WO2019083254A1 - Method for manufacturing cylindrical battery case having improved surface roughness - Google Patents

Method for manufacturing cylindrical battery case having improved surface roughness

Info

Publication number
WO2019083254A1
WO2019083254A1 PCT/KR2018/012565 KR2018012565W WO2019083254A1 WO 2019083254 A1 WO2019083254 A1 WO 2019083254A1 KR 2018012565 W KR2018012565 W KR 2018012565W WO 2019083254 A1 WO2019083254 A1 WO 2019083254A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery case
surface roughness
ironing
forming
cylindrical
Prior art date
Application number
PCT/KR2018/012565
Other languages
French (fr)
Korean (ko)
Inventor
황보광수
이제준
정상석
김준탁
이길영
구성모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202310732830.2A priority Critical patent/CN116742102A/en
Priority to CN201880024824.9A priority patent/CN110506344B/en
Priority to JP2019556978A priority patent/JP7444357B2/en
Priority to EP18870614.7A priority patent/EP3648192A4/en
Priority to US16/606,613 priority patent/US20200335736A1/en
Priority claimed from KR1020180126665A external-priority patent/KR102252386B1/en
Publication of WO2019083254A1 publication Critical patent/WO2019083254A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/145Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/30Deep-drawing to finish articles formed by deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a cylindrical battery case, and more particularly, to a method of manufacturing a cylindrical battery case by improving the surface roughness of a battery case by performing a plurality of ironing processes during a manufacturing process To a method of manufacturing a cylindrical battery case.
  • the secondary battery includes a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, and a lithium ion polymer battery.
  • a secondary battery is not only a compact product such as a digital camera, a P-DVD, an MP3P, a mobile phone, a PDA, a portable game device, a power tool and an e-bike, but also a large product requiring high output such as an electric car or a hybrid car, Power storage devices for storing power generation and renewable energy, and backup power storage devices.
  • the lithium secondary battery generally comprises a cathode, a separator, and an anode. These materials are selected in consideration of battery life, charge / discharge capacity, temperature characteristics, stability, and the like.
  • the secondary battery is classified into a cylindrical battery in which the case is cylindrical, a prismatic battery in which the case is square, and a pouch-type battery in which the case is thin laminate sheet, depending on the shape of the battery case.
  • an electrode assembly is embedded in a battery case as a power generating device capable of charging and discharging, which has a stacked structure of a positive electrode / separator / negative electrode.
  • the electrode assembly includes a jelly- Type structure in which a plurality of positive electrodes and negative electrodes of a predetermined size are sequentially stacked with a separator interposed therebetween.
  • the jelly-roll type electrode assembly has advantages such as easy manufacture and high energy density per weight, and jelly-roll type electrode assembly is easily manufactured especially in a cylindrical battery case.
  • the cylindrical battery case is generally formed by first punching a strip-shaped metal battery can made of a nickel-plated steel sheet to form a disk-shaped plate corresponding to a desired cylindrical battery case, and the plate is subjected to deep- It is molded into a middle cup sieve.
  • the intermediate cup body is formed into a second intermediate cup body near the cylindrical battery case by redrawing by a deep drawing process. Finally, the second intermediate cup body is DI (drawing and ironing) The case is molded.
  • the material of the existing cylindrical battery case is a steel sheet plated with Ni on low carbon steel, and the Ni layer serves as a protective layer for protecting the Fe layer.
  • the concept is shown in Fig.
  • the outer diameter preparation process of the cylindrical body is a drawing process, so that the surface of the battery case is provided with process results with a surface roughness higher than a specific level by drawing tension, and the surface gloss of such a cylindrical battery case is not high.
  • a diaphragm process a diaphragm process after the ironing process.
  • Japanese Patent Laid-Open Publication No. 2003-263974 discloses a method of manufacturing a sheet metal punching process for punching a metal can made of a strip-shaped metal plate to form a regular-sized plate material, a step of forming the plate material to form a first half cup shape having a cross-
  • There is a difference because it is not a technique that specifies corrosion resistance enhancement through reduction of illumination.
  • Japanese Patent No. 4,119,612 discloses a rectangular rectangular battery can having a transversely sectioned shape in which a power generating element is housed and constitutes a prismatic battery, characterized in that the substantially rectangular short side plate portion has a thickness larger than the thickness of the long side plate portion
  • Japanese Patent No. 4,119,612 discloses a rectangular rectangular battery can having a transversely sectioned shape in which a power generating element is housed and constitutes a prismatic battery, characterized in that the substantially rectangular short side plate portion has a thickness larger than the thickness of the long side plate portion
  • Japanese Laid-Open Patent Publication No. 2009-037980 discloses that the above-mentioned intermediate cup body is subjected to one-stage drawing processing and three-stage ironing processing by a drawing and ironing machine at a time in a continuous manner. However, There is a difference because it is not a technique that specifies strengthening configuration.
  • the inventors of the present application have conducted intensive research and various experiments. Therefore, it is a primary object of the present invention to solve the above-mentioned problems of the prior art, and it is an object of the present invention to solve an environment susceptible to relatively high corrosion of an electric vehicle battery, And an improved method of manufacturing a cylindrical battery case.
  • an object of the present invention is to provide a battery case in which deep drawing is performed for forming an outer diameter of the battery case, Is performed a plurality of times.
  • primary ironing may be performed during deep drawing to form the body of the battery case
  • secondary ironing may be performed during deep drawing to form the stepped portion of the battery case.
  • the surface roughness (Ra) of the battery case after the ironing process may be 0.1 m or less.
  • the thickness reduction of the battery case after the ironing process performed in a plurality of times may be constant.
  • a method of manufacturing a steel plate comprising: forming a nickel plating layer on at least one surface of a steel sheet; A second step of subjecting the steel sheet of the first step to a heat treatment in a reducing atmosphere; A third step of blanking and drawing the steel sheet of the second step; A fourth step of performing first deep drawing and first ironing for forming the steel sheet in the third step for forming the battery case body; A fifth step of performing second deep-drawing processing for forming the body in the fourth step; A sixth step of performing a third deep drawing and a second ironing for forming a step on the body in the fifth step; And a seventh step of forming a taper and a flange on the body of the sixth step.
  • the surface roughness (Ra) of the battery case after the primary ironing process may be 0.2 ⁇ or less.
  • the surface roughness (Ra) of the battery case after the secondary ironing process may be 0.1 ⁇ or less.
  • the battery case may be a secondary battery including a battery case manufactured by the cylindrical battery case manufacturing method.
  • it may be a device including the secondary battery.
  • the device may be a device selected from the group consisting of an electronic device, an electric vehicle, a hybrid vehicle, and a power storage device.
  • FIG. 1 is a conceptual view of a nickel plating layer of a conventional cylindrical secondary battery.
  • FIG. 2 is a graph showing corrosion resistance test results of a conventional cylindrical secondary battery.
  • Example 3 is a photograph of the appearance of the cylindrical battery case of Example 1 and Comparative Example 1
  • FIG. 1 is a conceptual view of a nickel plating layer of a conventional cylindrical secondary battery.
  • a nickel-plated steel sheet formed by forming a nickel plating layer on the surface of a steel sheet is used as a material for a cylindrical secondary battery case.
  • the nickel-plated steel sheet is mainly applied to a battery case in which strong alkaline potassium hydroxide such as an alkaline dry battery or a nickel-cadmium storage battery is used as an electrolytic solution.
  • the nickel plated layer is resistant to corrosion against an alkaline substance, has a stable contact resistance when the battery is connected to an external terminal, and has an advantage of excellent spot weldability when assembling a battery.
  • FIG. 2 is a graph showing corrosion resistance test results of a conventional cylindrical secondary battery.
  • the corrosion resistance test of the cylindrical rechargeable battery cell case was carried out at 60 ° C and 95% RH for 7 days as a storage test under high temperature and high humidity conditions, and spot corrosion of the surface was confirmed.
  • Spot corrosion was confirmed on the surface of the test result, and at least one spot corrosion was confirmed at a sample number of 50 to 100% based on the total sample quantity.
  • the battery case manufacturing process of the conventional cylindrical secondary battery may have a step (# 1) of bricking and drawing nickel-plated base metal, and idling the base metal.
  • the No Tubing model of the EV secondary battery can be exposed to a relatively corrosive environment.
  • a secondary battery such as Tesla
  • only a secondary battery satisfying corrosion conditions within a limit of 60 ° C (95% RH) and 7days after high temperature and high humidity storage is allowed. Therefore, the ironing process, which is a method of realizing a high-gloss surface of the battery case for improving the corrosion resistance, was reflected.
  • the surface roughness of the cylindrical secondary battery cell case generates a potential difference inside the metal, thereby creating an environment in which local corrosion is liable to occur. Therefore, by reducing the surface roughness (Ra) value, the surface area can be reduced to improve the corrosion resistance.
  • the ironing process is divided into two processes, and the final ironing process is changed to the process after drawing to improve the gloss.
  • Drawing process has roughness and luster disappearing due to tensile force of side part, and ironing process can push down material and maintain thickness reduction and uniformity, which can reduce the roughness and gloss by compression friction of die. That is, the larger the ironing amount, the lower the surface roughness.
  • primary ironing may be performed during deep drawing to form the body of the battery case
  • secondary ironing may be performed during deep drawing to form the stepped portion of the battery case.
  • the surface roughness (Ra) of the battery case after the ironing process may be 0.1 m or less.
  • the thickness reduction of the battery case after the ironing process performed in a plurality of times may be constant.
  • the ironing process proceeds 0.04 mm at a time in the case of two times of progressing, .
  • the thickness reduction value of the battery case can be kept the same.
  • a method of manufacturing a steel plate comprising: forming a nickel plating layer on at least one surface of a steel sheet; A second step of heat treating the steel sheet in the first step in a reducing atmosphere; A third step of blanking and drawing the steel sheet of the second step; A fourth step of performing first deep drawing and first ironing for forming the steel sheet in the third step for forming the battery case body; A fifth step of subjecting the steel sheet of the fourth step to a second deep-drawing process for forming a battery case body; A sixth step of performing a third deep drawing and a second ironing for forming a step on the body in the fifth step; And a seventh step of forming a taper and a flange on the body of the sixth step.
  • the surface roughness (Ra) of the battery case after the primary ironing process may be 0.2 ⁇ or less.
  • the surface roughness (Ra) of the battery case after the secondary ironing process may be 0.1 ⁇ or less.
  • the battery case may be a secondary battery including a battery case manufactured by the cylindrical battery case manufacturing method.
  • it may be a device including the secondary battery.
  • the device may be a device selected from the group consisting of an electronic device, an electric vehicle, a hybrid vehicle, and a power storage device.
  • step (# 1) of bricking and drawing the nickel-plated base metal and idling the base metal may be performed.
  • the cylindrical battery case was manufactured through trimming (# 13).
  • the ironing process is a process of reducing the thickness of the base material by 0.04 mm.
  • the ironing process is performed to reduce the base material thickness by 0.04 mm.
  • the ironing process of the step (# 8) is performed by reducing the thickness of the base material by 0.08 mm, and in the step # 10, the body ironing step is omitted.
  • a cylindrical battery case was manufactured by the same procedure.
  • the cylindrical battery case of Example 1 has a significantly increased surface gloss compared to the cylindrical battery case of Comparative Example 1, .
  • the corrosion resistance test was carried out using the cylindrical battery case manufactured in Example 1 and Comparative Example 2.
  • the corrosion resistance test was carried out at 60 ° C and 95% RH for 7 days after storage under high temperature and high humidity conditions. Then, to check whether corrosion occurred on the surface of the cylindrical secondary battery cell case, . The results of the corrosion resistance test are shown in the photograph of FIG.
  • the cylindrical battery case was manufactured by the same process as in step 1 except that the ironing process of step (# 8) was performed by reducing the thickness of the base material by 0.15 mm.
  • the cylindrical battery case was fabricated by the same process as in step 1 except that the ironing process of step (# 8) was performed by reducing the thickness of the base material by 0.05 mm.
  • the surface roughness (R a ) value ranged from a minimum of 0.022 to a maximum of 0.040, and an average value thereof was 0.03.
  • the surface roughness (R a ) value ranged from 0.099 to 0.142 at the minimum, and the average value was 0.115.
  • the surface roughness (R a ) value of the cylindrical battery case of Comparative Example 3 showed a minimum value of 0.179 to a maximum of 0.309, and an average value thereof was 0.236.
  • the surface roughness (R z ) value ranged from a minimum of 0.152 to a maximum of 0.427, an average value was 0.202, and a surface roughness (R z ) value of the cylindrical battery case of Comparative Example 2 was the minimum 0.542 to a maximum value of 0.944 and an average value of 0.713.
  • the surface roughness (R z ) value of the cylindrical battery case of Comparative Example 3 exhibited a minimum value of 0.924 to a maximum value of 2.436, and an average value thereof was 1.497.
  • the cylindrical battery case of Example 1 of the present invention can confirm the surface roughness improving effect, and the corrosion resistance due to the surface roughness improvement can be sufficiently expected.
  • the manufacturing process of the cylindrical battery case has the effect of lowering the surface roughness by changing the thickness reduction process have.
  • the present invention has the effect of improving the corrosion characteristics of the surface roughness.
  • the inner surface of the cylindrical battery case wall is formed on a suitable rough surface, the contact area between the electrode assembly and the inner surface of the side wall is increased, thereby significantly reducing the internal resistance of the battery.
  • the supporting property of the conductive material is improved, and the post-storage characteristics of the battery can be maintained high for a long period of time.
  • the thickness of the side wall is formed thinner than the thickness of the bottom wall by the ironing process, the amount of the positive electrode mixture or the amount of the active material can be increased, and battery performance such as charge and discharge characteristics can be improved.

Abstract

The present invention relates to a method for manufacturing a cylindrical battery case, wherein, in order to improve the corrosion characteristics of the battery case, the ironing process among the manufacturing processes is performed multiple times, thereby improving the surface roughness of the battery case. The present invention is advantageous in that, when a cylindrical battery case is manufactured, a process of completing the outer diameter of the body of the cylindrical battery is changed to a thickness reducing process, thereby lowering the surface roughness, and the surface roughness-specific corrosion characteristics are improved.

Description

표면조도를 개선한 원통형 전지케이스 제조방법Method for manufacturing cylindrical battery case with improved surface roughness
본 출원은 2017년 10월 23일자 한국 특허 출원 제 2017-0137092 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.The present application claims the benefit of priority under Korean Patent Application No. 2017-0137092, filed on October 23, 2017, the entire contents of which are incorporated herein by reference.
본 발명은 원통형 전지케이스 제조방법에 관한 것으로, 보다 상세하게는, 본 발명은 전지케이스의 부식 특성을 개선하기 위하여 제조 공정 중 아이어닝 공정을 복수의 횟수로 수행하여 전지케이스의 표면조도를 향상시킨 원통형 전지케이스 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a cylindrical battery case, and more particularly, to a method of manufacturing a cylindrical battery case by improving the surface roughness of a battery case by performing a plurality of ironing processes during a manufacturing process To a method of manufacturing a cylindrical battery case.
일반적으로, 이차 전지의 종류로는 니켈 카드뮴 전지, 니켈 수소 전지, 리튬 이온 전지 및 리튬 이온 폴리머 전지 등이 있다. 이러한 이차 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품뿐 만 아니라, 전기 자동차나 하이브리드 자동차와 같은 고출력이 요구되는 대형제품과 잉여 발전 전력이나 신재생 에너지를 저장하는 전력 저장 장치와 백업용 전력 저장 장치에도 적용되어 사용되고 있다.In general, the secondary battery includes a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, and a lithium ion polymer battery. Such a secondary battery is not only a compact product such as a digital camera, a P-DVD, an MP3P, a mobile phone, a PDA, a portable game device, a power tool and an e-bike, but also a large product requiring high output such as an electric car or a hybrid car, Power storage devices for storing power generation and renewable energy, and backup power storage devices.
상기 리튬이차전지는 일반적으로 양극(Cathode), 분리막(Separator) 및 음극(Anode)으로 이루어지는데, 이들의 재료는 전지수명, 충방전용량, 온도특성 및 안정성 등을 고려하여 선택된다.The lithium secondary battery generally comprises a cathode, a separator, and an anode. These materials are selected in consideration of battery life, charge / discharge capacity, temperature characteristics, stability, and the like.
이차전지는 전지케이스의 형상에 따라, 케이스가 원통형인 원통형 전지와 케이스가 각형인 각형 전지, 케이스가 얇은 라미네이트 시트인 파우치형 전지로 분류된다.The secondary battery is classified into a cylindrical battery in which the case is cylindrical, a prismatic battery in which the case is square, and a pouch-type battery in which the case is thin laminate sheet, depending on the shape of the battery case.
한편, 전지케이스에는, 양극/분리막/음극의 적층 구조로 이루어진 충ㅇ방전이 가능한 발전소자로서 전극조립체가 내장되는데, 활물질이 도포된 긴 시트형의 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형 구조와, 소정 크기의 다수의 양극과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형 구조로 분류된다.Meanwhile, an electrode assembly is embedded in a battery case as a power generating device capable of charging and discharging, which has a stacked structure of a positive electrode / separator / negative electrode. The electrode assembly includes a jelly- Type structure in which a plurality of positive electrodes and negative electrodes of a predetermined size are sequentially stacked with a separator interposed therebetween.
이들 중 젤리-롤형 전극조립체는 제조가 용이하고 중량당 에너지 밀도가 높은 장점을 가지고 있고, 특히 원통형전지 케이스에 수납이 용이한 바, 젤리-롤형 전극조립체가 널리 제작되고 있다.Among these, the jelly-roll type electrode assembly has advantages such as easy manufacture and high energy density per weight, and jelly-roll type electrode assembly is easily manufactured especially in a cylindrical battery case.
이러한 원통형 전지케이스는 일반적으로 먼저 니켈 도금 강판으로 구성되는 띠형 금속 전지 캔소재를 펀칭 가공하여 목적하는 원통형 전지케이스에 대응한 원판형 판재를 형성하고 이 판재는 딥드로잉 가공이 실시됨으로써 접시 모양 제1 중간컵체로 성형된다. 상기 중간컵체는 딥드로잉 공정에 의한 재드로잉 가공이 실시됨으로써에 나타내는 원통형 전지케이스에 근접한 제2 중간컵체로 성형되며 마지막으로 제2 중간 컵체는 DI(Drawing 와 Ironing), 즉 드로잉 가공됨으로써 원통상 전지케이스로 성형 가공된다.The cylindrical battery case is generally formed by first punching a strip-shaped metal battery can made of a nickel-plated steel sheet to form a disk-shaped plate corresponding to a desired cylindrical battery case, and the plate is subjected to deep- It is molded into a middle cup sieve. The intermediate cup body is formed into a second intermediate cup body near the cylindrical battery case by redrawing by a deep drawing process. Finally, the second intermediate cup body is DI (drawing and ironing) The case is molded.
이러한 기존 원통상 전지케이스의 소재는 저탄소강에 Ni을 도금한 강판으로 Ni층이 Fe층을 보호하는 보호층(Protective layer) 역할을 한다. 상기 개념은 도 1과 같다.The material of the existing cylindrical battery case is a steel sheet plated with Ni on low carbon steel, and the Ni layer serves as a protective layer for protecting the Fe layer. The concept is shown in Fig.
원통형 전지케이스 제조 공정 중 원통형 몸통의 외경 완성 공정이 드로잉 정이어서 전지케이스 표면이 드로잉 인장력에 의해 표면조도가 특정 수준 이상으로 공정 결과물이 제공되며, 이러한 원통형 전지케이스의 표면 광택도가 높지 않다. In the cylindrical battery case manufacturing process, the outer diameter preparation process of the cylindrical body is a drawing process, so that the surface of the battery case is provided with process results with a surface roughness higher than a specific level by drawing tension, and the surface gloss of such a cylindrical battery case is not high.
또한, 내부식성 테스트에서도 원통형 전지케이스의 몸통 외경에 다양한 스팟(Spot) 부식이 발생하는 것을 확인할 수 있었다. 상기 실험의 결과물은 도 2와 같다.In addition, it was confirmed that various corrosion of the spot occurred in the outer diameter of the body of the cylindrical battery case in the corrosion resistance test. The result of the above experiment is shown in Fig.
이와 같이, 원통형 이차전지의 표면조도를 저감시켜 내부식성 강화를 통하여 부식 특성을 향상시키려는 시도는 없었다.Thus, there has been no attempt to reduce the surface roughness of the cylindrical rechargeable battery to improve corrosion resistance through corrosion resistance enhancement.
한편, 일본 공개특허공보 제2002-015712호는 아이어닝 다이스를 다단 배치했으니까 말투 공정을 거쳐 측 둘레벽의 두께 t1가 바닥 벽의 두께 t0에 대해서 t1=αt0(α=0.2 ~0.7 )에 형성되고 상기 측 둘레벽의 내주면이 상기 아이어닝 공정 후의 조리개 공정을 거침으로써 평균 표면 거칠기가 0.2 μm~2.0 μm의 조면에 형성되어 있는 것을 특징으로 하는 전지 캔 구성이 개시 되어 있으나, 표면조도 저감을 통한 내부식성 강화 구성을 명시하고 있는 기술이 아니기에 차이가 있다.On the other hand, Japanese Laid-Open Patent Publication No. 2002-015712 discloses with respect to a thickness t 0 of the bottom wall thickness t 1 of the peripheral side wall via a step haeteuni how tone multi-stage arrangement for the ironing die t 1 = αt 0 (α = 0.2 ~ 0.7), and an inner peripheral surface of the side peripheral wall is formed on a rough surface having an average surface roughness of 0.2 mu m to 2.0 mu m by passing through a diaphragm process after the ironing process. However, There is a difference because it is not a technique that specifies corrosion resistance enhancement through reduction of illumination.
일본 공개특허공보 제2003-263974호에서는 띠형 금속 평판으로 구성되는 금속캔 소재를 펀칭 가공해 정육각형 판재를 형성하는 판재 펀칭 공정과 상기 판재를 성형해 횡단면 형상이 정육각형 제1 중간 컵체로 가공하는 제1 컵체 성형 공정과 상기 제 1 중간 컵체를 드로잉 가공으로 해 말투 가공을 연속적으로 한꺼번에 수행하는 DI가공함으로써, 횡단면 형상이 원형 원통형 금속캔을 성형하는 금속캔 성형 공정 구성을 개시하고 있어 일부 대응되나, 표면조도 저감을 통한 내부식성 강화 구성을 명시하고 있는 기술이 아니기에 차이가 있다.Japanese Patent Laid-Open Publication No. 2003-263974 discloses a method of manufacturing a sheet metal punching process for punching a metal can made of a strip-shaped metal plate to form a regular-sized plate material, a step of forming the plate material to form a first half cup shape having a cross- A metal can forming process step of forming a round cylindrical metal can in a transverse cross-section by performing a cup-body forming step and a DI process in which the first intermediate cup body is subjected to a drawing process to form a round cylindrical metal can at one time, There is a difference because it is not a technique that specifies corrosion resistance enhancement through reduction of illumination.
일본 등록특허공보 제4119612호에서는 발전 요소를 내부에 수납하고 각형 전지를 구성하는 횡단면 형상이 거의 직사각형 각형 전지 캔에 있어서 상기 거의 직사각형 단변측판부의 두께가 장변 측판부의 두께보다 크게 형성되어 있는 것을 특징으로 하는 각형 전지 캔이 개시되어 있으나, 표면조도 저감을 통한 내부식성 강화 구성을 명시하고 있는 기술이 아니기에 차이가 있다.Japanese Patent No. 4,119,612 discloses a rectangular rectangular battery can having a transversely sectioned shape in which a power generating element is housed and constitutes a prismatic battery, characterized in that the substantially rectangular short side plate portion has a thickness larger than the thickness of the long side plate portion However, there is a difference in that it is not a technique that specifies a corrosion resistance enhancement structure by reducing the surface roughness.
일본 공개특허공보 제2009-037980호에서는 상기 중간 컵체는 드로잉 겸 아이어닝 가공기에 의해 1단의 드로잉 가공과 3단의 아이어닝 가공을 연속적으로 한꺼번에 실시하는 개시되어 있으나, 표면조도 저감을 통한 내부식성 강화 구성을 명시하고 있는 기술이 아니기에 차이가 있다.Japanese Laid-Open Patent Publication No. 2009-037980 discloses that the above-mentioned intermediate cup body is subjected to one-stage drawing processing and three-stage ironing processing by a drawing and ironing machine at a time in a continuous manner. However, There is a difference because it is not a technique that specifies strengthening configuration.
이와 같이, 전지케이스의 부식 특성을 개선하기 위하여 제조 공정 중 아이어닝 공정을 복수의 횟수로 수행하여 전지케이스의 표면조도를 향상시킨 원통형 전지케이스 제조방법에 관한 것은 제시된 바가 없다.In order to improve the corrosion characteristics of the battery case, there is no description about a method for manufacturing a cylindrical battery case in which the surface roughness of the battery case is improved by performing the ironing process during the manufacturing process a plurality of times.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and the technical problems required from the past.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 상기와 같은 종래의 문제점을 해결하기 위한 본 발명의 주된 목적은 전기자동차용 전지의 상대적으로 높은 부식에 취약한 환경을 해결하고 내부식성을 향상시킨 원통형 전지케이스 제조방법을 제공하는 것에 목적이 있다.The inventors of the present application have conducted intensive research and various experiments. Therefore, it is a primary object of the present invention to solve the above-mentioned problems of the prior art, and it is an object of the present invention to solve an environment susceptible to relatively high corrosion of an electric vehicle battery, And an improved method of manufacturing a cylindrical battery case.
또한, 전지케이스의 내부식성을 향상시키기 위하여 표면조도를 조절하기 위한 원통형 전지케이스 제조방법에 추가적인 목적이 있다. It is a further object of the present invention to provide a cylindrical battery case manufacturing method for adjusting surface roughness in order to improve the corrosion resistance of the battery case.
또한, 딥드로잉 공정을 개선하여 전지케이스의 내부식성을 향상시키는 제조방법을 제공하는 것에 추가적인 목적이 있다.It is a further object to provide a manufacturing method for improving the corrosion resistance of a battery case by improving the deep drawing process.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 이러한 목적을 달성하기 위한 본 발명은, 상기 전지케이스의 몸체 외경형성을 위한 딥드로잉(Deep drawing) 가공시 아이어닝(Ironing)가공을 복수회 수행하는 것을 특징으로 하는 원통형 전지케이스 제조방법을 제공한다. In order to solve the above-mentioned problems, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a battery case in which deep drawing is performed for forming an outer diameter of the battery case, Is performed a plurality of times.
또한, 전지케이스의 몸체를 형성하기 위한 딥드로잉 가공시 1차 아이어닝가공을 실시하고, 전지케이스의 단차를 형성하기 위한 딥드로잉 가공시 2차 아이어닝가공을 실시할 수 있다.Further, primary ironing may be performed during deep drawing to form the body of the battery case, and secondary ironing may be performed during deep drawing to form the stepped portion of the battery case.
또한, 상기 아이어닝 가공후의 전지케이스의 표면조도(Ra)는 0.1μm이하일 수 있다.In addition, the surface roughness (Ra) of the battery case after the ironing process may be 0.1 m or less.
또한, 복수의 횟수로 수행되는 상기 아이어닝 가공 후 상기 전지케이스의 두께 감소는 일정할 수 있다.Also, the thickness reduction of the battery case after the ironing process performed in a plurality of times may be constant.
상기 목적을 달성하기 위한 본 발명은 강판의 적어도 일면에 니켈도금층을 형성하는 제1단계; 상기 제1단계의 강판을 환원분위기하에서 열처리하는 제2단계; 상기 제2단계의 강판을 브랭킹(Blanking) 및 드로잉 가공하는 제3단계; 상기 제3단계의 강판을 전지케이스 몸체 형성을 위한 1차 딥드로잉 및 1차 아이어닝 가공하는 제4단계; 상기 제4단계의 상기 몸체 형성을 위한 2차 딥드로잉 가공하는 제5단계; 상기 제5단계의 상기 몸체에 단차형성을 위한 3차 딥드로잉 및 2차 아이어닝 가공하는 제6단계; 및 상기 제6단계의 상기 몸체에 테이퍼 및 플랜지를 형성하는 제7단계;를 포함하는 것을 특징으로 하는 원통형 전지케이스 제조방법이 제공될 수 있다.According to an aspect of the present invention, there is provided a method of manufacturing a steel plate, comprising: forming a nickel plating layer on at least one surface of a steel sheet; A second step of subjecting the steel sheet of the first step to a heat treatment in a reducing atmosphere; A third step of blanking and drawing the steel sheet of the second step; A fourth step of performing first deep drawing and first ironing for forming the steel sheet in the third step for forming the battery case body; A fifth step of performing second deep-drawing processing for forming the body in the fourth step; A sixth step of performing a third deep drawing and a second ironing for forming a step on the body in the fifth step; And a seventh step of forming a taper and a flange on the body of the sixth step.
또한, 상기 1차 아이어닝 가공후의 전지케이스의 표면조도(Ra)는 0.2μm이하일 수 있다.Further, the surface roughness (Ra) of the battery case after the primary ironing process may be 0.2 탆 or less.
또한, 상기 2차 아이어닝 가공후의 전지케이스의 표면조도(Ra)는 0.1μm이하일 수 있다.In addition, the surface roughness (Ra) of the battery case after the secondary ironing process may be 0.1 탆 or less.
또한, 상기 원통형 전지케이스 제조방법으로 제조된 전지케이스를 포함하는 이차전지일 수 있다.Also, the battery case may be a secondary battery including a battery case manufactured by the cylindrical battery case manufacturing method.
또한, 상기 이차전지를 포함하는 것을 특징으로 하는 디바이스일 수 있다.In addition, it may be a device including the secondary battery.
또한, 상기 디바이스는 전자기기, 전기 자동차, 하이브리드 자동차 및 전력 저장장치로 이루어진 군에서 선택되는 것을 특징으로 하는 디바이스일 수 있다.Also, the device may be a device selected from the group consisting of an electronic device, an electric vehicle, a hybrid vehicle, and a power storage device.
도 1은 종래 원통형 이차전지의 니켈 도금층 개념도 이다.1 is a conceptual view of a nickel plating layer of a conventional cylindrical secondary battery.
도 2는 종래 원통형 이차전지의 내부식성 실험 결과이다. 2 is a graph showing corrosion resistance test results of a conventional cylindrical secondary battery.
도 3은 실시예 1 및 비교예 1의 원통형 전지케이스의 외관 사진이다 3 is a photograph of the appearance of the cylindrical battery case of Example 1 and Comparative Example 1
도 4는 실시예 1 및 비교예 1의 원통형 전지케이스의 부식테스트 결과 사진이다.4 is a photograph of corrosion test results of the cylindrical battery case of Example 1 and Comparative Example 1. Fig.
도 5는 실시예 1, 비교예 2 및 비교예 3의 원통형 전지케이스의 표면조도(Ra, Rz)결과를 나타낸 것이다.5 shows the results of surface roughness (R a , R z ) of the cylindrical battery case of Example 1, Comparative Example 2 and Comparative Example 3.
이하 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the detailed description of known functions and configurations incorporated herein will be omitted when it may unnecessarily obscure the subject matter of the present invention.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.The same reference numerals are used for portions having similar functions and functions throughout the drawings. Throughout the specification, when a part is connected to another part, it includes not only a case where it is directly connected but also a case where the other part is indirectly connected with another part in between. In addition, the inclusion of an element does not exclude other elements, but may include other elements, unless specifically stated otherwise.
본 발명을 도면에 따라 상세한 실시예와 같이 설명한다. The present invention will be described in detail with reference to the drawings.
도 1은 종래 원통형 이차전지의 니켈 도금층 개념도 이다. 1 is a conceptual view of a nickel plating layer of a conventional cylindrical secondary battery.
도 1에 나타난 바와 같이, 강철판의 표면에 니켈 도금층이 형성되어서 이루어지는 니켈 도금 강판을 원통형 이차전지케이스의 소재로 사용하고 있다. As shown in FIG. 1, a nickel-plated steel sheet formed by forming a nickel plating layer on the surface of a steel sheet is used as a material for a cylindrical secondary battery case.
상기 니켈 도금 강판은 알칼리 건전지 또는 니켈 카드뮴 축전지와 같이 강알칼리성인 수산화칼륨이 전해액으로 이용되는 전지케이스의 주로 적용된다. 상기 니켈 도금층은 알칼리성 물질에 대한 부식에 강하고, 전지를 외부 단자에 접속할 때 안정된 접촉 저항을 가지며, 전지 조립시 스폿 용접성이 우수한 장점이 있다.The nickel-plated steel sheet is mainly applied to a battery case in which strong alkaline potassium hydroxide such as an alkaline dry battery or a nickel-cadmium storage battery is used as an electrolytic solution. The nickel plated layer is resistant to corrosion against an alkaline substance, has a stable contact resistance when the battery is connected to an external terminal, and has an advantage of excellent spot weldability when assembling a battery.
도 2는 종래 원통형 이차전지의 내부식성 실험 결과이다. 2 is a graph showing corrosion resistance test results of a conventional cylindrical secondary battery.
원통형 이차전지 전지케이스의 내부식성 테스트는 고온고습 조건의 보관 테스트로서 60℃, 95%RH에서 7일간 유지한 뒤 표면의 스팟 부식을 확인하였다. The corrosion resistance test of the cylindrical rechargeable battery cell case was carried out at 60 ° C and 95% RH for 7 days as a storage test under high temperature and high humidity conditions, and spot corrosion of the surface was confirmed.
상기 테스트 결과 표면에 스팟 부식을 확인할 수 있었고 전체 샘플 수량기준 50 내지 100%의 샘플 수에서 하나 이상의 스팟 부식을 확인할 수 있었다.Spot corrosion was confirmed on the surface of the test result, and at least one spot corrosion was confirmed at a sample number of 50 to 100% based on the total sample quantity.
종래 원통형 이차전지의 전지케이스 제조공정은 니켈 도금된 모재를 브랭킹 및 드로잉하는 단계(#1), 상기 모재를 아이들(Idle) 하는 단계를 가질 수 있다. 상기 모재를 드로잉하여 모재를 형성하는 드로잉하는 단계(드로잉 공정 4회 진행)(#4~#7), 상기 모재를 드로잉 및 바디 아이어닝하는 단계(#8), 상기 모재를 드로잉하는 단계(#9), 상기 모재를 단차 드로잉하는 단계(#10), 상기 모재에 테이퍼 및 프렌지를 형성하는 단계(#11), 상기 모재에 벤트를 형성하는 단계(#12) 및 상기 모재를 트리밍하는 단계(#13)하는 단계로 구성될 수 있다. The battery case manufacturing process of the conventional cylindrical secondary battery may have a step (# 1) of bricking and drawing nickel-plated base metal, and idling the base metal. Drawing and body ironing (# 8) of drawing the base material (# 4 to # 7), drawing the base material (# 4 to # 7), drawing the base material to form a base material A step (# 10) of forming a taper and a flange on the base material, a step (# 12) of forming a vent on the base material, and a step of trimming the base material # 13).
EV용 이차전지의 No Tubing 모델은 상대적으로 부식에 취약한 환경에 노출될 수 있다. 특히, 테슬라 등의 이차전지를 이용하는 전기 자동차 제조사의 경우에는 고온 고습보관 후 (60℃ 95%R.H. 7days) 한도내의 부식조건을 만족하는 이차전지만 공급을 허용하고 있다. 따라서 내부식성 향상을 위하여 전지케이스의 표면을 고광택으로 구현할 수 있는 방법인 아이어닝 공정을 반영하였다.The No Tubing model of the EV secondary battery can be exposed to a relatively corrosive environment. Particularly, in the case of an electric vehicle manufacturer using a secondary battery such as Tesla, only a secondary battery satisfying corrosion conditions within a limit of 60 ° C (95% RH) and 7days after high temperature and high humidity storage is allowed. Therefore, the ironing process, which is a method of realizing a high-gloss surface of the battery case for improving the corrosion resistance, was reflected.
원통형 이차전지 전지케이스의 표면 거칠기는 금속내부에 전위차를 발생시켜 국부부식을 일으키기 쉬운 환경을 조성하기 때문에 표면조도(Ra) 값을 줄임으로써 표면적을 감소시켜 내부식성을 향상할 수 있다. The surface roughness of the cylindrical secondary battery cell case generates a potential difference inside the metal, thereby creating an environment in which local corrosion is liable to occur. Therefore, by reducing the surface roughness (Ra) value, the surface area can be reduced to improve the corrosion resistance.
원통형 이차전지 전지케이스의 딥드로잉시 아이어닝 공정을 2회로 나누고 최종 아이어닝 공정을 드로잉 이후 공정으로 변경하여 광택을 향상시키도록 설계하였다. In the deep drawing of the cylindrical secondary battery cell case, the ironing process is divided into two processes, and the final ironing process is changed to the process after drawing to improve the gloss.
드로잉공정은 측면부의 인장력으로 인해 조도가 거칠어지고 광택이 사라지는 현상이 있으며 아이어닝공정은 소재를 밀어 올리며 두께 감소 및 균일화를 유지할 수 있어 다이와의 압축 마찰로 인해 조도가 낮아지고 광택이 생길 수 있다. 즉, 아이어닝 양이 많을수록 표면조도가 낮아질 수 있다. Drawing process has roughness and luster disappearing due to tensile force of side part, and ironing process can push down material and maintain thickness reduction and uniformity, which can reduce the roughness and gloss by compression friction of die. That is, the larger the ironing amount, the lower the surface roughness.
상기 전지케이스의 몸체 외경형성을 위한 딥드로잉(Deep drawing) 가공시 아이어닝(Ironing)가공을 복수의 횟수로 수행하는 것을 특징으로 하는 원통형 전지케이스 제조방법을 제공한다. And ironing is performed a plurality of times during deep drawing to form the outer diameter of the battery case.
또한, 전지케이스의 몸체를 형성하기 위한 딥드로잉 가공시 1차 아이어닝가공을 실시하고, 전지케이스의 단차를 형성하기 위한 딥드로잉 가공시 2차 아이어닝가공을 실시할 수 있다.Further, primary ironing may be performed during deep drawing to form the body of the battery case, and secondary ironing may be performed during deep drawing to form the stepped portion of the battery case.
또한, 상기 아이어닝 가공후의 전지케이스의 표면조도(Ra)는 0.1μm이하일 수 있다.In addition, the surface roughness (Ra) of the battery case after the ironing process may be 0.1 m or less.
또한, 복수의 횟수로 수행되는 상기 아이어닝 가공 후 상기 전지케이스의 두께 감소는 일정할 수 있다.Also, the thickness reduction of the battery case after the ironing process performed in a plurality of times may be constant.
딥드로잉 단계에 상기 전지케이스의 몸체에 진행되는 아이어닝 가공이 1회 0.08mm의 두께 감소가 있다면 상기 아이어닝 가공이 2회 진행시에는 1회에 0.04mm씩 진행되어 최종적으로 0.08mm의 두께 감소가 이루어진다.If there is a 0.08 mm thickness reduction in the ironing process performed on the body of the battery case in the deep drawing step, the ironing process proceeds 0.04 mm at a time in the case of two times of progressing, .
즉, 아이어닝 가공을 1회 수행하는 경우와 복수회 수행하는 경우, 전지케이스의 두께 감소 값이 동일하게 유지될 수 있다.That is, when the ironing process is performed once and the ironing process is performed a plurality of times, the thickness reduction value of the battery case can be kept the same.
상기 목적을 달성하기 위한 본 발명은 강판의 적어도 일면에 니켈도금층을 형성하는 제1단계; 상기 제1단계의 강판을 환원분위기에서 열처리하는 제2단계; 상기 제2단계의 강판을 브랭킹(Blanking) 및 드로잉 가공하는 제3단계; 상기 제3단계의 강판을 전지케이스 몸체 형성을 위한 1차 딥드로잉 및 1차 아이어닝 가공하는 제4단계; 상기 제4단계의 강판을 전지케이스 몸체 형성을 위한 2차 딥드로잉 가공하는 제5단계; 상기 제5단계의 상기 몸체에 단차형성을 위한 3차 딥드로잉 및 2차 아이어닝 가공하는 제6단계; 및 상기 제6단계의 상기 몸체에 테이퍼 및 플랜지를 형성하는 제7단계;를 포함하는 것을 특징으로 하는 원통형 전지케이스 제조방법이 제공될 수 있다.According to an aspect of the present invention, there is provided a method of manufacturing a steel plate, comprising: forming a nickel plating layer on at least one surface of a steel sheet; A second step of heat treating the steel sheet in the first step in a reducing atmosphere; A third step of blanking and drawing the steel sheet of the second step; A fourth step of performing first deep drawing and first ironing for forming the steel sheet in the third step for forming the battery case body; A fifth step of subjecting the steel sheet of the fourth step to a second deep-drawing process for forming a battery case body; A sixth step of performing a third deep drawing and a second ironing for forming a step on the body in the fifth step; And a seventh step of forming a taper and a flange on the body of the sixth step.
상기 제7단계의 상기 몸체에 벤트를 성형하는 단계를 추가로 포함할 수 있다.And molding the vent in the body of the seventh step.
상기 제7단계의 상기 몸체에 트리밍(Trimming)가공하는 단계를 추가로 포함할 수 있다.And trimming the body in the seventh step.
또한, 상기 1차 아이어닝 가공후의 전지케이스의 표면조도(Ra)는 0.2μm이하일 수 있다.Further, the surface roughness (Ra) of the battery case after the primary ironing process may be 0.2 탆 or less.
또한, 상기 2차 아이어닝 가공후의 전지케이스의 표면조도(Ra)는 0.1μm이하일 수 있다.In addition, the surface roughness (Ra) of the battery case after the secondary ironing process may be 0.1 탆 or less.
또한, 상기 원통형 전지케이스 제조방법으로 제조된 전지케이스를 포함하는 이차전지일 수 있다.Also, the battery case may be a secondary battery including a battery case manufactured by the cylindrical battery case manufacturing method.
또한, 상기 이차전지를 포함하는 것을 특징으로 하는 디바이스일 수 있다.In addition, it may be a device including the secondary battery.
또한, 상기 디바이스는 전자기기, 전기 자동차, 하이브리드 자동차 및 전력 저장장치로 이루어진 군에서 선택되는 것을 특징으로 하는 디바이스일 수 있다.Also, the device may be a device selected from the group consisting of an electronic device, an electric vehicle, a hybrid vehicle, and a power storage device.
이하에서는, 본 발명에 따른 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to embodiments thereof, but it should be understood that the scope of the present invention is not limited thereto.
<실시예 1>&Lt; Example 1 >
본 발명에 따른 원통형 이차전지를 제조하기 위하여, 니켈 도금된 모재를 브랭킹 및 드로잉하는 단계(#1), 상기 모재를 아이들(Idle) 하는 단계를 가질 수 있다. 상기 모재를 드로잉하여 모재를 형성하는 드로잉하는 단계(드로잉 공정 4회 진행)(#4~#7), 상기 모재를 드로잉 및 바디 아이어닝하는 단계(#8), 상기 모재를 드로잉하는 단계(#9), 상기 모재를 단차 드로잉 및 바디 아이어닝하는 단계(#10), 상기 모재에 테이퍼 및 프렌지를 형성하는 단계(#11), 상기 모재에 벤트를 형성하는 단계(#12) 및 상기 모재를 트리밍하는 단계(#13)를 통해 원통형 전지케이스를 제조하였다.In order to manufacture the cylindrical rechargeable battery according to the present invention, step (# 1) of bricking and drawing the nickel-plated base metal and idling the base metal may be performed. Drawing and body ironing (# 8) of drawing the base material (# 4 to # 7), drawing the base material (# 4 to # 7), drawing the base material to form a base material A step (# 10) of forming a taper and a flange on the base material, a step (# 12) of forming a vent on the base material, and a step (# The cylindrical battery case was manufactured through trimming (# 13).
구체적으로, 상기 단계(#8)에서 아이어닝 과정은 모재의 두께를 0.04 mm 줄이는 과정이고, 상기 단계(#10)에서 아이어닝 과정은 모재의 두께를 0.04 mm 줄이는 과정으로 진행된다.More specifically, in the step # 8, the ironing process is a process of reducing the thickness of the base material by 0.04 mm. In the step # 10, the ironing process is performed to reduce the base material thickness by 0.04 mm.
<비교예 1>&Lt; Comparative Example 1 &
상기 실시예 1에서 상기 단계(#8)의 아이어닝 과정은 모재의 두께를 0.08 mm 줄이는 과정으로 이루어지고, 상기 단계(#10)에서 바디 아이어닝 단계를 생략한 것을 제외하고 상기 실시예 1과 동일한 과정에 의해 원통형 전지케이스를 제조하였다.In the first embodiment, the ironing process of the step (# 8) is performed by reducing the thickness of the base material by 0.08 mm, and in the step # 10, the body ironing step is omitted. A cylindrical battery case was manufactured by the same procedure.
이와 관련하여 도 3을 참조하면, 이와 같은 과정을 통해 제조된 원통형 전지케이스의 외관을 관찰한 결과, 실시예 1의 원통형 전지케이스는 비교예 1의 원통형 전지케이스에 비하여 표면의 광택이 현저히 증가하는 것을 알 수 있다.Referring to FIG. 3, the cylindrical battery case of Example 1 has a significantly increased surface gloss compared to the cylindrical battery case of Comparative Example 1, .
<실험예 1><Experimental Example 1>
상기 실시예 1 및 비교예 2에서 제조된 원통형 전지케이스를 이용하여 내부식성 테스트를 진행하였다.The corrosion resistance test was carried out using the cylindrical battery case manufactured in Example 1 and Comparative Example 2.
구체적으로, 내부식성 테스트는 고온고습 조건에서 보관을 진행하는 테스트로서, 60℃, 95%RH에서 7일간 보관한 뒤, 원통형 이차전지 전지케이스의 표면에 부식이 일어났는지 여부를 확인하기 위하여 외관을 촬영하였다. 상기 내부식성 테스트 결과는 도 4의 사진과 같다.Specifically, the corrosion resistance test was carried out at 60 ° C and 95% RH for 7 days after storage under high temperature and high humidity conditions. Then, to check whether corrosion occurred on the surface of the cylindrical secondary battery cell case, . The results of the corrosion resistance test are shown in the photograph of FIG.
도 4를 참조하면, 실시예 1의 원통형 전지케이스는 부식이 발견되지 않지만, 비교예 1의 원통형 전지케이스는 표면에 스팟 부식이 나타난 것을 확인할 수 있다.Referring to FIG. 4, no corrosion was found in the cylindrical battery case of Example 1, but it was confirmed that spot corrosion was observed on the surface of the cylindrical battery case of Comparative Example 1.
<비교예 2>&Lt; Comparative Example 2 &
상기 비교예 1에서 상기 단계(#8)의 아이어닝 과정은 모재의 두께를 0.15 mm 줄이는 과정으로 이루어진 점을 제외하고, 상기 비교에 1과 동일한 과정에 의해 원통형 전지케이스를 제조하였다.In the comparative example 1, the cylindrical battery case was manufactured by the same process as in step 1 except that the ironing process of step (# 8) was performed by reducing the thickness of the base material by 0.15 mm.
<비교예 3>&Lt; Comparative Example 3 &
상기 비교예 1에서 상기 단계(#8)의 아이어닝 과정은 모재의 두께를 0.05 mm 줄이는 과정으로 이루어진 점을 제외하고, 상기 비교에 1과 동일한 과정에 의해 원통형 전지케이스를 제조하였다.In the comparative example 1, the cylindrical battery case was fabricated by the same process as in step 1 except that the ironing process of step (# 8) was performed by reducing the thickness of the base material by 0.05 mm.
<실험예 2><Experimental Example 2>
상기 실시예 1, 비교예 2 및 비교예 3에서 제조된 원통형 전지케이스의 표면조도를 측정하기 위하여 Mitutoyo사의 표면조도 측정기인 SJ-411을 이용하였다. 표면조도로서, Ra 및 Rz를 측정하였고 상기 원통형 전지케이스의 중앙부 4mm 구간을 총고방향(세로 방향)으로 측정하였다. 표면조도 측정 규격은 ISO 4287:1997을 기준으로 하였다.SJ-411, a surface roughness meter of Mitutoyo Co., Ltd., was used to measure the surface roughness of the cylindrical battery case manufactured in Example 1, Comparative Example 2 and Comparative Example 3. [ As the surface roughness, R a and R z were measured, and a 4 mm section of the central portion of the cylindrical battery case was measured in the total height direction (longitudinal direction). The surface roughness measurement standard was based on ISO 4287: 1997.
상기 표면조도 측정 결과는 도 5의 표와 같다.The results of the surface roughness measurement are shown in the table of FIG.
도 5를 참조하면, 본 발명의 실시예 1의 원통형 전지케이스의 경우, 표면조도(Ra)값은 최소 0.022 내지 최대 0.040값을 나타냈으며 평균값은 0.03이였으며, 비교예 2의 원통형 전지케이스의 경우 표면조도(Ra)값은 최소 0.099 내지 최대 0.142값을 나타냈고, 평균값은 0.115이였다. 비교예 3의 원통형 전지케이스의 표면조도(Ra)값은 최소 0.179 내지 최대 0.309값을 나타냈고, 평균값은 0.236이였다.5, in the case of the cylindrical battery case of Example 1 of the present invention, the surface roughness (R a ) value ranged from a minimum of 0.022 to a maximum of 0.040, and an average value thereof was 0.03. In the cylindrical battery case of Comparative Example 2, The surface roughness (R a ) value ranged from 0.099 to 0.142 at the minimum, and the average value was 0.115. The surface roughness (R a ) value of the cylindrical battery case of Comparative Example 3 showed a minimum value of 0.179 to a maximum of 0.309, and an average value thereof was 0.236.
실시예 1의 원통형 전지케이스의 경우, 표면조도(Rz)값은 최소 0.152 내지 최대 0.427값을 나타냈으며 평균값은 0.202이였으며, 비교예 2의 원통형 전지케이스의 표면조도(Rz)값은 최소 0.542 내지 최대 0.944값을 나타냈고, 평균값은 0.713이였다. 비교예 3의 원통형 전지케이스의 표면조도 (Rz)값은 최소 0.924 내지 최대 2.436값을 나타냈고, 평균값은 1.497이였다. In the case of the cylindrical battery case of Example 1, the surface roughness (R z ) value ranged from a minimum of 0.152 to a maximum of 0.427, an average value was 0.202, and a surface roughness (R z ) value of the cylindrical battery case of Comparative Example 2 was the minimum 0.542 to a maximum value of 0.944 and an average value of 0.713. The surface roughness (R z ) value of the cylindrical battery case of Comparative Example 3 exhibited a minimum value of 0.924 to a maximum value of 2.436, and an average value thereof was 1.497.
따라서, 본 발명의 실시예 1의 원통형 전지케이스는 표면조도 개선효과를 확인할 수 있으며, 표면조도 개선에 따른 부식저항성도 충분히 예상할 수 있다. Therefore, the cylindrical battery case of Example 1 of the present invention can confirm the surface roughness improving effect, and the corrosion resistance due to the surface roughness improvement can be sufficiently expected.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
이상에서 설명한 바와 같이, 본 발명에 따른 표면조도를 개선한 원통형 전지케이스 제조방법에 의하면, 원통형 전지케이스의 제조 시 원통형 전지의 몸통 외경 완성 공정을 두께 감소 공정을 변경함으로써 표면조도을 낮출 수 있는 효과가 있다. As described above, according to the method of manufacturing the cylindrical battery case with improved surface roughness according to the present invention, the manufacturing process of the cylindrical battery case has the effect of lowering the surface roughness by changing the thickness reduction process have.
또한, 본 발명은 표면조도 별 부식 특성이 개선되는 효과가 있다. Further, the present invention has the effect of improving the corrosion characteristics of the surface roughness.
또한, 원통형 전지케이스의 벽의 내면이 적당한 조면에 형성되어 있으므로, 내부에 수용되는 전극 합제나 활물질과 측 둘레벽의 내면과의 접촉 면적이 커져 전지 내부 저항을 현격히 감소시킬 수 있는 효과가 있다. In addition, since the inner surface of the cylindrical battery case wall is formed on a suitable rough surface, the contact area between the electrode assembly and the inner surface of the side wall is increased, thereby significantly reducing the internal resistance of the battery.
또한, 측 둘레벽의 내면에 카본 등의 도전재를 도포했을 경우에 그 도전재의 지지력이 향상되고, 전지의 저장 후 특성을 장기간에 걸쳐 높게 유지할 수 있는 효과가 있다. Further, when a conductive material such as carbon is applied to the inner surface of the side wall, the supporting property of the conductive material is improved, and the post-storage characteristics of the battery can be maintained high for a long period of time.
또한, 측 둘레벽의 두께는 아이어닝 공정을 거침으로써 바닥벽의 두께보다 얇게 형성되어 있으므로, 양극 합제나 활물질의 충전량을 증대시킬 수 있고 충방전 특성 등의 전지 성능의 향상을 도모할 수 있다.Further, since the thickness of the side wall is formed thinner than the thickness of the bottom wall by the ironing process, the amount of the positive electrode mixture or the amount of the active material can be increased, and battery performance such as charge and discharge characteristics can be improved.

Claims (10)

  1. 전지케이스의 몸체 외경형성을 위한 딥드로잉(Deep drawing) 가공시 아이어닝(Ironing)가공을 복수 회 수행하는 것을 특징으로 하는 원통형 전지케이스 제조방법.Wherein ironing is performed a plurality of times during deep drawing for forming the outer diameter of the body of the battery case.
  2. 제1항에 있어서,The method according to claim 1,
    전지케이스의 몸체를 형성하기 위한 딥드로잉 가공시 1차 아이어닝가공을 실시하고,A primary ironing process is performed during deep drawing to form the body of the battery case,
    전지케이스의 단차를 형성하기 위한 딥드로잉 가공시 2차 아이어닝가공을 실시하는 것을 특징으로 하는 원통형 전지케이스 제조방법.And a secondary ironing process is carried out during a deep drawing process for forming a stepped portion of the battery case.
  3. 제1항에 있어서,The method according to claim 1,
    상기 아이어닝 가공후의 전지케이스의 표면조도(Ra)는 0.1μm이하인 것을 특징으로 하는 원통형 전지케이스 제조방법.Wherein the surface roughness (Ra) of the battery case after the ironing process is 0.1 占 퐉 or less.
  4. 제 1 항에 있어서, The method according to claim 1,
    복수 회 수행되는 상기 아이어닝 가공 후 상기 전지케이스의 두께 감소는 일정한 것을 특징으로 하는 원통형 전지케이스 제조방법.Wherein the thickness reduction of the battery case after the ironing process is performed a plurality of times is constant.
  5. 강판의 적어도 일면에 니켈도금층을 형성하는 제1단계;A first step of forming a nickel plating layer on at least one surface of the steel sheet;
    상기 제1단계의 강판을 환원분위기하에서 열처리하는 제2단계; A second step of subjecting the steel sheet of the first step to a heat treatment in a reducing atmosphere;
    상기 제2단계의 강판을 브랭킹(Blanking) 및 드로잉 가공하는 제3단계;A third step of blanking and drawing the steel sheet of the second step;
    상기 제3단계의 강판을 전지케이스 몸체 형성을 위한 1차 딥드로잉 및 1차 아이어닝 가공하는 제4단계;A fourth step of performing first deep drawing and first ironing for forming the steel sheet in the third step for forming the battery case body;
    상기 제4단계의 강판을 전지케이스 몸체 형성을 위한 2차 딥드로잉 가공하는 제5단계;A fifth step of subjecting the steel sheet of the fourth step to a second deep-drawing process for forming a battery case body;
    상기 제5단계의 상기 몸체에 단차형성을 위한 3차 딥드로잉 및 2차 아이어닝 가공하는 제6단계; 및A sixth step of performing a third deep drawing and a second ironing for forming a step on the body in the fifth step; And
    상기 제6단계의 상기 몸체에 테이퍼 및 플랜지를 형성하는 제7단계;A seventh step of forming a taper and a flange on the body of the sixth step;
    를 포함하는 것을 특징으로 하는 원통형 전지케이스 제조방법.The method of claim 1,
  6. 제5항에 있어서,6. The method of claim 5,
    상기 1차 아이어닝 가공후의 전지케이스의 표면조도(Ra)는 0.2μm이하인 것을 특징으로 하는 원통형 전지케이스 제조방법.Wherein the surface roughness (Ra) of the battery case after the primary ironing process is 0.2 占 퐉 or less.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 2차 아이어닝 가공후의 전지케이스의 표면조도(Ra)는 0.1μm이하인 것을 특징으로 하는 원통형 전지케이스 제조방법.Wherein the surface roughness (Ra) of the battery case after the secondary ironing process is 0.1 占 퐉 or less.
  8. 제 1 항 내지 제 7 항 중 어느 하나에 따른 원통형 전지케이스 제조방법으로 제조된 전지케이스를 포함하는 이차전지.A secondary battery comprising a battery case manufactured by the method for manufacturing a cylindrical battery case according to any one of claims 1 to 7.
  9. 제 8 항에 따른 이차전지를 포함하는 것을 특징으로 하는 디바이스.A device comprising a secondary cell according to claim 8.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 디바이스는 전자기기, 전기 자동차, 하이브리드 자동차 및 전력 저장장치로 이루어진 군에서 선택되는 것을 특징으로 하는 디바이스.Wherein the device is selected from the group consisting of an electronic device, an electric vehicle, a hybrid vehicle, and a power storage device.
PCT/KR2018/012565 2017-10-23 2018-10-23 Method for manufacturing cylindrical battery case having improved surface roughness WO2019083254A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202310732830.2A CN116742102A (en) 2017-10-23 2018-10-23 Method of manufacturing cylindrical battery case with reduced surface roughness
CN201880024824.9A CN110506344B (en) 2017-10-23 2018-10-23 Method of manufacturing cylindrical battery case with reduced surface roughness
JP2019556978A JP7444357B2 (en) 2017-10-23 2018-10-23 Method for manufacturing a cylindrical battery case with improved surface roughness
EP18870614.7A EP3648192A4 (en) 2017-10-23 2018-10-23 Method for manufacturing cylindrical battery case having improved surface roughness
US16/606,613 US20200335736A1 (en) 2017-10-23 2018-10-23 Method of Manufacturing Cylindrical Battery Case Having Reduced Surface Roughness

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0137092 2017-10-23
KR20170137092 2017-10-23
KR1020180126665A KR102252386B1 (en) 2017-10-23 2018-10-23 Method of Manufacturing Cylindrical Battery Case with Improved Surface Roughness
KR10-2018-0126665 2018-10-23

Publications (1)

Publication Number Publication Date
WO2019083254A1 true WO2019083254A1 (en) 2019-05-02

Family

ID=66246632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012565 WO2019083254A1 (en) 2017-10-23 2018-10-23 Method for manufacturing cylindrical battery case having improved surface roughness

Country Status (1)

Country Link
WO (1) WO2019083254A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3105785B2 (en) * 1996-05-20 2000-11-06 東洋鋼鈑株式会社 Side wall thinned metal can
JP2002015712A (en) 2000-04-28 2002-01-18 Matsushita Electric Ind Co Ltd Battery can and its manufacturing method
JP2003263974A (en) 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd Method for making cylindrical metal can
JP4119612B2 (en) 1999-05-07 2008-07-16 松下電器産業株式会社 Square battery can and manufacturing method thereof
JP2008311198A (en) * 2007-06-18 2008-12-25 Panasonic Corp Battery can and battery provided with the same
JP2009037980A (en) 2007-08-03 2009-02-19 Panasonic Corp Blank for battery can and metal can and manufacturing method for battery can and metal can using the same
KR20100097262A (en) * 2009-02-26 2010-09-03 이성영 Manufacturing method of case with bottom
KR101621253B1 (en) * 2015-10-21 2016-05-16 공병인 A secondary battery case manufacturing method
KR101643091B1 (en) * 2014-03-31 2016-07-26 가부시키가이샤 고베 세이코쇼 Method of forming a prismatic battery case
KR20170137092A (en) 2015-03-13 2017-12-12 노보루토 게엠베하 A stimulating device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3105785B2 (en) * 1996-05-20 2000-11-06 東洋鋼鈑株式会社 Side wall thinned metal can
JP4119612B2 (en) 1999-05-07 2008-07-16 松下電器産業株式会社 Square battery can and manufacturing method thereof
JP2002015712A (en) 2000-04-28 2002-01-18 Matsushita Electric Ind Co Ltd Battery can and its manufacturing method
JP2003263974A (en) 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd Method for making cylindrical metal can
JP2008311198A (en) * 2007-06-18 2008-12-25 Panasonic Corp Battery can and battery provided with the same
JP2009037980A (en) 2007-08-03 2009-02-19 Panasonic Corp Blank for battery can and metal can and manufacturing method for battery can and metal can using the same
KR20100097262A (en) * 2009-02-26 2010-09-03 이성영 Manufacturing method of case with bottom
KR101643091B1 (en) * 2014-03-31 2016-07-26 가부시키가이샤 고베 세이코쇼 Method of forming a prismatic battery case
KR20170137092A (en) 2015-03-13 2017-12-12 노보루토 게엠베하 A stimulating device
KR101621253B1 (en) * 2015-10-21 2016-05-16 공병인 A secondary battery case manufacturing method

Similar Documents

Publication Publication Date Title
WO2013095057A1 (en) Jelly roll-type electrode assembly with active material pattern-coated thereon, and secondary battery having same
WO2013027935A1 (en) Battery module
WO2019074193A1 (en) Cylindrical secondary battery module and method for producing cylindrical secondary battery module
WO2019074198A1 (en) Secondary battery
WO2013100643A1 (en) Electrode assembly and secondary battery using same
WO2013002607A2 (en) Electrode terminal for secondary battery and lithium secondary battery comprising same
WO2021033943A1 (en) Rechargeable battery
WO2020175773A1 (en) Venting device
WO2021137426A1 (en) Electrode assembly for evaluating electrode performance and electrode performance evaluation method
WO2015072753A1 (en) Jelly-roll type electrode assembly and secondary battery having same
WO2018097455A1 (en) Electrode for secondary battery including electrode protection layer
WO2021118020A1 (en) Secondary battery and device including same
WO2014003361A1 (en) Easily assembled all-in-one secondary battery module
WO2010110565A2 (en) Outer casing member for preventing electricity leakage, and battery pack for a vehicle comprising same
WO2021038545A1 (en) Pouch-type battery case and pouch-type secondary battery
WO2021054722A1 (en) Pouch-type battery case, manufacturing device for manufacturing same, and pouch-type secondary battery
WO2020111469A1 (en) Secondary battery and device comprising same
WO2011046261A1 (en) Cap assembly for preventing gasket sag, and cylindrical secondary battery having the same
WO2016056776A1 (en) Battery cell including battery case formed in shape corresponding to electrode assembly having step structure
WO2022071759A1 (en) Secondary battery and device including same
WO2020171376A1 (en) Unit cell and manufacturing method therefor
KR20190045082A (en) Method of Manufacturing Cylindrical Battery Case with Improved Surface Roughness
WO2018048095A1 (en) Secondary battery
WO2019083254A1 (en) Method for manufacturing cylindrical battery case having improved surface roughness
WO2014003357A1 (en) Secondary battery module for easily gathering and discharging gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556978

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018870614

Country of ref document: EP

Effective date: 20200129

NENP Non-entry into the national phase

Ref country code: DE