WO2019082295A1 - Temperature control device - Google Patents
Temperature control deviceInfo
- Publication number
- WO2019082295A1 WO2019082295A1 PCT/JP2017/038475 JP2017038475W WO2019082295A1 WO 2019082295 A1 WO2019082295 A1 WO 2019082295A1 JP 2017038475 W JP2017038475 W JP 2017038475W WO 2019082295 A1 WO2019082295 A1 WO 2019082295A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- period
- lower limit
- cycle
- limit value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1951—Control of temperature characterised by the use of electric means with control of the working time of a temperature controlling device
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/023—Industrial applications
Definitions
- Control target refers to a target of temperature control (for example, a resin in an injection molding machine), and in the following, includes a heater for controlling the temperature of the control target.
- the disconnection alarm is determined by taking in the value of the signal to be determined for a certain period of time. As described above, the determination of the disconnection is made based on whether or not the current value (which should be on) is off for a certain period of time. Therefore, when the current value to be determined is switched from on to off due to switching of the control cycle or the like, the current value in that period can not be used for output of the disconnection alarm.
- the above delay time varies depending on the device configuration of the control system and the like. Therefore, in the actual operation of the temperature control device, in order to enhance the generalization, the current value is taken in after the elapse of a fixed time further to the above delay time. Therefore, in order to judge the disconnection alarm, the above-mentioned delay time + fixed time + ON time for a period for judgment of the disconnection alarm is required (hereinafter also referred to as "time necessary for judgment of the disconnection alarm”) Called).
- Patent Document 1 As a general method of PID auto tuning, for example, Patent Document 1 can be mentioned.
- Patent Document 1 describes that the PID parameter is automatically set using the limit cycle method, as described above, the control period for enabling detection of the disconnection alarm is automatically determined. The point is not disclosed.
- An object of the present invention is to provide a temperature control device capable of automatically determining a control cycle in which a disconnection alarm can be detected while maintaining controllability in view of the above-described point.
- a temperature control device that controls the temperature of an object to be controlled by turning on and off the operating device based on a load factor.
- the lower limit value of the control cycle capable of detecting the abnormality is calculated based on a value obtained by dividing the lower limit value of the signal acquisition time required to detect the abnormality of the control target by the load factor.
- a temperature control device comprising a cycle operation unit.
- (Configuration 2) The period calculation unit The lower limit value of the control cycle capable of detecting the abnormality is calculated based on the value obtained by dividing the lower limit value of the signal acquisition time by the load factor and the delay time of the operation device.
- (Configuration 4) The period calculation unit Comparing a control period preset for the temperature control device with a lower limit value of the control period capable of detecting the abnormality; When the control period is less than the lower limit value of the control period capable of detecting the abnormality, The temperature control device according to any one of the configurations 1 to 3, wherein a value equal to or more than the lower limit value of the control cycle for detecting the abnormality is set as a new control cycle.
- FIG. 1 is a schematic block diagram showing a portion related to the present invention of a temperature controller according to an embodiment of the present invention.
- the temperature control device 100 controls the on / off of the operation device 120 based on an input value (PV) from a sensor (not shown) that measures the temperature of the control object 130, a target value (SV), and a PID parameter. It is a device that controls the temperature of 130.
- PV input value
- SV target value
- PID parameter It is a device that controls the temperature of 130.
- the auto-tuning device 140 automatically sets PID parameters and the like based on the target control system (control target 130) and the target value (SV) set in advance before the start of control (during the first operation, etc.) Also referred to as "AT".
- the temperature control device 100 performs temperature control of the controlled object 130 based on the input PV so that the temperature of the controlled object 130 itself or the temperature of the controlled object 130 becomes the set target value SV. In addition, it is configured to output an on / off control signal to the target device directly or through another device. Further, the temperature control device 100 includes a period calculation unit 110.
- the cycle calculation unit 110 has a function of calculating a control cycle such that the disconnection alarm can be obtained based on the value of the load factor input at the time of AT, and resetting the control cycle according to the calculated control cycle.
- the period calculation unit 110 is configured by a microcomputer or the like.
- the operating unit 120 has a function of performing switching in accordance with the control output from the cycle calculation unit 110, and is configured of an SSR or a mechanical relay.
- the control target 130 is a target that controls the temperature based on the operation of the operating device 120, and is configured of a heater or the like.
- CT current transformer, not shown
- FIG. 2 is a conceptual diagram showing the relationship between the output from the temperature control device 100 to the operating device 120 and the signal acquired by CT (current transformer).
- CT current transformer
- FIG. 3 is a diagram showing an example of control output at light load.
- the ON period during the control cycle is too short, the minimum acquisition time for detecting the disconnection alarm can not be satisfied. Therefore, the switching between on and off always occurs during the loading time, and the disconnection alarm can not be detected.
- step S100 a PID parameter calculated based on a limit cycle method or the like is input to the temperature control device 100 by the auto-tuning device 140.
- step S110 a control cycle (lower limit value) for the disconnection alarm calculation is calculated based on the input load factor.
- the operation in step S110 will be described below.
- the load factor ( ⁇ [%]) at the input target value is calculated by the following equation.
- the on time indicates the time during which the output is on in the control cycle.
- the off time indicates the time during which the output is off in the control cycle.
- a current acquisition time, which is minimum required to detect the disconnection alarm, set in advance is tmin.
- the above-mentioned load factor represents a rate at which it is turned on during a control cycle, that is, a time when it is turned on. Therefore, in order to detect the disconnection alarm, it is sufficient if the signal is continuously on for at least tmin during the control cycle, so tmin and the minimum control cycle Tmin for detecting the disconnection alarm
- tmin and the minimum control cycle Tmin for detecting the disconnection alarm
- the period calculation unit 110 may calculate the control period Tmin in consideration of the delay time td in order to calculate the control period Tmin more accurately.
- the delay time is a fixed time which occurs when switching operation of the operation device or the like is completed and the current to be judged is actually switched when the control output is switched.
- Tmin is calculated in consideration of the delay time td
- the minimum control cycle Tmin for detecting the disconnection alarm is calculated as follows.
- Tmin which is the lower limit value of the control cycle at which the disconnection alarm can be detected, can be calculated as in Eq. Note that whether or not Tmin is calculated in consideration of the delay time may be set in advance in the temperature control device 100, or the operation may be switched by a switch or the like.
- the cycle calculation unit 110 is configured to calculate the lower limit value of the control cycle that can detect the welding determination (fault of the operating device etc.) May be
- the welding determination it is determined that a failure such as welding has occurred when the signal that should be off is on. Therefore, as in the case of the disconnection alarm, a time during which the control period is continuously turned off during the control cycle is required.
- the control period Toffmin may be calculated in the same manner as Expression 2 or Expression 3 above, where toffmin is a current acquisition time that is minimum required to detect welding determination, which is set in advance.
- the threshold for determining whether current is flowing or not flowing may be set in advance when performing the disconnection determination and the welding determination, and may be input using an input device (not shown) or the like. May be configured to
- the period calculation unit 110 determines the shorter one of the on period and the off period of the control period from the value of the load factor ⁇ or the like, and switches which of Tmin and Toffmin is to be calculated from the determination result. It may be configured as follows. If the on period is shorter, the minimum control period Tmin for detecting the disconnection alarm is calculated, and if the off period is shorter, the minimum control period Toffmin for detecting the welding determination is calculated. .
- the temperature control device 100 may be set in advance so as to calculate only Tmin, or may be set in advance so as to calculate only Toffmin, and Tmin and Toffmin are selected by the function. It may be set to be calculated.
- the lower limit value of the control cycle calculated in step S110 is also referred to as “calculated control cycle”.
- step S110 the lower limit value Tmin of the control cycle for detecting the disconnection alarm is calculated.
- step S120 the control period currently set (input) is compared with Tmin which is the control period calculated in step S110, and the current control period is less than the calculated control period.
- step S130 the process proceeds to step S130 (step S120: Yes ⁇ step S130).
- step S120 No ⁇ end).
- step S130 the control cycle is set to the calculated control cycle, and the process (auto tuning) is ended.
- the control cycle newly set here may be a cycle equal to or greater than the control cycle calculated in step S110.
- the cycle calculation unit 110 can automatically calculate the lower limit value of the control cycle that can detect the disconnection alarm. Therefore, while maintaining controllability, it is possible to automatically determine a control cycle in which the disconnection alarm can be detected.
- the period calculation unit 110 is configured to be able to calculate the lower limit value of the control period capable of detecting the disconnection alarm in consideration of the delay time set in advance. Therefore, it is possible to automatically determine a control cycle in which the disconnection alarm can be detected with higher controllability.
- the period calculation unit 110 is configured to be able to calculate the lower limit value of the control period capable of detecting the abnormality alarm based on the shorter one of the on period and the off period obtained based on the load factor. Therefore, in the control system, it is possible to automatically calculate the lower limit value of the control cycle which can detect both the disconnection alarm and the welding judgment.
- the cycle calculation unit 110 compares the current control cycle with the calculated control cycle, and the current control cycle is less than the calculated control cycle, the calculated control cycle has a lower limit value or more. Is set as a new control cycle. Therefore, it is possible to automatically set a control cycle in which the disconnection alarm can be detected.
- the cycle calculation unit 110 is configured to perform the disconnection alarm or the welding determination based on the shorter one of the on period and the off period of the control period currently set, the operation set in advance is (Any one of the disconnection alarm and the welding judgment) may be configured.
- Each configuration in each of the above-described embodiments may be configured as hardware by a dedicated circuit or the like, or may be implemented as software on a general-purpose circuit such as a microcomputer. Good.
- Temperature control device 110 Cycle operation unit 120: Controller 130: Control object 140: Auto tuning device
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Temperature (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Control Of Resistance Heating (AREA)
Abstract
This temperature control device 100 is provided with a period calculation unit 110. On the basis of an integrated value obtained by integrating a load factor calculated from a preset target value and a control period of an on-off control, the period calculation unit 110 calculates a lower limit value of a control period in which a warning indicating disconnection or deposition in an object to be controlled is detectable.
Description
この発明は、制御対象の断線等の異常を検出可能な温度制御装置に関するものである。「制御対象」とは、温度制御の対象(例えば、射出成型機における樹脂等)のことを指し、以下においては制御対象の温度を制御するためのヒータ等も含むものとする。
The present invention relates to a temperature control device capable of detecting an abnormality such as disconnection of a control target. "Control target" refers to a target of temperature control (for example, a resin in an injection molding machine), and in the following, includes a heater for controlling the temperature of the control target.
PID制御等を用いた温度制御において、事故防止等の観点からヒータ等の断線状態といった異常の検出が行われている(以下、「断線警報の検出」や「異常警報の検出」等とも称する)。以下、異常警報の例として、オンオフ制御における断線警報を例にとって説明する。ここで、断線警報とは、温度制御装置から制御オンの出力がなされているにも関わらず、ヒータ等に電流が流れていない場合は、断線と判断し、制御オフの出力がなされているにも関わらずヒータ等に電流が流れている場合は溶着などの操作器の故障であると判断する警報のことを表す。以下、断線の場合を例にとり、説明を行う。
In temperature control using PID control etc., detection of abnormality such as disconnection state of the heater etc. is performed from the viewpoint of accident prevention etc. (Hereafter, it is also called "detection of disconnection alarm" or "detection of abnormality alarm") . Hereinafter, as an example of the abnormality alarm, a disconnection alarm in on / off control will be described as an example. Here, with the disconnection alarm, although the temperature control device outputs the control on, if no current flows through the heater etc., it is judged as disconnection and the control off output is made. Regardless of this, when an electric current is flowing to the heater or the like, it indicates an alarm which is judged to be a failure of the controller such as welding. In the following, the case of disconnection will be described as an example.
断線警報は、一定の時間、判断対象の信号の値を取り込むことにより判断する。断線の判断は上記のように、一定の時間中(オンであるはずの)電流値がオフとなっているかどうかによって判断を行う。そのため、制御周期の切替わり等により判断対象の電流値がオンからオフに切り替わってしまった場合は、その期間の電流値は断線警報の出力に使用することはできない。
The disconnection alarm is determined by taking in the value of the signal to be determined for a certain period of time. As described above, the determination of the disconnection is made based on whether or not the current value (which should be on) is off for a certain period of time. Therefore, when the current value to be determined is switched from on to off due to switching of the control cycle or the like, the current value in that period can not be used for output of the disconnection alarm.
また、制御出力が切り替わった際に、操作器等により実際に判断対象の電流が切り替わるまでに一定の時間を要する(遅れ時間)が発生することが知られている。そのため、断線警報を判断するためには、上記の遅れ時間経過後に電流値を取り込む必要がある。
Further, it is known that when the control output is switched, it takes a certain time (delay time) until the current of the judgment object is actually switched by the operation device or the like. Therefore, in order to determine the disconnection alarm, it is necessary to capture the current value after the above-mentioned delay time has elapsed.
なお、上記の遅れ時間は制御系の装置構成等によって変動する。そのため、実際の温度制御装置の動作においては、汎化性を高めるために、上記の遅れ時間に更に一定の時間経過後に電流値の取込をおこなっている。従って、断線警報を判断するためには、上記の遅れ時間+一定の時間+断線警報の判断のための期間分のオン時間が必要となる(以下、「断線警報の判断に必要な時間」とも称する。)。
The above delay time varies depending on the device configuration of the control system and the like. Therefore, in the actual operation of the temperature control device, in order to enhance the generalization, the current value is taken in after the elapse of a fixed time further to the above delay time. Therefore, in order to judge the disconnection alarm, the above-mentioned delay time + fixed time + ON time for a period for judgment of the disconnection alarm is required (hereinafter also referred to as "time necessary for judgment of the disconnection alarm") Called).
しかし、近年、射出成型機等のヒータ制御において、ヒータ容量が大きく設定温度が低いといった軽負荷率の温度制御が増加している。このような軽負荷率の温度制御の場合、通常の温度制御と比してオンとなる時間が短くなる。そのため、上記の断線警報の判断に必要な時間を満たすことができない(制御オンとなる期間が短すぎる)ため、断線警報を検出することが出来なくなってしまう。
However, in recent years, in heater control of an injection molding machine or the like, temperature control of a light load rate has been increased such that the heater capacity is large and the set temperature is low. In the case of such temperature control with a light load rate, the time during which the temperature is on is shorter than in the case of ordinary temperature control. Therefore, the time required for the determination of the disconnection alarm can not be satisfied (the period in which the control is turned on is too short), and therefore the disconnection alarm can not be detected.
このような場合、制御周期を拡張することにより対処が可能である。制御周期の拡張により、制御周期内のオン時間が、上記の断線警報の判断に必要な時間を満たすようになれば、断線警報を検出することが可能となる。しかし、不必要な制御周期の拡張は制御性の低下等を招くため、制御周期の拡張は必要最低限に抑えることが望まれる。しかし、前述のように制御系によって断線警報の判断に必要な時間は変化してしまうため、周期拡張を最低限に抑えることは難しい。
In such a case, measures can be taken by extending the control cycle. If the on-time in the control cycle comes to satisfy the time necessary for the determination of the above-mentioned break alarm by extension of the control cycle, it becomes possible to detect the break alarm. However, since the extension of unnecessary control cycles causes a decrease in controllability, it is desirable to minimize the extension of control cycles. However, as described above, since the time required to determine the disconnection alarm is changed by the control system, it is difficult to minimize the cycle expansion.
このような状況下で、実際の温度制御装置の動作においては、PID制御のPIDパラメータのオートチューニングを実行した後に、まず、手動により断線警報が検出可能かどうかの検証を行っている。そして、断線警報が検出出来ない場合には、手動により、設定者の経験則に基づき制御周期の拡張等を行っている。
断線警報を組み込んだ制御系の構築を行う場合、このように手動により設定を行う必要があったため、作業の煩雑さ及び制御性の観点から、設定の自動化が望まれている。特に、オートチューニングの際に自動的に設定されることが望まれている。 Under such circumstances, in the actual operation of the temperature control device, after auto-tuning of PID parameters of PID control is performed, it is first verified whether a disconnection alarm can be detected manually. When the disconnection alarm can not be detected, the control cycle is extended manually based on the set ruler's rule of thumb.
In the case of constructing a control system incorporating the disconnection alarm, it is necessary to perform the setting manually as described above, and therefore, from the viewpoint of the complexity of the operation and the controllability, automation of the setting is desired. In particular, it is desired to be set automatically at the time of auto tuning.
断線警報を組み込んだ制御系の構築を行う場合、このように手動により設定を行う必要があったため、作業の煩雑さ及び制御性の観点から、設定の自動化が望まれている。特に、オートチューニングの際に自動的に設定されることが望まれている。 Under such circumstances, in the actual operation of the temperature control device, after auto-tuning of PID parameters of PID control is performed, it is first verified whether a disconnection alarm can be detected manually. When the disconnection alarm can not be detected, the control cycle is extended manually based on the set ruler's rule of thumb.
In the case of constructing a control system incorporating the disconnection alarm, it is necessary to perform the setting manually as described above, and therefore, from the viewpoint of the complexity of the operation and the controllability, automation of the setting is desired. In particular, it is desired to be set automatically at the time of auto tuning.
一般的なPIDオートチューニングの手法として、例えば、特許文献1が挙げられる。
As a general method of PID auto tuning, for example, Patent Document 1 can be mentioned.
しかし、特許文献1には、リミットサイクル法を用いてPIDパラメータを自動設定する点が記載されているものの、上記のように断線警報の検出を可能とするための制御周期を自動的に決定するという点については開示されていない。
However, although Patent Document 1 describes that the PID parameter is automatically set using the limit cycle method, as described above, the control period for enabling detection of the disconnection alarm is automatically determined. The point is not disclosed.
本発明は、上記の点に鑑み、制御性を保ちつつ、断線警報が検出可能となる制御周期を、自動で決定することができる温度制御装置を提供することを目的とする。
An object of the present invention is to provide a temperature control device capable of automatically determining a control cycle in which a disconnection alarm can be detected while maintaining controllability in view of the above-described point.
(構成1)
負荷率に基づき操作器をオンオフ制御し、制御対象の温度を制御する温度制御装置であって、
前記制御対象の異常を検出するために必要となる信号取込時間の下限値を、前記負荷率により除した値に基づき、前記異常を検出可能な制御周期の下限値が算出される、
周期演算部を備えることを特徴とする温度制御装置。 (Configuration 1)
A temperature control device that controls the temperature of an object to be controlled by turning on and off the operating device based on a load factor.
The lower limit value of the control cycle capable of detecting the abnormality is calculated based on a value obtained by dividing the lower limit value of the signal acquisition time required to detect the abnormality of the control target by the load factor.
A temperature control device comprising a cycle operation unit.
負荷率に基づき操作器をオンオフ制御し、制御対象の温度を制御する温度制御装置であって、
前記制御対象の異常を検出するために必要となる信号取込時間の下限値を、前記負荷率により除した値に基づき、前記異常を検出可能な制御周期の下限値が算出される、
周期演算部を備えることを特徴とする温度制御装置。 (Configuration 1)
A temperature control device that controls the temperature of an object to be controlled by turning on and off the operating device based on a load factor.
The lower limit value of the control cycle capable of detecting the abnormality is calculated based on a value obtained by dividing the lower limit value of the signal acquisition time required to detect the abnormality of the control target by the load factor.
A temperature control device comprising a cycle operation unit.
(構成2)
前記周期演算部が、
前記信号取込時間の下限値を前記負荷率により除した値と、前記操作器における遅れ時間と、に基づき、前記異常を検出可能な制御周期の下限値を算出する事を特徴とする構成1に記載の温度制御装置。 (Configuration 2)
The period calculation unit
The lower limit value of the control cycle capable of detecting the abnormality is calculated based on the value obtained by dividing the lower limit value of the signal acquisition time by the load factor and the delay time of the operation device. The temperature control device described in.
前記周期演算部が、
前記信号取込時間の下限値を前記負荷率により除した値と、前記操作器における遅れ時間と、に基づき、前記異常を検出可能な制御周期の下限値を算出する事を特徴とする構成1に記載の温度制御装置。 (Configuration 2)
The period calculation unit
The lower limit value of the control cycle capable of detecting the abnormality is calculated based on the value obtained by dividing the lower limit value of the signal acquisition time by the load factor and the delay time of the operation device. The temperature control device described in.
(構成3)
前記周期演算部が、
事前に設定された制御周期中のオン期間とオフ期間のうち短いほうを判定し、当該判定結果に基づき、前記異常を検出可能な制御周期の下限値を算出することを特徴とする構成1又は2に記載の温度制御装置。 (Configuration 3)
The period calculation unit
The shorter one of the on period and the off period in the control cycle set in advance is determined, and the lower limit value of the control cycle capable of detecting the abnormality is calculated based on the determination result. The temperature control device according to 2.
前記周期演算部が、
事前に設定された制御周期中のオン期間とオフ期間のうち短いほうを判定し、当該判定結果に基づき、前記異常を検出可能な制御周期の下限値を算出することを特徴とする構成1又は2に記載の温度制御装置。 (Configuration 3)
The period calculation unit
The shorter one of the on period and the off period in the control cycle set in advance is determined, and the lower limit value of the control cycle capable of detecting the abnormality is calculated based on the determination result. The temperature control device according to 2.
(構成4)
前記周期演算部が、
当該温度制御装置に対して事前に設定された制御周期と、前記異常を検出可能な制御周期の下限値と、を比較し、
前記制御周期が、前記異常を検出可能な制御周期の下限値未満であった場合、
前記異常を検出するための制御周期の下限値以上の値を、新たな制御周期として設定することを特徴とする、構成1から3の何れかに記載の温度制御装置。 (Configuration 4)
The period calculation unit
Comparing a control period preset for the temperature control device with a lower limit value of the control period capable of detecting the abnormality;
When the control period is less than the lower limit value of the control period capable of detecting the abnormality,
The temperature control device according to any one of the configurations 1 to 3, wherein a value equal to or more than the lower limit value of the control cycle for detecting the abnormality is set as a new control cycle.
前記周期演算部が、
当該温度制御装置に対して事前に設定された制御周期と、前記異常を検出可能な制御周期の下限値と、を比較し、
前記制御周期が、前記異常を検出可能な制御周期の下限値未満であった場合、
前記異常を検出するための制御周期の下限値以上の値を、新たな制御周期として設定することを特徴とする、構成1から3の何れかに記載の温度制御装置。 (Configuration 4)
The period calculation unit
Comparing a control period preset for the temperature control device with a lower limit value of the control period capable of detecting the abnormality;
When the control period is less than the lower limit value of the control period capable of detecting the abnormality,
The temperature control device according to any one of the configurations 1 to 3, wherein a value equal to or more than the lower limit value of the control cycle for detecting the abnormality is set as a new control cycle.
本発明によれば、制御性を保ちつつ、断線警報が検出可能となる制御周期を、自動で決定することができる。
According to the present invention, it is possible to automatically determine a control cycle in which a disconnection alarm can be detected while maintaining controllability.
以下、この発明を実施するための形態について、添付の図面にしたがって説明する。
Hereinafter, an embodiment for carrying out the present invention will be described according to the attached drawings.
<実施形態>
図1はこの発明の実施形態による温度調節計の本発明に関する部分を示す概略構成図である。
温度制御装置100は、制御対象130を測温するセンサ(不図示)からの入力値(PV)、目標値(SV)、及びPIDパラメータに基づき操作器120のオンオフを制御することにより、制御対象130の温度を制御する装置である。 Embodiment
FIG. 1 is a schematic block diagram showing a portion related to the present invention of a temperature controller according to an embodiment of the present invention.
Thetemperature control device 100 controls the on / off of the operation device 120 based on an input value (PV) from a sensor (not shown) that measures the temperature of the control object 130, a target value (SV), and a PID parameter. It is a device that controls the temperature of 130.
図1はこの発明の実施形態による温度調節計の本発明に関する部分を示す概略構成図である。
温度制御装置100は、制御対象130を測温するセンサ(不図示)からの入力値(PV)、目標値(SV)、及びPIDパラメータに基づき操作器120のオンオフを制御することにより、制御対象130の温度を制御する装置である。 Embodiment
FIG. 1 is a schematic block diagram showing a portion related to the present invention of a temperature controller according to an embodiment of the present invention.
The
また、オートチューニング装置140は、制御の開始前(初回動作時等)に、対象制御系(制御対象130)及び事前に設定された目標値(SV)に基づきPIDパラメータ等を自動設定(以下「AT」とも称する。)する装置である。
In addition, the auto-tuning device 140 automatically sets PID parameters and the like based on the target control system (control target 130) and the target value (SV) set in advance before the start of control (during the first operation, etc.) Also referred to as "AT".
温度制御装置100は、入力されたPVに基づき、制御対象130の温度制御を行い、制御対象130自体の温度、又は制御対象130が温度制御する対象の温度が設定された目標値SVになるように、対象装置に直接又は他の装置を介してオンオフの制御信号を出力するよう構成される。また、温度制御装置100は、周期演算部110を備える。
The temperature control device 100 performs temperature control of the controlled object 130 based on the input PV so that the temperature of the controlled object 130 itself or the temperature of the controlled object 130 becomes the set target value SV. In addition, it is configured to output an on / off control signal to the target device directly or through another device. Further, the temperature control device 100 includes a period calculation unit 110.
周期演算部110は、AT時に入力された負荷率の値に基づき、断線警報が取得可能となるような制御周期を算出し、算出された制御周期によって制御周期を再設定する機能を備える。なお、周期演算部110はマイコン等により構成されている。
The cycle calculation unit 110 has a function of calculating a control cycle such that the disconnection alarm can be obtained based on the value of the load factor input at the time of AT, and resetting the control cycle according to the calculated control cycle. The period calculation unit 110 is configured by a microcomputer or the like.
操作器120は、周期演算部110からの制御出力に応じてスイッチングを行う機能を備え、SSRや機械的なリレーにより構成されている。制御対象130は、操作器120の動作に基づき温度の制御を行う対象であり、ヒータ等により構成されている。なお、断線警報等の異常警報検出のための信号取込については、制御対象130の配線上に配置したCT(カレントトランス、不図示)等により実施される。
The operating unit 120 has a function of performing switching in accordance with the control output from the cycle calculation unit 110, and is configured of an SSR or a mechanical relay. The control target 130 is a target that controls the temperature based on the operation of the operating device 120, and is configured of a heater or the like. In addition, about the signal taking-in for abnormality alarm detection of a disconnection alarm etc., it implements by CT (current transformer, not shown) etc. which were arrange | positioned on the wiring of the control object 130. FIG.
図2は、温度制御装置100からの操作器120への出力と、CT(カレントトランス)により取り込まれた信号との関係を示した概念図である。制御周期の開始から、遅れ時間経過後にCTの取込を開始している例を示している。
なお、図2中の1の場合は制御出力がオンとなっているため、CTからの取込値が事前に設定された閾値を下回っている場合(電流が流れていない場合)、断線であると判断される。
図2中の2の場合は、取込時間の間に制御出力の切り替わりが発生しているため、断線警報には使用できない。
図2中の3の場合には、制御出力がオフとなっているため、CTからの取込値が事前に設定された閾値を上回っている場合(電流が流れている場合)、操作器等の故障であると判断される。 FIG. 2 is a conceptual diagram showing the relationship between the output from thetemperature control device 100 to the operating device 120 and the signal acquired by CT (current transformer). An example is shown where CT acquisition is started after the delay time has elapsed since the start of the control cycle.
In the case of 1 in FIG. 2, since the control output is on, disconnection occurs when the value acquired from CT is lower than a preset threshold (when current does not flow). It is judged.
In the case of 2 in FIG. 2, since switching of the control output occurs during the capture time, it can not be used for the disconnection alarm.
In the case of 3 in FIG. 2, since the control output is off, when the value acquired from the CT exceeds the threshold set in advance (when the current flows), the operation device, etc. Is determined to be a failure of
なお、図2中の1の場合は制御出力がオンとなっているため、CTからの取込値が事前に設定された閾値を下回っている場合(電流が流れていない場合)、断線であると判断される。
図2中の2の場合は、取込時間の間に制御出力の切り替わりが発生しているため、断線警報には使用できない。
図2中の3の場合には、制御出力がオフとなっているため、CTからの取込値が事前に設定された閾値を上回っている場合(電流が流れている場合)、操作器等の故障であると判断される。 FIG. 2 is a conceptual diagram showing the relationship between the output from the
In the case of 1 in FIG. 2, since the control output is on, disconnection occurs when the value acquired from CT is lower than a preset threshold (when current does not flow). It is judged.
In the case of 2 in FIG. 2, since switching of the control output occurs during the capture time, it can not be used for the disconnection alarm.
In the case of 3 in FIG. 2, since the control output is off, when the value acquired from the CT exceeds the threshold set in advance (when the current flows), the operation device, etc. Is determined to be a failure of
なお、図3については、軽負荷時の制御出力の一例を示す図である。この場合、制御周期中にオンとなる期間が短すぎるため、断線警報を検出するための最低限の取込時間を満たすことができない。そのため、取込時間中に必ずオンオフの切り替わりが発生してしまい、断線警報を検出することができない。
FIG. 3 is a diagram showing an example of control output at light load. In this case, since the ON period during the control cycle is too short, the minimum acquisition time for detecting the disconnection alarm can not be satisfied. Therefore, the switching between on and off always occurs during the loading time, and the disconnection alarm can not be detected.
<動作>
次に、図4のフローチャートを参照しつつ、実施形態における周期演算部110の動作について説明する。 <Operation>
Next, the operation of the period calculation unit 110 in the embodiment will be described with reference to the flowchart of FIG.
次に、図4のフローチャートを参照しつつ、実施形態における周期演算部110の動作について説明する。 <Operation>
Next, the operation of the period calculation unit 110 in the embodiment will be described with reference to the flowchart of FIG.
まず、ステップS100において、オートチューニング装置140により、リミットサイクル法等に基づき演算されたPIDパラメータが温度制御装置100に入力される。
First, in step S100, a PID parameter calculated based on a limit cycle method or the like is input to the temperature control device 100 by the auto-tuning device 140.
次に、ステップS110において、入力された負荷率に基づき、断線警報算出のための制御周期(下限値)を算出する。以下にステップS110における動作を説明する。まず、下記の式により、入力された目標値における負荷率(θ[%])を算出する。
Next, in step S110, a control cycle (lower limit value) for the disconnection alarm calculation is calculated based on the input load factor. The operation in step S110 will be described below. First, the load factor (θ [%]) at the input target value is calculated by the following equation.
そして、事前に設定された、断線警報を検出するために最低限必要となる電流取込時間をtminとする。上記のように、断線警報を検出するためには、最低限tminの間、対象の信号が連続してオンとなっている必要がある。
なお、オンオフ制御においては、上記の負荷率は、制御周期中にオンとなる割合、すなわちオンとなる時間を表す。そのため、断線警報を検出するためには、制御周期中に最低限tminの間信号が連続してオンとなっていればよいので、tminと、断線警報を検出するための最低限の制御周期Tminとの関係については、以下のよう表される。 Then, it is assumed that a current acquisition time, which is minimum required to detect the disconnection alarm, set in advance is tmin. As described above, in order to detect the disconnection alarm, it is necessary for the target signal to be continuously on for at least tmin.
In the on-off control, the above-mentioned load factor represents a rate at which it is turned on during a control cycle, that is, a time when it is turned on. Therefore, in order to detect the disconnection alarm, it is sufficient if the signal is continuously on for at least tmin during the control cycle, so tmin and the minimum control cycle Tmin for detecting the disconnection alarm The relationship with is expressed as follows.
なお、オンオフ制御においては、上記の負荷率は、制御周期中にオンとなる割合、すなわちオンとなる時間を表す。そのため、断線警報を検出するためには、制御周期中に最低限tminの間信号が連続してオンとなっていればよいので、tminと、断線警報を検出するための最低限の制御周期Tminとの関係については、以下のよう表される。 Then, it is assumed that a current acquisition time, which is minimum required to detect the disconnection alarm, set in advance is tmin. As described above, in order to detect the disconnection alarm, it is necessary for the target signal to be continuously on for at least tmin.
In the on-off control, the above-mentioned load factor represents a rate at which it is turned on during a control cycle, that is, a time when it is turned on. Therefore, in order to detect the disconnection alarm, it is sufficient if the signal is continuously on for at least tmin during the control cycle, so tmin and the minimum control cycle Tmin for detecting the disconnection alarm The relationship with is expressed as follows.
なお、周期演算部110は、さらに正確な制御周期Tminを算出するため、遅れ時間tdを考慮して制御周期Tminを算出してもよい。なお、遅れ時間とは、制御出力が切り替わった際に、操作器等のスイッチング操作が完了し、実際に判断対象の電流が切り替わるまでに発生する一定の時間である。
このように遅れ時間tdを考慮してTminが算出される場合、断線警報を検出するための最低限の制御周期Tminについては、以下のように算出される。 Note that the period calculation unit 110 may calculate the control period Tmin in consideration of the delay time td in order to calculate the control period Tmin more accurately. The delay time is a fixed time which occurs when switching operation of the operation device or the like is completed and the current to be judged is actually switched when the control output is switched.
Thus, when Tmin is calculated in consideration of the delay time td, the minimum control cycle Tmin for detecting the disconnection alarm is calculated as follows.
このように遅れ時間tdを考慮してTminが算出される場合、断線警報を検出するための最低限の制御周期Tminについては、以下のように算出される。 Note that the period calculation unit 110 may calculate the control period Tmin in consideration of the delay time td in order to calculate the control period Tmin more accurately. The delay time is a fixed time which occurs when switching operation of the operation device or the like is completed and the current to be judged is actually switched when the control output is switched.
Thus, when Tmin is calculated in consideration of the delay time td, the minimum control cycle Tmin for detecting the disconnection alarm is calculated as follows.
ここまで、断線警報を検出する場合を例に説明してきたが、周期演算部110は、溶着判断(操作器等の故障)を検出可能となる制御周期の下限値を算出するように構成されていてもよい。溶着判断を行う場合は、オフとなっているはずの信号がオンとなっている場合に溶着等の故障が発生していると判断する。そのため、断線警報と同じく、制御周期中に一定時間連続してオフとなる時間が必要となる。
この場合、事前に設定された、溶着判断を検出するために最低限必要となる電流取り込み時間をtoffminとして、上記の数2又は数3と同様に制御周期Toffminを算出すればよい。
なお、断線判断及び溶着判断を行う際に、電流が流れている、流れていないと判断するための閾値については、事前に設定されていてもよいし、入力装置(不図示)等により入力されるように構成されていてもよい。 Up to this point, the case of detecting the disconnection alarm has been described as an example, but the cycle calculation unit 110 is configured to calculate the lower limit value of the control cycle that can detect the welding determination (fault of the operating device etc.) May be When the welding determination is performed, it is determined that a failure such as welding has occurred when the signal that should be off is on. Therefore, as in the case of the disconnection alarm, a time during which the control period is continuously turned off during the control cycle is required.
In this case, the control period Toffmin may be calculated in the same manner as Expression 2 or Expression 3 above, where toffmin is a current acquisition time that is minimum required to detect welding determination, which is set in advance.
The threshold for determining whether current is flowing or not flowing may be set in advance when performing the disconnection determination and the welding determination, and may be input using an input device (not shown) or the like. May be configured to
この場合、事前に設定された、溶着判断を検出するために最低限必要となる電流取り込み時間をtoffminとして、上記の数2又は数3と同様に制御周期Toffminを算出すればよい。
なお、断線判断及び溶着判断を行う際に、電流が流れている、流れていないと判断するための閾値については、事前に設定されていてもよいし、入力装置(不図示)等により入力されるように構成されていてもよい。 Up to this point, the case of detecting the disconnection alarm has been described as an example, but the cycle calculation unit 110 is configured to calculate the lower limit value of the control cycle that can detect the welding determination (fault of the operating device etc.) May be When the welding determination is performed, it is determined that a failure such as welding has occurred when the signal that should be off is on. Therefore, as in the case of the disconnection alarm, a time during which the control period is continuously turned off during the control cycle is required.
In this case, the control period Toffmin may be calculated in the same manner as Expression 2 or Expression 3 above, where toffmin is a current acquisition time that is minimum required to detect welding determination, which is set in advance.
The threshold for determining whether current is flowing or not flowing may be set in advance when performing the disconnection determination and the welding determination, and may be input using an input device (not shown) or the like. May be configured to
また、周期演算部110は、負荷率θの値等から、制御周期のうちオン期間とオフ期間のうち短いほうの期間を判定し、その判定結果からTminとToffminのどちらを算出するかを切換えるように構成されていてもよい。オン期間の方が短い場合は、断線警報を検出するための最低限の制御周期Tminを算出し、オフ期間の方が短い場合は溶着判断を検出するための最低限の制御周期Toffminを算出する。
なお、温度制御装置100は、Tminだけを算出するように事前に設定されていてもよいし、Toffminだけを算出するように事前に設定されていてもよいし、当該機能によりTminとToffminを選択して算出するように設定されていてもよい。
以下、ステップS110において算出された制御周期の下限値のことを「算出された制御周期」とも称する。 Further, the period calculation unit 110 determines the shorter one of the on period and the off period of the control period from the value of the load factor θ or the like, and switches which of Tmin and Toffmin is to be calculated from the determination result. It may be configured as follows. If the on period is shorter, the minimum control period Tmin for detecting the disconnection alarm is calculated, and if the off period is shorter, the minimum control period Toffmin for detecting the welding determination is calculated. .
Thetemperature control device 100 may be set in advance so as to calculate only Tmin, or may be set in advance so as to calculate only Toffmin, and Tmin and Toffmin are selected by the function. It may be set to be calculated.
Hereinafter, the lower limit value of the control cycle calculated in step S110 is also referred to as “calculated control cycle”.
なお、温度制御装置100は、Tminだけを算出するように事前に設定されていてもよいし、Toffminだけを算出するように事前に設定されていてもよいし、当該機能によりTminとToffminを選択して算出するように設定されていてもよい。
以下、ステップS110において算出された制御周期の下限値のことを「算出された制御周期」とも称する。 Further, the period calculation unit 110 determines the shorter one of the on period and the off period of the control period from the value of the load factor θ or the like, and switches which of Tmin and Toffmin is to be calculated from the determination result. It may be configured as follows. If the on period is shorter, the minimum control period Tmin for detecting the disconnection alarm is calculated, and if the off period is shorter, the minimum control period Toffmin for detecting the welding determination is calculated. .
The
Hereinafter, the lower limit value of the control cycle calculated in step S110 is also referred to as “calculated control cycle”.
このようにステップS110において断線警報を検出するための制御周期の下限値Tminが算出された。次に、ステップS120において、現在設定されている(入力された)制御周期とステップS110において算出された制御周期であるTminとを比較し、現在の制御周期が、算出された制御周期未満で有った場合、ステップS130へと移行する(ステップS120:Yes→ステップS130)。一方、現在の制御周期が算出された制御周期以上であった場合、処理を終了する(ステップS120:No→エンド)。
Thus, in step S110, the lower limit value Tmin of the control cycle for detecting the disconnection alarm is calculated. Next, in step S120, the control period currently set (input) is compared with Tmin which is the control period calculated in step S110, and the current control period is less than the calculated control period. When it is determined, the process proceeds to step S130 (step S120: Yes → step S130). On the other hand, if the current control cycle is greater than or equal to the calculated control cycle, the process ends (step S120: No → end).
最後に、ステップS130において、制御周期を、算出された制御周期に設定し、処理(オートチューニング)を終了する。なお、ここで新たに設定される制御周期はステップS110にて算出された制御周期以上の周期であればよい。
Finally, in step S130, the control cycle is set to the calculated control cycle, and the process (auto tuning) is ended. The control cycle newly set here may be a cycle equal to or greater than the control cycle calculated in step S110.
<各構成による効果>
以上のように、本実施形態1の温度制御装置100によれば、周期演算部110により自動的に、断線警報を検出可能な制御周期の下限値を算出可能に構成されている。そのため、制御性を保ちつつ、断線警報が検出可能となる制御周期を、自動で決定することができる。 <Effect of each configuration>
As described above, according to thetemperature control device 100 of the first embodiment, the cycle calculation unit 110 can automatically calculate the lower limit value of the control cycle that can detect the disconnection alarm. Therefore, while maintaining controllability, it is possible to automatically determine a control cycle in which the disconnection alarm can be detected.
以上のように、本実施形態1の温度制御装置100によれば、周期演算部110により自動的に、断線警報を検出可能な制御周期の下限値を算出可能に構成されている。そのため、制御性を保ちつつ、断線警報が検出可能となる制御周期を、自動で決定することができる。 <Effect of each configuration>
As described above, according to the
また、周期演算部110が、事前に設定された遅れ時間を考慮して、断線警報を検出可能な制御周期の下限値を算出可能に構成されている。そのため、より制御性の高い、断線警報が検出可能となる制御周期を自動で決定することができる。
Further, the period calculation unit 110 is configured to be able to calculate the lower limit value of the control period capable of detecting the disconnection alarm in consideration of the delay time set in advance. Therefore, it is possible to automatically determine a control cycle in which the disconnection alarm can be detected with higher controllability.
また、周期演算部110が、負荷率に基づき得られる、オン期間とオフ期間のうち短いほうの期間に基づき、異常警報を検出可能な制御周期の下限値を算出可能に構成されている。そのため、制御系において断線警報と溶着判断のどちらも検出可能な制御周期の下限値を自動で算出することができる。
Further, the period calculation unit 110 is configured to be able to calculate the lower limit value of the control period capable of detecting the abnormality alarm based on the shorter one of the on period and the off period obtained based on the load factor. Therefore, in the control system, it is possible to automatically calculate the lower limit value of the control cycle which can detect both the disconnection alarm and the welding judgment.
また、周期演算部110が、現在の制御周期と、算出された制御周期との比較を行い、現在の制御周期が算出された制御周期未満であった場合、算出された制御周期の下限値以上の値を、新たな制御周期として設定するように構成されている。そのため、断線警報が検出可能な制御周期を自動的に設定することができる。
Further, when the cycle calculation unit 110 compares the current control cycle with the calculated control cycle, and the current control cycle is less than the calculated control cycle, the calculated control cycle has a lower limit value or more. Is set as a new control cycle. Therefore, it is possible to automatically set a control cycle in which the disconnection alarm can be detected.
本実施形態においては、断線警報を検出可能な制御周期の算出及び制御周期の再設定を、オートチューニング中に実施する例について説明したが、オートチューニングとは別個に実施されるように構成されていてもよい。
また、周期演算部110は、現在設定されている制御周期のオン期間とオフ期間とのうち短いほうにもとづき、断線警報又は溶着判断を行うように構成されていたが、事前に設定された動作を(断線警報と溶着判断のどちらか)を行うように構成されていてもよい。 In the present embodiment, an example in which calculation of a control cycle capable of detecting a disconnection alarm and resetting of the control cycle are performed during auto tuning has been described, but is configured separately from auto tuning. May be
Further, although the cycle calculation unit 110 is configured to perform the disconnection alarm or the welding determination based on the shorter one of the on period and the off period of the control period currently set, the operation set in advance is (Any one of the disconnection alarm and the welding judgment) may be configured.
また、周期演算部110は、現在設定されている制御周期のオン期間とオフ期間とのうち短いほうにもとづき、断線警報又は溶着判断を行うように構成されていたが、事前に設定された動作を(断線警報と溶着判断のどちらか)を行うように構成されていてもよい。 In the present embodiment, an example in which calculation of a control cycle capable of detecting a disconnection alarm and resetting of the control cycle are performed during auto tuning has been described, but is configured separately from auto tuning. May be
Further, although the cycle calculation unit 110 is configured to perform the disconnection alarm or the welding determination based on the shorter one of the on period and the off period of the control period currently set, the operation set in advance is (Any one of the disconnection alarm and the welding judgment) may be configured.
なお、上記各実施形態における各構成は、それぞれ専用回路等でハード的に構成されるものであってもよいし、マイコン等の汎用的な回路上でソフトウェア的に実現されるものであってもよい。
Each configuration in each of the above-described embodiments may be configured as hardware by a dedicated circuit or the like, or may be implemented as software on a general-purpose circuit such as a microcomputer. Good.
以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成及び動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解しうる様々な変更を行うことができる。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above-described embodiments. With respect to the configuration and operation of the present invention, various changes that can be understood by those skilled in the art can be made without departing from the spirit of the present invention.
100…温度制御装置
110…周期演算部
120…操作器
130…制御対象
140…オートチューニング装置 100: Temperature control device 110: Cycle operation unit 120: Controller 130: Control object 140: Auto tuning device
110…周期演算部
120…操作器
130…制御対象
140…オートチューニング装置 100: Temperature control device 110: Cycle operation unit 120: Controller 130: Control object 140: Auto tuning device
Claims (4)
- 負荷率に基づき操作器をオンオフ制御し、制御対象の温度を制御する温度制御装置であって、
前記制御対象の異常を検出するために必要となる信号取込時間の下限値を、前記負荷率により除した値に基づき、前記異常を検出可能な制御周期の下限値が算出される、
周期演算部を備えることを特徴とする温度制御装置。 A temperature control device that controls the temperature of an object to be controlled by turning on and off the operating device based on a load factor.
The lower limit value of the control cycle capable of detecting the abnormality is calculated based on a value obtained by dividing the lower limit value of the signal acquisition time required to detect the abnormality of the control target by the load factor.
A temperature control device comprising a cycle operation unit. - 前記周期演算部が、
前記信号取込時間の下限値を前記負荷率により除した値と、前記操作器における遅れ時間と、に基づき、前記異常を検出可能な制御周期の下限値を算出する事を特徴とする請求項1に記載の温度制御装置。 The period calculation unit
The lower limit value of the control cycle capable of detecting the abnormality is calculated based on the value obtained by dividing the lower limit value of the signal acquisition time by the load factor and the delay time of the operation device. The temperature control device according to 1. - 前記周期演算部が、
事前に設定された制御周期中のオン期間とオフ期間のうち短いほうを判定し、当該判定結果に基づき、前記異常を検出可能な制御周期の下限値を算出することを特徴とする請求項1又は2に記載の温度制御装置。 The period calculation unit
The shorter one of the on period and the off period in the control period set in advance is determined, and the lower limit value of the control period capable of detecting the abnormality is calculated based on the determination result. Or the temperature control device according to 2. - 前記周期演算部が、
当該温度制御装置に対して事前に設定された制御周期と、前記異常を検出可能な制御周期の下限値と、を比較し、
前記制御周期が、前記異常を検出可能な制御周期の下限値未満であった場合、
前記異常を検出するための制御周期の下限値以上の値を、新たな制御周期として設定することを特徴とする、請求項1から3の何れかに記載の温度制御装置。 The period calculation unit
Comparing a control period preset for the temperature control device with a lower limit value of the control period capable of detecting the abnormality;
When the control period is less than the lower limit value of the control period capable of detecting the abnormality,
The temperature control device according to any one of claims 1 to 3, wherein a value equal to or more than the lower limit value of the control cycle for detecting the abnormality is set as a new control cycle.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019549736A JP6888202B2 (en) | 2017-10-25 | 2017-10-25 | Temperature control device |
PCT/JP2017/038475 WO2019082295A1 (en) | 2017-10-25 | 2017-10-25 | Temperature control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/038475 WO2019082295A1 (en) | 2017-10-25 | 2017-10-25 | Temperature control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019082295A1 true WO2019082295A1 (en) | 2019-05-02 |
Family
ID=66246255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/038475 WO2019082295A1 (en) | 2017-10-25 | 2017-10-25 | Temperature control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6888202B2 (en) |
WO (1) | WO2019082295A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019082295A1 (en) * | 2017-10-25 | 2020-04-09 | 理化工業株式会社 | Temperature control device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53105149U (en) * | 1977-01-29 | 1978-08-24 | ||
JPS5439783A (en) * | 1977-09-05 | 1979-03-27 | Toshiba Corp | Teperature control system |
JPS64412A (en) * | 1987-06-23 | 1989-01-05 | Alps Electric Co Ltd | Movement detector |
JPH0193083A (en) * | 1987-10-02 | 1989-04-12 | Sumitomo Heavy Ind Ltd | Heater disconnection detection system |
JPH0290072A (en) * | 1988-09-28 | 1990-03-29 | Fuji Electric Co Ltd | Apparatus for detecting wire breakdown in heater |
JPH0426091A (en) * | 1990-05-22 | 1992-01-29 | Rika Kogyo Kk | Heater breakage detection device for multiple point temperature regulator |
JPH0894696A (en) * | 1994-09-26 | 1996-04-12 | Rika Kogyo Kk | Abnormality-detecting device for control apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2802460B2 (en) * | 1992-04-11 | 1998-09-24 | 理化工業株式会社 | Heating / cooling controller |
JP3021243B2 (en) * | 1993-06-30 | 2000-03-15 | 株式会社テイエルブイ | Automatic control device |
JP2008249226A (en) * | 2007-03-30 | 2008-10-16 | Gunma Prefecture | Refrigerant leakage detecting method of refrigerating device |
JP6888202B2 (en) * | 2017-10-25 | 2021-06-16 | 理化工業株式会社 | Temperature control device |
-
2017
- 2017-10-25 JP JP2019549736A patent/JP6888202B2/en active Active
- 2017-10-25 WO PCT/JP2017/038475 patent/WO2019082295A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53105149U (en) * | 1977-01-29 | 1978-08-24 | ||
JPS5439783A (en) * | 1977-09-05 | 1979-03-27 | Toshiba Corp | Teperature control system |
JPS64412A (en) * | 1987-06-23 | 1989-01-05 | Alps Electric Co Ltd | Movement detector |
JPH0193083A (en) * | 1987-10-02 | 1989-04-12 | Sumitomo Heavy Ind Ltd | Heater disconnection detection system |
JPH0290072A (en) * | 1988-09-28 | 1990-03-29 | Fuji Electric Co Ltd | Apparatus for detecting wire breakdown in heater |
JPH0426091A (en) * | 1990-05-22 | 1992-01-29 | Rika Kogyo Kk | Heater breakage detection device for multiple point temperature regulator |
JPH0894696A (en) * | 1994-09-26 | 1996-04-12 | Rika Kogyo Kk | Abnormality-detecting device for control apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019082295A1 (en) * | 2017-10-25 | 2020-04-09 | 理化工業株式会社 | Temperature control device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019082295A1 (en) | 2020-04-09 |
JP6888202B2 (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11383317B2 (en) | Method and apparatus for welding with short clearing prediction | |
US7117124B2 (en) | Trouble detection method, trouble detection apparatus, and temperature controller | |
US20170115681A1 (en) | Load control apparatus for preventing contact failure of relay contact | |
JP2013229966A (en) | Protection apparatus for current flowing circuit | |
CN108238096A (en) | Torque control unit | |
CN104272549A (en) | Protection device for electricity supply circuit | |
US10481562B2 (en) | Method and arrangement for automatic tuning of a controller | |
WO2019082295A1 (en) | Temperature control device | |
US7668606B2 (en) | Control device for controlling a control object at a ratio of on-time to off-time for a time-proportional output | |
JP2006105136A (en) | Control method and device for electrical heating of lambda sensor | |
CN108539711B (en) | Wave-by-wave current-limiting protection method and device and motor controller | |
JP5366422B2 (en) | Pressure sensor | |
TW201500873A (en) | Remote unit and method for determining abnormality of remote unit | |
JP2008130821A (en) | Solenoid drive device | |
TWI645199B (en) | Degradation diagnosis device and method | |
JP6958999B2 (en) | Independent operation detector and power conditioner | |
JP2010080869A (en) | Fault detector and abnormality detecting method for linear solenoid valve driving circuit | |
JP2009089072A (en) | Controller for electromagnetic load device | |
JP5790508B2 (en) | Multi-system motor control apparatus and control method | |
JP5125190B2 (en) | Phase control method and phase control apparatus | |
JP3546424B2 (en) | Control device | |
JP2006317334A (en) | Solenoid abnormality detection device | |
KR101730102B1 (en) | Control system for mcb and a method for controlling mcb using the same | |
KR101383158B1 (en) | Method for detecting heater disconnecting | |
CN113253360B (en) | Analog photoelectric sensor correction method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17929877 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019549736 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17929877 Country of ref document: EP Kind code of ref document: A1 |