WO2019083105A1 - Method for producing humified lignin conversion product - Google Patents
Method for producing humified lignin conversion productInfo
- Publication number
- WO2019083105A1 WO2019083105A1 PCT/KR2018/004166 KR2018004166W WO2019083105A1 WO 2019083105 A1 WO2019083105 A1 WO 2019083105A1 KR 2018004166 W KR2018004166 W KR 2018004166W WO 2019083105 A1 WO2019083105 A1 WO 2019083105A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lignin
- producing
- present
- reaction
- temperature
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07G—COMPOUNDS OF UNKNOWN CONSTITUTION
- C07G1/00—Lignin; Lignin derivatives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
Definitions
- the present invention relates to a method for producing a humidified lignin converting material, and more particularly to a method for producing humidified lignin converting material from lignin comprising physical decomposition of a high temperature and high pressure reaction, chemical decomposition of an oxidation reaction, and / To a production method of a lignin converting body.
- the present invention is the result of the research conducted by the Forestry Agency in the research project of forest resources resource exploration (2017041A00-1819-BA01) and the basic research capacity enhancement project supported by the Ministry of Education (NRF-2015R1A6A1A03031413).
- Lignin is a fat-soluble phenol polymer component among woody constituents such as coniferous trees and broad-leaved trees, and accounts for 20 to 35% by weight of the dried wood. Lignin is the most abundant and readily available organic polymer after cellulose in biomass, accounting for 30% of unfossilized organic carbon. Specifically, lignin is composed of 63.4% of carbon, 5.9% of hydrogen, 30% of oxygen and 0.7% of ash, and since it contains many phenyl groups, it can be an important raw material for producing aromatic compounds. Lignin also generates significant amounts as a by-product in the paper industry, and efforts are underway to convert it to fuels and other chemicals.
- the lignins classified by the production method show different differences in the molecular weight distribution, and their structure is chemically complex.
- the lignins are basically composed of coniferyl alcohol, coumaryl alcohol, It is a polymer that forms an amorphous structure in which sinapyl alcohols are linked by a carbon-oxygen or carbon-carbon bond. Due to this structural stability of lignin, it is difficult to produce monomeric chemicals through biological or chemical transformation, and materials produced through the above process are treated as low and low raw materials.
- lignin is a resource with tremendous potential for sustainable mass production of fuels and chemicals, and high-value compounds such as aromatics and hydrocarbons produced by decomposing lignin are expected to be competitive enough.
- lignin is a complex polymer network structure, and its chemical structure or property differs depending on the raw materials. In order to humidify the lignin, the lignin must be decomposed according to the type of lignin.
- Korean Patent No. 1466882 discloses a cation-substituted heteropoly acid supported on mesoporous carbon and a noble metal-supported catalyst, a method for preparing the catalyst, and a method for decomposing lignin compounds using the catalyst
- Korean Patent Publication No. 2013-0141236 Discloses a method for enzymatic degradation of lignin using tyrosinase, but there is no description on the production method of the humicified lignin converting agent of the present invention.
- the present invention has been made in view of the above-mentioned needs, and the present inventors have found that the present inventors have found that, in anaerobic conditions, the chemical degradation by high temperature and high pressure treatment, the chemical decomposition by high oxidation reaction using ozone and the biodegradation using microorganisms having lignin- The present inventors have completed the present invention by suggesting that it is possible to produce a certain form of lignin-converting material having the same function as humic acid from various kinds of lignin through individual processes or combination processes.
- the present invention provides a method for producing a lignin converting body from lignin, which comprises decomposing lignin through a high-temperature high-pressure reaction.
- the present invention provides a method for producing a lignin-converting material, which further comprises at least one of an oxidation step and a microbial decomposition step after the high-temperature high-pressure reaction.
- the present invention also provides a system for producing a lignin-converting material from lignin comprising a high-temperature high-pressure reaction tank, an oxidation reaction tank, and a microbial decomposition tank.
- the method of the present invention can produce lignin conversions of a certain size that are humidified from various types of lignin, irrespective of their chemical structure or properties, through a combination of physical, chemical and biological processes.
- the lignin converting material produced by the method of the present invention can be usefully utilized as an active ingredient of agricultural fertilizers.
- Figure 1 is a schematic diagram of a system capable of producing humidified lignin conversions from various lignin raw materials.
- Figure 2 is a diagram showing the temperature conversion range for lignin conversion product production.
- FIG. 3 is a process diagram of the detection step for homogenizing the lignin-converting material and is a process diagram when Fourier transform infrared spectroscopy (FT-IR) is used.
- FT-IR Fourier transform infrared spectroscopy
- Fig. 4 is a process diagram of the detection step for homogenizing the lignin converting agent, and is a process diagram when ultraviolet ray scanning is used.
- the present invention provides a method for producing a lignin-converting material from lignin, which comprises decomposing lignin through a high-temperature high-pressure reaction.
- the production method of the present invention may further include at least one of an oxidation reaction step and a microbial decomposition reaction step after the high-temperature high-pressure reaction, but is not limited thereto. Therefore, the production method of the present invention is characterized in that lignin conversion is carried out by various methods such as high temperature high pressure reaction-oxidation reaction, high temperature high pressure reaction-microorganism decomposition reaction, high temperature high pressure reaction-oxidation reaction- microorganism decomposition reaction, high temperature high pressure reaction- Sieve production is possible.
- the lignin of the present invention is a polymer compound in which phenylpropanoid is irregularly polymerized.
- Coniferyl alcohol, coumaryl alcohol, and sinapyl alcohol are carbon-oxygen It is a polymer forming an amorphous structure connected by a carbon-carbon bond.
- the lignin of the present invention includes lignin or a derivative of lignin contained in a plant structure and may also include lignin treated under a strong alkali or strong acid condition in the pulp manufacturing process.
- lignin-containing materials include, but are not limited to, plant-derived lignocellulose-based materials, or lignocellulose-based material processed under relaxed conditions. Examples of lignocellulose-based materials include whole or part of plants, processed products having woody parts, and the like.
- Plants include, but are not limited to, woody plants such as coniferous trees, broad-leaved trees, and eucalyptus, as well as grasses such as rice, barley, corn, sorghum, kenaf,
- a non-utilization material of plant-derived lignocellulose material may be used.
- the unused material include thinning material (thinning material), ground leaf of pruned plant, non-viable fruit such as pine cone, and post-harvest foliage of edible part.
- materials treated with lignocellulose-based materials under relaxed conditions include lignophenol derivatives described in JP-A-2-233701 and JP-A-9-278904.
- the lignin converting agent of the present invention may be a humic acid analogue.
- the humic acid analogue means a substance having the property of humic acid.
- humic acid is a humic substance which dissolves only in the pH of 2.0 or higher, which is an organic matter other than the organisms contained in the soil, and which is an acidic organic matter of brown or black remaining in the humic substance, which is not removed by the solvent. Humic acid accounts for more than 50% of the dissolved organic matter in the natural world, and affects the distribution of many substances in the soil depending on the degree of dissolution. Various functional groups such as carboxyl group, alcoholic group, phenol group and enol group of humic acid react chemically such as hydrophobic, adsorption of hydrophilic substances, redox reaction and the like. Another name is called acidic acid. Treating humic acids in crops or in soil has the same effect as composting or organic fertilizer can be absorbed directly by the crop or in a form that the soil is ready to use.
- the high-temperature and high-pressure reaction may be performed at a temperature of 200 to 400 ° C. and a pressure of 2 to 15 atm, but is not limited thereto.
- amorphous lignin raw lignin
- the humicified lignin-converted material was a carbonaceous substance
- the range of the corresponding temperature range was 200 to 400 ° C.
- the high-temperature and high-pressure reaction of the present invention may be carried out under anaerobic conditions including an oxygen-free condition.
- anaerobic conditions including an oxygen-free condition.
- all of the lignin raw materials become ashes and it is impossible to produce a lignin-converting material.
- the oxidation reaction may be a high-level oxidation method using ozone (O 3 ) having a strong oxidizing ability, but the present invention is not limited thereto.
- a high oxidation method using ultraviolet light or a Panton reaction may be ≪ / RTI >
- High-level oxidation refers to a process in which OH radicals are generated as intermediates and oxidized much more strongly than conventional oxidants to decompose the substance.
- the advanced oxidation process is advantageous in that it does not leave any toxicity after treatment, but also quickly disintegrates easily biodegradable materials which are difficult to decompose biologically by powerful sterilizing power and oxidation.
- the microorganism is a microorganism producing lignin-decomposing enzyme and may be a white rot fungi, but is not limited thereto.
- the most effective lignin-degrading microorganisms are white rot fungi, especially Phanerochaete chrysosporium and Trametes versicolor .
- the fungus-produced lignin degrading enzyme Three classes of enzymes are known: laccases, manganese-dependent peroxidases and lignin peroxidases.
- fungi such as white rot fungi have a long incubation time and have a problem of genetic use due to the difficulty of mutation.
- the mold other than bacteria only a few strains belonging like Streptomyces (Streptomyces), Rhodococcus (Rhodococcus), switch pinggo emptying (Sphingobium) and Pseudomonas (Pseudomonas) is known as lignin-degrading microorganisms.
- Streptomyces Streptomyces
- Rhodococcus Rhodococcus
- switch pinggo emptying Sphingobium
- Pseudomonas Pseudomonas
- the production method of a lignin-converting material from lignin according to the present invention is a primary method of producing a humicified lignin-converting material through a high-temperature and high-pressure reaction step, and a lignin conversion If the body is not produced, a humidified lignin conversion product can be produced by combining chemical degradation such as high oxidation and / or biological degradation using microorganisms.
- the production method of the present invention may include, but is not limited to, a step of detecting the decomposition level of lignin after each reaction step of high-temperature high-pressure, oxidation, or microbial decomposition to produce a uniform lignin conversion product .
- the detection may be performed by irradiating the lignin degradation product with near-infrared rays or ultraviolet rays, but the present invention is not limited thereto, and can be performed by a method capable of detecting a compound composition or composition known in the art.
- the method of detecting the decomposition level for homogenizing the lignin-converting material can use Fourier transform infrared spectroscopy (FT-IR) or ultraviolet ray scanning,
- FT-IR Fourier transform infrared spectroscopy
- the determination of the degradation level of the sieve is carried out by comparing the patterns of the detection results with the humic acid control and terminating the reaction when the same tendency analysis result is obtained and returning if the tendency of the result of analysis of the sample does not agree with the humic acid, Can be designed to perform the reaction. Since lignin raw materials have characteristics that are not characterized, it is not correct to judge specific values from the detection results by standardization.
- a system for producing a lignin conversion product from lignin comprising a high-temperature high-pressure reaction tank, an oxidation reaction tank, and a microbial decomposition tank.
- the system for producing the lignin conversion product of the present invention is a system for humidifying lignin which forms an amorphous structure in which phenylpropanoid is irregularly polymerized. It is a system for decomposing lignin at a high temperature A high pressure reaction tank, an oxidation reaction tank in which lignin decomposition occurs by a chemical method, and a microorganism decomposition tank in which lignin decomposition occurs by a biological method, but the present invention is not limited thereto.
- the lignin converting agent may be a humic acid analog as described above.
- the system for producing the lignin-converting material of the present invention may further comprise a detector capable of detecting the decomposition level of the lignin degradation product which has been reacted from each reaction tank or the decomposition tank, in addition to the high-temperature high-pressure reaction tank, the oxidation reaction tank, but may also include, but are not limited to, a separation vessel that can be recovered by centrifugation of the final degradation product.
- the high-temperature high-pressure reaction tank operates on a principle similar to that of the biochar manufacturing apparatus disclosed in Korean Patent No. 1399129, and more specifically, A heater unit for decomposing the lignin raw material by applying heat to the inside of the chamber unit, a pressurizing unit for decompressing the lignin raw material by applying pressure to the inside of the chamber unit, water supplied into the chamber unit to decompose the decomposed lignin A water supply part for increasing the specific surface area of the raw material and an agitating part for agitating the lignin raw material with the increased specific surface area.
- the nitrogen supply unit may further include a nitrogen supply unit.
- a control unit for determining and controlling the temperature and / or pressure inside the chamber through the heater unit or the pressurizing unit when the temperature and / or pressure inside the chamber reaches the set condition is included in the high temperature and pressure reaction tank, A temperature sensor for sensing an internal temperature of the chamber, a timer for measuring an operation time, and a memory unit in which a control algorithm is stored.
- the present invention is not limited thereto.
- the microorganism reaction tank may further include a pH controller for adjusting the pH environment to optimize the activity of the microorganism producing lignin-degrading enzyme, It does not.
- the system for producing the lignin-converting material of the present invention is a system in which a high-temperature high-pressure reaction tank, an oxidation reaction tank and a microorganism decomposition tank are organically connected to each other, and one process or two or more processes are combined according to the chemical properties of the lignin raw material, It is a system that can produce a lignin conversion product.
- the method and system for producing lignin-converting substances from lignin including physical decomposition of high-temperature high-pressure reaction, chemical decomposition of oxidation reaction, and / or biological decomposition by microorganism, , It is possible to improve utilization of various biomass or industrial byproducts including lignin which has been left unchanged as it is.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Polymers & Plastics (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Animal Husbandry (AREA)
- Mycology (AREA)
- Food Science & Technology (AREA)
- Compounds Of Unknown Constitution (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The present invention relates to: a method for producing a humified lignin conversion product from lignin, comprising a step of at least one of physical degradation using high temperature and high pressure reactions, chemical degradation using oxidation reactions, and biological degradation using microorganisms; and a system for producing a humified lignin conversion product from lignin, comprising a high temperature and high pressure reaction tank, an oxidation reaction tank, and a microbial degradation tank.
Description
본 발명은 휴믹화된 리그닌 전환체의 생산 방법에 관한 것으로, 더욱 구체적으로는 고온고압 반응의 물리적 분해, 산화 반응의 화학적 분해, 및/또는 미생물에 의한 생물학적 분해 단계를 포함하는 리그닌으로부터 휴믹화된 리그닌 전환체의 생산 방법에 관한 것이다.The present invention relates to a method for producing a humidified lignin converting material, and more particularly to a method for producing humidified lignin converting material from lignin comprising physical decomposition of a high temperature and high pressure reaction, chemical decomposition of an oxidation reaction, and / To a production method of a lignin converting body.
본 발명은 산림청에서 지원한 산림생명자원 소재발굴연구 사업(2017041A00-1819-BA01)과, 교육부에서 지원한 기초연구역량강화사업(중점연구소지원사업)(NRF-2015R1A6A1A03031413)으로 수행된 연구결과입니다.The present invention is the result of the research conducted by the Forestry Agency in the research project of forest resources resource exploration (2017041A00-1819-BA01) and the basic research capacity enhancement project supported by the Ministry of Education (NRF-2015R1A6A1A03031413).
리그닌(lignin)은 침엽수나 활엽수 등의 목질부 구성 성분 중 지용성 페놀 고분자 성분으로서, 건조 목재의 20~35 중량%를 차지한다. 리그닌은 바이오 매스의 구성 성분 중 셀룰로오스에 이어 가장 풍부하고 쉽게 구할 수 있는 유기 고분자로서, 화석화 되지 않은 유기 탄소의 30%를 차지하고 있는 것으로 알려져 있다. 구체적으로 리그닌은 탄소 63.4%, 수소 5.9%, 산소 30%, 회분(ash) 0.7%로 이루어져 있으며, 많은 페닐기를 포함하고 있기 때문에 방향족 화합물을 생산하기 위한 중요한 원료가 될 수 있다. 또한 리그닌은 제지산업에서 부산물로써 상당한 양이 발생하므로 이를 연료와 다른 화학물질로 변환하기 위한 노력이 많이 진행되고 있다.Lignin is a fat-soluble phenol polymer component among woody constituents such as coniferous trees and broad-leaved trees, and accounts for 20 to 35% by weight of the dried wood. Lignin is the most abundant and readily available organic polymer after cellulose in biomass, accounting for 30% of unfossilized organic carbon. Specifically, lignin is composed of 63.4% of carbon, 5.9% of hydrogen, 30% of oxygen and 0.7% of ash, and since it contains many phenyl groups, it can be an important raw material for producing aromatic compounds. Lignin also generates significant amounts as a by-product in the paper industry, and efforts are underway to convert it to fuels and other chemicals.
생산 방법으로 분류된 리그닌들은 분자량 분포에 있어서 각기 다른 차이를 보이며 그 구조는 화학적으로 복잡하지만, 기본적으로 페닐프로판을 기본단위로 구성된 코니페릴 알코올(coniferyl alcohol), 쿠마릴 알코올(coumaryl alcohol) 및 시나필 알코올(sinapyl alcohol) 들이 탄소-산소 혹은 탄소-탄소의 결합으로 연결된 무정형 구조를 형성하고 있는 고분자이다. 리그닌의 이러한 구조적 안정성으로 인하여, 생물학적 혹은 화학적 변환을 통한 단량체 화학물질을 생산하는 것은 어려운 실정이며, 위 과정을 통해 생산된 물질도 저급 및 저부가 원료로 취급되고 있다. 그러나 리그닌은 연료 및 화학물질의 대량생산에 지속 가능한 엄청난 잠재력이 있는 자원으로서, 리그닌을 분해하여 생산된 방향족 및 탄화수소 등의 고부가가치 화합물들은 충분한 경쟁력이 있을 것이라 예상된다.The lignins classified by the production method show different differences in the molecular weight distribution, and their structure is chemically complex. However, the lignins are basically composed of coniferyl alcohol, coumaryl alcohol, It is a polymer that forms an amorphous structure in which sinapyl alcohols are linked by a carbon-oxygen or carbon-carbon bond. Due to this structural stability of lignin, it is difficult to produce monomeric chemicals through biological or chemical transformation, and materials produced through the above process are treated as low and low raw materials. However, lignin is a resource with tremendous potential for sustainable mass production of fuels and chemicals, and high-value compounds such as aromatics and hydrocarbons produced by decomposing lignin are expected to be competitive enough.
전통적으로 리그닌 분해 연구들은 발효 및 열분해 공정 등이 활용되어왔다. 생촉매를 이용한 발효공정은 반응 특성상 반응속도가 매우 느리며, 열분해 공정은 고온반응으로 인한 에너지손실, 높은 타르(tar) 함량, 유기산 생성물의 부식성 및 높은 함수율 등의 문제점으로 인해서 경제성이 크게 떨어지는 단점이 있다(P. F. Britt, et al., 1995, J. Org. Chem. 60:6523).Traditionally, lignin degradation studies have been used for fermentation and pyrolysis processes. The fermentation process using the biocatalyst is very slow in the reaction characteristics and the pyrolysis process is disadvantageous in economical efficiency due to problems such as energy loss due to high temperature reaction, high tar content, corrosiveness of organic acid products and high moisture content (PF Britt, et al., 1995, J. Org. Chem. 60: 6523).
또한, 리그닌은 복잡한 고분자 그물상 구조로, 화학구조나 성상이 원료에 따라 차이가 있어 이를 휴믹화하기 위해서는 리그닌 종류별로 분해조건을 맞춰야 한다.In addition, lignin is a complex polymer network structure, and its chemical structure or property differs depending on the raw materials. In order to humidify the lignin, the lignin must be decomposed according to the type of lignin.
한편, 한국등록특허 제1466882호에는 '중형기공성 탄소에 담지된 양이온 치환 헤테로폴리산 및 귀금속 담지 촉매, 그 제조방법 및 상기 촉매를 이용한 리그닌 화합물 분해 방법'이 개시되어 있고, 한국공개특허 제2013-0141236호에는 티로시나제(tyrosinase)를 이용한 '리그닌의 효소 분해 방법'이 개시되어 있으나, 본 발명의 휴믹화된 리그닌 전환체의 생산 방법에 대해서는 기재된 바가 없다.On the other hand, Korean Patent No. 1466882 discloses a cation-substituted heteropoly acid supported on mesoporous carbon and a noble metal-supported catalyst, a method for preparing the catalyst, and a method for decomposing lignin compounds using the catalyst, and Korean Patent Publication No. 2013-0141236 Discloses a method for enzymatic degradation of lignin using tyrosinase, but there is no description on the production method of the humicified lignin converting agent of the present invention.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 혐기 조건에서 고온고압 처리에 따른 물리적 분해, 오존을 이용한 고도산화 반응을 통한 화학적 분해 및 리그닌 분해효소를 가지고 있는 미생물을 이용한 생물학적 분해의 개별 과정 또는 조합 과정을 통해, 다양한 종류의 리그닌으로부터 휴믹산과 같은 기능을 가지는 일정한 형태의 리그닌 전환체를 생산할 수 있음을 제시함으로써, 본 발명을 완성하였다.DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned needs, and the present inventors have found that the present inventors have found that, in anaerobic conditions, the chemical degradation by high temperature and high pressure treatment, the chemical decomposition by high oxidation reaction using ozone and the biodegradation using microorganisms having lignin- The present inventors have completed the present invention by suggesting that it is possible to produce a certain form of lignin-converting material having the same function as humic acid from various kinds of lignin through individual processes or combination processes.
상기 과제를 해결하기 위해, 본 발명은 리그닌을 고온고압 반응을 통해 분해하는 단계를 포함하는 리그닌으로부터 리그닌 전환체의 생산 방법을 제공한다.In order to solve the above problems, the present invention provides a method for producing a lignin converting body from lignin, which comprises decomposing lignin through a high-temperature high-pressure reaction.
또한, 본 발명은 상기 고온고압 반응 후, 산화 반응 단계와 미생물 분해 반응 단계 중 하나 이상의 단계를 추가로 포함하는 것을 특징으로 하는 리그닌 전환체의 생산 방법을 제공한다.Further, the present invention provides a method for producing a lignin-converting material, which further comprises at least one of an oxidation step and a microbial decomposition step after the high-temperature high-pressure reaction.
또한, 본 발명은 고온고압 반응조, 산화 반응조 및 미생물 분해조로 이루어진 리그닌으로부터 리그닌 전환체를 생산하기 위한 시스템을 제공한다.The present invention also provides a system for producing a lignin-converting material from lignin comprising a high-temperature high-pressure reaction tank, an oxidation reaction tank, and a microbial decomposition tank.
본 발명의 방법은 물리적, 화학적 및 생물학적 공정의 조합을 통해 화학구조 또는 성상에 관계없이 다양한 유형의 리그닌으로부터 휴믹화된 일정한 규격의 리그닌 전환체를 생산할 수 있다. 또한, 본 발명의 방법을 통해 생산된 리그닌 전환체는 농업용 비료의 유효성분으로 유용하게 활용될 수 있다.The method of the present invention can produce lignin conversions of a certain size that are humidified from various types of lignin, irrespective of their chemical structure or properties, through a combination of physical, chemical and biological processes. In addition, the lignin converting material produced by the method of the present invention can be usefully utilized as an active ingredient of agricultural fertilizers.
도 1은 다양한 리그닌 원료로부터 휴믹화된 리그닌 전환체를 생산할 수 있는 시스템의 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic diagram of a system capable of producing humidified lignin conversions from various lignin raw materials.
도 2는 리그닌 전환체 생산을 위한 온도 변환 범위를 보여주는 그림이다.Figure 2 is a diagram showing the temperature conversion range for lignin conversion product production.
도 3은 리그닌 전환체의 균질화를 위한 검출 단계의 공정도로 푸리에 변환 적외분광법(FT-IR, Fourier transform infrared spectroscopy)을 이용한 경우의 공정도이다.FIG. 3 is a process diagram of the detection step for homogenizing the lignin-converting material and is a process diagram when Fourier transform infrared spectroscopy (FT-IR) is used.
도 4는 리그닌 전환체의 균질화를 위한 검출 단계의 공정도로 자외선 주사(scanning)를 이용한 경우의 공정도이다.Fig. 4 is a process diagram of the detection step for homogenizing the lignin converting agent, and is a process diagram when ultraviolet ray scanning is used.
본 발명의 목적을 달성하기 위하여, 본 발명은 리그닌을 고온고압 반응을 통해 분해하는 단계를 포함하는 리그닌으로부터 리그닌 전환체의 생산 방법을 제공한다.In order to accomplish the object of the present invention, the present invention provides a method for producing a lignin-converting material from lignin, which comprises decomposing lignin through a high-temperature high-pressure reaction.
또한, 본 발명의 생산 방법은 상기 고온고압 반응 후, 산화 반응 단계와 미생물 분해 반응 단계 중 하나 이상의 단계를 추가로 포함할 수 있으나, 이에 제한되지 않는다. 따라서, 본 발명의 생산 방법은 고온고압 반응-산화반응, 고온고압 반응-미생물 분해반응, 고온고압 반응-산화반응-미생물 분해반응, 고온고압 반응-미생물 분해반응-산화반응의 다양한 방법으로 리그닌 전환체의 생산이 가능하다.Further, the production method of the present invention may further include at least one of an oxidation reaction step and a microbial decomposition reaction step after the high-temperature high-pressure reaction, but is not limited thereto. Therefore, the production method of the present invention is characterized in that lignin conversion is carried out by various methods such as high temperature high pressure reaction-oxidation reaction, high temperature high pressure reaction-microorganism decomposition reaction, high temperature high pressure reaction-oxidation reaction- microorganism decomposition reaction, high temperature high pressure reaction- Sieve production is possible.
본 발명의 상기 리그닌은 페닐프로파노이드(phenylpropanoid)가 불규칙하게 중합된 고분자 화합물로, 코니페릴 알코올(coniferyl alcohol), 쿠마릴 알코올(coumaryl alcohol) 및 시나필 알코올(sinapyl alcohol) 들이 탄소-산소 혹은 탄소-탄소의 결합으로 연결된 무정형 구조를 형성하고 있는 고분자이다.The lignin of the present invention is a polymer compound in which phenylpropanoid is irregularly polymerized. Coniferyl alcohol, coumaryl alcohol, and sinapyl alcohol are carbon-oxygen It is a polymer forming an amorphous structure connected by a carbon-carbon bond.
본 발명의 상기 리그닌은 식물 구조체에 포함되어 있는 리그닌 또는 리그닌의 유도체를 포함하며, 펄프 제조 공정에 있어서 강알칼리 또는 강산 조건하에서 처리된 리그닌도 포함할 수 있다. 이와 같은 리그닌 함유 재료로는, 이에 한정하지는 않으나, 식물 유래의 리그노셀룰로오스계 재료 그대로, 혹은 완화된 조건에서 처리된 리그노셀룰로오스계 재료 처리물을 포함한다. 리그노셀룰로오스계 재료로는, 식물의 전체 또는 부분, 목질 부분을 갖는 가공품 등을 들 수 있다. 식물로는, 특별히 한정하지 않지만, 침엽수, 활엽수, 유칼리 등의 목본류 외에, 벼, 보리, 옥수수, 사탕수수, 케나프, 얼룩조릿대 등의 조릿대, 대나무 등의 초본류를 들 수 있다. 식물 유래의 리그노셀룰로오스 재료의 비이용 재료를 사용할 수도 있다. 비이용 재료로는, 간벌재(間伐材), 전정(剪定)된 식물의 지엽 등, 솔방울 등의 비식용인 과실, 식용 부분의 수확 후의 경엽 등을 들 수 있다. 또한, 리그노셀룰로오스계 재료를 완화된 조건에서 처리한 재료로는, 일본 공개특허공보 평2-233701호나 일본 공개특허공보 평9-278904호에 기재된 리그노페놀 유도체 등을 들 수 있다.The lignin of the present invention includes lignin or a derivative of lignin contained in a plant structure and may also include lignin treated under a strong alkali or strong acid condition in the pulp manufacturing process. Such lignin-containing materials include, but are not limited to, plant-derived lignocellulose-based materials, or lignocellulose-based material processed under relaxed conditions. Examples of lignocellulose-based materials include whole or part of plants, processed products having woody parts, and the like. Plants include, but are not limited to, woody plants such as coniferous trees, broad-leaved trees, and eucalyptus, as well as grasses such as rice, barley, corn, sorghum, kenaf, A non-utilization material of plant-derived lignocellulose material may be used. Examples of the unused material include thinning material (thinning material), ground leaf of pruned plant, non-viable fruit such as pine cone, and post-harvest foliage of edible part. Examples of materials treated with lignocellulose-based materials under relaxed conditions include lignophenol derivatives described in JP-A-2-233701 and JP-A-9-278904.
또한, 본 발명의 상기 리그닌 전환체는 휴믹산(humic acid) 유사체일 수 있다. 상기 휴믹산 유사체는 휴믹산의 성질을 갖는 물질을 의미한다.In addition, the lignin converting agent of the present invention may be a humic acid analogue. The humic acid analogue means a substance having the property of humic acid.
용어 "휴믹산"은 토양에 포함되는 생물 이외의 유기물 총체, 부식질 중 용제에 제거되지 않고 남아 있는 갈색이나 흑색의 산성유기물로 pH 2.0 이상의 산도에서만 녹는 휴믹물질이다. 휴믹산은 자연계에 용존 유기물질의 50% 이상을 차지하며, 용해 정도에 따라 많은 토양 내 물질 분포에 영향을 미친다. 휴믹산의 카르복실기, 알코올성, 페놀기 및 에놀기 등의 다양한 작용기들은 소수성, 친수성 물질들의 흡착, 산화 환원 반응 등의 화학적 반응을 한다. 다른 명칭으로 부식산이라고 한다. 휴믹산을 작물 또는 토양에 처리하는 것은, 퇴비나 유기질 비료를 작물이 바로 흡수하거나 토양이 바로 이용할 수 있는 형태로 투여하는 것과 같은 효과를 가진다.The term " humic acid " is a humic substance which dissolves only in the pH of 2.0 or higher, which is an organic matter other than the organisms contained in the soil, and which is an acidic organic matter of brown or black remaining in the humic substance, which is not removed by the solvent. Humic acid accounts for more than 50% of the dissolved organic matter in the natural world, and affects the distribution of many substances in the soil depending on the degree of dissolution. Various functional groups such as carboxyl group, alcoholic group, phenol group and enol group of humic acid react chemically such as hydrophobic, adsorption of hydrophilic substances, redox reaction and the like. Another name is called acidic acid. Treating humic acids in crops or in soil has the same effect as composting or organic fertilizer can be absorbed directly by the crop or in a form that the soil is ready to use.
본 발명의 생산 방법에 있어서, 상기 고온고압 반응은 200~400℃의 온도 및 2~15 atm의 압력 조건에서 이루어질 수 있으나, 이에 제한되지 않는다. 도 2를 통해 확인할 수 있듯이, 비결정형의 리그닌(원료 리그닌)에 열을 가하며 구조를 분석한 결과, 휴믹화된 리그닌 전환체가 전이형의 차(char; 유기물의 고상 탄화시에 생성되는 탄소질 물질)와 비결정형의 차의 일부에서 확인되었고, 상응되는 온도 구간의 범위가 200~400℃인 것으로 확인되었다.In the production method of the present invention, the high-temperature and high-pressure reaction may be performed at a temperature of 200 to 400 ° C. and a pressure of 2 to 15 atm, but is not limited thereto. As can be seen from FIG. 2, as a result of analyzing the structure by applying heat to the amorphous lignin (raw lignin), it was found that the humicified lignin-converted material was a carbonaceous substance ) And a part of the amorphous difference, and it was confirmed that the range of the corresponding temperature range was 200 to 400 ° C.
또한, 본 발명의 상기 고온고압 반응은 무산소 조건을 포함하는 혐기(anaerobic) 조건에서 이루어지는 것일 수 있다. 본 발명의 고온고압 반응이 호기(aerobic) 조건에서 이루어질 경우, 리그닌 원료가 모두 재(ashes)가 되어 리그닌 전환체의 생성이 불가능하다.In addition, the high-temperature and high-pressure reaction of the present invention may be carried out under anaerobic conditions including an oxygen-free condition. When the high-temperature and high-pressure reaction of the present invention is carried out under aerobic conditions, all of the lignin raw materials become ashes and it is impossible to produce a lignin-converting material.
자연환경에서 유기물의 변화는 지구화학적인 자연적 토양유기물 진화과정인 휴믹화과정(humification)을 통해 긴 시간에 걸쳐 일어나며, 진화과정 동안 방향성(aromatic), 소수성(hydrophobic) 성향을 띄게 된다. 예를 들어 유기물이 시간이 흐르면서 상부에 흙이 쌓이고 토압에 의한 압밀로 수분이 제거되면서 동시에 하부의 지열로 물기가 제거되면 식물성 천연 고분자는 토압과 지열로 중합과 축합 반응이 일어나 천연 식물성 고분자들(휴믹산, 플빅산, 휴민 등)이 생성된다(L.J. Tranvik, in Encyclopedia of Inland Waters, 2009).Changes in organic matter in the natural environment take place over a long period of time through the humification of the geochemical natural soil organic matter evolution process and become aromatic and hydrophobic during evolution. For example, as organic matter accumulates in the upper part of the soil, water is removed by consolidation by earth pressure, and at the same time water is removed by the lower geothermal heat, the vegetable natural polymer undergoes polymerization and condensation reaction with earth pressure and geothermal heat, Humic acids, humic acids, humic acids, etc.) (LJ Tranvik, in Encyclopedia of Inland Waters, 2009).
또한, 본 발명의 생산 방법에 있어서, 상기 산화 반응은 오존(ozone, O3)이 가진 강한 산화능력을 이용한 고도산화법일 수 있으나, 이에 제한되지 않으며, 자외선을 이용한 고도산화법 또는 팬톤 반응(Fenton reaction)과 같은 고도산화법일 수 있다.Also, in the production method of the present invention, the oxidation reaction may be a high-level oxidation method using ozone (O 3 ) having a strong oxidizing ability, but the present invention is not limited thereto. For example, a high oxidation method using ultraviolet light or a Panton reaction ). ≪ / RTI >
오존, 염소, 자외선 등을 이용한 고도산화(advanced oxidation)법은 기존의 산화처리의 한계를 극복하기 위해 개발되었다. 고도산화법은 OH 라디칼을 중간생성물질로 생성하여 기존 산화제보다 훨씬 강하게 산화하여 대상물질을 분해하는 공법을 의미한다. 고도산화 공정은 처리 후 독성을 남기지 않고, 강력한 살균력과 산화에 의해 생물학적으로 쉽게 분해하기 어려운 난분해성 물질도 빠르게 분해하는 장점이 있다.The advanced oxidation method using ozone, chlorine, ultraviolet rays, etc. has been developed to overcome the limitation of conventional oxidation treatment. High-level oxidation refers to a process in which OH radicals are generated as intermediates and oxidized much more strongly than conventional oxidants to decompose the substance. The advanced oxidation process is advantageous in that it does not leave any toxicity after treatment, but also quickly disintegrates easily biodegradable materials which are difficult to decompose biologically by powerful sterilizing power and oxidation.
또한, 본 발명의 생산 방법에 있어서, 상기 미생물은 리그닌 분해효소를 생산하는 미생물로 백색부후균(white rot fungi)류 일 수 있으나, 이에 제한되지 않는다. 현재 가장 효과적인 리그닌 분해미생물로는 백색부후균, 특히 페네로카에테 크리소스포리움(Phanerochaete
chrysosporium)과 트라메테스 버시컬러(Trametes versicolour)가 알려져 있으며, 이러한 곰팡이에 의해 생산되는 리그닌 분해효소는 라카제(laccases), 망간의존성 페록시다제(manganese-dependent peroxidases)와 리그닌 페록시다제(lignin peroxidases) 세가지 계열의 효소가 알려져 있다. 그러나 백색부후균과 같은 곰팡이는 생장이 늦어 배양시간이 길고 변이의 어려움으로 인해 유전적인 이용에도 문제가 있다. 한편 곰팡이 이외 세균에서는 스트렙토마이세스(Streptomyces), 로도코커스(Rhodococcus), 스핑고비움(Sphingobium) 및 슈도모나스(Pseudomonas) 등에 속하는 극소수의 균주만이 리그닌 분해미생물로 알려져 있다. 그러나, 미생물을 이용한 리그닌의 분해는 소요 시간이 길고 효율이 낮은 단점이 있다.In addition, in the production method of the present invention, the microorganism is a microorganism producing lignin-decomposing enzyme and may be a white rot fungi, but is not limited thereto. Currently, the most effective lignin-degrading microorganisms are white rot fungi, especially Phanerochaete chrysosporium and Trametes versicolor . The fungus-produced lignin degrading enzyme Three classes of enzymes are known: laccases, manganese-dependent peroxidases and lignin peroxidases. However, fungi such as white rot fungi have a long incubation time and have a problem of genetic use due to the difficulty of mutation. Meanwhile, the mold other than bacteria only a few strains belonging like Streptomyces (Streptomyces), Rhodococcus (Rhodococcus), switch pinggo emptying (Sphingobium) and Pseudomonas (Pseudomonas) is known as lignin-degrading microorganisms. However, the decomposition of lignin using microorganisms has a disadvantage in that the time required is long and the efficiency is low.
본 발명에 따른 리그닌으로부터 리그닌 전환체의 생산 방법은, 고온고압 반응 단계를 통해 휴믹화된 리그닌 전환체를 생산하는 것이 일차적인 방법이며, 고온고압 반응과 같은 물리학적 분해를 통해 휴믹화된 리그닌 전환체가 생산되지 않을 경우, 고도산화와 같은 화학적 분해 및/또는 미생물을 이용한 생물학적 분해의 과정을 조합하여 휴믹화된 리그닌 전환체를 생산할 수 있다.The production method of a lignin-converting material from lignin according to the present invention is a primary method of producing a humicified lignin-converting material through a high-temperature and high-pressure reaction step, and a lignin conversion If the body is not produced, a humidified lignin conversion product can be produced by combining chemical degradation such as high oxidation and / or biological degradation using microorganisms.
본 발명의 상기 생산 방법은 균일한 리그닌 전환체를 생산하기 위해, 고온고압, 산화 또는 미생물 분해의 각 반응 단계 후에 리그닌의 분해 수준을 검출하는 단계를 추가로 포함하는 것일 수 있으나, 이에 제한되지 않는다. 상기 검출은 리그닌 분해산물을 근적외선 또는 자외선 조사하여 검출하는 것일 수 있으나, 이에 제한되지 않으며, 당업계에 공지된 화합물 조성 또는 구성을 검출할 수 있는 방법을 통해 이루어질 수 있다. The production method of the present invention may include, but is not limited to, a step of detecting the decomposition level of lignin after each reaction step of high-temperature high-pressure, oxidation, or microbial decomposition to produce a uniform lignin conversion product . The detection may be performed by irradiating the lignin degradation product with near-infrared rays or ultraviolet rays, but the present invention is not limited thereto, and can be performed by a method capable of detecting a compound composition or composition known in the art.
일 예시로, 도 3 및 도 4와 같이 리그닌 전환체의 균질화를 위한 분해 수준의 검출 방법은 푸리에 변환 적외분광법(FT-IR, Fourier transform infrared spectroscopy) 또는 자외선 주사(scanning)를 이용할 수 있고, 전환체의 분해 수준의 판단은 휴믹산 대조구와 검출 결과의 경향(pattern)을 비교하여, 동일한 경향의 분석 결과가 나타날때 반응을 종료시키고, 시료의 분석 결과 경향이 휴믹산과 일치하지 않으면 반송시켜 추가의 공정 반응을 수행하도록 고안될 수 있다. 리그닌 원료는 특징지어지지 않는 성상을 가지고 있으므로, 검출 결과에서 특정 수치를 기준화하여 판단하는 것은 옳지 못하다.For example, as shown in FIG. 3 and FIG. 4, the method of detecting the decomposition level for homogenizing the lignin-converting material can use Fourier transform infrared spectroscopy (FT-IR) or ultraviolet ray scanning, The determination of the degradation level of the sieve is carried out by comparing the patterns of the detection results with the humic acid control and terminating the reaction when the same tendency analysis result is obtained and returning if the tendency of the result of analysis of the sample does not agree with the humic acid, Can be designed to perform the reaction. Since lignin raw materials have characteristics that are not characterized, it is not correct to judge specific values from the detection results by standardization.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 고온고압 반응조, 산화 반응조 및 미생물 분해조로 이루어진 리그닌으로부터 리그닌 전환체를 생산하기 위한 시스템을 제공한다.In order to accomplish still another object of the present invention, there is provided a system for producing a lignin conversion product from lignin comprising a high-temperature high-pressure reaction tank, an oxidation reaction tank, and a microbial decomposition tank.
본 발명의 리그닌 전환체를 생산하기 위한 시스템은, 페닐프로파노이드(phenylpropanoid)가 불규칙하게 중합된 무정형 구조를 형성하고 있는 리그닌을 휴믹화하기 위한 시스템으로, 리그닌의 분해가 물리적인 방법으로 일어나는 고온고압 반응조, 리그닌의 분해가 화학적인 방법으로 일어나는 산화 반응조 및 리그닌의 분해가 생물학적 방법으로 일어나는 미생물 분해조로 이루어져 있으나, 이에 제한되지 않는다.The system for producing the lignin conversion product of the present invention is a system for humidifying lignin which forms an amorphous structure in which phenylpropanoid is irregularly polymerized. It is a system for decomposing lignin at a high temperature A high pressure reaction tank, an oxidation reaction tank in which lignin decomposition occurs by a chemical method, and a microorganism decomposition tank in which lignin decomposition occurs by a biological method, but the present invention is not limited thereto.
본 발명의 시스템에서, 상기 리그닌 전환체는 전술한 것과 같이 휴믹산 유사체일 수 있다.In the system of the present invention, the lignin converting agent may be a humic acid analog as described above.
본 발명의 리그닌 전환체를 생산하기 위한 시스템은 상기 고온고압 반응조, 산화 반응조 및 미생물 분해조 외에, 각 반응조 또는 분해조로부터 반응 완료된 리그닌 분해물의 분해 수준을 검출할 수 있는 검출기를 추가로 포함할 수 있고, 최종 분해 산물을 원심분리하여 회수할 수 있는 분리조가 추가로 포함될 수 있으나, 이에 제한되지 않는다.The system for producing the lignin-converting material of the present invention may further comprise a detector capable of detecting the decomposition level of the lignin degradation product which has been reacted from each reaction tank or the decomposition tank, in addition to the high-temperature high-pressure reaction tank, the oxidation reaction tank, But may also include, but are not limited to, a separation vessel that can be recovered by centrifugation of the final degradation product.
또한, 본 발명의 일 구현 예에 따른 시스템에 있어서, 상기 고온고압 반응조는 한국등록특허 제1399129호에 제시된 바이오차(biochar) 제조장치와 유사한 원리로 작동되며, 보다 구체적으로는 리그닌 원료가 수용될 수 있는 챔버부, 상기 챔버부 내부에 열을 가하여 리그닌 원료를 분해시키는 히터부, 상기 챔버부 내부에 압을 가하여 리그닌 원료를 분해시키는 가압부, 상기 챔버부 내부에 물을 공급하여 상기 분해된 리그닌 원료의 비표면적을 증가시키는 물공급부, 상기 비표면적이 증가된 리그닌 원료를 교반시키는 교반부를 포함하는 것일 수 있으나, 이에 제한되지 않으며, 상기 챔버부의 내부를 혐기성 상태로 유지하기 위해 챔버부 내부에 질소를 공급하는 질소공급부를 추가로 포함할 수 있다. 또한, 상기 히터부 또는 가압부를 통해 챔버 내부의 온도 및/또는 압력이 설정 조건에 도달할 경우 이를 판단하고 조절할 수 있는 제어부가 고온고압 반응조에 포함되며, 사용자에 의하여 동작 조건 등이 입력되는 입력부, 챔버의 내부 온도를 감지하기 위한 온도센서부, 동작시간을 측정하기 위한 타이머부 및 제어 알고리즘이 저장된 메모리부가 더 포함될 수 있으나, 이에 제한되지 않는다.In addition, in the system according to an embodiment of the present invention, the high-temperature high-pressure reaction tank operates on a principle similar to that of the biochar manufacturing apparatus disclosed in Korean Patent No. 1399129, and more specifically, A heater unit for decomposing the lignin raw material by applying heat to the inside of the chamber unit, a pressurizing unit for decompressing the lignin raw material by applying pressure to the inside of the chamber unit, water supplied into the chamber unit to decompose the decomposed lignin A water supply part for increasing the specific surface area of the raw material and an agitating part for agitating the lignin raw material with the increased specific surface area. However, the present invention is not limited to this, and the inside of the chamber part may be filled with nitrogen The nitrogen supply unit may further include a nitrogen supply unit. In addition, a control unit for determining and controlling the temperature and / or pressure inside the chamber through the heater unit or the pressurizing unit when the temperature and / or pressure inside the chamber reaches the set condition is included in the high temperature and pressure reaction tank, A temperature sensor for sensing an internal temperature of the chamber, a timer for measuring an operation time, and a memory unit in which a control algorithm is stored. However, the present invention is not limited thereto.
또한, 본 발명의 일 구현 예에 따른 시스템에 있어서, 상기 미생물 반응조는 리그닌 분해효소를 생산하는 미생물의 활성을 최적으로 맞추기 위한 pH 환경을 조절할 수 있는 pH 조절기를 추가로 포함할 수 있으나, 이에 제한되지 않는다.In addition, in the system according to an embodiment of the present invention, the microorganism reaction tank may further include a pH controller for adjusting the pH environment to optimize the activity of the microorganism producing lignin-degrading enzyme, It does not.
또한, 본 발명의 리그닌 전환체를 생산하기 위한 시스템은 고온고압 반응조, 산화 반응조 및 미생물 분해조가 유기적으로 연결되어, 리그닌 원료의 화학성상 등에 따라 하나의 공정 또는 둘 이상의 공정을 조합하여, 최종적으로 균일한 리그닌 전환체를 생산할 수 있는 시스템이다.Further, the system for producing the lignin-converting material of the present invention is a system in which a high-temperature high-pressure reaction tank, an oxidation reaction tank and a microorganism decomposition tank are organically connected to each other, and one process or two or more processes are combined according to the chemical properties of the lignin raw material, It is a system that can produce a lignin conversion product.
이상에서 설명한 바와 같이 본 발명에 따른 고온고압 반응의 물리적 분해, 산화 반응의 화학적 분해, 및/또는 미생물에 의한 생물학적 분해 단계를 포함하는 리그닌으로부터 리그닌 전환체의 생산 방법 및 시스템은 다양한 종류의 리그닌 원료를 사용하여 휴믹화된, 균일한 성상의 리그닌 전환체를 생산할 수 있으므로, 종래 그대로 방치되던 리그닌을 포함하고 있는 다양한 바이오매스 또는 산업 부산물의 활용도를 제고할 수 있다는 장점이 있다.As described above, the method and system for producing lignin-converting substances from lignin, including physical decomposition of high-temperature high-pressure reaction, chemical decomposition of oxidation reaction, and / or biological decomposition by microorganism, , It is possible to improve utilization of various biomass or industrial byproducts including lignin which has been left unchanged as it is.
Claims (5)
- 리그닌을 고온고압 반응을 통해 분해하는 단계를 포함하는 리그닌으로부터 리그닌 전환체의 생산 방법.A method for producing a lignin conversion product from lignin comprising decomposing the lignin through a high-temperature high-pressure reaction.
- 제1항에 있어서, 상기 고온고압 반응 후, 산화 반응 단계와 미생물 분해 반응 단계 중 하나 이상의 단계를 추가로 포함하는 것을 특징으로 하는 리그닌 전환체의 생산 방법.The method according to claim 1, further comprising at least one of an oxidation reaction step and a microbial decomposition reaction step after the high-temperature high-pressure reaction.
- 제1항 또는 제2항에 있어서, 상기 리그닌 전환체는 휴믹산(humic acid) 유사체인 것을 특징으로 하는 리그닌 전환체의 생산 방법.The method according to claim 1 or 2, wherein the lignin converting agent is a humic acid analogue.
- 제1항 또는 제2항에 있어서, 상기 고온고압 반응은 혐기 조건에서 이루어지는 것을 특징으로 하는 리그닌 전환체의 생산 방법.The method according to claim 1 or 2, wherein the high-temperature high-pressure reaction is carried out under anaerobic conditions.
- 제2항에 있어서, 상기 미생물은 리그닌 분해효소를 생산하는 것을 특징으로 하는 리그닌 전환체의 생산 방법.3. The method according to claim 2, wherein the microorganism produces a lignin degrading enzyme.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170141172A KR101831966B1 (en) | 2017-10-27 | 2017-10-27 | Method for producing humified lignin conversion product |
KR10-2017-0141172 | 2017-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019083105A1 true WO2019083105A1 (en) | 2019-05-02 |
Family
ID=61387234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/004166 WO2019083105A1 (en) | 2017-10-27 | 2018-04-10 | Method for producing humified lignin conversion product |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101831966B1 (en) |
WO (1) | WO2019083105A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101831966B1 (en) * | 2017-10-27 | 2018-02-23 | 경상대학교산학협력단 | Method for producing humified lignin conversion product |
KR102250261B1 (en) * | 2018-10-15 | 2021-05-10 | 경상국립대학교산학협력단 | Composition for promoting plant growth comprising conversion product of lignin as effective component |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014015439A (en) * | 2012-07-11 | 2014-01-30 | Idemitsu Kosan Co Ltd | Method for producing lignin decomposed product |
KR20140063209A (en) * | 2012-11-16 | 2014-05-27 | 서울대학교산학협력단 | Novel metal catalyst supported on cation-exchanged heteropolyacid-impregnated activated carbon aerogel bearing sulfonic acid and decomposition method of lignin compounds using said catalyst |
JP2015006999A (en) * | 2013-06-24 | 2015-01-15 | 花王株式会社 | Method for producing lignin decomposed product |
KR101831966B1 (en) * | 2017-10-27 | 2018-02-23 | 경상대학교산학협력단 | Method for producing humified lignin conversion product |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4647704A (en) | 1986-04-28 | 1987-03-03 | Uop Inc. | Hydrocracking process for liquefaction of lignin |
AU2011302522A1 (en) | 2010-09-15 | 2013-05-02 | Aligna Technologies, Inc. | Bioproduction of aromatic chemicals from lignin-derived compounds |
JP2015003955A (en) | 2013-06-19 | 2015-01-08 | 独立行政法人産業技術総合研究所 | Method of decomposing lignin |
-
2017
- 2017-10-27 KR KR1020170141172A patent/KR101831966B1/en active IP Right Grant
-
2018
- 2018-04-10 WO PCT/KR2018/004166 patent/WO2019083105A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014015439A (en) * | 2012-07-11 | 2014-01-30 | Idemitsu Kosan Co Ltd | Method for producing lignin decomposed product |
KR20140063209A (en) * | 2012-11-16 | 2014-05-27 | 서울대학교산학협력단 | Novel metal catalyst supported on cation-exchanged heteropolyacid-impregnated activated carbon aerogel bearing sulfonic acid and decomposition method of lignin compounds using said catalyst |
JP2015006999A (en) * | 2013-06-24 | 2015-01-15 | 花王株式会社 | Method for producing lignin decomposed product |
KR101831966B1 (en) * | 2017-10-27 | 2018-02-23 | 경상대학교산학협력단 | Method for producing humified lignin conversion product |
Non-Patent Citations (2)
Title |
---|
HEDLUND, THERESE: "High Pressure and Temperature Conversion of Lignin and Black Liquor to Liquid Fuels.", CHALMERS UNIVERSITY OF TECHNOLOGY, MASTER'S THESIS, 2010, XP055597873 * |
WERSHAW, ROBERT L.: "Evaluation of Conceptual Models of Natural Organic Matter (humus) from a Consideration of the Chemical and Biochemical Processes of Humification.", SCIENTIFIC INVESTIGATIONS REPORT, 2004, XP055597886 * |
Also Published As
Publication number | Publication date |
---|---|
KR101831966B1 (en) | 2018-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liang et al. | A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification | |
Liu et al. | Study on biodegradation process of lignin by FTIR and DSC | |
Liu et al. | Evaluation of the correlations between biodegradability of lignocellulosic feedstocks in anaerobic digestion process and their biochemical characteristics | |
Song et al. | Biological Pretreatment under Non-sterile Conditions for Enzymatic Hydrolysis of Corn Stover. | |
Yadav et al. | Biological treatment of lignocellulosic biomass by Chaetomium globosporum: process derivation and improved biogas production | |
Lopez et al. | Biodelignification and humification of horticultural plant residues by fungi | |
Xu et al. | Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover | |
Arisht et al. | Biotoxicity assessment and lignocellulosic structural changes of phosphoric acid pre-treated young coconut husk hydrolysate for biohydrogen production | |
Nurika et al. | Application of ligninolytic bacteria to the enhancement of lignocellulose breakdown and methane production from oil palm empty fruit bunches (OPEFB) | |
Wu et al. | Isolation and characterization of a novel thermotolerant alkali lignin-degrading bacterium Aneurinibacillus sp. LD3 and its application in food waste composting | |
Saini et al. | Valorization of rice straw biomass for co-production of bioethanol, biopesticide and biofertilizer following an eco-friendly biorefinery process | |
Jain et al. | Bioprospecting of novel ligninolytic bacteria for effective bioremediation of agricultural by-product and synthetic pollutant dyes | |
Troncozo et al. | Fungal transformation and reduction of phytotoxicity of grape pomace waste | |
Hong et al. | Lignin in paper mill sludge is degraded by white-rot fungi in submerged fermentation | |
Majumdar et al. | Biotransformation of paper mill sludge by Serratia marcescens NITDPER1 for prodigiosin and cellulose nanocrystals: A strategic valorization approach | |
KR101831966B1 (en) | Method for producing humified lignin conversion product | |
Hong et al. | Enzyme production and lignin degradation by four basidiomycetous fungi in submerged fermentation of peat containing medium | |
Araujo et al. | Conventional lignin functionalization for polyurethane applications and a future vision in the use of enzymes as an alternative method | |
Nagarajan | Mini review on corncob biomass: a potential resource for value-added metabolites | |
Singh et al. | Enhanced vermicomposting of leaf litter by white-rot fungi pretreatment and subsequent feeding by Eisenia fetida under a two-stage process | |
Brzonova et al. | Fungal biotransformation of insoluble kraft lignin into a water soluble polymer | |
Chable-Villacis et al. | Enzymatic hydrolysis assisted with ligninocellulolytic enzymes from Trametes hirsuta produced by pineapple leaf waste bioconversion in solid-state fermentation | |
Singh et al. | Laccase mediated delignification of wasted and non-food agricultural biomass: Recent developments and challenges | |
Garcia-Torreiro et al. | Simultaneous valorization and detoxification of the hemicellulose rich liquor from the organosolv fractionation | |
Wan et al. | Screening of lignin-degrading fungi and bioaugmentation on the directional humification of garden waste composting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18869969 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18869969 Country of ref document: EP Kind code of ref document: A1 |