WO2019083010A1 - Inspection system and inspection method - Google Patents
Inspection system and inspection methodInfo
- Publication number
- WO2019083010A1 WO2019083010A1 PCT/JP2018/039846 JP2018039846W WO2019083010A1 WO 2019083010 A1 WO2019083010 A1 WO 2019083010A1 JP 2018039846 W JP2018039846 W JP 2018039846W WO 2019083010 A1 WO2019083010 A1 WO 2019083010A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inspection
- probe
- hole
- unit
- diameter
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/954—Inspecting the inner surface of hollow bodies, e.g. bores
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/26—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
Definitions
- the present invention relates to an inspection system and method for inspecting a surface by irradiating a laser beam for inspection from an inspection head to an object to be inspected.
- an axial inspection head provided with a mirror at its tip is moved along an axis while being rotated around the axis by a drive mechanism, and the axis is inserted into the inspection head.
- the light path of the inspection light incident along is changed by a mirror, and the inspection light whose light path is changed is irradiated to the inspection object, and the inspection object is reflected by the inspection object and the light quantity of the inspection light reentered into the inspection head
- the inspection head includes a head main body attached to a drive mechanism, and a holding unit detachably provided to the head main body and holding a mirror. Have been described.
- inspection of the surface of a microfabricated article is required, for example, inspection of the surface of an inspection object (inspection object) provided with a small-diameter (ultra-fine) hole having a diameter of about several mm It is requested.
- One aspect of the present invention is a moving table including a clamp for holding an outer peripheral side of a work including a through hole, and an inspection head including an inspection probe for outputting an inspection light from a tip to scan an inner peripheral surface of the through hole.
- System inspection system.
- the inspection head takes the inspection probe into and out of the through hole from the first opening on one side of the through hole of the work at a first position where the work is transported by the moving table.
- the system further includes, in the first position, a preliminary test unit for bringing the dummy probe into and out of the through hole from the second opening on the other side of the through hole of the work, and the presence or absence of contact between the dummy probe and the work And a unit for confirming.
- the dummy probe is inserted from the second opening opposite to the through hole at the first position where the inside of the through hole is inspected by the inspection probe before the inside of the through hole is inspected using the inspection probe.
- pre-test unit By checking the contact between the dummy probe and the work by the unit for checking the presence or absence of the contact, it can be determined whether or not the through hole of the work is accurately set to the inspection probe. Therefore, it is possible to prevent in advance that the expensive and easily damaged inspection probe, particularly the very thin and easily damaged inspection probe, contacts the inner surface of the through hole of the workpiece and the like. Therefore, it is possible to provide a system for safely inspecting the state of the surface inside the through hole at low cost.
- the checking unit may comprise a unit, eg a sensor, for checking the damage of the dummy probe.
- a unit eg a sensor
- One method of confirming the presence or absence of contact between the dummy probe and the work may be to confirm damage to the dummy probe with a sensor.
- the diameter of the dummy probe may be larger than the diameter of the inspection probe. It may be checked in advance, including whether or not the minimum clearance is secured between the inspection probe and the through hole.
- the diameter Dd of the dummy probe and the diameter Dn of the inspection probe may satisfy the following condition (1). It can be pre-tested by the preliminary test unit, including the presence or absence of clearance. 1 ⁇ Dd / Dn ⁇ 2 (1)
- the diameter Dn of the inspection probe may satisfy the following condition (2). 0.5 mm ⁇ Dn ⁇ 1.5 mm (2)
- This system further has a camera unit that confirms the position of the first opening or second opening of the work held by the clamp of the moving table at the second position where the work is transported by the moving table. You may have.
- the position of the first opening of the work relative to the moving table can be confirmed by image processing or the like. Therefore, the moving table can be moved so that the through hole of the workpiece is set to the first position more accurately.
- the system may further include a moving unit that moves the moving table from a third position for loading the work, through the second position to the first position.
- the workpiece can be loaded at the third position, the position of the workpiece relative to the moving unit can be confirmed at the second position, and the inner surface inspection of the through hole of the workpiece can be performed at the first position.
- the system further supplies a laser beam for inspection along the central axis through the inside of the inspection head, which is hollow extending in a rod shape along the central axis and rotated around the central axis, along the central axis.
- You may have an optical system which receives the reflected light from the surface of the to-be-inspected object returned.
- the inspection head is a very thin, hollow, needle-like inspection probe mounted along a central axis on a rotating portion that is rotationally driven, a cylindrical holder portion mounted on the rotating portion and having a front wall, and the front wall And may be included.
- the inspection probe is an optical element disposed at the tip, and emits an inspection laser beam (inspection light) toward the object to be inspected and guides the reflected light in the central axis direction with respect to the central axis. May be included.
- a very thin head with a diameter of around 1 mm, for example, is inserted into the hole to be inspected. It is desirable to stably rotate a very thin head to avoid the interference of In this system, the tip of the inspection head is made into a very thin hollow needle-like shape, which is supported by the thick holder and rotated, so that the very thin inspection probe can be stably rotated even in the small diameter hole. Can inspect the inner surface of the hole.
- the diameter Dn of the ultrafine inspection probe may satisfy the following condition (3) in relation to the diameter Dh of the front wall of the holder portion or in the vicinity thereof. 5 ⁇ Dh / Dn ⁇ 40 (3)
- the diameter Dn of the inspection probe and the thickness L of the front wall of the holder may satisfy the following condition (4). 5 ⁇ L / Dn ⁇ 30 (4)
- the optical system is an optical fiber bundle inserted into the inspection probe, which includes a non-rotational optical fiber bundle, and the inspection probe is a light control lens disposed between the tip of the optical fiber bundle and the optical element, It may include a light control lens that rotates with the probe.
- the system may have a rotation unit that rotates the inspection head about a central axis.
- the system may further include a moving unit that moves the inspection object (workpiece, workpiece) including the hollow portion into which the inspection probe is inserted and the inspection head relative to the central axis.
- the inner diameter Di of the hollow portion (through hole) to be inspected may satisfy the following condition (5). (Dn + 0.5 mm) ⁇ Di ⁇ (Dn + 3.0 mm) (5) However, the unit of the diameter Dn and the inner diameter Di is mm.
- One of the other aspects of this invention is the method of test
- the inspection system is inserted from the first opening on one side of the through hole of the workpiece at the first position where the workpiece is conveyed by the movable table and the movable table including the clamp that holds the outer peripheral side of the workpiece,
- An inspection probe that outputs inspection light from the inside to scan the inner circumferential surface of the through hole, a dummy probe inserted from the second opening on the other side of the through hole of the workpiece at the first position, and a dummy probe And a sensor unit for confirming the presence or absence of contact with the work.
- the method comprises the following steps. 1.
- the movement table is set to the first position. 2.
- the dummy probe is taken in and out of the through hole from the second opening. 3.
- the inspection system further includes a camera unit disposed at a second position at which the movable table transports the workpiece, and the method further comprises moving the workpiece to the first position at the movable table to the second position. It may include conveying and confirming the position of the first opening or the second opening of the work held by the clamp of the moving table by the camera unit.
- the surface inspection unit is extracted, The perspective view which shows the outline.
- Sectional drawing which shows schematic structure of a surface inspection unit.
- Sectional drawing which shows schematic structure of a test
- Sectional drawing which expands and shows the structure of the front-end
- the flowchart which shows the outline
- work is set to a movement table and it test
- the inspection system 100 includes a movable table 40 including a clamp 41 for holding an outer peripheral side 2 a of a workpiece (inspection object, workpiece) 2 including a through hole 3, and a first movable workpiece 40 transported by the movable table 40. From the surface inspection unit 1 which inspects the inner peripheral surface 4 of the through hole 3 at the position P1, and from the second opening 3b opposite to the first opening 3a of the through hole 3 of the work 2 at the first position P1. And a control unit 70 for controlling these systems, and a preliminary test unit 50 for taking the dummy probe 51 into and out of the through hole 3.
- the surface inspection unit (surface inspection apparatus, surface inspection system) 1 outputs an inspection light to scan the inner peripheral surface 4 of the through hole 3, and the first of one side of the through hole 3 of the workpiece 2
- the inspection head 10 for moving the inspection probe 12 into and out of the through hole 3 from the opening 3a, and the moving unit 25 for moving the inspection head 10 up and down.
- the movement table 40 includes a sensor 46 for position confirmation of the workpiece 2 and a sensor (sensor unit) 47 for confirming presence or absence of contact between the dummy probe 51 and the workpiece 2.
- the inspection system 100 further moves the camera unit 80 for photographing the side of the first opening 3a of the work 2 and the movement table 40 further at the second position P2 at which the work 2 is transported by the movement table 40, At a third position P3 at which the work 2 is loaded and unloaded, a work transfer robot 90 for loading and unloading the work 2 on the moving table 40 is included.
- the moving table 40 may include a moving unit 44 self-propelled along a rail or other guide 45 connecting these positions P1, P2 and P3, and the function of moving the moving table 40 by the guide 45
- the mobile unit may be included.
- the control unit 70 controls the transfer position (move position) of the move table 40, the load / unload control unit 72 controls the transfer robot 90, and the work 2 for the move table 40 by the camera unit 80.
- an inspection control unit 75 that inspects the inner surface 4 of the through hole 3 by the inspection probe 12.
- the surface inspection unit 1 including the inspection probe 12 and the preliminary test unit 50 including the dummy probe 51 are fixed to the common frame 101, and the inspection probe 12 and the dummy probe 51 are common at the first position P1. (Coaxially) along the axis 11 of the, to face with high precision, and to move up and down.
- the preliminary test unit 50 includes a moving unit 52 that moves the dummy probe 51 up and down along the axis 11.
- the moving unit 52 includes, for example, a ball screw 53 and a motor 54 that drives the ball screw 53.
- the surface inspection unit 1 and the preliminary test unit 50 may be disposed upside down, and may be disposed to face each other horizontally or horizontally.
- the arrangement of the upper and lower sides is suitable in order to avoid the influence of deflection due to gravity or the like when the inspection probe 12 and the dummy probe 51 are very thin with a diameter of several mm or less. Further, in consideration of the operation such as maintenance or replacement of the inspection probe 12, it is preferable to dispose the surface inspection unit 1 on the upper side.
- FIG. 2 shows the appearance of the surface inspection unit (surface inspection system, inspection apparatus, inspection unit) 1
- FIG. 3 shows a schematic configuration of the inspection apparatus 1 using a cross section (cross section III-III in FIG. 2) It shows.
- the inspection unit 1 is suitable for inspecting the shape or state of the inner surface 4 of a hollow portion (through hole) 3 such as a hole or a recess provided in a workpiece 2 to be inspected.
- a hollow portion 3 is a through hole having a diameter of several mm.
- the inspection unit 1 extends along the central axis 11 through a hollow inspection head 10 extending in a rod shape along the central axis 11, a rotation unit 20 that rotates the inspection head 10 around the central axis 11, and the inspection head 10.
- An optical system 30 for supplying laser light for inspection and receiving reflected light from the surface 4 of the inspection object 2 returned along the central axis 11, and a central axis of the inspection head 10 and the inspection object 2 11 includes a moving unit 25 relatively moving along 11, and a housing 5 incorporating the rotating unit 20, the optical system 30 and the moving unit 25.
- the moving unit 25 may move the inspection head 10 relative to the workpiece 2 to be inspected, and in the present embodiment, the inspection head 10 housed in the housing 5 as the moving unit 25 may be a housing 5 Is a unit that moves relative to the
- the moving unit 25 includes a carriage 28 mounted with the inspection head 10, the rotating unit 20 and the optical system 30, and a combination of a ball screw 26 and a motor 27 for moving the carriage 28 back and forth (left and right in FIG. 3).
- the inspection head 10 includes a fixing portion 19 serving as a base end and a rotating portion 18 mounted so as to rotate with respect to the fixing portion 19, and the fixing portion 19 is mounted on the carriage 28 via the mounting unit 29. There is.
- Inspection head (head for inner surface inspection s) 10 has a very thin needle portion (inspection probe, probe) projecting forward (in this system, lower side) 16 along central axis (rotational axis, axial center) 11 at the tip.
- the inspection probe 12 is fixed to the front wall 14 a of the thick cylindrical holder portion 14 with respect to the inspection probe 12 so as to protrude along the central axis 11, and is fixed to the rotating portion 18 via the holder portion 14 It rotates around the central axis 11 together with the rotating portion 18.
- the configuration of the moving unit 25 is an example, and may be a slider, a moving table, or the like.
- the moving unit 25 moves the inspection head 10 to a position P 1 projecting forward from the housing 5 and a position P 2 at which the inspection head 10 retracts into the housing 5.
- the inspection object 2 may be moved using a robot or the like.
- the configuration of the moving unit 25 is an example, and may be a slider, a moving table, or the like.
- the moving unit 25 moves the inspection head 10 to an inspection position 10 a projecting forward from the housing 5 and a position 10 b where the inspection head 10 retracts into the housing 5.
- the optical system 30 includes a semiconductor laser (laser diode, LD) 31 that generates a laser beam for inspection, a light receiving element (for example, a photodiode, CCD, CMOS, etc.) 32 that receives reflected light, and a drive of the semiconductor laser 31. And a control unit 33 including a circuit, a circuit for processing a signal received by the light receiving element 32, and the like.
- a signal received by the optical system 30 is sent to a computer (personal computer) (not shown) via the control unit 33, and is further data processed and used for analysis of the surface 4 of the inspection object 2.
- the optical system 30 further includes an optical fiber 35 inserted into the inside of the inspection probe 12 through the inspection head 10.
- An example of the rotation unit 20 is a motor 21 mounted on a carriage 28.
- the pulley 22 driven by the motor 21 is connected to the rotating portion 18 of the inspection head 10 by the drive belt 23, and the motor 21 rotates the rotating portion 18 of the inspection head 10 around the central axis 11 via the drive belt 23. It rotates at high speed (about the central axis 11).
- FIG. 5 shows a schematic configuration of the inspection head 10 using a cross section (cross section VV in FIG. 4). Further, FIG. 6 shows the tip portion (front portion) of the inspection head 10 using an enlarged cross section, and FIG. 7 shows the configuration of the inspection probe 12 at the tip of the inspection head 10 using an enlarged cross section .
- the inspection head 10 is a hollow cylindrical body generally extending along the rotation axis 11 and coaxially mounted so as to rotate via the bearing 17 with respect to the fixed portion 19 at the proximal end and the fixed portion 19. , A rotating portion 18 extending towards the tip 16.
- the rotating portion 18 is rotationally driven, and a relatively thick drive portion 15 to which rotational force is transmitted via the drive belt 23, a holder portion 14 attached to the front 16 of the drive portion 15, and a front wall 14a of the holder portion 14 And a needle-like inspection probe (insertion portion) 12 extending from the center of the head to a thin tip (forward).
- a radially directed opening (notch) 13 is provided at the tip 12 a of the inspection probe 12, and a laser beam for inspection (probe light, inspection light) 61 is an inspection object through the opening 13.
- the reflected light 62 from the surface 4 of the through hole 3 of the inspection object 2 is emitted from the inspection probe 12 back to the inspection head 10 so as to be emitted toward the hollow portion of the workpiece 2, in this example, the surface 4 of the through hole 3 It has become.
- the optical fiber bundle 35 for guiding the probe light 61 and the reflected light 62 along the central axis 11 is inserted into the inspection head 10.
- the optical fiber bundle 35 constituting the optical system 30 is a bundle of a plurality of fibers, and a light emitting optical fiber 35a for guiding the probe light 61 emitted from the LD 31 toward the inspection object 2 and a reflected light 62 from the inspection object 2 And a light receiving fiber 35 b leading to the light receiving element 32.
- the optical system 30 includes, inside the inspection head 10, a holding cylinder 34 that holds the optical fibers 35 in a bundled state.
- the inspection probe 12 extends forward from the front wall 14a of the holder portion 14 along the central axis 11 and has an optical element 39 attached to the tip (near the tip) 12a for controlling the emission direction of the probe light 61.
- the optical element 39 is a plane mirror, and may be an optical element having a reflection surface such as a prism that can control the emission direction and the incident direction of other light.
- the angle of the mirror surface (reflection surface) 38 of the optical element 39 is set to 45 degrees, and the probe light 61 emitted from the optical fiber 35 with the central axis 11 as the optical axis is the central axis The light is emitted in the direction orthogonal to the axis 11).
- light (reflected light) 62 reflected from the inner surface 4 of the inspection object is reflected in the direction of the optical fiber 35 of the central axis 11 by the reflection surface 38 of the optical element 39.
- the optical fiber 35 supported by the holding cylinder 34 is inserted to a position retracted from the tip 12a, and the light control lens 36 is approximately in the middle between the tip 35c of the optical fiber 35 and the optical element 39. It is attached to be supported by the inspection probe 12.
- the light adjustment lens 36 is an objective lens having a focal length suitable for condensing the probe light 61 output from the tip 35 c of the optical fiber 35 on the inspection target surface 4 via the reflection surface 38.
- the light adjustment lens 36 also includes a function of condensing the reflected light 62 introduced to the inspection head 10 via the reflection surface 38 on the tip 35 c of the optical fiber 35.
- the optical system 30 for supplying the probe light 61 along the central axis 11 of the inspection head 10 and detecting the reflected light 62 is not limited to the one using the optical fiber 35, but as an optical pickup etc. provided with a dichroic prism etc. It may be another known optical system. In order to input and output the probe light 61 and the reflected light 62 inside the very thin inspection probe 12, an optical system 30 using an optical fiber 35 is preferable.
- the precision of microfabrication has been improved, and in various applications, for example, a nozzle or path through which a fluid such as liquid passes, an optical device, a machine, a product or a machine in which an extremely thin through hole or bottomed hole is processed Parts are manufactured.
- One example of the extremely thin holes 3 has a diameter Di of several mm or less, for example, 5 mm or less, or 3 mm or less, or 2 mm or less.
- the diameter Dn of the inspection probe 12 for irradiating the probe light 61 to the inner surface 4 of the hole (through hole, hollow portion) 3 of such dimensions and collecting the reflected light 62 takes into account the clearance with the inner surface 4 As shown in the condition (2), it is required to be 1.5 mm or less.
- the diameter Di of the hole 3 to be inspected is about 3 mm or less
- the upper limit of the condition (2) indicating the diameter (outer diameter) Dn of the inspection probe 12 is 1.2 mm or less, for example It is desirable that it is 0 mm.
- the diameter (inner diameter) Di of the hole 3 which can be inspected in the inspection apparatus 1 of this type is about 1.0 mm or more, and the range shown in the equation (5) is preferable, including the clearance.
- An example of the inspection probe 12 is a stainless steel needle-like cylinder having an outer diameter Dn of 1.0 mm and an inner diameter of 0.8 mm.
- the inspection unit 1 provided with the inspection probe 12 can inspect the condition of the inner surface 4 of the hole 3 for the hole 3 having a diameter Di of 3 mm or less.
- an optical fiber 35 supported by a non-rotational holding cylinder 34 having a diameter (outside diameter) of about 0.6 mm is inserted inside the inspection probe 12.
- the holding cylinder 34 extends from the inspection probe 12 to the inside 14 b of the holder portion 14 and is fixed to a forwardly extending portion 19 a of the fixing portion 19.
- the inspection probe 12 is connected to the rotating unit 18 via the holder unit 14, and rotates around the central axis (rotational axis) 11 by the rotating unit 20.
- the optical element 39 attached (disposed) to the tip 12 a rotates with the inspection probe 12. Therefore, the probe light 61 reflected by the optical element 39 is emitted radially through the opening 13 and scans the inner surface 4 of the hole 3 in the circumferential direction.
- the reflected light 62 from the inner surface 4 is returned to the inside of the inspection probe 12 through the opening 13 and the optical element 39, reflected along the central axis 11, and input to the optical fiber 35.
- a light control lens 36 is fixed to the inspection probe 12, and the light control lens 36 rotates around the central axis 11 together with the inspection probe 12, that is, with the optical element 39. Therefore, the probe light 61 and the reflected light 62 are input to and output from the inner surface 4 through the light adjustment lens 36 and the optical element 39 which rotate together (in synchronization with each other). For this reason, the dependence of the rotation angle of the optical path constituted by the light adjustment lens 36 and the optical element 39 is small, and the inspection apparatus 1 makes the probe light 61 and the reflected light 62 Input and output, and can collect stable signals.
- the lens 36 it is difficult to fix the lens 36 in a state in which the dependence of the rotation angle is small on the inside of the very thin inspection probe 12 in which the diameter Di is about 1 mm and the inner diameter may be less than 1 mm.
- the inspection apparatus 1 of this example by attaching and rotating the lens 36 to the inspection probe 12, the probe light 61 and the reflected light 62 can be input / output under the same condition with respect to the rotation angle.
- the inspection probe 12 with a diameter Dn of 1.5 mm or less is accurately off-centered around the central axis 11 or It is desirable to rotate without differential movement.
- the inspection apparatus 1 as shown in an enlarged manner in FIG. 6, the holder portion 14 is supplied with the front wall 14 a of a sufficient size and with a sufficient thickness, and the inspection probe along the central axis 11 thereof.
- An attachment hole 14c having a length L and an inner diameter approximately equal to 1 mm and having an inner diameter substantially equal to the outer diameter Dn of 12 is provided.
- the inspection probe 12 is assembled and shipped to the holder unit 14 by a dedicated jig.
- the diameter (outer diameter) Dh of the holder portion 14 is a size easy to handle on site, and preferably satisfies the following condition (6). 5 mm ⁇ Dh ⁇ 30 mm (6)
- the lower limit of the condition (6) is preferably 10 mm, while the upper limit is more preferably 20 mm in consideration of weight and cost. Therefore, it is preferable that the outer diameter Dh of the holder portion 14 with respect to the diameter Dn of the probe 12 satisfy the condition (3) described above. Further, the lower limit of the condition (3) is preferably 10, the upper limit is preferably 30, and the more preferably 25.
- the length L of the mounting hole 14c (the wall thickness of the front wall 14a) is the above-mentioned condition (4) with respect to the outer diameter Dn of the probe 12 in order to stably hold the extra thin probe 12. It is preferable to satisfy Furthermore, the lower limit of the condition (4) is preferably 10, and the upper limit is preferably 20 in consideration of weight and cost. Specifically, it is preferable that the length (thickness of the front wall 14a) L of the mounting hole 14c satisfy the following condition (7). 5 mm ⁇ L ⁇ 30 mm (7) The lower limit of the condition (7) is preferably 10 mm, and the upper limit is preferably 20 mm.
- the inspection unit 1 mounts the very thin inspection probe 12 with a diameter of about 1 mm at the tip of the inspection head 10 and inspects the inner surface 4 of the hollow portion 3 with a diameter of about several mm, for example 3 mm or less And is suitable for evaluating the condition of its inner surface (surface).
- the probe 12 having a diameter Dn of about 1 mm and containing the above-mentioned structure is expensive. Moreover, in order to insert the probe 12 with a diameter of about 1 mm into the through hole 3 with a diameter Di of about 2 to 3 mm and rotate it at high speed, it is necessary to align the workpiece 2 with the probe 12 with high accuracy. If the value of x is low, the probe 12 interferes with the workpiece 2 and is damaged or destroyed. Therefore, in the inspection system 100, by inserting the dummy probe 51 first, the accuracy of alignment of the inspection probe 12 with the workpiece 2, specifically, the through hole 3 to be inspected, is verified in advance.
- FIG. 8 shows a process of inspecting the inner surface 4 of the through hole 3 of the work 2 in the inspection system 100 by a flowchart.
- FIG. 9 shows a state in which the movable table 40 has been moved to the third position P3 and the second position P2, and in FIG. 10, the movable table 40 is moved to the first position P1 and the dummy probe 51 is used. The state of inspection by the inspection probe 12 after verifying the position is shown.
- the table control unit 71 of the control unit 70 moves the moving table 40 to the third position P3.
- the load / unload control unit 72 controls the transfer robot 90 to set the new work 2 on the clamp 41 of the moving table 40, and the clamp 41 holds the outer peripheral surface 2 a of the work 2.
- the moving table 40 incorporates a sensor 46 for detecting the presence and the position of the workpiece 2 and confirms that the workpiece 2 is clamped at a predetermined position.
- step 112 the table control unit 71 moves the moving table 40 on which the work 2 is set to the second position P 2 below the camera unit 80 along the guide 45 by the moving unit 44.
- step 113 the image processing unit 73 acquires an image of the workpiece 2 gripped by the moving table 40, in particular, an image including the first opening 3 a on the upper side of the through hole 3 of the workpiece 2. Analyze and confirm the position of the opening 3a. By confirming the position of the first opening 3a with respect to the moving table 40, the first opening 3a can be accurately set to the first position P1 where the inspection probe 12 is inserted.
- the moving table 40 or the clamp 41 may be provided in advance with a plurality of markers from which an image is to be acquired along with the first opening 3a. Detailed stop position when the movable table 40 is moved to the first position P1 based on the relative position of the marker of the movable table 40 and the first opening 3a in the image acquired by the camera unit 80 Control of the
- step 114 the table control unit 71 moves the moving table 40 on which the work 2 is set to the first position P1 along the guide 45 by the moving unit 44.
- the table control unit 71 causes the central axis of the through hole 3 of the workpiece 2 to coincide with the central axis 11 of the inspection probe 12 at the first position P1, based on the data obtained in step 113. , Control the position of the moving table 40.
- the preliminary test control unit 74 uses the preliminary test unit 50 to open the dummy probe 51 on the opposite side (other side) of the through hole 3 of the work 2 2. Insert from the opening 2) 3b, and verify whether or not the position of the through hole 3 coincides with the first position P1, that is, the axis 11.
- the dummy probe 51 is set such that the diameter Dd satisfies the condition (1).
- the diameter Di of the through hole 3 to be inspected is 2 mm
- the diameter Dn of the inspection probe 12 is 1 mm
- the diameter Dd of the dummy probe 51 is 1.5 mm.
- the dummy probe 51 moves up and down along the axis 11 at the first position P1 by the moving unit 52, and is inserted into the through hole 3 of the work 2 from the lower opening 3b. Since the diameter Dd of the dummy probe 51 is larger than the diameter Dn of the inspection probe 12, if the dummy probe 51 is inserted into the through hole 3 without contact with the through hole 3, the axis 11 coaxial with the dummy probe 51 is inserted.
- the inspection probe 12 which is set to move up and down is inserted into the through hole 3 while maintaining a predetermined clearance, for example, a clearance of 0.25 mm or more.
- step 116 as shown in FIG. 10 (b), the preliminary test control unit 74 pulls the dummy probe 51 out of the through hole 3 and uses the sensor (for example, camera unit) 47 mounted on the moving table 40.
- Check for 51 damage For example, when the dummy probe 51 is bent or a scratch is observed on the surface, it is determined that there is interference with the work 2 when the dummy probe 51 is inserted into the through hole 3. If the dummy probe 51 is damaged, an error is displayed in step 119 and the inspection system 100 is stopped.
- the inspection control unit 75 operates the surface inspection unit 1 in step 117 as shown in FIG. 10C to set the inspection probe 12 to the first position P1.
- the head is moved downward (forward) 16 along the central axis 11 of the head and inserted into the through hole 3 of the work 2 from the upper opening 3a.
- the inspection unit 1 rotates the inspection probe 12 around the central axis 11 and uses the inspection light (probe light) 61 emitted from the tip 12 a of the inspection probe 12 to form the through hole 3 of the workpiece 2. Inspect the condition of the inner surface 4 of.
- the inspection probe 12 is pulled out to the upper side of the through hole 3 to retract the inspection probe 12 from the moving table 40.
- step 118 the table control unit 71 moves the moving table 40 to the third position P3, and the load / unload control unit 72 is clamped on the moving table 40 using the transfer robot 90.
- the inspection system 100 inspects the state of the inner surface 4 of the through hole 3 provided in the plurality of workpieces 2 automatically and without damaging the inspection probe 12. The four states can be evaluated.
- the presence or absence of contact between the dummy probe 51 and the work 2 is determined based on whether or not the dummy probe 51 is damaged after the dummy probe 51 is pulled out.
- a contact sensor may be provided at 51 to determine whether or not the workpiece 2 is in contact with the workpiece 2 when inserted into the workpiece 2. It may be determined whether a current flows between the dummy probe 51 and the workpiece 2 or The presence or absence of contact between the dummy probe 51 and the workpiece 2 may be determined by a method of detecting the state of the electric field around the dummy probe 51 or the like.
- the method for determining the presence or absence of damage to the dummy probe 51 can determine the presence or absence of contact with the work 2 without affecting the state of the inner surface 4 of the work 2 due to current or electric field, in a favorable case.
- the sensor 47 for determining the presence or absence of contact between the dummy probe 51 and the work 2 is built in the moving table 40 in order to detect at a position close to the work 2, but the position of the sensor 47 is limited to this Alternatively, it may be incorporated in the head moving with the dummy probe 51 or may be provided in the preliminary test unit 50.
- this inspection system 100 is an example of a system specialized for inspecting the state of the inner surface 4 of the through hole 3 of the work 2, and this inspection system 100 can be used as an assembly line of products using the work 2 or It is also possible to incorporate it into part of the production line of the workpiece 2.
- a product can be manufactured using the work (part) 2 in which the state of the inner surface 4 is confirmed. Further, immediately after processing the through hole 3 in the work 2, the state of the inner surface 4 of the through hole 3 can be confirmed.
- the inspection probe 12 and the dummy probe 51 are vertically arranged at the first position P1 along the axis 11, but may be arranged in the opposite direction. May be
- each dimension described above is an example, and the inspection system 100 is suitable for protecting the ultrafine inspection probe (inspection needle) 12, but the diameter is not limited to the diameter of the inspection probe 12. Verifying the position of 2 is useful to avoid damage to the probe 12.
- the surface inspection unit (surface inspection system) disclosed above is a hollow inspection head extending in a rod shape along a central axis, the inspection head being rotated around the central axis, and the inspection head passing through the inspection head And an optical system for supplying a laser beam for inspection along the central axis and receiving reflected light from the surface of the inspection object returned along the central axis.
- the inspection head includes a rotary unit driven to rotate, a cylindrical holder mounted on the rotary unit, and a holder unit having a front wall, and a very thin hollow needle mounted on the front wall along the central axis.
- the diameter Dn of the needle portion and the diameter Dh of the front wall of the holder portion or in the vicinity thereof may satisfy the conditions (2) and (3).
- the diameter Dn of the needle portion and the thickness L of the front wall of the holder portion may satisfy the condition (4).
- the optical system is an optical fiber bundle inserted into the needle portion, and the optical system includes a non-rotational optical fiber bundle, and the needle portion is a light control disposed between the tip of the optical fiber bundle and the optical element.
- the lens may include a light control lens that rotates with the needle unit.
- the surface inspection unit may comprise a rotation unit that rotates the inspection head around the central axis.
- the object to be inspected includes a hollow portion into which the needle portion is inserted, and the surface inspection unit further includes a moving unit for relatively moving the inspection head and the object to be inspected along the central axis. May be Further, the inner diameter Di of the hollow portion may satisfy the condition (5).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Astronomy & Astrophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
A system 100 has: a movement table (40) which includes a clamp (41) for holding the outer-peripheral sides of a workpiece (2) which includes a through-hole (3); an inspection head (10) which inserts into and withdraws from the through-hole an inspection probe (12) for scanning the inner-circumferential surface of the through-hole by outputting an inspection light from the tip thereof through a first opening (3a) on one side of the through-hole (3) in the workpiece at a first position (P1) to which the workpiece is transported by the movement table; a preliminary test unit (5) for inserting a dummy probe (51) into the interior of the through-hole and withdrawing the same therefrom through a second opening (3b) on the other side of the through-hole in the workpiece at the first position; and a unit (47) for verifying whether there is contact between the workpiece and the dummy probe.
Description
本発明は、検査ヘッドから被検査物に検査用のレーザー光を照射して表面を検査する検査システムおよび方法に関するものである。
The present invention relates to an inspection system and method for inspecting a surface by irradiating a laser beam for inspection from an inspection head to an object to be inspected.
日本国特開2007-315821号公報には、先端にミラーが設けられた軸状の検査ヘッドを駆動機構により軸線の回りに回転させつつ軸線に沿って移動させるとともに、検査ヘッド内に前記軸線に沿って入射した検査光の光路をミラーにより変更し、光路が変更された検査光を被検査物に照射し、被検査物で反射して検査ヘッド内に再度入射した検査光の光量に基づいて検査物の表面状態を検出する表面検査装置において、検査ヘッドが、駆動機構に取り付けられるヘッド本体と、そのヘッド本体に対して着脱可能に設けられ且つミラーを保持する保持部と、を備えることが記載されている。
In Japanese Patent Application Laid-Open No. 2007-315821, an axial inspection head provided with a mirror at its tip is moved along an axis while being rotated around the axis by a drive mechanism, and the axis is inserted into the inspection head. The light path of the inspection light incident along is changed by a mirror, and the inspection light whose light path is changed is irradiated to the inspection object, and the inspection object is reflected by the inspection object and the light quantity of the inspection light reentered into the inspection head In a surface inspection apparatus for detecting the surface condition of an inspection object, the inspection head includes a head main body attached to a drive mechanism, and a holding unit detachably provided to the head main body and holding a mirror. Have been described.
近年、微細加工された物品の表面の検査が求められており、例えば、直径が数mm程度の小径(極細)の孔が設けられた検査対象物(被検査物)の表面を検査することが要望されている。
In recent years, inspection of the surface of a microfabricated article is required, for example, inspection of the surface of an inspection object (inspection object) provided with a small-diameter (ultra-fine) hole having a diameter of about several mm It is requested.
本発明の一態様は、貫通孔を含むワークの外周側を保持するクランプを含む移動テーブルと、先端から検査光を出力して貫通孔の内周面をスキャンする検査プローブを含む検査ヘッドとを有するシステム(検査システム)である。検査ヘッドは、移動テーブルによりワークが搬送される第1の位置で、ワークの貫通孔の一方の側の第1の開口から、検査プローブを貫通孔に出し入れする。システムは、さらに、第1の位置で、ワークの貫通孔の他方の側の第2の開口から、ダミープローブを貫通孔の内部に出し入れする予備テストユニットと、ダミープローブとワークとの接触の有無を確認するユニットとを有する。
One aspect of the present invention is a moving table including a clamp for holding an outer peripheral side of a work including a through hole, and an inspection head including an inspection probe for outputting an inspection light from a tip to scan an inner peripheral surface of the through hole. System (inspection system). The inspection head takes the inspection probe into and out of the through hole from the first opening on one side of the through hole of the work at a first position where the work is transported by the moving table. The system further includes, in the first position, a preliminary test unit for bringing the dummy probe into and out of the through hole from the second opening on the other side of the through hole of the work, and the presence or absence of contact between the dummy probe and the work And a unit for confirming.
このシステムは、検査プローブを用いて貫通孔内を検査する前に、検査プローブで貫通孔内を検査する第1の位置において、貫通孔の反対側の第2の開口からダミープローブを挿入する予備テストユニット(事前テストユニット)を含む。接触の有無を確認するユニットにより、ダミープローブとワークとの接触を確認することにより、ワークの貫通孔が、検査プローブに対して精度よく設定されているか否かを判断できる。したがって、高価で損傷しやすい検査プローブ、特に極細で損傷しやすい検査プローブがワークの貫通孔の内面などに接触して損傷することを未然に防止できる。このため、安全に、低コストで貫通孔の内部の表面の状態を検査するシステムを提供できる。
In this system, the dummy probe is inserted from the second opening opposite to the through hole at the first position where the inside of the through hole is inspected by the inspection probe before the inside of the through hole is inspected using the inspection probe. Includes test unit (pre-test unit). By checking the contact between the dummy probe and the work by the unit for checking the presence or absence of the contact, it can be determined whether or not the through hole of the work is accurately set to the inspection probe. Therefore, it is possible to prevent in advance that the expensive and easily damaged inspection probe, particularly the very thin and easily damaged inspection probe, contacts the inner surface of the through hole of the workpiece and the like. Therefore, it is possible to provide a system for safely inspecting the state of the surface inside the through hole at low cost.
確認するユニットは、ダミープローブの損傷を確認するユニット、例えばセンサーを備えていてもよい。ダミープローブとワークとの接触の有無を確認する1つの方法は、ダミープローブの損傷をセンサーで確認することであってもよい。
The checking unit may comprise a unit, eg a sensor, for checking the damage of the dummy probe. One method of confirming the presence or absence of contact between the dummy probe and the work may be to confirm damage to the dummy probe with a sensor.
ダミープローブの直径は、検査プローブの直径より大きくてもよい。検査プローブと貫通孔との間に最小限のクリアランスが確保されているか否かも含めて、事前にチェックしてもよい。ダミープローブの直径Ddと、検査プローブの直径Dnとは以下の条件(1)を満たしてもよい。クリアランスの有無も含めて、予備テストユニットにより事前検査できる。
1<Dd/Dn<2 ・・・(1) The diameter of the dummy probe may be larger than the diameter of the inspection probe. It may be checked in advance, including whether or not the minimum clearance is secured between the inspection probe and the through hole. The diameter Dd of the dummy probe and the diameter Dn of the inspection probe may satisfy the following condition (1). It can be pre-tested by the preliminary test unit, including the presence or absence of clearance.
1 <Dd / Dn <2 (1)
1<Dd/Dn<2 ・・・(1) The diameter of the dummy probe may be larger than the diameter of the inspection probe. It may be checked in advance, including whether or not the minimum clearance is secured between the inspection probe and the through hole. The diameter Dd of the dummy probe and the diameter Dn of the inspection probe may satisfy the following condition (1). It can be pre-tested by the preliminary test unit, including the presence or absence of clearance.
1 <Dd / Dn <2 (1)
検査プローブの直径Dnが以下の条件(2)を満たしてもよい。
0.5mm≦Dn≦1.5mm・・・(2) The diameter Dn of the inspection probe may satisfy the following condition (2).
0.5 mm ≦ Dn ≦ 1.5 mm (2)
0.5mm≦Dn≦1.5mm・・・(2) The diameter Dn of the inspection probe may satisfy the following condition (2).
0.5 mm ≦ Dn ≦ 1.5 mm (2)
このシステム(検査システム)は、移動テーブルによりワークが搬送される第2の位置で、移動テーブルのクランプに保持されたワークの第1の開口または第2の開口の位置を確認するカメラユニットをさらに有していてもよい。画像処理等により、移動テーブルに対するワークの第1の開口の位置を確認できる。したがって、移動テーブルを、ワークの貫通孔が第1の位置に、さらに精度よく設定されるように動かすことができる。
This system (inspection system) further has a camera unit that confirms the position of the first opening or second opening of the work held by the clamp of the moving table at the second position where the work is transported by the moving table. You may have. The position of the first opening of the work relative to the moving table can be confirmed by image processing or the like. Therefore, the moving table can be moved so that the through hole of the workpiece is set to the first position more accurately.
このシステムは、移動テーブルを、ワークをロードする第3の位置から、第2の位置を経て第1の位置へ動かす移動ユニットをさらに有してもよい。第3の位置でワークをロードして、第2の位置で移動ユニットに対するワークの位置を確認し、第1の位置でワークの貫通孔の内面検査を行うことができる。
The system may further include a moving unit that moves the moving table from a third position for loading the work, through the second position to the first position. The workpiece can be loaded at the third position, the position of the workpiece relative to the moving unit can be confirmed at the second position, and the inner surface inspection of the through hole of the workpiece can be performed at the first position.
このシステムは、さらに、中心軸に沿って棒状に延びた中空で、中心軸の周りに回転される検査ヘッドの内部を通じて、中心軸に沿って検査用のレーザー光を供給し、中心軸に沿って戻された被検査物の表面からの反射光を受光する光学システムを有していてもよい。検査ヘッドは、回転駆動される回転部と、回転部に装着された円筒状で前壁を備えたホルダー部と、前壁に中心軸に沿って取り付けられた極細で中空でニードル状の検査プローブとを含んでもよい。検査プローブは、先端に配置された光学素子であって、中心軸に対して、検査用のレーザー光(検査光)を被検査物に向けて出射するとともに反射光を中心軸方向に導く光学素子を含んでもよい。
The system further supplies a laser beam for inspection along the central axis through the inside of the inspection head, which is hollow extending in a rod shape along the central axis and rotated around the central axis, along the central axis. You may have an optical system which receives the reflected light from the surface of the to-be-inspected object returned. The inspection head is a very thin, hollow, needle-like inspection probe mounted along a central axis on a rotating portion that is rotationally driven, a cylindrical holder portion mounted on the rotating portion and having a front wall, and the front wall And may be included. The inspection probe is an optical element disposed at the tip, and emits an inspection laser beam (inspection light) toward the object to be inspected and guides the reflected light in the central axis direction with respect to the central axis. May be included.
直径数mmの小径(極細)の孔の内面を検査するためには、それよりも細い、例えば、直径が1mm前後の極細のヘッドを検査対象の孔に挿入し、小径(極細)の孔との干渉をさけるために、極細のヘッドを安定して回転させることが望ましい。本システムにおいては、検査ヘッドの先端を、極細で中空のニードル状とし、それを太いホルダー部で支持して回転することにより、極細の検査プローブを小径の孔の中でも安定して回転でき、小径の孔の内面を検査できる。
In order to inspect the inner surface of a small diameter (very thin) hole of a few mm in diameter, for example, a very thin head with a diameter of around 1 mm, for example, is inserted into the hole to be inspected. It is desirable to stably rotate a very thin head to avoid the interference of In this system, the tip of the inspection head is made into a very thin hollow needle-like shape, which is supported by the thick holder and rotated, so that the very thin inspection probe can be stably rotated even in the small diameter hole. Can inspect the inner surface of the hole.
極細の検査プローブの直径Dnは以下の条件(2)に加え、ホルダー部の前壁またはその近傍の直径Dhとの関係は以下の条件(3)を満たしてもよい。
5≦Dh/Dn≦40 ・・・(3) In addition to the following condition (2), the diameter Dn of the ultrafine inspection probe may satisfy the following condition (3) in relation to the diameter Dh of the front wall of the holder portion or in the vicinity thereof.
5 ≦ Dh / Dn ≦ 40 (3)
5≦Dh/Dn≦40 ・・・(3) In addition to the following condition (2), the diameter Dn of the ultrafine inspection probe may satisfy the following condition (3) in relation to the diameter Dh of the front wall of the holder portion or in the vicinity thereof.
5 ≦ Dh / Dn ≦ 40 (3)
また、検査プローブの直径Dnと、ホルダー部の前壁の厚みLとが以下の条件(4)を満たしてもよい。
5≦L/Dn≦30 ・・・(4) The diameter Dn of the inspection probe and the thickness L of the front wall of the holder may satisfy the following condition (4).
5 ≦ L / Dn ≦ 30 (4)
5≦L/Dn≦30 ・・・(4) The diameter Dn of the inspection probe and the thickness L of the front wall of the holder may satisfy the following condition (4).
5 ≦ L / Dn ≦ 30 (4)
光学システムは、検査プローブに挿入された光ファイバー束であって、非回転の光ファイバー束を含み、検査プローブは、光ファイバー束の先端と光学素子との間に配置された調光レンズであって、検査プローブとともに回転する調光レンズを含んでもよい。
The optical system is an optical fiber bundle inserted into the inspection probe, which includes a non-rotational optical fiber bundle, and the inspection probe is a light control lens disposed between the tip of the optical fiber bundle and the optical element, It may include a light control lens that rotates with the probe.
このシステムは、検査ヘッドを中心軸の周りに回転する回転ユニットを有してもよい。このシステムは、さらに、検査プローブが挿入される中空部分を含む被検査物(ワーク、ワークピース)と検査ヘッドとを中心軸に沿って相対的に移動する移動ユニットを有していてもよい。検査対象となる中空部分(貫通孔)の内径Diは以下の条件(5)を満たしてもよい。
(Dn+0.5mm)≦Di≦(Dn+3.0mm) ・・・(5)
ただし、直径Dnおよび内径Diの単位はmmである。 The system may have a rotation unit that rotates the inspection head about a central axis. The system may further include a moving unit that moves the inspection object (workpiece, workpiece) including the hollow portion into which the inspection probe is inserted and the inspection head relative to the central axis. The inner diameter Di of the hollow portion (through hole) to be inspected may satisfy the following condition (5).
(Dn + 0.5 mm) ≦ Di ≦ (Dn + 3.0 mm) (5)
However, the unit of the diameter Dn and the inner diameter Di is mm.
(Dn+0.5mm)≦Di≦(Dn+3.0mm) ・・・(5)
ただし、直径Dnおよび内径Diの単位はmmである。 The system may have a rotation unit that rotates the inspection head about a central axis. The system may further include a moving unit that moves the inspection object (workpiece, workpiece) including the hollow portion into which the inspection probe is inserted and the inspection head relative to the central axis. The inner diameter Di of the hollow portion (through hole) to be inspected may satisfy the following condition (5).
(Dn + 0.5 mm) ≦ Di ≦ (Dn + 3.0 mm) (5)
However, the unit of the diameter Dn and the inner diameter Di is mm.
本発明の他の態様の1つは、検査システムにより、貫通孔を含むワークの貫通孔の内周面を検査する方法である。検査システムは、ワークの外周側を保持するクランプを含む移動テーブルと、移動テーブルによりワークが搬送される第1の位置で、ワークの貫通孔の一方の側の第1の開口から挿入され、先端から検査光を出力して貫通孔の内周面をスキャンする検査プローブと、第1の位置で、ワークの貫通孔の他方の側の第2の開口から挿入されるダミープローブと、ダミープローブとワークとの接触の有無を確認するセンサーユニットとを含む。この方法は、以下のステップを含む。
1.移動テーブルを第1の位置にセットする。
2.第2の開口からダミープローブを貫通孔に出し入れする。
3.出し入れされたダミープローブとワークとの接触の有無をセンサーユニットにより確認する。
4.ダミープローブとワークとの接触が確認されなければ、検査プローブを貫通孔に出し入れして検査を行う。 One of the other aspects of this invention is the method of test | inspecting the internal peripheral surface of the through-hole of the workpiece | work containing a through-hole by an inspection system. The inspection system is inserted from the first opening on one side of the through hole of the workpiece at the first position where the workpiece is conveyed by the movable table and the movable table including the clamp that holds the outer peripheral side of the workpiece, An inspection probe that outputs inspection light from the inside to scan the inner circumferential surface of the through hole, a dummy probe inserted from the second opening on the other side of the through hole of the workpiece at the first position, and a dummy probe And a sensor unit for confirming the presence or absence of contact with the work. The method comprises the following steps.
1. The movement table is set to the first position.
2. The dummy probe is taken in and out of the through hole from the second opening.
3. Check the presence or absence of contact between the inserted dummy probe and the workpiece using the sensor unit.
4. If the contact between the dummy probe and the workpiece is not confirmed, the inspection probe is inserted into and removed from the through hole and inspection is performed.
1.移動テーブルを第1の位置にセットする。
2.第2の開口からダミープローブを貫通孔に出し入れする。
3.出し入れされたダミープローブとワークとの接触の有無をセンサーユニットにより確認する。
4.ダミープローブとワークとの接触が確認されなければ、検査プローブを貫通孔に出し入れして検査を行う。 One of the other aspects of this invention is the method of test | inspecting the internal peripheral surface of the through-hole of the workpiece | work containing a through-hole by an inspection system. The inspection system is inserted from the first opening on one side of the through hole of the workpiece at the first position where the workpiece is conveyed by the movable table and the movable table including the clamp that holds the outer peripheral side of the workpiece, An inspection probe that outputs inspection light from the inside to scan the inner circumferential surface of the through hole, a dummy probe inserted from the second opening on the other side of the through hole of the workpiece at the first position, and a dummy probe And a sensor unit for confirming the presence or absence of contact with the work. The method comprises the following steps.
1. The movement table is set to the first position.
2. The dummy probe is taken in and out of the through hole from the second opening.
3. Check the presence or absence of contact between the inserted dummy probe and the workpiece using the sensor unit.
4. If the contact between the dummy probe and the workpiece is not confirmed, the inspection probe is inserted into and removed from the through hole and inspection is performed.
検査システムは、移動テーブルがワークを搬送する第2の位置に配置されたカメラユニットをさらに含み、当該方法は、さらに、移動テーブルでワークを第1の位置へ搬送する前に第2の位置へ搬送することと、移動テーブルのクランプに保持されたワークの第1の開口または第2の開口の位置をカメラユニットにより確認することとを含んでいてもよい。
The inspection system further includes a camera unit disposed at a second position at which the movable table transports the workpiece, and the method further comprises moving the workpiece to the first position at the movable table to the second position. It may include conveying and confirming the position of the first opening or the second opening of the work held by the clamp of the moving table by the camera unit.
図1に、検査システム100の概要を示している。この検査システム100は、貫通孔3を含むワーク(被検査物、ワークピース)2の外周側2aを保持するクランプ41を含む移動テーブル40と、移動テーブル40によりワーク2が搬送される第1の位置P1で、貫通孔3の内周面4を検査する表面検査ユニット1と、第1の位置P1で、ワーク2の貫通孔3の第1の開口3aと反対側の第2の開口3bから、ダミープローブ51を貫通孔3の内部に出し入れする予備テストユニット50と、これらのシステムを制御する制御ユニット70とを含む。表面検査ユニット(表面検査装置、表面検査システム)1は、検査光を出力して貫通孔3の内周面4をスキャンする検査プローブ12と、ワーク2の貫通孔3の一方の側の第1の開口3aから検査プローブ12を貫通孔3に出し入れする検査ヘッド10と、検査ヘッド10を上下に動かす移動ユニット25とを含む。移動テーブル40は、ワーク2の位置確認用のセンサー46と、ダミープローブ51とワーク2との接触の有無を確認するセンサー(センサーユニット)47とを含む。
An overview of the inspection system 100 is shown in FIG. The inspection system 100 includes a movable table 40 including a clamp 41 for holding an outer peripheral side 2 a of a workpiece (inspection object, workpiece) 2 including a through hole 3, and a first movable workpiece 40 transported by the movable table 40. From the surface inspection unit 1 which inspects the inner peripheral surface 4 of the through hole 3 at the position P1, and from the second opening 3b opposite to the first opening 3a of the through hole 3 of the work 2 at the first position P1. And a control unit 70 for controlling these systems, and a preliminary test unit 50 for taking the dummy probe 51 into and out of the through hole 3. The surface inspection unit (surface inspection apparatus, surface inspection system) 1 outputs an inspection light to scan the inner peripheral surface 4 of the through hole 3, and the first of one side of the through hole 3 of the workpiece 2 The inspection head 10 for moving the inspection probe 12 into and out of the through hole 3 from the opening 3a, and the moving unit 25 for moving the inspection head 10 up and down. The movement table 40 includes a sensor 46 for position confirmation of the workpiece 2 and a sensor (sensor unit) 47 for confirming presence or absence of contact between the dummy probe 51 and the workpiece 2.
検査システム100は、さらに、移動テーブル40によりワーク2が搬送される第2の位置P2で、ワーク2の第1の開口3aの側を撮影するカメラユニット80と、移動テーブル40がさらに移動し、ワーク2をロード・アンロードする第3の位置P3において、ワーク2を移動テーブル40にロードおよびアンロードするワーク搬送用ロボット90とを含む。移動テーブル40は、これらの位置P1、P2およびP3を繋ぐレールあるいはその他のガイド45に沿って自走する移動ユニット44を含むものであってもよく、ガイド45が移動テーブル40を移動する機能を含む移動ユニットであってもよい。
The inspection system 100 further moves the camera unit 80 for photographing the side of the first opening 3a of the work 2 and the movement table 40 further at the second position P2 at which the work 2 is transported by the movement table 40, At a third position P3 at which the work 2 is loaded and unloaded, a work transfer robot 90 for loading and unloading the work 2 on the moving table 40 is included. The moving table 40 may include a moving unit 44 self-propelled along a rail or other guide 45 connecting these positions P1, P2 and P3, and the function of moving the moving table 40 by the guide 45 The mobile unit may be included.
制御ユニット70は、移動テーブル40の搬送位置(移動位置)を制御するテーブル制御ユニット71と、搬送用ロボット90を制御するロード・アンロード制御ユニット72と、カメラユニット80により移動テーブル40に対するワーク2の貫通孔3の位置を確認する画像処理ユニット73と、検査プローブ12により貫通孔3の内面4を検査する前に、ダミープローブ51により貫通孔3の位置を確認する予備テスト制御ユニット74と、検査プローブ12により貫通孔3の内面4を検査する検査制御ユニット75とを含む。
The control unit 70 controls the transfer position (move position) of the move table 40, the load / unload control unit 72 controls the transfer robot 90, and the work 2 for the move table 40 by the camera unit 80. An image processing unit 73 for confirming the position of the through hole 3 and a preliminary test control unit 74 for confirming the position of the through hole 3 by the dummy probe 51 before the inner surface 4 of the through hole 3 is inspected by the inspection probe 12; And an inspection control unit 75 that inspects the inner surface 4 of the through hole 3 by the inspection probe 12.
検査プローブ12を含む表面検査ユニット1と、ダミープローブ51を含む予備テストユニット50とは、共通のフレーム101に固定されており、第1の位置P1で検査プローブ12とダミープローブ51とが、共通の軸11に沿って(同軸上で)、高精度で対峙し、上下に移動するようになっている。予備テストユニット50は、ダミープローブ51を軸11に沿って上下に移動する移動ユニット52を含む。移動ユニット52は、例えば、ボールねじ53と、ボールねじ53を駆動するモーター54とを含む。
The surface inspection unit 1 including the inspection probe 12 and the preliminary test unit 50 including the dummy probe 51 are fixed to the common frame 101, and the inspection probe 12 and the dummy probe 51 are common at the first position P1. (Coaxially) along the axis 11 of the, to face with high precision, and to move up and down. The preliminary test unit 50 includes a moving unit 52 that moves the dummy probe 51 up and down along the axis 11. The moving unit 52 includes, for example, a ball screw 53 and a motor 54 that drives the ball screw 53.
表面検査ユニット1と予備テストユニット50とは上下逆に配置されていてもよく、左右あるいは水平に対峙するように配置されていてもよい。上下の配置は、検査プローブ12およびダミープローブ51が、直径数mmあるいはそれ以下の極細の場合は、重力による撓みなどの影響を避けるために適している。また、検査プローブ12のメンテナンスあるいは交換などの作業を考慮すると、表面検査ユニット1を上側に配置することが好ましい。
The surface inspection unit 1 and the preliminary test unit 50 may be disposed upside down, and may be disposed to face each other horizontally or horizontally. The arrangement of the upper and lower sides is suitable in order to avoid the influence of deflection due to gravity or the like when the inspection probe 12 and the dummy probe 51 are very thin with a diameter of several mm or less. Further, in consideration of the operation such as maintenance or replacement of the inspection probe 12, it is preferable to dispose the surface inspection unit 1 on the upper side.
図2に、表面検査ユニット(表面検査システム、検査装置、検査ユニット)1の外観を示し、図3に、検査装置1の概略の構成を、断面(図2の断面III-III)を用いて示している。この検査ユニット1は、被検査物であるワーク2に設けられた孔、凹みなどの中空部分(貫通孔)3の内面4の形状または状態を検査するために適している。中空部分3の一例は、直径数mmの貫通孔である。
FIG. 2 shows the appearance of the surface inspection unit (surface inspection system, inspection apparatus, inspection unit) 1, and FIG. 3 shows a schematic configuration of the inspection apparatus 1 using a cross section (cross section III-III in FIG. 2) It shows. The inspection unit 1 is suitable for inspecting the shape or state of the inner surface 4 of a hollow portion (through hole) 3 such as a hole or a recess provided in a workpiece 2 to be inspected. An example of the hollow portion 3 is a through hole having a diameter of several mm.
検査ユニット1は、中心軸11に沿って棒状に延びた中空の検査ヘッド10と、検査ヘッド10を中心軸11の周りに回転する回転ユニット20と、検査ヘッド10内を通じて、中心軸11に沿って検査用のレーザー光を供給し、中心軸11に沿って戻された被検査物2の表面4からの反射光を受光する光学システム30と、検査ヘッド10と被検査物2とを中心軸11に沿って相対的に移動する移動ユニット25と、回転ユニット20、光学システム30および移動ユニット25を内蔵するハウジング5とを含む。
The inspection unit 1 extends along the central axis 11 through a hollow inspection head 10 extending in a rod shape along the central axis 11, a rotation unit 20 that rotates the inspection head 10 around the central axis 11, and the inspection head 10. An optical system 30 for supplying laser light for inspection and receiving reflected light from the surface 4 of the inspection object 2 returned along the central axis 11, and a central axis of the inspection head 10 and the inspection object 2 11 includes a moving unit 25 relatively moving along 11, and a housing 5 incorporating the rotating unit 20, the optical system 30 and the moving unit 25.
移動ユニット25は、検査ヘッド10と被検査物であるワーク2とを相対的に移動するものであればよく、本例においては、移動ユニット25としてハウジング5に収納された検査ヘッド10をハウジング5に対して移動するユニットである。移動ユニット25は、検査ヘッド10、回転ユニット20および光学システム30を搭載したキャリッジ28と、キャリッジ28を前後(図3の左右)に動かすボールねじ26および移動用のモータ27の組み合わせとを含む。検査ヘッド10は、基端となる固定部19と、固定部19に対して回転するように装着された回転部18とを含み、固定部19が搭載ユニット29を介してキャリッジ28に搭載されている。検査ヘッド(内面検査s用のヘッド)10は先端に、中心軸(回転軸、軸心)11に沿って前方(本システムにおいては下側)16に突き出る極細のニードル部(検査プローブ、プローブ)12を含む。検査プローブ12は、検査プローブ12に対し太い円筒状のホルダー部14の前壁14aに、中心軸11に沿って突き出るように固定されており、ホルダー部14を介して回転部18に固定され、回転部18とともに中心軸11の周りに回転する。
The moving unit 25 may move the inspection head 10 relative to the workpiece 2 to be inspected, and in the present embodiment, the inspection head 10 housed in the housing 5 as the moving unit 25 may be a housing 5 Is a unit that moves relative to the The moving unit 25 includes a carriage 28 mounted with the inspection head 10, the rotating unit 20 and the optical system 30, and a combination of a ball screw 26 and a motor 27 for moving the carriage 28 back and forth (left and right in FIG. 3). The inspection head 10 includes a fixing portion 19 serving as a base end and a rotating portion 18 mounted so as to rotate with respect to the fixing portion 19, and the fixing portion 19 is mounted on the carriage 28 via the mounting unit 29. There is. Inspection head (head for inner surface inspection s) 10 has a very thin needle portion (inspection probe, probe) projecting forward (in this system, lower side) 16 along central axis (rotational axis, axial center) 11 at the tip. Including 12. The inspection probe 12 is fixed to the front wall 14 a of the thick cylindrical holder portion 14 with respect to the inspection probe 12 so as to protrude along the central axis 11, and is fixed to the rotating portion 18 via the holder portion 14 It rotates around the central axis 11 together with the rotating portion 18.
移動ユニット25の構成は一例であり、スライダー、移動テーブルなどであってもよい。移動ユニット25により、検査ヘッド10はハウジング5から前方に突き出た位置P1と、検査ヘッド10がハウジング5の内部に退避する位置P2とに移動する。検査ヘッド10を前後に動かす代わりに、あるいは検査ヘッド10を前後に動かすとともに被検査物2を、ロボット等を用いて動かしてもよい。
The configuration of the moving unit 25 is an example, and may be a slider, a moving table, or the like. The moving unit 25 moves the inspection head 10 to a position P 1 projecting forward from the housing 5 and a position P 2 at which the inspection head 10 retracts into the housing 5. Instead of moving the inspection head 10 back and forth, or while moving the inspection head 10 back and forth, the inspection object 2 may be moved using a robot or the like.
移動ユニット25の構成は一例であり、スライダー、移動テーブルなどであってもよい。移動ユニット25により、検査ヘッド10はハウジング5から前方に突き出た検査位置10aと、検査ヘッド10がハウジング5の内部に退避する位置10bとに移動する。
The configuration of the moving unit 25 is an example, and may be a slider, a moving table, or the like. The moving unit 25 moves the inspection head 10 to an inspection position 10 a projecting forward from the housing 5 and a position 10 b where the inspection head 10 retracts into the housing 5.
光学システム30は、検査用のレーザー光を生成する半導体レーザー(レーザーダイオード、LD)31と、反射光を受光する受光素子(例えば、フォトダイオード、CCD、CMOSなど)32と、半導体レーザー31の駆動回路、受光素子32で受信した信号を処理する回路などを含む制御ユニット33とを含む。光学システム30で受信した信号は制御ユニット33を介して不図示のコンピュータ(パーソナルコンピュータ)に送られて、さらにデータ処理され、被検査物2の表面4の解析に用いられる。光学システム30は、さらに、検査ヘッド10を介して検査プローブ12の内部に挿入された光ファイバー35を含む。
The optical system 30 includes a semiconductor laser (laser diode, LD) 31 that generates a laser beam for inspection, a light receiving element (for example, a photodiode, CCD, CMOS, etc.) 32 that receives reflected light, and a drive of the semiconductor laser 31. And a control unit 33 including a circuit, a circuit for processing a signal received by the light receiving element 32, and the like. A signal received by the optical system 30 is sent to a computer (personal computer) (not shown) via the control unit 33, and is further data processed and used for analysis of the surface 4 of the inspection object 2. The optical system 30 further includes an optical fiber 35 inserted into the inside of the inspection probe 12 through the inspection head 10.
回転ユニット20の一例は、キャリッジ28に搭載されたモータ21である。モータ21により駆動されるプーリ22が、検査ヘッド10の回転部18と駆動ベルト23で接続されており、モータ21が駆動ベルト23を介して検査ヘッド10の回転部18を中心軸11の周りに(中心軸11を回転中心として)高速で回転する。
An example of the rotation unit 20 is a motor 21 mounted on a carriage 28. The pulley 22 driven by the motor 21 is connected to the rotating portion 18 of the inspection head 10 by the drive belt 23, and the motor 21 rotates the rotating portion 18 of the inspection head 10 around the central axis 11 via the drive belt 23. It rotates at high speed (about the central axis 11).
図4に検査ヘッド10を抜き出して示している。図5に検査ヘッド10の概略構成を、断面(図4の断面V-V)を用いて示している。さらに、図6に、検査ヘッド10の先端部分(前方部分)を拡大した断面を用いて示し、図7に、検査ヘッド10の先端の検査プローブ12の構成を拡大した断面を用いて示している。
The inspection head 10 is extracted and shown in FIG. FIG. 5 shows a schematic configuration of the inspection head 10 using a cross section (cross section VV in FIG. 4). Further, FIG. 6 shows the tip portion (front portion) of the inspection head 10 using an enlarged cross section, and FIG. 7 shows the configuration of the inspection probe 12 at the tip of the inspection head 10 using an enlarged cross section .
検査ヘッド10は、全体として回転軸11に沿って延びた中空の円筒体であり、基端の固定部19と、固定部19に対してベアリング17を介して回転するように同軸上に取り付けられ、先端16に向かって延びた回転部18とを含む。回転部18は回転駆動され、駆動ベルト23を介して回転力が伝達される比較的太い駆動部15と、駆動部15の前方16に取り付けられたホルダー部14と、ホルダー部14の前壁14aの中心から細く先端(前方)に向かって延びた針状の検査プローブ(挿入部)12とを含む。検査プローブ12の先端12aには、半径方向に向いた開口(切り欠き)13が設けられており、開口13を介して検査用のレーザー光(プローブ光、検査光)61が被検査物であるワーク2の中空部分、本例では貫通孔3の表面4に向けて出射され、被検査物2の貫通孔3の表面4からの反射光62が検査プローブ12から検査ヘッド10に戻されるようになっている。
The inspection head 10 is a hollow cylindrical body generally extending along the rotation axis 11 and coaxially mounted so as to rotate via the bearing 17 with respect to the fixed portion 19 at the proximal end and the fixed portion 19. , A rotating portion 18 extending towards the tip 16. The rotating portion 18 is rotationally driven, and a relatively thick drive portion 15 to which rotational force is transmitted via the drive belt 23, a holder portion 14 attached to the front 16 of the drive portion 15, and a front wall 14a of the holder portion 14 And a needle-like inspection probe (insertion portion) 12 extending from the center of the head to a thin tip (forward). A radially directed opening (notch) 13 is provided at the tip 12 a of the inspection probe 12, and a laser beam for inspection (probe light, inspection light) 61 is an inspection object through the opening 13. The reflected light 62 from the surface 4 of the through hole 3 of the inspection object 2 is emitted from the inspection probe 12 back to the inspection head 10 so as to be emitted toward the hollow portion of the workpiece 2, in this example, the surface 4 of the through hole 3 It has become.
検査ヘッド10の内部には、中心軸11に沿ってプローブ光61と反射光62とを導く光ファイバー束35が挿入されている。光学システム30を構成する光ファイバー束35は複数のファイバーのバンドルであり、LD31から射出されるプローブ光61を被検査物2に向かって導く投光ファイバー35aと、被検査物2からの反射光62を受光素子32へ導く受光ファイバー35bとを含む。さらに、光学システム30は、検査ヘッド10の内部に、光ファイバー35を束ねた状態で保持する保持筒34を含む。
An optical fiber bundle 35 for guiding the probe light 61 and the reflected light 62 along the central axis 11 is inserted into the inspection head 10. The optical fiber bundle 35 constituting the optical system 30 is a bundle of a plurality of fibers, and a light emitting optical fiber 35a for guiding the probe light 61 emitted from the LD 31 toward the inspection object 2 and a reflected light 62 from the inspection object 2 And a light receiving fiber 35 b leading to the light receiving element 32. Furthermore, the optical system 30 includes, inside the inspection head 10, a holding cylinder 34 that holds the optical fibers 35 in a bundled state.
検査プローブ12は、ホルダー部14の前壁14aから中心軸11に沿って前方16に延び、先端(先端近傍)12aにプローブ光61の出射方向を制御する光学素子39が取り付けられている。光学素子39の一例は平面鏡であり、プリズムなどの他の光の出射方向および入射方向を制御できる反射面を有する光学素子であってもよい。本例の検査装置1においては、光学素子39の鏡面(反射面)38の角度を45度に設定し、光ファイバー35から中心軸11を光軸として出射されるプローブ光61を、中心軸(光軸)11に対して直交する方向に出射している。また、光学素子39の反射面38により、検査対象の内面4から反射される光(反射光)62を中心軸11の光ファイバー35の方向に反射している。検査プローブ12の内部には、保持筒34により支持された光ファイバー35が、先端12aより後退した位置まで挿入されており、光ファイバー35の先端35cと光学素子39とのほぼ中間に調光レンズ36が検査プローブ12に支持されるように取り付けられている。
The inspection probe 12 extends forward from the front wall 14a of the holder portion 14 along the central axis 11 and has an optical element 39 attached to the tip (near the tip) 12a for controlling the emission direction of the probe light 61. One example of the optical element 39 is a plane mirror, and may be an optical element having a reflection surface such as a prism that can control the emission direction and the incident direction of other light. In the inspection apparatus 1 of this example, the angle of the mirror surface (reflection surface) 38 of the optical element 39 is set to 45 degrees, and the probe light 61 emitted from the optical fiber 35 with the central axis 11 as the optical axis is the central axis The light is emitted in the direction orthogonal to the axis 11). Further, light (reflected light) 62 reflected from the inner surface 4 of the inspection object is reflected in the direction of the optical fiber 35 of the central axis 11 by the reflection surface 38 of the optical element 39. Inside the inspection probe 12, the optical fiber 35 supported by the holding cylinder 34 is inserted to a position retracted from the tip 12a, and the light control lens 36 is approximately in the middle between the tip 35c of the optical fiber 35 and the optical element 39. It is attached to be supported by the inspection probe 12.
調光レンズ36は、光ファイバー35の先端35cから出力されたプローブ光61を、反射面38を介して検査対象面4に集光するために適した焦点距離を有する対物レンズである。調光レンズ36は、反射面38を介して検査ヘッド10に導入された反射光62を光ファイバー35の先端35cに集光する機能も含む。検査ヘッド10の中心軸11に沿ってプローブ光61を供給し、反射光62を検出する光学システム30は、光ファイバー35を使用したものに限定されず、ダイクロイックプリズムなどを備えた、光ピックアップなどとして公知の他の光学系であってもよい。極細の検査プローブ12の内部でプローブ光61および反射光62を入出力するには、光ファイバー35を用いた光学システム30が好適である。
The light adjustment lens 36 is an objective lens having a focal length suitable for condensing the probe light 61 output from the tip 35 c of the optical fiber 35 on the inspection target surface 4 via the reflection surface 38. The light adjustment lens 36 also includes a function of condensing the reflected light 62 introduced to the inspection head 10 via the reflection surface 38 on the tip 35 c of the optical fiber 35. The optical system 30 for supplying the probe light 61 along the central axis 11 of the inspection head 10 and detecting the reflected light 62 is not limited to the one using the optical fiber 35, but as an optical pickup etc. provided with a dichroic prism etc. It may be another known optical system. In order to input and output the probe light 61 and the reflected light 62 inside the very thin inspection probe 12, an optical system 30 using an optical fiber 35 is preferable.
近年、微細加工の精度が向上し、様々な用途で、例えば、液体などの流体が通過するノズルや経路、光学装置、機械装置において、極細の貫通孔あるいは有底の穴が加工された製品あるいは部品が製造される。極細の孔3の一例は、直径Diが数mm以下、例えば、5mm以下、あるいは3mm以下、さらには2mm以下である。そのような寸法の孔(貫通孔、中空部分)3の内面4にプローブ光61を照射し、反射光62を採取するための検査プローブ12の直径Dnは、内面4とのクリアランスを考慮すると、条件(2)に示したように、1.5mm以下であることが要望される。特に、検査対象の孔3の直径Diが3mm程度あるいはそれ以下であると、検査プローブ12の直径(外径)Dnを示す条件(2)の上限は1.2mmあるいはそれ以下、例えば、1.0mmであることが望ましい。現在、このタイプの検査装置1において検査可能な孔3の直径(内径)Diは、1.0mm程度以上であり、クリアランスを含めると、式(5)に示した範囲が好ましい。
In recent years, the precision of microfabrication has been improved, and in various applications, for example, a nozzle or path through which a fluid such as liquid passes, an optical device, a machine, a product or a machine in which an extremely thin through hole or bottomed hole is processed Parts are manufactured. One example of the extremely thin holes 3 has a diameter Di of several mm or less, for example, 5 mm or less, or 3 mm or less, or 2 mm or less. The diameter Dn of the inspection probe 12 for irradiating the probe light 61 to the inner surface 4 of the hole (through hole, hollow portion) 3 of such dimensions and collecting the reflected light 62 takes into account the clearance with the inner surface 4 As shown in the condition (2), it is required to be 1.5 mm or less. In particular, when the diameter Di of the hole 3 to be inspected is about 3 mm or less, the upper limit of the condition (2) indicating the diameter (outer diameter) Dn of the inspection probe 12 is 1.2 mm or less, for example It is desirable that it is 0 mm. At present, the diameter (inner diameter) Di of the hole 3 which can be inspected in the inspection apparatus 1 of this type is about 1.0 mm or more, and the range shown in the equation (5) is preferable, including the clearance.
検査プローブ12の一例は、外径Dnが1.0mm、内径が0.8mmのステンレス製の針状の筒体である。この検査プローブ12を備えた検査ユニット1は、直径Diが3mm以下の孔3を対象として孔3の内面4の状況を検査できる。検査プローブ12の内部には、直径(外径)が約0.6mmの非回転の保持筒34に支持された光ファイバー35が挿入されている。保持筒34は、検査プローブ12からホルダー部14の内部14bに延びており、固定部19の前方に延びた部分19aに固定されている。一方、検査プローブ12は、ホルダー部14を介して回転部18に繋がっており、回転ユニット20により中心軸(回転軸)11の周りに回転する。検査プローブ12とともに、先端12aに取り付けられた(配置された)光学素子39が回転する。このため、光学素子39で反射されたプローブ光61が開口13を介して半径方向に出射され、孔3の内面4を円周方向にスキャンする。内面4からの反射光62は開口13および光学素子39を介して検査プローブ12の内部に戻され、中心軸11に沿って反射され、光ファイバー35に入力される。
An example of the inspection probe 12 is a stainless steel needle-like cylinder having an outer diameter Dn of 1.0 mm and an inner diameter of 0.8 mm. The inspection unit 1 provided with the inspection probe 12 can inspect the condition of the inner surface 4 of the hole 3 for the hole 3 having a diameter Di of 3 mm or less. Inside the inspection probe 12, an optical fiber 35 supported by a non-rotational holding cylinder 34 having a diameter (outside diameter) of about 0.6 mm is inserted. The holding cylinder 34 extends from the inspection probe 12 to the inside 14 b of the holder portion 14 and is fixed to a forwardly extending portion 19 a of the fixing portion 19. On the other hand, the inspection probe 12 is connected to the rotating unit 18 via the holder unit 14, and rotates around the central axis (rotational axis) 11 by the rotating unit 20. The optical element 39 attached (disposed) to the tip 12 a rotates with the inspection probe 12. Therefore, the probe light 61 reflected by the optical element 39 is emitted radially through the opening 13 and scans the inner surface 4 of the hole 3 in the circumferential direction. The reflected light 62 from the inner surface 4 is returned to the inside of the inspection probe 12 through the opening 13 and the optical element 39, reflected along the central axis 11, and input to the optical fiber 35.
検査プローブ12には、調光レンズ36が固定されており、調光レンズ36が検査プローブ12とともに、すなわち、光学素子39とともに中心軸11の周りに回転する。したがって、プローブ光61および反射光62は、ともに回転する(同期して回転する)調光レンズ36および光学素子39を介して内面4に対し入出力される。このため、調光レンズ36および光学素子39により構成される光路の回転角度の依存性は少なく、検査装置1では、プローブ光61および反射光62を角度の依存性の少ない状態で内面4に対して入出力でき、安定した信号を採取できる。直径Diが1mm程度で内径が1mmを下回る可能性がある極細の検査プローブ12の内部に、回転角度の依存性が少ない状態でレンズ36を固定することは難しい。本例の検査装置1においては、レンズ36を検査プローブ12に取り付けて回転させることにより、回転角度に対し同じ条件でプローブ光61および反射光62を入出力できるようにしている。
A light control lens 36 is fixed to the inspection probe 12, and the light control lens 36 rotates around the central axis 11 together with the inspection probe 12, that is, with the optical element 39. Therefore, the probe light 61 and the reflected light 62 are input to and output from the inner surface 4 through the light adjustment lens 36 and the optical element 39 which rotate together (in synchronization with each other). For this reason, the dependence of the rotation angle of the optical path constituted by the light adjustment lens 36 and the optical element 39 is small, and the inspection apparatus 1 makes the probe light 61 and the reflected light 62 Input and output, and can collect stable signals. It is difficult to fix the lens 36 in a state in which the dependence of the rotation angle is small on the inside of the very thin inspection probe 12 in which the diameter Di is about 1 mm and the inner diameter may be less than 1 mm. In the inspection apparatus 1 of this example, by attaching and rotating the lens 36 to the inspection probe 12, the probe light 61 and the reflected light 62 can be input / output under the same condition with respect to the rotation angle.
内径Diが数ミリ以下の孔3の内面4の状態を精度よく検査するためには、直径Dnが1.5mm以下の検査プローブ12を中心軸11の周りに精度よく、軸ずれしたり、歳差運動することなく回転させることが望ましい。このため、検査装置1においては、図6に拡大して示すように、扱いやすいサイズで、十分な厚みの前壁14aを備えたホルダー部14を供給し、その中心軸11に沿って検査プローブ12の外径Dnにほぼ等しい内径が1mm前後で長さLの取付孔14cを設けている。検査プローブ12の直径Dnに対して十分な長さLの取付孔14cで検査プローブ12を中心軸11に沿って支持することにより、極細の検査プローブ12を安定して回転させることができる。検査プローブ12は、ホルダー部14に対し、専用の冶具により組み立てて出荷される。
In order to inspect the state of the inner surface 4 of the hole 3 with an inner diameter Di of several millimeters or less with high accuracy, the inspection probe 12 with a diameter Dn of 1.5 mm or less is accurately off-centered around the central axis 11 or It is desirable to rotate without differential movement. For this reason, in the inspection apparatus 1, as shown in an enlarged manner in FIG. 6, the holder portion 14 is supplied with the front wall 14 a of a sufficient size and with a sufficient thickness, and the inspection probe along the central axis 11 thereof. An attachment hole 14c having a length L and an inner diameter approximately equal to 1 mm and having an inner diameter substantially equal to the outer diameter Dn of 12 is provided. By supporting the inspection probe 12 along the central axis 11 with the attachment hole 14c of sufficient length L with respect to the diameter Dn of the inspection probe 12, it is possible to stably rotate the very thin inspection probe 12. The inspection probe 12 is assembled and shipped to the holder unit 14 by a dedicated jig.
ホルダー部14の直径(外径)Dhは、現場でハンドリングしやすい大きさであり、以下の条件(6)を満たすことが好ましい。
5mm≦Dh≦30mm ・・・(6)
条件(6)の下限は10mmであることが好ましく、一方、重量およびコスト等を考慮すると上限は20mmであることがさらに好ましい。したがって、プローブ12の直径Dnに対するホルダー部14の外径Dhは上述した条件(3)を満たすことが好ましい。また、条件(3)の下限は10であることが好ましく、上限は30であることが好ましく、25であることがさらに好ましい。 The diameter (outer diameter) Dh of theholder portion 14 is a size easy to handle on site, and preferably satisfies the following condition (6).
5 mm ≦ Dh ≦ 30 mm (6)
The lower limit of the condition (6) is preferably 10 mm, while the upper limit is more preferably 20 mm in consideration of weight and cost. Therefore, it is preferable that the outer diameter Dh of theholder portion 14 with respect to the diameter Dn of the probe 12 satisfy the condition (3) described above. Further, the lower limit of the condition (3) is preferably 10, the upper limit is preferably 30, and the more preferably 25.
5mm≦Dh≦30mm ・・・(6)
条件(6)の下限は10mmであることが好ましく、一方、重量およびコスト等を考慮すると上限は20mmであることがさらに好ましい。したがって、プローブ12の直径Dnに対するホルダー部14の外径Dhは上述した条件(3)を満たすことが好ましい。また、条件(3)の下限は10であることが好ましく、上限は30であることが好ましく、25であることがさらに好ましい。 The diameter (outer diameter) Dh of the
5 mm ≦ Dh ≦ 30 mm (6)
The lower limit of the condition (6) is preferably 10 mm, while the upper limit is more preferably 20 mm in consideration of weight and cost. Therefore, it is preferable that the outer diameter Dh of the
また、取付用の孔14cの長さ(前壁14aの壁厚)Lは、極細のプローブ12を安定して保持するためには、プローブ12の外径Dnに対し、上述した条件(4)を満たすことが好ましい。さらに、条件(4)の下限は、10であることが好ましく、重量およびコスト等を考慮すると、上限は、20であることが好ましい。具体的には、取付用の孔14cの長さ(前壁14aの厚み)Lは以下の条件(7)を満たすことが好ましい。
5mm≦L≦30mm ・・・(7)
条件(7)の下限は10mmであることが好ましく、上限は20mmであることが好ましい。 In addition, the length L of the mountinghole 14c (the wall thickness of the front wall 14a) is the above-mentioned condition (4) with respect to the outer diameter Dn of the probe 12 in order to stably hold the extra thin probe 12. It is preferable to satisfy Furthermore, the lower limit of the condition (4) is preferably 10, and the upper limit is preferably 20 in consideration of weight and cost. Specifically, it is preferable that the length (thickness of the front wall 14a) L of the mounting hole 14c satisfy the following condition (7).
5 mm ≦ L ≦ 30 mm (7)
The lower limit of the condition (7) is preferably 10 mm, and the upper limit is preferably 20 mm.
5mm≦L≦30mm ・・・(7)
条件(7)の下限は10mmであることが好ましく、上限は20mmであることが好ましい。 In addition, the length L of the mounting
5 mm ≦ L ≦ 30 mm (7)
The lower limit of the condition (7) is preferably 10 mm, and the upper limit is preferably 20 mm.
このように、検査ユニット1は、検査ヘッド10の先端に極細の、直径1mm前後の検査プローブ12を装着し、直径数mm程度、例えば直径3mmあるいはそれ以下の中空部分3の内面4の検査を可能とし、その内面(表面)の状態を評価するのに適している。
As described above, the inspection unit 1 mounts the very thin inspection probe 12 with a diameter of about 1 mm at the tip of the inspection head 10 and inspects the inner surface 4 of the hollow portion 3 with a diameter of about several mm, for example 3 mm or less And is suitable for evaluating the condition of its inner surface (surface).
一方、上記のような構造を内蔵した直径Dnが1mm程度のプローブ12は高価である。また、直径Diが2~3mm程度の貫通孔3に直径1mm程度のプローブ12を挿入して高速で回転させるためには、ワーク2とプローブ12とを高い精度で位置合わせする必要があり、精度が低いとプローブ12がワーク2と干渉して損傷したり、あるいは破壊されてしまう。したがって、この検査システム100においては、先にダミープローブ51を挿入することによりワーク2、具体的には検査対象の貫通孔3と検査プローブ12との位置合わせの精度を事前に検証する。
On the other hand, the probe 12 having a diameter Dn of about 1 mm and containing the above-mentioned structure is expensive. Moreover, in order to insert the probe 12 with a diameter of about 1 mm into the through hole 3 with a diameter Di of about 2 to 3 mm and rotate it at high speed, it is necessary to align the workpiece 2 with the probe 12 with high accuracy. If the value of x is low, the probe 12 interferes with the workpiece 2 and is damaged or destroyed. Therefore, in the inspection system 100, by inserting the dummy probe 51 first, the accuracy of alignment of the inspection probe 12 with the workpiece 2, specifically, the through hole 3 to be inspected, is verified in advance.
図8に、検査システム100においてワーク2の貫通孔3の内面4を検査する工程をフローチャートにより示している。また、図9に、移動テーブル40を第3の位置P3および第2の位置P2に移動した状態を示し、図10に、移動テーブル40を第1の位置P1に移動して、ダミープローブ51により位置を検証した後に、検査プローブ12により検査する様子を示している。
FIG. 8 shows a process of inspecting the inner surface 4 of the through hole 3 of the work 2 in the inspection system 100 by a flowchart. Further, FIG. 9 shows a state in which the movable table 40 has been moved to the third position P3 and the second position P2, and in FIG. 10, the movable table 40 is moved to the first position P1 and the dummy probe 51 is used. The state of inspection by the inspection probe 12 after verifying the position is shown.
まず、ステップ111において、制御ユニット70のテーブル制御ユニット71が移動テーブル40を第3の位置P3へ移動する。ロード・アンロード制御ユニット72が搬送用ロボット90を制御して、新しいワーク2を移動テーブル40のクランプ41にセットし、クランプ41がワーク2の外周面2aを保持する。移動テーブル40は、ワーク2の有無および位置を検出するセンサー46を内蔵しており、所定の位置でワーク2をクランプしたことを確認する。
First, at step 111, the table control unit 71 of the control unit 70 moves the moving table 40 to the third position P3. The load / unload control unit 72 controls the transfer robot 90 to set the new work 2 on the clamp 41 of the moving table 40, and the clamp 41 holds the outer peripheral surface 2 a of the work 2. The moving table 40 incorporates a sensor 46 for detecting the presence and the position of the workpiece 2 and confirms that the workpiece 2 is clamped at a predetermined position.
ステップ112において、テーブル制御ユニット71は、移動ユニット44によりガイド45に沿って、ワーク2がセットされた移動テーブル40をカメラユニット80の下の第2の位置P2へ移動する。ステップ113において、画像処理ユニット73が移動テーブル40に把持されたワーク2の画像、特に、ワーク2の貫通孔3の上側の第1の開口3aを含む画像を取得し、移動テーブル40における第1の開口3aの位置を解析し確認する。移動テーブル40に対する第1の開口3aの位置を確認することにより、第1の開口3aを検査プローブ12が差し込まれる第1の位置P1に精度よくセットすることができる。例えば、移動テーブル40またはクランプ41に第1の開口3aとともに画像が取得される複数のマーカーを予め設けておくことができる。カメラユニット80により取得された画像内の、移動テーブル40のマーカーと、第1の開口3aとの相対的な位置に基づき、移動テーブル40を第1の位置P1に移動したときの詳細な停止位置の制御が可能となる。
In step 112, the table control unit 71 moves the moving table 40 on which the work 2 is set to the second position P 2 below the camera unit 80 along the guide 45 by the moving unit 44. In step 113, the image processing unit 73 acquires an image of the workpiece 2 gripped by the moving table 40, in particular, an image including the first opening 3 a on the upper side of the through hole 3 of the workpiece 2. Analyze and confirm the position of the opening 3a. By confirming the position of the first opening 3a with respect to the moving table 40, the first opening 3a can be accurately set to the first position P1 where the inspection probe 12 is inserted. For example, the moving table 40 or the clamp 41 may be provided in advance with a plurality of markers from which an image is to be acquired along with the first opening 3a. Detailed stop position when the movable table 40 is moved to the first position P1 based on the relative position of the marker of the movable table 40 and the first opening 3a in the image acquired by the camera unit 80 Control of the
その後、ステップ114において、テーブル制御ユニット71は、移動ユニット44によりガイド45に沿って、ワーク2がセットされた移動テーブル40を第1の位置P1へ移動する。この際、テーブル制御ユニット71は、ステップ113により得られたデータに基づいて、ワーク2の貫通孔3の中心軸が、第1の位置P1である検査プローブ12の中心軸11と一致するように、移動テーブル40の位置を制御する。
Thereafter, in step 114, the table control unit 71 moves the moving table 40 on which the work 2 is set to the first position P1 along the guide 45 by the moving unit 44. At this time, the table control unit 71 causes the central axis of the through hole 3 of the workpiece 2 to coincide with the central axis 11 of the inspection probe 12 at the first position P1, based on the data obtained in step 113. , Control the position of the moving table 40.
ステップ115において、図10(a)に示すように、予備テスト制御ユニット74が、予備テストユニット50を用いてダミープローブ51をワーク2の貫通孔3の反対側(他方の側)の開口(第2の開口)3bから挿入し、貫通孔3の位置が第1の位置P1、すなわち、軸11に一致しているか否かを検証する。ダミープローブ51は、直径Ddが条件(1)を満たすように設定されている。本例では、検査対象の貫通孔3の直径Diが2mm、検査プローブ12の直径Dnが1mm、ダミープローブ51の直径Ddが1.5mmとしているが、これらに限定されるものではない。
In step 115, as shown in FIG. 10A, the preliminary test control unit 74 uses the preliminary test unit 50 to open the dummy probe 51 on the opposite side (other side) of the through hole 3 of the work 2 2. Insert from the opening 2) 3b, and verify whether or not the position of the through hole 3 coincides with the first position P1, that is, the axis 11. The dummy probe 51 is set such that the diameter Dd satisfies the condition (1). In this example, the diameter Di of the through hole 3 to be inspected is 2 mm, the diameter Dn of the inspection probe 12 is 1 mm, and the diameter Dd of the dummy probe 51 is 1.5 mm.
ダミープローブ51は移動ユニット52により、第1の位置P1において、軸11に沿って上下に動き、ワーク2の貫通孔3に下側の開口3bから挿入される。ダミープローブ51の直径Ddは、検査プローブ12の直径Dnより大きいので、ダミープローブ51が貫通孔3に、貫通孔3との接触などがなく挿入されれば、ダミープローブ51と同軸の軸11に沿って上下するように設定されている検査プローブ12は、貫通孔3に、所定のクリアランス、例えば、0.25mm以上のクリアランスを維持した状態で挿入されることになる。
The dummy probe 51 moves up and down along the axis 11 at the first position P1 by the moving unit 52, and is inserted into the through hole 3 of the work 2 from the lower opening 3b. Since the diameter Dd of the dummy probe 51 is larger than the diameter Dn of the inspection probe 12, if the dummy probe 51 is inserted into the through hole 3 without contact with the through hole 3, the axis 11 coaxial with the dummy probe 51 is inserted. The inspection probe 12 which is set to move up and down is inserted into the through hole 3 while maintaining a predetermined clearance, for example, a clearance of 0.25 mm or more.
ステップ116において、図10(b)に示すように、予備テスト制御ユニット74が、ダミープローブ51を貫通孔3から引き抜き、移動テーブル40に搭載されているセンサー(例えばカメラユニット)47により、ダミープローブ51の損傷の有無を確認する。たとえば、ダミープローブ51が曲がっていたり、表面に傷が見られたりする場合は、ダミープローブ51が貫通孔3に挿入した際に、ワーク2と干渉があったものと判断する。ダミープローブ51に損傷があれば、ステップ119において、エラーを表示し、検査システム100を停止する。
In step 116, as shown in FIG. 10 (b), the preliminary test control unit 74 pulls the dummy probe 51 out of the through hole 3 and uses the sensor (for example, camera unit) 47 mounted on the moving table 40. Check for 51 damage. For example, when the dummy probe 51 is bent or a scratch is observed on the surface, it is determined that there is interference with the work 2 when the dummy probe 51 is inserted into the through hole 3. If the dummy probe 51 is damaged, an error is displayed in step 119 and the inspection system 100 is stopped.
一方、ダミープローブ51に損傷がない場合は、ステップ117において、図10(c)に示すように、検査制御ユニット75が表面検査ユニット1を操作して、検査プローブ12を、第1の位置P1の中心軸11に沿って下方(前方)16へ移動し、ワーク2の貫通孔3に、上側の開口3aから挿入する。検査ユニット1は、上述したように、検査プローブ12を中心軸11の周りに回転し、検査プローブ12の先端12aから照射される検査光(プローブ光)61を用いて、ワーク2の貫通孔3の内面4の状態を検査する。検査が終了すると、検査プローブ12を、貫通孔3の上側に引き抜いて移動テーブル40から検査プローブ12を退避させる。
On the other hand, when the dummy probe 51 is not damaged, the inspection control unit 75 operates the surface inspection unit 1 in step 117 as shown in FIG. 10C to set the inspection probe 12 to the first position P1. The head is moved downward (forward) 16 along the central axis 11 of the head and inserted into the through hole 3 of the work 2 from the upper opening 3a. As described above, the inspection unit 1 rotates the inspection probe 12 around the central axis 11 and uses the inspection light (probe light) 61 emitted from the tip 12 a of the inspection probe 12 to form the through hole 3 of the workpiece 2. Inspect the condition of the inner surface 4 of. When the inspection is completed, the inspection probe 12 is pulled out to the upper side of the through hole 3 to retract the inspection probe 12 from the moving table 40.
検査が終了すると、ステップ118において、テーブル制御ユニット71が移動テーブル40を第3の位置P3に移動し、ロード・アンロード制御ユニット72が搬送ロボット90を用いて移動テーブル40にクランプされているワーク2を交換する。これらの工程を繰り返すことにより、検査システム100は、複数のワーク2に設けられた貫通孔3の内面4の状態を、自動的に、また、検査プローブ12を損傷させることなく、検査し、内面4の状態を評価することができる。
When the inspection is completed, in step 118, the table control unit 71 moves the moving table 40 to the third position P3, and the load / unload control unit 72 is clamped on the moving table 40 using the transfer robot 90. Replace 2 By repeating these steps, the inspection system 100 inspects the state of the inner surface 4 of the through hole 3 provided in the plurality of workpieces 2 automatically and without damaging the inspection probe 12. The four states can be evaluated.
なお、この検査システム100においては、ダミープローブ51とワーク2との接触の有無を、ダミープローブ51を引き抜いた後にダミープローブ51に損傷があるか否かで判断しているが、たとえば、ダミープローブ51に接触センサーを設けてワーク2に挿入したときにワーク2に接触したか否かを判断してもよく、ダミープローブ51とワーク2との間に電流が流れるか否かを判断したり、ダミープローブ51の周りの電場の状態を検出するなどの方法によりダミープローブ51とワーク2との接触の有無を判断してもよい。ダミープローブ51の損傷の有無を判断する方法は、良好な場合に、ワーク2の内面4の状態に電流や電場などによる影響を与えずに、ワーク2との接触の有無を判断することができる。ダミープローブ51とワーク2との接触の有無を判断するセンサー47を、本例ではワーク2に近い位置で検出するために移動テーブル40に内蔵しているが、センサー47の位置は、これに限らず、ダミープローブ51とともに動くヘッドに内蔵してもよく、予備テストユニット50に設けてもよい。
In the inspection system 100, the presence or absence of contact between the dummy probe 51 and the work 2 is determined based on whether or not the dummy probe 51 is damaged after the dummy probe 51 is pulled out. A contact sensor may be provided at 51 to determine whether or not the workpiece 2 is in contact with the workpiece 2 when inserted into the workpiece 2. It may be determined whether a current flows between the dummy probe 51 and the workpiece 2 or The presence or absence of contact between the dummy probe 51 and the workpiece 2 may be determined by a method of detecting the state of the electric field around the dummy probe 51 or the like. The method for determining the presence or absence of damage to the dummy probe 51 can determine the presence or absence of contact with the work 2 without affecting the state of the inner surface 4 of the work 2 due to current or electric field, in a favorable case. . In this example, the sensor 47 for determining the presence or absence of contact between the dummy probe 51 and the work 2 is built in the moving table 40 in order to detect at a position close to the work 2, but the position of the sensor 47 is limited to this Alternatively, it may be incorporated in the head moving with the dummy probe 51 or may be provided in the preliminary test unit 50.
また、この検査システム100は、ワーク2の貫通孔3の内面4の状態を検査するために特化したシステムの一例であり、この検査システム100を、ワーク2を用いた製品の組み立てライン、あるいはワーク2の製造ラインの一部に組み込むことも可能である。内面4の状態が確認されたワーク(部品)2を用いて製品を製造できる。また、ワーク2に貫通孔3を加工した直後に、貫通孔3の内面4の状態を確認することができる。
Further, this inspection system 100 is an example of a system specialized for inspecting the state of the inner surface 4 of the through hole 3 of the work 2, and this inspection system 100 can be used as an assembly line of products using the work 2 or It is also possible to incorporate it into part of the production line of the workpiece 2. A product can be manufactured using the work (part) 2 in which the state of the inner surface 4 is confirmed. Further, immediately after processing the through hole 3 in the work 2, the state of the inner surface 4 of the through hole 3 can be confirmed.
また、この検査システム100では、検査プローブ12とダミープローブ51とを軸11に沿って第1の位置P1に上下に配置しているが、逆に配置してもよく、左右あるいは前後に配置してもよい。また、上述した各寸法は一例であり、この検査システム100は、極細の検査プローブ(検査ニードル)12の保護に適しているが、検査プローブ12の直径に限らず、ダミープローブ51により事前にワーク2の位置を検証することはプローブ12の損傷を避けるために有用である。
Further, in this inspection system 100, the inspection probe 12 and the dummy probe 51 are vertically arranged at the first position P1 along the axis 11, but may be arranged in the opposite direction. May be In addition, each dimension described above is an example, and the inspection system 100 is suitable for protecting the ultrafine inspection probe (inspection needle) 12, but the diameter is not limited to the diameter of the inspection probe 12. Verifying the position of 2 is useful to avoid damage to the probe 12.
上記において開示された表面検査ユニット(表面検査システム)は、中心軸に沿って棒状に延びた中空の検査ヘッドであって、前記中心軸の周りに回転される検査ヘッドと、前記検査ヘッド内を通じて、前記中心軸に沿って検査用のレーザー光を供給し、前記中心軸に沿って戻された被検査物の表面からの反射光を受光する光学システムとを有する。前記検査ヘッドは、回転駆動される回転部と、前記回転部に装着された円筒状で前壁を備えたホルダー部と、前記前壁に前記中心軸に沿って取り付けられた極細で中空のニードル部(検査プローブ)とを含み、前記ニードル部は、先端に配置された光学素子であって、前記中心軸に対して、前記検査用のレーザー光を前記被検査物に向けて出射するとともに前記反射光を前記中心軸方向に導く光学素子を含む。前記ニードル部の直径Dnと、前記ホルダー部の前記前壁またはその近傍の直径Dhとは、条件(2)および条件(3)を満たしてもよい。前記ニードル部の直径Dnと、前記ホルダー部の前記前壁の厚みLとは、条件(4)を満たしてもよい。
The surface inspection unit (surface inspection system) disclosed above is a hollow inspection head extending in a rod shape along a central axis, the inspection head being rotated around the central axis, and the inspection head passing through the inspection head And an optical system for supplying a laser beam for inspection along the central axis and receiving reflected light from the surface of the inspection object returned along the central axis. The inspection head includes a rotary unit driven to rotate, a cylindrical holder mounted on the rotary unit, and a holder unit having a front wall, and a very thin hollow needle mounted on the front wall along the central axis. A portion (inspection probe), the needle portion being an optical element disposed at the tip, and emitting the laser beam for inspection toward the object to be inspected with respect to the central axis It includes an optical element that guides reflected light in the central axis direction. The diameter Dn of the needle portion and the diameter Dh of the front wall of the holder portion or in the vicinity thereof may satisfy the conditions (2) and (3). The diameter Dn of the needle portion and the thickness L of the front wall of the holder portion may satisfy the condition (4).
また、前記光学システムは、前記ニードル部に挿入された光ファイバー束であって、非回転の光ファイバー束を含み、前記ニードル部は、光ファイバー束の先端と前記光学素子との間に配置された調光レンズであって、前記ニードル部とともに回転する調光レンズを含んでもよい。さらに、表面検査ユニットは、前記検査ヘッドを前記中心軸の周りに回転する回転ユニットを有してもよい。前記被検査物は、前記ニードル部が挿入される中空部分を含み、表面検査ユニットは、前記検査ヘッドと前記被検査物とを前記中心軸に沿って相対的に移動する移動ユニットをさらに有してもよい。また、前記中空部分の内径Diは条件(5)を満たしてもよい。
Further, the optical system is an optical fiber bundle inserted into the needle portion, and the optical system includes a non-rotational optical fiber bundle, and the needle portion is a light control disposed between the tip of the optical fiber bundle and the optical element. The lens may include a light control lens that rotates with the needle unit. Furthermore, the surface inspection unit may comprise a rotation unit that rotates the inspection head around the central axis. The object to be inspected includes a hollow portion into which the needle portion is inserted, and the surface inspection unit further includes a moving unit for relatively moving the inspection head and the object to be inspected along the central axis. May be Further, the inner diameter Di of the hollow portion may satisfy the condition (5).
Claims (15)
- 貫通孔を含むワークの外周側を保持するクランプを含む移動テーブルと、
先端から検査光を出力して前記貫通孔の内周面をスキャンする検査プローブを含む検査ヘッドであって、前記移動テーブルにより前記ワークが搬送される第1の位置において、前記ワークの前記貫通孔の一方の側の第1の開口から、前記検査プローブを前記貫通孔に出し入れする検査ヘッドと、
前記第1の位置で、前記ワークの前記貫通孔の他方の側の第2の開口から、ダミープローブを前記貫通孔の内部に出し入れする予備テストユニットと、
前記ダミープローブと前記ワークとの接触の有無を確認するユニットとを有するシステム。 A moving table including a clamp for holding an outer peripheral side of the workpiece including the through hole;
An inspection head including an inspection probe that outputs inspection light from a tip to scan an inner circumferential surface of the through hole, wherein the through hole of the work is at a first position where the work is transported by the moving table An inspection head for moving the inspection probe into and out of the through hole from a first opening on one side of the
A preliminary test unit for taking a dummy probe into and out of the through hole from the second opening on the other side of the through hole of the work at the first position;
A system comprising: a unit for confirming presence or absence of contact between the dummy probe and the work. - 請求項1において、
前記確認するユニットは、前記ダミープローブの損傷を確認するユニットを含む、システム。 In claim 1,
The system, wherein the unit to confirm includes a unit to confirm damage to the dummy probe. - 請求項1または2において、
前記ダミープローブの直径は、前記検査プローブの直径より大きい、システム。 In claim 1 or 2,
The system wherein the diameter of the dummy probe is larger than the diameter of the inspection probe. - 請求項1ないし3のいずれかにおいて、
前記ダミープローブの直径Ddと、前記検査プローブの直径Dnとは以下の条件を満たす、システム。
1<Dd/Dn<2 In any one of claims 1 to 3,
A system in which the diameter Dd of the dummy probe and the diameter Dn of the inspection probe satisfy the following conditions.
1 <Dd / Dn <2 - 請求項4において、
前記検査プローブの直径Dnが以下の条件を満たす、システム。
0.5mm≦Dn≦1.5mm In claim 4,
The system in which the diameter Dn of the inspection probe satisfies the following condition.
0.5 mm ≦ Dn ≦ 1.5 mm - 請求項1ないし5のいずれかにおいて、
前記移動テーブルにより前記ワークが搬送される第2の位置で、前記移動テーブルの前記クランプにより保持された前記ワークの前記第1の開口または前記第2の開口の位置を確認するカメラユニットをさらに有する、システム。 In any one of claims 1 to 5,
The camera further includes a camera unit that confirms the position of the first opening or the second opening of the workpiece held by the clamp of the movable table at a second position where the workpiece is conveyed by the movable table. ,system. - 請求項6において、
前記移動テーブルを、前記ワークをロードする第3の位置から、前記第2の位置を経て前記第1の位置へ動かす移動ユニットをさらに有する、システム。 In claim 6,
The system further comprising: a moving unit that moves the moving table from a third position to load the workpiece, through the second position to the first position. - 請求項1ないし7のいずれかにおいて、さらに、
中心軸に沿って棒状に延びた中空で、前記中心軸の周りに回転される前記検査ヘッドの内部を通じて、前記中心軸に沿って検査用のレーザー光を供給し、前記中心軸に沿って戻された被検査物の表面からの反射光を受光する光学システムを有し、
前記検査ヘッドは、回転駆動される回転部と、
前記回転部に装着された円筒状で前壁を備えたホルダー部であって、極細で中空の前記検査プローブが前記前壁に前記中心軸に沿って取り付けられたホルダー部とを含み、
前記検査プローブは、前記先端に配置された光学素子であって、前記中心軸に対して、前記レーザー光を前記検査光として前記被検査物に向けて出射するとともに前記反射光を前記中心軸方向に導く光学素子を含む、システム。 In any one of claims 1 to 7, further,
A hollow rod extending along a central axis and supplying a laser beam for inspection along the central axis through the inside of the inspection head rotated about the central axis and returning along the central axis Have an optical system that receives light reflected from the surface of the inspected object,
The inspection head is a rotary unit driven to rotate.
A holder portion having a cylindrical front wall mounted on the rotating portion, the ultra-fine hollow inspection probe including the holder portion mounted on the front wall along the central axis;
The inspection probe is an optical element disposed at the tip, and emits the laser light as the inspection light toward the inspection object with respect to the central axis and the reflected light in the central axis direction A system that includes an optical element leading to the - 請求項8において、
前記検査プローブの直径Dnと、前記ホルダー部の前記前壁またはその近傍の直径Dhとが以下の条件を満たす、システム。
0.5mm≦Dn≦1.5mm
5≦Dh/Dn≦40 In claim 8,
A system in which the diameter Dn of the inspection probe and the diameter Dh of the front wall of the holder portion or in the vicinity thereof satisfy the following conditions.
0.5 mm ≦ Dn ≦ 1.5 mm
5 ≦ Dh / Dn ≦ 40 - 請求項8または9において、
前記検査プローブの直径Dnと、前記ホルダー部の前記前壁の厚みLとが以下の条件を満たす、システム。
5≦L/Dn≦30 In claim 8 or 9,
The system in which the diameter Dn of the inspection probe and the thickness L of the front wall of the holder unit satisfy the following conditions.
5 ≦ L / Dn ≦ 30 - 請求項8ないし10のいずれかにおいて、
前記光学システムは、前記検査プローブに挿入された光ファイバー束であって、非回転の光ファイバー束を含み、
前記検査プローブは、前記光ファイバー束の先端と前記光学素子との間に配置された調光レンズであって、前記検査プローブとともに回転する調光レンズを含む、システム。 In any one of claims 8 to 10,
The optical system is an optical fiber bundle inserted into the inspection probe, and includes a non-rotational optical fiber bundle.
The test probe is a light control lens disposed between the tip of the fiber optic bundle and the optical element, the light control lens including a light control lens that rotates with the test probe. - 請求項8ないし11のいずれかにおいて、さらに、
前記検査ヘッドを前記中心軸の周りに回転する回転ユニットと、
前記検査ヘッドを前記中心軸に沿って移動する移動ユニットとを有する、システム。 In any of claims 8 to 11, further,
A rotating unit that rotates the inspection head around the central axis;
A moving unit for moving the inspection head along the central axis. - 請求項12において、
前記検査プローブの直径Dnと、前記貫通孔の内径Diとは以下の条件を満たす、システム。
(Dn+0.5mm)≦Di≦(Dn+3.0mm)
ただし、直径Dnおよび内径Diの単位はmmである。 In claim 12,
A system in which the diameter Dn of the inspection probe and the inner diameter Di of the through hole satisfy the following conditions.
(Dn + 0.5 mm) ≦ Di ≦ (Dn + 3.0 mm)
However, the unit of the diameter Dn and the inner diameter Di is mm. - 検査システムにより、貫通孔を含むワークの前記貫通孔の内周面を検査する方法であって、
前記検査システムは、
前記ワークの外周側を保持するクランプを含む移動テーブルと、
前記移動テーブルにより前記ワークが搬送される第1の位置で、前記ワークの前記貫通孔の一方の側の第1の開口から挿入され、先端から検査光を出力して前記貫通孔の内周面をスキャンする検査プローブと、
前記第1の位置で、前記ワークの前記貫通孔の他方の側の第2の開口から挿入されるダミープローブと、
前記ダミープローブとワークとの接触の有無を確認するセンサーユニットとを含み、
当該方法は、
前記移動テーブルを前記第1の位置にセットすることと、
前記第2の開口から前記ダミープローブを前記貫通孔に出し入れすることと、
前記出し入れされた前記ダミープローブと前記ワークとの接触の有無を前記センサーユニットにより確認することと、
前記ダミープローブと前記ワークとの接触が確認されなければ、前記検査プローブを前記貫通孔に出し入れして検査を行うこととを有する方法。 A method of inspecting an inner circumferential surface of the through hole of a work including the through hole by an inspection system,
The inspection system
A moving table including a clamp for holding an outer peripheral side of the work;
At the first position where the work is transported by the moving table, the work is inserted from the first opening on one side of the through hole, the inspection light is output from the tip, and the inner circumferential surface of the through hole An inspection probe to scan the
A dummy probe inserted from a second opening on the other side of the through hole of the work at the first position;
A sensor unit for confirming presence or absence of contact between the dummy probe and the workpiece;
The method is
Setting the moving table to the first position;
Bringing the dummy probe into and out of the through hole from the second opening;
Confirming with the sensor unit whether or not the dummy probe brought in and out comes into contact with the work;
And, if the contact between the dummy probe and the workpiece is not confirmed, the inspection probe is inserted into and removed from the through hole to perform an inspection. - 請求項14において、
前記検査システムは、前記移動テーブルが前記ワークを搬送する第2の位置に配置されたカメラユニットをさらに含み、
当該方法は、さらに、
前記移動テーブルで前記ワークを前記第1の位置へ搬送する前に前記第2の位置へ搬送することと、
前記移動テーブルの前記クランプに保持された前記ワークの前記第1の開口または前記第2の開口の位置を前記カメラユニットにより確認することとを有する、方法。
In claim 14,
The inspection system further includes a camera unit disposed at a second position at which the movable table transports the workpiece;
The method further comprises
Conveying the workpiece to the second position before conveying the workpiece to the first position with the movement table;
Checking the position of the first opening or the second opening of the work held by the clamp of the moving table by the camera unit.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-207519 | 2017-10-26 | ||
JP2017207519A JP7131792B2 (en) | 2017-10-26 | 2017-10-26 | inspection system |
JP2017219958A JP6944192B2 (en) | 2017-11-15 | 2017-11-15 | Inspection system and method |
JP2017-219958 | 2017-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019083010A1 true WO2019083010A1 (en) | 2019-05-02 |
Family
ID=66246937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/039846 WO2019083010A1 (en) | 2017-10-26 | 2018-10-26 | Inspection system and inspection method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019083010A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111307832A (en) * | 2019-11-14 | 2020-06-19 | 无锡富瑞德测控仪器股份有限公司 | Optical channel measuring machine |
WO2020235578A1 (en) * | 2019-05-23 | 2020-11-26 | 長野オートメーション株式会社 | Inspection system |
CN112229825A (en) * | 2020-12-15 | 2021-01-15 | 华谱智能科技(天津)有限公司 | Portable laser geodesic instrument |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0618246A (en) * | 1991-03-28 | 1994-01-25 | Daihatsu Motor Co Ltd | Flaw inspection equipment on tubular inner wall face |
JPH09251129A (en) * | 1996-03-15 | 1997-09-22 | Shinko Electric Ind Co Ltd | Mirror for in-hole inspection and apparatus for in-hole inspection |
US5895927A (en) * | 1995-06-30 | 1999-04-20 | The United States Of America As Represented By The Secretary Of The Air Force | Electro-optic, noncontact, interior cross-sectional profiler |
JP2003329606A (en) * | 2002-05-09 | 2003-11-19 | Tohoku Techno Arch Co Ltd | Inner surface inspection device |
JP3159316U (en) * | 2009-11-27 | 2010-05-20 | シグマ株式会社 | Non-contact inspection system damage prevention device |
JP2012187599A (en) * | 2011-03-09 | 2012-10-04 | Toshiba Corp | Remote laser processing device |
JP2013088136A (en) * | 2011-10-13 | 2013-05-13 | Honda Motor Co Ltd | Hole checking method and device |
JP2014191242A (en) * | 2013-03-28 | 2014-10-06 | Kubota Corp | Inner surface inspection device |
JP2014190884A (en) * | 2013-03-28 | 2014-10-06 | Kubota Corp | Inner surface inspection device and method |
JP2016057140A (en) * | 2014-09-09 | 2016-04-21 | 株式会社ニシヤマ | Tool insertion device and front-end ring thereof |
-
2018
- 2018-10-26 WO PCT/JP2018/039846 patent/WO2019083010A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0618246A (en) * | 1991-03-28 | 1994-01-25 | Daihatsu Motor Co Ltd | Flaw inspection equipment on tubular inner wall face |
US5895927A (en) * | 1995-06-30 | 1999-04-20 | The United States Of America As Represented By The Secretary Of The Air Force | Electro-optic, noncontact, interior cross-sectional profiler |
JPH09251129A (en) * | 1996-03-15 | 1997-09-22 | Shinko Electric Ind Co Ltd | Mirror for in-hole inspection and apparatus for in-hole inspection |
JP2003329606A (en) * | 2002-05-09 | 2003-11-19 | Tohoku Techno Arch Co Ltd | Inner surface inspection device |
JP3159316U (en) * | 2009-11-27 | 2010-05-20 | シグマ株式会社 | Non-contact inspection system damage prevention device |
JP2012187599A (en) * | 2011-03-09 | 2012-10-04 | Toshiba Corp | Remote laser processing device |
JP2013088136A (en) * | 2011-10-13 | 2013-05-13 | Honda Motor Co Ltd | Hole checking method and device |
JP2014191242A (en) * | 2013-03-28 | 2014-10-06 | Kubota Corp | Inner surface inspection device |
JP2014190884A (en) * | 2013-03-28 | 2014-10-06 | Kubota Corp | Inner surface inspection device and method |
JP2016057140A (en) * | 2014-09-09 | 2016-04-21 | 株式会社ニシヤマ | Tool insertion device and front-end ring thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020235578A1 (en) * | 2019-05-23 | 2020-11-26 | 長野オートメーション株式会社 | Inspection system |
JPWO2020235578A1 (en) * | 2019-05-23 | 2021-10-21 | 長野オートメーション株式会社 | Inspection system |
US11971366B2 (en) | 2019-05-23 | 2024-04-30 | Nagano Automation Co., Ltd. | Inspection system |
CN111307832A (en) * | 2019-11-14 | 2020-06-19 | 无锡富瑞德测控仪器股份有限公司 | Optical channel measuring machine |
CN112229825A (en) * | 2020-12-15 | 2021-01-15 | 华谱智能科技(天津)有限公司 | Portable laser geodesic instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019083010A1 (en) | Inspection system and inspection method | |
KR101013005B1 (en) | Inspection head supporting structure in surface inspecting apparatus, and surface inspecting apparatus | |
CN105364302B (en) | The light spot form detection method of laser beam | |
US20170326669A1 (en) | Device for measuring the depth of a weld seam in real time | |
CN102820217B (en) | Processing unit (plant) | |
CN102814872B (en) | Processing unit (plant) | |
CN201644407U (en) | Three-dimensional dimension automatic sorting machine | |
US9067283B2 (en) | Machining method | |
CN111323480B (en) | Handheld automatic focusing laser ultrasonic nondestructive testing system | |
CN102101110A (en) | Magnet sorting device | |
CN109489590B (en) | Detection apparatus for honing hole | |
US5436645A (en) | Inspection/adjustment method and apparatus for laser beam output optical unit and laser scanning optical system | |
KR20180065609A (en) | An apparatus for inspecting the workpiece and a method for inspectin using the same | |
WO2019083009A1 (en) | Inspection system and inspection method | |
JP6944192B2 (en) | Inspection system and method | |
US20200393233A1 (en) | Method and system for measuring geometric parameters of through holes | |
JP5177643B2 (en) | High precision laser processing and combined laser / electrolytic processing equipment | |
TW201029781A (en) | Laser working state examination method and apparatus, and solar panel fabricating method | |
JP5127832B2 (en) | Optical fiber exit angle measuring method and apparatus | |
KR100443985B1 (en) | Apparatus for inspecting collimator | |
JP6157245B2 (en) | Laser processing apparatus and laser optical axis adjustment method | |
EP3974768A1 (en) | Inspection system | |
CN210834103U (en) | Vibration lens precision detection device | |
JP7131792B2 (en) | inspection system | |
JP2006110661A (en) | Image pickup device for loaded work in grinder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18870822 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18870822 Country of ref document: EP Kind code of ref document: A1 |