주는 제1 테이블이다.FIG. 2 is a first table illustrating an exemplary result of measuring a voltage of a plurality of battery cells shown in FIG. 1. Referring to FIG.
도 3은 도 2의 제1 테이블에 기초한 밸런싱 동작을 설명하는 데에 참조되는 도면이다.3 is a diagram referred to explain the balancing operation based on the first table of FIG.
도 4는 도 1에 도시된 복수의 배터리 셀의 전압을 측정한 결과를 예시적으로 보여주는 제2 테이블이다.FIG. 4 is a second table illustrating a result of measuring a voltage of a plurality of battery cells shown in FIG. 1; FIG.
도 5는 도 4의 제2 테이블에 기초한 밸런싱 동작을 설명하는 데에 참조되는 도면이다.5 is a diagram referred to explain the balancing operation based on the second table of FIG.
도 6은 본 발명의 제2 실시예에 따른 배터리 팩의 구성을 개략적으로 나타낸 도면이다.6 is a view schematically showing a configuration of a battery pack according to a second embodiment of the present invention.
도 7은 본 발명의 제3 실시예에 따른 배터리 팩의 구성을 개략적으로 나타낸 도면이다.7 is a view schematically showing a configuration of a battery pack according to a third embodiment of the present invention.
도 8은 본 발명의 제4 실시예에 따른 배터리 팩의 구성을 개략적으로 나타낸 도면이다.8 is a view schematically showing a configuration of a battery pack according to a fourth embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be construed as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.Terms including ordinals, such as first, second, etc., are used for the purpose of distinguishing one of the various components from the rest, and are not used to define components by such terms.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어 유닛>과 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when an element is referred to as " comprising ", it means that it can include other elements, not excluding other elements unless specifically stated otherwise. In addition, the term &quot; control unit &quot; as described in the specification means a unit for processing at least one function or operation, and may be implemented by hardware or software, or a combination of hardware and software.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.In addition, throughout the specification, when a portion is referred to as being "connected" to another portion, it is not necessarily the case that it is "directly connected", but also "indirectly connected" .
도 1은 본 발명의 제1 실시예에 따른 배터리 팩의 구성을 개략적으로 나타낸 도면이다.FIG. 1 is a schematic view of a battery pack according to a first embodiment of the present invention. Referring to FIG.
도 1을 참조하면, 배터리팩(10)은 배터리 모듈(20) 및 장치(100)를 포함한다.Referring to FIG. 1, a battery pack 10 includes a battery module 20 and an apparatus 100.
배터리 모듈(20)은, 서로 직렬 접속된 복수의 배터리 셀(Cell1~Celln)을 포함한다. 도면부호로서 사용된 기호 n은, 2 이상의 정수로서, 배터리 셀(Cell)의 총 개수를 나타낸다. 장치(100)는, 복수의 배터리 셀(Cell1~Celln) 간의 충전 상태를 밸런싱하도록 구성된다. The battery module 20 includes a plurality of battery cells (Cell 1 to Cell n ) connected in series with each other. Symbol n used as a reference numeral denotes an integer of 2 or more and represents the total number of battery cells (Cells). The apparatus 100 is configured to balance the state of charge between a plurality of battery cells (Cell 1 to Cell n ).
장치(100)는, 모니터링부(110), 밸런싱부(BU) 및 제어부(130)를 포함한다.The apparatus 100 includes a monitoring unit 110, a balancing unit BU, and a control unit 130.
모니터링부(110)는, 전압 검출 회로를 포함하고, 선택적으로 온도 검출 회로를 더 포함할 수 있다. 전압 검출 회로는, 적어도 하나의 전압 센서를 포함할 수 있다. 전압 검출 회로는, 배터리 모듈(20)에 포함된 복수의 배터리 셀(Cell1~Celln) 각각의 양극 단자와 음극 단자에 센싱 라인을 통해 전기적으로 연결됨으로써, 각 배터리 셀(Cell)의 전압을 소정 주기마다 검출하고, 검출된 전압을 나타내는 전압 신호를 제어부(130)에게 전송할 수 있다. The monitoring unit 110 may include a voltage detection circuit, and may further include a temperature detection circuit. The voltage detection circuit may include at least one voltage sensor. The voltage detection circuit is electrically connected to the positive terminal and the negative terminal of each of the plurality of battery cells (Cell 1 to Cell n ) included in the battery module 20 through the sensing line, so that the voltage of each battery cell And can transmit the voltage signal indicating the detected voltage to the control unit 130. [0053]
밸런싱부(BU)는, 공용 저항 소자(R1) 및 스위칭 모듈(SM)을 포함한다. 공용 저항 소자(R1)는, 미리 정해진 저항(resistance)을 가질 수 있다. 공용 저항 소자(R1)는, 제1 공통 노드(N1) 및 제2 공통 노드(N2)의 사이에 연결된다. 즉, 공용 저항 소자(R1)의 제1 엔드와 제2 엔드는 각각 제1 공통 노드(N1) 및 제2 공통 노드(N1)에 연결된다.The balancing portion BU includes a common resistance element R 1 and a switching module SM. The common resistance element R 1 may have a predetermined resistance. The common resistance element R 1 is connected between the first common node N 1 and the second common node N 2 . That is, the first end and the second end of the common resistance element R 1 are connected to the first common node N 1 and the second common node N 1 , respectively.
스위칭 모듈(SM)은, 각 배터리 셀(Cell)의 양극 단자를 제1 공통 노드(N1)에 선택적으로 연결하도록 구성된다. 이와 함께, 스위칭 모듈(SM)은, 각 배터리 셀의 음극 단자를 를 제2 공통 노드(N2)에 선택적으로 연결하도록 구성된다.The switching module SM is configured to selectively connect the positive terminal of each battery cell Cell to the first common node N 1 . In addition, the switching module SM is configured to selectively connect the negative terminal of each battery cell to the second common node N 2 .
스위칭 모듈(SM)은, 제1 스위칭 회로(SC1) 및 제2 스위칭 회로(SC2)를 포함한다. The switching module SM includes a first switching circuit SC 1 and a second switching circuit SC 2 .
제1 스위칭 회로(SC1)는, 복수의 양극 스위칭 소자(PS1~PSn)를 포함한다. 복수의 양극 스위칭 소자(PS1~PSn) 각각의 일단은, 제1 공통 노드(N1)에 전기적으로 연결된다. 양극 스위칭 소자(PS)의 총 개수는 배터리 셀(Cell)의 총 개수와 동일할 수 있다. The first switching circuit SC 1 includes a plurality of anode switching elements PS 1 to PS n . One end of each of the plurality of positive polarity switching elements PS 1 to PS n is electrically connected to the first common node N 1 . The total number of the anode switching elements PS may be equal to the total number of battery cells.
제2 스위칭 회로(SC2)는, 복수의 음극 스위칭 소자(NS1~NSn)를 포함한다. 복수의 음극 스위칭 소자(NS1~NSn) 각각의 일단은, 제2 공통 노드(N2)에 전기적으로 연결된다. 각 양극 스위칭 소자(PS)와 각 음극 스위칭 소자(NS)는, 스위칭 신호로 제어 가능한 반도체 스위칭 소자(예, MOSFET)일 수 있다. 음극 스위칭 소자(NS)의 총 개수 역시 배터리 셀(Cell)의 총 개수와 동일할 수 있다.The second switching circuit SC 2 includes a plurality of cathode switching elements NS 1 to NS n . One end of each of the plurality of cathode switching elements (NS 1 to NS n ) is electrically connected to the second common node (N 2 ). Each of the anode switching elements PS and each of the cathode switching elements NS may be a semiconductor switching element (e.g., a MOSFET) controllable by a switching signal. The total number of the cathode switching elements NS may be equal to the total number of battery cells.
양극 스위칭 소자(PSi)(i = 1 ~ n)는, 배터리 셀(Celli)의 양극과 공용 저항 소자(R1)의 제1 엔드 사이에 설치된다. 양극 스위칭 소자(PSi)가 턴 온되면, 배터리 셀(Celli)의 양극 단자가 양극 스위칭 소자(PSi)를 통해 공용 저항 소자(R1)의 제1 엔드에 전기적으로 결합된다. 반대로, 양극 스위칭 소자(PSi)가 턴 오프되면, 배터리 셀(Celli)의 양극 단자가 공용 저항 소자(R1)의 제1 엔드로부터 전기적으로 분리된다. The anode switching elements PS i (i = 1 to n) are provided between the anode of the battery cell Cell i and the first end of the common resistance element R 1 . When the anode switching element PS i is turned on, the anode terminal of the battery cell Cell i is electrically coupled to the first end of the common resistance element R 1 through the anode switching element PS i . Conversely, when the positive electrode switching element PS i is turned off, the positive terminal of the battery cell Cell i is electrically disconnected from the first end of the common resistance element R 1 .
음극 스위칭 소자(NSi)는, 배터리 셀(Celli)의 음극 단자와 공용 저항 소자(R1)의 제2 엔드 사이에 설치된다. 음극 스위칭 소자(NSi)가 턴 온되면, 배터리 셀(Celli)의 음극 단자가 음극 스위칭 소자(NSi)를 통해 공용 저항 소자(R1)의 제2 엔드에 전기적으로 결합된다. 반대로, 음극 스위칭 소자(NSi)가 턴 오프되면, 배터리 셀(Celli)의 음극 단자가 공용 저항 소자(R1)의 제2 엔드로부터 전기적으로 분리된다.The cathode switching element NS i is provided between the anode terminal of the battery cell Cell i and the second end of the common resistance element R 1 . When the cathode switching element NS i is turned on, the anode terminal of the battery cell Cell i is electrically coupled to the second end of the common resistance element R 1 through the cathode switching element NS i . In contrast, when the negative switching elements (NS i) is turned off, the cathode terminal of the battery cell (Cell i) is electrically isolated from the second end of the common resistance element (R 1).
제어부(130)는, 모니터링부(110) 및 스위칭 모듈(SM)에 동작 가능하게 결합된다. 제어부(130)는, 하드웨어적으로, ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다. 제어부(130)는, 메모리를 포함할 수 있다. 메모리는, 장치(100)의 전반적인 동작에 요구되는 데이터들, 명령어 및 소프트웨어를 저장하는 것으로서, 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory), PROM(programmable read-only memory) 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.The control unit 130 is operatively coupled to the monitoring unit 110 and the switching module SM. The controller 130 may be implemented in hardware as application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs) microprocessors, and other electronic units for performing other functions. The control unit 130 may include a memory. The memory stores flash memory type, hard disk type, SSD type (solid state disk type), and the like, which store data, instructions and software required for the overall operation of the apparatus 100. [ , A SDD type (Silicon Disk Drive type), a multimedia card micro type, a random access memory (RAM), a static random access memory (SRAM), a read-only memory (ROM) electrically erasable programmable read-only memory (PROM), and programmable read-only memory (PROM).
제어부(130)는, 모니터링부(110)로부터 복수의 배터리 셀(Cell1~Celln)의 전압을 나타내는 전압 신호를 수신하고, 이를 기초로 스위칭 모듈(SM)에 포함된 제1 스위칭 회로(SC1)와 제2 스위칭 회로(SC2)를 개별적으로 제어할 수 있다. 이때, 제1 스위칭 회로(SC1)에 포함된 어느 한 양극 스위칭 소자가 턴 온된 경우, 나머지 양극 스위칭 소자는 모두 턴 오프로 제어될 수 있다. 제2 스위칭 회로(SC2)에 포함된 어느 한 음극 스위칭 소자가 턴 온된 경우, 나머지 음극 스위칭 소자는 모두 턴 오프로 제어될 수 있다. The control unit 130 receives a voltage signal representing the voltages of the plurality of battery cells Cell 1 to Cell n from the monitoring unit 110 and generates a first switching circuit SC 1 ) and the second switching circuit SC 2 can be separately controlled. At this time, when one of the positive polarity switching elements included in the first switching circuit SC 1 is turned on, all the remaining positive polarity switching elements can be controlled to be turned off. When one of the cathode switching elements included in the second switching circuit SC 2 is turned on, all the remaining cathode switching elements can be controlled to be turned off.
제어부(130)는, 복수의 배터리 셀(Cell1~Celln)의 전압(예컨대, 개방 전압)을 기초로, 복수의 배터리 셀(Cell1~Celln) 중 적어도 하나를 포함하는 밸런싱 대상을 결정할 수 있다. 제어부(130)가 밸런싱 대상을 결정하는 데에 이용되는 전압 신호는, 복수의 배터리 셀(Cell1~Celln)의 개방 전압(OCV: Open Circuit Voltage)을 나타내는 것일 수 있다. 제어부(130)는, 모니터링부(110)로부터의 전압 신호가 나타내는 복수의 배터리 셀(Cell1~Celln)의 전압을 기초로, 메모리에 미리 기록된 OCV-SOC 맵으로부터 복수의 배터리 셀(Cell1~Celln)의 충전 상태(SOC: State Of Charge)를 결정할 수 있다. 제어부(130)는, 복수의 배터리 셀(Cell1~Celln) 중 최대 충전 상태를 가지는 것을 밸런싱 대상에 포함시킬 수 있다. 즉, 밸런싱 대상은, 적어도 최대 충전 상태를 가지는 배터리 셀을 포함할 수 있다.The control unit 130 includes a plurality of battery cells (Cell 1 ~ Cell n) voltage (e.g., open-circuit voltage) as a base, a plurality of battery cells (Cell 1 ~ Cell n) of determining the balancing target comprising at least one . The voltage signal used by the control unit 130 to determine the balancing object may be an open circuit voltage (OCV) of a plurality of battery cells (Cell 1 to Cell n ). SOC map recorded in advance in the memory, based on the voltages of the plurality of battery cells (Cell 1 to Cell n ) indicated by the voltage signal from the monitoring unit 110 1 to Cell n ) can be determined. The control unit 130 may include the battery cell having the maximum charge state among the plurality of battery cells (Cell 1 to Cell n ) as a balancing object. That is, the balancing object may include a battery cell having at least a full charge state.
제어부(130)는, 공용 저항 소자(R1)저항 및 복수의 배터리 셀(Cell1~Celln)의 전압을 기초로, 밸런싱 대상에 동시에 포함 가능한 배터리 셀의 최대 개수를 결정할 수 있다. 밸런싱부(BU)가 집적 회로의 형태로 구현되는 경우, 공용 저항 소자(R1)를 통해 흐를 수 있는 밸런싱 전류의 상한값이 미리 정해질 수 있으며, 상기 상한값보다 큰 밸런싱 전류가 흐를 경우 밸런싱부(BU)가 손상을 입을 수 있다. 따라서, 제어부(130)는, 복수의 배터리 셀(Cell1~Celln) 중에서 충전 상태가 큰 순서대로 상기 최대 개수 이하의 배터리 셀만을 밸런싱 대상으로 동시에 설정할 수 있다. The controller 130 can determine the maximum number of battery cells that can simultaneously be included in the balancing object based on the resistance of the common resistance element R 1 and the voltages of the plurality of battery cells Cell 1 to Cell n . When the balancing part BU is implemented in the form of an integrated circuit, the upper limit value of the balancing current that can flow through the common resistance element R 1 can be predetermined, and when a balancing current larger than the upper limit value flows, BU) may be damaged. Accordingly, the controller 130 can simultaneously set only the maximum number of battery cells of the plurality of battery cells (Cell 1 to Cell n ) to be balanced, in the order of greatest charge state.
예컨대, 공용 저항 소자(R1)의 저항이 1kΩ이고, 밸런싱 전류의 상한값이 10mA이고, 배터리 셀(Cellk)이 최상위 전압 5.1V을 가지고, 배터리 셀(Cellk+1)이 차상위 전압 5.0V을 가지는 경우, 제어부(130)는 1을 상기 최대 개수로서 결정함으로써 배터리 셀(Cellk)만을 밸런싱 대상으로 결정할 수 있다. 그 이유는, 배터리 셀(Cellk+1)까지 밸런싱 대상으로 결정하는 경우, 밸런싱 전류는 (5.1V + 5.0V) / 1kΩ > 10mA 이기 때문이다.For example, when the resistance of the common resistance element R 1 is 1 kΩ, the upper limit value of the balancing current is 10 mA, the battery cell Cell k has the highest voltage of 5.1 V, and the battery cell (Cell k + 1 ) , The controller 130 can determine only the battery cell (Cell k ) to be balanced by determining 1 as the maximum number. This is because the balancing current is (5.1 V + 5.0 V) / 1 k? 10 mA when the battery cell (Cell k + 1 ) is to be balanced.
다른 예로, 공용 저항 소자(R1)의 저항이 1kΩ이고, 밸런싱 전류의 상한값 10mA이고, 배터리 셀(Cellk)이 최상위 전압 5.0V을 가지고, 배터리 셀(Cellk+1)이 차상위 전압 4.9V을 가지는 경우, 제어부(130)는 2를 상기 최대 개수로서 결정함으로써 배터리 셀(Cellk)과 배터리 셀(Cellk+1)을 동시에 밸런싱 대상으로 결정할 수 있다. 그 이유는, 배터리 셀(Cellk)과 배터리 셀(Cellk+1)을 동시에 밸런싱 대상으로 결정하더라도, 밸런싱 전류는 (5.0V + 4.9V) / 1kΩ < 10mA 이기 때문이다.As another example, when the resistance of the common resistance element R 1 is 1 kΩ, the upper limit value of the balancing current is 10 mA, the battery cell Cell k has the highest voltage 5.0 V and the battery cell (Cell k + 1 ) , The controller 130 may determine the battery cell Cell k and the battery cell Cell k + 1 to be balanced at the same time by determining 2 as the maximum number. This is because, even if the battery cell (Cell k ) and the battery cell (Cell k + 1 ) are determined to be balanced at the same time, the balancing current is (5.0 V + 4.9 V) / 1 k?
제어부(130)는, 밸런싱 대상이 공용 저항 소자(R1)에 병렬 연결되도록 스위칭 모듈(SM)을 제어할 수 있다. 즉, 제어부(130)는, 공용 저항 소자(R1)와 밸런싱 대상 간의 전류 경로가 형성되도록 스위칭 모듈(SM)을 제어할 수 있다.The control unit 130 may control the switching module SM such that the balancing object is connected in parallel to the common resistance element R 1 . That is, the control unit 130 may control the switching module SM such that a current path is formed between the common resistance element R 1 and the balancing object.
제어부(130)에 의한 밸런싱 동작에 대하여는 이하 도 2 내지 도 5를 참조하여 보다 상세히 설명하기로 한다.The balancing operation by the control unit 130 will be described in more detail with reference to FIGS. 2 to 5. FIG.
도 2는 도 1에 도시된 복수의 배터리 셀의 전압을 측정한 결과를 예시적으로 보여주는 제1 테이블이고, 도 3은 도 2의 제1 테이블에 기초한 밸런싱 동작을 설명하는 데에 참조되는 도면이다.FIG. 2 is a first table showing an exemplary result of measuring a voltage of a plurality of battery cells shown in FIG. 1, and FIG. 3 is a diagram referred to explain a balancing operation based on the first table of FIG. 2 .
도 2를 참조하면, 복수의 배터리 셀(Cell1~Celln) 중 두 배터리 셀(Cell1, Cellk+1)의 전압은 최소 전압 3.2V보다 높고, 나머지 배터리 셀(Cell2~ Cellk, Cellk+2~Celln)의 전압은 3.2V로 동일하다.2, the voltages of two battery cells (Cell 1 , Cell k + 1 ) among the plurality of battery cells (Cell 1 to Cell n ) are higher than the minimum voltage of 3.2 V and the remaining battery cells (Cell 2 to Cell k , Cell k + 2 to Cell n ) are the same at 3.2 V.
도 1 내지 도 3을 참조하면, 제어부(130)는, 복수의 배터리 셀(Cell1~Celln) 중 전압이 가장 높은 것(Cellk+1)을 밸런싱 대상에 포함시킬 수 있다. OCV-SOC 맵에 의해 전압과 충전 상태는 일대일 대응되며, 상대적으로 높은 전압은 상대적으로 높은 충전 상태에 대응된다. 따라서, 복수의 배터리 셀(Cell1~Celln) 중 전압이 가장 높은 것과 충전 상태가 가장 높은 것은 동일할 수 있다.1 to 3, the controller 130 may include a cell k + 1 having the highest voltage among the plurality of battery cells Cell 1 to Cell n as a balancing target. The OCV-SOC map corresponds to a one-to-one correspondence of voltage and charge state, and a relatively high voltage corresponds to a relatively high charge state. Therefore, among the plurality of battery cells (Cell 1 to Cell n ), the highest voltage and the highest charging state may be the same.
제어부(130)는, 두 배터리 셀(Cell1, Cellk) 중 더 높은 전압 3.6V를 가지는 배터리 셀(Cellk+1)을 밸런싱 대상으로 결정할 수 있다. 배터리 셀(Cell1)의 전압 3.5V은 최소 전압 3.2V보다는 높으나, 배터리 셀(Cell1)은 배터리 셀(Cellk+1)에 인접하게 연결된 것이 아니므로, 제어부(130)는 배터리 셀(Cell1)을 밸런싱 대상으로 결정하지 않는다. 즉, 복수의 배터리 셀(Cell1~Celln)의 전압이 도 2에 도시된 것과 같은 상태에서는, 제어부(130)에 의해 결정되는 밸런싱 대상은 배터리 셀(Cellk)만을 포함한다.The control unit 130 may determine that the battery cell (Cell k + 1 ) having the higher voltage of 3.6 V among the two battery cells (Cell 1 , Cell k ) is to be balanced. Since the voltage of 3.5 V of the battery cell Cell 1 is higher than the minimum voltage of 3.2 V but the battery cell Cell 1 is not connected to the battery cell Cell k + 1 , 1 ) is not determined as a balancing target. That is, in a state where the voltages of the plurality of battery cells (Cell 1 to Cell n ) are as shown in FIG. 2, the balancing object determined by the controller 130 includes only the battery cell (Cell k ).
제어부(130)는, 밸런싱 대상으로 결정된 배터리 셀(Cellk+1)의 양극 단자와 음극 단자가 공용 저항 소자(R1)의 제1 엔드와 제2 엔드에 각각 전기적으로 결합되도록, 제1 스위칭 회로(SC1)에 포함된 양극 스위칭 소자(PSk+1)와 제2 스위칭 회로(SC2)에 포함된 음극 스위칭 소자(NSk+1)만을 턴 온시킨다. 이때, 제어부(130)는, 양극 스위칭 소자(PSk+1)와 음극 스위칭 소자(NSk+1)를 동시에 턴 온하거나 어느 하나를 먼저 턴 온시킨 다음 다른 하나를 턴 온으로 할 수 있다. 물론, 전술한 바와 같이, 제어부(130)는 나머지 양극 스위칭 소자(PS1~PSk, PSk+2~PSn) 및 음극 스위칭 소자(NS1~NSk, Nk+2~NSn)는 모두 턴 오프로 할 수 있다.The control unit 130 controls the first and second ends of the common resistance element R 1 so that the positive terminal and the negative terminal of the battery cell Cell k + 1 determined as the balancing target are electrically coupled to the first and second ends of the common resistance element R 1 , respectively. Only the positive electrode switching element PS k + 1 included in the circuit SC 1 and the negative electrode switching element NS k + 1 included in the second switching circuit SC 2 are turned on. At this time, the controller 130 can turn on the positive switching element PS k + 1 and the negative switching element NS k + 1 at the same time, or turn on the other one and turn on the other one. Of course, the control unit 130 is the remaining positive electrode switching element (PS 1 ~ PS k, PS k + 2 ~ PS n) and the negative switching elements (NS 1 ~ NS k, N k + 2 ~ NS n) , as described above Can be turned off.
이에 따라, 도 3에 도시된 바와 같이, 밸런싱 대상(Cellk+1), 양극 스위칭 소자(PSk+!), 공용 저항 소자(R1) 및 음극 스위칭 소자(NSk+1)로 이루어진 폐회로가 형성되고, 폐회로를 통해 방전 전류가 흐름으로써, 밸런싱 대상(Cellk+1)이 방전될 수 있다.3, a closed circuit composed of the balancing object Cell k + 1 , the anode switching element PS k +!, The common resistance element R 1 and the cathode switching element NS k + And the discharging current flows through the closed circuit, so that the balancing object Cell k + 1 can be discharged.
도 4는 도 1에 도시된 복수의 배터리 셀의 전압을 측정한 결과를 예시적으로 보여주는 제2 테이블이고, 도 5는 도 4의 제2 테이블에 기초한 밸런싱 동작을 설명하는 데에 참조되는 도면이다.FIG. 4 is a second table showing an exemplary result of measuring a voltage of a plurality of battery cells shown in FIG. 1, and FIG. 5 is a diagram referred to explain a balancing operation based on the second table of FIG. 4 .
도 4를 참조하면, 도 2에서와는 상이하게, 복수의 배터리 셀(Cell1~Celln) 중 두 배터리 셀(Cellk, Cellk+1)의 전압은 최소 전압 3.2V보다 높고, 나머지 배터리 셀(Cell2~Cellk-1, Cellk+2~Celln) 각각의 전압은 3.2V로 동일하다.2, the voltages of the two battery cells (Cell k , Cell k + 1 ) among the plurality of battery cells (Cell 1 to Cell n ) are higher than the minimum voltage of 3.2 V, Cell 2 to Cell k-1 , Cell k + 2 to Cell n ) are the same at 3.2 V. [
도 1, 도 4 및 도 5를 참조하면, 제어부(130)는, 복수의 배터리 셀(Cell1~Celln) 중 가장 높은 전압 3.6V을 가지는 배터리 셀(Cellk+1)을 밸런싱 대상에 포함시킬 수 있다. 또한, 제어부(130)는, 배터리 셀(Cellk+1)이 배터리 셀(Cellk)에 인접하게 연결된 것인지 판정할 수 있다. 도시된 바와 같이, 배터리 셀(Cellk+1)과 배터리 셀(Cellk) 사이에 다른 배터리 셀이 연결되지 않으므로, 제어부(130)는, 배터리 셀(Cellk)과 배터리 셀(Cellk+1)이 서로 인접하게 전기적으로 연결된 것으로 판정한다.1, 4, and 5, the controller 130 includes a battery cell (Cell k + 1 ) having the highest voltage of 3.6 V among the plurality of battery cells (Cell 1 to Cell n ) . Also, the controller 130 may determine whether the battery cell (Cell k + 1 ) is connected adjacent to the battery cell (Cell k ). As shown, the battery cell (Cell k + 1), and because the other battery cell among the battery cells (Cell k) is not connected, the control unit 130, the battery cell (Cell k) and the battery cell (Cell k + 1 ) Are electrically connected adjacently to each other.
이에 따라, 제어부(130)는, 두 배터리 셀(Cellk, Cellk+1)을 밸런싱 대상으로 결정할 수 있다. 즉, 제어부(130)는, 복수의 배터리 셀(Cell1~Celln) 중 최대 충전 상태를 가지는 배터리 셀(Cellk) 및 배터리 셀(Cellk)에 인접하게 연결된 적어도 하나의 배터리 셀(Cellk+1)을 밸런싱 대상에 포함시킬 수 있다. 이때, 밸런싱 대상에 포함된 배터리 셀(Cellk+1)의 충전 상태는, 복수의 배터리 셀(Cell1~Celln)의 최소 충전 상태보다 크다.Accordingly, the controller 130 can determine the two battery cells (Cell k , Cell k + 1 ) to be balanced. That is, the control unit 130, the plurality of battery cells (Cell 1 ~ Cell n), the battery cell of with the maximum state of charge (Cell k) and the battery cell (Cell k) the at least one battery cell (Cell k is connected adjacent to the +1 ) can be included in the balancing object. At this time, the charging state of the battery cell (Cell k + 1 ) included in the balancing object is larger than the minimum charging state of the plurality of battery cells (Cell 1 to Cell n ).
제어부(130)는, 복수의 양극 스위칭 소자(PS1~PSn) 중에서 밸런싱 대상(Cellk, Cellk+1)의 최고 전위 전극에 연결된 양극 스위칭 소자(PSK) 및 복수의 음극 스위칭 소자(NS1~NSn) 중에서 밸런싱 대상(Cellk, Cellk+1)의 최저 전위 전극에 연결된 음극 스위칭 소자(NSK+1)를 턴 온할 수 있다. 이때, 밸런싱 대상(Cellk, Cellk+1)의 '최고 전위 전극'은, 밸런싱 대상(Cellk, Cellk+1)에서 가장 높은 전위가 형성되는 지점인 배터리 셀(Cellk)의 양극 단자일 수 있다. 또한, 밸런싱 대상(Cellk, Cellk+1)의 '최저 전위 전극'은, 밸런싱 대상(Cellk, Cellk+1)에서 가장 낮은 전위가 형성되는 지점인 배터리 셀(Cellk+1)의 음극 단자일 수 있다.The control unit 130 includes a positive polarity switching element PS K connected to the highest potential electrode of the balancing object Cell k , Cell k + 1 among the plurality of positive polarity switching elements PS 1 to PS n , a NS NS 1 ~ n) balancing target (Cell k, negative switching elements (NS k + 1) connected to the lowest potential of the electrode Cell k + 1) in turn may onhal. At this time, the positive electrode terminal of balancing target (Cell k, Cell k + 1 ) ' highest potential electrode, of the, balancing target (Cell k, Cell k + 1) battery cells (Cell k) the point where the highest potential formed in Lt; / RTI &gt; In addition, the balancing target "lowest potential electrode, of the (Cell k, Cell k + 1), the balancing target (Cell k, Cell k + 1) battery cells (Cell k + 1), at which point the lowest potential is formed in the Cathode terminal.
즉, 제어부(130)는, 밸런싱 대상에 포함된 둘 이상의 배터리 셀(Cellk, Cellk+1) 중 가장 상위에 위치하는 배터리 셀(Cellk)의 양극과 가장 하위에 위치하는 배터리 셀(Cellk+1)의 음극 단자가 공용 저항 소자(R1)의 제1 엔드와 제2 엔드에 각각 전기적으로 결합되도록, 제1 스위칭 회로(SC1)에 포함된 어느 하나의 양극 스위칭 소자(PSk)와 제2 스위칭 회로(SC2)에 포함된 어느 하나의 음극 스위칭 소자(NSk+1)만을 턴 온시킨다. 이때, 제어부(130)는, 양극 스위칭 소자(PSk)와 음극 스위칭 소자(NSk+1)를 동시에 턴 온하거나 하나씩 순차적으로 턴 온으로 할 수 있다. 물론, 전술한 바와 같이, 제어부(130)는 나머지 양극 스위칭 소자(PS1~PSk-1, PSk+1~PSn) 및 음극 스위칭 소자(NS1~NSk, Nk+2~NSn)는 모두 턴 오프로 할 수 있다.That is, the control unit 130, two or more battery cells included in the balancing target (Cell k, Cell k + 1), the battery cell at the positive electrode and the lowest portion of the battery cell (Cell k) positioned at the root of the (Cell either one of the positive electrode switching element containing a negative electrode terminal of the k + 1) to the common resistance element (R 1) a first end and a second, so that each electrically coupled to a second end the first switching circuit (SC 1) of the (PS k And only one of the cathode switching elements NS k + 1 included in the second switching circuit SC 2 is turned on. At this time, the controller 130 may turn on the cathode switch PS k and the anode switch NS k + 1 at the same time or sequentially turn on the cathode switch NS k + 1 one by one. Of course, as described above, the control unit 130 supplies the remaining positive polarity switching elements PS 1 to PS k-1 , PS k + 1 to PS n and the negative polarity switching elements NS 1 to NS k , N k + n ) can be turned off.
이에 따라, 도 5에 도시된 바와 같이, 밸런싱 대상(Cellk, Cellk+1), 양극 스위칭 소자(PSk), 공용 저항 소자(R1) 및 음극 스위칭 소자(NSk+1)로 이루어진 폐회로가 형성되고, 폐회로를 통해 방전 전류가 흐름으로써, 밸런싱 대상(Cellk, Cellk+1)이 방전될 수 있다.Thus, as shown in Fig. 5, the currents flowing through the balanced switching elements (Cell k , Cell k + 1 ), the positive polarity switching element PS k , the common resistance element R 1 and the negative polarity switching element NS k + A closed circuit is formed, and a discharge current flows through the closed circuit, so that the object to be balanced (Cell k , Cell k + 1 ) can be discharged.
도 6은 본 발명의 제2 실시예에 따른 배터리 팩의 구성을 개략적으로 나타낸 도면이다.6 is a view schematically showing a configuration of a battery pack according to a second embodiment of the present invention.
도 6에 도시된 배터리팩(10)에 대하여는, 도 1을 참조하여 전술한 제1 실시예와 공통된 내용에 대한 반복 설명은 생략하고, 차이점을 중심으로 설명하기로 한다.The battery pack 10 shown in FIG. 6 will not be described again with respect to the contents common to those of the first embodiment described above with reference to FIG. 1, and the differences will be mainly described.
제2 실시예의 배터리팩(10)과 제1 실시예의 배터리팩(10)의 차이점은, 장치(100)가 밸런싱부(BU) 대신 제1 및 제2 밸런싱부(BU1, BU2)를 포함한다는 점이다. The difference between the battery pack 10 of the second embodiment and the battery pack 10 of the first embodiment is that the device 100 includes the first and second balancing parts BU 1 and BU 2 instead of the balancing part BU .
제1 밸런싱부(BU1)는 복수의 배터리 셀(Cell1~Celln) 중 제1 배터리 그룹(Cell1~Cellk)의 밸런싱에 사용되고, 제2 밸런싱부(BU2)는 복수의 배터리 셀(Cell1~Celln) 중 제2 배터리 그룹(Cellk+1~Celln)의 밸런싱에 사용될 수 있다. 제1 배터리 그룹(Cell1~Cellk)과 제2 배터리 그룹(Cellk+1~Celln)은 직렬 연결될 수 있다.The first balancing unit BU 1 is used for balancing the first battery group Cell 1 to Cell k among the plurality of battery cells Cell 1 to Cell n and the second balancing unit BU 2 is used for balancing the battery cells Can be used for balancing the second battery group (Cell k + 1 to Cell n ) among the cell groups (Cell 1 to Cell n ). The first battery group (Cell 1 ~ Cell k ) and the second battery group (Cell k + 1 ~ Cell n ) may be connected in series.
제1 밸런싱부(BU1)는, 제1 공용 저항 소자(R1) 및 제1 스위칭 모듈(SM1)을 포함한다. 공용 저항 소자(R1)는, 미리 정해진 저항을 가질 수 있다. 제1 스위칭 모듈(SM1)은, 복수의 배터리 셀(Cell1~Cellk) 중 어느 하나의 양극 단자와 제1 공용 저항 소자(R1)의 제1 엔드를 선택적으로 연결하도록 구성된다. 이와 함께, 제1 스위칭 모듈(SM1)은, 복수의 배터리 셀(Cell1~Cellk) 중 어느 하나의 음극 단자와 제1 공용 저항 소자(R1)의 제2 엔드를 선택적으로 연결하도록 구성된다.The first balancing unit BU 1 includes a first common resistance element R 1 and a first switching module SM 1 . The common resistance element R 1 may have a predetermined resistance. The first switching module SM 1 is configured to selectively connect the positive terminal of one of the plurality of battery cells Cell 1 to Cell k to the first end of the first common resistor R 1 . In addition, the first switching module SM 1 is configured to selectively connect any negative terminal of the plurality of battery cells (Cell 1 to Cell k ) to the second end of the first common resistance element R 1 do.
제1 스위칭 모듈(SM1)은, 제3 스위칭 회로(SC3) 및 제4 스위칭 회로(SC4)를 포함한다. 제3 스위칭 회로(SC3)는, 복수의 양극 스위칭 소자(PS1~PSk)를 포함한다. 제4 스위칭 회로(SC4)는, 복수의 음극 스위칭 소자(NS1~NSk)를 포함한다.The first switching module SM 1 includes a third switching circuit SC 3 and a fourth switching circuit SC 4 . The third switching circuit SC 3 includes a plurality of anode switching elements PS 1 to PS k . The fourth switching circuit SC 4 includes a plurality of cathode switching elements NS 1 to NS k .
양극 스위칭 소자(PSj)(j = 1 ~ k)는, 배터리 셀(Cellj)의 양극 단자와 공용 저항 소자(R1)의 제1 엔드 사이에 설치된다. 양극 스위칭 소자(PSj)가 턴 온되면, 배터리 셀(Cellj)의 양극 단자가 공용 저항 소자(R1)의 제1 엔드에 전기적으로 결합된다. 반대로, 양극 스위칭 소자(PSj)가 턴 오프되면, 배터리 셀(Cellj)의 양극 단자가 공용 저항 소자(R1)의 제1 엔드로부터 전기적으로 분리된다. The anode switching element PS j (j = 1 to k) is provided between the positive terminal of the battery cell Cell j and the first end of the common resistance element R 1 . When the anode switching element PS j is turned on, the positive terminal of the battery cell Cell j is electrically coupled to the first end of the common resistance element R 1 . Conversely, when the positive polarity switching element PS j is turned off, the positive terminal of the battery cell Cell j is electrically disconnected from the first end of the common resistance element R 1 .
음극 스위칭 소자(NSj)는, 배터리 셀(Cellj)의 음극 단자와 공용 저항 소자(R1)의 제2 엔드 사이에 설치된다. 음극 스위칭 소자(NSj)가 턴 온되면, 배터리 셀(Cellj)의 음극 단자가 공용 저항 소자(R1)의 제2 엔드에 전기적으로 결합된다. 반대로, 음극 스위칭 소자(NSj)가 턴 오프되면, 배터리 셀(Cellj)의 음극 단자가 공용 저항 소자(R1)의 제2 엔드로부터 전기적으로 분리된다.The negative electrode switching element NS j is provided between the negative terminal of the battery cell Cell j and the second end of the common resistance element R 1 . When the cathode switching element NS j is turned on, the negative terminal of the battery cell Cell j is electrically coupled to the second end of the common resistance element R 1 . Conversely, when the cathode switching element NS j is turned off, the cathode terminal of the battery cell Cell j is electrically disconnected from the second end of the common resistance element R 1 .
제2 밸런싱부(BU2)는, 제2 공용 저항 소자(R2) 및 제2 스위칭 모듈(SM2)을 포함한다. 공용 저항 소자(R2)는, 공용 저항 소자(R1)의 저항과 동일 또는 상이하게 미리 정해진 저항을 가질 수 있다. 제2 스위칭 모듈(SM2)은, 복수의 배터리 셀(Cellk+1~Celln) 중 어느 하나의 양극 단자와 제2 공용 저항 소자(R2)의 제1 엔드를 선택적으로 연결하도록 구성된다. 이와 함께, 제2 스위칭 모듈(SM2)은, 복수의 배터리 셀(Cellk+1~Celln) 중 어느 하나의 음극 단자와 제2 공용 저항 소자(R2)의 제2 엔드를 선택적으로 연결하도록 구성된다.The second balancing portion BU 2 includes a second common resistance element R 2 and a second switching module SM 2 . The common resistance element R 2 may have a predetermined resistance equal to or different from the resistance of the common resistance element R 1 . The second switching module SM 2 is configured to selectively connect the positive terminal of any one of the plurality of battery cells Cell k + 1 to Cell n to the first end of the second common resistor R 2 . In addition, the second switching module SM 2 selectively connects the negative terminal of one of the plurality of battery cells (Cell k + 1 to Cell n ) to the second end of the second common resistor R 2 .
제2 스위칭 모듈(SM2)은, 제5 스위칭 회로(SC5) 및 제6 스위칭 회로(SC6)를 포함한다. 제5 스위칭 회로(SC5)는, 복수의 양극 스위칭 소자(PSk+1~PSn)를 포함한다. 제6 스위칭 회로(SC6)는, 복수의 음극 스위칭 소자(NSk+1~NSn)를 포함한다.The second switching module SM 2 includes a fifth switching circuit SC 5 and a sixth switching circuit SC 6 . The fifth switching circuit SC 5 includes a plurality of anode switching elements PS k + 1 to PS n . The sixth switching circuit SC 6 includes a plurality of cathode switching elements NS k + 1 to NS n .
양극 스위칭 소자(PSm)(m = k+1 ~ n)는, 배터리 셀(Cellm)의 양극 단자와 제2 공용 저항 소자(R2)의 제1 엔드 사이에 설치된다. 양극 스위칭 소자(PSm)가 턴 온되면, 배터리 셀(Cellm)의 양극 단자가 제2 공용 저항 소자(R2)의 제1 엔드에 전기적으로 결합된다. 반대로, 양극 스위칭 소자(PSm)가 턴 오프되면, 배터리 셀(Cellm)의 양극 단자가 제2 공용 저항 소자(R2)의 제1 엔드로부터 전기적으로 분리된다. Positive switching elements (PS m) (m = k + 1 ~ n) is, and is disposed between the first end of the positive electrode terminal and the second common resistance element (R 2) of the battery cell (Cell m). When the anode switching element PS m is turned on, the positive terminal of the battery cell Cell m is electrically coupled to the first end of the second common resistance element R 2 . Conversely, when the positive polarity switching element PS m is turned off, the positive terminal of the battery cell Cell m is electrically disconnected from the first end of the second common resistance element R 2 .
음극 스위칭 소자(NSm)는, 배터리 셀(Cellm)의 음극 단자와 제2 공용 저항 소자(R2)의 제2 엔드 사이에 설치된다. 음극 스위칭 소자(NSm)가 턴 온되면, 배터리 셀(Cellm)의 음극 단자가 제2 공용 저항 소자(R2)의 제2 엔드에 전기적으로 결합된다. 반대로, 음극 스위칭 소자(NSm)가 턴 오프되면, 배터리 셀(Cellm)의 음극 단자가 제2 공용 저항 소자(R1)의 제2 엔드로부터 전기적으로 분리된다.Negative switching elements (NS m) is, it is provided in between the second end of the negative electrode terminal and the second common resistance element (R 2) of the battery cell (Cell m). When the cathode switching element NS m is turned on, the negative terminal of the battery cell Cell m is electrically coupled to the second end of the second common resistance element R 2 . Conversely, when the cathode switching element NS m is turned off, the cathode terminal of the battery cell Cell m is electrically disconnected from the second end of the second common resistance element R 1 .
제어부(130)는, 모니터링부(110), 제1 스위칭 모듈(SM1) 및 제2 스위칭 모듈(SM2)에 동작 가능하게 결합된다. The control unit 130 is operatively coupled to the monitoring unit 110, the first switching module SM 1 , and the second switching module SM 2 .
제어부(130)는, 모니터링부(110)로부터 복수의 배터리 셀(Cell1~Celln)의 전압을 나타내는 전압 신호를 수신하고, 이를 기초로 제1 스위칭 모듈(SM1) 및 제2 스위칭 모듈(SM2)에 포함된 제3 내지 제6 스위칭 회로(SC3~SC6)를 개별적으로 제어할 수 있다.The control unit 130 receives a voltage signal representing the voltages of the plurality of battery cells Cell 1 to Cell n from the monitoring unit 110 and generates a first switching module SM 1 and a second switching module The second to sixth switching circuits SC 3 to SC 6 included in the second to sixth switching circuits SM 2 to SM 6 can be individually controlled.
일 예로, 복수의 배터리 셀(Cellk+1~Celln)의 전압이 도 2에 도시된 바와 같은 경우, 제어부(130)는 두 배터리 셀(Cell1, Cellk+1)을 밸런싱 대상으로 결정할 수 있다. 제어부(130)는, 밸런싱 대상(Cell1)의 양극 단자와 음극 단자가 제1 공용 저항 소자(R1)의 제1 엔드와 제2 엔드에 각각 전기적으로 결합되도록, 제3 스위칭 회로(SC3)에 포함된 어느 하나의 양극 스위칭 소자(PS1)와 제4 스위칭 회로(SC4)에 포함된 어느 하나의 음극 스위칭 소자(NS1)를 턴 온시킨다. 이때, 제어부(130)는, 양극 스위칭 소자(PS1)와 음극 스위칭 소자(NS1)를 동시에 턴 온으로 할 수 있다. 이와 함께, 제어부(130)는, 밸런싱 대상(Cellk+1)의 양극 단자와 음극 단자가 제2 공용 저항 소자(R2)의 제1 엔드와 제2 엔드에 각각 전기적으로 결합되도록, 제5 스위칭 회로(SC5)에 포함된 어느 하나의 양극 스위칭 소자(PSk+1)와 제6 스위칭 회로(SC6)에 포함된 어느 하나의 음극 스위칭 소자(NSk+1)를 턴 온시킨다. 이때, 제어부(130)는, 양극 스위칭 소자(PSk+1)와 음극 스위칭 소자(NSk+1)를 동시에 턴 온으로 할 수 있다. 결과적으로, 도 3에 따른 밸런싱 동작과는 달리, 두 배터리 셀(Cell1, Cellk+1)의 밸런싱이 동시에 이루어질 수 있다.For example, when the voltages of the plurality of battery cells (Cell k + 1 to Cell n ) are as shown in FIG. 2, the controller 130 determines the two battery cells (Cell 1 , Cell k + 1 ) . The control unit 130 controls the third switching circuit SC 3 so that the positive terminal and the negative terminal of the balancing object Cell 1 are electrically coupled to the first end and the second end of the first common resistance element R 1 , Turns on any one of the cathode switching elements PS 1 and NS 1 included in the fourth switching circuit SC 4 included in the fourth switching circuit SC 4 . At this time, the controller 130 may turn on both the positive switching element PS 1 and the negative switching element NS 1 . The control unit 130 controls the first and second ends of the second common resistance element R 2 so that the positive terminal and the negative terminal of the balancing object Cell k +1 are electrically coupled to the first and second ends of the second common resistance element R 2 , a switching circuit (SC 5) any one of the positive switching elements (PS k + 1) and the sixth switching circuit one of the negative switching elements (NS k + 1) contained in the (SC 6) contained in the thus turned on. At this time, the controller 130 may turn on the positive polarity switching element PS k + 1 and the negative polarity switching element NS k + 1 simultaneously. As a result, unlike the balancing operation according to FIG. 3, balancing of two battery cells (Cell 1 , Cell k + 1 ) can be performed at the same time.
다른 예로, 복수의 배터리 셀(Cellk+1~Celln)의 전압이 도 4에 도시된 바와 같은 경우, 제어부(130)는 두 배터리 셀(Cellk, Cellk+1)을 밸런싱 대상으로 결정할 수 있다. 제어부(130)는, 밸런싱 대상(Cellk)의 양극 단자와 음극 단자가 제1 공용 저항 소자(R1)의 제1 엔드와 제2 엔드에 각각 전기적으로 결합되도록, 제3 스위칭 회로(SC3)에 포함된 어느 하나의 양극 스위칭 소자(PSk)와 제4 스위칭 회로(SC4)에 포함된 어느 하나의 음극 스위칭 소자(NSk)를 턴 온시킨다. 이때, 제어부(130)는, 양극 스위칭 소자(PSk)와 음극 스위칭 소자(NSk)를 동시에 턴 온으로 할 수 있다. 이와 함께, 제어부(130)는, 밸런싱 대상(Cellk+1)의 양극 단자와 음극 단자가 제2 공용 저항 소자(R2)의 제1 엔드와 제2 엔드에 각각 전기적으로 결합되도록, 제5 스위칭 회로(SC5)에 포함된 어느 하나의 양극 스위칭 소자(PSk+1)와 제6 스위칭 회로(SC6)에 포함된 어느 하나의 음극 스위칭 소자(NSk+1)를 턴 온시킨다. 이때, 제어부(130)는, 양극 스위칭 소자(PSk+1)와 음극 스위칭 소자(NSk+1)를 동시에 턴 온으로 할 수 있다. 결과적으로, 도 5에서와 유사하게, 서로 인접한 두 배터리 셀(Cellk, Cellk+1)이 동시에 방전될 수 있다.4, when the voltage of the plurality of battery cells (Cell k + 1 to Cell n ) is as shown in FIG. 4, the controller 130 determines the two battery cells Cell k and Cell k + 1 to be balanced . The controller 130 controls the third switching circuit SC 3 so that the positive terminal and the negative terminal of the balancing object Cell k are electrically coupled to the first and second ends of the first common resistance element R 1 , (PS k ) and any one of the cathode switching elements (NS k ) included in the fourth switching circuit (SC 4 ). At this time, the control unit 130 may be a switching device turns on the anode (PS k) and the negative switching elements (NS k) at the same time. The control unit 130 controls the first and second ends of the second common resistance element R 2 so that the positive terminal and the negative terminal of the balancing object Cell k +1 are electrically coupled to the first and second ends of the second common resistance element R 2 , a switching circuit (SC 5) any one of the positive switching elements (PS k + 1) and the sixth switching circuit one of the negative switching elements (NS k + 1) contained in the (SC 6) contained in the thus turned on. At this time, the controller 130 may turn on the positive polarity switching element PS k + 1 and the negative polarity switching element NS k + 1 simultaneously. As a result, similarly to FIG. 5, two battery cells (Cell k , Cell k + 1 ) adjacent to each other can be discharged at the same time.
도 7은 본 발명의 제3 실시예에 따른 배터리 팩의 구성을 개략적으로 나타낸 도면이다.7 is a view schematically showing a configuration of a battery pack according to a third embodiment of the present invention.
도 7에 도시된 배터리팩(10)에 대하여는, 도 1을 참조하여 전술한 제1 실시예와 공통된 내용에 대한 반복 설명은 생략하고, 차이점을 중심으로 설명하기로 한다.The battery pack 10 shown in FIG. 7 will not be repeatedly described in common with the first embodiment described above with reference to FIG. 1, and the differences will be mainly described.
제3 실시예의 배터리팩(10)와 제1 실시예의 배터리팩(10)의 차이점은, 밸런싱부(BU)가 제2 공용 저항 소자(R2), 제1 선택 스위치(SS1) 및 제2 선택 스위치(SS2)를 더 포함한다는 점이다. 제1 공용 저항 소자(R1)의 저항은, 제2 공용 저항 소자(R2)의 저항과 같거나 더 크거나 또는 더 작을 수 있다. 이하에서는 설명의 편의를 위해, 제1 공용 저항 소자(R1)의 저항(예, 1kΩ)이 제2 공용 저항 소자(R2)의 저항(예, 0.5kΩ)보다 큰 것으로 가정하기로 한다.The difference between the battery pack 10 of the third embodiment and the battery pack 10 of the first embodiment is that the balancing part BU has the second common resistance element R 2 , the first selection switch SS 1 , a selection switch (SS 2) is that it further includes. The resistance of the first common resistance element R 1 may be equal to or greater than or less than the resistance of the second common resistance element R 2 . Hereinafter, for convenience of explanation, first, it is assumed to be greater than the resistance (for example, 0.5kΩ) of the first common resistance element (R 1) resistance (for example, 1kΩ) to the second common resistance element (R 2) of the.
제1 공용 저항 소자(R1)와 제1 선택 스위치(SS1)는 직렬 연결된다. 제1 공용 저항 소자(R1)는, 제1 선택 스위치(SS1)를 통해 제1 공통 노드(N1)와 제2 공통 노드(N2) 사이에 연결된다. 예를 들어, 제1 선택 스위치(SS1)의 일단은 제1 공통 노드(N1)에 연결되고, 제1 공용 저항 소자(R1)의 일단은 제2 공통 노드(N2)에 연결되고, 제1 선택 스위치(SS1)의 타단은 제1 공용 저항 소자(R1)의 타단에 연결될 수 있다.The first common resistance element R 1 and the first selection switch SS 1 are connected in series. The first common resistance element R 1 is connected between the first common node N 1 and the second common node N 2 through the first selection switch SS 1 . For example, one end of the first selection switch SS 1 is connected to the first common node N 1 , one end of the first common resistance element R 1 is connected to the second common node N 2 , And the other end of the first selection switch SS 1 may be connected to the other end of the first common resistance element R 1 .
제2 공용 저항 소자(R2)와 제2 선택 스위치(SS2)는 직렬 연결된다. 제2 공용 저항 소자(R2)는, 제2 선택 스위치(SS2)를 통해 제1 공통 노드(N1)와 제2 공통 노드(N2) 사이에 연결된다. 예를 들어, 제2 선택 스위치(SS2)의 일단은 제1 공통 노드(N1)에 연결되고, 제2 공용 저항 소자(R2)의 일단은 제2 공통 노드(N2)에 연결되고, 제2 선택 스위치(SS2)의 타단은 제2 공용 저항 소자(R2)의 타단에 연결될 수 있다. 즉, 제1 공용 저항 소자(R2)와 제2 공용 저항 소자(R2)는, 제1 공통 노드(N1)와 제2 공통 노드(N2) 사이에서, 제1 선택 스위치(SS1)와 제2 선택 스위치(SS2)를 통해 서로 병렬 연결된다.The second common resistance element R 2 and the second selection switch SS 2 are connected in series. The second common resistance element R 2 is connected between the first common node N 1 and the second common node N 2 through the second selection switch SS 2 . For example, one end of the second selection switch SS 2 is connected to the first common node N 1 , one end of the second common resistance element R 2 is connected to the second common node N 2 And the other end of the second selection switch SS 2 may be connected to the other end of the second common resistance element R 2 . That is, the first common resistance element R 2 and the second common resistance element R 2 are connected between the first common node N 1 and the second common node N 2 through the first selection switch SS 1 ) And the second selection switch SS 2 .
제어부(130)는, 밸런싱 대상의 전압과 최소 전압 간의 차이를 기초로, 제1 선택 스위치(SS1) 및 제2 선택 스위치(SS2)를 제어하는바, 지금부터 도 2를 함께 참조하여 보다 상세히 설명한다.The control unit 130 controls the first selection switch SS 1 and the second selection switch SS 2 on the basis of the difference between the voltage to be balanced and the minimum voltage. Will be described in detail.
제어부(130)는, 밸런싱 대상의 전압과 최소 전압 간의 차이가 제1 임계 전압(예, 0.3V)보다 크면, 제1 공용 저항 소자(R2)에 직렬 연결된 제1 선택 스위치(SS1)를 턴 온시키는 한편 제2 선택 스위치(SS2)는 턴 오프시킬 수 있다. 예를 들어, 도 2에서와 같이, 밸런싱 대상인 배터리 셀(Cellk+1)의 전압 3.6V과 최소 전압 3.2V 간의 차이가 제1 임계 전압(예, 0.3V)보다 큰 경우, 제어부(130)는 제1 선택 스위치(SS1)를 턴 온시킴으로써, 배터리 셀(Cellk+1)을 방전시킨다. 이에 따라, 밸런싱 대상인 배터리 셀(Cellk+1)에 저장된 전기 에너지가 제1 공용 저항 소자(R1)에 의해 소모되면서 밸런싱 대상인 배터리 셀(Cellk+1)의 전압은 3.6V로부터 점차적으로 낮아질 것이다.The control unit 130 outputs a first selection switch SS 1 connected in series to the first common resistance element R 2 when the difference between the voltage to be balanced and the minimum voltage is greater than the first threshold voltage And the second selection switch SS 2 can be turned off. 2, when the difference between the voltage 3.6V and the minimum voltage 3.2V of the battery cell (Cell k + 1 ) to be balanced is larger than the first threshold voltage (e.g., 0.3V) The first selection switch SS 1 is turned on to discharge the battery cell Cell k + 1 . As a result, the electric energy stored in a battery cell-balancing target (Cell k + 1) a first voltage of the common resistance element (R 1) balancing the battery cells (Cell k + 1) as the subject consumed by gradually lowered from 3.6V will be.
제어부(130)는, 밸런싱 대상의 전압과 최소 전압 간의 차이가 제1 임계 전압(예, 0.3V) 이하이면, 제2 공용 저항 소자(R2)에 직렬 연결된 제2 선택 스위치(SS2)를 턴 온시키는 한편 제1 선택 스위치(SS1)는 턴 오프시킬 수 있다. 예를 들어, 밸런싱 대상인 배터리 셀(Cellk+1)의 전압이 3.5V에 도달한 시점부터는 제1 공용 저항 소자(R1) 대신 제2 공용 저항 소자(R2)에 의해 배터리 셀(Cellk+1)이 방전된다.The control unit 130 outputs the second selection switch SS 2 connected in series to the second common resistance element R 2 when the difference between the voltage to be balanced and the minimum voltage is equal to or less than the first threshold voltage the turn-on of the first selection switches (SS 1) can be turned off. For example, the first common resistance element (R 1) instead of the second battery cell (Cell k by the common resistance element (R 2) From the time when a voltage of 3.5V of the battery cell (Cell k + 1) target balancing +1 ) is discharged.
제어부(130)는, 배터리 셀(Cellk+1)의 전압과 최소 전압 3.2V 간의 차이가 0 V에 도달할 때까지 제2 선택 스위치(SS2)를 턴 온 상태로 유지할 수 있다. The control unit 130 can keep the second selection switch SS 2 in the on state until the difference between the voltage of the battery cell Cell k + 1 and the minimum voltage of 3.2 V reaches 0 V.
또는, 제어부(130)는, 배터리 셀(Cellk+1)의 전압과 최소 전압 3.2V 간의 차이가 제1 임계 전압보다 작은 제2 임계 전압(예, 0.1V)에 도달한 시점부터 배터리 셀(Cellk+1)의 전압과 최소 전압 3.2V 간의 차이가 0 V에 도달할 때까지 제1 선택 스위치(SS1) 및 제2 선택 스위치(SS2)를 모두 턴 온시킬 수 있다. 이에 따라, 배터리 셀(Cellk+1)에 저장된 전기 에너지가 제1 공용 저항 소자(R2) 및 제2 공용 저항 소자(R2)에 의해 소모되면서 배터리 셀(Cellk+1)의 전압은 3.5V로부터 최소 전압 3.2V을 향하여 점차적으로 낮아질 것이다. Alternatively, the control unit 130 may control the voltage of the battery cell (Cell k + 1 ) from the time when the difference between the voltage of the battery cell (Cell k + 1 ) and the minimum voltage of 3.2 V reaches a second threshold voltage The first selection switch SS 1 and the second selection switch SS 2 can be both turned on until the difference between the voltage of the cell k + 1 and the minimum voltage of 3.2 V reaches 0 V. Accordingly, the voltage of the electric energy stored in the battery cell (Cell k + 1) is the first common resistance element (R 2) and second common resistance element (R 2) a battery cell (Cell k + 1) as consumed by the 3.5V to a minimum voltage of 3.2V.
여기서 주목할 점은, 제1 공통 노드(N1)와 제2 공통 노드(N2) 간의 총 저항(total resistance)은, 제1 선택 스위치(SS1) 및 제2 선택 스위치(SS2)가 턴 온되어 있는 경우가 제1 선택 스위치(SS1) 및 제2 선택 스위치(SS2) 중 어느 하나만이 턴 온된 경우보다 작다는 것이다. It should be noted that the total resistance between the first common node N 1 and the second common node N 2 is such that the first select switch SS 1 and the second select switch SS 2 are turned The ON state is smaller than when only one of the first selection switch SS 1 and the second selection switch SS 2 is turned on.
도 7을 참조하여 전술한 제3 실시예에 따르면, 장치(100)는, 밸런싱 대상의 전압과 최소 전압 간의 차이가 줄어들수록 제1 공통 노드(N1)와 제2 공통 노드(N2) 간의 총 저항을 단계적으로 감소시킴으로써, 밸런싱 대상을 통해 흐르는 전류가 안정화하는 장점이 있다.Between according to the embodiment also described above the third reference to 7, the apparatus 100 The less the difference between the balancing target voltage and the minimum voltage of the first common node (N 1) and a second common node (N 2) By stepwise reducing the total resistance, there is an advantage that the current flowing through the balancing object is stabilized.
도 8은 본 발명의 제4 실시예에 따른 배터리 팩의 구성을 개략적으로 나타낸 도면이다.8 is a view schematically showing a configuration of a battery pack according to a fourth embodiment of the present invention.
도 8에 도시된 배터리팩(10)에 대하여는, 도 7을 참조하여 전술한 제3 실시예와 공통된 내용에 대한 반복 설명은 생략하고, 차이점을 중심으로 설명하기로 한다.With respect to the battery pack 10 shown in FIG. 8, repetitive description of the same contents as those of the third embodiment described above with reference to FIG. 7 will be omitted, and differences will be mainly described.
제4 실시예의 배터리팩(10)와 제3 실시예의 배터리팩(10)의 차이점은, 밸런싱부(BU)가 제3 선택 스위치(SS3) 및 제4 선택 스위치(SS4)를 더 포함한다는 점이다. The difference between the battery pack 10 of the fourth embodiment and the battery pack 10 of the third embodiment is that the balancing part BU further includes a third selection switch SS 3 and a fourth selection switch SS 4 It is a point.
제3 선택 스위치(SS3)는, 제1 공통 노드(N1)와 제2 공통 노드(N2) 사이에서 제1 선택 스위치(SS1)와 제1 공용 저항 소자(R1)에 직렬 연결된다.The third selection switch SS 3 is connected to the first selection switch SS 1 and the first common resistance element R 1 in series between the first common node N 1 and the second common node N 2 do.
제4 선택 스위치(SS4)는, 제1 공통 노드(N1)와 제2 공통 노드(N2) 사이에서 제2 선택 스위치(SS2)와 제2 공용 저항 소자(R2)에 직렬 연결된다.The fourth selection switch SS 4 is connected in series between the first common node N 1 and the second common node N 2 to the second selection switch SS 2 and the second common resistance element R 2 do.
제3 선택 스위치(SS3)는, 제1 선택 스위치(SS1)의 단락 고장(short fault)으로부터 배터리 모듈(20) 및 제1 공용 저항 소자(R1)를 보호하도록 제공된다. 단락 고장이란, 스위치가 개방 불능으로 된 상태를 칭한다. 제어부(130)는, 제1 선택 스위치(SS1)를 턴 온시키는 경우, 제3 선택 스위치(SS3)도 턴 온시키도록 구성될 수 있다. 제어부(130)는, 제1 선택 스위치(SS1)를 턴 오프시키는 경우, 제3 선택 스위치(SS3)도 턴 오프시키도록 구성될 수 있다. 따라서, 제1 선택 스위치(SS1)가 단락 고장이더라도, 제3 선택 스위치(SS3)를 턴 오프시킴으로써 제1 공용 저항 소자(R1)를 통한 전류의 흐름을 차단할 수 있다.The third selection switch SS 3 is provided to protect the battery module 20 and the first common resistance element R 1 from a short fault of the first selection switch SS 1 . A short-circuit failure refers to a state in which the switch is made non-openable. The controller 130, in the case of turning on the first selection switches (SS 1), the can be configured to three-selection switch (SS 3) also turned on. The controller 130, in the case of turning off the first selection switches (SS 1), the can be configured to three-selection switch (SS 3) also turned off. Therefore, even if the first selection switch SS 1 is short-circuited, the flow of current through the first common resistance element R 1 can be cut off by turning off the third selection switch SS 3 .
제4 선택 스위치(SS4)는, 제2 선택 스위치(SS2)의 단락 고장으로부터 배터리 모듈(20) 및 제2 공용 저항 소자(R2)를 보호하도록 제공된다. 제어부(130)는, 제2 선택 스위치(SS2)를 턴 온시키는 경우, 제4 선택 스위치(SS4)도 턴 온시키도록 구성될 수 있다. 제어부(130)는, 제2 선택 스위치(SS2)를 턴 오프시키는 경우, 제4 선택 스위치(SS4)도 턴 오프시키도록 구성될 수 있다. 따라서, 제2 선택 스위치(SS2)가 단락 고장이더라도, 제4 선택 스위치(SS4)를 턴 오프시킴으로써 제2 공용 저항 소자(R2)를 통한 전류의 흐름을 차단할 수 있다.The fourth selection switch SS 4 is provided to protect the battery module 20 and the second common resistance element R 2 from a short-circuit failure of the second selection switch SS 2 . The controller 130, in the case of 2 turns on the selection switch (SS 2), a may be configured to four select switches (SS 4) also turned on. The controller 130, in the case of turning off the second selection switch (SS 2), a may be configured to four select switches (SS 4) also turned off. Therefore, even if the second selection switch SS 2 is short-circuited, the flow of current through the second common resistance element R 2 can be cut off by turning off the fourth selection switch SS 4 .
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다. The embodiments of the present invention described above are not only implemented by the apparatus and method but may be implemented through a program for realizing the function corresponding to the configuration of the embodiment of the present invention or a recording medium on which the program is recorded, The embodiments can be easily implemented by those skilled in the art from the description of the embodiments described above.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not to be limited to the details thereof and that various changes and modifications will be apparent to those skilled in the art. And various modifications and variations are possible within the scope of the appended claims.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to be illustrative, The present invention is not limited to the drawings, but all or some of the embodiments may be selectively combined so that various modifications may be made.

Claims (13)

  1. 복수의 배터리 셀을 밸런싱하기 위한 장치에 있어서,An apparatus for balancing a plurality of battery cells,
    상기 복수의 배터리 셀의 전압을 검출하는 모니터링부;A monitoring unit for detecting a voltage of the plurality of battery cells;
    제1 공통 노드 및 제2 공통 노드의 사이에 연결된 제1 공용 저항 소자 및 스위칭 모듈을 포함하는 밸런싱부; 및A balancing portion including a first common resistance element and a switching module connected between the first common node and the second common node; And
    상기 모니터링부 및 상기 스위칭 모듈에 동작 가능하게 결합된 제어부를 포함하되,And a control unit operatively coupled to the monitoring unit and the switching module,
    상기 스위칭 모듈은,The switching module includes:
    상기 각 배터리 셀의 양극 단자를 상기 제1 공통 노드에 선택적으로 연결하고, 상기 각 배터리 셀의 음극 단자를 상기 제2 공통 노드에 선택적으로 연결하도록 구성되고,Selectively connect the positive terminal of each battery cell to the first common node and selectively connect the negative terminal of each battery cell to the second common node,
    상기 제어부는,Wherein,
    상기 복수의 배터리 셀 각각의 전압을 기초로, 상기 복수의 배터리 셀 중 적어도 하나를 포함하는 밸런싱 대상을 결정하고,Determining a balancing object including at least one of the plurality of battery cells based on a voltage of each of the plurality of battery cells,
    상기 제1 공용 저항 소자와 상기 밸런싱 대상 간의 전류 경로가 형성되도록 상기 스위칭 모듈을 제어하도록 구성된, 장치.And to control the switching module such that a current path is formed between the first common resistive element and the balancing object.
  2. 제1항에 있어서,The method according to claim 1,
    상기 스위칭 모듈은,The switching module includes:
    상기 각 배터리 셀의 양극 단자와 상기 제1 공통 노드의 사이에 설치되는 복수의 양극 스위칭 소자를 포함하는 제1 스위칭 회로; 및A first switching circuit including a plurality of positive polarity switching elements provided between a positive terminal of each battery cell and the first common node; And
    상기 각 배터리 셀의 음극 단자와 상기 제2 공통 노드의 사이에 설치되는 복수의 음극 스위칭 소자를 포함하는 제2 스위칭 회로를 포함하는, 장치.And a second switching circuit including a plurality of cathode switching elements provided between a cathode terminal of each battery cell and the second common node.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 제어부는,Wherein,
    상기 복수의 배터리 셀 중 어느 하나를 상기 밸런싱 대상으로 결정 시, When determining that any one of the plurality of battery cells is to be balanced,
    상기 복수의 양극 스위칭 소자 중에서 상기 밸런싱 대상의 양극 단자에 연결된 어느 하나의 양극 스위칭 소자 및 상기 복수의 음극 스위칭 소자 중에서 상기 밸런싱 대상의 음극 단자에 연결된 어느 하나의 양극 스위칭 소자를 턴 온시키도록 구성된, 장치.A positive polarity switching element connected to the positive polarity terminal of the balancing object among the plurality of positive polarity switching elements and a positive polarity switching element connected to the negative polarity terminal of the balancing target among the plurality of negative polarity switching elements, Device.
  4. 제2항에 있어서,3. The method of claim 2,
    상기 제어부는,Wherein,
    상기 복수의 배터리 셀 중 서로 인접한 둘 이상의 배터리 셀을 상기 밸런싱 대상으로 결정 시,When determining that two or more adjacent battery cells among the plurality of battery cells are to be balanced,
    상기 복수의 양극 스위칭 소자 중에서 상기 밸런싱 대상의 최고 전위 전극에 연결된 어느 하나의 양극 스위칭 소자 및 상기 복수의 음극 스위칭 소자 중에서 상기 밸런싱 대상의 최저 전위 전극에 연결된 어느 하나의 음극 스위칭 소자를 턴 온시키도록 구성된, 장치.A positive polarity switching element connected to the highest potential electrode of the balancing object among the plurality of positive polarity switching elements and a negative polarity switching element connected to the lowest potential electrode of the balancing object among the plurality of negative polarity switching elements Configured.
  5. 제1항에 있어서,The method according to claim 1,
    상기 제어부는,Wherein,
    상기 복수의 배터리 셀의 전압을 기초로, 상기 복수의 배터리 셀의 충전 상태를 결정하도록 구성되고,And to determine a state of charge of the plurality of battery cells based on the voltages of the plurality of battery cells,
    상기 밸런싱 대상은,The balancing object,
    상기 복수의 배터리 셀 중 최대 충전 상태를 가지는 배터리 셀을 포함하는, 장치.And a battery cell having a maximum charge state among the plurality of battery cells.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 밸런싱 대상은,The balancing object,
    상기 최대 충전 상태를 가지는 배터리 셀에 인접하게 연결된 다른 배터리 셀;Another battery cell connected adjacent to the battery cell having the maximum charge state;
    을 더 포함하는, 장치.&Lt; / RTI &gt;
  7. 제6항에 있어서,The method according to claim 6,
    상기 다른 배터리 셀의 충전 상태는,The state of charge of the other battery cell may be determined based on,
    상기 복수의 배터리 셀의 최소 충전 상태보다 큰, 장치.Wherein the minimum charge state of the plurality of battery cells is greater than the minimum charge state of the plurality of battery cells.
  8. 제1항에 있어서,The method according to claim 1,
    상기 제어부는,Wherein,
    상기 제1 공용 저항 소자의 저항 및 상기 복수의 배터리 셀의 전압을 기초로, 상기 밸런싱 대상에 포함 가능한 배터리 셀의 최대 개수를 결정하는, 장치.And determines the maximum number of battery cells that can be included in the balancing object, based on the resistance of the first common resistance element and the voltage of the plurality of battery cells.
  9. 제1항에 있어서,The method according to claim 1,
    상기 밸런싱부는,The balancing unit includes:
    상기 제1 공통 노드와 상기 제2 공통 노드 사이에서 상기 제1 공용 저항 소자에 직렬 연결되는 제1 선택 스위치;A first selection switch serially connected to the first common resistance element between the first common node and the second common node;
    상기 제1 공용 저항 소자의 저항보다 작은 저항을 가지는 제2 공용 저항 소자; 및A second common resistance element having a resistance smaller than a resistance of the first common resistance element; And
    상기 제1 공통 노드와 상기 제2 공통 노드 사이에서 상기 제2 공용 저항 소자에 직렬 연결되는 제2 선택 스위치를 더 포함하는, 장치.And a second selection switch connected in series between the first common node and the second common node to the second common resistance element.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 제어부는,Wherein,
    상기 밸런싱 대상의 전압과 상기 복수의 배터리 셀의 최소 전압 간의 차이를 기초로, 상기 제1 선택 스위치 및 상기 제2 선택 스위치를 제어하도록 구성된, 장치.And to control the first selection switch and the second selection switch based on a difference between the voltage of the balancing object and the minimum voltage of the plurality of battery cells.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 제어부는,Wherein,
    상기 밸런싱 대상의 전압과 상기 최소 전압 간의 차이가 제1 임계 전압보다 큰 경우, 상기 제1 선택 스위치를 턴 온시키고 상기 제2 선택 스위치를 턴 오프시키도록 구성된, 장치.And to turn on the first select switch and turn off the second select switch if the difference between the voltage of the balancing object and the minimum voltage is greater than a first threshold voltage.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 제어부는,Wherein,
    상기 밸런싱 대상의 전압과 상기 최소 전압 간의 차이가 상기 제1 임계 전압 이하인 경우, 상기 제1 선택 스위치를 턴 오프시키고 상기 제2 선택 스위치를 턴 온시키도록 구성된, 장치.And to turn off the first select switch and turn on the second select switch when the difference between the voltage of the balancing object and the minimum voltage is below the first threshold voltage.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 상기 장치를 포함하는, 배터리팩.A battery pack comprising the device according to any one of claims 1 to 12.
PCT/KR2018/012666 2017-10-27 2018-10-24 Apparatus for battery balancing and battery pack including same WO2019083282A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880020263.5A CN110447157B (en) 2017-10-27 2018-10-24 Device for balancing battery and battery pack including the same
EP18869854.2A EP3618221B1 (en) 2017-10-27 2018-10-24 Apparatus for battery balancing and battery pack including same
US16/493,420 US11283274B2 (en) 2017-10-27 2018-10-24 Apparatus for battery balancing and battery pack including same
JP2019549533A JP7049564B2 (en) 2017-10-27 2018-10-24 A device for battery balancing and a battery pack containing it
US17/670,092 US11699913B2 (en) 2017-10-27 2022-02-11 Apparatus for battery balancing and battery pack including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170141282 2017-10-27
KR10-2017-0141282 2017-10-27
KR10-2018-0120021 2018-10-08
KR1020180120021A KR102236384B1 (en) 2017-10-27 2018-10-08 Apparatus for battery balancing and battery pack including the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/493,420 A-371-Of-International US11283274B2 (en) 2017-10-27 2018-10-24 Apparatus for battery balancing and battery pack including same
US17/670,092 Continuation US11699913B2 (en) 2017-10-27 2022-02-11 Apparatus for battery balancing and battery pack including same

Publications (1)

Publication Number Publication Date
WO2019083282A1 true WO2019083282A1 (en) 2019-05-02

Family

ID=66246997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012666 WO2019083282A1 (en) 2017-10-27 2018-10-24 Apparatus for battery balancing and battery pack including same

Country Status (1)

Country Link
WO (1) WO2019083282A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100062200A (en) * 2008-12-01 2010-06-10 삼성에스디아이 주식회사 Battery management system and battery management method
US20130187616A1 (en) * 2012-01-20 2013-07-25 Chia-Ming Chuang Battery Discharge System and Method of Operation thereof
KR20140065056A (en) * 2012-11-21 2014-05-29 현대자동차주식회사 Method for controlling cell balancing of high voltage battery
JP2015089170A (en) * 2013-10-28 2015-05-07 三菱自動車工業株式会社 Battery device
KR20150089627A (en) 2014-01-28 2015-08-05 주식회사 엘지화학 Battery cell voltage balancing apparatus and method
KR20170141282A (en) 2009-01-26 2017-12-22 라이시오 뉴트리션 리미티드 Beverage lowering serum cholesterol
KR20180120021A (en) 2017-04-26 2018-11-05 (주)에스엔텍 Continuous feeder of deposition source and plasma beam deposition apparatus having the feeder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100062200A (en) * 2008-12-01 2010-06-10 삼성에스디아이 주식회사 Battery management system and battery management method
KR20170141282A (en) 2009-01-26 2017-12-22 라이시오 뉴트리션 리미티드 Beverage lowering serum cholesterol
US20130187616A1 (en) * 2012-01-20 2013-07-25 Chia-Ming Chuang Battery Discharge System and Method of Operation thereof
KR20140065056A (en) * 2012-11-21 2014-05-29 현대자동차주식회사 Method for controlling cell balancing of high voltage battery
JP2015089170A (en) * 2013-10-28 2015-05-07 三菱自動車工業株式会社 Battery device
KR20150089627A (en) 2014-01-28 2015-08-05 주식회사 엘지화학 Battery cell voltage balancing apparatus and method
KR20180120021A (en) 2017-04-26 2018-11-05 (주)에스엔텍 Continuous feeder of deposition source and plasma beam deposition apparatus having the feeder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618221A4 *

Similar Documents

Publication Publication Date Title
US11283274B2 (en) Apparatus for battery balancing and battery pack including same
KR101201139B1 (en) Protection circuit device of battery pack
WO2019151779A1 (en) Pre-charge resistor protective apparatus
WO2020076127A1 (en) Battery management device and method
WO2018143562A1 (en) Battery pack and method for controlling charging of battery pack
WO2017030321A1 (en) Battery protection circuit module and battery pack comprising same
WO2012091402A2 (en) Method and device for managing battery system
WO2020055117A1 (en) Battery management device
WO2019177303A1 (en) Overdischarge preventing device
US20060097697A1 (en) Method and system for cell equalization with switched charging sources
WO2019221368A1 (en) Device, battery system, and method for controlling main battery and sub battery
WO2020141772A1 (en) Battery balancing device and battery pack including same
WO2020080881A1 (en) Battery management device
WO2019212148A1 (en) Device and method for testing secondary battery
WO2020080802A1 (en) Apparatus and method for battery module balancing
WO2021080247A1 (en) Apparatus and method for controlling turn-on operation of switch units included in parallel multi-battery pack
WO2019117487A1 (en) Voltage measurement device and method
WO2022080709A1 (en) Relay diagnosis device, relay diagnosis method, battery system, and electric vehicle
WO2020055162A1 (en) Switch diagnosis device and method
WO2022025725A1 (en) Battery management device, battery pack, battery system, and battery management method
WO2017090980A1 (en) Fuse diagnosis device of high-voltage secondary battery
WO2022039505A1 (en) Battery management system, battery management method, battery pack, and electric vehicle
WO2019151631A1 (en) Battery protective circuit and battery pack comprising same
WO2021091086A1 (en) Battery diagnosis device, battery diagnosis method and energy storage system
WO2019093625A1 (en) Charging control apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549533

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018869854

Country of ref document: EP

Effective date: 20191129

NENP Non-entry into the national phase

Ref country code: DE