WO2019082815A1 - Transparent electroconductive film and method for producing same - Google Patents

Transparent electroconductive film and method for producing same

Info

Publication number
WO2019082815A1
WO2019082815A1 PCT/JP2018/039037 JP2018039037W WO2019082815A1 WO 2019082815 A1 WO2019082815 A1 WO 2019082815A1 JP 2018039037 W JP2018039037 W JP 2018039037W WO 2019082815 A1 WO2019082815 A1 WO 2019082815A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
conductive film
layer
transparent
Prior art date
Application number
PCT/JP2018/039037
Other languages
French (fr)
Japanese (ja)
Inventor
和也 酒井
圭祐 松本
文彦 河野
豪彦 安藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020207009899A priority Critical patent/KR102594226B1/en
Priority to CN201880065717.0A priority patent/CN111194471B/en
Publication of WO2019082815A1 publication Critical patent/WO2019082815A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent

Definitions

  • the present invention relates to a transparent conductive film and a method for producing the same.
  • a transparent conductive film comprises a transparent resin film and a transparent conductive film in order.
  • Patent Document 1 in order to suppress the occurrence of curling (rolling or warping) in the transparent resin film in the above-described heating of the amorphous transparent conductive film, the transparent resin film is annealed in advance for 3 minutes at 150 ° C. Has been proposed (see, for example, Patent Document 1).
  • Patent Document 1 an amorphous transparent conductive film is formed on an annealed transparent resin film to produce a transparent conductive film, and the transparent conductive film is heated at 130 ° C. for 90 minutes. Curling is suppressed.
  • the transparent conductive film when the transparent conductive film is heated immediately after being manufactured (immediately after the transparent conductive film is formed on the surface of the transparent resin film), the transparent resin film is stretched by heating and the transparent resin is relatively soft and amorphous.
  • the conductive film follows the elongation of the transparent resin film. And a transparent conductive film is crystallized based on heating.
  • the transparent conductive film is manufactured (after the transparent conductive film is formed on the surface of the transparent resin film), a predetermined period (time) necessarily exists before the transparent conductive film is crystallized. Do. Therefore, during the above-mentioned period, a part of the amorphous transparent conductive film is crystallized (so-called natural crystallization), and as a result, the transparent conductive film is compared to the transparent conductive film immediately after production. It becomes hard.
  • the transparent conductive film can not follow the elongation due to heating of the transparent resin film due to the hardness based on the partially crystallized portion, and as a result There is a problem that a crack is generated in the completely crystallized transparent conductive film.
  • the present invention provides a transparent conductive film which is excellent in heat resistance and can suppress damage to the transparent conductive layer even when a time to crystallization is present, and a method for producing the same.
  • the present invention (1) comprises a transparent substrate and a transparent conductive layer in this order, the transparent substrate containing a resin having a glass transition temperature of 130 ° C. or more, and the transparent conductive layer is amorphous, 150 It includes a transparent conductive film in which the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction after heating at 90 ° C. for 90 minutes is 0.05% or less.
  • the present invention (2) is the transparent conductive film according to (1), wherein the resin has a linear expansion coefficient of 5.5 ⁇ 10 ⁇ 5 / ° C. or more and 8.0 ⁇ 10 ⁇ 5 / ° C. or less. Including.
  • the present invention (3) includes the transparent conductive film according to (1) or (2), wherein the resin is at least one selected from the group consisting of cycloolefin resins and polycarbonate resins.
  • the present invention (4) includes the transparent conductive film according to any one of (1) to (3), wherein the transparent conductive layer contains an indium tin complex oxide.
  • the present invention (5) includes the transparent conductive film according to any one of (1) to (4), having a thickness of 20 ⁇ m or more and 100 ⁇ m or less.
  • the present invention (6) further comprises an antiblocking layer, a hardcoat layer and an optical adjustment layer, and the antiblocking layer, the transparent substrate, the hardcoat layer, the optical adjustment layer, and the transparent conductive layer are sequentially disposed. And the transparent conductive film according to any one of (1) to (5).
  • the present invention (7) comprises a first step of preparing a transparent substrate, a second step of annealing the transparent substrate, and an amorphous transparent conductive layer disposed on the transparent substrate to form the transparent group.
  • the method of manufacturing the transparent conductive film which anneals the said transparent base material so that the difference of the thermal contraction rate of and TD direction may be 0.05% or less.
  • This invention (8) includes the manufacturing method of the transparent conductive film as described in (7) which heats a transparent base material for 1 minute or more and 5 minutes or less below 145 degreeC at the said 2nd process.
  • the transparent substrate contains a resin having a glass transition temperature of 130 ° C. or more, and thus is excellent in heat resistance.
  • the difference of the thermal contraction rate of MD direction and the thermal contraction rate of TD direction after heating a transparent conductive film at 150 degreeC for 90 minutes is 0.05% or less, it is a period until it crystallizes. Even if it exists, damage to the transparent conductive layer can be suppressed.
  • FIGS. 1A to 1D are process cross-sectional views showing a method of producing an embodiment of the transparent conductive film of the present invention, wherein FIG. 1A is a first step of preparing a substrate laminate, and a substrate laminate The second step of annealing, FIG. 1B is the third step of disposing an amorphous transparent conductive layer, FIG. 1C is the state in which a part of the transparent conductive layer is crystallized with time, FIG. 1D is transparent 6 shows a process of crystallizing a conductive layer.
  • FIGS. 2A to 2D are process cross sections showing a modification of the manufacturing method shown in FIGS. 1A to 1D (a transparent conductive film not provided with a hard coat layer, an optical adjustment layer and an antiblocking layer), and FIG.
  • FIG. 2B is a third step of disposing an amorphous transparent conductive layer
  • FIG. 2C is a second step of the transparent conductive layer.
  • FIG. 2D shows a process of crystallizing the transparent conductive layer, in which the part is crystallized with the passage of time.
  • the vertical direction in the drawing is the vertical direction (thickness direction, first direction)
  • the upper side of the drawing is the upper side (one side in the thickness direction, one side in the first direction)
  • the lower side is the lower side.
  • the left-right direction and the depth direction in the drawing are surface directions orthogonal to the up-down direction. Specifically, it conforms to the directional arrow in each figure. By the definition of this direction, there is no intention to limit the direction at the time of production and use of the base laminate 7, the transparent conductive film 1 and the crystallized transparent conductive film 10 described later.
  • the transparent conductive film 1 has a film shape having a predetermined thickness, extends in a plane direction, and has a flat upper surface and a flat lower surface.
  • the transparent conductive film 1 is, for example, one component such as a touch panel substrate provided in an image display device, that is, it is not an image display device. That is, the transparent conductive film 1 is a component for producing an image display device etc., does not contain an image display element such as an LCD module, and is a device which can be distributed alone and can be used industrially.
  • the transparent conductive film 1 includes, for example, an antiblocking layer 4, a transparent substrate 2, a hard coat layer 3, an optical adjustment layer 5 and a transparent conductive layer 6 in order from the top.
  • the transparent conductive film 1 comprises only the antiblocking layer 4, the transparent substrate 2, the hard coat layer 3, the optical adjustment layer 5 and the transparent conductive layer 6.
  • the antiblocking layer 4, the transparent base material 2, the hard coat layer 3 and the optical adjustment layer 5 are provided in a base material laminate 7 described later.
  • the transparent substrate 2 is a transparent substrate for securing the mechanical strength of the transparent conductive film 1.
  • the transparent substrate 2 supports the transparent conductive layer 6 together with the hard coat layer 3 and the optical adjustment layer 5.
  • the transparent substrate 2 has a film shape, extends in the surface direction, and has a flat upper surface and a flat lower surface.
  • the material of the transparent substrate 2 includes a resin having flexibility, and more specifically, a resin (high glass transition temperature resin) satisfying a glass transition temperature described later.
  • the resin is selected from, for example, cycloolefin resins, polycarbonate resins, polyethersulfone resins, polyimide resins, polyarylate resins, polyphenylene sulfide resins and the like.
  • the resins can be used alone or in combination of two or more.
  • a cycloolefin resin and a polycarbonate resin are preferably selected, and from the viewpoint of securing low birefringence, a cycloolefin resin is more preferably selected.
  • cycloolefin resins include cycloolefin polymers (COPs) and cycloolefin copolymers (COCs).
  • Cycloolefin polymers are polymers of cyclic olefins. Cycloolefin copolymers are copolymers of cyclic olefins and olefins such as ethylene.
  • Cyclic olefins include, for example, polycyclic cyclic olefins and monocyclic cyclic olefins.
  • the polycyclic cyclic olefin for example, a bicyclic such as norbornene, methyl norbornene, dimethyl norbornene, ethyl norbornene, ethylidene norbornene, butyl norbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyl dicyclopentadiene, dimethyl dicyclopentadiene and the like
  • tricyclic dienes such as tricyclopentadiene, tetracyclic dienes such as tetracyclopentadiene, tetracyclododecene, methyltetracyclododecene, dimethyl cyclotetradodecene and the like can be mentioned.
  • Examples of monocyclic cyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene, cyclododecatriene and the like.
  • COP is mentioned from a viewpoint of reducing birefringence.
  • polycarbonate resins include aliphatic polycarbonates, aromatic polycarbonates, and aliphatic-aromatic polycarbonates.
  • polycarbonate resin for example, polycarbonate (PC) using bisphenols such as bisphenol A polycarbonate and branched bisphenol A polycarbonate, and further, expanded polycarbonate, copolycarbonate, block copolycarbonate, polyester carbonate, polyphosphonate And carbonates, diethylene glycol bisallyl carbonate (CR-39) and the like.
  • PC polycarbonate
  • Polycarbonate resins also include those blended with other components such as, for example, bisphenol A polycarbonate blend, polyester blend, ABS blend, polyolefin blend, styrene-maleic anhydride copolymer blend.
  • the glass transition temperature of the resin is 130 ° C. or more, preferably 135 ° C. or more, preferably 140 ° C. or more, and for example, 175 ° C. or less, preferably 160 ° C. or less. If the glass transition temperature of the resin is below the above-described lower limit, the heat resistance of the transparent base material 2 is reduced. In other words, when the glass transition temperature of the resin exceeds the above-described lower limit, the transparent substrate 2 is excellent in heat resistance.
  • the glass transition temperature of the resin is below the above-described upper limit, the moldability at the time of production of the transparent substrate 2 (specifically, at the time of extrusion molding) is excellent.
  • the glass transition temperature is determined by differential scanning calorimetry (DSC) described in JIS K 7121 (1987).
  • the linear expansion coefficient of the resin is, for example, 2.0 ⁇ 10 ⁇ 5 / ° C. or more, further, 4.0 ⁇ 10 ⁇ 5 / ° C. or more, further, 5.0 ⁇ 10 ⁇ 5 / ° C. or more, Furthermore, it is 5.5 ⁇ 10 ⁇ 5 / ° C. or higher. If the linear expansion coefficient of the resin is the above lower limit or more, the transparent substrate 2 is excessively stretched in the fourth step (which will be described later, a step of crystallizing the transparent conductive layer 6), and therefore the transparent conductive layer 6 is transparent. It becomes difficult to follow the extension of the substrate 2, which tends to cause damage (problem) to the transparent conductive layer 6. However, although this transparent conductive film 1 will be described later, it has 0.05% or less of the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction.
  • the linear expansion coefficient of the resin is, for example, 20 ⁇ 10 ⁇ 5 / ° C. or less, preferably 15 ⁇ 10 ⁇ 5 / ° C. or less, more preferably 10 ⁇ 10 ⁇ 5 / ° C. or less, more preferably 8 It is not more than 0 ⁇ 10 ⁇ 5 / ° C. If the linear expansion coefficient of the resin is equal to or less than the above-described upper limit, excessive elongation of the transparent base material 2 is suppressed in the fourth step (a step of crystallizing the transparent conductive layer 6 described later). 6 can reliably follow the extension of the transparent substrate 2, thereby suppressing damage to the transparent conductive layer 6.
  • the linear expansion coefficient of the resin is determined by a linear expansion measurement device based on ASTM E831.
  • the hard coat layer 3 is a scratch protection layer for making it difficult for the transparent conductive film 1 to be scratched.
  • the hard coat layer 3 has a film shape, and is disposed, for example, on the entire upper surface of the transparent substrate 2 so as to be in contact with the upper surface of the transparent substrate 2.
  • the material of the hard coat layer 3 is, for example, a hard coat composition.
  • Examples of the hard coat composition include mixtures described in JP-A-2016-179686.
  • the mixture contains, for example, a resin (binder resin) such as an acrylic resin or a urethane resin.
  • the thickness of the hard coat layer 3 is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • the optical adjustment layer 5 suppresses the visual recognition of the transparent electrode pattern in the transparent conductive layer 6 and at the same time, the optical properties (for example, the refractive index of the transparent conductive film 1) to ensure excellent transparency of the transparent conductive film 1. ) Is a layer to adjust.
  • the optical adjustment layer 5 has a film shape, and is disposed, for example, on the entire top surface of the hard coat layer 3 so as to be in contact with the top surface of the hard coat layer 3. More specifically, the optical adjustment layer 5 is disposed between the hard coat layer 3 and the transparent conductive layer 6 so as to be in contact with the upper surface of the hard coat layer 3 and the lower surface of the transparent conductive layer 6.
  • the material of the optical adjustment layer 5 is, for example, an optical adjustment composition.
  • optical adjustment layer 5 As an optical adjusting composition, for example, a mixture described in JP-A-2016-179686 can be mentioned.
  • the mixture contains, for example, a resin (binder resin) such as an acrylic resin, and inorganic or organic particles (preferably, inorganic particles such as zirconia).
  • the thickness of the optical adjustment layer 5 is, for example, 50 nm or more, preferably 100 nm or more, and for example, 800 nm or less, preferably 300 nm or less.
  • the anti-blocking layer 4 provides blocking resistance to the surfaces of the plurality of transparent conductive films 1 in contact with each other, for example, when the plurality of transparent conductive films 1 are laminated in the thickness direction.
  • the antiblocking layer 4 is the lowermost surface of the transparent conductive film 1.
  • the antiblocking layer 4 is disposed on the entire lower surface of the transparent substrate 2 so as to be in contact with the lower surface of the transparent substrate 2.
  • the material of the antiblocking layer 4 is, for example, an antiblocking composition. Examples of the antiblocking composition include mixtures described in JP-A-2016-179686.
  • the mixture contains, for example, a resin (binder resin) such as an acrylic resin and particles of an inorganic or organic type (preferably, particles of an organic type such as a styrene type).
  • a resin binder resin
  • the thickness of the antiblocking layer 4 is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • Transparent conductive layer 6 is amorphous. That the transparent conductive layer 6 is amorphous means that it is immersed in hydrochloric acid (concentration 5 mass%) at 20 ° C. for 15 minutes, then washed with water and dried, and the terminal resistance between about 15 mm exceeds 10 k ⁇ Identified (defined) by
  • the transparent conductive layer 6 is a transparent conductive layer before complete crystallization to be completely crystallized to become a crystallized transparent conductive layer 6C (described later) in the fourth step (see later, heating step, see FIG. 1D).
  • the transparent conductive layer 6 is included in the “transparent conductive layer” of the present invention, and the amorphous transparent conductive layer 6A (described later) immediately after the production shown in FIG. 1B and the amorphous shown in FIG. 1C. It includes both of the partially crystallized transparent conductive layer 6B (described later) for which a predetermined period has elapsed immediately after the production of the transparent conductive layer 6A.
  • the transparent conductive layer 6 is finally formed into a transparent electrode pattern by etching.
  • the transparent conductive layer 6 is the uppermost layer of the transparent conductive film 1 and has a film shape, and is disposed on the entire upper surface of the optical adjustment layer 5 so as to contact the upper surface of the optical adjustment layer 5 There is.
  • the material of the transparent conductive layer 6 is, for example, an indium-containing oxide such as indium-tin complex oxide (ITO), for example, an antimony-containing oxide such as antimony-tin complex oxide (ATO), etc. And indium-containing oxides, more preferably ITO. If the material of the transparent conductive layer 6 is ITO, the transparent conductive layer 6 can have both excellent transparency and excellent conductivity.
  • ITO indium-tin complex oxide
  • ATO antimony-containing oxide
  • ITO indium-containing oxides, more preferably ITO. If the material of the transparent conductive layer 6 is ITO, the transparent conductive layer 6 can have both excellent transparency and excellent conductivity.
  • the tin oxide (SnO 2 ) content is, for example, 0.5 mass% or more, preferably, relative to the total amount of tin oxide and indium oxide (In 2 O 3 ) Is 3% by mass or more, and for example, 15% by mass or less, preferably 13% by mass or less.
  • ITO may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these.
  • additional component include metal elements other than In and Sn, and specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, Fe , Pb, Ni, Nb, Cr, Ga and the like.
  • the thickness of the transparent conductive layer 6 is, for example, 10 nm or more, preferably 20 nm or more, and for example, 100 nm or less, preferably 35 nm or less.
  • the surface resistance of the transparent conductive layer 6 is, for example, more than 200 ohms / square, further 250 ohms / square or more, and for example 500 ohms / square or less, further 400 ohms / square or less.
  • the method for producing the transparent conductive film 1 comprises a first step (see FIG. 1A) of preparing a base laminate 7, a second step of annealing the base laminate 7 (see FIG. 1A), and a transparent conductive layer 6 Is arranged in the base laminate 7 (see FIG. 1B).
  • the first step, the second step, and the third step are sequentially performed.
  • this manufacturing method is implemented by a roll to roll system, for example. That is, the base laminate 7 to be prepared and the transparent conductive film 1 to be produced have the MD direction (the machine direction or the conveying direction) and the TD direction (the orthogonal direction or the width direction).
  • the base material laminated body 7 provided with the transparent base material 2 is prepared at a 1st process.
  • the base laminate 7 includes the antiblocking layer 4, the transparent base 2, the hard coat layer 3 and the optical adjustment layer 5.
  • the base laminate 7 comprises only the antiblocking layer 4, the transparent base 2, the hard coat layer 3 and the optical adjustment layer 5.
  • the base laminate 7 has a film shape having a predetermined thickness, extends in the plane direction, and has a flat upper surface and a flat lower surface.
  • the base-material laminated body 7 has a long shape wound by the roll.
  • the transparent base 2 having a long shape is prepared.
  • the hard coat layer 3, the antiblocking layer 4 and the optical adjustment layer 5 are sequentially disposed on the transparent substrate 2 by a roll-to-roll method. Specifically, the dilution liquid of the hard coat composition and the dilution liquid of the antiblocking composition are applied to each of the upper and lower surfaces of the transparent substrate 2, and after drying, the hardcoat composition and the antiblocking composition are irradiated by ultraviolet light. Cure each of the objects. Thus, the hard coat layer 3 and the antiblocking layer 4 are formed on the upper and lower surfaces of the transparent substrate 2 respectively. Thereafter, a diluted solution of the optical adjustment composition is applied to the upper surface of the hard coat layer 3, and after drying, the optical adjustment composition is cured by ultraviolet irradiation. Thereby, the optical adjustment layer 5 is formed.
  • the base laminate 7 is annealed.
  • At least the transparent substrate 2 may be annealed, and specifically, the substrate laminate 7 is heated.
  • the base laminate 7 is placed in the heating furnace 8.
  • a heating furnace a vacuum heating apparatus etc. are mentioned, for example.
  • the base laminate 7 is allowed to pass through the inside of the heating furnace 8.
  • the heating conditions are the heat shrinkage rate in the MD direction and the TD direction after heating the transparent conductive layer 6 at 150 ° C. for 90 minutes after the second step (after heat resistance test A in Example 1, although detailed later)
  • the difference with the thermal contraction rate is adjusted to be 0.05% or less.
  • the heating temperature of the heating furnace 8 is, for example, less than 145 ° C., preferably 140 ° C. or less, more preferably 135 ° C. or less, still more preferably 130 ° C. or less, particularly preferably 120 ° C. or less Most preferably, it is 110 ° C. or less. If the heating temperature is lower than the above-described upper limit, the above-described difference in thermal contraction rate can be reliably set to 0.05% or less.
  • the heating temperature of the heating furnace 8 is, for example, 70 ° C. or more, preferably 80 ° C. or more, more preferably 90 ° C. or more, and further preferably 95 ° C. or more.
  • the heating temperature exceeds the above-described lower limit, it is possible to control the thermal contraction rates in the MD direction and the TD direction after heating the transparent conductive layer 6 at 150 ° C. for 90 minutes after the second step.
  • the heating time is, for example, 0.1 minutes or more, preferably 0.5 minutes or more, and for example, 5 minutes or less, preferably 3 minutes or less.
  • the difference in the thermal contraction rate can be reliably set to 0.05% or less.
  • the heating time is determined by the passing speed of the base laminate 7 in the heating furnace 8 and the length (furnace length) of the heating furnace 8 in the MD direction. Adjust by setting.
  • the tension in the transport direction of the base laminate 7 in the second step is not particularly limited, and is, for example, 10 N or more, preferably 25 N or more. For example, it is 300 N or less, preferably 150 N or less, more preferably 100 N or less. If the tension is equal to or more than the above-described lower limit, the base laminate 7 can be transported with excellent workability. If the tension is equal to or less than the above-described upper limit, the difference between the thermal contraction rate in the MD direction and the thermal contraction rate in the TD direction described later can be reliably set in a desired range.
  • the transparent conductive layer 6 is disposed on the base laminate 7.
  • the transparent conductive layer 6 is provided on the upper surface of the optical adjustment layer 5 by, for example, a sputtering method. Specifically, in the roll-to-roll method, the annealed base laminate 7 is passed through a sputtering apparatus (not shown).
  • the transparent conductive layer 6 is provided on the upper surface of the base laminate 7 as the amorphous transparent conductive layer 6A.
  • the amorphous transparent conductive layer 6A is a layer immediately after being formed, and is an amorphous layer in which crystallization does not substantially progress.
  • the transparent conductive film 1 provided with the base material laminated body 7 and the transparent conductive layer 6 (amorphous transparent conductive layer 6A) in order toward the thickness direction upper side is obtained.
  • the transparent conductive film 1 preferably comprises only the base laminate 7 and the transparent conductive film 1.
  • the thickness of the transparent conductive film 1 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. If thickness is below the upper limit mentioned above, thickness reduction of the transparent conductive film 1 can be achieved. If thickness is more than the above-mentioned upper limit, the transparent conductive film 1 has the outstanding handling property and the outstanding mechanical strength.
  • the transparent conductive film 1 is a preparation film for producing the crystallized transparent conductive film 10 (see FIG. 1D described later) including the crystallized transparent conductive layer 6C, and is not the crystallized transparent conductive film 10.
  • the transparent conductive film 1 is distributed as a film alone.
  • Thermal contraction in the MD direction after heating this transparent conductive film 1 that is, a laminated film including the base laminate 7 and the transparent conductive layer 6) at 150 ° C. for 90 minutes (heat test A in the example described later)
  • the difference between the heat shrinkage rate and the heat shrinkage rate in the TD direction is 0.05% or less, preferably less than 0.05%, more preferably 0.3% or less, still more preferably 0.2% or less, particularly preferably Is less than 0.2%.
  • the transparent conductive film 1 before heating is marked at a predetermined interval in each of the TD direction and the TD direction, and the intervals thereof Is measured, and then the transparent conductive film 1 is heated, and the above-mentioned interval is measured again, and the above-mentioned difference is obtained from the results. Details will be described in a later example. Moreover, it can also obtain by the method of using a CNC three-dimensional measuring device as described in Unexamined-Japanese-Patent No. 2016-124106.
  • the transparent conductive film 1 is then provided with a crystallized transparent conductive layer 6C by crystallizing the transparent conductive film 1 transparent conductive layer 6 after a predetermined period of time has elapsed.
  • the crystallized transparent conductive film 10 is used.
  • the above period is the time immediately after the production of the transparent conductive film 1 (more specifically, immediately after the formation of the amorphous transparent conductive layer 6A) to the time immediately before the transparent conductive layer 6 is completely crystallized. is there.
  • the transparent conductive film 1 is stored (stored) in a warehouse of the manufacturer of the transparent conductive film 1 and / or the crystallized transparent conductive film 10, and further, the crystallized transparent conductive
  • the manufacturer of the transparent film 10 waits for the amorphous transparent conductive layer 6A to pass through the heating device or transports the amorphous transparent conductive layer 6A.
  • the above-mentioned period is, for example, 10 hours or more, 1 day or more, 10 days or more, 100 days or more, or, for example, 10 years or less.
  • the transparent conductive film 1 in the above-described period is stored (or kept on standby or transported) under, for example, an air atmosphere, an inert gas atmosphere or the like, and is usually stored under the air atmosphere.
  • the transparent conductive film 1 when the transparent conductive film 1 is stored in the above-mentioned environment for a predetermined period, a part of the amorphous transparent conductive layer 6A is crystallized. That is, crystallization in the amorphous transparent conductive layer 6A proceeds partially (so-called natural crystallization partially occurs). However, the transparent conductive layer 6 is not completely crystallized, and the amorphous transparent conductive layer 6A reaches the partially crystallized transparent conductive layer 6B but does not reach the crystallized transparent conductive layer 6C.
  • this partially crystallized transparent conductive layer 6B is not completely crystallized and still has an amorphous state, it is included in the "amorphous" "transparent conductive layer" of the present invention. .
  • the conditions under which the amorphous transparent conductive layer 6A spontaneously crystallizes are the conditions under which the amorphous transparent conductive layer 6A is stored for the period described above, and an accelerated test (for example, 50) in the heat test C described later. C) for 150 hours or more and 200 hours or less).
  • the transparent substrate 2 is While being stretched by heating, the relatively soft amorphous transparent conductive layer 6A can follow the stretching of the transparent substrate 2.
  • the amorphous transparent conductive layer 6A is inevitably partially crystalline because the above-mentioned period necessarily exists and the amorphous transparent conductive layer 6A is practically stored for the above-mentioned period. And the transparent conductive layer 6B. Then, since the partially crystallized transparent conductive layer 6B is harder than the amorphous transparent conductive layer 6A, when the partially crystallized transparent conductive layer 6B is heated in the subsequent fourth step (heating step), the partially crystallized The transparent conductive layer 6B can not sufficiently follow the elongation due to heating of the transparent base material 2, and therefore, there is a possibility that a crack (crack) may occur in the crystallized transparent conductive layer 6C.
  • a crack crack
  • the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction of the transparent conductive film 1 are 0.05% or less, the above-mentioned cracks can be suppressed.
  • the transparent conductive layer 6 is crystallized. Specifically, the partially crystallized transparent conductive layer 6B is completely crystallized. Thus, the crystallized transparent conductive layer 6C is formed.
  • the partially crystallized transparent conductive layer 6B is heated, for example, in the atmosphere.
  • the heating temperature is, for example, 110 ° C. or more, preferably 120 ° C. or more, and for example, 150 ° C. or less, preferably 130 ° C. or less.
  • the heating time is, for example, 15 minutes or more, for example, 120 minutes or less.
  • the crystallized transparent conductive layer 6C is formed.
  • the crystalline transparent conductive layer 6C is crystalline because it is immersed in hydrochloric acid (concentration 5 mass%) at 20 ° C. for 15 minutes, then washed with water and dried, and the terminal resistance between about 15 mm is 10 k ⁇ or less Identified (defined).
  • the surface resistance of the crystallized transparent conductive layer 6C is lower than that of the amorphous transparent conductive layer 6A and the partially crystallized transparent conductive layer 6B, and specifically, for example, 200 ⁇ / ⁇ or less, preferably 150 ⁇ . Or less, and for example, 10 ⁇ / or more.
  • a crystallized transparent conductive film 10 is obtained, which sequentially includes the base laminate 7 and the crystallized transparent conductive layer 6C (the crystallized transparent conductive layer 6) in the thickness direction upward.
  • the crystallized transparent conductive film 10 preferably comprises only the base laminate 7 and the crystallized transparent conductive layer 6C.
  • the transparent conductive film 1 obtained by the method for producing the transparent conductive film 1 and having the amorphous transparent conductive layer 6 (the amorphous transparent conductive layer 6A and the partially crystallized transparent conductive layer 6B) is transparent. Since the base material 2 contains resin which has a glass transition temperature of 130 degreeC or more, it is excellent in heat resistance.
  • the transparent conductive film 1 laminated film including the base laminate 7 and the transparent conductive layer 6
  • damage to the crystallized transparent conductive layer 6C can be suppressed even if there is a period until the transparent conductive layer 6 is crystallized by heating.
  • the partially crystallized transparent conductive layer 6B is harder than the amorphous transparent conductive layer 6A as described above, it can not follow the elongation of the transparent base material 2 based on heating in the fourth step, Therefore, although there is a tendency for cracks to occur in the crystallized transparent conductive layer 6C shown in FIG. 1D, in this transparent conductive film 1, the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction is 0. Since it is not more than .05%, it is possible to adjust the balance between the MD direction and the thermal contraction rate and the thermal contraction rate in the TD direction. Therefore, it is possible to suppress (prevent) generation of a crack in the crystallized transparent conductive layer 6C in the crystallized transparent conductive film 10 shown in FIG. 1D.
  • the crystallized transparent conductive layer 6C is formed of an amorphous transparent conductive layer 6 (amorphous transparent conductive layer 6A and It is not included in the "transparent conductive film" of the present invention, since it is not a partially crystallized transparent conductive layer 6B.
  • each modification can exhibit the same function and effect as those of the above-described embodiment.
  • the transparent conductive film 1 includes a hard coat layer 3 (see FIG. 1B), an antiblocking layer 4 (see FIG. 1B) and an optical adjustment layer 5 (see FIG. 1B). Absent.
  • the transparent conductive film 1 comprises a transparent substrate 2 and an amorphous transparent conductive layer 6A (transparent conductive layer 6) in order.
  • the transparent conductive film 1 preferably comprises only the transparent substrate 2 and the amorphous transparent conductive layer 6A.
  • the transparent base material 2 is prepared in a 1st process.
  • the transparent substrate 2 is annealed using the heating furnace 8.
  • the amorphous transparent conductive layer 6A is disposed on the transparent substrate 2. Specifically, the amorphous transparent conductive layer 6 is formed directly on the upper surface of the annealed transparent substrate 2.
  • the transparent conductive film 1 provided with the transparent substrate 2 and the amorphous transparent conductive layer 6A in order is obtained.
  • the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction after heating the transparent conductive film 1 (that is, the laminated film including the transparent base 2 and the transparent conductive layer 6) at 150 ° C. for 90 minutes Is less than 0.05%.
  • the amorphous transparent conductive layer 6A may be provided on both the upper and lower sides of the transparent substrate 2 in the transparent conductive film 1.
  • the transparent conductive layer 6 may be provided on both the upper and lower sides of the transparent substrate 2 in the transparent conductive film 1.
  • a transparent substrate 2 was prepared. Specifically, transparent base material 2 made of COP (glass transition temperature 145 ° C., linear expansion coefficient 6 to 7 ⁇ 10 ⁇ 5 / ° C., thickness 40 ⁇ m, in-plane birefringence index 0.0001, manufactured by Nippon Zeon Co., "ZEONOR” (registered trademark) was prepared as a roll-shaped long base material.
  • COP glass transition temperature 145 ° C., linear expansion coefficient 6 to 7 ⁇ 10 ⁇ 5 / ° C., thickness 40 ⁇ m, in-plane birefringence index 0.0001
  • ZEONOR registered trademark
  • the hard coat layer 3, the antiblocking layer 4 and the optical adjustment layer 5 were formed in order on the transparent substrate 2 by a roll to roll method.
  • the upper surface of the transparent film substrate 2 is coated with a dilute solution of a hard coat composition consisting of a binder resin (urethane-based polyfunctional polyacrylate, trade name “UNIDIC”, manufactured by DIC), and the transparent film substrate 2 Binder resin (urethane-based polyfunctional polyacrylate, trade name “UNIDIC”, manufactured by DIC) and particles (crosslinked acrylic / styrene resin particles, trade name "SSX105", diameter 3 ⁇ m, manufactured by Sekisui Resins Co., Ltd.) After applying a diluted solution of the antiblocking composition containing H, and drying them, both surfaces of the transparent film substrate 2 were irradiated with ultraviolet rays to cure the hard coat composition and the antiblocking composition.
  • the hard coat layer 3 having a thickness of 1 ⁇ m was formed on the upper surface of the transparent film substrate 2
  • the antiblocking layer 4 having a thickness of 1 ⁇ m was formed on the lower surface of the transparent film substrate 2.
  • an optical adjustment composition containing zirconia particles and an ultraviolet curable resin (acrylic resin) ("OPSTAR Z7412", manufactured by JSR, refractive index 1.62) It was applied and dried at 80 ° C. for 3 minutes and then irradiated with ultraviolet light. Thereby, the optical adjustment layer 5 with a thickness of 0.1 ⁇ m was formed on the upper surface of the hard coat layer 3.
  • the base laminate 7 was annealed using a heating furnace (vacuum heating device) 8.
  • the furnace length of the heating furnace 8 was 30 m, and the transfer speed of the base laminate 7 in the heating furnace 8 was 15 m / min.
  • the tension in the transport direction of the base laminate 7 was 40N. That is, in the second step, the difference between the heat shrinkage ratio in the MD direction and the TD direction after the heat resistance test A (described later) in which the transparent conductive film 1 is heated at 150 ° C. for 90 minutes is 0.05% or less
  • the base laminate 7 was annealed.
  • the amorphous transparent conductive layer 6A having a thickness of 25 nm was formed on the upper surface of the optical adjustment layer 5 by sputtering.
  • a sintered target containing indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) at a weight ratio of 70:30 is mounted on a parallel plate type wind-up type magnetron sputtering apparatus, While conveying the material laminate 7, the vacuum evacuation was performed until the partial pressure of water became 5 ⁇ 10 -4 Pa.
  • amorphous transparent conductive layer 6A having a thickness of 25 nm was formed on the upper surface of the optical adjustment layer 5 by DC sputtering at an output of 12.5 kW.
  • the surface resistance of the amorphous transparent conductive layer 6A was measured to be 340 ⁇ / ⁇ .
  • the transparent conductive film 1 provided with the base-material laminated body 7 and the amorphous transparent conductive layer 6A in order was manufactured.
  • Examples 2 and 3 and Comparative Examples 1 to 4 A transparent conductive film 1 was produced in the same manner as in Example 1 except that the heating conditions (annealing conditions) in the second step were changed according to the description in Table 1.
  • thermal shrinkage difference thermal shrinkage difference after heat resistance test A
  • thermal shrinkage difference after heat resistance test A ⁇ Heating at 150 ° C., 90 minutes in the present invention>
  • transparent conductive film 1 immediately after production is heated at 150 ° C. for 90 minutes using heating furnace 8, and in each of MD and TD directions before and after heating. The thermal shrinkage was obtained and their difference was calculated.
  • the transparent conductive film 1 including the amorphous transparent conductive layer 6A is cut into a width of 100 mm and a length of 100 mm (specimen) and marked every 80 mm in each of the MD and TD directions.
  • the length in the MD direction (mm) and the length in the TD direction (mm) were each accurately measured by an Olympus digital small measurement microscope STM5 (manufactured by Olympus Optical Co., Ltd.).
  • the transparent conductive film 1 provided with the amorphous transparent conductive layer 6A was heated at 150 ° C. for 90 minutes.
  • the transparent conductive film 1 was allowed to cool at 25 ° C. (normal temperature) for 1 hour, the lengths of the transparent conductive film 1 in the MD direction and the TD direction were measured again.
  • each of the heat contraction rate (MD) of MD direction and the heat contraction rate (TD) of TD direction was computed.
  • Thermal shrinkage (MD) (%) [[MD length between marks before heating (mm)-MD between marks after heating (mm)] / MD between marks before heating (mm) ] ⁇ 100
  • Thermal shrinkage (TD) (%) [[Length in the TD direction between marks before heating (mm)-TD direction between marks after heating (mm)] / TD direction between marks before heating (mm) ] ⁇ 100 Then, their difference was determined from the heat shrinkage (MD) (%) and the heat shrinkage (TD) (%).
  • Thermal shrinkage difference after heat resistance test B ⁇ Heating at 130 ° C. for 90 minutes in Patent Document 1> The heating temperature was changed from 150 ° C. to 130 ° C. (heat resistance test B), and the same processing as in the heat resistance test A was performed, and the heat shrinkage percentage difference of the transparent conductive film 1 was determined. In addition, the object of the heat resistance test B was only the comparative example 1.
  • the difference in thermal contraction rate in Examples 1 to 3 measured in the heat resistance test A is 0.01%, 0.02%, and 0.05%, respectively.
  • the results of the heat resistance test C no occurrence of cracks is confirmed in the crystallized transparent conductive layer 6C in any of Examples 1 to 3.
  • Heat resistance test D (each Example and each comparative example): In the heat resistance test D, the amorphous transparent conductive layer 6A of the transparent conductive film immediately after production is crystallized without conducting an accelerated test assuming storage, that is, without passing through the partially crystallized transparent conductive layer 6B. , And the transparent conductive layer 6C.
  • the transparent base material 2 is stretched by heating, and the relatively soft amorphous transparent conductive layer 6A follows the extension of the transparent base material 2. Therefore, in any of Examples 1 to 3 and Comparative Examples 1 to 4, generation of cracks was not confirmed in the crystallized transparent conductive layer 6C.
  • Heat resistance test C (each comparative example): On the other hand, in the heat resistance test C, it passes through the partially crystallized transparent conductive layer 6B. And, in each comparative example in the heat resistance test C, when the partially crystallized transparent conductive layer 6B is crystallized by heating, the partially crystallized transparent conductive layer 6B can not follow the expansion due to the heating of the transparent base material 2, and therefore the crystals The occurrence of cracks was confirmed in the transparent conductive layer 6C.
  • Heat resistance test C (each example): On the other hand, in each example in the heat resistance test C, even if the partially crystallized transparent conductive layer 6B is crystallized by heating, the thermal contraction rate in the MD direction and the thermal contraction rate in the TD direction after heating at 150 ° C. for 90 minutes Since the difference of is not more than 0.05%, the heat resistance is excellent, and generation of cracks is not confirmed in the crystallized transparent conductive layer 6C.
  • Transparent conductive films are used in various optical applications.
  • Transparent conductive film 2 Transparent base 3 Hard coat layer 4
  • Anti blocking layer 5 Optical control layer 6
  • Transparent conductive layer 6A Amorphous transparent conductive layer 6B Partially crystallized transparent conductive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A transparent electroconductive film 1 is provided with a transparent substrate 2 and a transparent electroconductive layer 6, in that order. The transparent substrate 2 contains a resin having a glass-transition temperature of 130°C or higher. The transparent electroconductive layer 6 is amorphous. The difference between the thermal shrinkage rate in the machine direction (MD) and the thermal shrinkage rate in the transverse direction (TD) of the transparent electroconductive film 1 is 0.05% or less after being heated for 90 minutes at 150°C.

Description

透明導電性フィルムおよびその製造方法Transparent conductive film and method for producing the same
 本発明は、透明導電性フィルムおよびその製造方法に関する。 The present invention relates to a transparent conductive film and a method for producing the same.
 透明導電性フィルムは、透明樹脂フィルムおよび透明導電膜を順に備えることが知られている。 It is known that a transparent conductive film comprises a transparent resin film and a transparent conductive film in order.
 例えば、透明樹脂フィルムに非晶質の透明導電膜が形成された透明導電性フィルムを得、これを加熱して、透明導電膜を結晶化する方法が提案されている(例えば、特許文献1参照。)。 For example, there is proposed a method of obtaining a transparent conductive film in which an amorphous transparent conductive film is formed on a transparent resin film, and heating this to crystallize the transparent conductive film (see, for example, Patent Document 1) ).
 特許文献1では、非晶質の透明導電膜の上記した加熱において、透明樹脂フィルにおけるカール(巻きあるいは反り)の発生を抑制すべく、透明樹脂フィルムを、予め、150℃、3分間、アニール処理することが提案されている(例えば、特許文献1参照。)。 In Patent Document 1, in order to suppress the occurrence of curling (rolling or warping) in the transparent resin film in the above-described heating of the amorphous transparent conductive film, the transparent resin film is annealed in advance for 3 minutes at 150 ° C. Has been proposed (see, for example, Patent Document 1).
 特許文献1では、アニールされた透明樹脂フィルムに非晶質の透明導電膜を形成して透明導電性フィルムを製造しており、かかる透明導電性フィルムは、130℃、90分加熱されたときのカールが抑制されている。 In Patent Document 1, an amorphous transparent conductive film is formed on an annealed transparent resin film to produce a transparent conductive film, and the transparent conductive film is heated at 130 ° C. for 90 minutes. Curling is suppressed.
特開2016-124106号公報JP, 2016-124106, A
 近年、透明導電性フィルムには、より高い温度(より苛酷な条件)における耐熱性が要求される。特許文献1に記載の透明導電性フィルムは、上記した要求を満足できないという不具合がある。 In recent years, transparent conductive films are required to have heat resistance at higher temperatures (more severe conditions). The transparent conductive film described in Patent Document 1 has a disadvantage that it can not satisfy the above-described requirements.
 一方、製造された直後(透明導電膜が透明樹脂フィルムの表面に形成された直後)の透明導電性フィルムを加熱すれば、透明樹脂フィルムが加熱によって伸長するとともに、比較的柔らかい非晶質の透明導電膜は、透明樹脂フィルムの伸長に追従する。そして、透明導電膜が、加熱に基づき結晶化する。 On the other hand, when the transparent conductive film is heated immediately after being manufactured (immediately after the transparent conductive film is formed on the surface of the transparent resin film), the transparent resin film is stretched by heating and the transparent resin is relatively soft and amorphous. The conductive film follows the elongation of the transparent resin film. And a transparent conductive film is crystallized based on heating.
 しかし、通常、透明導電性フィルムが製造された後(透明導電膜が透明樹脂フィルムの表面に形成された後)、透明導電膜を結晶化するまでに所定の期間(時間)が必然的に存在する。そのため、上記した期間に、非晶質の透明導電膜の一部が、結晶化(いわゆる自然結晶化)してしまい、その結果、その透明導電膜は、製造直後の透明導電膜に比べて、硬くなる。 However, usually, after the transparent conductive film is manufactured (after the transparent conductive film is formed on the surface of the transparent resin film), a predetermined period (time) necessarily exists before the transparent conductive film is crystallized. Do. Therefore, during the above-mentioned period, a part of the amorphous transparent conductive film is crystallized (so-called natural crystallization), and as a result, the transparent conductive film is compared to the transparent conductive film immediately after production. It becomes hard.
 その後、透明導電性フィルムを加熱して結晶化しようとすると、透明導電膜は、一部結晶化した部分に基づく硬さに起因して、透明樹脂フィルムの加熱による伸長に追従できず、その結果、完全に結晶化した透明導電膜にクラック(割れ)を生じるという不具合がある。 Thereafter, when the transparent conductive film is heated to be crystallized, the transparent conductive film can not follow the elongation due to heating of the transparent resin film due to the hardness based on the partially crystallized portion, and as a result There is a problem that a crack is generated in the completely crystallized transparent conductive film.
 本発明は、耐熱性に優れ、かつ、結晶化するまでの期間が存在しても、透明導電層の損傷を抑制することができる透明導電性フィルムおよびその製造方法を提供する。 The present invention provides a transparent conductive film which is excellent in heat resistance and can suppress damage to the transparent conductive layer even when a time to crystallization is present, and a method for producing the same.
 本発明(1)は、透明基材および透明導電層を順に備え、前記透明基材は、130℃以上のガラス転移温度を有する樹脂を含み、前記透明導電層は、非晶質であり、150℃で90分間加熱した後の、MD方向の熱収縮率とTD方向の熱収縮率との差が、0.05%以下である、透明導電性フィルムを含む。 The present invention (1) comprises a transparent substrate and a transparent conductive layer in this order, the transparent substrate containing a resin having a glass transition temperature of 130 ° C. or more, and the transparent conductive layer is amorphous, 150 It includes a transparent conductive film in which the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction after heating at 90 ° C. for 90 minutes is 0.05% or less.
 本発明(2)は、前記樹脂は、5.5×10-5/℃以上、8.0×10-5/℃以下の線膨張係数を有する、(1)に記載の透明導電性フィルムを含む。 The present invention (2) is the transparent conductive film according to (1), wherein the resin has a linear expansion coefficient of 5.5 × 10 −5 / ° C. or more and 8.0 × 10 −5 / ° C. or less. Including.
 本発明(3)は、前記樹脂は、シクロオレフィン系樹脂およびポリカーボネート樹脂からなる群から選択される少なくとも1種である、(1)または(2)に記載の透明導電性フィルムを含む。 The present invention (3) includes the transparent conductive film according to (1) or (2), wherein the resin is at least one selected from the group consisting of cycloolefin resins and polycarbonate resins.
 本発明(4)は、前記透明導電層は、インジウムスズ複合酸化物を含む、(1)~(3)のいずれか一項に記載の透明導電性フィルムを含む。 The present invention (4) includes the transparent conductive film according to any one of (1) to (3), wherein the transparent conductive layer contains an indium tin complex oxide.
 本発明(5)は、20μm以上、100μm以下の厚みを有する、(1)~(4)のいずれか一項に記載の透明導電性フィルムを含む。 The present invention (5) includes the transparent conductive film according to any one of (1) to (4), having a thickness of 20 μm or more and 100 μm or less.
 本発明(6)は、アンチブロッキング層、ハードコート層および光学調整層をさらに備え、前記アンチブロッキング層、前記透明基材、前記ハードコート層、前記光学調整層および前記透明導電層が順に配置されている、(1)~(5)のいずれか一項に記載の透明導電性フィルムを含む。 The present invention (6) further comprises an antiblocking layer, a hardcoat layer and an optical adjustment layer, and the antiblocking layer, the transparent substrate, the hardcoat layer, the optical adjustment layer, and the transparent conductive layer are sequentially disposed. And the transparent conductive film according to any one of (1) to (5).
 本発明(7)は、透明基材を準備する第1工程、前記透明基材をアニールする第2工程、および、非晶質の透明導電層を前記透明基材に配置して、前記透明基材および前記透明導電層を順に備える透明導電性フィルムを製造する第3工程を備え、前記第2工程において、前記透明導電性フィルムを150℃で90分間加熱した後の、MD方向の熱収縮率とTD方向の熱収縮率との差が、0.05%以下となるように、前記透明基材をアニールする、透明導電性フィルムの製造方法を含む。 The present invention (7) comprises a first step of preparing a transparent substrate, a second step of annealing the transparent substrate, and an amorphous transparent conductive layer disposed on the transparent substrate to form the transparent group. Material and a third step of manufacturing a transparent conductive film provided with the transparent conductive layer in order, and in the second step, the heat shrinkage rate in the MD direction after heating the transparent conductive film at 150.degree. C. for 90 minutes And the method of manufacturing the transparent conductive film which anneals the said transparent base material so that the difference of the thermal contraction rate of and TD direction may be 0.05% or less.
 本発明(8)は、前記第2工程では、透明基材を、145℃未満で、1分以上、5分以下、加熱する、(7)に記載の透明導電性フィルムの製造方法を含む。 This invention (8) includes the manufacturing method of the transparent conductive film as described in (7) which heats a transparent base material for 1 minute or more and 5 minutes or less below 145 degreeC at the said 2nd process.
 本発明の透明導電性フィルムの製造方法により製造される本発明の透明導電性フィルムでは、透明基材が、130℃以上のガラス転移温度を有する樹脂を含むので、耐熱性に優れる。 In the transparent conductive film of the present invention produced by the method for producing a transparent conductive film of the present invention, the transparent substrate contains a resin having a glass transition temperature of 130 ° C. or more, and thus is excellent in heat resistance.
 また、透明導電性フィルムを150℃で90分間加熱した後の、MD方向の熱収縮率とTD方向の熱収縮率との差が、0.05%以下であるので、結晶化するまでの期間が存在しても、透明導電層の損傷を抑制することができる。 Moreover, since the difference of the thermal contraction rate of MD direction and the thermal contraction rate of TD direction after heating a transparent conductive film at 150 degreeC for 90 minutes is 0.05% or less, it is a period until it crystallizes. Even if it exists, damage to the transparent conductive layer can be suppressed.
図1A~図1Dは、本発明の透明導電性フィルムの一実施形態の製造方法を示す工程断面図であり、図1Aが、基材積層体を準備する第1工程、および、基材積層体をアニールする第2工程、図1Bが、非晶質の透明導電層を配置する第3工程、図1Cが、透明導電層の一部が、経時変化により結晶化する状態、図1Dが、透明導電層を結晶化する工程を示す。1A to 1D are process cross-sectional views showing a method of producing an embodiment of the transparent conductive film of the present invention, wherein FIG. 1A is a first step of preparing a substrate laminate, and a substrate laminate The second step of annealing, FIG. 1B is the third step of disposing an amorphous transparent conductive layer, FIG. 1C is the state in which a part of the transparent conductive layer is crystallized with time, FIG. 1D is transparent 6 shows a process of crystallizing a conductive layer. 図2A~図2Dは、図1A~図1Dに示す製造方法の変形例(ハードコート層、光学調整層およびアンチブロッキング層を備えない透明導電性フィルム)を示す工程断面図であり、図2Aが、透明基材を準備する第1工程、および、透明基材をアニールする第2工程、図2Bが、非晶質の透明導電層を配置する第3工程、図2Cが、透明導電層の一部が、経時変化により結晶化する状態、図2Dが、透明導電層を結晶化する工程を示す。FIGS. 2A to 2D are process cross sections showing a modification of the manufacturing method shown in FIGS. 1A to 1D (a transparent conductive film not provided with a hard coat layer, an optical adjustment layer and an antiblocking layer), and FIG. A second step of preparing a transparent substrate, and a second step of annealing the transparent substrate, FIG. 2B is a third step of disposing an amorphous transparent conductive layer, and FIG. 2C is a second step of the transparent conductive layer. FIG. 2D shows a process of crystallizing the transparent conductive layer, in which the part is crystallized with the passage of time.
 <一実施形態>
 本発明の透明導電性フィルムの一実施形態について、図1A~図1Dを参照しながら以下に説明する。図1A~図1Dにおいて、紙面上下方向は、上下方向(厚み方向、第1方向)であって、紙面上側が、上側(厚み方向一方側、第1方向一方側)、紙面下側が、下側(厚み方向他方側、第1方向他方側)である。また、紙面左右方向および奥行き方向は、上下方向に直交する面方向である。具体的には、各図の方向矢印に準拠する。この方向の定義により、後述する基材積層体7、透明導電性フィルム1および結晶化透明導電性フィルム10の製造時および使用時の向きを限定する意図はない。
<One embodiment>
One embodiment of the transparent conductive film of the present invention is described below with reference to FIGS. 1A to 1D. In FIGS. 1A to 1D, the vertical direction in the drawing is the vertical direction (thickness direction, first direction), and the upper side of the drawing is the upper side (one side in the thickness direction, one side in the first direction), and the lower side is the lower side. (The other side in the thickness direction, the other side in the first direction). Further, the left-right direction and the depth direction in the drawing are surface directions orthogonal to the up-down direction. Specifically, it conforms to the directional arrow in each figure. By the definition of this direction, there is no intention to limit the direction at the time of production and use of the base laminate 7, the transparent conductive film 1 and the crystallized transparent conductive film 10 described later.
 図1Bに示すように、透明導電性フィルム1は、所定の厚みを有するフィルム形状を有し、面方向に延び、平坦な上面および平坦な下面を有する。透明導電性フィルム1は、例えば、画像表示装置に備えられるタッチパネル用基材などの一部品であり、つまり、画像表示装置ではない。すなわち、透明導電性フィルム1は、画像表示装置などを作製するための部品であり、LCDモジュールなどの画像表示素子を含まず、部品単独で流通し、産業上利用可能なデバイスである。 As shown in FIG. 1B, the transparent conductive film 1 has a film shape having a predetermined thickness, extends in a plane direction, and has a flat upper surface and a flat lower surface. The transparent conductive film 1 is, for example, one component such as a touch panel substrate provided in an image display device, that is, it is not an image display device. That is, the transparent conductive film 1 is a component for producing an image display device etc., does not contain an image display element such as an LCD module, and is a device which can be distributed alone and can be used industrially.
 透明導電性フィルム1は、例えば、アンチブロッキング層4、透明基材2、ハードコート層3、光学調整層5および透明導電層6を上側に向かって順に備える。好ましくは、透明導電性フィルム1は、アンチブロッキング層4、透明基材2、ハードコート層3、光学調整層5および透明導電層6のみからなる。なお、アンチブロッキング層4、透明基材2、ハードコート層3および光学調整層5は、後述する基材積層体7に備えられる。 The transparent conductive film 1 includes, for example, an antiblocking layer 4, a transparent substrate 2, a hard coat layer 3, an optical adjustment layer 5 and a transparent conductive layer 6 in order from the top. Preferably, the transparent conductive film 1 comprises only the antiblocking layer 4, the transparent substrate 2, the hard coat layer 3, the optical adjustment layer 5 and the transparent conductive layer 6. The antiblocking layer 4, the transparent base material 2, the hard coat layer 3 and the optical adjustment layer 5 are provided in a base material laminate 7 described later.
 透明基材2は、透明導電性フィルム1の機械強度を確保するための透明な基材である。また、透明基材2は、透明導電層6を、ハードコート層3および光学調整層5とともに、支持している。 The transparent substrate 2 is a transparent substrate for securing the mechanical strength of the transparent conductive film 1. The transparent substrate 2 supports the transparent conductive layer 6 together with the hard coat layer 3 and the optical adjustment layer 5.
 透明基材2は、フィルム形状を有しており、面方向に延び、平坦な上面および平坦な下面を有する。 The transparent substrate 2 has a film shape, extends in the surface direction, and has a flat upper surface and a flat lower surface.
 透明基材2の材料は、可撓性を有する樹脂が挙げられ、より具体的には、後述するガラス転移温度を満足する樹脂(高ガラス転移温度樹脂)が挙げられる。樹脂としては、例えば、シクロオレフィン系樹脂、ポリカーボネート系樹脂、ポリエーテルスルホン系樹脂、ポリイミド系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂などから選択される。樹脂は、単独使用または2種以上併用することができる。 The material of the transparent substrate 2 includes a resin having flexibility, and more specifically, a resin (high glass transition temperature resin) satisfying a glass transition temperature described later. The resin is selected from, for example, cycloolefin resins, polycarbonate resins, polyethersulfone resins, polyimide resins, polyarylate resins, polyphenylene sulfide resins and the like. The resins can be used alone or in combination of two or more.
 樹脂として、優れた耐熱性を確保する観点から、好ましくは、シクロオレフィン系樹脂、ポリカーボネート系樹脂が選択され、低複屈折性を確保する観点からより好ましくは、シクロオレフィン系樹脂が選択される。 As the resin, from the viewpoint of securing excellent heat resistance, a cycloolefin resin and a polycarbonate resin are preferably selected, and from the viewpoint of securing low birefringence, a cycloolefin resin is more preferably selected.
 シクロオレフィン系樹脂としては、環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する樹脂であれば特に限定されない。シクロオレフィン系樹脂としては、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)などが挙げられる。シクロオレフィンポリマーは、環状オレフィンの重合体である。シクロオレフィンコポリマーは、環状オレフィンとエチレンなどのオレフィンとの共重合体である。 It will not specifically limit, if it is resin which has a unit of the monomer which consists of cyclic olefin (cycloolefin) as cycloolefin type resin. Examples of cycloolefin resins include cycloolefin polymers (COPs) and cycloolefin copolymers (COCs). Cycloolefin polymers are polymers of cyclic olefins. Cycloolefin copolymers are copolymers of cyclic olefins and olefins such as ethylene.
 環状オレフィンは、例えば、多環式の環状オレフィンと単環式の環状オレフィンとを含む。多環式の環状オレフィンとしては、例えば、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエンなどの二環式ジエン、例えば、トリシクロペンタジエンなどの三環式ジエン、例えば、テトラシクロペンタジエン、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルシクロテトラドデセンなどの四環式ジエンなどが挙げられる。単環式の環状オレフィンとしては、例えば、シクロブテン、シクロペンテン、シクロオクテン、シクロオクタジエン、シクロオクタトリエン、シクロドデカトリエンなどが挙げられる。 Cyclic olefins include, for example, polycyclic cyclic olefins and monocyclic cyclic olefins. As the polycyclic cyclic olefin, for example, a bicyclic such as norbornene, methyl norbornene, dimethyl norbornene, ethyl norbornene, ethylidene norbornene, butyl norbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyl dicyclopentadiene, dimethyl dicyclopentadiene and the like For example, tricyclic dienes such as tricyclopentadiene, tetracyclic dienes such as tetracyclopentadiene, tetracyclododecene, methyltetracyclododecene, dimethyl cyclotetradodecene and the like can be mentioned. Examples of monocyclic cyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene, cyclododecatriene and the like.
 シクロオレフィン系樹脂として、好ましくは、複屈折を低減する観点から、COPが挙げられる。 As a cycloolefin type resin, Preferably, COP is mentioned from a viewpoint of reducing birefringence.
 ポリカーボネート系樹脂としては、例えば、脂肪族ポリカーボネート、芳香族ポリカーボネート、脂肪族-芳香族ポリカーボネートなどが挙げられる。具体的に、ポリカーボネート系樹脂としては、例えば、ビスフェノールAポリカーボネート、分岐ビスフェノールAポリカーボネートなどのビスフェノール類を用いたポリカーボネート(PC)、さらには、発泡ポリカーボネート、コポリカーボネート、ブロックコポリカーボネート、ポリエステルカーボネート、ポリホスホネートカーボネート、ジエチレングリコールビスアリルカーボネート(CR-39)などが挙げられる。ポリカーボネート系樹脂には、例えば、ビスフェノールAポリカーボネートブレンド、ポリエステルブレンド、ABSブレンド、ポリオレフィンブレンド、スチレン―無水マレイン酸共重合体ブレンドのような他成分とブレンドしたものも含まれる。 Examples of polycarbonate resins include aliphatic polycarbonates, aromatic polycarbonates, and aliphatic-aromatic polycarbonates. Specifically, as the polycarbonate resin, for example, polycarbonate (PC) using bisphenols such as bisphenol A polycarbonate and branched bisphenol A polycarbonate, and further, expanded polycarbonate, copolycarbonate, block copolycarbonate, polyester carbonate, polyphosphonate And carbonates, diethylene glycol bisallyl carbonate (CR-39) and the like. Polycarbonate resins also include those blended with other components such as, for example, bisphenol A polycarbonate blend, polyester blend, ABS blend, polyolefin blend, styrene-maleic anhydride copolymer blend.
 樹脂のガラス転移温度は、130℃以上、好ましくは、135℃以上、好ましくは、140℃以上であり、また、例えば、175℃以下、好ましくは160℃以下である。樹脂のガラス転移温度が上記した下限を下回れば、透明基材2の耐熱性が低下してしまう。換言すれば、樹脂のガラス転移温度が上記した下限を上回れば、透明基材2は、耐熱性に優れる。 The glass transition temperature of the resin is 130 ° C. or more, preferably 135 ° C. or more, preferably 140 ° C. or more, and for example, 175 ° C. or less, preferably 160 ° C. or less. If the glass transition temperature of the resin is below the above-described lower limit, the heat resistance of the transparent base material 2 is reduced. In other words, when the glass transition temperature of the resin exceeds the above-described lower limit, the transparent substrate 2 is excellent in heat resistance.
 一方、樹脂のガラス転移温度が上記した上限を下回れば、透明基材2の製造時(具体的には、押出成形時)の成形性に優れる。ガラス転移温度は、JIS K 7121(1987)に記載される示差走査熱量測定(DSC)によって求められる。 On the other hand, when the glass transition temperature of the resin is below the above-described upper limit, the moldability at the time of production of the transparent substrate 2 (specifically, at the time of extrusion molding) is excellent. The glass transition temperature is determined by differential scanning calorimetry (DSC) described in JIS K 7121 (1987).
 また、樹脂の線膨張係数は、例えば、2.0×10-5/℃以上、さらには、4.0×10-5/℃以上、さらには、5.0×10-5/℃以上、さらには、5.5×10-5/℃以上である。樹脂の線膨張係数が上記した下限以上であれば、第4工程(後述する、透明導電層6を結晶化する工程)において、透明基材2が伸長し過ぎ、そのため、透明導電層6が透明基材2の伸長に追従し難くなり、それによって、透明導電層6の損傷(課題)を招来する傾向にある。しかし、この透明導電性フィルム1は、後述するが、MD方向の熱収縮率とTD方向の熱収縮率との0.05%以下であるので、上記した課題が解決される。 Further, the linear expansion coefficient of the resin is, for example, 2.0 × 10 −5 / ° C. or more, further, 4.0 × 10 −5 / ° C. or more, further, 5.0 × 10 −5 / ° C. or more, Furthermore, it is 5.5 × 10 −5 / ° C. or higher. If the linear expansion coefficient of the resin is the above lower limit or more, the transparent substrate 2 is excessively stretched in the fourth step (which will be described later, a step of crystallizing the transparent conductive layer 6), and therefore the transparent conductive layer 6 is transparent. It becomes difficult to follow the extension of the substrate 2, which tends to cause damage (problem) to the transparent conductive layer 6. However, although this transparent conductive film 1 will be described later, it has 0.05% or less of the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction.
 また、樹脂の線膨張係数は、例えば、20×10-5/℃以下、好ましくは、15×10-5/℃以下、より好ましくは、10×10-5/℃以下、さらに好ましくは、8.0×10-5/℃以下である。樹脂の線膨張係数が上記した上限以下であれば、第4工程(後述する、透明導電層6を結晶化する工程)において、透明基材2の過度の伸長を抑制し、そのため、透明導電層6が透明基材2の伸長に確実に追従し、それによって、透明導電層6の損傷を抑制することができる。 The linear expansion coefficient of the resin is, for example, 20 × 10 −5 / ° C. or less, preferably 15 × 10 −5 / ° C. or less, more preferably 10 × 10 −5 / ° C. or less, more preferably 8 It is not more than 0 × 10 −5 / ° C. If the linear expansion coefficient of the resin is equal to or less than the above-described upper limit, excessive elongation of the transparent base material 2 is suppressed in the fourth step (a step of crystallizing the transparent conductive layer 6 described later). 6 can reliably follow the extension of the transparent substrate 2, thereby suppressing damage to the transparent conductive layer 6.
 樹脂の線膨張係数は、ASTM E831に基づく線膨張測定装置によって求められる。 The linear expansion coefficient of the resin is determined by a linear expansion measurement device based on ASTM E831.
 ハードコート層3は、透明導電性フィルム1に擦り傷を生じ難くするための擦傷保護層である。ハードコート層3は、フィルム形状を有しており、例えば、透明基材2の上面全面に、透明基材2の上面に接触するように、配置されている。ハードコート層3の材料は、例えば、ハードコート組成物である。ハードコート組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。混合物は、例えば、アクリル系樹脂、ウレタン系樹脂などの樹脂(バインダー樹脂)を含有する。ハードコート層3の厚みは、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、10μm以下、好ましくは、5μm以下である。 The hard coat layer 3 is a scratch protection layer for making it difficult for the transparent conductive film 1 to be scratched. The hard coat layer 3 has a film shape, and is disposed, for example, on the entire upper surface of the transparent substrate 2 so as to be in contact with the upper surface of the transparent substrate 2. The material of the hard coat layer 3 is, for example, a hard coat composition. Examples of the hard coat composition include mixtures described in JP-A-2016-179686. The mixture contains, for example, a resin (binder resin) such as an acrylic resin or a urethane resin. The thickness of the hard coat layer 3 is, for example, 0.1 μm or more, preferably 0.5 μm or more, and for example, 10 μm or less, preferably 5 μm or less.
 光学調整層5は、透明導電層6における透明電極パターンの視認を抑制しつつ、透明導電性フィルム1に優れた透明性を確保するために、透明導電性フィルム1の光学物性(例えば、屈折率)を調整する層である。光学調整層5は、フィルム形状を有しており、例えば、ハードコート層3の上面全面に、ハードコート層3の上面に接触するように、配置されている。より具体的には、光学調整層5は、ハードコート層3と透明導電層6との間に、ハードコート層3の上面および透明導電層6の下面に接触するように、配置されている。光学調整層5の材料は、例えば、光学調整組成物である。光学調整組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。混合物は、例えば、アクリル系樹脂などの樹脂(バインダー樹脂)と、無機系または有機系の粒子(好ましくは、ジルコニアなどの無機系の粒子)とを含有する。光学調整層5の厚みは、例えば、50nm以上、好ましくは、100nm以上であり、また、例えば、800nm以下、好ましくは、300nm以下である。 The optical adjustment layer 5 suppresses the visual recognition of the transparent electrode pattern in the transparent conductive layer 6 and at the same time, the optical properties (for example, the refractive index of the transparent conductive film 1) to ensure excellent transparency of the transparent conductive film 1. ) Is a layer to adjust. The optical adjustment layer 5 has a film shape, and is disposed, for example, on the entire top surface of the hard coat layer 3 so as to be in contact with the top surface of the hard coat layer 3. More specifically, the optical adjustment layer 5 is disposed between the hard coat layer 3 and the transparent conductive layer 6 so as to be in contact with the upper surface of the hard coat layer 3 and the lower surface of the transparent conductive layer 6. The material of the optical adjustment layer 5 is, for example, an optical adjustment composition. As an optical adjusting composition, for example, a mixture described in JP-A-2016-179686 can be mentioned. The mixture contains, for example, a resin (binder resin) such as an acrylic resin, and inorganic or organic particles (preferably, inorganic particles such as zirconia). The thickness of the optical adjustment layer 5 is, for example, 50 nm or more, preferably 100 nm or more, and for example, 800 nm or less, preferably 300 nm or less.
 アンチブロッキング層4は、複数の透明導電性フィルム1を厚み方向に積層した場合などに、互いに接触する複数の透明導電性フィルム1の表面に耐ブロッキング性を付与する。アンチブロッキング層4は、透明導電性フィルム1における最下面をなす。具体的には、アンチブロッキング層4は、透明基材2の下面全面に、透明基材2の下面に接触するように、配置されている。アンチブロッキング層4の材料は、例えば、アンチブロッキング組成物である。アンチブロッキング組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。混合物は、例えば、アクリル系樹脂などの樹脂(バインダー樹脂)と、無機系または有機系の粒子(好ましくは、スチレン系などの有機系の粒子)とを含有する。アンチブロッキング層4の厚みは、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、10μm以下、好ましくは、5μm以下である。 The anti-blocking layer 4 provides blocking resistance to the surfaces of the plurality of transparent conductive films 1 in contact with each other, for example, when the plurality of transparent conductive films 1 are laminated in the thickness direction. The antiblocking layer 4 is the lowermost surface of the transparent conductive film 1. Specifically, the antiblocking layer 4 is disposed on the entire lower surface of the transparent substrate 2 so as to be in contact with the lower surface of the transparent substrate 2. The material of the antiblocking layer 4 is, for example, an antiblocking composition. Examples of the antiblocking composition include mixtures described in JP-A-2016-179686. The mixture contains, for example, a resin (binder resin) such as an acrylic resin and particles of an inorganic or organic type (preferably, particles of an organic type such as a styrene type). The thickness of the antiblocking layer 4 is, for example, 0.1 μm or more, preferably 0.5 μm or more, and for example, 10 μm or less, preferably 5 μm or less.
 透明導電層6は、非晶質である。透明導電層6が非晶質であることは、20℃の塩酸(濃度5質量%)に15分間浸漬した後、水洗および乾燥し、15mm程度の間の端子間抵抗が、10kΩ超過であることで同定(定義)される。 Transparent conductive layer 6 is amorphous. That the transparent conductive layer 6 is amorphous means that it is immersed in hydrochloric acid (concentration 5 mass%) at 20 ° C. for 15 minutes, then washed with water and dried, and the terminal resistance between about 15 mm exceeds 10 kΩ Identified (defined) by
 透明導電層6は、第4工程(後述、加熱工程、図1D参照)において、完全に結晶化して結晶化透明導電層6C(後述)となるための、完全結晶化前透明導電層である。透明導電層6は、本発明の「透明導電層」に含まれており、図1Bに示される製造直後の非晶質透明導電層6A(後述)、および、図1Cに示される、非晶質透明導電層6Aの製造直後から所定の期間が経過した部分結晶化透明導電層6B(後述)の両方を含む。 The transparent conductive layer 6 is a transparent conductive layer before complete crystallization to be completely crystallized to become a crystallized transparent conductive layer 6C (described later) in the fourth step (see later, heating step, see FIG. 1D). The transparent conductive layer 6 is included in the “transparent conductive layer” of the present invention, and the amorphous transparent conductive layer 6A (described later) immediately after the production shown in FIG. 1B and the amorphous shown in FIG. 1C. It includes both of the partially crystallized transparent conductive layer 6B (described later) for which a predetermined period has elapsed immediately after the production of the transparent conductive layer 6A.
 なお、透明導電層6は、最終的には、エッチングによって、透明電極パターンに形成される。 The transparent conductive layer 6 is finally formed into a transparent electrode pattern by etching.
 透明導電層6は、透明導電性フィルム1の最上層であって、フィルム形状を有しており、光学調整層5の上面全面に、光学調整層5の上面に接触するように、配置されている。 The transparent conductive layer 6 is the uppermost layer of the transparent conductive film 1 and has a film shape, and is disposed on the entire upper surface of the optical adjustment layer 5 so as to contact the upper surface of the optical adjustment layer 5 There is.
 透明導電層6の材料は、例えば、インジウム-スズ複合酸化物(ITO)などのインジウム含有酸化物、例えば、アンチモン-スズ複合酸化物(ATO)などのアンチモン含有酸化物などが挙げられ、好ましくは、インジウム含有酸化物、より好ましくは、ITOが挙げられる。透明導電層6の材料がITOであれば、透明導電層6は、優れた透明性および優れた導電性を両立することができる。 The material of the transparent conductive layer 6 is, for example, an indium-containing oxide such as indium-tin complex oxide (ITO), for example, an antimony-containing oxide such as antimony-tin complex oxide (ATO), etc. And indium-containing oxides, more preferably ITO. If the material of the transparent conductive layer 6 is ITO, the transparent conductive layer 6 can have both excellent transparency and excellent conductivity.
 透明導電層6の材料としてITOを用いる場合、酸化スズ(SnO)含有量は、酸化スズおよび酸化インジウム(In)の合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上であり、また、例えば、15質量%以下、好ましくは、13質量%以下である。 When using ITO as a material of the transparent conductive layer 6, the tin oxide (SnO 2 ) content is, for example, 0.5 mass% or more, preferably, relative to the total amount of tin oxide and indium oxide (In 2 O 3 ) Is 3% by mass or more, and for example, 15% by mass or less, preferably 13% by mass or less.
 「ITO」は、少なくともインジウム(In)とスズ(Sn)とを含む複合酸化物であればよく、これら以外の追加成分を含むこともできる。追加成分としては、例えば、In、Sn以外の金属元素が挙げられ、具体的には、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr、Gaなどが挙げられる。 “ITO” may be a composite oxide containing at least indium (In) and tin (Sn), and may contain additional components other than these. Examples of the additional component include metal elements other than In and Sn, and specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, Fe , Pb, Ni, Nb, Cr, Ga and the like.
 透明導電層6の厚みは、例えば、10nm以上、好ましくは、20nm以上であり、また、例えば、100nm以下、好ましくは、35nm以下である。 The thickness of the transparent conductive layer 6 is, for example, 10 nm or more, preferably 20 nm or more, and for example, 100 nm or less, preferably 35 nm or less.
 透明導電層6の表面抵抗は、例えば、200Ω/□超過、さらには、250Ω/□以上であり、また、例えば、500Ω/□以下、さらには、400Ω/□以下である。 The surface resistance of the transparent conductive layer 6 is, for example, more than 200 ohms / square, further 250 ohms / square or more, and for example 500 ohms / square or less, further 400 ohms / square or less.
 次に、透明導電性フィルム1の製造方法、および、それにより得られる透明導電性フィルム1の透明導電層6の結晶化を説明する。 Next, the manufacturing method of the transparent conductive film 1, and crystallization of the transparent conductive layer 6 of the transparent conductive film 1 obtained by it are demonstrated.
 透明導電性フィルム1の製造方法は、基材積層体7を準備する第1工程(図1A参照)、基材積層体7をアニールする第2工程(図1A参照)、および、透明導電層6を基材積層体7に配置する第3工程(図1B参照)を備える。この製造方法では、第1工程と、第2工程と、第3工程とが、順に実施される。 The method for producing the transparent conductive film 1 comprises a first step (see FIG. 1A) of preparing a base laminate 7, a second step of annealing the base laminate 7 (see FIG. 1A), and a transparent conductive layer 6 Is arranged in the base laminate 7 (see FIG. 1B). In this manufacturing method, the first step, the second step, and the third step are sequentially performed.
 また、この製造方法は、例えば、ロールトゥロール方式で実施される。つまり、準備される基材積層体7、および、製造されれる透明導電性フィルム1は、MD方向(機械方向あるいは搬送方向)およびTD方向(直交方向あるいは幅方向)を有する。 Moreover, this manufacturing method is implemented by a roll to roll system, for example. That is, the base laminate 7 to be prepared and the transparent conductive film 1 to be produced have the MD direction (the machine direction or the conveying direction) and the TD direction (the orthogonal direction or the width direction).
 図1Aに示すように、第1工程では、透明基材2を備える基材積層体7を準備する。 As shown to FIG. 1A, the base material laminated body 7 provided with the transparent base material 2 is prepared at a 1st process.
 具体的には、基材積層体7は、アンチブロッキング層4、透明基材2、ハードコート層3および光学調整層5を備える。好ましくは、基材積層体7は、アンチブロッキング層4、透明基材2、ハードコート層3および光学調整層5のみからなる。基材積層体7は、所定の厚みを有するフィルム形状を有し、面方向に延び、平坦な上面および平坦な下面を有する。また、基材積層体7は、ロールに巻回された長尺形状を有する。 Specifically, the base laminate 7 includes the antiblocking layer 4, the transparent base 2, the hard coat layer 3 and the optical adjustment layer 5. Preferably, the base laminate 7 comprises only the antiblocking layer 4, the transparent base 2, the hard coat layer 3 and the optical adjustment layer 5. The base laminate 7 has a film shape having a predetermined thickness, extends in the plane direction, and has a flat upper surface and a flat lower surface. Moreover, the base-material laminated body 7 has a long shape wound by the roll.
 基材積層体7を準備するには、例えば、まず、長尺形状を有する透明基材2を準備する。 In order to prepare the base laminate 7, for example, first, the transparent base 2 having a long shape is prepared.
 次いで、透明基材2に対して、ハードコート層3、アンチブロッキング層4および光学調整層5をロールトゥロール方式で順に配置する。具体的には、透明基材2の上下両面のそれぞれに、ハードコート組成物の希釈液およびアンチブロッキング組成物の希釈液を塗布し、乾燥後、紫外線照射により、ハードコート組成物およびアンチブロッキング組成物のそれぞれを硬化する。これにより、透明基材2の上下両面のそれぞれに、ハードコート層3およびアンチブロッキング層4のそれぞれを形成する。その後、光学調整組成物の希釈液を、ハードコート層3の上面に塗布し、乾燥後、紫外線照射により、光学調整組成物を硬化する。これにより、光学調整層5を形成する。 Next, the hard coat layer 3, the antiblocking layer 4 and the optical adjustment layer 5 are sequentially disposed on the transparent substrate 2 by a roll-to-roll method. Specifically, the dilution liquid of the hard coat composition and the dilution liquid of the antiblocking composition are applied to each of the upper and lower surfaces of the transparent substrate 2, and after drying, the hardcoat composition and the antiblocking composition are irradiated by ultraviolet light. Cure each of the objects. Thus, the hard coat layer 3 and the antiblocking layer 4 are formed on the upper and lower surfaces of the transparent substrate 2 respectively. Thereafter, a diluted solution of the optical adjustment composition is applied to the upper surface of the hard coat layer 3, and after drying, the optical adjustment composition is cured by ultraviolet irradiation. Thereby, the optical adjustment layer 5 is formed.
 図1Aに示すように、第2工程では、基材積層体7をアニールする。 As shown in FIG. 1A, in the second step, the base laminate 7 is annealed.
 例えば、第2工程では、少なくとも透明基材2をアニールすればよく、具体的には、基材積層体7を加熱する。 For example, in the second step, at least the transparent substrate 2 may be annealed, and specifically, the substrate laminate 7 is heated.
 基材積層体7を加熱するには、例えば、基材積層体7を加熱炉8内に配置する。加熱炉としては、例えば、真空加熱装置などが挙げられる。具体的には、ロールトゥロール方式において、基材積層体7を加熱炉8内を通過させる。 In order to heat the base laminate 7, for example, the base laminate 7 is placed in the heating furnace 8. As a heating furnace, a vacuum heating apparatus etc. are mentioned, for example. Specifically, in the roll-to-roll method, the base laminate 7 is allowed to pass through the inside of the heating furnace 8.
 加熱条件は、第2工程後に透明導電層6を150℃で90分間加熱した後(後で詳述するが、実施例1における耐熱試験A後)の、MD方向の熱収縮率とTD方向の熱収縮率との差が、0.05%以下となるように、調整される。具体的には、加熱炉8の加熱温度は、例えば、145℃未満、好ましくは、140℃以下、より好ましくは、135℃以下以下、さらに好ましくは、130℃以下、とりわけ好ましくは、120℃以下、最も好ましくは、110℃以下である。加熱温度が上記した上限を下回れば、上記した熱収縮率の差を0.05%以下に確実に設定することができる。 The heating conditions are the heat shrinkage rate in the MD direction and the TD direction after heating the transparent conductive layer 6 at 150 ° C. for 90 minutes after the second step (after heat resistance test A in Example 1, although detailed later) The difference with the thermal contraction rate is adjusted to be 0.05% or less. Specifically, the heating temperature of the heating furnace 8 is, for example, less than 145 ° C., preferably 140 ° C. or less, more preferably 135 ° C. or less, still more preferably 130 ° C. or less, particularly preferably 120 ° C. or less Most preferably, it is 110 ° C. or less. If the heating temperature is lower than the above-described upper limit, the above-described difference in thermal contraction rate can be reliably set to 0.05% or less.
 また、加熱炉8の加熱温度は、例えば、70℃以上、好ましくは、80℃以上、より好ましくは、90℃以上、さらに好ましくは、95℃以上である。加熱温度が上記した下限を上回れば、第2工程後に透明導電層6を150℃で90分間加熱した後のMD方向およびTD方向のそれぞれの熱収縮率を制御することができる。 The heating temperature of the heating furnace 8 is, for example, 70 ° C. or more, preferably 80 ° C. or more, more preferably 90 ° C. or more, and further preferably 95 ° C. or more. When the heating temperature exceeds the above-described lower limit, it is possible to control the thermal contraction rates in the MD direction and the TD direction after heating the transparent conductive layer 6 at 150 ° C. for 90 minutes after the second step.
 加熱時間は、例えば、0.1分以上、好ましくは、0.5分以上であり、また、例えば、5分以下、好ましくは、3分以下である。加熱時間が上記した範囲であると、上記した熱収縮率の差を0.05%以下に確実に設定することができる。 The heating time is, for example, 0.1 minutes or more, preferably 0.5 minutes or more, and for example, 5 minutes or less, preferably 3 minutes or less. When the heating time is in the above-described range, the difference in the thermal contraction rate can be reliably set to 0.05% or less.
 なお、この製造方法がロールトゥロール方式で実施される場合には、加熱時間は、加熱炉8における基材積層体7の通過速度と、加熱炉8のMD方向長さ(炉長)とを設定することによって、調整する。 When this manufacturing method is carried out by a roll-to-roll method, the heating time is determined by the passing speed of the base laminate 7 in the heating furnace 8 and the length (furnace length) of the heating furnace 8 in the MD direction. Adjust by setting.
 なお、この製造方法がロールトゥロール方式で実施される場合には、第2工程における基材積層体7の搬送方向における張力は、特に限定されず、例えば、10N以上、好ましくは、25N以上であり、また、例えば、300N以下、好ましくは、150N以下、より好ましくは、100N以下である。張力が上記した下限以上であれば、基材積層体7を優れた作業性で搬送することができる。張力が上記した上限以下であれば、後述するMD方向の熱収縮率とTD方向の熱収縮率との差を所望の範囲に確実に設定することができる。 In addition, when this manufacturing method is implemented by a roll-to-roll method, the tension in the transport direction of the base laminate 7 in the second step is not particularly limited, and is, for example, 10 N or more, preferably 25 N or more. For example, it is 300 N or less, preferably 150 N or less, more preferably 100 N or less. If the tension is equal to or more than the above-described lower limit, the base laminate 7 can be transported with excellent workability. If the tension is equal to or less than the above-described upper limit, the difference between the thermal contraction rate in the MD direction and the thermal contraction rate in the TD direction described later can be reliably set in a desired range.
 次いで、図1Bに示すように、第3工程では、透明導電層6を基材積層体7に配置する。 Next, as shown in FIG. 1B, in the third step, the transparent conductive layer 6 is disposed on the base laminate 7.
 透明導電層6を、例えば、スパッタリング法などで、光学調整層5の上面に設ける。具体的には、ロールトゥロール方式において、アニールされた基材積層体7を、スパッタリング装置(図示せず)内を通過させる。 The transparent conductive layer 6 is provided on the upper surface of the optical adjustment layer 5 by, for example, a sputtering method. Specifically, in the roll-to-roll method, the annealed base laminate 7 is passed through a sputtering apparatus (not shown).
 これにより、透明導電層6が基材積層体7の上面に、非晶質透明導電層6Aとして設けられる。非晶質透明導電層6Aは、形成された直後の層であって、結晶化が実質的に進行しない非晶質層である。 Thereby, the transparent conductive layer 6 is provided on the upper surface of the base laminate 7 as the amorphous transparent conductive layer 6A. The amorphous transparent conductive layer 6A is a layer immediately after being formed, and is an amorphous layer in which crystallization does not substantially progress.
 これによって、基材積層体7および透明導電層6(非晶質透明導電層6A)を厚み方向上側に向かって順に備える透明導電性フィルム1が得られる。透明導電性フィルム1は、好ましくは、基材積層体7および透明導電性フィルム1のみからなる。 By this, the transparent conductive film 1 provided with the base material laminated body 7 and the transparent conductive layer 6 (amorphous transparent conductive layer 6A) in order toward the thickness direction upper side is obtained. The transparent conductive film 1 preferably comprises only the base laminate 7 and the transparent conductive film 1.
 透明導電性フィルム1の厚みは、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。厚みが上記した上限以下であれば、透明導電性フィルム1の薄型化を図ることができる。厚みが上記した上限以上であれば、透明導電性フィルム1は、優れた取扱性および優れた機械強度を有する。 The thickness of the transparent conductive film 1 is, for example, 10 μm or more, preferably 20 μm or more, and for example, 200 μm or less, preferably 100 μm or less. If thickness is below the upper limit mentioned above, thickness reduction of the transparent conductive film 1 can be achieved. If thickness is more than the above-mentioned upper limit, the transparent conductive film 1 has the outstanding handling property and the outstanding mechanical strength.
 この透明導電性フィルム1では、透明導電層6の表面抵抗が比較的高いことから、透明電極パターンとして作用することがまだ困難である。つまり、透明導電層6は、まだ、結晶化透明導電層6C(後述)となっていない。そのため、透明導電性フィルム1は、結晶化透明導電層6Cを備える結晶化透明導電性フィルム10(後述、図1D参照)を製造する準備フィルムであって、結晶化透明導電性フィルム10ではない。一方、透明導電性フィルム1は、フィルム単独で流通する。 In this transparent conductive film 1, since the surface resistance of the transparent conductive layer 6 is relatively high, it is still difficult to act as a transparent electrode pattern. That is, the transparent conductive layer 6 has not yet become the crystallized transparent conductive layer 6C (described later). Therefore, the transparent conductive film 1 is a preparation film for producing the crystallized transparent conductive film 10 (see FIG. 1D described later) including the crystallized transparent conductive layer 6C, and is not the crystallized transparent conductive film 10. On the other hand, the transparent conductive film 1 is distributed as a film alone.
 この透明導電性フィルム1(つまり、基材積層体7および透明導電層6を備える積層フィルム)を150℃で90分間加熱した(後述する実施例における耐熱試験A)後の、MD方向の熱収縮率とTD方向の熱収縮率との差は、0.05%以下、好ましくは、0.05%未満、より好ましくは、0.3%以下、さらに好ましくは、0.2%以下、とりわけ好ましくは、0.2%未満である。 Thermal contraction in the MD direction after heating this transparent conductive film 1 (that is, a laminated film including the base laminate 7 and the transparent conductive layer 6) at 150 ° C. for 90 minutes (heat test A in the example described later) The difference between the heat shrinkage rate and the heat shrinkage rate in the TD direction is 0.05% or less, preferably less than 0.05%, more preferably 0.3% or less, still more preferably 0.2% or less, particularly preferably Is less than 0.2%.
 加熱(耐熱試験A)後の透明導電性フィルム1におけるMD方向の熱収縮率とTD方向の熱収縮率との差が上記した上限を上回ると、透明導電層6の損傷を抑制することができない。 When the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction in the transparent conductive film 1 after heating (heat resistance test A) exceeds the above-described upper limit, damage to the transparent conductive layer 6 can not be suppressed. .
 上記した各方向の熱収縮率の測定方法およびそれらの差を求めるには、加熱前の透明導電性フィルム1に、TD方向およびTD方向のそれぞれにおいて所定間隔を隔てて印を付け、それらの間隔を測定し、その後、透明導電性フィルム1を加熱し、そして、上記した間隔を再度測定し、それらの結果から、上記した差を取得する。詳細は、後の実施例で説明する。また、特開2016-124106号公報に記載されるようなCNC三次元測定器を用いる方法によって、得ることもできる。 In order to determine the method of measuring the thermal contraction rate in each direction described above and their difference, the transparent conductive film 1 before heating is marked at a predetermined interval in each of the TD direction and the TD direction, and the intervals thereof Is measured, and then the transparent conductive film 1 is heated, and the above-mentioned interval is measured again, and the above-mentioned difference is obtained from the results. Details will be described in a later example. Moreover, it can also obtain by the method of using a CNC three-dimensional measuring device as described in Unexamined-Japanese-Patent No. 2016-124106.
 図1Cおよび図1Dに示すように、その後、透明導電性フィルム1は、所定の期間を経過した後、透明導電性フィルム1透明導電層6を結晶化させて、結晶化透明導電層6Cを備える結晶化透明導電性フィルム10とされる。 As shown in FIGS. 1C and 1D, the transparent conductive film 1 is then provided with a crystallized transparent conductive layer 6C by crystallizing the transparent conductive film 1 transparent conductive layer 6 after a predetermined period of time has elapsed. The crystallized transparent conductive film 10 is used.
 上記した期間は、透明導電性フィルム1の製造直後(より具体的には、非晶質透明導電層6Aが形成された直後)から、透明導電層6を完全に結晶化する直前までの時間である。上記した期間では、例えば、透明導電性フィルム1は、透明導電性フィルム1および/または結晶化透明導電性フィルム10の製造業者が有する倉庫内に保管(貯蔵)され、さらには、結晶化透明導電性フィルム10の製造業者が、非晶質透明導電層6Aを、加熱装置に通過させるまで、待機させたり、あるいは、非晶質透明導電層6Aを搬送している。
詳しくは、上記した期間は、例えば、10時間以上、1日以上、さらには、10日以上、さらには、100日以上であり、また、例えば、10年以内である。
The above period is the time immediately after the production of the transparent conductive film 1 (more specifically, immediately after the formation of the amorphous transparent conductive layer 6A) to the time immediately before the transparent conductive layer 6 is completely crystallized. is there. In the above period, for example, the transparent conductive film 1 is stored (stored) in a warehouse of the manufacturer of the transparent conductive film 1 and / or the crystallized transparent conductive film 10, and further, the crystallized transparent conductive The manufacturer of the transparent film 10 waits for the amorphous transparent conductive layer 6A to pass through the heating device or transports the amorphous transparent conductive layer 6A.
Specifically, the above-mentioned period is, for example, 10 hours or more, 1 day or more, 10 days or more, 100 days or more, or, for example, 10 years or less.
 上記した期間における透明導電性フィルム1は、例えば、大気雰囲気下、不活性ガス雰囲気下などで保管され(または、待機し、あるいは、搬送され)、通常、大気雰囲気下で保管される。 The transparent conductive film 1 in the above-described period is stored (or kept on standby or transported) under, for example, an air atmosphere, an inert gas atmosphere or the like, and is usually stored under the air atmosphere.
 図1Cに示すように、透明導電性フィルム1が所定の期間を上記した環境で保管されると、非晶質透明導電層6Aの一部が結晶化する。つまり、非晶質透明導電層6Aにおける結晶化が、部分的に進行する(いわゆる自然結晶化を部分的に生じる)。但し、透明導電層6は、完全に結晶化しておらず、非晶質透明導電層6Aは、部分結晶化透明導電層6Bに至るが、結晶化透明導電層6Cには至らない。 As shown in FIG. 1C, when the transparent conductive film 1 is stored in the above-mentioned environment for a predetermined period, a part of the amorphous transparent conductive layer 6A is crystallized. That is, crystallization in the amorphous transparent conductive layer 6A proceeds partially (so-called natural crystallization partially occurs). However, the transparent conductive layer 6 is not completely crystallized, and the amorphous transparent conductive layer 6A reaches the partially crystallized transparent conductive layer 6B but does not reach the crystallized transparent conductive layer 6C.
 なお、この部分結晶化透明導電層6Bは、完全には結晶化しておらず、非晶質をまだ有していることから、本発明の「非晶質」の「透明導電層」に含まれる。 Since this partially crystallized transparent conductive layer 6B is not completely crystallized and still has an amorphous state, it is included in the "amorphous" "transparent conductive layer" of the present invention. .
 なお、非晶質透明導電層6Aが自然結晶化する条件は、非晶質透明導電層6Aを上記した期間保管するときの条件であり、また、後述する耐熱試験Cにおける加速試験(例えば、50℃、150時間以上、200時間以下)で再現することもできる。 The conditions under which the amorphous transparent conductive layer 6A spontaneously crystallizes are the conditions under which the amorphous transparent conductive layer 6A is stored for the period described above, and an accelerated test (for example, 50) in the heat test C described later. C) for 150 hours or more and 200 hours or less).
 一方、上記した期間が存在しなければ、つまり、製造された直後の非晶質透明導電層6Aを加熱して結晶化して結晶化透明導電層6Cを形成しようとすれば、透明基材2が加熱によって伸長するとともに、比較的柔らかい非晶質透明導電層6Aは、透明基材2の伸長に追従することはできる。 On the other hand, if the above-mentioned period does not exist, that is, if the amorphous transparent conductive layer 6A immediately after being manufactured is heated and crystallized to form the crystallized transparent conductive layer 6C, the transparent substrate 2 is While being stretched by heating, the relatively soft amorphous transparent conductive layer 6A can follow the stretching of the transparent substrate 2.
 しかし、上記した期間が必然的に存在し、非晶質透明導電層6Aが上記した期間保管されることが事実上不可避であるので、非晶質透明導電層6Aは、必然的に、部分結晶化透明導電層6Bとなる。そして、部分結晶化透明導電層6Bは、非晶質透明導電層6Aに比べて、硬いため、その後の第4工程(加熱工程)において、部分結晶化透明導電層6Bを加熱すると、部分結晶化透明導電層6Bは、透明基材2の加熱による伸長に十分に追従できず、そのため、結晶化透明導電層6Cにおいてクラック(割れ)を生じる可能性がある。 However, the amorphous transparent conductive layer 6A is inevitably partially crystalline because the above-mentioned period necessarily exists and the amorphous transparent conductive layer 6A is practically stored for the above-mentioned period. And the transparent conductive layer 6B. Then, since the partially crystallized transparent conductive layer 6B is harder than the amorphous transparent conductive layer 6A, when the partially crystallized transparent conductive layer 6B is heated in the subsequent fourth step (heating step), the partially crystallized The transparent conductive layer 6B can not sufficiently follow the elongation due to heating of the transparent base material 2, and therefore, there is a possibility that a crack (crack) may occur in the crystallized transparent conductive layer 6C.
 しかし、透明導電性フィルム1の、MD方向の熱収縮率とTD方向の熱収縮率との0.05%以下であるので、上記したクラック(割れ)を抑制することができる。 However, since the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction of the transparent conductive film 1 are 0.05% or less, the above-mentioned cracks can be suppressed.
 その後、図1Dに示すように、透明導電層6を結晶化する。具体的には、部分結晶化透明導電層6Bを完全に結晶化する。これによって、結晶化透明導電層6Cが形成される。 Thereafter, as shown in FIG. 1D, the transparent conductive layer 6 is crystallized. Specifically, the partially crystallized transparent conductive layer 6B is completely crystallized. Thus, the crystallized transparent conductive layer 6C is formed.
 部分結晶化透明導電層6Bを結晶化するには、部分結晶化透明導電層6Bを、例えば、大気雰囲気下で加熱する。加熱温度は、例えば、110℃以上、好ましくは、120℃以上であり、また、例えば、150℃以下、好ましくは、130℃以下である。加熱時間は、例えば、15分以上、例えば、120分以下である。 In order to crystallize the partially crystallized transparent conductive layer 6B, the partially crystallized transparent conductive layer 6B is heated, for example, in the atmosphere. The heating temperature is, for example, 110 ° C. or more, preferably 120 ° C. or more, and for example, 150 ° C. or less, preferably 130 ° C. or less. The heating time is, for example, 15 minutes or more, for example, 120 minutes or less.
 これにより、結晶化透明導電層6Cが形成される。結晶化透明導電層6Cが結晶質であることは、20℃の塩酸(濃度5質量%)に15分間浸漬した後、水洗および乾燥し、15mm程度の間の端子間抵抗が、10kΩ以下であることで同定(定義)される。 Thereby, the crystallized transparent conductive layer 6C is formed. The crystalline transparent conductive layer 6C is crystalline because it is immersed in hydrochloric acid (concentration 5 mass%) at 20 ° C. for 15 minutes, then washed with water and dried, and the terminal resistance between about 15 mm is 10 kΩ or less Identified (defined).
 結晶化透明導電層6Cの表面抵抗は、非晶質透明導電層6Aおよび部分結晶化透明導電層6Bの表面抵抗に比べて低く、具体的には、例えば、200Ω/□以下、好ましくは、150Ω/□以下であり、また、例えば、10Ω/□以上である。 The surface resistance of the crystallized transparent conductive layer 6C is lower than that of the amorphous transparent conductive layer 6A and the partially crystallized transparent conductive layer 6B, and specifically, for example, 200 Ω / □ or less, preferably 150 Ω. Or less, and for example, 10 Ω / or more.
 結晶化透明導電層6Cでは、上記したように、クラックなどの損傷が抑制されている。 In the crystallized transparent conductive layer 6C, as described above, damage such as a crack is suppressed.
 これによって、基材積層体7および結晶化透明導電層6C(結晶化した透明導電層6)を厚み方向上側に向かって順に備える結晶化透明導電性フィルム10が得られる。結晶化透明導電性フィルム10は、好ましくは、基材積層体7および結晶化透明導電層6Cのみからなる。 As a result, a crystallized transparent conductive film 10 is obtained, which sequentially includes the base laminate 7 and the crystallized transparent conductive layer 6C (the crystallized transparent conductive layer 6) in the thickness direction upward. The crystallized transparent conductive film 10 preferably comprises only the base laminate 7 and the crystallized transparent conductive layer 6C.
 そして、この透明導電性フィルム1の製造方法によって得られ、非晶質の透明導電層6(非晶質透明導電層6Aおよび部分結晶化透明導電層6B)を備える透明導電性フィルム1では、透明基材2が、130℃以上のガラス転移温度を有する樹脂を含むので、耐熱性に優れる。 The transparent conductive film 1 obtained by the method for producing the transparent conductive film 1 and having the amorphous transparent conductive layer 6 (the amorphous transparent conductive layer 6A and the partially crystallized transparent conductive layer 6B) is transparent. Since the base material 2 contains resin which has a glass transition temperature of 130 degreeC or more, it is excellent in heat resistance.
 また、透明導電性フィルム1(基材積層体7および透明導電層6を備える積層フィルム)を150℃で90分間加熱した後の、MD方向の熱収縮率とTD方向の熱収縮率との差が、0.05%以下であるので、透明導電層6が加熱により結晶化するまでの期間が存在しても、結晶化透明導電層6Cの損傷を抑制することができる。 Moreover, the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction after heating the transparent conductive film 1 (laminated film including the base laminate 7 and the transparent conductive layer 6) at 150 ° C. for 90 minutes However, since it is 0.05% or less, damage to the crystallized transparent conductive layer 6C can be suppressed even if there is a period until the transparent conductive layer 6 is crystallized by heating.
 詳しくは、部分結晶化透明導電層6Bは、上記したように、非晶質透明導電層6Aに比べて、硬いことから、第4工程における加熱に基づく透明基材2の伸長に追従できず、そのため、図1Dに示す結晶化透明導電層6Cにおいてクラック(割れ)を生じる傾向を有するものの、この透明導電性フィルム1は、MD方向の熱収縮率とTD方向の熱収縮率との差が0.05%以下であるので、MD方向と熱収縮率およびTD方向の熱収縮率のバランスを調整することができる。そのため、図1Dに示す結晶化透明導電性フィルム10における結晶化透明導電層6Cにおいてクラック(割れ)を生じることを抑制(防止)することができる。 Specifically, since the partially crystallized transparent conductive layer 6B is harder than the amorphous transparent conductive layer 6A as described above, it can not follow the elongation of the transparent base material 2 based on heating in the fourth step, Therefore, although there is a tendency for cracks to occur in the crystallized transparent conductive layer 6C shown in FIG. 1D, in this transparent conductive film 1, the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction is 0. Since it is not more than .05%, it is possible to adjust the balance between the MD direction and the thermal contraction rate and the thermal contraction rate in the TD direction. Therefore, it is possible to suppress (prevent) generation of a crack in the crystallized transparent conductive layer 6C in the crystallized transparent conductive film 10 shown in FIG. 1D.
 なお、完全に結晶化された結晶化透明導電層6Cを備える結晶化透明導電性フィルム10は、結晶化透明導電層6Cが、非晶質の透明導電層6(非晶質透明導電層6Aおよび部分結晶化透明導電層6Bのいずれ)でもないため、本発明の「透明導電性フィルム」に含まれない。 In the crystallized transparent conductive film 10 provided with the crystallized transparent conductive layer 6C which is completely crystallized, the crystallized transparent conductive layer 6C is formed of an amorphous transparent conductive layer 6 (amorphous transparent conductive layer 6A and It is not included in the "transparent conductive film" of the present invention, since it is not a partially crystallized transparent conductive layer 6B.
 <変形例>
 変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
<Modification>
In a modification, about the member and process similar to one above-mentioned embodiment, the same reference mark is attached and the detailed explanation is omitted.
 また、各変形例は、上記した一実施形態と同様の作用効果を奏することができる。 In addition, each modification can exhibit the same function and effect as those of the above-described embodiment.
 この変形例では、図2Bに示すように、透明導電性フィルム1は、ハードコート層3(図1B参照)、アンチブロッキング層4(図1B参照)および光学調整層5(図1B参照)を備えない。透明導電性フィルム1は、透明基材2および非晶質透明導電層6A(透明導電層6)を順に備える。透明導電性フィルム1は、好ましくは、透明基材2および非晶質透明導電層6Aのみからなる。 In this modification, as shown in FIG. 2B, the transparent conductive film 1 includes a hard coat layer 3 (see FIG. 1B), an antiblocking layer 4 (see FIG. 1B) and an optical adjustment layer 5 (see FIG. 1B). Absent. The transparent conductive film 1 comprises a transparent substrate 2 and an amorphous transparent conductive layer 6A (transparent conductive layer 6) in order. The transparent conductive film 1 preferably comprises only the transparent substrate 2 and the amorphous transparent conductive layer 6A.
 図2Bに示す透明導電性フィルム1を得るには、図2Aに示すように、第1工程において、透明基材2を準備する。 In order to obtain the transparent conductive film 1 shown to FIG. 2B, as shown to FIG. 2A, the transparent base material 2 is prepared in a 1st process.
 続いて、第2工程において、透明基材2を、加熱炉8を用いてアニールする。 Subsequently, in the second step, the transparent substrate 2 is annealed using the heating furnace 8.
 次いで、図2Bに示すように、第3工程では、非晶質透明導電層6Aを透明基材2に配置する。具体的には、非晶質の透明導電層6を、アニールされた透明基材2の上面に直接形成する。 Next, as shown in FIG. 2B, in the third step, the amorphous transparent conductive layer 6A is disposed on the transparent substrate 2. Specifically, the amorphous transparent conductive layer 6 is formed directly on the upper surface of the annealed transparent substrate 2.
 これによって、透明基材2および非晶質透明導電層6Aを順に備える透明導電性フィルム1を得る。 Thereby, the transparent conductive film 1 provided with the transparent substrate 2 and the amorphous transparent conductive layer 6A in order is obtained.
 この透明導電性フィルム1(つまり、透明基材2および透明導電層6を備える積層フィルム)を150℃で90分間加熱した後の、MD方向の熱収縮率とTD方向の熱収縮率との差は、0.05%以下である。 The difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction after heating the transparent conductive film 1 (that is, the laminated film including the transparent base 2 and the transparent conductive layer 6) at 150 ° C. for 90 minutes Is less than 0.05%.
 また、図示しないが、非晶質透明導電層6Aは、透明導電性フィルム1において、透明基材2の上下両側に設けられていてもよい。透明導電層6は、透明導電性フィルム1において、透明基材2の上下両側に設けられていてもよい。 Although not shown, the amorphous transparent conductive layer 6A may be provided on both the upper and lower sides of the transparent substrate 2 in the transparent conductive film 1. The transparent conductive layer 6 may be provided on both the upper and lower sides of the transparent substrate 2 in the transparent conductive film 1.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。また、各例中、部、%はいずれも質量基準である。 Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples. The present invention is not limited to the examples and comparative examples. Specific numerical values such as blending ratios (content ratios), physical property values, parameters, etc. used in the following description are the blending ratios (content ratios) corresponding to those described in the above-mentioned "embodiments for carrying out the invention" ), Physical property values, parameters, etc. may be substituted for the upper limit (numerical values defined as “below”, “less than”) or lower limit (numerical values defined as “above”, “exceed”), etc. it can. In each example, parts and% are all based on mass.
  実施例1
 図1Aに示すように、まず、透明基材2を用意した。具体的には、COPからなる透明基材2(ガラス転移温度145℃、線膨張係数6~7×10-5/℃、厚み40μm、面内の複屈折率0.0001、日本ゼオン社製、「ZEONOR」(登録商標))をロール状に巻回された長尺基材として用意した。
Example 1
First, as shown in FIG. 1A, a transparent substrate 2 was prepared. Specifically, transparent base material 2 made of COP (glass transition temperature 145 ° C., linear expansion coefficient 6 to 7 × 10 −5 / ° C., thickness 40 μm, in-plane birefringence index 0.0001, manufactured by Nippon Zeon Co., "ZEONOR" (registered trademark) was prepared as a roll-shaped long base material.
 次いで、ハードコート層3、アンチブロッキング層4および光学調整層5を順に透明基材2に対して、ロールトゥロール方式で形成した。 Next, the hard coat layer 3, the antiblocking layer 4 and the optical adjustment layer 5 were formed in order on the transparent substrate 2 by a roll to roll method.
 まず、透明フィルム基材2の上面に、バインダー樹脂(ウレタン系多官能ポリアクリレート、商品名「UNIDIC」、DIC社製)からなるハードコート組成物の希釈液を塗布するとともに、透明フィルム基材2の下面に、バインダー樹脂(ウレタン系多官能ポリアクリレート、商品名「UNIDIC」、DIC社製)と粒子(架橋アクリル・スチレン系樹脂粒子、商品名「SSX105」、直径3μm、積水樹脂社製)とを含有するアンチブロッキング組成物の希釈液を塗布し、次いで、これらを乾燥した後、透明フィルム基材2の両面に紫外線を照射し、ハードコート組成物およびアンチブロッキング組成物を硬化させた。これにより、透明フィルム基材2の上面に、厚み1μmのハードコート層3を形成し、透明フィルム基材2の下面に、厚み1μmのアンチブロッキング層4を形成した。 First, the upper surface of the transparent film substrate 2 is coated with a dilute solution of a hard coat composition consisting of a binder resin (urethane-based polyfunctional polyacrylate, trade name “UNIDIC”, manufactured by DIC), and the transparent film substrate 2 Binder resin (urethane-based polyfunctional polyacrylate, trade name "UNIDIC", manufactured by DIC) and particles (crosslinked acrylic / styrene resin particles, trade name "SSX105", diameter 3 μm, manufactured by Sekisui Resins Co., Ltd.) After applying a diluted solution of the antiblocking composition containing H, and drying them, both surfaces of the transparent film substrate 2 were irradiated with ultraviolet rays to cure the hard coat composition and the antiblocking composition. Thus, the hard coat layer 3 having a thickness of 1 μm was formed on the upper surface of the transparent film substrate 2, and the antiblocking layer 4 having a thickness of 1 μm was formed on the lower surface of the transparent film substrate 2.
 次いで、ハードコート層3の上面に、ジルコニア粒子と紫外線硬化性樹脂(アクリル系樹脂)とを含有する光学調整組成物の希釈液(「オプスターZ7412」、JSR社製、屈折率1.62)を塗布し、80℃で3分間乾燥した後、紫外線を照射した。これにより、ハードコート層3の上面に、厚み0.1μmの光学調整層5を形成した。 Then, on the upper surface of the hard coat layer 3, a diluted solution of an optical adjustment composition containing zirconia particles and an ultraviolet curable resin (acrylic resin) ("OPSTAR Z7412", manufactured by JSR, refractive index 1.62) It was applied and dried at 80 ° C. for 3 minutes and then irradiated with ultraviolet light. Thereby, the optical adjustment layer 5 with a thickness of 0.1 μm was formed on the upper surface of the hard coat layer 3.
 図1Aに示すように、これにより、アンチブロッキング層4、透明フィルム基材2、ハードコート層3および光学調整層5からなる基材積層体7を得た。 As shown to FIG. 1A, this obtained the base material laminated body 7 which consists of the anti blocking layer 4, the transparent film base material 2, the hard-coat layer 3, and the optical adjustment layer 5. FIG.
 次いで、第2工程において、加熱炉(真空加熱装置)8を用いて、基材積層体7をアニールした。加熱炉8の炉長は30mであり、加熱炉8における基材積層体7の搬送速度は、15m/分であった。基材積層体7の搬送方向における張力は、40Nであった。つまり、第2工程では、透明導電性フィルム1を150℃で90分間加熱する耐熱試験A(後述)後のMD方向およびTD方向の熱収縮率の差が0.05%以下となるように、基材積層体7をアニールした。 Next, in the second step, the base laminate 7 was annealed using a heating furnace (vacuum heating device) 8. The furnace length of the heating furnace 8 was 30 m, and the transfer speed of the base laminate 7 in the heating furnace 8 was 15 m / min. The tension in the transport direction of the base laminate 7 was 40N. That is, in the second step, the difference between the heat shrinkage ratio in the MD direction and the TD direction after the heat resistance test A (described later) in which the transparent conductive film 1 is heated at 150 ° C. for 90 minutes is 0.05% or less The base laminate 7 was annealed.
 その後、図1Bに示すように、第3工程では、スパッタリングで、光学調整層5の上面に、厚み25nmの非晶質透明導電層6Aを形成した。詳しくは、まず、平行平板型の巻取式マグネトロンスパッタ装置に酸化インジウム(In)および酸化スズ(SnO)を70:30の重量比で含有する焼結体ターゲットを装着し、基材積層体7を搬送しながら、真空排気により、水の分圧が5×10-4Paとなるまで真空排気した。その後、アルゴンガスおよび酸素ガスの導入量を調整し、光学調整層5の上面に出力12.5kWでDCスパッタリングにより、厚み25nmの非晶質透明導電層6Aを形成した。なお、非晶質透明導電層6Aの表面抵抗を測定したところ、340Ω/□であった。 Thereafter, as shown in FIG. 1B, in the third step, the amorphous transparent conductive layer 6A having a thickness of 25 nm was formed on the upper surface of the optical adjustment layer 5 by sputtering. Specifically, first, a sintered target containing indium oxide (In 2 O 3 ) and tin oxide (SnO 2 ) at a weight ratio of 70:30 is mounted on a parallel plate type wind-up type magnetron sputtering apparatus, While conveying the material laminate 7, the vacuum evacuation was performed until the partial pressure of water became 5 × 10 -4 Pa. Thereafter, the introduction amounts of argon gas and oxygen gas were adjusted, and an amorphous transparent conductive layer 6A having a thickness of 25 nm was formed on the upper surface of the optical adjustment layer 5 by DC sputtering at an output of 12.5 kW. The surface resistance of the amorphous transparent conductive layer 6A was measured to be 340 Ω / □.
 これにより、図1Bに示すように、基材積層体7および非晶質透明導電層6Aを順に備える透明導電性フィルム1を製造した。 Thereby, as shown to FIG. 1B, the transparent conductive film 1 provided with the base-material laminated body 7 and the amorphous transparent conductive layer 6A in order was manufactured.
  実施例2、3および比較例1~比較例4
 第2工程の加熱条件(アニール条件)を表1に記載に従って変更した以外は、実施例1と同様に処理して、透明導電性フィルム1を製造した。
Examples 2 and 3 and Comparative Examples 1 to 4
A transparent conductive film 1 was produced in the same manner as in Example 1 except that the heating conditions (annealing conditions) in the second step were changed according to the description in Table 1.
 なお、比較例1~比較例4のそれぞれでは、透明導電性フィルム1を150℃で90分間加熱する耐熱試験A(後述)後のMD方向およびTD方向の熱収縮率の差が0.05%超過となるように、基材積層体7をアニールした。 In each of Comparative Examples 1 to 4, the difference between the heat shrinkage ratio in the MD direction and the TD direction after the heat test A (described later) in which the transparent conductive film 1 is heated at 150 ° C. for 90 minutes is 0.05%. The base laminate 7 was annealed so as to be in excess.
  (評価)
 下記の項目のそれぞれを評価した。それらの結果を表1に示す。
(Evaluation)
Each of the following items was evaluated. The results are shown in Table 1.
 1.熱収縮率差の測定
 (耐熱試験A後における熱収縮率差)
 <本発明における150℃、90分の加熱>
 図1Cの仮想線で示すように、製造直後の透明導電性フィルム1を、加熱炉8を用いて、150℃で、90分加熱して、そして、加熱前後におけるMD方向およびTD方向のそれぞれにおける熱収縮率を得、それらの差を算出した。
1. Measurement of thermal shrinkage difference (thermal shrinkage difference after heat resistance test A)
<Heating at 150 ° C., 90 minutes in the present invention>
As shown by a phantom line in FIG. 1C, transparent conductive film 1 immediately after production is heated at 150 ° C. for 90 minutes using heating furnace 8, and in each of MD and TD directions before and after heating. The thermal shrinkage was obtained and their difference was calculated.
 具体的には、まず、非晶質透明導電層6Aを備える透明導電性フィルム1を、幅100mm、長さ100mmに切り取り(試験片)、MD方向およびTD方向のそれぞれにおいて80mm毎に印を付け、MD方向の長さ(mm)およびTD方向の長さ(mm)のそれぞれをオリンパスデジタル式小型測定顕微鏡STM5(オリンパス光学工業(株)製)により精密に測定した。その後、非晶質透明導電層6Aを備える透明導電性フィルム1を、150℃で、90分で加熱した。 Specifically, first, the transparent conductive film 1 including the amorphous transparent conductive layer 6A is cut into a width of 100 mm and a length of 100 mm (specimen) and marked every 80 mm in each of the MD and TD directions. The length in the MD direction (mm) and the length in the TD direction (mm) were each accurately measured by an Olympus digital small measurement microscope STM5 (manufactured by Olympus Optical Co., Ltd.). Thereafter, the transparent conductive film 1 provided with the amorphous transparent conductive layer 6A was heated at 150 ° C. for 90 minutes.
 その後、透明導電性フィルム1を25℃(常温)で1時間放冷後、再度、透明導電性フィルム1のMD方向およびTD方向のそれぞれの長さを測定した。 Thereafter, after the transparent conductive film 1 was allowed to cool at 25 ° C. (normal temperature) for 1 hour, the lengths of the transparent conductive film 1 in the MD direction and the TD direction were measured again.
 そして、下記式に基づいて、MD方向の熱収縮率(MD)およびTD方向の熱収縮率(TD)のそれぞれを算出した。 And based on a following formula, each of the heat contraction rate (MD) of MD direction and the heat contraction rate (TD) of TD direction was computed.
 熱収縮率(MD)(%)=[[加熱前の印間のMD方向長さ(mm)-加熱後の印間のMD方向(mm)]/加熱前の印間のMD方向(mm)]×100
 熱収縮率(TD)(%)=[[加熱前の印間のTD方向長さ(mm)-加熱後の印間のTD方向(mm)]/加熱前の印間のTD方向(mm)]×100
 そして、熱収縮率(MD)(%)および熱収縮率(TD)(%)からそれらの差を求めた。
Thermal shrinkage (MD) (%) = [[MD length between marks before heating (mm)-MD between marks after heating (mm)] / MD between marks before heating (mm) ] × 100
Thermal shrinkage (TD) (%) = [[Length in the TD direction between marks before heating (mm)-TD direction between marks after heating (mm)] / TD direction between marks before heating (mm) ] × 100
Then, their difference was determined from the heat shrinkage (MD) (%) and the heat shrinkage (TD) (%).
 (耐熱試験B後における熱収縮率差)
 <特許文献1における130℃、90分の加熱>
 加熱温度を、150℃から130℃に変更した(耐熱試験B)以外は、耐熱試験Aと同様に処理し、透明導電性フィルム1の熱収縮率差を求めた。また、耐熱試験Bの対象は、比較例1のみとした。
(Thermal shrinkage difference after heat resistance test B)
<Heating at 130 ° C. for 90 minutes in Patent Document 1>
The heating temperature was changed from 150 ° C. to 130 ° C. (heat resistance test B), and the same processing as in the heat resistance test A was performed, and the heat shrinkage percentage difference of the transparent conductive film 1 was determined. In addition, the object of the heat resistance test B was only the comparative example 1.
 2.クラックの評価
 (耐熱試験C後におけるクラックの有無)
 <透明導電性フィルムの保管を仮定した加速試験(50℃、150時間、図1C参照)を経由した後の部分結晶化透明導電層の結晶化>
 (i)加速試験(部分結晶化透明導電層の形成)
 図1Bに示す製造直後の透明導電性フィルム1(非晶質透明導電層6Aが形成された直後の透明導電性フィルム1)を、図1Cに示すように、50℃の加熱炉8に、150時間投入した。これにより、非晶質透明導電層6Aを部分的に自然結晶化させて、部分結晶化透明導電層6Bとした。なお、部分結晶化透明導電層6Bの表面抵抗は、95Ω/□であった。
2. Evaluation of cracks (presence or absence of cracks after heat resistance test C)
<Crystallization of partially crystallized transparent conductive layer after passing an accelerated test (50 ° C., 150 hours, see FIG. 1C) assuming storage of the transparent conductive film>
(I) Accelerated test (formation of partially crystallized transparent conductive layer)
The transparent conductive film 1 immediately after the production shown in FIG. 1B (the transparent conductive film 1 immediately after the formation of the amorphous transparent conductive layer 6A) is shown in FIG. The time was spent. Thereby, the amorphous transparent conductive layer 6A is partially naturally crystallized to form a partially crystallized transparent conductive layer 6B. The surface resistance of the partially crystallized transparent conductive layer 6B was 95 Ω / □.
 (ii)完全結晶化(部分結晶化透明導電層の完全結晶化)
 その後、図1Dに示すように、耐熱試験Aと同様の条件(150℃で、90分)で透明導電性フィルム1を加熱して、部分結晶化透明導電層6Bを完全に結晶化させて、結晶化透明導電層6Cとした(第4工程の実施)。
(Ii) Complete crystallization (complete crystallization of partially crystallized transparent conductive layer)
Thereafter, as shown in FIG. 1D, the transparent conductive film 1 is heated under the same conditions (90 ° C., 90 minutes) as the heat resistance test A to completely crystallize the partially crystallized transparent conductive layer 6 B, It was set as the crystallization transparent conductive layer 6C (implementation of a 4th process).
 これによって、基材積層体7および結晶化透明導電層6Cを備える結晶化透明導電性フィルム10を製造した。 Thereby, a crystallized transparent conductive film 10 including the base laminate 7 and the crystallized transparent conductive layer 6C was produced.
 そして、結晶化透明導電層6Cにおけるクラックを、光学顕微鏡(倍率20)で、確認した。 And the crack in 6 C of crystallization transparent conductive layers was confirmed with the optical microscope (20 magnifications).
 (耐熱試験D後におけるクラックの有無)
 <製造直後の透明導電性フィルムの非晶質透明導電層6Aの結晶化(加速試験の不実施>
 図1Bに示す製造直後の透明導電性フィルム1(非晶質透明導電層6Aが形成された直後の透明導電性フィルム1)を、図1Dに示すように、耐熱試験Aと同様の条件(150℃で、90分)で透明導電性フィルム1を加熱して、非晶質透明導電層6Aを完全に結晶化させて、結晶化透明導電層6Cとした。つまり、非晶質透明導電層6Aは、部分結晶化透明導電層6Bを経由せず、結晶化透明導電層6Cとなった(第4工程の実施)。
(Presence or absence of cracks after heat resistance test D)
<Crystallization of amorphous transparent conductive layer 6A of transparent conductive film immediately after production (not conducted accelerated test)>
As shown in FIG. 1D, the transparent conductive film 1 immediately after production shown in FIG. 1B (the transparent conductive film 1 immediately after formation of the amorphous transparent conductive layer 6A) has the same conditions as the heat resistance test A (150 The transparent conductive film 1 is heated at 90 ° C. for 90 minutes to completely crystallize the amorphous transparent conductive layer 6A to form a crystallized transparent conductive layer 6C. That is, the amorphous transparent conductive layer 6A did not pass through the partially crystallized transparent conductive layer 6B, and became the crystallized transparent conductive layer 6C (implementation of the fourth step).
 これによって、基材積層体7および結晶化透明導電層6Cを備える結晶化透明導電性フィルム10を製造した。 Thereby, a crystallized transparent conductive film 10 including the base laminate 7 and the crystallized transparent conductive layer 6C was produced.
 そして、結晶化透明導電層6Cにおけるクラックを、光学顕微鏡(倍率20)で、確認した。 And the crack in 6 C of crystallization transparent conductive layers was confirmed with the optical microscope (20 magnifications).
 (考察)
 1)耐熱試験AおよびBについて
 耐熱試験Bの加熱温度130℃は、特許文献1に記載の加熱温度に相当し、本発明の加熱試験に相当する耐熱試験Aの加熱温度150℃に比べて、低い(加熱条件が緩やか)。
(Discussion)
1) Heat Resistance Tests A and B The heating temperature 130 ° C. of the heat resistance test B corresponds to the heating temperature described in Patent Document 1 and is compared to the heating temperature 150 ° C. of the heat resistance test A corresponding to the heating test of the present invention. Low (slow heating conditions).
 比較例1は、耐熱試験B(130℃)では、MD方向の熱収縮率とTD方向の熱収縮率との差が、0.01%であり、0.05%以下の範囲内であるが、耐熱試験A(150℃)では、上記した差が、0.08%であり、0.05%以下の範囲外である。 In Comparative Example 1, in the heat resistance test B (130 ° C.), the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction is 0.01% and is within the range of 0.05% or less. In the heat resistance test A (150 ° C.), the above-mentioned difference is 0.08%, which is out of the range of 0.05% or less.
 つまり、特許文献1に記載の条件(130℃)より苛酷な耐熱試験A(150℃)で測定される比較例1の熱収縮率の差は、本発明の範囲外となる。そのため、耐熱試験Cの結果から分かるように、比較例1の結晶化透明導電層6Cにクラックの発生が確認される。 That is, the difference in the thermal contraction rate of Comparative Example 1 measured by the severe heat resistance test A (150 ° C.) under the conditions (130 ° C.) described in Patent Document 1 falls outside the scope of the present invention. Therefore, as can be understood from the results of the heat resistance test C, the occurrence of cracks is confirmed in the crystallized transparent conductive layer 6C of Comparative Example 1.
 一方、耐熱試験A(150℃)で測定される実施例1~実施例3の熱収縮率の差は、それぞれ、0.01%、0.02%、0.05%であり、いずれも、本発明の範囲内にあって、さらに、耐熱試験Cの結果から分かるように、実施例1~実施例3のいずれにおいても、結晶化透明導電層6Cにクラックの発生が確認されない。 On the other hand, the difference in thermal contraction rate in Examples 1 to 3 measured in the heat resistance test A (150 ° C.) is 0.01%, 0.02%, and 0.05%, respectively. Within the scope of the present invention, as can be seen from the results of the heat resistance test C, no occurrence of cracks is confirmed in the crystallized transparent conductive layer 6C in any of Examples 1 to 3.
 2)耐熱試験CおよびDについて
 耐熱試験D(各実施例および各比較例):
 耐熱試験Dは、製造直後の透明導電性フィルムの非晶質透明導電層6Aを、保管を仮定する加速試験を実施せず、つまり、部分結晶化透明導電層6Bを経由せず、結晶化して、結晶化透明導電層6Cとする試験である。
2) About heat resistance test C and D Heat resistance test D (each Example and each comparative example):
In the heat resistance test D, the amorphous transparent conductive layer 6A of the transparent conductive film immediately after production is crystallized without conducting an accelerated test assuming storage, that is, without passing through the partially crystallized transparent conductive layer 6B. , And the transparent conductive layer 6C.
 この耐熱試験Dにおいて製造される結晶化透明導電層6Cは、透明基材2が加熱によって伸長するとともに、比較的柔らかい非晶質透明導電層6Aは、透明基材2の伸長に追従する。そのため、実施例1~実施例3および比較例1~比較例4のいずれにおいても、結晶化透明導電層6Cにクラックの発生が確認されなかった。 In the crystallized transparent conductive layer 6C manufactured in the heat resistance test D, the transparent base material 2 is stretched by heating, and the relatively soft amorphous transparent conductive layer 6A follows the extension of the transparent base material 2. Therefore, in any of Examples 1 to 3 and Comparative Examples 1 to 4, generation of cracks was not confirmed in the crystallized transparent conductive layer 6C.
 耐熱試験C(各比較例):
 一方、耐熱試験Cでは、部分結晶化透明導電層6Bを経由する。そして、耐熱試験Cにおける各比較例では、部分結晶化透明導電層6Bを加熱により結晶化すると、部分結晶化透明導電層6Bは、透明基材2の加熱による伸長に追従できず、そのため、結晶化透明導電層6Cにクラックの発生が確認された。
Heat resistance test C (each comparative example):
On the other hand, in the heat resistance test C, it passes through the partially crystallized transparent conductive layer 6B. And, in each comparative example in the heat resistance test C, when the partially crystallized transparent conductive layer 6B is crystallized by heating, the partially crystallized transparent conductive layer 6B can not follow the expansion due to the heating of the transparent base material 2, and therefore the crystals The occurrence of cracks was confirmed in the transparent conductive layer 6C.
 耐熱試験C(各実施例):
 他方、耐熱試験Cにおける各実施例では、部分結晶化透明導電層6Bを加熱により結晶化しても、150℃で90分間加熱した後の、MD方向の熱収縮率とTD方向の熱収縮率との差が、0.05%以下であるので、耐熱性に優れており、結晶化透明導電層6Cにクラックの発生が確認されなかった。
Heat resistance test C (each example):
On the other hand, in each example in the heat resistance test C, even if the partially crystallized transparent conductive layer 6B is crystallized by heating, the thermal contraction rate in the MD direction and the thermal contraction rate in the TD direction after heating at 150 ° C. for 90 minutes Since the difference of is not more than 0.05%, the heat resistance is excellent, and generation of cracks is not confirmed in the crystallized transparent conductive layer 6C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention is provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the invention that are apparent to those skilled in the art are within the scope of the following claims.
 透明導電性フィルムは、各種光学用途に用いられる。 Transparent conductive films are used in various optical applications.
1 透明導電性フィルム
2 透明基材
3 ハードコート層
4 アンチブロッキング層
5 光学調整層
6 透明導電層
6A 非晶質透明導電層
6B 部分結晶化透明導電層
1 Transparent conductive film 2 Transparent base 3 Hard coat layer 4 Anti blocking layer 5 Optical control layer 6 Transparent conductive layer 6A Amorphous transparent conductive layer 6B Partially crystallized transparent conductive layer

Claims (8)

  1.  透明基材および透明導電層を順に備え、
     前記透明基材は、130℃以上のガラス転移温度を有する樹脂を含み、
     前記透明導電層は、非晶質であり、
     150℃で90分間加熱した後の、MD方向の熱収縮率とTD方向の熱収縮率との差が、0.05%以下であることを特徴とする、透明導電性フィルム。
    Comprising a transparent substrate and a transparent conductive layer in order;
    The transparent substrate includes a resin having a glass transition temperature of 130 ° C. or higher,
    The transparent conductive layer is amorphous,
    A transparent conductive film characterized in that the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction after heating at 150 ° C. for 90 minutes is 0.05% or less.
  2.  前記樹脂は、5.5×10-5/℃以上、8.0×10-5/℃以下の線膨張係数を有することを特徴とする、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the resin has a linear expansion coefficient of 5.5 × 10 −5 / ° C. or more and 8.0 × 10 −5 / ° C. or less.
  3.  前記樹脂は、シクロオレフィン系樹脂およびポリカーボネート樹脂からなる群から選択される少なくとも1種であることを特徴とする、請求項1または2に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the resin is at least one selected from the group consisting of a cycloolefin resin and a polycarbonate resin.
  4.  前記透明導電層は、インジウムスズ複合酸化物を含むことを特徴とする、請求項1または2に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the transparent conductive layer comprises indium tin complex oxide.
  5.  20μm以上、100μm以下の厚みを有することを特徴とする、請求項1または2に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, having a thickness of 20 μm or more and 100 μm or less.
  6.  アンチブロッキング層、ハードコート層および光学調整層をさらに備え、
     前記アンチブロッキング層、前記透明基材、前記ハードコート層、前記光学調整層および前記透明導電層が順に配置されていることを特徴とする、請求項1または2に記載の透明導電性フィルム。
    It further comprises an antiblocking layer, a hard coat layer and an optical adjustment layer,
    The said antiblocking layer, the said transparent base material, the said hard-coat layer, the said optical adjustment layer, and the said transparent conductive layer are arrange | positioned in order, The transparent conductive film of Claim 1 or 2 characterized by the above-mentioned.
  7.  透明基材を準備する第1工程、
     前記透明基材をアニールする第2工程、および、
     非晶質の透明導電層を前記透明基材に配置して、前記透明基材および前記透明導電層を順に備える透明導電性フィルムを製造する第3工程を備え、
     前記第2工程において、前記透明導電性フィルムを150℃で90分間加熱した後の、MD方向の熱収縮率とTD方向の熱収縮率との差が、0.05%以下となるように、前記透明基材をアニールすることを特徴とする、透明導電性フィルムの製造方法。
    A first step of preparing a transparent substrate,
    A second step of annealing the transparent substrate, and
    And a third step of disposing an amorphous transparent conductive layer on the transparent substrate to produce a transparent conductive film provided with the transparent substrate and the transparent conductive layer in order.
    In the second step, the difference between the heat shrinkage rate in the MD direction and the heat shrinkage rate in the TD direction after heating the transparent conductive film at 150 ° C. for 90 minutes is 0.05% or less. A method of producing a transparent conductive film, comprising annealing the transparent substrate.
  8.  前記第2工程では、透明基材を、145℃未満で、1分以上、5分以下、加熱することを特徴とする、請求項7に記載の透明導電性フィルムの製造方法。 The method for producing a transparent conductive film according to claim 7, wherein in the second step, the transparent substrate is heated at less than 145 ° C for 1 to 5 minutes.
PCT/JP2018/039037 2017-10-27 2018-10-19 Transparent electroconductive film and method for producing same WO2019082815A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207009899A KR102594226B1 (en) 2017-10-27 2018-10-19 Transparent conductive film and manufacturing method thereof
CN201880065717.0A CN111194471B (en) 2017-10-27 2018-10-19 Transparent conductive film and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017208476A JP7270334B2 (en) 2017-10-27 2017-10-27 Transparent conductive film and manufacturing method thereof
JP2017-208476 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019082815A1 true WO2019082815A1 (en) 2019-05-02

Family

ID=66247778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039037 WO2019082815A1 (en) 2017-10-27 2018-10-19 Transparent electroconductive film and method for producing same

Country Status (5)

Country Link
JP (1) JP7270334B2 (en)
KR (1) KR102594226B1 (en)
CN (1) CN111194471B (en)
TW (1) TWI778158B (en)
WO (1) WO2019082815A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482858B2 (en) 2019-04-24 2024-05-14 三菱ケミカル株式会社 Thermoplastic polyurethane elastomer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268168A (en) * 1998-03-24 1999-10-05 Kanegafuchi Chem Ind Co Ltd Plastic film with transparent conducting film and protective film
JP2014124914A (en) * 2012-12-27 2014-07-07 Lintec Corp Transparent conductive film
JP2014175142A (en) * 2013-03-08 2014-09-22 Kaneka Corp Electrode-provided substrate and electrostatic capacitance type touch panel
JP2015146244A (en) * 2014-02-03 2015-08-13 凸版印刷株式会社 Transparent conductive film and manufacturing method thereof
WO2015152184A1 (en) * 2014-03-31 2015-10-08 積水ナノコートテクノロジー株式会社 Optically transparent conductive film and touch panel comprising same
JP2015191347A (en) * 2014-03-27 2015-11-02 株式会社カネカ Transparent conductive film laminate and method for manufacturing touch panel
JP2016124106A (en) * 2014-12-26 2016-07-11 日東電工株式会社 Transparent conductive film, transparent conductive film laminate, and touch panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204358B2 (en) * 2000-10-30 2013-06-05 帝人株式会社 Transparent film for display
KR101277433B1 (en) * 2008-09-26 2013-06-20 도요보 가부시키가이샤 Transparent conductive film and touch panel
JPWO2011108494A1 (en) * 2010-03-01 2013-06-27 Jsr株式会社 Conductive laminated film and touch panel using the same
JP6227321B2 (en) * 2013-08-05 2017-11-08 リンテック株式会社 Transparent conductive film with protective film
JP2015203097A (en) * 2014-04-16 2015-11-16 三菱樹脂株式会社 Surface protective film for electroconductive film, and transparent electroconductive base material film laminate
JP6654865B2 (en) * 2015-11-12 2020-02-26 日東電工株式会社 Amorphous transparent conductive film, crystalline transparent conductive film and method for producing the same
JP6650770B2 (en) * 2016-01-29 2020-02-19 日東電工株式会社 Conductive laminated film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268168A (en) * 1998-03-24 1999-10-05 Kanegafuchi Chem Ind Co Ltd Plastic film with transparent conducting film and protective film
JP2014124914A (en) * 2012-12-27 2014-07-07 Lintec Corp Transparent conductive film
JP2014175142A (en) * 2013-03-08 2014-09-22 Kaneka Corp Electrode-provided substrate and electrostatic capacitance type touch panel
JP2015146244A (en) * 2014-02-03 2015-08-13 凸版印刷株式会社 Transparent conductive film and manufacturing method thereof
JP2015191347A (en) * 2014-03-27 2015-11-02 株式会社カネカ Transparent conductive film laminate and method for manufacturing touch panel
WO2015152184A1 (en) * 2014-03-31 2015-10-08 積水ナノコートテクノロジー株式会社 Optically transparent conductive film and touch panel comprising same
JP2016124106A (en) * 2014-12-26 2016-07-11 日東電工株式会社 Transparent conductive film, transparent conductive film laminate, and touch panel

Also Published As

Publication number Publication date
TWI778158B (en) 2022-09-21
CN111194471B (en) 2021-12-21
KR102594226B1 (en) 2023-10-25
JP7270334B2 (en) 2023-05-10
TW201922505A (en) 2019-06-16
CN111194471A (en) 2020-05-22
KR20200070240A (en) 2020-06-17
JP2019083088A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP4759143B2 (en) Transparent conductive laminate, method for producing the same, and display element using the same
JP5679925B2 (en) Method for producing transparent conductive film
KR20130025969A (en) Transparent conductive film and manufacturing method therefor
JP2020102362A (en) Transparent conductive film laminate
TWI778158B (en) Transparent conductive film and method for producing the same
JP2019094235A (en) Transparent conductive film-attached glass sheet, transparent conductive film-attached glass roll, and manufacturing method therefor
TW201916064A (en) Crystallization film can restrain damage generated within relatively shorter time even if the film is exposed at high temperature and high humidity environment
WO2021187572A1 (en) Transparent conductive film and method for producing transparent conductive film
JP7300855B2 (en) FILM LAMINATE AND METHOD FOR MANUFACTURING PATTERNED CONDUCTIVE FILM
JP7320960B2 (en) FILM LAMINATE AND METHOD FOR MANUFACTURING PATTERNED CONDUCTIVE FILM
JP2022101604A (en) Method for manufacturing light transmissive conductive sheet
JP2013142034A (en) Winding device, and device and method for manufacturing laminate
KR101363154B1 (en) Method for manufacturing transparent conductive film
JP7492916B2 (en) Transparent Conductive Film
CN110733223A (en) Polyester film, protective film laminate, and method for producing protective film
KR102359283B1 (en) Method for producing transparent conductive film
WO2020262047A1 (en) Crystallized indium tin composite oxide film, transparent electric conductive film, and production method therefor
JP2020108938A (en) Transparent conductive film laminate
TW202045364A (en) Transparent conductive film
KR20200098500A (en) Light-transmitting conductive film, its manufacturing method, dimming film, and dimming member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869655

Country of ref document: EP

Kind code of ref document: A1