WO2019082684A1 - Polylactic acid bottle separation and recovery method - Google Patents

Polylactic acid bottle separation and recovery method

Info

Publication number
WO2019082684A1
WO2019082684A1 PCT/JP2018/038035 JP2018038035W WO2019082684A1 WO 2019082684 A1 WO2019082684 A1 WO 2019082684A1 JP 2018038035 W JP2018038035 W JP 2018038035W WO 2019082684 A1 WO2019082684 A1 WO 2019082684A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
bottles
bottle
peak
absorption
Prior art date
Application number
PCT/JP2018/038035
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 卓郎
宏希 國枝
卓哉 藤川
Original Assignee
東洋製罐グループホールディングス株式会社
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社, 東洋製罐株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Publication of WO2019082684A1 publication Critical patent/WO2019082684A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a method for separating and collecting biomass-derived polylactic acid bottles from plastic bottle wastes.
  • PLA polylactic acid
  • Polylactic acid is a polymer using L-lactic acid as a monomer obtained from starch starch such as corn, tuberous roots such as cassava, tubers such as potato, or starchy lactic acid fermented from corms such as taro. Generally, it is produced from the direct polycondensation method or the ring-opening polymerization method of lactide which is a dimer.
  • Such polylactic acid is a plastic derived from agricultural products, so unlike conventional plastics relying on petroleum resources, there is no risk that its use will lead to resource depletion.
  • a global environment-friendly resin since it is decomposed into water and carbon dioxide by microorganisms in the natural world, it is known as a global environment-friendly resin as a completely recycled material that is produced from plants and returned to plants without accumulation of carbon dioxide in the atmosphere. ing.
  • polylactic acid is highly transparent, and its glass transition temperature is 60 ° C., which is close to the glass transition temperature Tg (70 ° C.) of polyethylene terephthalate (PET), and its specific gravity is 1.27 g / cm for polyethylene terephthalate.
  • PET polyethylene terephthalate
  • Polylactic acid is similar to 1.24 g / cm 3 (amorphous / crystalline), while it is 3 (amorphous) to 1.33 g / cm 3 (crystalline). Because the strength is also comparable to PET, it is difficult to distinguish polylactic acid products from polyethylene terephthalate products.
  • plastic waste discarded from home is burnt or buried.
  • plastic products such as bottles that can be easily separated have been promoted to be reused by mechanical recycling, chemical recycling, and other recycling, and separate collection of bottles has been promoted.
  • polyethylene terephthalate PET
  • PS polystyrene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PE polyethylene
  • PET polyethylene terephthalate
  • PS polystyrene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PE polyethylene
  • PET polyethylene terephthalate
  • PS polystyrene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PE polyethylene
  • Patent Documents 1 to 3 and the like propose a method of sorting plastics, but none of them are unsatisfactory for identification and separation of polylactic acid bottles.
  • separation using specific gravity or optical separation using near infrared light / infrared light is used.
  • the optical separation method is a method that has been proposed in recent years, but in many cases it is necessary to pre-treat a process such as mechanical crushing or a flaking process due to pressure. It has hardly been studied as a means for identifying and recovering plastic.
  • an object of the present invention is to provide a method for identifying and separately collecting polylactic acid bottles from plastic bottle waste collected in a bottle collection box or the like.
  • a method of separately collecting polylactic acid bottles from plastic bottle waste The plastic bottle waste was subjected to near-infrared measurement in the wavelength range of 1600 to 1800 nm, and two absorption peaks of the short wavelength side absorption peak observed near 1680 nm and the long wavelength side absorption peak observed near 1718 nm A method is provided for recovering peak bottle waste as polylactic acid bottles.
  • the method of the present invention focuses on the near infrared absorption of polylactic acid, measures the near infrared absorption spectrum of the recovered plastic bottle, and detects the short wavelength side absorption peak observed around 1680 nm which is characteristic of polylactic acid What shows two absorption peaks with the long wavelength side absorption peak observed near 1718 nm is identified as a polylactic acid bottle, and it separates and collects from another bottle. That is, polylactic acid bottles from other general purpose plastic bottles, such as PET bottles, polystyrene bottles, polypropylene bottles, polyethylene bottles, polyvinyl chloride bottles, etc., are identified by identifying two infrared absorption peaks as polylactic acid bottles. Can be separated and recovered, which makes it possible to recycle polylactic acid.
  • the figure which shows the correction spectrum (the largest peak intensity is normalized to 1) which carried out A / D conversion and baseline correction about the near-infrared absorption spectrum about PP.
  • the figure which shows the correction spectrum (maximum peak intensity is normalized to 1) which carried out A / D conversion and baseline correction about the near-infrared absorption spectrum about PVC.
  • the method of the present invention separates and recovers a bottle showing two near infrared absorption spectra (a short wavelength side absorption peak observed near 1680 nm and a long wavelength side absorption peak observed near 1718 nm) as a polylactic acid bottle . That is, although the absorption spectrum in the near-infrared region (1600 to 1800 nm) of various plastics is shown in FIG. 1, as understood from this FIG. 1, polylactic acid is observed at around 1680 nm It has a short wavelength side absorption peak and a long wavelength side absorption peak observed around 1718 nm.
  • baseline correction can be performed by linearly approximating valley-valley in the range of the short wavelength side end (1600 nm) and the long wavelength side end (1800 nm) of the measured near infrared absorption spectrum, Such a correction makes it possible to clearly distinguish the absorption spectra for various plastics. Further, by performing the above-described baseline correction, baseline drift correction can also be automatically performed, and peak sharpening and calculation accuracy of the absorbance ratio can be improved.
  • FIGS. 2 to 7 show absorption spectra of various plastics subjected to baseline correction and peak sharpening as described above, it is possible to reliably identify various plastics by such correction.
  • the polylactic acid bottle can be identified, separated and recovered from the presence of the above-mentioned short wavelength side absorption peak (around 1680 nm) and long wavelength side absorption peak (around 1718 nm).
  • the short wavelength side absorption peak (around 1680 nm) and the long wavelength side absorption peak (around 1718 nm) Formulas (1) and (2): I S ⁇ I L (1) 1.2 ⁇ I L / I S ⁇ 3.0 (2)
  • I S is the intensity of the absorption peak on the short wavelength side
  • I L is the intensity of the absorption peak on the long wavelength side
  • the absorption spectrum can be clarified by the above-described baseline correction, peak sharpening, and the like, and bottle waste free from contaminants and the like can be identified as a polylactic acid bottle.
  • the resin forming the bottle is either poly-L-lactic acid or poly-D-lactic acid which is an optically active isomer. It may also be, for example, a mixture of poly-L-lactic acid and poly-D-lactic acid. Usually, as long as 95% by mass or more of the resin forming the bottle is poly-L-lactic acid and / or poly-D-lactic acid, even if other resins are blended, the above two absorption peaks , Poly lactic acid bottle is determined.
  • the observation peak may cause saturation in transmission method measurement because the thickness of the bottle is usually large, etc., and it may not be applied as the original data of the arithmetic processing. It is possible. Also, there are cases where the observed spectrum is not suitable for calculation due to the change of the spectrum shape due to the label of the bottle or the like. Therefore, the measurement method by the reflection method is suitably adopted.
  • the positions of the near infrared light source and the condensing optical system are adjusted according to the size of the input bottle in order to identify and separate the material of bottles different in size from 350 mL to 2 L. It is preferable to have a mechanism for adjusting automatically.
  • a bottle inserted from a bottle insertion port is allowed to stand along an inclined surface provided for allowing the bottle to stand, and after observing the distance to the mouth with a CCD camera based on the bottom position reference, near red
  • a method of automatically setting the position of the light irradiation light and the position of the focusing optical system is applied.
  • a method of interlocking the optical system to selectively emit near infrared light and collect (receive) near infrared light on the shoulder and bottom calculated from the distance between the bottle bottom and the mouth The method of adjusting the near-infrared light which generate
  • a device for identifying plastic materials based on near-infrared light includes a near-infrared light source using a halogen lamp, and a light-receiving element (detection from Pbs and InGaAs (indium gallium element) near infrared light condensed by a condensing optical system)
  • the detection signal is amplified and digitally converted by an amplifier and A / D conversion (analog / digital conversion), and then processed by a personal computer to perform material identification.
  • the near-infrared light spectrum is observed as data points of 200 points to 20000 points in the wavelength range of 1600 nm to 1800 nm, and after measurement of spatial resolution 1.0 nm to 0.01 nm, A / D change processing changes by first derivative. Calculate the curve point. (At least two peaks are observed using an algorithm that identifies two points (two peak components), but if only one point (one peak) is observed, it is recognized as one point.) 1600 nm The peak intensity and the peak intensity at 1,800 nm are linearly corrected, and after baseline correction, it is preferable to perform normalization processing with the peak intensity at 1 for the peak with the largest peak intensity, and perform noise removal and peak sharpening processing is there.
  • the material is identified as a polylactic acid material, and collected in a collection box dedicated to polylactic acid bottles.
  • variable (x, y) data after A / D conversion is data in which x indicates the wavelength (nm) and y indicates the intensity (I: intensity), and the peak determined with the inflection point of the first derivative as the peak top
  • the remaining peak components are normalized to 0, leaving two points before and after the center wavelength (nm) of the peak wavelength. In this case, no peak is recognized for peak components not at the inflection point in the first derivative, and 0 standard
  • the absorbance ratio can be calculated using the bivariate values (x, y) of the strongest peak component and the second peak component obtained as described above.
  • the absorbance ratio is calculated from the intensities of the peaks at 1680 nm and 1718 nm, respectively, and thereby the conditional expression (1) described above It can be determined whether or not (2) is satisfied.
  • the algorithm used for the calculation can calculate the absorbance ratio (I L / I S ) by setting the intensity of the long wavelength side peak component to be divided by the intensity of the short wavelength side peak component.
  • the absorbance ratio (I L / I S ) is in the range of 1.2 to 3.0, and polylactic acid bottles are more accurately identified and separated and recovered from the numerical value range of this absorbance ratio. be able to.
  • variable values of the near-infrared spectrum standardized by the above-mentioned method have the advantage of improving baseline waviness and drift, which are a problem in spectroscopy measurement and calculation thereof, and facilitating numerical analysis, and label objects And separation of peaks derived from contamination components such as residual contents, and the separation and collection accuracy of bottle identification is improved.
  • even in the case of identifying and separating plastic materials using the absorbance ratio since the accuracy of the calculated value itself is improved, it can be used as a system for identifying and separating bottle materials with higher accuracy.
  • the stick spectrum obtained by the above method is one peak standardized at 1655 nm, it is collected as a polyethylene terephthalate bottle (PET) in a dedicated collection box.
  • PET polyethylene terephthalate bottle
  • PS polystyrene
  • Other plastic bottles C Bottles other than polylactic acid use commercially available bottles of similar size. After discarding the contents, it was lightly rinsed and used.
  • the above polylactic acid (PLLA or PDLA) was injection molded into a preform mold having a mold temperature of 15 ° C. in an injection molding machine at a temperature of 190 ° C. to 240 ° C. It was created. Then, the preform was reheated to 90 ° C. with an infrared heater and blow molded into a 500 ml volume bottle with a blow mold having a mold temperature of 85 ° C. to obtain the above polylactic acid bottles A and B.
  • a light receiving element (detecting a near infrared light source using a halogen lamp and a near infrared light collected by a light collection optical system adjacent to a dark room part of a slope where the bottle can be placed) made of InGaAs (indium gallium element) Container collection box to be detected by The detection signal was subjected to digital processing through an amplifier and A / D conversion (analog / digital conversion) and then processed by a personal computer.
  • the light source and the light receiver were installed at six arbitrary positions in total, two at the front and back, centering on the bottle at the shoulder and the bottom.
  • the measurement is integrated 20 times, and the detection signal obtained can be detected in the polylactic acid bottle by transmitting the signal to the personal computer after passing through the amplifier circuit and A / D converter, performing averaging processing, baseline correction, calculation.
  • the air was discharged into a polylactic acid-only box of a collection box divided into a plurality of parts.
  • the collection box prepared six collection boxes of polylactic acid (PLLA) and polyethylene terephthalate (PET), polyvinyl chloride (PVC), polystyrene (PS) and polypropylene (PP), and polyethylene (PE).
  • Example 2 Five polylactic acid bottles B (PDLA), three PET bottles, three PVC bottles, three PS bottles, three PP bottles, three PE bottles (total 20 bottles) Randomly colored bottles near the red separation box It was introduced into the outside measurement room. In this case, the spectrum information after A / D conversion was used to identify, separate, and collect the observed wavelength. The results are shown in Table 1
  • Example 3 Near-infrared measurement room of the bottle separation and collection box at random: 5 polylactic acid bottles A, 3 PET bottles, 3 PVC bottles, 3 PS bottles, 3 PP bottles, 3 PE bottles (20 total) Put in the In this case, it is a bottle in which two components of 1680 nm and 1718 nm are observed (identified) using spectrum information after A / D conversion, and peak intensities of long wavelength peak component intensity and short wavelength peak component intensity Arithmetic values of the ratio (absorbance ratio I L / I S ) were calculated, and recognition was performed using the observation wavelength and multivariate analysis using the absorbance ratio. The results are shown in Table 1.
  • Wavelength analysis of polylactic acid bottles has not been performed by the material discrimination analysis method based on the near infrared wavelength, which has been proposed conventionally, and the accuracy of separation and recovery is insufficient only by the discrimination method by wavelength discrimination . Although the cause has not been completely elucidated completely, it is presumed that residual content and noise derived from the label are related.
  • polylactic acid bottles are accurately separated from various plastic bottle wastes by using absorption peaks specific to two polylactic acids in a predetermined near infrared region It can be recovered, and recycling of polylactic acid and other resins can be effectively performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Sorting Of Articles (AREA)

Abstract

The polylactic acid bottle separation and recovery method according to the present invention is a method for separating and recovering polylactic acid bottles from used plastic bottles, the method being characterized in that near-infrared measurement is performed upon the used plastic bottles in a wavelength range of 1,600–1,800 nm, and used bottles exhibiting two absorption peaks, a short-wavelength absorption peak observed around 1,680 nm and a long-wavelength absorption peak observed around 1,718 nm, are recovered as polylactic acid bottles.

Description

ポリ乳酸ボトルの分別回収方法Method of separating and collecting polylactic acid bottles
 本発明は、バイオマス由来のポリ乳酸ボトルを、プラスチック製ボトル廃棄物から分別回収する方法に関するものである。 The present invention relates to a method for separating and collecting biomass-derived polylactic acid bottles from plastic bottle wastes.
 プラスチックの理想的廃棄という観点から、自然界で消滅するプラスチックが注目されてきており、中でも真菌類やバクテリアが体外に放出する酵素の作用で炭酸ガスに分解する生分解性プラスチックが注目されている。このような生分解性プラスチックの中でも、工業的に量産され入手が容易な、環境に優しい脂肪族ポリエステルとして、特にポリ乳酸(PLA)が各種の用途に使用されている。 From the viewpoint of ideal disposal of plastic, plastic that disappears in the natural world has attracted attention, and in particular, biodegradable plastic that decomposes into carbon dioxide by the action of enzymes released from fungi and bacteria outside the body has attracted attention. Among such biodegradable plastics, polylactic acid (PLA) is used in various applications as an environmentally friendly aliphatic polyester which is industrially mass-produced and easily available.
 ポリ乳酸は、トウモロコシなどの穀物澱粉や、キャッサバなどの塊根類、ジャガイモなどの塊茎類、または、タロイモなどの球茎類の澱粉質の乳酸発酵物から得られるL-乳酸をモノマーとした重合体で、一般にその直接重縮合法やダイマーであるラクタイドの開環重合法から製造される。このようなポリ乳酸は、農産物を原料とするプラスチックであることから、石油資源に依存する従来プラスチックと異なり、その使用が資源の枯渇化をもたらすおそれもない。また、自然界の微生物により、水と炭酸ガスに分解されることから、植物から生まれ植物に帰る完全リサイクル型の素材として、大気中への炭酸ガスの蓄積がなく、地球環境に優しい樹脂として知られている。 Polylactic acid is a polymer using L-lactic acid as a monomer obtained from starch starch such as corn, tuberous roots such as cassava, tubers such as potato, or starchy lactic acid fermented from corms such as taro. Generally, it is produced from the direct polycondensation method or the ring-opening polymerization method of lactide which is a dimer. Such polylactic acid is a plastic derived from agricultural products, so unlike conventional plastics relying on petroleum resources, there is no risk that its use will lead to resource depletion. In addition, since it is decomposed into water and carbon dioxide by microorganisms in the natural world, it is known as a global environment-friendly resin as a completely recycled material that is produced from plants and returned to plants without accumulation of carbon dioxide in the atmosphere. ing.
 しかしながら、ポリ乳酸は、高透明で、且つ、ガラス転移転温度が60℃とポリエチレンテレフタレート(PET)のガラス転移点温度Tg(70℃)点に近く、比重も、ポリエチレンテレフタレートが1.27g/cm(非晶)~1.33g/cm(結晶)であるのに対し、ポリ乳酸は1.24g/cm(非晶・結晶)と類似している、更に、延伸成形品の機械的強度もPETと同等であることから、ポリ乳酸製品をポリエチレンテレフタレート製品と区別することが困難である。 However, polylactic acid is highly transparent, and its glass transition temperature is 60 ° C., which is close to the glass transition temperature Tg (70 ° C.) of polyethylene terephthalate (PET), and its specific gravity is 1.27 g / cm for polyethylene terephthalate. Polylactic acid is similar to 1.24 g / cm 3 (amorphous / crystalline), while it is 3 (amorphous) to 1.33 g / cm 3 (crystalline). Because the strength is also comparable to PET, it is difficult to distinguish polylactic acid products from polyethylene terephthalate products.
 一般に、家庭から廃棄されるプラスチックゴミの多くは、燃焼処分、または、埋め立処分されている。近年、分離が容易なボトルなどのプラスチック製品は、メカニカルリサイクルやケミカルリサイクルなどのリサイクルによる再利用も促進され、ボトルの分別回収が進められている。 In general, most plastic waste discarded from home is burnt or buried. In recent years, plastic products such as bottles that can be easily separated have been promoted to be reused by mechanical recycling, chemical recycling, and other recycling, and separate collection of bottles has been promoted.
 しかしながら、廃棄されたプラスチックを再利用する場合、プラスチック材を材料別に分別回収しなければならない。現在のプラスチックのリサイクルによる再利用技術では、再生された製品の品質や物性を管理するため、廃棄物からできるだけ純粋なプラスチックを回収し、これを原料として再生製品を得ているため、リサイクル処理前の素材識別による分別が重要な課題となっている。 However, when recycling discarded plastic, it is necessary to separate and collect plastic materials separately. In the current recycling technology by plastic recycling, in order to control the quality and physical properties of the recycled product, as much pure plastic as possible is recovered from the waste, and the recycled product is obtained from this as a raw material. Classification by identification of materials is an important issue.
 一般に、プラスチックボトルとしては、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、及びポリエチレン(PE)が主に使用されており、近年では、前述した環境に対する優しさなどから、ポリ乳酸ボトルも提案されている。しかしながら、従来のプラスチック製品のリサイクル事業をベースとした商品の流通の中では、ポリエチレンテレフタレートとの判別が困難であることから、その分別回収についての課題が多く、実際には使用されていないのが現状である。そのため、従来のプラスチック素材の分別回収技術に加え、ポリ乳酸についての分別回収方法の開発が望まれている。 Generally, as a plastic bottle, polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), polyvinyl chloride (PVC), and polyethylene (PE) are mainly used, and in recent years, the above-mentioned environment has been described. Polylactic acid bottles have also been proposed because of their tenderness. However, in the distribution of products based on the conventional plastic products recycling business, it is difficult to distinguish it from polyethylene terephthalate, so there are many problems with its separate collection and it is not actually used. It is the present condition. Therefore, in addition to the conventional separation and recovery technology for plastic materials, development of a separation and recovery method for polylactic acid is desired.
 リサイクルに関してのプラスチック業界の技術的課題は、前記したようにポリ乳酸とPETが類似し、分別が難しいことに起因しており、つまるところ、ボトルの分別回収では、より確実に、より迅速に、ポリ乳酸とPETを識別分離回収し、且つ、他汎用樹脂、ポリスチレン(PS)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、及び、ポリエチレン(PE)ともポリ乳酸を識別分離することが必要である。
 例えば、特許文献1~3等には、プラスチックの選別方法が提案されているが、何れの方法も、ポリ乳酸ボトルの識別分離には不満足である。
The technical challenges of the plastics industry for recycling are due to the fact that polylactic acid and PET are similar and separation is difficult as mentioned above, and finally, separate collection of bottles more reliably, faster, poly It is necessary to separate and collect lactic acid and PET, and to separate and separate polylactic acid from other general-purpose resins, polystyrene (PS), polypropylene (PP), polyvinyl chloride (PVC), and polyethylene (PE). .
For example, Patent Documents 1 to 3 and the like propose a method of sorting plastics, but none of them are unsatisfactory for identification and separation of polylactic acid bottles.
 従来のプラスチックボトル廃棄物からのプラスチック素材ごとの分別回収方法では、比重による分別や近赤外光・赤外光による光学的分別手法が用いられている。
 比重による分別としては、液体サイクロンを用い、ブラスチックの比重差を利用してプラスチック素材の分類をする方法が知られている。かかる方法では、比重差による分別に先立って、機械的破砕や押圧による薄片化行程の前処理が必要である。また、比重法では、比重がほぼ同じプラスチック、例えばポリエチレン(ρ=0.93g/cm)とポリプロピレン(ρ=0.90~0.91g/cm)とは分離が行えず、比重差の小さいプラスチック素材の識別分離が困難であった。
 また、光学的分別手法は、近年になって提案されている手法であるが、機械的破砕や押圧による薄片化行程等の前処理が必要な場合が多く、このため、ボトル廃棄物から特定のプラスチックを判別して回収する際の手段としては、ほとんど検討されていない。
In the conventional method for separating and collecting plastic materials from plastic bottle waste, separation using specific gravity or optical separation using near infrared light / infrared light is used.
As separation by specific gravity, there is known a method of classifying plastic materials using a hydrocyclone and utilizing the difference in specific gravity of plastic. In such a method, it is necessary to pretreat the flaking process by mechanical crushing or pressing prior to separation by specific gravity difference. Further, the density method, the specific gravity is substantially the same plastic, such as polyethylene (ρ = 0.93g / cm 3) and not performed separation and polypropylene (ρ = 0.90 ~ 0.91g / cm 3), the difference in specific gravity Identification and separation of small plastic materials was difficult.
Also, the optical separation method is a method that has been proposed in recent years, but in many cases it is necessary to pre-treat a process such as mechanical crushing or a flaking process due to pressure. It has hardly been studied as a means for identifying and recovering plastic.
 一方、欧米市場では、近年、ボトル廃棄物から、素材ごとにボトルを識別分離して回収するシステムも採用されるようになってきている。このシステムでは、ボトル回収ボックスにボトル廃棄物を挿入し、回収ボックス内で、ボトルが素材ごとに分別されるのであるが、その多くが、金属、ガラス及びプラスチックを分離して回収するというものであり、プラスチックボトルの廃棄物から、プラスチック素材別に識別分離するまでには至っていない。 On the other hand, in the European and US markets, in recent years, a system has been adopted in which bottles are identified and separated for each material and separated from bottle waste. In this system, bottle waste is inserted into the bottle collection box, and the bottles are separated by material in the collection box, but many of them separate and collect metal, glass and plastic. Yes, they have not been able to identify and separate plastic material separately from plastic bottle waste.
 また、プラスチックボトル廃棄物から、ボトル素材ごとに分光学的に分離回収する方法も提案されている。しかしながら、この方法においても、各種のプラスチックボトルから、ポリ乳酸ボトルを識別して分離回収する方法は検討されていない。 There is also proposed a method of spectroscopically separating and recovering each bottle material from plastic bottle waste. However, even in this method, methods for identifying, separating and recovering polylactic acid bottles from various plastic bottles have not been studied.
特開2002-267599号公報JP 2002-267599 特開2002-214136号公報JP 2002-214136 A 特開2001-124696号公報JP 2001-124696 A
 従って、本発明の目的は、ボトル回収ボックス等に回収されたプラスチック製ボトル廃棄物から、ポリ乳酸ボトルを識別して分別回収する方法を提供することにある。 Therefore, an object of the present invention is to provide a method for identifying and separately collecting polylactic acid bottles from plastic bottle waste collected in a bottle collection box or the like.
 本発明によれば、プラスチック製ボトル廃棄物から、ポリ乳酸ボトルを分別回収する方法において、
 前記プラスチックボトル廃棄物について、1600~1800nmの波長範囲での近赤外測定を行い、1680nm付近に観測される短波長側吸収ピークと1718nm付近に観測される長波長側吸収ピークとの2つの吸収ピークを示すボトル廃棄物を、ポリ乳酸ボトルとして回収する方法が提供される。
According to the present invention, there is provided a method of separately collecting polylactic acid bottles from plastic bottle waste,
The plastic bottle waste was subjected to near-infrared measurement in the wavelength range of 1600 to 1800 nm, and two absorption peaks of the short wavelength side absorption peak observed near 1680 nm and the long wavelength side absorption peak observed near 1718 nm A method is provided for recovering peak bottle waste as polylactic acid bottles.
 本発明方法においては、
(1)ポリ乳酸ボトルの判定の根拠となる前記2つの吸収ピークについて、短波長側の吸収ピークの強度をI、を、長波長側の吸収ピークの強度をIで表したとき、前記2つの吸収ピークが、下記条件式(1)及び(2):
   I<I    (1)
   1.2≦I/I≦3.0    (2)
を満足していること、
が好適である。
In the method of the present invention,
(1) With regard to the two absorption peaks that are the basis of the determination of the polylactic acid bottle, when the intensity of the absorption peak on the short wavelength side is I S and the intensity of the absorption peak on the long wavelength side is I L , The two absorption peaks are represented by the following conditional expressions (1) and (2):
I S <I L (1)
1.2 ≦ I L / I S ≦ 3.0 (2)
Be satisfied,
Is preferred.
 本発明方法は、ポリ乳酸の近赤外吸収に着目し、回収されたプラスチック製ボトルについて近赤外吸収スペクトルを測定して、ポリ乳酸に特有の1680nm付近に観測される短波長側吸収ピークと1718nm付近に観測される長波長側吸収ピークとの2つの吸収ピークを示すものをポリ乳酸ボトルとして識別し、他のボトルから分離して回収するものである。
 即ち、2つの赤外吸収ピークを示すものをポリ乳酸ボトルと識別することにより、他の汎用プラスチック製ボトル、例えばPETボトル、ポリスチレンボトル、ポリプロピレンボトル、ポリエチレンボトル、ポリ塩化ビニルボトルなどからポリ乳酸ボトルを分離して回収することができ、これにより、ポリ乳酸の再生利用を図ることができる。
The method of the present invention focuses on the near infrared absorption of polylactic acid, measures the near infrared absorption spectrum of the recovered plastic bottle, and detects the short wavelength side absorption peak observed around 1680 nm which is characteristic of polylactic acid What shows two absorption peaks with the long wavelength side absorption peak observed near 1718 nm is identified as a polylactic acid bottle, and it separates and collects from another bottle.
That is, polylactic acid bottles from other general purpose plastic bottles, such as PET bottles, polystyrene bottles, polypropylene bottles, polyethylene bottles, polyvinyl chloride bottles, etc., are identified by identifying two infrared absorption peaks as polylactic acid bottles. Can be separated and recovered, which makes it possible to recycle polylactic acid.
ポリ乳酸(PLLA)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリ塩化ビニル(PVC)についての近赤外吸収スペクトル(最大ピーク強度を1に規格化)を示す図。Near infrared absorption spectrum of polylactic acid (PLLA), polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC) (maximum peak intensity normalized to 1) Figure showing. PETについての近赤外吸収スペクトルについて、A/D変換・ベースライン補正された補正スペクトル(最大ピーク強度を1に規格化)を示す図。The figure which shows the correction spectrum (maximum peak intensity is normalized to 1) which carried out A / D conversion and baseline correction about the near-infrared absorption spectrum about PET. PSについての近赤外吸収スペクトルについて、A/D変換・ベースライン補正された補正スペクトル(最大ピーク強度を1に規格化)を示す図。The figure which shows the correction spectrum (maximum peak intensity is normalized to 1) which carried out A / D conversion and baseline correction about the near-infrared absorption spectrum about PS. PPについての近赤外吸収スペクトルについて、A/D変換・ベースライン補正された補正スペクトル(最大ピーク強度を1に規格化)を示す図。The figure which shows the correction spectrum (the largest peak intensity is normalized to 1) which carried out A / D conversion and baseline correction about the near-infrared absorption spectrum about PP. PVCについての近赤外吸収スペクトルについて、A/D変換・ベースライン補正された補正スペクトル(最大ピーク強度を1に規格化)を示す図。The figure which shows the correction spectrum (maximum peak intensity is normalized to 1) which carried out A / D conversion and baseline correction about the near-infrared absorption spectrum about PVC. PEについての近赤外吸収スペクトルについて、A/D変換・ベースライン補正された補正スペクトル(最大ピーク強度を1に規格化)を示す図。The figure which shows the correction spectrum (maximum peak intensity is normalized to 1) which carried out A / D conversion and baseline correction about the near-infrared absorption spectrum about PE. PLLAについての近赤外吸収スペクトルについて、A/D変換・ベースライン補正された補正スペクトル(最大ピーク強度を1に規格化)を示す図。The figure which shows the correction spectrum (maximum peak intensity is normalized to 1) which carried out A / D conversion and baseline correction about the near-infrared absorption spectrum about PLLA.
 本発明方法は、2つの近赤外吸収スペクトル(1680nm付近に観測される短波長側吸収ピークと1718nm付近に観測される長波長側吸収ピーク)とを示すボトルを、ポリ乳酸ボトルとして分別回収する。
 即ち、図1には、各種プラスチックの近赤外領域(1600~1800nm)での吸収スペクトルが示されているが、この図1から理解されるように、ポリ乳酸は、1680nm付近に観測される短波長側吸収ピークと1718nm付近に観測される長波長側吸収ピークとを有する。
 一方、ボトル用樹脂として汎用されている他のプラスチック、具体的には、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリ塩化ビニル(PVC)についての近赤外領域での吸収ピークは、1本乃至2本の吸収ピークから形成されているが、ポリ乳酸と同じ位置に吸収ピークを有しているものはないことが図1から理解される。
The method of the present invention separates and recovers a bottle showing two near infrared absorption spectra (a short wavelength side absorption peak observed near 1680 nm and a long wavelength side absorption peak observed near 1718 nm) as a polylactic acid bottle .
That is, although the absorption spectrum in the near-infrared region (1600 to 1800 nm) of various plastics is shown in FIG. 1, as understood from this FIG. 1, polylactic acid is observed at around 1680 nm It has a short wavelength side absorption peak and a long wavelength side absorption peak observed around 1718 nm.
On the other hand, other plastics commonly used as resin for bottles, specifically, near red for polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC) It is understood from FIG. 1 that although the absorption peak in the outer region is formed of one or two absorption peaks, it has no absorption peak at the same position as that of polylactic acid.
 また、図1の各種プラスチックについての吸収波形をみると、1600nm~1800nmの近赤外領域の両末端波長(1600nm及び1800nm)において、何れのプラスチックも特有の近赤外吸収ピークが存在していない。従って、測定された近赤外吸収スペクトルを、短波長側端部(1600nm)と長波長側端部(1800nm)の範囲で谷-谷を直線近似することにより、ベースライン補正することができ、かかる補正により、各種プラスチックについての吸収スペクトルを明確に区別することができる。
 また、上記のベースライン補正を行うことにより、ベースラインドリフト補正も自動的に行うことができ、ピークの先鋭化や、吸光度比率の演算精度が向上する。ピークの先鋭化により、近赤外測定点を多重測定し積算することで平均化処置、及び、ノイズ処理が行え、最終的な演算処理の精度をより向上させることになる。
 例えば、図2~図7には、上記のようにベースライン補正及びピーク先鋭化処理された各種プラスチックの吸収スペクトルが示されているが、かかる補正により、各種プラスチックの識別を確実に行うことができ、上記の短波長側吸収ピーク(1680nm付近)と長波長側吸収ピーク(1718nm付近)のピーク存在から、ポリ乳酸ボトルを識別して分離回収することができる。
Also, looking at the absorption waveforms for various plastics in FIG. 1, no characteristic near infrared absorption peak exists in any plastic at both end wavelengths (1600 nm and 1800 nm) in the near infrared region of 1600 nm to 1800 nm. . Therefore, baseline correction can be performed by linearly approximating valley-valley in the range of the short wavelength side end (1600 nm) and the long wavelength side end (1800 nm) of the measured near infrared absorption spectrum, Such a correction makes it possible to clearly distinguish the absorption spectra for various plastics.
Further, by performing the above-described baseline correction, baseline drift correction can also be automatically performed, and peak sharpening and calculation accuracy of the absorbance ratio can be improved. By sharpening the peak, averaging processing and noise processing can be performed by multiplex measurement and integration of near infrared measurement points, and the accuracy of the final arithmetic processing will be further improved.
For example, although FIGS. 2 to 7 show absorption spectra of various plastics subjected to baseline correction and peak sharpening as described above, it is possible to reliably identify various plastics by such correction. The polylactic acid bottle can be identified, separated and recovered from the presence of the above-mentioned short wavelength side absorption peak (around 1680 nm) and long wavelength side absorption peak (around 1718 nm).
 また、本発明方法においては、上記のような近赤外領域での吸収スペクトルを測定したとき、前記短波長側吸収ピーク(1680nm付近)と長波長側吸収ピーク(1718nm付近)とが、下記条件式(1)及び(2):
   I<I    (1)
   1.2≦I/I≦3.0    (2)
  上記式中、
   Iは、短波長側の吸収ピークの強度であり、
   Iは、長波長側の吸収ピークの強度である、
を満足していることが好ましい。即ち、各種のプラスチック製ボトル廃棄物について近赤外測定を行ったとき、夾雑物等の存在により吸収スペクトルの強度がばらついたり、或いは不明確になることがある。しかるに、前述したベースライン補正やピーク先鋭化等により、吸収スペクトルを明確にすることができ、夾雑物等のないボトル廃棄物を、ポリ乳酸ボトルとして識別することができる。
Moreover, in the method of the present invention, when the absorption spectrum in the near infrared region as described above is measured, the short wavelength side absorption peak (around 1680 nm) and the long wavelength side absorption peak (around 1718 nm) Formulas (1) and (2):
I S <I L (1)
1.2 ≦ I L / I S ≦ 3.0 (2)
In the above formula,
I S is the intensity of the absorption peak on the short wavelength side,
I L is the intensity of the absorption peak on the long wavelength side,
It is preferable to satisfy That is, when near-infrared measurement is performed on various plastic bottle wastes, the intensity of the absorption spectrum may vary or be unclear due to the presence of impurities and the like. However, the absorption spectrum can be clarified by the above-described baseline correction, peak sharpening, and the like, and bottle waste free from contaminants and the like can be identified as a polylactic acid bottle.
 尚、本発明において、上記のようにして識別されるポリ乳酸ボトルにおいて、ボトルを形成する樹脂は、ポリ-L-乳酸、及び、光学活性異性体であるポリ-D-乳酸の何れであってもよく、例えばポリ-L-乳酸とポリ-D-乳酸との混合物であってもよい。通常、ボトルを形成する樹脂の95質量%以上がポリ-L-乳酸及び/またはポリ-D-乳酸である限りにおいて、他の樹脂がブレンドされている場合においても、上記の2つの吸収ピークにより、ポリ乳酸ボトルと判定される。 In the present invention, in the polylactic acid bottle identified as described above, the resin forming the bottle is either poly-L-lactic acid or poly-D-lactic acid which is an optically active isomer. It may also be, for example, a mixture of poly-L-lactic acid and poly-D-lactic acid. Usually, as long as 95% by mass or more of the resin forming the bottle is poly-L-lactic acid and / or poly-D-lactic acid, even if other resins are blended, the above two absorption peaks , Poly lactic acid bottle is determined.
 尚、ボトル廃棄物について近赤外測定を行うとき、通常、ボトルは肉厚であることなどから、透過法測定では観測ピークがサチュレーションを生じる場合があり、演算処理の元データーとして適用できない場合もありうる。又、ボトルのラベルなどによるスペクトル形状の変化から観測スペクトルが演算に適していない場合もありうる。そのため、反射法による測定手法が好適に採用される。 In addition, when performing near-infrared measurement on bottle waste, the observation peak may cause saturation in transmission method measurement because the thickness of the bottle is usually large, etc., and it may not be applied as the original data of the arithmetic processing. It is possible. Also, there are cases where the observed spectrum is not suitable for calculation due to the change of the spectrum shape due to the label of the bottle or the like. Therefore, the measurement method by the reflection method is suitably adopted.
 また、実際のボトル分別回収装置では、350mL~2Lのサイズの異なるボトルの素材の識別分離を行うため、投入ボトルのサイズに合わせ、近赤外光源と集光光学系(受光系)の位置を自動的に調整する機構が付いていることが好ましい。
 一例としては、ボトル投入口から投入されたボトルが、ボトルを静置させるために設けた傾斜面にそって静置させ、底位置基準で口部までの距離をCCDカメラで観測後、近赤光の照射光位置と集光光学系の位置を自動設定する方法が適用される。ボトル底部と口部間の距離から算出される、肩部、底部に選択的に近赤外光を照射、集光(受光)するように光学系を連動作動させる方法であり、近赤外光源から発生した近赤外光を反射鏡で該当位置に調整する方法などが適用される。
Also, in an actual bottle sorting and collecting apparatus, the positions of the near infrared light source and the condensing optical system (light receiving system) are adjusted according to the size of the input bottle in order to identify and separate the material of bottles different in size from 350 mL to 2 L. It is preferable to have a mechanism for adjusting automatically.
As an example, a bottle inserted from a bottle insertion port is allowed to stand along an inclined surface provided for allowing the bottle to stand, and after observing the distance to the mouth with a CCD camera based on the bottom position reference, near red A method of automatically setting the position of the light irradiation light and the position of the focusing optical system is applied. A method of interlocking the optical system to selectively emit near infrared light and collect (receive) near infrared light on the shoulder and bottom calculated from the distance between the bottle bottom and the mouth The method of adjusting the near-infrared light which generate | occur | produced from to the applicable position with a reflective mirror etc. is applied.
 近赤外によるプラスチック素材の識別装置は、ハロゲンランプを用いた近赤外光源と、集光光学系で集光された近赤外光をPbs及びInGaAs(インジウムガリウム素子)からなる受光素子(検出器)で検出する検出器から構成され、検出信号は、増幅器とA/D変換(アナログ/デジタル変換)を通して信号強度の増幅とデジタル変換後、パーソナルコンピュターで演算処理され、材料識別が行われる。 A device for identifying plastic materials based on near-infrared light includes a near-infrared light source using a halogen lamp, and a light-receiving element (detection from Pbs and InGaAs (indium gallium element) near infrared light condensed by a condensing optical system) The detection signal is amplified and digitally converted by an amplifier and A / D conversion (analog / digital conversion), and then processed by a personal computer to perform material identification.
 例えば、近赤外光スペクトルを1600nm~1800nm波長領域で200ポイント~20000ポイントのデーター点として観測し、空間分解能1.0nm~0.01nmの測定後、A/D変化処理、1次微分で変曲点を算出する。(2ポイント(2本のピーク成分を)識別するアルゴリズムを用い、少なくとも2本のピークを観測するが、1ポイント(1本のピーク)しか観測されない場合は1ポイントと認識とする。)1600nmのピーク強度と1800nmのピーク強度を直線補正し、ベースライン補正後、ピーク強度が最大のピークについて、ピーク強度を1とする規格化処理を行い、ノイズ除去とピーク先鋭化処理を行うことが好適である。 For example, the near-infrared light spectrum is observed as data points of 200 points to 20000 points in the wavelength range of 1600 nm to 1800 nm, and after measurement of spatial resolution 1.0 nm to 0.01 nm, A / D change processing changes by first derivative. Calculate the curve point. (At least two peaks are observed using an algorithm that identifies two points (two peak components), but if only one point (one peak) is observed, it is recognized as one point.) 1600 nm The peak intensity and the peak intensity at 1,800 nm are linearly corrected, and after baseline correction, it is preferable to perform normalization processing with the peak intensity at 1 for the peak with the largest peak intensity, and perform noise removal and peak sharpening processing is there.
 例えば1680nmと1718nmの2つのピークが観測された場合は、ポリ乳酸素材として素材識別し、ポリ乳酸ボトル専用の回収箱に回収する。 For example, when two peaks at 1680 nm and 1718 nm are observed, the material is identified as a polylactic acid material, and collected in a collection box dedicated to polylactic acid bottles.
 A/D変換後の変量(x・y)データーは、xが波長(nm)・yが強度(I:強度)を示すデーターであり、1次微分の変曲点をピークトップとして求めたピークの中心波長(nm)の前後2ポイント分を残し、残りのピーク成分を0に規格化処理するが、この場合、1次微分で変曲点でないピーク成分に関しては、ピーク認識せず、0規格化の対象とすることで、ピーク成分のみをスティックスペクトルに変換(二値化)することができる。このようにして得られた、一番強いピーク成分と2番目の第2ピーク成分の2変量値(x、y)を用い、吸光度比の演算を行うことができる。 The variable (x, y) data after A / D conversion is data in which x indicates the wavelength (nm) and y indicates the intensity (I: intensity), and the peak determined with the inflection point of the first derivative as the peak top The remaining peak components are normalized to 0, leaving two points before and after the center wavelength (nm) of the peak wavelength. In this case, no peak is recognized for peak components not at the inflection point in the first derivative, and 0 standard By making it a target of conversion, only peak components can be converted (binarized) into a stick spectrum. The absorbance ratio can be calculated using the bivariate values (x, y) of the strongest peak component and the second peak component obtained as described above.
 1680nmと1718nmの2つのピーク成分が観測された(認識された)ポリ乳酸ボトルについては、1680nmと1718nmそれぞれのピークの強度から、吸光度比の算出を行い、これにより、前述した条件式(1)及び(2)を満足しているか否かを判定することができる。
 この場合、計算に用いるアルゴリズムは、長波長側ピーク成分の強度を短波長側ピーク成分の強度で除するように設定することで、吸光度比(I/I)を算出することができる。即ち、ポリ乳酸の場合、吸光度比(I/I)が1.2~3.0の範囲になり、この吸光度比の数値範囲から、ポリ乳酸ボトルを、より正確に識別分離し回収することができる。
With regard to the polylactic acid bottle in which two peak components of 1680 nm and 1718 nm were observed (recognized), the absorbance ratio is calculated from the intensities of the peaks at 1680 nm and 1718 nm, respectively, and thereby the conditional expression (1) described above It can be determined whether or not (2) is satisfied.
In this case, the algorithm used for the calculation can calculate the absorbance ratio (I L / I S ) by setting the intensity of the long wavelength side peak component to be divided by the intensity of the short wavelength side peak component. That is, in the case of polylactic acid, the absorbance ratio (I L / I S ) is in the range of 1.2 to 3.0, and polylactic acid bottles are more accurately identified and separated and recovered from the numerical value range of this absorbance ratio. be able to.
 また、図1に示されている様に、1600nm~1800nm波長領域の近赤外スペクトルでは、ポリピロピレン(PP)やポリ塩化ビニル(PVC)では、互いに近接したダブルピークが観測されるが、ポリプロピレン(PP)の場合は、1702nm(短波長側ピーク)と1722nm(長波長側ピーク)位置に特性吸収ピークが観測され、1700nmより短波長側にはピークがないため、ポリ乳酸との識別が容易に行える。また、長波長側ピーク強度を短波長側ピーク強度で除した吸光度比(I/I)は、1.1以下となることから、吸光度比の値からも、ポリプロピレン(PP)とポリ乳酸ボトルを容易に識別分別して回収することができる。 In addition, as shown in FIG. 1, in the near infrared spectrum in the wavelength range of 1600 nm to 1800 nm, double peaks close to each other are observed in polypyropyrene (PP) and polyvinyl chloride (PVC). In the case of PP), characteristic absorption peaks are observed at 1702 nm (short wavelength side peak) and 1722 nm (long wavelength side peak), and there is no peak at less than 1700 nm, so identification with polylactic acid is easy. It can do. Further, since the absorbance ratio (I L / I S ) obtained by dividing the long wavelength side peak intensity by the short wavelength side peak intensity is 1.1 or less, polypropylene (PP) and polylactic acid are also obtained from the value of the absorbance ratio. Bottles can be easily identified and separated and collected.
 同様に、塩化ビニル(PVC)も1710nmと1745nmに特性吸収ピークが観測されるが、吸収波長によるポリ乳酸との識別が行うと同時に、吸光度比(I/I)が=0.8となり、ポリ乳酸ボトルとより正確に識別分離できることになる。又、ポリエチレン(PE)も1724nmと1760nmに特性吸収ピークが観測されるが、吸収波長によるポリ乳酸との識別を行うと同時に、吸光度比(I/I)が=0.35となり、ポリ乳酸ボトルとより正確に識別分離できることになる。 Similarly, characteristic absorption peaks are also observed at 1710 nm and 1745 nm for vinyl chloride (PVC), but the absorbance ratio (I L / I S ) is equal to 0.8 at the same time as discrimination with polylactic acid is performed by the absorption wavelength. , Can be more accurately identified and separated from the polylactic acid bottle. In addition, polyethylene (PE) also shows characteristic absorption peaks at 1724 nm and 1760 nm, but at the same time it discriminates from polylactic acid by the absorption wavelength, the absorbance ratio (I L / I S ) becomes 0.35, and poly It will be able to distinguish and separate more accurately from lactic acid bottles.
 前述した手法で規格化された近赤外スペクトルの変量値は、分光学測定とその演算で問題となるベースラインのうねりやドリフトが改善され、数値解析が容易にできる利点があるほか、ラベル物や残留内容物などの供雑成分由来のピークとの分離が行え、ボトル識別の分離回収精度が向上する。また、吸光度比を用いたプラスチック素材の識別分離する場合においても、算出値そのもの精度が向上することから、より精度の高いボトル素材の識別分離システムとして用いることができるようになる。 The variable values of the near-infrared spectrum standardized by the above-mentioned method have the advantage of improving baseline waviness and drift, which are a problem in spectroscopy measurement and calculation thereof, and facilitating numerical analysis, and label objects And separation of peaks derived from contamination components such as residual contents, and the separation and collection accuracy of bottle identification is improved. In addition, even in the case of identifying and separating plastic materials using the absorbance ratio, since the accuracy of the calculated value itself is improved, it can be used as a system for identifying and separating bottle materials with higher accuracy.
 さらに、上記方法で求めたスティックスペクトルが1655nmで規格化された1本のピークであれば、ポリエチレンテレフタレートボトル(PET)として専用の回収箱に回収される。また、スティックスペクトルが1682nmで規格化された1本のピークであれば、ポリスチレン(PS)ボトルとして専用の回収箱に回収される。 Furthermore, if the stick spectrum obtained by the above method is one peak standardized at 1655 nm, it is collected as a polyethylene terephthalate bottle (PET) in a dedicated collection box. In addition, if the stick spectrum is one peak standardized at 1682 nm, it is collected as a polystyrene (PS) bottle in a dedicated collection box.
 本発明の優れた効果を次の実験例で説明する。なお、実験例の内容に限定されるものではない。 The excellent effects of the present invention will be described in the following experimental examples. In addition, it is not limited to the content of an experiment example.
実験に用いた各ボトルとしては、以下のものを使用した。
ポリ乳酸ボトルA:
 重量平均分子量(MW)がMW=200,000で、且つ、光学活性異性体(d)比率が1.5%のポリ-L-乳酸(PLLA)樹脂製のボトル。
ポリ乳酸ボトルB:
 重量平均分子量(MW)がMW=250,000で、且つ、光学活性異性体(d)比率が99.0%のポリ-D-乳酸(PDLA)樹脂。
他のプラスチックボトルC:
 ポリ乳酸以外のボトルはサイズの近い市販品ボトルを使用。
 内容物を廃棄後、軽く水洗して用いた。
The following were used as each bottle used for experiment.
Polylactic acid bottle A:
A bottle made of poly-L-lactic acid (PLLA) resin having a weight-average molecular weight (MW) of MW = 200,000 and an optically active isomer (d) ratio of 1.5%.
Polylactic acid bottle B:
Poly-D-lactic acid (PDLA) resin having a weight average molecular weight (MW) of MW = 250,000 and an optically active isomer (d) ratio of 99.0%.
Other plastic bottles C:
Bottles other than polylactic acid use commercially available bottles of similar size.
After discarding the contents, it was lightly rinsed and used.
ポリ乳酸ボトルの作製
 上記のポリ乳酸(PLLA或いはPDLA)を、射出成形機において190℃~240℃の温度条件下、金型温度15℃のプリフォーム金型に射出成形し、口径35mmφのプリフォームを作成した。
 次いで、プリフォームを赤外線ヒーターで90℃に再加熱後、金型温度85℃のブロー金型で500ml容積のボトルにブロー成形し、上記のポリ乳酸ボトルA,Bを得た。
Preparation of Polylactic Acid Bottle The above polylactic acid (PLLA or PDLA) was injection molded into a preform mold having a mold temperature of 15 ° C. in an injection molding machine at a temperature of 190 ° C. to 240 ° C. It was created.
Then, the preform was reheated to 90 ° C. with an infrared heater and blow molded into a 500 ml volume bottle with a blow mold having a mold temperature of 85 ° C. to obtain the above polylactic acid bottles A and B.
(近赤外測定とボトル分別装置)
 ボトルが静置できる斜面の暗室部位に隣接し、ハロゲンランプを用いた近赤外光源と、集光光学系で集光された近赤外光をInGaAs(インジウムガリウム素子)からなる受光素子(検出器)で検出するボトル回収箱を作成した。検出信号を、増幅器とA/D変換(アナログ/デジタル変換)を通してデジタル変換後、パーソナルコンピュターで演算処理した。
(Near infrared measurement and bottle sorter)
A light receiving element (detecting a near infrared light source using a halogen lamp and a near infrared light collected by a light collection optical system adjacent to a dark room part of a slope where the bottle can be placed) made of InGaAs (indium gallium element) Container collection box to be detected by The detection signal was subjected to digital processing through an amplifier and A / D conversion (analog / digital conversion) and then processed by a personal computer.
 光源及び受光器は、ボトルの肩部と底部の2カ所を中心に、前後に2カ所、計6箇所の任意部位に設置した。測定は20回積算し、得られた検出信号は増幅回路、A/D変換装置を経過後、パソコンに信号を伝達させ、平均化処理・ベースラインコレクト・演算を行い、ポリ乳酸ボトルに検出できた場合、複数に仕切られた回収箱のポリ乳酸専用箱にエアー排出させた。回収箱は、ポリ乳酸(PLLA)とポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)及びポリプロピレン(PP)、ポリエチレン(PE)の六個の回収箱を準備した。 The light source and the light receiver were installed at six arbitrary positions in total, two at the front and back, centering on the bottle at the shoulder and the bottom. The measurement is integrated 20 times, and the detection signal obtained can be detected in the polylactic acid bottle by transmitting the signal to the personal computer after passing through the amplifier circuit and A / D converter, performing averaging processing, baseline correction, calculation. In this case, the air was discharged into a polylactic acid-only box of a collection box divided into a plurality of parts. The collection box prepared six collection boxes of polylactic acid (PLLA) and polyethylene terephthalate (PET), polyvinyl chloride (PVC), polystyrene (PS) and polypropylene (PP), and polyethylene (PE).
(評価)
 分離精度を確認するため、ポリ乳酸ボトルとポリ乳酸ボトル以外のボトルを組み合わせ、順不同に20本連続に、ボトル識別分離回収ボックスに投入、分別した。
 回収ボックスに分別されたボトルと回収ボックスの関係を確認した。それぞれの素材がそれぞれの指定回収ボックスに100%分離された場合は◎、ポリ乳酸ボトルのみポリ乳酸ボトル回収ボックスに100%分離されていた場合は○、ポリ乳酸ボトルが他の回収箱に回収された場合は×とした。
(Evaluation)
In order to confirm the separation accuracy, a polylactic acid bottle and a bottle other than the polylactic acid bottle were combined, and 20 bottles in order were put into the bottle identification separation and recovery box and sorted in random order.
The relationship between the bottles separated in the collection box and the collection box was confirmed. If each material is separated 100% in each designated collection box ボ ッ ク ス, if only polylactic acid bottle is separated 100% in polylactic acid bottle collection box ○, polylactic acid bottle collected in another collection box In the case of failure, it was marked as x.
<実験例1>
 ポリ乳酸ボトルA(PLLA)を5本、ポリエチレンテレフタレート(PET)ボトル3本、ポリ塩化ビニル(PVC)ボトル3本、ポリスチレン(PS)ボトル3本、ポリプロピレン(PP)ボトル3本、ポリエチレン(PE)ボトル3本(合計20本)をランダムにボトル分別回収ボックスの近赤外測定室に投入した。この場合、A/D変換後のスペクトル情報を用い、観測波長の認識にて識別分離回収した。結果を表1に示した。
Experimental Example 1
Five polylactic acid bottles A (PLLA), three polyethylene terephthalate (PET) bottles, three polyvinyl chloride (PVC) bottles, three polystyrene (PS) bottles, three polypropylene (PP) bottles, polyethylene (PE) Three bottles (total 20 bottles) were randomly placed in the near-infrared measurement chamber of the bottle separation and collection box. In this case, the spectrum information after A / D conversion was used to identify, separate, and collect the observed wavelength. The results are shown in Table 1.
<実験例2>
 ポリ乳酸ボトルB(PDLA)を5本、PETボトル3本、PVCボトル3本、PSボトル3本、PPボトル3本、PEボトル3本(合計20本)をランダムにボトル分別回収ボックスの近赤外測定室に投入した。この場合、A/D変換後のスペクトル情報を用い、観測波長の認識にて識別分離回収した。結果を表1に示した
<Experimental Example 2>
Five polylactic acid bottles B (PDLA), three PET bottles, three PVC bottles, three PS bottles, three PP bottles, three PE bottles (total 20 bottles) Randomly colored bottles near the red separation box It was introduced into the outside measurement room. In this case, the spectrum information after A / D conversion was used to identify, separate, and collect the observed wavelength. The results are shown in Table 1
<実験例3>
 ポリ乳酸ボトルAを5本、PETボトル3本、PVCボトル3本、PSボトル3本、PPボトル3本、PEボトル3本(合計20本)をランダムにボトル分別回収ボックスの近赤外測定室に投入した。この場合、A/D変換後のスペクトル情報を用い、1680nmと1718nmの2つの成分が観測された(識別された)ボトルであり、且つ、長波長ピーク成分強度と短波長ピーク成分強度のピーク強度比(吸光度比I/I)の演算値を行い、観測波長の認識と吸光度比による多変量解析にて識別した。結果を表1に示した。
<Experimental Example 3>
Near-infrared measurement room of the bottle separation and collection box at random: 5 polylactic acid bottles A, 3 PET bottles, 3 PVC bottles, 3 PS bottles, 3 PP bottles, 3 PE bottles (20 total) Put in the In this case, it is a bottle in which two components of 1680 nm and 1718 nm are observed (identified) using spectrum information after A / D conversion, and peak intensities of long wavelength peak component intensity and short wavelength peak component intensity Arithmetic values of the ratio (absorbance ratio I L / I S ) were calculated, and recognition was performed using the observation wavelength and multivariate analysis using the absorbance ratio. The results are shown in Table 1.
<実験例4>
 ポリ乳酸ボトルAを5本、PETボトル3本、PVCボトル3本、PSボトル3本、PPボトル3本、PEボトル3本(合計20本)をランダムにボトル分別回収ボックスの近赤外測定室に投入した。この場合、A/D変換後のスペクトル情報を用い、ポリ乳酸(PLLA)の近赤外の観測波長、1680nmと1718nmの波長情報を除き、PET、PVC、PS、PP及びPEの波長情報を用いた分離回収試験を行った。結果を表1に示した。
<Experimental Example 4>
Near-infrared measurement room of the bottle separation and collection box at random: 5 polylactic acid bottles A, 3 PET bottles, 3 PVC bottles, 3 PS bottles, 3 PP bottles, 3 PE bottles (20 total) Put in the In this case, the spectrum information after A / D conversion is used, and the wavelength information of PET, PVC, PS, PP and PE is used except for the wavelength information of 1680 nm and 1718 nm of near infrared observation wavelength of polylactic acid (PLLA). The separation and recovery test was conducted. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 従来から提案されてきた近赤外波長による素材の識別分析法ではポリ乳酸ボトルの波長解析が行われておらず、また、波長識別による識別分離法のみでは分離回収の精度が不十分であった。原因は正確に完全に究明できていないが、残留内容物やラベル由来のノイズが関係しているものと推察されている。これら従来法に比べ、本発明によれば、所定の近赤外領域での2つのポリ乳酸に特有の吸収ピークを利用して、種々のプラスチックボトル廃棄物から、ポリ乳酸ボトルを精度よく、分別回収することができ、ポリ乳酸、さらには他の樹脂についても、そのリサイクルを有効に行うことができる。 Wavelength analysis of polylactic acid bottles has not been performed by the material discrimination analysis method based on the near infrared wavelength, which has been proposed conventionally, and the accuracy of separation and recovery is insufficient only by the discrimination method by wavelength discrimination . Although the cause has not been completely elucidated completely, it is presumed that residual content and noise derived from the label are related. Compared to these conventional methods, according to the present invention, polylactic acid bottles are accurately separated from various plastic bottle wastes by using absorption peaks specific to two polylactic acids in a predetermined near infrared region It can be recovered, and recycling of polylactic acid and other resins can be effectively performed.

Claims (2)

  1.  プラスチック製ボトル廃棄物から、ポリ乳酸ボトルを分別回収する方法において、
     前記プラスチックボトル廃棄物について、1600~1800nmの波長範囲での近赤外測定を行い、1680nm付近に観測される短波長側吸収ピークと1718nm付近に観測される長波長側吸収ピークとの2つの吸収ピークを示すボトル廃棄物を、ポリ乳酸ボトルとして回収する方法。
    In a method of separately collecting polylactic acid bottles from plastic bottle waste,
    The plastic bottle waste was subjected to near-infrared measurement in the wavelength range of 1600 to 1800 nm, and two absorption peaks of the short wavelength side absorption peak observed near 1680 nm and the long wavelength side absorption peak observed near 1718 nm A method of collecting bottle waste that shows peaks as polylactic acid bottles.
  2.  ポリ乳酸ボトルの判定の根拠となる前記2つの吸収ピークについて、短波長側の吸収ピークの強度をI、を、長波長側の吸収ピークの強度をIで表したとき、前記2つの吸収ピークが、下記条件式(1)及び(2):
       I<I    (1)
       1.2≦I/I≦3.0    (2)
    を満足している請求項1に記載の方法。
    When the intensity of the absorption peak on the short wavelength side is I S , and the intensity of the absorption peak on the long wavelength side is I L , of the two absorption peaks that are the basis of the determination of the polylactic acid bottle, the two absorptions The peaks have the following conditional expressions (1) and (2):
    I S <I L (1)
    1.2 ≦ I L / I S ≦ 3.0 (2)
    The method according to claim 1, which is satisfied.
PCT/JP2018/038035 2017-10-26 2018-10-12 Polylactic acid bottle separation and recovery method WO2019082684A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017206867A JP2019078678A (en) 2017-10-26 2017-10-26 Method for separating and recovering polylactic acid bottle
JP2017-206867 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019082684A1 true WO2019082684A1 (en) 2019-05-02

Family

ID=66247816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038035 WO2019082684A1 (en) 2017-10-26 2018-10-12 Polylactic acid bottle separation and recovery method

Country Status (3)

Country Link
JP (1) JP2019078678A (en)
TW (1) TW201922362A (en)
WO (1) WO2019082684A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023041323A1 (en) * 2021-09-15 2023-03-23 Unilever Ip Holdings B.V. A recyclable article for packaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124696A (en) * 1999-10-27 2001-05-11 Kurabo Ind Ltd Method and device for discriminating pet from other plastics
JP2002214136A (en) * 2001-01-19 2002-07-31 Kurabo Ind Ltd Material discrimination method and device for plastic material
JP2013178128A (en) * 2012-02-28 2013-09-09 Nyuma System Co Ltd Plastic material discrimination apparatus
US8574384B1 (en) * 2012-07-16 2013-11-05 Empire Technology Development Llc Tags for the sorting of plastics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124696A (en) * 1999-10-27 2001-05-11 Kurabo Ind Ltd Method and device for discriminating pet from other plastics
JP2002214136A (en) * 2001-01-19 2002-07-31 Kurabo Ind Ltd Material discrimination method and device for plastic material
JP2013178128A (en) * 2012-02-28 2013-09-09 Nyuma System Co Ltd Plastic material discrimination apparatus
US8574384B1 (en) * 2012-07-16 2013-11-05 Empire Technology Development Llc Tags for the sorting of plastics

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FURUKAWA T ET AL.: "Evaluation of Homogeneity of Binary Blends of Poly(3-hydroxybutyrate) and Poly(L-lactic acid) Studied by Near Infrared Chemical Imaging (NIRCI", ANALYTICAL SCIENCES, vol. 23, 10 July 2007 (2007-07-10), pages 871 - 876, XP055597195 *
MULBRY W ET AL.: "Use of mid- and near-infrared spectroscopy to track degradation of bio-based eating utensils during composting", BIORESOURCE TECHNOLOGY, vol. 109, 16 January 2012 (2012-01-16), pages 93 - 97, XP028461614, DOI: doi:10.1016/j.biortech.2012.01.029 *
ULRICI A ET AL.: "Efficient chemometric strategies for PET-PLA discrimination in recycling plants using hyperspectral imaging", CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, vol. 122, 17 January 2013 (2013-01-17), pages 31 - 39, XP028985596, Retrieved from the Internet <URL:http://dx.//dx.doi.org/10.1016/j.chemolab.2013.01.001> DOI: doi:10.1016/j.chemolab.2013.01.001 *

Also Published As

Publication number Publication date
TW201922362A (en) 2019-06-16
JP2019078678A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US11969764B2 (en) Sorting of plastics
GB2572229A (en) Recycling method and taggant for a recyclable product
US7449655B2 (en) Apparatus for, and method of, classifying objects in a waste stream
US20190193303A1 (en) Method for producing polyolefin recyclates
Chariyachotilert et al. Assessment of the properties of poly (L-lactic acid) sheets produced with differing amounts of postconsumer recycled poly (L-lactic acid)
WO2022170273A1 (en) Sorting of dark colored and black plastics
US20200376717A1 (en) System and method for recycling and recapture of bio-based plastics
WO2019082684A1 (en) Polylactic acid bottle separation and recovery method
Taneepanichskul et al. A review of sorting and separating technologies suitable for compostable and biodegradable plastic packaging
Zhang et al. Identification of biodegradable plastics using differential scanning calorimetry and carbon composition with chemometrics
Kosior et al. Plastics recycling
Velásquez et al. Food Packaging Plastics: Identification and Recycling
TWI839679B (en) Sorting of plastics
Hollstein et al. Identification of bio-plastics by NIR-SWIR-Hyperspectral-Imaging
US20240109103A1 (en) Sorting of dark colored and black plastics
US20230303797A1 (en) Recycling system and process using subcritical and/or supercritical water
NL2033288B1 (en) A recyclable and sortable thermoplastic composition
EP4177032A1 (en) Method and device for sorting mixed plastic packaging waste comprising pe, pet, pp, ps, mpo and films
Sutar et al. Waste Plastic Separation–A Comparative Feasible Study
EP4249199A1 (en) Process for degassing recycled polyolefins
Andersen et al. Plastic sorting at recycling centres: Guideline
CN117241897A (en) Sorting of plastics
CN117881532A (en) Recyclable article for packaging
Moroni et al. PET and PVC separation with hyperspectral imaging
de Groot et al. ‘Green’plastics in modern and contemporary art, what’s the deal? The identification of ‘green’plastics using Fourier Transform Infrared spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871698

Country of ref document: EP

Kind code of ref document: A1