WO2019083156A1 - Lithium metal anode structure manufacturing method and lithium metal anode structure - Google Patents

Lithium metal anode structure manufacturing method and lithium metal anode structure

Info

Publication number
WO2019083156A1
WO2019083156A1 PCT/KR2018/010431 KR2018010431W WO2019083156A1 WO 2019083156 A1 WO2019083156 A1 WO 2019083156A1 KR 2018010431 W KR2018010431 W KR 2018010431W WO 2019083156 A1 WO2019083156 A1 WO 2019083156A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium metal
current collector
tab
lithium
cathode structure
Prior art date
Application number
PCT/KR2018/010431
Other languages
French (fr)
Korean (ko)
Inventor
이상균
최백범
구자훈
김민욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180105740A external-priority patent/KR20190047593A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880024857.3A priority Critical patent/CN110945690B/en
Priority to EP18869520.9A priority patent/EP3598538B1/en
Priority to JP2019559099A priority patent/JP7045555B2/en
Priority to US16/604,930 priority patent/US11228029B2/en
Publication of WO2019083156A1 publication Critical patent/WO2019083156A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of manufacturing a lithium metal cathode structure and a lithium metal cathode structure.
  • Electrochemical devices have attracted the most attention in this respect. Among them, the development of secondary electrons capable of charge and discharge has been the focus of attention. Recently, in developing such batteries, Research and development on the design of electrodes and batteries are underway.
  • the lyrium secondary battery developed in the early 1990s has advantages such as higher operating voltage and higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries using an aqueous electrolyte solution .
  • a lithium secondary battery includes a positive electrode, a negative electrode, and an electrode assembly including a separator interposed between the positive electrode and the negative electrode, and the nonaqueous electrolyte is injected into the battery case.
  • the lithium metal used as the cathode is a material which is most popular as a negative electrode material for a high energy density battery because the density (0.54 g / cm 3) is low and the standard reduction potential (-3.045 V SHE) is very low.
  • the recent development and rapid development of mobile communication and portable electronic devices have led to the development of high energy density secondary batteries As demands continue to increase, there is a continuing need for the use of lithium metal cathodes.
  • FIG. 1 is a plan view and a vertical sectional view of a negative electrode structure manufactured by adhering a lyrium foil on a conventional planar current collector.
  • 2 is a diagram schematically showing a method of manufacturing such a cathode structure.
  • a lyrium metal cathode sheet 10 in which a lithium metal 13 is rolled or deposited on a metal foil 11 of a current collector is punched out as a unit electrode for electrode production, The metal foil 11 is also cut at the same time to form the tabs 12.
  • the lithium metal 13 has a loose characteristic, so that the lithium metal 13 remains as a residue in the punching die, or a burr-like residual lithium metal 14 formed at the time of punching exists in the lithium metal cathode It is necessary to cut the current collector metal foil at the time of punching into the unit electrode, so that the tap forming portion where only the current collector metal foil is cut off, and the lithium metal and current collector metal foil The cutting strength between the unit electrode portions to be cut is different, so that the knife strength of the punching die must be taken into account, and the problem of the lithium metal of the loose characteristic being stuck in the male and female molds also occurs.
  • the inventors of the present application have conducted intensive research and various experiments and have found that in a method of manufacturing a lithium metal cathode structure, a photocurable material is applied and cured to a stepped portion of a coated portion of a lithium metal layer,
  • the above-described lithium metal cathode structure can be manufactured by forming an insulating layer made of a photo-curable material at the stepped portion of the coated portion of the tab and the lithium metal layer, Or an insulating tape, and it is possible to obtain a further effect of preventing a short circuit with the cathode material due to the exposure of the lyrium metal layer to the tab on the secondary battery.
  • the present invention has been accomplished based on this finding.
  • the manufacturing method according to the present invention may include a step of forming a tab by embossing a plain weave at the same time as the step (c), or after the step (c), (d) .
  • the inventors of the present application have conducted intensive studies to solve the above-mentioned problems that may occur when lithium metal is rolled or deposited on a current collector due to the loose nature of lithium metal, It has been confirmed that the conventional problems occurring in the punching step for forming the tab can be solved when the photocurable material is formed on the stepped portion of the non-coated portion of the current collector and the coated portion of the lithium metal layer before the punching or the insulating tape is attached.
  • the stepped portion has a portion having a width of 2 mm to 5 mm in the vertical direction up and down with reference to the boundary between the non-coated portion of the current collector and the coated portion having the lithium metal layer formed thereon it means. That is, it means a portion including a boundary line and having a width of 2 mm to 5 mm in the up-and-down direction, specifically, a portion having a width of 2 mm to 4 mm.
  • the photo-curable material to be coated and cured on the step portion is not limited, but may be an ultraviolet curable material that is crosslinked by ultraviolet rays, that is, it is cured by irradiating ultraviolet rays.
  • the ultraviolet curable material may be added in the form of an oligomer or a low molecular weight polymer having a viscosity of 10 cps to 100 cps which can be polymerized with the material, and then cured by irradiating ultraviolet rays.
  • the viscosity of the oligomer or low molecular weight polymer may be from 30 cps to 100 cps, and more specifically from 50 cps to 100 cps.
  • the viscosity refers to the viscosity measured according to a Brookfield viscometer, and visco tester 550 from HAAKE was used.
  • a general UV-curable material is a low-viscosity liquid state material composed of a monomer or an oligomer.
  • the material is injected into an oligomer having a viscosity within the above range or a polymer having a low molecular weight, It is easy to apply and there is almost no flow even after application, so that an optimum sealing property improving effect can be obtained.
  • the glycerol may be at least one selected from the group consisting of, for example, epoxy, urethane, acrylate, silicone, hydroxyl and acrylic acid derivatives.
  • the low molecular weight polymer may be an unsaturated polyester- Polyacrylate-based materials, and may be, for example, polyester acrylate, epoxy acrylate, urethane acrylate or polyurethane, but is not limited thereto.
  • TMPTA Trimethylolpropane Triacrylate
  • acrylate-based materials such as ETPTA (ethoxylated trimethylopropane triacrylate).
  • Such an ultraviolet curable material can be applied as a mixture of the oligomer or the low molecular weight polymer for crosslinking in the form of a crosslinking agent and a photoinitiator.
  • a crosslinking agent conventionally known crosslinking agents may be used, and examples thereof include, but are not limited to, acrylate compounds such as isocyanate compounds, epoxy compounds, aziridine compounds and TMSPA (3- (trimethoxysilyl) propylacrylate) Chelate-based compounds, and the like.
  • the photoinitiator may be any of the conventionally known photoinitiators, including, but not limited to, benzophenone, acetophenone, chloroacetophenone, diethoxyacetophenone (DEAP), benzoin, benzoin Benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethyl thioxanthone, Tetramethylurammonosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, betachloroanthraquinone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) 2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 ⁇ , 2,4,6-trimethylbenzoy
  • the ultraviolet curable material may be added to the site in a state where a predetermined thickener is added as a monomer.
  • Thickening agents that can increase the viscosity of such materials include carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, polyvinylacrylate, and the like. have.
  • the ultraviolet ray-curable material having such a viscosity can be cured by being irradiated with ultraviolet rays (UV) within a range of 3 to 20 seconds after being added to the stepped portion.
  • UV ultraviolet rays
  • an insulating tape may be attached as a more convenient method.
  • the insulating tape may be a polyethylene terephthalate or a polyimide material.
  • the coating thickness of the photocurable material or the thickness of the insulating tape may be 10 nm to 1 Lambda, specifically, 100 nm to 500 nm.
  • the punching process is inefficient due to, for example, the strength of the knife in the punching process for forming the electrode and the punching process for forming the tab, and if the punching process is too thin, It is not preferable.
  • the collector in which the lithium metal layer is formed may have a thickness of 3 to 200.
  • a current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include copper, a copper alloy, stainless steel, aluminum, nickel, titanium, sintered carbon, The surface of the stainless steel may be surface treated with carbon, nickel, titanium, silver or the like, and an aluminum-cadmium alloy may be used. Specifically, copper, copper alloy, stainless steel, aluminum, nickel, , Copper can be used.
  • the current collector may form fine irregularities on its surface to increase the adhesive force of the electrode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, and a foam : a nonwoven fabric are possible.
  • the lyrium metal layer may have a thickness of 20 to 150 liters, more specifically 20 to 100.
  • the thickness of the lithium metal layer is too small, the amount of lithium metal acting as an active material is smaller than that of the current collector, so that a sufficient capacity can not be exhibited. If the thickness is too large, output characteristics are deteriorated. It is difficult to prevent problems due to the characteristics, which is not preferable.
  • the lithium metal layer is formed on the current collector.
  • the lithium metal layer may be formed by depositing or rolling lithium metal. More specifically, And it can be formed by rolling.
  • the size of the rolling can be appropriately selected in consideration of the thickness of the lithium metal layer and the like.
  • the present invention also provides a lithium metal cathode structure thus produced, wherein the lithium metal cathode structure comprises:
  • An insulating layer made of a photo-curable material may be formed on the stepped portion of the map and the lithium metal layer, or an insulating tape may be attached.
  • the lithium metal cathode structure may be formed by forming an insulating layer on the stepped portion of the tab and the lithium metal layer or attaching an insulating tape to the unit electrode before the electrode is formed, It is possible to obtain a further effect of preventing a short circuit between the lithium metal layer and the anode material due to the exposure of the lithium metal layer on the tab without any additional process.
  • the lithium metal cathode structure according to the present invention minimizes the generation of burrs, thereby solving the safety problem that may be caused by burr-like residual lithium present in the cathode structure, It is possible to prevent a short circuit that may occur due to contact with the cathode material thereafter, local heat generation and explosion due to the short circuit, and it is very effective to improve the safety of the battery.
  • the tab may be integrally formed with the current collector. That is, the tab may be formed by punching an uncoated portion not coated with a lithium metal layer as described above.
  • the step where the insulating layer or the insulating tape is formed and the stepped portion of the lithium metal layer are the same as those described in the above manufacturing method and the insulating layer or the insulating tape is the same as that formed in the manufacturing method, In detail, it may be 2 mm to 4 mm, and the thickness may be 10 nm to 1, specifically, 100 nm to 500 nm in the vertical direction as a standard.
  • the thickness means the length in the stacking direction of the current collector and the lithium metal layer.
  • the width of the insulating layer or the insulating tape may be the same as the width of the unit or slightly extend in the outward direction of the unit electrode to be in a range of 1 mm to 5 mm .
  • the negative electrode structure may be used in a secondary battery, and a specific structure of the secondary battery will be described below.
  • the secondary battery is not particularly limited in its kind, but specific examples thereof include a lithium ion (Li-ion) secondary battery having advantages such as high energy density, discharge voltage, and output stability, a lithium polymer secondary battery Battery, or a lithium secondary battery such as a lithium ion polymer secondary battery.
  • a lithium ion (Li-ion) secondary battery having advantages such as high energy density, discharge voltage, and output stability
  • a lithium polymer secondary battery Battery or a lithium secondary battery such as a lithium ion polymer secondary battery.
  • the lyrium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.
  • the positive electrode is prepared, for example, by coating a positive electrode current collector with a mixture of a positive electrode active material, a conductive material and a binder, and drying the positive electrode current collector. If necessary, a laminating agent may be further added to the mixture.
  • the cathode current collector and / or the elongated current collector are generally made to have a thickness of 3 to 500 micrometers.
  • the positive electrode current collector and the elongate current collector are not particularly limited as long as they have high conductivity without causing a chemical change in the battery, and examples thereof include stainless steel, aluminum, nickel, titanium, A surface treated with carbon, nickel, titanium, or silver on the surface of stainless steel may be used.
  • the anode current collector and the elongate current collector may have various shapes such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, or the like by forming fine irregularities on the surface thereof to increase the adhesive force of the cathode active material. '
  • the cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals;
  • the conductive material is usually added in an amount of 1 to 30 wt% based on the total weight of the charge including the cathode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and for example, natural materials such as natural or artificial rhizome; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers of carbon fiber or metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. '
  • the binder is a component that assists in binding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of the composite material containing the cathode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, cellulose derivatives such as rosewood (CMC), starch, hydroxypropyl sal, rosewax, polyvinylpyridone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for suppressing the expansion of the anode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery.
  • the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
  • the cathode may be made of a lithium metal cathode formed with a lithium metal deposit on the current collector.
  • the separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the membrane Generally, it is 0.01 to 10 micrometers, and the thickness is generally 5 to 300 micrometers.
  • Such separators include, for example, olefin polymers such as polypropylene, which is chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a polymer solid electrolyte is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
  • the electrolytic solution may be a non-aqueous electrolytic solution containing a lithium salt, and is composed of a non-aqueous electrolytic solution and a lithium salt.
  • a non-aqueous electrolyte non-aqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but the present invention is not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, But are not limited to, gamma -butyrolactone, 1,2-dimeroxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, But are not limited to, cyclic ethers such as methylene chloride, methyl ethyl ketone, methyl ethyl ketone, cyclohexanone, cyclohexanone, cyclohexanone, cyclohexanone, cyclohexanone, Ethers, methyl pyrophonate, ethyl propionate and the like can be used as the organic solvent.
  • cyclic ethers such as methylene chloride, methyl eth
  • organic solid electrolyte examples include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.
  • a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, Lil, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li such as Li 4 Si0 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, Lil, LiC10 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 S0 3, LiCF 3 C0 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 S0 3 Li, CF 3 S0 3 Li, (CF 3 S0 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • LiCl, LiBr, Lil, LiC10 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 S0 3, LiCF 3 C0 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 S0 3 Li, CF 3 S0 3 Li, (CF 3 S0 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have
  • the nonaqueous electrolytic solution includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene Substituted imidazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, an ammonium salt, an imidazoline derivative, an imidazoline derivative,
  • a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride and the like may be further added to impart nonflammability, and a high-temperature storage property may be added (FEC), propylene sul- fone (PRS), and the like may be further included.
  • LiPF 6, LiC10 4, LiBF 4, LiN (S0 2 CF 3) 2 such as a lithium salt, a highly dielectric solvent of DEC, DMC or EMC Fig solvent cyclic carbonate and a low viscosity of the EC or PC of To a non-aqueous solvent of a linear carbonate to prepare a non-aqueous electrolyte containing a lithium salt.
  • FIG. 1 is a schematic view of a conventional negative electrode structure
  • FIG. 2 is a schematic view illustrating a process of manufacturing the negative electrode structure of FIG. 1;
  • FIG. 3 is a schematic view of a process of manufacturing a negative electrode structure according to one embodiment of the present invention.
  • FIG. 4 is a photograph of a mold after punching to produce a conventional negative electrode structure
  • FIG. 5 is a photograph of a negative electrode structure after punching to manufacture a conventional negative electrode structure
  • FIG. 6 is a photograph of a cathode structure after punching to manufacture the cathode structure according to Embodiment 1 of the present invention.
  • FIG. 7 is a photograph of a cathode structure after punching to manufacture the cathode structure according to still another embodiment 2 of the present invention.
  • FIG. 3 is a schematic view illustrating a process of manufacturing a cathode structure according to an embodiment of the present invention.
  • the photocurable material 140 is applied and cured to the stepped portion of the non-coated portion 110 and the coated portion 130 of the lithium metal layer, or the insulating tape 140 is attached to the stepped portion, .
  • the lithium metal cathode structure 100 is punched out as a unit electrode for manufacturing an electrode, and at the same time, the non-punched portion 110 is also punched to form a tab 120.
  • the lithium metal cathode structure 100 manufactured as described above can be manufactured by forming an insulating layer made of a photocurable material between the map 120 extending from the current collector and the step portion of the coating portion 130 of the lithium metal layer by the above- Or a structure in which an insulating tape 140 is attached.
  • a negative electrode sheet was prepared by depositing lithium metal (thickness: 40 m ) except for one side so that a solid portion for forming a tab remained on the entire collector (thickness: 30 m ) made of copper.
  • a punching process for forming a lap while being manufactured as a unit electrode Respectively.
  • Fig. 4 and Fig. 5 show photographs of the mold after the punching process and optical photographs of the front and rear surfaces of the unit electrodes.
  • a negative electrode sheet was produced by depositing lithium metal (thickness: 40) except for one side so as to leave an unoccupied portion for forming a tab on the current collector made of copper (thickness: 30) Insulation tape (thickness:
  • FIG. 6 shows an optical photograph of the front and rear surfaces of the unit electrode after the punching process.
  • the unit electrode is smoothly punched out without being pushed out of the outer portion of the electrode, as shown in the rear view.
  • Lithium metal was deposited (thickness: 40) on the collector (thickness: 30) made of copper except for one side so as to leave an unoccupied part for formation of the lap, and a negative electrode sheet was produced.
  • (Trimethoxysilyl) propylacrylate as a crosslinking agent, and 2-hydiOxy-2-methylpropiophenone as a photoinitiator were mixed in a weight ratio of 10: 0.5: 0.5 (thickness: 500 nm, width: 3 mm including the border between the coated portion and the non-coated portion, the length was applied in the same manner as the tab length to be formed later) and cured by UV curing method.
  • FIG. 7 shows optical photographs of the front and rear surfaces of the unit electrodes after the punching process. Referring to FIG. 7, it can be seen that the unit electrode is smoothly punched out without being pushed out of the outer portion of the electrode, as shown in the rear view.
  • the positive electrode active material (LiCo0 2) 90 parts by weight 0/0, Super-P (conductive material) 5 parts by weight 0/0, and PVDF (a binder) in NMP (N-methyl solvent a positive electrode material mixture of 5% by weight of composition -2-pyrrolidone) to prepare a positive electrode slurry and then coated on an aluminum current collector to prepare a positive electrode.
  • NMP N-methyl solvent a positive electrode material mixture of 5% by weight of composition -2-pyrrolidone
  • the unit electrode prepared in Comparative Examples 1 and 1 was used as a negative electrode, and a polyethylene film (Celgard, thickness: 20 ⁇ ) as a separator and a 1: 2 mixture of ethylene carbonate, dimethylene carbonate and diethyl carbonate : in to a solvent heunhap to 1 using a liquid electrolyte with a LiPF 6 dissolved in 1M, it was prepared secondary battery 10 by one.
  • a polyethylene film (Celgard, thickness: 20 ⁇ ) as a separator and a 1: 2 mixture of ethylene carbonate, dimethylene carbonate and diethyl carbonate : in to a solvent heunhap to 1 using a liquid electrolyte with a LiPF 6 dissolved in 1M, it was prepared secondary battery 10 by one.
  • the secondary batteries were subjected to a layer discharge for 10 cycles at intervals of 2.5 V - 4.35 V at 1.0 C to measure the number of short-circuited and ignited cells. The results are shown in Table 1 below.
  • a photo-curing substance is formed at the step portion of the coated portion of the lithium metal layer and the non-
  • the present invention can solve the problem of the occurrence of a burr occurring in the conventional punching process and can be used for laser punching or punching, There is no need to add a separate step such as rolling to flatten the remaining lithium metal in the burr form, which is effective in terms of cost and process.
  • the lithium metal cathode structure thus manufactured includes an insulating layer or an insulating tape made of a photo-curable material by the above process at a stepped portion of the coating portion of the tap and the lithium metal layer. Then, in the secondary battery, It is possible to obtain a further effect of preventing a short circuit with the cathode material due to exposure to the cathode material.

Abstract

The present invention provides a lithium metal anode structure manufacturing method and a lithium metal anode structure, the method comprising the steps of: (a) forming a lithium metal layer-coated portion on one surface or both surfaces of a current collector to manufacture a laminate, one side of the current collector including an uncoated portion on which a map is to be formed; (b) applying a photocurable material to stepped portions of the uncoated portion and the lithium metal layer-coated portion to cure the material or attaching an insulating tape to the stepped portions; and (c) cutting the laminate into unit electrodes in order to manufacture a lithium metal anode structure.

Description

【발명의 명칭】  Title of the Invention
리튬 금속 음극 구조체의 제조방법 및 리튬 금속 음극 구조체  METHOD FOR MANUFACTURING LITHIUM METAL Cathode Structure and Lithium Metal Cathode Structure
【기술분야】  TECHNICAL FIELD
관련 출원 (들)과의 상호 인용 Cross-reference with related application (s)
본 출원은 2017년 10월 27일자 한국 특허 출원 게 10-2017-0141502호 및 This application is related to Korean Patent Application No. 10-2017-0141502 dated October 27,
2018년 9월 5일자 한국 특허 출원 제 10-2018-0105740호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. Claims the benefit of priority based on Korean Patent Application No. 10-2018-0105740, filed on Sep. 5, 2018, the entire contents of which are incorporated herein by reference.
본 발명은 리튬 금속 음극 구조체의 제조방법 및 리튬 금속 음극 구조체에 관한 것이다.  The present invention relates to a method of manufacturing a lithium metal cathode structure and a lithium metal cathode structure.
【배경기술】  BACKGROUND ART [0002]
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전자의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.  Recently, interest in energy storage technology is increasing. As the application fields of cell phones, camcorders, notebook PCs and even electric vehicles are expanding, efforts for research and development of electrochemical devices are becoming more and more specified. Electrochemical devices have attracted the most attention in this respect. Among them, the development of secondary electrons capable of charge and discharge has been the focus of attention. Recently, in developing such batteries, Research and development on the design of electrodes and batteries are underway.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리륨 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.  Among the currently applied secondary batteries, the lyrium secondary battery developed in the early 1990s has advantages such as higher operating voltage and higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries using an aqueous electrolyte solution .
일반적으로, 리튬 이차전지는 양극, 음극 및 상기 양극과 상기 음극 사이에 개재된 분리막을 포함하는 전극조립체가 적층 또는 권취된 구조로 전지케이스에 내장되며, 그 내부에 비수 전해액이 주입됨으로써 구성된다.  Generally, a lithium secondary battery includes a positive electrode, a negative electrode, and an electrode assembly including a separator interposed between the positive electrode and the negative electrode, and the nonaqueous electrolyte is injected into the battery case.
이때 상기 음극으로서 사용되는 리튬 금속은 밀도 (0.54g/cm3)가 낮고, 또 표준환원 전위 (-3.045V SHE)가 매우 낮기 때문에 고에너지 밀도 전지용 음극 재료로서 가장 각광받는 재료이다. 또한, 화학적으로 활성이 매우 높아서 발생하는 문제들에도 불구하고, 최근 이동통신 및 휴대용 전자기기 사용의 지속적인 증가 및 급속한 발전에 따라 고에너지 밀도 이차전지의 개발에 대한 요구가 계속해서 증대되고 있기 때문에, 리튬 금속 음극 사용에 대한 필요성이 계속하여 대두되고 있다. At this time, the lithium metal used as the cathode is a material which is most popular as a negative electrode material for a high energy density battery because the density (0.54 g / cm 3) is low and the standard reduction potential (-3.045 V SHE) is very low. In addition, despite the problems that arise due to its high chemical activity, the recent development and rapid development of mobile communication and portable electronic devices have led to the development of high energy density secondary batteries As demands continue to increase, there is a continuing need for the use of lithium metal cathodes.
이때 상기 음극으로서 리튬 금속 전극을 사용하는 경우, 일반적으로 평면상의 집전체상에 리튬 호일을 부착시킴으로써 형성된 리튬 금속 음극 구조체를 사용하여 왔다.  In this case, when a lithium metal electrode is used as the cathode, a lithium metal cathode structure formed by attaching a lithium foil on a planar current collector has been used.
도 1은 종래의 평면상의 집전체상에 리륨 호일을 부착시켜 제조한 음극 구조체의 평면도와 수직단면도를 나타내는 도면이며, 도. 2는 이러한 음극 구조체를 제조하는 방법을 모식적으로 도시한 도면이다.  BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view and a vertical sectional view of a negative electrode structure manufactured by adhering a lyrium foil on a conventional planar current collector. 2 is a diagram schematically showing a method of manufacturing such a cathode structure.
도 1 및 도 2를 참조하면, 집전체의 금속 박 (11)에 리튬 금속 (13)이 압연 또는 증착된 리륨 금속 음극 시트 (10)는 전극 제조를 위한 단위 전극으로 타발됨과 동시에, 집전체인 금속 박 (11) 역시 탭 (12)을 형성하기 위해 동시에 절단된다.  1 and 2, a lyrium metal cathode sheet 10 in which a lithium metal 13 is rolled or deposited on a metal foil 11 of a current collector is punched out as a unit electrode for electrode production, The metal foil 11 is also cut at the same time to form the tabs 12.
이때, 리튬 금속 (13)은 무른 특성을 가져 타발 금형에 리튬 금속 (13)이 잔류물로 남거나, 타발시에 형성되는 버 (burr) 형태의 잔류 리튬 금속 (14)이 리튬 금속 음극에 존재하여 안전성과 공정성의 저해요인의 문제가 되고 있다ᅳ 또한, 단위 전극으로의 타발시에 집전체 금속 박 역시 절단되어야 함에 따라, 집전체 금속 박만 절단되는 탭 형성부와, 리튬 금속과 집전체 금속 박이 동시에 절단되는 단위 전극부 간의 절단 강도가 달라, 타발 금형의 절단칼 (knife) 강도가 고려되어야 하며, 무른 특성의 리튬 금속이 금형의 암수에 끼는 문제 역시 발생한다.  At this time, the lithium metal 13 has a loose characteristic, so that the lithium metal 13 remains as a residue in the punching die, or a burr-like residual lithium metal 14 formed at the time of punching exists in the lithium metal cathode It is necessary to cut the current collector metal foil at the time of punching into the unit electrode, so that the tap forming portion where only the current collector metal foil is cut off, and the lithium metal and current collector metal foil The cutting strength between the unit electrode portions to be cut is different, so that the knife strength of the punching die must be taken into account, and the problem of the lithium metal of the loose characteristic being stuck in the male and female molds also occurs.
이러한 문제를 해결하기 위해 종래에는 이러한 리튬 금속 전극 시트의 타발 공정에서 레이저 (laser) 타발을 수행하거나, 타발 후에 버 형태의 잔류 리튬 금속을 편평하게 하기 위한 를링 (rolling) 등을 수행하여야 하므로, 비용 및 공정상 비효율적인 문제가 있다.  In order to solve such a problem, conventionally, it is necessary to perform laser punching in the punching process of the lithium metal electrode sheet, or to perform rolling in order to flatten the burr-shaped residual lithium metal after punching, And there is a problem of inefficiency in the process.
따라서, 이러한 현 공정을 개선하면서도, 상기 문제를 해결할 수 있는 리튬 금속 음극 구조체에 대한 필요성이 높은 실정이다.  Therefore, there is a high need for a lithium metal cathode structure capable of solving the above problems while improving the present process.
【발명의 상세한 설명】  DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다. 본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 리튬 금속 음극 구조체의 제조방법에 있어서, 집전체의 무지부와 리튬 금속층의 코팅부의 단차부에 광경화성 물질을 도포하고 경화시키거나, 절연 테이프를 부착시킨 후, 전극 타발 공정을 거치는 경우, 종래 상기 문제를 해결할 수 있을 뿐 아니라, 이와 같이 제조된 리륨 금속 음극 구조체는 탭과 리튬 금속층의 코팅부의 단차부에 광경화성 물질로 이루어진 절연층 또는 절연 테이프를 포함하는 바, 이후 이차전지에서 리륨 금속층이 탭 상에 노출됨에 따른 양극 물질과의 단락을 방지할 수 있는 추가적인 효과도 얻을 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and the technical problems required from the past. The inventors of the present application have conducted intensive research and various experiments and have found that in a method of manufacturing a lithium metal cathode structure, a photocurable material is applied and cured to a stepped portion of a coated portion of a lithium metal layer, In addition, the above-described lithium metal cathode structure can be manufactured by forming an insulating layer made of a photo-curable material at the stepped portion of the coated portion of the tab and the lithium metal layer, Or an insulating tape, and it is possible to obtain a further effect of preventing a short circuit with the cathode material due to the exposure of the lyrium metal layer to the tab on the secondary battery. The present invention has been accomplished based on this finding.
【기술적 해결방법】  [Technical Solution]
이러한 목적을 달성하기 위한 본 발명의 리튬 금속 음극 구조체의 제조방법은,  According to another aspect of the present invention, there is provided a method of manufacturing a lithium metal negative electrode structure,
(a) 집전체의 일면 또는 양면에, 탭이 형성될 무지부를 집전체 일측에 포함하도록, 리륨 금속층의 코팅부를 형성하여 적층체를 제조하는 과정;  (a) a step of forming a coating portion of a lyrium metal layer on one side or both sides of a current collector such that an unoccupied portion on which a tab is to be formed is included on one side of the current collector, thereby producing a laminate;
(b) 상기 무지부와 리튬 금속층의 코팅부의 단차부에 광경화성 물질을 도포하고 경화시키거나, 절연 테이프를 부착하는 과정 ; 및  (b) applying a photocurable material to a stepped portion of the coated portion of the non-coated portion and the lithium metal layer, and curing or attaching an insulating tape; And
(c) 리튬 금속 음극 구조체를 제조하기 위해, 상기 적층체를 단위 전극으로 타발하는 과정;  (c) a step of subjecting the laminate to a unit electrode to produce a lithium metal cathode structure;
을 포함하는 것을 특징으로 한다.  And a control unit.
또한, 본 발명에 따른 제조방법은, 과정 (c)와 동시에, 무지부를 타발하여 탭을 형성하는 과정을 포함하거나, 과정 (c) 이후에, (d) 무지부를 타발하여 탭을 형성하는 과정을 포함할 수 있다.  In addition, the manufacturing method according to the present invention may include a step of forming a tab by embossing a plain weave at the same time as the step (c), or after the step (c), (d) .
즉, 본 출원의 발명자들은 기존에 리튬 금속의 무른 성질 때문에 집전체 상에 리튬 금속을 압연하거나, 증착하여 리튬 전극을 제조하는 경우에 발생할 수 있는 상기 지적한 문제들을 해결하고자 심도있는 연구를 거듭하였고, 이에 타발 전에 집전체의 무지부와 리튬 금속층의 코팅부의 단차부에 광경화성 물질을 형성하거나 절연 테이프를 부착하는 경우, 탭을 형성하기 위한 타발 공정에서 발생하는 종래 문제를 해결할 수 있음을 확인하였다.  That is, the inventors of the present application have conducted intensive studies to solve the above-mentioned problems that may occur when lithium metal is rolled or deposited on a current collector due to the loose nature of lithium metal, It has been confirmed that the conventional problems occurring in the punching step for forming the tab can be solved when the photocurable material is formed on the stepped portion of the non-coated portion of the current collector and the coated portion of the lithium metal layer before the punching or the insulating tape is attached.
이때, 상기 단차부는 집전체의 무지부와 리튬 금속층이 형성된 코팅부의 경계선을 기준으로 상하로 수직방향의 너비가 2 mm 내지 5 mm인 부위를 의미한다. 즉, 경계선을 포함하고 이를 기준으로 상하방향으로 2 mm 내지 5 mm의 폭을 가지는 부분, 상세하게는 2 mm 내지 4 mm의 폭을 가지는 부분을 의미한다. At this time, the stepped portion has a portion having a width of 2 mm to 5 mm in the vertical direction up and down with reference to the boundary between the non-coated portion of the current collector and the coated portion having the lithium metal layer formed thereon it means. That is, it means a portion including a boundary line and having a width of 2 mm to 5 mm in the up-and-down direction, specifically, a portion having a width of 2 mm to 4 mm.
여기서, 상기 단차부에 도포, 경화되는 광경화성 물질은, 한정되지 아니하나, 상세하게는 자외선에 의해 가교 결합이 이루어지는, 즉, 자외선을 조사하여 경화시키는 자외선 경화성 물질일 수 있다.  Here, the photo-curable material to be coated and cured on the step portion is not limited, but may be an ultraviolet curable material that is crosslinked by ultraviolet rays, that is, it is cured by irradiating ultraviolet rays.
상기 자외선 경화성 물질은, 상기 물질로 중합될 수 있는 10 cps 내지 100 cps 의 점도를 가진 올리고머 또는 저분자량의 중합체의 형태로 부가된 후 자외선을 조사하여 경화되는 것일 수 있다.  The ultraviolet curable material may be added in the form of an oligomer or a low molecular weight polymer having a viscosity of 10 cps to 100 cps which can be polymerized with the material, and then cured by irradiating ultraviolet rays.
상세하게는, 상기 올리고머 또는 저분자량의 중합체의 점도는 30 cps 내지 100 cps, 더욱 상세하게는, 50 cps 내지 100 cps 일 수 있다.  In particular, the viscosity of the oligomer or low molecular weight polymer may be from 30 cps to 100 cps, and more specifically from 50 cps to 100 cps.
상기 점도는, 브룩필드 점도계에 따라 측정된 점도를 의미하며, HAAKE사의 visco tester 550을 사용하였다.  The viscosity refers to the viscosity measured according to a Brookfield viscometer, and visco tester 550 from HAAKE was used.
일반적인 자외선 경화성 물질은 단량체 (monomer) 또는 올리고머 (oligomer)로 이루어져 있는 점도가 낮은 액체 상태의 물질이나, 상기 물질은 상기 범위의 점도를 가진 올리고머, 또는 저분자량의 중합체 형태로 해당 부위에 주입되므로, 도포가 용이하고 도포 후에도 유동이 거의 없어 최적의 밀봉성 향상 효과를 얻을 수 있다.  A general UV-curable material is a low-viscosity liquid state material composed of a monomer or an oligomer. However, since the material is injected into an oligomer having a viscosity within the above range or a polymer having a low molecular weight, It is easy to apply and there is almost no flow even after application, so that an optimum sealing property improving effect can be obtained.
상기 을리고머는, 예를 들어, 에폭시계, 우레탄계, 아크릴레이트계, 실리콘계, 히드록실계 및 아크릴산 유도체로 이루어진 군에서 선택되는 하나 이상일 수 있고, 상기 저분자량의 중합체는 불포화 폴리에스테르계 물질, 및 폴리아크릴레이트계 물질로 이루어진 군에서 선택되는 하나 이상일 수 있으며, 예를 들어, 폴리에스테르 아크릴레이트, 에폭시 아크릴레이트, 우레탄 아크릴레이트 또는 폴리우레탄일 수 있으나, 이에 한정되는 것은 아니다.  The glycerol may be at least one selected from the group consisting of, for example, epoxy, urethane, acrylate, silicone, hydroxyl and acrylic acid derivatives. The low molecular weight polymer may be an unsaturated polyester- Polyacrylate-based materials, and may be, for example, polyester acrylate, epoxy acrylate, urethane acrylate or polyurethane, but is not limited thereto.
상세하게는, TMPTA (Trimethylolpropane Triacrylate), 또는 Specifically, TMPTA (Trimethylolpropane Triacrylate) or
ETPTA(ethoxylated trimethylopropane triacrylate)와 같은 아크릴레이트계 물질을 들 수 있다. And acrylate-based materials such as ETPTA (ethoxylated trimethylopropane triacrylate).
이러한 자외선 경화성 물질은, 중합을 위해 상기 올리고머 또는 저분자량의 중합체가 가교제, 및 광 개시제와 흔합된 형태의 흔합물로 도포될 수 있다. 상기 가교제는, 종래 공지된 가교제들이 사용될 수 있으며, 한정되지 아니하고, 예를 들어, 이소시아네이트계 화합물, 에폭시계 화합물, 아지리딘계 화합물, TMSPA(3-(trimethoxysilyl)propylacrylate)와 같은 아크릴레이트계 화합물 및 금속 킬레이트계 화합물로 이루어진 군으로부터 군으로부터 선택된 1종 이상일 수 있다. Such an ultraviolet curable material can be applied as a mixture of the oligomer or the low molecular weight polymer for crosslinking in the form of a crosslinking agent and a photoinitiator. As the crosslinking agent, conventionally known crosslinking agents may be used, and examples thereof include, but are not limited to, acrylate compounds such as isocyanate compounds, epoxy compounds, aziridine compounds and TMSPA (3- (trimethoxysilyl) propylacrylate) Chelate-based compounds, and the like.
상기 광 개시제는, 종래 공지된 광 개시제가 사용될 수 있으며, 한정되지 아니하고, 예를 들어, 벤조페논, 아세토페논, 클로로아세토페논, 디에톡시 아세토페논 (Diethoxy Acetophenone)(DEAP), 벤조인, 벤조인메틸에테르, 벤조인에틸에테르, 벤조인이소프로필에테르, 벤조인이소부틸에테르, 벤조인안식향산, 벤조인안식향산메틸, 벤조인디메틸케탈, 2,4-디에틸티오크산톤, 벤질디페닐술피드, 테트라메틸우람모노설피드, 아조비스이소부티로니트릴, 벤질, 디벤질, 디아세틸, 베타클로로안트라퀴논, 2-벤질 -2-디메틸아미노 -1-(4- 몰포리노페닐) -부탄 -1 {2-벤질 -2-디메틸아미노 -1-(4-모폴리온페닐) -부타논 -1 }, 2,4,6- 트리메틸벤조일디페닐포스핀 옥사이드, 1-히드록시시클로핵실페닐케톤, 2- 히드록시 -2-메틸 -1-페닐프로판 -1-온, 1-[4-(2-히드록시에톡시) -페닐 ]-2-히드록시 -2- 메틸 -1-프로판 -1-원, 페닐비스 (2,4,6-트리메틸벤조일)포스핀옥사이드, 1-페닐 -2- 히드록시 -2-메틸 프로파논( 1 -phenyl-2-hydroxy-2-methyl propaneone)(HMPP), 알파- 아미노 아세토페논 (a- Amino Acetophenone), 티옥산톤 (Thioxanthone) 및 2-에틸 안트라퀴논 (2-ethyl Anthraquinone)(2-ETAQ)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.  The photoinitiator may be any of the conventionally known photoinitiators, including, but not limited to, benzophenone, acetophenone, chloroacetophenone, diethoxyacetophenone (DEAP), benzoin, benzoin Benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethyl thioxanthone, Tetramethylurammonosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, betachloroanthraquinone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) 2-dimethylamino-1- (4-morpholinophenyl) -butanone-1}, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 2- Methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) Phenyl-2-methyl-1-propane-1-one, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, 2-methyl propaneone (HMPP), a-Amino Acetophenone, Thioxanthone, and 2-ethyl Anthraquinone ( 2-ETAQ). ≪ / RTI >
경우에 따라서는, 상기 자외선 경화성 물질이 단량체로서 소정의 증점제가 첨가된 상태에서 해당 부위에 부가될 수도 있다.  In some cases, the ultraviolet curable material may be added to the site in a state where a predetermined thickener is added as a monomer.
이러한 물질의 점도를 증가시켜 줄 수 있는 증점제는, 카복시메틸셀를로오스 (carboxymethyl cellulose), 하이드록시에틸셀를로오스 (Hydroxyethyl cellulose), 폴리비닐알콜 (Polyvinyl Alcohol), 폴리비닐아세테이트 (Polyvinylacrylate) 등일 수 있다.  Thickening agents that can increase the viscosity of such materials include carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, polyvinylacrylate, and the like. have.
이러한 상기 점도를 갖는 자외선 경화성 물질은 단차부에 부가된 후 3 내지 20초 범위로 자외선 (UV)가조사되어 경화될 수 있다.  The ultraviolet ray-curable material having such a viscosity can be cured by being irradiated with ultraviolet rays (UV) within a range of 3 to 20 seconds after being added to the stepped portion.
한편, 상기 단차부에는 광경화성 물질을 도포하고 경화시키는 대신, 보다 간편한 방법으로서, 절연 테이프를 부착시킬 수도 있으며, 이때, 상기 절연 테이프는 폴리에틸렌테레프탈레이트 (Polyethylene terephthalate), 또는 폴리이미드 (Polyimide) 소재일 수 있다. On the other hand, instead of coating and curing a photocurable material on the stepped portion, an insulating tape may be attached as a more convenient method. In this case, The insulating tape may be a polyethylene terephthalate or a polyimide material.
이러한 상기 광경화성 물질의 도포 두께 또는 절연성 테이프의 두께는 10 nm 내지 1卿, 상세하게는 lOOnm 내지 500nm일 수 있다.  The coating thickness of the photocurable material or the thickness of the insulating tape may be 10 nm to 1 Lambda, specifically, 100 nm to 500 nm.
상기 범위를 벗어나, 두께가 너무 두꺼운 경우에는, 전극의 타발 공정 및 탭 형성을 위한 타발 공정시 나이프의 강도를 세게 하는 등에 의해 타발 공정이 비효율적이며, 너무 얇은 경우에는, 본원발명이 소망하는 충분한 정도의 효과를 발휘할 수 없는 바, 바람직하지 않다.  If the thickness is too large beyond the above range, the punching process is inefficient due to, for example, the strength of the knife in the punching process for forming the electrode and the punching process for forming the tab, and if the punching process is too thin, It is not preferable.
한편, 상기 리튬 금속층이 형성되는 집전체는, 3 내지 200 의 두께로 이루어질 수 있다. 이러한 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 구리 합금, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있고, 상세하게는, 구리, 구리 합금, 스테인리스 스틸, 알루미늄, 니켈이, 더욱 상세하게는, 구리가 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 전극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체 : 부직포체 등 다양한 형태가 가능하다. Meanwhile, the collector in which the lithium metal layer is formed may have a thickness of 3 to 200. Such a current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include copper, a copper alloy, stainless steel, aluminum, nickel, titanium, sintered carbon, The surface of the stainless steel may be surface treated with carbon, nickel, titanium, silver or the like, and an aluminum-cadmium alloy may be used. Specifically, copper, copper alloy, stainless steel, aluminum, nickel, , Copper can be used. The current collector may form fine irregularities on its surface to increase the adhesive force of the electrode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, and a foam : a nonwoven fabric are possible.
또한, 상기 리륨 금속층은, 20 내지 150卿의 두께를 가질 수 있고, 더욱 상세하게는 20 내지 100 일 수 있다.  In addition, the lyrium metal layer may have a thickness of 20 to 150 liters, more specifically 20 to 100. [
상기 범위를 벗어나, 리튬 금속층의 두께가 너무 작은 경우에는 집전체에 비해 활물질로서 작용하는 리튬 금속의 양이 작아, 충분한 용량을 발휘할 수 없고, 너무 두꺼운 경우에는 출력 특성이 떨어지거나, 리튬 금속의 무른 특성에 의한 문제를 방지하기 어려운바 바람직하지 않다.  If the thickness of the lithium metal layer is too small, the amount of lithium metal acting as an active material is smaller than that of the current collector, so that a sufficient capacity can not be exhibited. If the thickness is too large, output characteristics are deteriorated. It is difficult to prevent problems due to the characteristics, which is not preferable.
한편, 상기 과정 (a)에서, 집전체에 리튬 금속층을 형성하는 방법은 한정되지 아니하나, 리튬 금속을 증착 또는 압연함으로써 수행할 수 있고, 상세하게는, 리륨 금속의 무른 특성에 의해 형태가 변형될 수 있는 등의 문제가 있는 바, 압연에 의해 형성될 수 있다.  In the process (a), the lithium metal layer is formed on the current collector. However, the lithium metal layer may be formed by depositing or rolling lithium metal. More specifically, And it can be formed by rolling.
여기서, 상기 압연의 크기는 리튬 금속층의 두께 등을 고려하여 적절히 선택될 수 있다. 본 발명은 또한 이와 같이 제조된 리튬 금속 음극 구조체를 제공하며, 상기 리튬 금속 음극 구조체는, Here, the size of the rolling can be appropriately selected in consideration of the thickness of the lithium metal layer and the like. The present invention also provides a lithium metal cathode structure thus produced, wherein the lithium metal cathode structure comprises:
집전체;  Collecting house;
상기 집전체로부터 수직 연장된 탭; 및  A tab extending vertically from the current collector; And
상기 탭을 제외한 집전체의 일면 또는 양면에 형성된 리튬 금속층;  A lithium metal layer formed on one surface or both surfaces of the current collector excluding the tabs;
을 포함하고,  / RTI >
상기 맵과 리튬 금속층의 단차부에 광경화성 물질로 이루어진 절연층이 형성되어 있거나, 또는 절연 테이프가부착되어 있을 수 있다.  An insulating layer made of a photo-curable material may be formed on the stepped portion of the map and the lithium metal layer, or an insulating tape may be attached.
상기와 같이 리튬 금속 음극 구조체는, 상기와 같은 효과를 달성하기 위해 단위 전극으로의 타발 전에 탭과 리튬 금속층의 단차부에 절연층을 형성하거나, 또는 절연 테이프를 부착하는 바, 전극의 제조 공정 후에 별도의 추가 공정 없이 이후 이차전지에서 리튬 금속층이 탭 상에 노출됨에 따른 양극 물질과의 단락을 방지할 수 있는 추가적인 효과를 얻을 수 있다.  As described above, in order to achieve the above-described effects, the lithium metal cathode structure may be formed by forming an insulating layer on the stepped portion of the tab and the lithium metal layer or attaching an insulating tape to the unit electrode before the electrode is formed, It is possible to obtain a further effect of preventing a short circuit between the lithium metal layer and the anode material due to the exposure of the lithium metal layer on the tab without any additional process.
따라서, 본 발명에 따른 리튬 금속 음극 구조체는 버 (burr)발생이 최소화되는 바, 음극 구조체에 존재하는 버 형태의 잔류 리튬에 의해 발생할 수 있는 안전성 문제를 해결할 수 있을 뿐 아니라, 리튬 금속층이 탭 상에 존재함으로써 이후 양극 물질과 접촉하여 발생할 수 있는 단락, 이로인한 국부적인 열 발생 및 폭발 등도 방지할 수 있는 바, 전지의 안전성을 향상시키는데 매우 효과적이다.  Therefore, the lithium metal cathode structure according to the present invention minimizes the generation of burrs, thereby solving the safety problem that may be caused by burr-like residual lithium present in the cathode structure, It is possible to prevent a short circuit that may occur due to contact with the cathode material thereafter, local heat generation and explosion due to the short circuit, and it is very effective to improve the safety of the battery.
이때 상기 탭은 집전체와 일체로서 형성되어 있을 수 있다. 즉, 상기 탭은 상기에서 설명한 바와 같이 리튬 금속층이 코팅되지 않은 무지부를 타발하여 형성될 수 있다.  At this time, the tab may be integrally formed with the current collector. That is, the tab may be formed by punching an uncoated portion not coated with a lithium metal layer as described above.
상기 절연층 또는 절연 테이프가 형성되는 맵과 리튬 금속층의 단차부는, 상기 제조방법에서 설명한 것과 같고, 상기 절연층 또는 절연 테이프는 제조방법에서 형성된 것과 같으므로, 그 너비는 리튬 금속층과 탭의 경계선을 기준으로 수직방향으로 2 mm 내지 5 mm, 상세하게는, 상세하게는 2 mm 내지 4 mm일 수 있으며, 그 두께는 10 nm 내지 1 , 상세하게는 lOOnm 내지 500nm일 수 있다.  The step where the insulating layer or the insulating tape is formed and the stepped portion of the lithium metal layer are the same as those described in the above manufacturing method and the insulating layer or the insulating tape is the same as that formed in the manufacturing method, In detail, it may be 2 mm to 4 mm, and the thickness may be 10 nm to 1, specifically, 100 nm to 500 nm in the vertical direction as a standard.
여기서, 두께는 집전체와 리튬 금속층의 적층방향으로의 길이를 의미한다. 또한, 상기 절연층 또는 절연 테이프는 단위 전극으로의 타발 공정에서 함께 절단 되므로, 그 폭이 템의 폭과 동일할 수 있고, 또는 단위 전극의 바깥방향으로 조금 연장되어 탭의 폭보다 1mm 내지 5mm 범위로 소정 길 수도 있다. Here, the thickness means the length in the stacking direction of the current collector and the lithium metal layer. The width of the insulating layer or the insulating tape may be the same as the width of the unit or slightly extend in the outward direction of the unit electrode to be in a range of 1 mm to 5 mm .
한편, 상기 음극 구조체는 이차전지에 사용될 수 있으며, 이차전지의 구체적인 구조는 하기에서 설명한다.  Meanwhile, the negative electrode structure may be used in a secondary battery, and a specific structure of the secondary battery will be described below.
상기 이차전지는 그것의 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬 이온 (Li-ion) 이차전지, 리튬 폴리머 (Li-polymer) 이차전지, 또는 리튬 이온 폴리머 (Li-ion polymer) 이차전지 등과 같은 리튬 이차전지일 수 있다.  The secondary battery is not particularly limited in its kind, but specific examples thereof include a lithium ion (Li-ion) secondary battery having advantages such as high energy density, discharge voltage, and output stability, a lithium polymer secondary battery Battery, or a lithium secondary battery such as a lithium ion polymer secondary battery.
일반적으로, 리륨 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.  Generally, the lyrium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 흔합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 흔합물에 층진제를 더 첨가하기도 한다.  The positive electrode is prepared, for example, by coating a positive electrode current collector with a mixture of a positive electrode active material, a conductive material and a binder, and drying the positive electrode current collector. If necessary, a laminating agent may be further added to the mixture.
상기 양극 집전체 및 /또는 연장 집전부는 일반적으로 3 내지 500 마이크로미터의 두께로 만든다. 이러한 양극 집전체 및 연장 집전부는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 양극 집전체 및 연장 집전부는 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. ' The cathode current collector and / or the elongated current collector are generally made to have a thickness of 3 to 500 micrometers. The positive electrode current collector and the elongate current collector are not particularly limited as long as they have high conductivity without causing a chemical change in the battery, and examples thereof include stainless steel, aluminum, nickel, titanium, A surface treated with carbon, nickel, titanium, or silver on the surface of stainless steel may be used. The anode current collector and the elongate current collector may have various shapes such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, or the like by forming fine irregularities on the surface thereof to increase the adhesive force of the cathode active material. '
상기 양극 활물질은 리튬 코발트 산화물 (LiCo02), 리튬 니켈 산화물 (LiNi02) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-x04 (여기서, X는 0 ~ 0.33 임), LiMn03, LiMn203, LiMn02 등의 리튬 망간산화물; 리튬 동 산화물 (Li2Cu02); LiV308, LiFe304, V205, Cu2V207 등의 바나듐산화물; 화학식 LiNi1-xMx02 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMx02 (여기서, M = Co, Ni, Fe, Cr, Zn또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3M08 (여기서, M = Fe, Co, Ni, Cu또는 Zn 임)으로 표현되는 리튬 망간 복합산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn204; 디설파이드 화합물; Fe2(Mo04)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. The cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; A lithium manganese oxide represented by the general formula Li 1 + x Mn 2 -x O 4 (where X is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 and Cu 2 V 2 O 7 ; Formula LiNi 1-x M x 0 2 ( Here, M = Co, Mn, Al, Cu, Fe, Mg, B or Ga, x = 0.01 ~ 0.3 Im) Ni site type lithium nickel oxide which is represented by; Formula LiMn 2-x M x 0 2 ( where, M = Co, Ni, Fe , Cr, and Zn, or Ta, x = 0.01 ~ 0.1 Im) or Li 2 Mn 3 M0 8 (where, M = Fe, Co, Ni, Cu, or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with an alkaline earth metal ion; Disulfide compounds; Fe 2 (MoO 4 ) 3 , and the like, but the present invention is not limited thereto.
상기 도전재는 통상적으로 양극 활물질을 포함한 흔합물 전체 중량을 기준으로 1 내지 30 중량 %로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 혹연이나 인조 혹연 등의 혹연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 둥의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. ' The conductive material is usually added in an amount of 1 to 30 wt% based on the total weight of the charge including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and for example, natural materials such as natural or artificial rhizome; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers of carbon fiber or metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. '
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 흔합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀를로우즈 (CMC), 전분, 히드록시프로필샐를로우즈, 재생 샐를로우즈, 폴리비닐피를리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌 -디엔 테르 폴리머 (EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.  The binder is a component that assists in binding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of the composite material containing the cathode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, cellulose derivatives such as rosewood (CMC), starch, hydroxypropyl sal, rosewax, polyvinylpyridone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.  The filler is optionally used as a component for suppressing the expansion of the anode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery. Examples of the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
상기 음극은 이상에서 설명한 바와 같이, 집전체에 리튬 금속충이 형성된 리륨 금속 음극으로 이루어질 수 있다.  As described above, the cathode may be made of a lithium metal cathode formed with a lithium metal deposit on the current collector.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 - 10 마이크로미터이고, 두께는 일반적으로 5 ~ 300 마이크로미터다ᅳ 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 둥의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할수도 있다. The separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the membrane Generally, it is 0.01 to 10 micrometers, and the thickness is generally 5 to 300 micrometers. Such separators include, for example, olefin polymers such as polypropylene, which is chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a polymer solid electrolyte is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
상기 전해액은 리튬염 함유 비수계 전해액일 수 있고, 비수 전해액과 리튬염으로 이루어져 있다. 비수 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다. 상기 비수계 유기용매로는, 예를 들어, N-메틸 -2-피를리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메록시 에탄, 테트라히드록시 프랑 (franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3- 디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메록시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3ᅳ디메틸 -2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가사용될 수 있다.  The electrolytic solution may be a non-aqueous electrolytic solution containing a lithium salt, and is composed of a non-aqueous electrolytic solution and a lithium salt. As the non-aqueous electrolyte, non-aqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but the present invention is not limited thereto. Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, But are not limited to, gamma -butyrolactone, 1,2-dimeroxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, But are not limited to, cyclic ethers such as methylene chloride, methyl ethyl ketone, methyl ethyl ketone, cyclohexanone, cyclohexanone, cyclohexanone, cyclohexanone, cyclohexanone, Ethers, methyl pyrophonate, ethyl propionate and the like can be used as the organic solvent.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신 (agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.  Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, Lil, Li5NI2, Li3N-LiI-LiOH, LiSi04, LiSi04-LiI-LiOH, Li2SiS3, Li4Si04, Li4Si04-LiI-LiOH, Li3P04-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다. Examples of the inorganic solid electrolyte include Li 3 N, Lil, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li such as Li 4 Si0 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, Lil, LiC104, LiBF4, LiB10Cl10, LiPF6, LiCF3S03, LiCF3C02, LiAsF6, LiSbF6, LiAlCl4, CH3S03Li, CF3S03Li, (CF3S02)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다. The lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, Lil, LiC10 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 S0 3, LiCF 3 C0 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 S0 3 Li, CF 3 S0 3 Li, (CF 3 S0 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
또한, 비수 전해액에는 층방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민 , n-글라임 (glyme), 핵사 인산트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료 , N-치환옥사졸리디논 , Ν,Ν-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피를, 2-메특시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다ᅳ 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro- Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다. For the purpose of improving the layer discharge characteristics and flame retardancy, the nonaqueous electrolytic solution includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene Substituted imidazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, an ammonium salt, an imidazoline derivative, an imidazoline derivative, In some cases, a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride and the like may be further added to impart nonflammability, and a high-temperature storage property may be added (FEC), propylene sul- fone (PRS), and the like may be further included.
하나의 구체적인 예에서, LiPF6, LiC104, LiBF4, LiN(S02CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 흔합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다. In one specific example, LiPF 6, LiC10 4, LiBF 4, LiN (S0 2 CF 3) 2 , such as a lithium salt, a highly dielectric solvent of DEC, DMC or EMC Fig solvent cyclic carbonate and a low viscosity of the EC or PC of To a non-aqueous solvent of a linear carbonate to prepare a non-aqueous electrolyte containing a lithium salt.
【도면의 간단한 설명】  BRIEF DESCRIPTION OF THE DRAWINGS
도 1에는 종래 기술에 따른 음극 구조체의 모식도이다;  FIG. 1 is a schematic view of a conventional negative electrode structure; FIG.
도 2는 도 1의 음극 구조체를 제조하는 과정에 대한 모식도이다;  2 is a schematic view illustrating a process of manufacturing the negative electrode structure of FIG. 1;
도 3은 본 발명의 하나의 실시예에 ,따른 음극 구조체를 제조하는 과정에 대한 모식도이다;  3 is a schematic view of a process of manufacturing a negative electrode structure according to one embodiment of the present invention;
도 4는 종래 음극 구조체를 제조하기 위한 타발 후 금형의 사진이다; 도 5는 종래 음극 구조체를 제조하기 위한 타발 후 음극 구조체의 사진이다;  4 is a photograph of a mold after punching to produce a conventional negative electrode structure; FIG. 5 is a photograph of a negative electrode structure after punching to manufacture a conventional negative electrode structure; FIG.
도 6은 본 발명의 실시예 1에 따른 음극 구조체를 제조하기 위한 타발 후 음극 구조체의 사진이다;  6 is a photograph of a cathode structure after punching to manufacture the cathode structure according to Embodiment 1 of the present invention;
도 7은 본 발명의 또 다른 실시예 2에 따른 음극 구조체를 제조하기 위한 타발 후 음극 구조체의 사진이다.  7 is a photograph of a cathode structure after punching to manufacture the cathode structure according to still another embodiment 2 of the present invention.
【발명의 실시를 위한 형태】  DETAILED DESCRIPTION OF THE INVENTION
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited by the scope of the present invention.
본 기재를 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로 본 기재가 반드시 도시된 바에 한정되지 않는다. In order to clearly illustrate the present disclosure, portions that are not related to the description are omitted, and the same or similar components are denoted by the same reference numerals throughout the specification. In addition, the size of each configuration and The thicknesses are arbitrarily shown for convenience of explanation, and therefore the present invention is not necessarily limited to those shown in the drawings.
도 3에는 본 발명의 하나의 실시예에 따른 음극 구조체를 제조하는 과정에 대한 모식도가도시되어 있다.  FIG. 3 is a schematic view illustrating a process of manufacturing a cathode structure according to an embodiment of the present invention.
도 3을 참조하면, 먼저, 집전체의 일면 또는 양면에, 리튬 금속층이 형성된 코팅부 (130)과, 리튬 금속층이 형성되지 않고, 이후 타발 공정에 의해 탭이 형성될 무지부 (110)를 포함하도록, 리륨 금속을 도포 또는 압연한다.  3, a coating unit 130 having a lithium metal layer formed on one surface or both surfaces of a current collector, and an uncoated portion 110 where a lithium metal layer is not formed and taps are formed by a punching process thereafter , The lyrium metal is applied or rolled.
이후, 무지부 (110)와 리튬 금속층의 코팅부 (130)의 단차부에 광경화성 물질 (140)을 도포, 경화하거나 또는 절연 테이프 (140)를 부착하고, 단위 전극으로 타발하는 과정을 수행하여 제조된다. 이때, 리튬 금속 음극 구조체 (100)는 전극 제조를 위한 단위 전극으로 타발됨과 동시에, 무지부 (110) 역시 탭 (120)을 형성하기 위해 동시에 타발되어 제조된다.  The photocurable material 140 is applied and cured to the stepped portion of the non-coated portion 110 and the coated portion 130 of the lithium metal layer, or the insulating tape 140 is attached to the stepped portion, . At this time, the lithium metal cathode structure 100 is punched out as a unit electrode for manufacturing an electrode, and at the same time, the non-punched portion 110 is also punched to form a tab 120.
이와 같이 리튬 금속 음극 구조체 (100)을 제조하는 경우에는, 종래 문제되었던 타발 공정에서 나타나는 리튬 버 (burr) 발생 문제를 해결할 수 있다. 더욱이 이와 같이 제조된 리튬 금속 음극 구조체 (100)은, 상기 제조공정에 의해 집전체로부터 연장된 맵 (120)과 리튬 금속층의 코팅부 (130)의 단차부에 사이에 광경화성 물질로 이루어진 절연층 (140)이 형성되어 있거나, 또는 절연 테이프 (140)가 부착되어 있는 구조를 가진다.  When the lithium metal cathode structure 100 is manufactured as described above, the problem of lithium burr occurring in the conventional punching process can be solved. The lithium metal cathode structure 100 manufactured as described above can be manufactured by forming an insulating layer made of a photocurable material between the map 120 extending from the current collector and the step portion of the coating portion 130 of the lithium metal layer by the above- Or a structure in which an insulating tape 140 is attached.
따라서, 이후 이차전지에서 리튬 금속층이 탭 상에 노출됨에 따른 양극 물질과의 단락을 방지할 수 있다. 이하에서는, 본 발명에 따른 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.  Therefore, it is possible to prevent short-circuiting with the cathode material as the lithium metal layer is exposed on the tabs in the secondary battery. Hereinafter, the present invention will be described with reference to embodiments thereof, but it should be understood that the scope of the present invention is not limited thereto.
<비교예 1> &Lt; Comparative Example 1 &
구리로 이루어잔 집전체 (두께: 30 m) 상에 탭의 형성을 위한 무지부가 남도록 일측을 제외하고 리튬 금속을 증착 (두께: 40 加)하여 음극 시트를 제조하였다. A negative electrode sheet was prepared by depositing lithium metal (thickness: 40 m ) except for one side so that a solid portion for forming a tab remained on the entire collector (thickness: 30 m ) made of copper.
이후, 단위 전극으로 제조하면서 랩을 형성하기 위한 타발 공정을 실시하였다. 타발 공정 후의 금형 사진과, 상기 단위 전극의 전면 및 후면을 광학사진을 도 4 및 도 5에 도시하였다. Then, a punching process for forming a lap while being manufactured as a unit electrode Respectively. Fig. 4 and Fig. 5 show photographs of the mold after the punching process and optical photographs of the front and rear surfaces of the unit electrodes.
도 4를 참조하면, 금형에는 리튬 금속의 버 발생으로 인한 리륨 금속의 잔여물이 끼어있고, 도 5를 참조하면, 단위 전극은 후면 사진에서 볼 수 있듯이 전극 외곽부분이 밀려나 표면 불량이 발생한 것을 확인할 수 있다.  Referring to FIG. 4, a residue of larium metal due to the generation of burrs of lithium metal is caught in the metal mold. Referring to FIG. 5, as shown in the photograph of the backside of the unit electrode, .
<실시예 1> &Lt; Example 1 >
구리로 이루어진 집전체 (두께: 30 ) 상에 탭의 형성을 위한 무지부가 남도록 일측을 제외하고 리튬 금속을 증착 (두께: 40 )하여 음극 시트를 제조하고, 리튬 금속이 형성된 코팅부와 무지부의 단차부에 절연 테이프 (두께: A negative electrode sheet was produced by depositing lithium metal (thickness: 40) except for one side so as to leave an unoccupied portion for forming a tab on the current collector made of copper (thickness: 30) Insulation tape (thickness:
500nm)를 테이핑 (코팅부와 무지부의 경계선을 포함하여 너비: 3 mm, 길이는 이후 형성될 탭의 길이와동일하게 테이핑)하였다. 500 nm) was taped (width: 3 mm including the border between the coated portion and the non-coated portion, and the length was taped to be the same as the length of the tab to be formed later).
이후, 단위 전극으로 제조하면서 탭을 형성하기 위한 타발 공정을 실시하였다. 타발 공정 후의 단위 전극의 전면 및 후면을 광학 사진을 도 6에 도시하였다.  Thereafter, a punching process was performed to form tabs while being manufactured as unit electrodes. FIG. 6 shows an optical photograph of the front and rear surfaces of the unit electrode after the punching process.
도 6을 참조하면, 단위 전극은 후면 사진에서 볼 수 있듯이 전극 외곽 부분의 밀려남 없이 매끄럽게 타발된 것 확인할 수 있다.  Referring to FIG. 6, it can be seen that the unit electrode is smoothly punched out without being pushed out of the outer portion of the electrode, as shown in the rear view.
<실시예 2> &Lt; Example 2 >
구리로 이루어진 집전체 (두께: 30 ) 상에 랩의 형성을 위한 무지부가 남도록 일측을 제외하고 리튬 금속을 증착 (두께: 40 )하여 음극 시트를 제조하고, 리튬 금속이 형성된 코팅부와 무지부의 단차부에, 광경화성 물질로서, ETPTA(ethoxylated trimethylopropane triacrylate, 점도: 60 cps)와 가교제로서, TMSPA(3-(trimethoxysilyl)propylacrylate), 및 광개시제로서, 2-hydiOxy-2- methylpropiophenone)을 중량비로 10:0.5:0.5로 섞은 흔합물을 도포 (두께: 500nm, 코팅부와 무지부의 경계선을 포함하여 너비: 3 mm, 길이는 이후 형성될 탭의 길이와동일하게 도포)하고, UV 경화방식으로 경화시켰다.  Lithium metal was deposited (thickness: 40) on the collector (thickness: 30) made of copper except for one side so as to leave an unoccupied part for formation of the lap, and a negative electrode sheet was produced. (Trimethoxysilyl) propylacrylate as a crosslinking agent, and 2-hydiOxy-2-methylpropiophenone as a photoinitiator were mixed in a weight ratio of 10: 0.5: 0.5 (thickness: 500 nm, width: 3 mm including the border between the coated portion and the non-coated portion, the length was applied in the same manner as the tab length to be formed later) and cured by UV curing method.
이후, 단위 전극으로 제조하면서 랩을 형성하기 위한 타발 공정을 실시하였다. 타발 공정 후의 단위 전극의 전면 및 후면을 광학 사진을 도 7에 도시하였다. 도 7을 참조하면, 단위 전극은 후면 사진에서 볼 수 있듯이 전극 외곽 부분의 밀려남 없이 매끄럽게 타발된 것 확인할 수 있다. Thereafter, a punching process was performed to form a lap while being manufactured as a unit electrode. Fig. 7 shows optical photographs of the front and rear surfaces of the unit electrodes after the punching process. Referring to FIG. 7, it can be seen that the unit electrode is smoothly punched out without being pushed out of the outer portion of the electrode, as shown in the rear view.
<실험예 1> <Experimental Example 1>
양극 활물질로서, 양극 활물질 (LiCo02) 90 중량0 /0, Super-P (도전재) 5 중량0 /0, 및 PVDF (결착제) 5 중량 % 조성의 양극 합제를 용제인 NMP(N-methyl-2- pyrrolidone)에 첨가하여 양극 슬러리를 제조한 후, 알루미늄 집전체 상에 코팅하여 양극을 제조하였다. As a cathode active material, the positive electrode active material (LiCo0 2) 90 parts by weight 0/0, Super-P (conductive material) 5 parts by weight 0/0, and PVDF (a binder) in NMP (N-methyl solvent a positive electrode material mixture of 5% by weight of composition -2-pyrrolidone) to prepare a positive electrode slurry and then coated on an aluminum current collector to prepare a positive electrode.
상기 비교예 1 및 실시예 1에서 제조된 단위 전극을 음극으로 하고, 상기 양극, 분리막으로서 폴리 에틸렌막 (Celgard, 두께: 20 μίΐ), 및 에틸렌 카보네이트, 디메틸렌 카보네이트, 디에틸 카보네이트가 1 : 2: 1로 흔합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용하여, 이차전지들을 10개씩 제조하였다. The unit electrode prepared in Comparative Examples 1 and 1 was used as a negative electrode, and a polyethylene film (Celgard, thickness: 20 μηι) as a separator and a 1: 2 mixture of ethylene carbonate, dimethylene carbonate and diethyl carbonate : in to a solvent heunhap to 1 using a liquid electrolyte with a LiPF 6 dissolved in 1M, it was prepared secondary battery 10 by one.
상기 이차전지들을 2.5V - 4.35 V 구간에서 1.0 C로 10 사이클 동안 층방전을 실시하여 단락, 발화가 발생한 전지의 개수를 측정하여 하기 표 1에 나타내었다.  The secondary batteries were subjected to a layer discharge for 10 cycles at intervals of 2.5 V - 4.35 V at 1.0 C to measure the number of short-circuited and ignited cells. The results are shown in Table 1 below.
【표 1】  [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
상기 표 1에서 보는 바와 같이, 본 발명에 따른 음극을 사용한 이차전지들의 안전성이 보다 높은 것을 확인할 수 있다. 이상 본 발명에 따른 도면 및 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한웅용 및 변형을 행하는 것이 가능할 것이다.  As shown in Table 1, it can be seen that the secondary batteries using the negative electrode according to the present invention have higher safety. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention may be embodied otherwise without departing from the spirit and scope of the invention.
【산업상 이용가능성】  [Industrial applicability]
이상에서 설명한 바와 같이, 본 발명에 따른 리튬 금속 음극 구조체는, 집전체의 무지부와 리튬 금속층의 코팅부의 단차부에 광경화성 물질을 도포하고 경화시키거나, 절연 테이프를 부착하고, 타발하는 공정을 수행함으로써 제조되므로, 종래 문제되었던 타발 공정에서 나타나는 리튬 버 (burr) 발생 문제를 해결할 수 있어, 레이저 (laser) 타발을 수행하거나, 타발 후에 버 형태의 잔류 리튬 금속을 편평하게 하기 위한 롤링 (rolling) 등과 같은 별도의 공정을 추가할 필요도 없어, 비용 및 공정 측면에서 효율적이다. As described above, in the lithium metal cathode structure according to the present invention, a photo-curing substance is formed at the step portion of the coated portion of the lithium metal layer and the non- The present invention can solve the problem of the occurrence of a burr occurring in the conventional punching process and can be used for laser punching or punching, There is no need to add a separate step such as rolling to flatten the remaining lithium metal in the burr form, which is effective in terms of cost and process.
또한, 이와 같이 제조된 리튬 금속 음극 구조체는 탭과 리튬 금속층의 코팅부의 단차부에, 상기 공정에 의한 광경화성 물질로 이루어진 절연층 또는 절연 테이프를 포함하는 바, 이후 이차전지에서 리튬 금속층이 탭 상에 노출됨에 따른 양극 물질과의 단락을 방지할 수 있는 추가적인 효과도 얻을 수 있다.  The lithium metal cathode structure thus manufactured includes an insulating layer or an insulating tape made of a photo-curable material by the above process at a stepped portion of the coating portion of the tap and the lithium metal layer. Then, in the secondary battery, It is possible to obtain a further effect of preventing a short circuit with the cathode material due to exposure to the cathode material.

Claims

【청구의 범위】 Claims:
【청구항 1】  [Claim 1]
리튬 금속 음극 구조체를 제조하는 방법으로서,  A method for producing a lithium metal cathode structure,
(a) 집전체의 일면 또는 양면에, 탭이 형성될 무지부를 집전체 일측에 포함하도록, 리튬 금속층의 코팅부를 형성하여 적충체를 제조하는 과정;  (a) forming a coated portion of a lithium metal layer on one side or both sides of a current collector so as to include an unoccupied portion where a tab is to be formed on one side of the current collector to produce an embossed body;
(b) 상기 무지부와 리튬 금속층의 코팅부의 단차부에 광경화성 물질을 도포하고 경화시키거나, 절연 테이프를 부착하는 과정 ; 및  (b) applying a photocurable material to a stepped portion of the coated portion of the non-coated portion and the lithium metal layer, and curing or attaching an insulating tape; And
(c) 리튬 금속 음극 구조체를 제조하기 위해, 상기 적층체를 단위 전극으로 타발하는 과정;  (c) a step of subjecting the laminate to a unit electrode to produce a lithium metal cathode structure;
을 포함하는 리륨 금속 음극 구조체 제조방법.  &Lt; / RTI &gt;
【청구항 2】  [Claim 2]
제 1 항에 있어서, 상기 과정 (c)와 동시에, 무지부를 타발하여 탭을 형성하는 과정을 포함하는 리튬 금속 음극 구조체 제조방법.  The method of claim 1, further comprising the step of forming a tab by applying a non-conductive part simultaneously with the step (c).
【청구항 3】  [Claim 3]
제 1 항에 있어서, 상기 과정 (c) 이후에,  The method according to claim 1, wherein, after the step (c)
(d) 무지부를 타발하여 탭을 형성하는 과정을 포함하는 리튬 금속 음극 구조체 제조방법.  (d) forming a tab by applying a plain weave.
【청구항 4】  Claim 4
제 1 항에 있어서, 상기 단차부는 집전체의 무지부와 리튬 금속층이 형성된 코팅부의 경계선을 기준으로 상하로 수직방향의 너비가 2 mm 내지 5 mm인 부위인 리튬 금속 음극 구조체 제조방법.  The method according to claim 1, wherein the stepped portion is a portion having a vertical width of 2 mm to 5 mm with respect to a boundary between a non-coated portion of the current collector and a coating portion on which the lithium metal layer is formed.
【청구항 5】  [Claim 5]
제 1 항에 있어서, 상기 광경화성 물질은, 자외선 경화성 물질이며, 자외선을 조사하여 경화시키는 리튬 금속 음극 구조체 제조방법.  The method of claim 1, wherein the photocurable material is an ultraviolet curable material and irradiated with ultraviolet light to cure the lithium metal negative electrode structure.
【청구항 6】  [Claim 6]
제 5 항에 있어서, 상기 자외선 경화성 물질은 10 cps 내지 100 cps의 점도를 가진 올리고머 또는 저분자량의 중합체의 형태로 부가된 후 자외선을 조사하여 경화되는 리튬 금속 음극 구조체 제조방법.  6. The method of claim 5, wherein the ultraviolet curable material is added in the form of an oligomer having a viscosity of 10 cps to 100 cps or a polymer having a low molecular weight and then cured by irradiating ultraviolet rays.
【청구항 7】  7.
제 5 항에 있어서, 상기 을리고머는 에폭시계, 우레탄계, 아크릴레이트계, 실리콘계, 히드록실계, 및 아크릴산 유도체로 이루어진 군에서 선택되는 하나 이상이고, 저분자량의 중합체는, 불포화 폴리에스테르계 물질, 및 폴리아크릴레이트계 물질로 이루어진 군에서 선택되는 하나 이상인 리튬 금속 음극 구조체 제조방법. The composition of claim 5, wherein the glycerol is an epoxy, urethane, acrylate, Wherein the low molecular weight polymer is at least one selected from the group consisting of a silicon-based, a hydroxyl-based, and an acrylic acid derivative, and the polymer is at least one selected from the group consisting of an unsaturated polyester-based material and a polyacrylate- Way.
【청구항 8】  8.
제 1 항에 있어서, 상기 광경화성 물질의 도포 두께 또는 절연성 테이프의 두께는 , 10 nm내지 l/mi인 리튬 금속 음극 구조체 제조방법.  The method for manufacturing a lithium metal cathode structure according to claim 1, wherein the coating thickness of the photo-curing substance or the thickness of the insulating tape is 10 nm to 1 / mi.
【청구항 9】  [Claim 9]
제 1 항에 있어서, 상기 집전체는, 구리, 구리 합금, 스테인리스 스틸, 알루미늄, 또는 니켈인 리튬 금속 음극 구조체 제조방법.  The method of claim 1, wherein the current collector is copper, a copper alloy, stainless steel, aluminum, or nickel.
【청구항 10】  Claim 10
제 1 항에 있어서, 상기 리튬 금속층은,  The lithium secondary battery according to claim 1,
20 내지 100/ m의 두께를 가지는 리튬 금속 음극 구조체 제조방법.  Lt; RTI ID = 0.0 &gt; 100 / m. &Lt; / RTI &gt;
【청구항 111  Claim 111
제 1 항에 있어서, 상기 과정 (a)는 집전체에 리륨 금속을 증착 또는 압연하여 수행되는 리튬 금속 음극 구조체 제조방법.  The method of claim 1, wherein the step (a) is performed by depositing or rolling a lyrium metal on the current collector.
【청구항 12】  Claim 12
집전체;  Collecting house;
상기 집전체로부터 수직 연장된 탭; 및  A tab extending vertically from the current collector; And
상기 탭을 제외한 집전체의 일면 또는 양면에 형성된 리튬 금속층;  A lithium metal layer formed on one surface or both surfaces of the current collector excluding the tabs;
을 포함하고,  / RTI &gt;
상기 랩과 리튬 금속층의 단차부에 광경화성 물질로 이루어진 절연층이 형성되어 있거나, 또는 절연 테이프가부착되어 있는 리튬 금속 음극 구조체.  Wherein an insulating layer made of a photocurable material is formed on a stepped portion of the lap and the lithium metal layer, or an insulating tape is attached to the lithium metal negative electrode structure.
【청구항 13】 Claim 13
제 12 항에 있어서, 상기 탭은 집전체와 일체로서 형성되어 있는 리튬 금속 음극 구조체.  13. The lithium metal negative electrode structure according to claim 12, wherein the tab is integrally formed with the current collector.
【청구항 14】  14.
제 12 항에 있어서, 상기 절연층 또는 절연 테이프는 리튬 금속충의 단부와 탭의 단부를 덮는 형태로 형성되어 있는 리튬 금속 음극 구조체.  The lithium metal negative electrode structure according to claim 12, wherein the insulating layer or the insulating tape is formed to cover the end portion of the lithium metal strand and the end portion of the tab.
【청구항 15】 제 12 항에 있어서, 상기 절연층 또는 절연 테이프의 너비는, 리튬 금속층과 탭의 경계선을 기준으로 수직방향으로 2 mm 내지 5 mm인 리튬 금속 음극 구조체. 15. The lithium metal cathode structure according to claim 12, wherein the width of the insulating layer or the insulating tape is 2 mm to 5 mm in the vertical direction with reference to a boundary line between the lithium metal layer and the tab.
【청구항 16】  Claim 16
제 12 항에 있어서, 상기 절연층 또는 절연 테이프의 폭은 탭의 폭과 동일한 리튬 금속 음극 구조체.  13. The lithium metal cathode structure according to claim 12, wherein the width of the insulating layer or the insulating tape is equal to the width of the tab.
【청구항 17]  [17]
제 12 항에 있어서, 상기 절연층 또는 절연 테이프의 두께는, 10 nm 내지 m인 리튬 금속 음극 구조체.  13. The lithium metal cathode structure according to claim 12, wherein the thickness of the insulating layer or the insulating tape is 10 nm to m.
【청구항 18]  [18]
제 12 항에 따른 리튬 금속 음극 구조체를 포함하는 이차전지.  A secondary battery comprising the lithium metal cathode structure according to claim 12.
PCT/KR2018/010431 2017-10-27 2018-09-06 Lithium metal anode structure manufacturing method and lithium metal anode structure WO2019083156A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880024857.3A CN110945690B (en) 2017-10-27 2018-09-06 Method for producing a lithium metal negative electrode structure and lithium metal negative electrode structure
EP18869520.9A EP3598538B1 (en) 2017-10-27 2018-09-06 Method for producing lithium metal negative electrode structure and lithium metal negative electrode structure
JP2019559099A JP7045555B2 (en) 2017-10-27 2018-09-06 Method of manufacturing lithium metal negative electrode structure and lithium metal negative electrode structure
US16/604,930 US11228029B2 (en) 2017-10-27 2018-09-06 Method for producing lithium metal negative electrode structure and lithium metal negative electrode structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170141502 2017-10-27
KR10-2017-0141502 2017-10-27
KR10-2018-0105740 2018-09-05
KR1020180105740A KR20190047593A (en) 2017-10-27 2018-09-05 Manufacturing Method of Lithium Metal Anode Assembly and Lithium Metal Anode Assembly

Publications (1)

Publication Number Publication Date
WO2019083156A1 true WO2019083156A1 (en) 2019-05-02

Family

ID=66247515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010431 WO2019083156A1 (en) 2017-10-27 2018-09-06 Lithium metal anode structure manufacturing method and lithium metal anode structure

Country Status (1)

Country Link
WO (1) WO2019083156A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040878A (en) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd Lithium ion secondary battery
KR20110007785A (en) * 2009-07-17 2011-01-25 주식회사 엘지화학 Anode having insulating-tape adhered on active-material-non-coated portion, and lithium secondary battery comprising the same
KR20150098445A (en) * 2014-02-20 2015-08-28 주식회사 엘지화학 Battery Cell Having Electrode Coated with Insulating Material
KR20160091732A (en) * 2015-01-26 2016-08-03 주식회사 엘지화학 Method for Preparing Positive Electrode Having Insulation Coating portion and Positive Electrode Prepared Thereby
KR20170055722A (en) * 2015-11-12 2017-05-22 주식회사 엘지화학 Method of Manufacturing Electrode Plate Using Electrode Sheet Including Notching Part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040878A (en) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd Lithium ion secondary battery
KR20110007785A (en) * 2009-07-17 2011-01-25 주식회사 엘지화학 Anode having insulating-tape adhered on active-material-non-coated portion, and lithium secondary battery comprising the same
KR20150098445A (en) * 2014-02-20 2015-08-28 주식회사 엘지화학 Battery Cell Having Electrode Coated with Insulating Material
KR20160091732A (en) * 2015-01-26 2016-08-03 주식회사 엘지화학 Method for Preparing Positive Electrode Having Insulation Coating portion and Positive Electrode Prepared Thereby
KR20170055722A (en) * 2015-11-12 2017-05-22 주식회사 엘지화학 Method of Manufacturing Electrode Plate Using Electrode Sheet Including Notching Part

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598538A4 *

Similar Documents

Publication Publication Date Title
KR102379223B1 (en) Methods for preparing negative electrode for lithium secondary battery and lithium secondary battery
KR101768195B1 (en) Method for Preparing Positive Electrode Having Insulation Coating portion and Positive Electrode Prepared Thereby
CN108028385B (en) Electrode for lithium secondary battery with improved adhesion and method for manufacturing same
KR101749508B1 (en) Electrode active material for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery comprising the same
KR101811833B1 (en) Multilayer-Structured Electrode and Lithium Secondary Battery Comprising The Same
KR101481993B1 (en) Electrode Comprising Compound Having Cyano group and Lithium Secondary Battery Comprising The Same
EP3038182A1 (en) Battery pack having curved surface structure
KR101527748B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR20180104389A (en) Preparation method of electrode for a secondary battery and electrode by the same
KR20180028369A (en) Manufacturing Method for Electrodes Having Uniform Quality and Manufacturing Method for Electrode Assembly with the Same
KR101588624B1 (en) Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
JP7045555B2 (en) Method of manufacturing lithium metal negative electrode structure and lithium metal negative electrode structure
KR20170031387A (en) Electrode Comprising Active Material Layers Having Active Material Particles of Different Average Particle Sizes
CN109937496B (en) Method for producing highly loaded electrodes
KR102000539B1 (en) Method of Manufacturing Electrode Plate Using Unit Electrode Sheet Including Coating Portions Having Different Size from One Another
JP2018521483A (en) Battery cell containing gelled electrolyte component in pores of separation membrane constituting electrode assembly
KR101758132B1 (en) Manufacturing Method for Secondary Battery Comprising Resin Case
KR101588252B1 (en) Secondary Battery Cell
KR101684338B1 (en) Electrode Material for Secondary Battery and Lithium Secondary Battery Comprising the Same
WO2019083156A1 (en) Lithium metal anode structure manufacturing method and lithium metal anode structure
KR101819693B1 (en) Electrode Assembly Comprising a Plurality of Electrode Units and Single Separator Sheet
KR20130118247A (en) The method for preparing electrodes and the electrodes prepared by using the same
KR20130117715A (en) Electrode comprising polyolefin binder and lithium secondary battery comprising the same
KR102436414B1 (en) Anode Assembly consisting of lithium metal anode and tab
KR20170040766A (en) Method for Preparing Electrode for Secondary Battery through Control of Pressing Velocity and Electrode Prepared by the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559099

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018869520

Country of ref document: EP

Effective date: 20191017

NENP Non-entry into the national phase

Ref country code: DE