WO2019082251A1 - Optical sensor, optical sensor module, and paper processing device - Google Patents

Optical sensor, optical sensor module, and paper processing device

Info

Publication number
WO2019082251A1
WO2019082251A1 PCT/JP2017/038226 JP2017038226W WO2019082251A1 WO 2019082251 A1 WO2019082251 A1 WO 2019082251A1 JP 2017038226 W JP2017038226 W JP 2017038226W WO 2019082251 A1 WO2019082251 A1 WO 2019082251A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
infrared
data
unit
light receiving
Prior art date
Application number
PCT/JP2017/038226
Other languages
French (fr)
Japanese (ja)
Inventor
晶 坊垣
昌志 西川
高明 森本
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to PCT/JP2017/038226 priority Critical patent/WO2019082251A1/en
Publication of WO2019082251A1 publication Critical patent/WO2019082251A1/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details

Definitions

  • the present invention relates to an optical sensor for detecting optical characteristics in an infrared region, an optical sensor module including the optical sensor, and a sheet processing apparatus.
  • Patent Documents 1 and 2 detect the reflection intensity of light of a predetermined wavelength band in the infrared region, and use as reference data A method of comparison is disclosed.
  • the device described in Patent Document 1 detects the reflection intensity of a printed matter in a plurality of wavelength bands in the infrared region, and determines the presence or absence of printing with a predetermined ink by comparing with reference level data.
  • the device described in Patent Document 2 determines the type of ink based on whether or not the reflection intensities of the ink obtained in a plurality of wavelength bands have a predetermined magnitude relationship.
  • a photodiode is used as a sensor that detects light in the infrared region. If a photodiode made of indium gallium arsenide (InGaAs) is used, light can be detected in a wide wavelength range in the infrared range, but light in the visible range can not be detected. When a photodiode made of silicon (Si) is used, light in the visible region can be detected. When silicon is used, the upper limit of the wavelength of light that can be detected in the infrared region is theoretically 1100 nm and practically around 1000 nm.
  • Patent Documents 3 and 4 disclose line sensors capable of acquiring an image in both the visible region and the near infrared region. These line sensors are configured by forming a circuit on silicon and linearly arranging photodiodes. While the sheet is being conveyed by the conveying device, the surface of the sheet is scanned by the line sensor to acquire an image of the sheet.
  • the line sensor of Patent Document 3 includes a light emitting unit using a plurality of LEDs having different light emission wavelengths as a light source, and a light receiving unit having a plurality of light receiving elements receiving light of each wavelength band using a band pass filter. .
  • a plurality of light receiving elements simultaneously receive the light of each wavelength band reflected by the paper or the light of each wavelength transmitted through the paper simultaneously by irradiating the light of a plurality of wavelength bands toward the paper. Do.
  • By acquiring data while conveying a sheet it is possible to acquire a sheet image of each of a plurality of wavelength bands. In this case, since data of a plurality of types of paper sheet images having different wavelength bands are simultaneously acquired, the number of light receiving elements for each pixel is increased. For this reason, although the area of each light receiving element becomes small and the sensitivity becomes disadvantageous, there is an advantage that the corresponding pixels of each sheet image become data acquired at the same position on the sheet.
  • the line sensor of Patent Document 4 includes a light emitting unit using a plurality of LEDs having different light emission wavelength bands as light sources, and a light receiving unit having one light receiving element capable of receiving light of the wavelength of each light source.
  • Light of a plurality of wavelength bands is sequentially emitted one by one, and one light receiving element sequentially receives light of each wavelength band.
  • the number of light receiving elements per pixel may be one. Therefore, although corresponding pixels of each sheet image are data acquired at different positions on the sheet, the area of the light receiving element can be increased, which is advantageous in sensitivity.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and it is possible to accurately detect the optical characteristics of a sheet in the infrared region, an optical sensor module, and a sheet. It is in providing a processing apparatus.
  • the present invention is an optical sensor, and a light emitting unit having light emitting elements corresponding to at least three infrared wavelength bands included in an infrared region having a wavelength of 1100 nm or less And a light receiving unit having sensitivity to the at least three infrared wavelength bands, and a light receiving unit configured to detect the intensity of each of the at least three infrared wavelength bands.
  • the present invention is characterized in that, in the above-mentioned invention, the light receiving section detects the intensity of the light of each of the at least three infrared wavelength bands with the same light receiving element.
  • the present invention is characterized in that, in the above-mentioned invention, the light receiving section detects the intensity of the light of the at least three infrared wavelength bands with at least three light receiving elements.
  • the light emitting portion further includes a light emitting element corresponding to at least one visible wavelength band included in a wavelength range of 400 to 700 nm
  • the light receiving element further includes the visible wavelength band It is characterized by having sensitivity to
  • the present invention is characterized in that, in the above-mentioned invention, the light receiving element is a silicon photodiode.
  • the present invention is characterized in that, in the above-mentioned invention, the at least three infrared wavelength bands are included in an infrared region having a wavelength of 1000 nm or less.
  • the present invention is characterized in that, in the above-mentioned invention, the at least three infrared wavelength bands are included in an infrared region having a wavelength of 760 nm or more.
  • the present invention is characterized in that, in the above-mentioned invention, the infrared region has a wavelength of 780 nm or more.
  • the present invention is characterized in that, in the above-mentioned invention, the infrared region has a wavelength of 760 nm or more.
  • the present invention is a light sensor module, comprising: the light sensor according to the above invention; and an output unit for outputting the intensity of light detected by the light sensor to the outside, wherein the light receiving unit of the light sensor is It has a structure in which a plurality of the light receiving elements are linearly arranged.
  • a sheet processing apparatus wherein the optical sensor according to the above-described invention, a transport unit for transporting a sheet having security features, and a sheet transported by the transport unit by the optical sensor. And a determination unit that determines the authenticity of the security feature based on the light intensity of the at least three infrared wavelength bands acquired from the security feature of the type.
  • the light of each wavelength band can be detected by irradiating the sheet with the light of each of the plurality of wavelength bands included in the infrared region.
  • the type of each ink can be specified.
  • FIG. 1 is a block diagram showing an outline of the configuration of a sheet processing apparatus.
  • FIG. 2 is a schematic cross-sectional view for explaining the operation of the sheet processing apparatus.
  • FIG. 3 is a schematic view showing the structure of the light emitting unit.
  • FIG. 4 is a schematic view showing the structure of the light receiving unit.
  • FIG. 5 is a schematic view showing the structure of a condensing lens.
  • FIG. 6 is a timing chart showing the operation of the sensor unit.
  • FIG. 7 is a view showing an example of a sheet having regions having different optical characteristics.
  • FIG. 8 is a diagram for explaining a method of determining the type and authenticity of a sheet.
  • FIG. 9 is a diagram for explaining another configuration example of the light receiving unit.
  • FIG. 1 is a block diagram showing an outline of the configuration of a sheet processing apparatus.
  • FIG. 2 is a schematic cross-sectional view for explaining the operation of the sheet processing apparatus.
  • FIG. 3 is a schematic view showing the structure of
  • FIG. 10 is a timing chart showing the operation of the sensor unit including the light receiving unit shown in FIG.
  • FIG. 11 is a diagram for explaining yet another configuration example of the light receiving unit.
  • FIG. 12 is a timing chart showing the operation of the sensor unit including the light receiving unit shown in FIG.
  • the paper sheet is a sheet-like medium such as a gift card, a check, a security such as a bill, a banknote, and the like.
  • the material of the paper sheet is not particularly limited, and may be paper, resin, or another material.
  • the range of the visible region is between 360 nm and 400 nm on the short wavelength side and between 760 nm and 830 nm on the long wavelength side, and the range of the infrared region is generally 1 mm longer than the wavelength in the visible region (For example, JIS Z 8113 lighting terms).
  • the lower limit value of IR-A is 780 nm. Therefore, in the present invention, the lower limit of the infrared region is set to 760 to 780 nm, but in the present embodiment, the lower limit of the infrared region is set to 780 nm.
  • FIG. 1 is a block diagram showing an outline of the configuration of a sheet processing apparatus.
  • the sheet processing apparatus includes a sensor unit 1, a conveyance unit 60, a control unit 70, and a storage unit 80.
  • the sensor unit 1 includes a light receiving unit 10 and a light emitting unit 20.
  • the light emitting unit 20 includes a light source for irradiating the sheet with light of each of a plurality of wavelength bands in the visible region, and a light source for irradiating the sheet with light of each of a plurality of wavelength bands in the infrared region.
  • the light receiving unit 10 includes light receiving elements that are irradiated to the paper sheets from the light sources of the light emitting unit 20 and detect the intensity of the light reflected by the paper sheets. That is, the light receiving element of the light receiving unit 10 is sensitive to the plurality of wavelength bands of the visible region and the plurality of wavelength bands of the infrared region that the light emitting unit 20 irradiates to the paper sheet.
  • the transport unit 60 rotationally drives a plurality of rollers, belts, and the like to transport paper sheets one by one along a transport path provided in the apparatus.
  • the transport unit 60 includes a rotary encoder synchronized with the amount of rotation of a roller or the like, and outputs a pulse signal (hereinafter referred to as “mecha clock”) according to the transport distance of the sheet.
  • the storage unit 80 is formed of a non-volatile storage device such as a semiconductor memory, and the detection data 81 and the determination data 82 are stored therein.
  • the detection data 81 is data obtained by irradiating the light from the light emitting unit 20 toward the sheet transported by the transport unit 60 and detecting the light reflected by the sheet by the light receiving unit 10.
  • the determination data 82 is data prepared in advance to determine the type, authenticity or the like of the sheet based on the data detected from the sheet.
  • the control unit 70 includes a conveyance control unit 71, a light emission control unit 72, a data acquisition unit 73, a determination unit 74, and an output unit 75.
  • the transport control unit 71 controls the transport unit 60 to transport paper sheets along the transport path.
  • the light emission control unit 72 controls the light emitting unit 20 to irradiate light of each of a plurality of wavelength bands toward the sheet transported by the transport unit 60.
  • the data acquisition unit 73 controls the light receiving unit 10 to acquire data obtained by detecting the intensity of the light reflected by the sheet.
  • the data acquisition unit 73 acquires data from the light receiving unit 10 via the substrate 40 (see FIG. 2).
  • the cooperation of the conveyance control unit 71, the light emission control unit 72, and the data acquisition unit 73 causes the paper sheets to be irradiated with light of each of a plurality of wavelength bands in accordance with the timing at which the paper sheets are conveyed.
  • the intensity of the light reflected by the class can be detected.
  • the determination unit 74 compares the data acquired from the sheet by the data acquisition unit 73 with the data prepared in advance as the determination data 82 to determine the type, authenticity, and the like of the sheet.
  • the output unit 75 outputs the data acquired by the data acquisition unit 73, the determination result by the determination unit 74, and the like to an external device.
  • FIG. 2 is a schematic cross-sectional view for explaining the operation of the sheet processing apparatus.
  • FIG. 2 shows a cross section of the sensor unit 1 provided in the sheet processing apparatus as viewed from the side.
  • the sheet processing apparatus transports the sheet received from the outside of the apparatus in the apparatus.
  • the transport unit 60 transports the paper sheet 100 in the direction indicated by the arrow 200 along the transport path 61 provided in the apparatus.
  • the transport path 61 is formed between the upper guide plate 61 a and the lower guide plate 61 b.
  • the sensor unit 1 is disposed on the upper side of the transport path 61 so that the lower surface of the case 1a is flush with the lower surface of the upper guide plate 61a.
  • a light receiving unit 10 provided on a substrate 40, two light emitting units 20 (20 a and 20 b), and a condensing lens 30 are provided.
  • One light emitting unit 20 a is disposed upstream of the light receiving unit 10 in the conveying direction, and the other light emitting unit 20 b is disposed downstream of the light receiving unit 10 in the conveying direction.
  • the condensing lens 30 is disposed below the light receiving unit 10 and between the two light emitting units 20 a and 20 b.
  • a window 50 made of a transparent member is provided on the lower surface of the case 1a.
  • FIG. 3 is a schematic view showing the structure of the light emitting unit 20.
  • the light emitting unit 20 is provided with a rod-shaped light guide 22 which is long in the main scanning direction (X-axis direction) perpendicular to the conveyance direction (Y-axis direction) of the paper sheet 100; And a light source 21 provided on the end face of the light 22.
  • the light source 21 is provided with a plurality of light emitting elements 21 a such as LEDs.
  • the light emitting element 21a of the light source 21 emits light, the light enters the inside of the light guide 22 and the light guide 22 emits light uniformly.
  • the length of the light guide 22 in the main scanning direction is longer than the length of the paper sheet 100 in the main scanning direction. Thereby, the light emitted from the light source 21 can be irradiated to the entire main scanning direction of the paper sheet 100 through the light guide 22.
  • the light source 21 emits light in three wavelength bands of red light, green light and blue light in the visible region.
  • the light source 21 is a light emitting element 21a that emits red light with a peak wavelength of 650 nm, a light emitting element 21a that emits green light with a peak wavelength of 550 nm, It has a light emitting element 21a that emits blue light having a wavelength of 450 nm.
  • the light source 21 emits light in three wavelength bands of a first infrared light, a second infrared light, and a third infrared light, which have different wavelengths in the infrared region.
  • the light source 21 is a light emitting element 21a that emits a first infrared light having a peak wavelength of 800 nm and a second infrared light having a peak wavelength of 880 nm. And a light emitting element 21a that emits a third infrared light having a peak wavelength of 950 nm.
  • each light emitting element 21 a is light in a wavelength band including a peak wavelength and a wavelength near the peak wavelength.
  • the width of this wavelength band is defined, for example, by the full width at half maximum of the spectrum of the light emitting element 21a.
  • the peak wavelength of each light emitting element 21a can be changed suitably.
  • the peak wavelengths of the light emitting elements 21a that emit the first to third infrared light may be changed in the infrared region depending on the detection target.
  • the full width at half maximum of each light emitting element 21a can be changed as appropriate.
  • the light emission control unit 72 causes the light emitting element 21 a selected from the plurality of types of light emitting elements 21 a included in the light source 21 to emit light. That is, the light source 21 can be turned on to emit one or more of red light, green light, blue light, first infrared light, second infrared light, and third infrared light. The light emitted from the light source 21 is irradiated to the paper sheet 100 through the light guide 22.
  • FIG. 4 is a schematic view showing the structure of the light receiving unit 10.
  • the light receiving unit 10 is a line sensor configured by arranging a plurality of light receiving elements 11 in the main scanning direction. Each light receiving element 11 is sensitive to each wavelength band of red light, green light, blue light, first infrared light, second infrared light, and third infrared light that can be emitted from the light emitting unit 20. Each light receiving element 11 receives light in the visible region and the infrared region, and outputs an electrical signal according to the intensity of the received light.
  • each light receiving element 11 it is preferable to use a silicon (Si) photodiode having sensitivity from the visible region to the infrared region up to a wavelength of 1100 nm.
  • the light in the infrared region that can be detected by each light receiving element has a wavelength in the range of 780 nm to 1100 nm. Therefore, the peak wavelengths of the first infrared light, the second infrared light, and the third infrared light are in this range.
  • FIG. 5 is a schematic view showing the structure of the condenser lens 30.
  • the condenser lens 30 is a rod lens array in which a plurality of rod lenses 31 are linearly arranged in two rows in the main scanning direction.
  • the rod lens condenses the light in the visible region and the light in the infrared region reflected by the paper sheet 100 on the light receiving element 11 of the light receiving unit 10.
  • the length of the light receiving unit 10 in the main scanning direction is longer than the length of the paper sheet 100 in the main scanning direction.
  • the condenser lens 30 is provided corresponding to the light receiving element 11 that constitutes the light receiving unit 10.
  • the light emitting unit 20 emits light over the entire main scanning direction of the paper sheet 100, and the light receiving unit 10 receives light reflected along the entire main scanning direction of the paper sheet 100.
  • the transport control unit 71 controls the transport unit 60 to transport the paper sheet 100 along the transport path 61 in the transport direction indicated by the arrow 200 as illustrated in FIG. 2.
  • the light emission control unit 72 causes the light emitting unit 20 to emit light.
  • the light of the light emitting unit 20 is transmitted through the window unit 50 and irradiated to the paper sheet 100 in the conveyance path 61.
  • the light reflected by the sheet 100 is transmitted through the window 50 and is incident on the condenser lens 30.
  • the condensing lens 30 condenses the incident light on the light receiving unit 10.
  • the light receiving unit 10 receives the light collected by the collecting lens 30.
  • the data acquisition unit 73 acquires data according to the intensity of the light received by the light receiving unit 10. Line data long in the main scanning direction can be obtained from data obtained from the plurality of light receiving elements 11 forming the light receiving unit 10. The data acquisition unit 73 continues acquisition of data while the conveyance unit 60 conveys the sheet 100. The data acquisition unit 73 stores the acquired data as the detection data 81 in the storage unit 80. The determination unit 74 refers to the data stored as the detection data 81 to determine the intensity of the light received by each light receiving element 11 of the light receiving unit 10, that is, the intensity of the light reflected by the partial area on the paper sheet 100. You can get
  • the sensor unit 1 irradiates the sheet 100 with red light, green light, blue light, first infrared light, second infrared light and third infrared light, and the light reflected by the sheet 100
  • FIG. 6 is a timing chart showing the operation of the sensor unit 1.
  • the sensor unit 1 executes six phases of phases 1 to 6 shown in FIG. 6 based on the oscillating mechanical clock output by the transport unit 60. While the paper sheet 100 conveyed by the conveyance unit 60 passes the detection position of the reflected light by the sensor unit 1, the sensor unit 1 repeatedly executes the cycle with phases 1 to 6 as one cycle. Thereby, the data acquisition unit 73 can acquire data relating to the reflected light from the entire surface of the paper sheet 100.
  • the light emission control unit 72 turns on only the red light emitting element 21a, that is, only the red light source ("R” in FIG. 6) of the light emitting unit 20 ("ON” in FIG. 6). While the light emitting unit 20 irradiates the sheet 100 with red light, each light receiving element 11 of the light receiving unit 10 receives the red light reflected by the sheet 100.
  • the data acquisition unit 73 acquires red light data (“R-Data” in FIG. 6) from each light receiving element 11.
  • the light emission control unit 72 turns on only the light emitting element 21a of green light, that is, only the green light source (G) 21.
  • the data acquiring unit 73 receives the green light reflected by the sheet 100 by each light receiving element 11 of the light receiving unit 10, and the green light data Get (G-Data). Further, the data acquisition unit 73 stores the red light data (R-Data) acquired in phase 1 in the storage unit 80 as detection data 81. In phase 3, the light emission control unit 72 turns on only the blue light emitting element 21a, that is, only the blue light source (B) 21. While the light emitting unit 20 irradiates the sheet with blue light, the data acquiring unit 73 receives the blue light reflected by the sheet 100 by each light receiving element 11 of the light receiving unit 10, and Get data (B-Data).
  • the data acquisition unit 73 stores the green light data (G-Data) acquired in phase 2 in the storage unit 80 as detection data 81.
  • the light emission control unit 72 turns on only the light emitting element 21a of the first infrared light, that is, only the first infrared light source (IR1) 21.
  • the data acquiring unit 73 receives the first infrared light reflected by the paper 100 by each light receiving element 11 of the light receiving unit 10 Then, data (IR1-Data) of the first infrared light is acquired.
  • the data acquisition unit 73 stores the blue light data (B-Data) acquired in phase 3 in the storage unit 80 as detection data 81.
  • the light emission control unit 72 turns on only the light emitting element 21a of the second infrared light, that is, only the second infrared light source (IR2) 21. While the light emitting unit 20 irradiates the paper with the second infrared light, the data acquiring unit 73 receives the second infrared light reflected by the paper 100 by each light receiving element 11 of the light receiving unit 10. The second infrared light data (IR2-Data) is acquired. Further, the data acquisition unit 73 stores the first infrared light data (IR 1 -Data) acquired in phase 4 in the storage unit 80 as detection data 81.
  • the light emission control unit 72 turns on only the light emitting element 21a of the third infrared light, that is, only the third infrared light source (IR3) 21. While the light emitting unit 20 irradiates the paper with the third infrared light, the data acquiring unit 73 receives the third infrared light reflected by the paper 100 by each light receiving element 11 of the light receiving unit 10 The third infrared light data (IR3-Data) is acquired. Also, the data acquisition unit 73 stores the second infrared light data (IR2-Data) acquired in phase 5 in the storage unit 80 as detection data 81. Note that the third infrared light data (IR3-Data) acquired in phase 6 is stored in the storage unit 80 as detection data 81 at the time of processing of phase 1 of the next cycle performed subsequently. .
  • the sensor unit 1 sequentially irradiates the sheet 100 with light of red light, green light, blue light, first infrared light, second infrared light, and third infrared light to The light reflected by the class 100 is detected. Thereby, six types of data of red light data, green light data, blue light data, first infrared light data, second infrared light data, and third infrared light data are obtained.
  • the data acquisition unit 73 obtains reflectance data from the entire surface of the paper sheet 100 by repeatedly executing phases 1 to 6 while the paper sheet 100 passes the detection position of the reflected light by the sensor unit 1.
  • red light reflectance data, green light reflectance data, blue light reflectance data, first infrared light reflectance data, second infrared light reflectance data, and third infrared light Six types of reflectance data of light reflectance data are obtained.
  • the intensity of the light received by the light receiving unit 10 by irradiating the light from the light emitting unit 20 to the reference medium may be used.
  • a reference medium at this time for example, suitable paper sheets such as white paper and a resin sheet are defined and used.
  • an image of the paper sheet 100 can be generated from the data acquired by the light receiving unit 10.
  • the data obtained by the light receiving unit 10 is line data obtained by the light receiving element 11 disposed immediately before the main scanning direction.
  • the paper sheet 100 is conveyed, that is, scanned in the sub scanning direction, and from each line data obtained, the reflection intensity Ir or the reflectance I is converted to a pixel value to generate a reflection image of the entire paper sheet 100 can do.
  • six types of sheet images of the sheet image of the third infrared light are obtained.
  • the resolution data in the main scanning direction (X-axis direction) of the reflectance data and the sheet image is a resolution according to the size and number of the light receiving elements 11 forming the light receiving unit 10.
  • the resolution in the sub-scanning direction (Y-axis direction) corresponds to the transport speed based on the mechanical clock of the transport unit 60.
  • Paper sheet 100 includes a plurality of regions having different optical characteristics. By detecting the optical characteristics of the entire surface of the paper sheet 100 using the sensor unit 1, the type, authenticity or the like of the paper sheet 100 can be determined. Hereinafter, a method of determining the type of paper sheet based on the optical characteristics of the infrared region will be described with reference to a specific example.
  • FIG. 7 is a view showing an example of a sheet 100 having regions having different optical characteristics.
  • the paper sheet 100 shown in FIG. 7 includes four regions of a first region 101 to a fourth region 104 which exhibit characteristic reflection characteristics in the infrared region.
  • the first area 101 is an area printed with infrared reflective ink that reflects infrared light.
  • the fourth area 104 is an area printed with an infrared absorbing ink that absorbs infrared light.
  • the second area 102 is an area printed with the special ink A exhibiting a characteristic reflection characteristic in the infrared area.
  • the third area 103 is an area printed with the special ink B which exhibits a characteristic reflection characteristic different from the special ink A in the infrared area.
  • the transport control unit 71 controls the transport unit 60 to transport the paper sheet 100, and the light emission control unit 72 and the data acquisition unit 73 repeatedly execute the cycle shown in FIG.
  • the data acquisition unit 73 outputs data of reflectance when each of the red light, green light, blue light, first infrared light, second infrared light and third infrared light is irradiated to the paper sheet 100, Acquired on the entire surface of leaves 100.
  • the data acquisition unit 73 stores the acquired reflectance data as the detection data 81 in the storage unit 80.
  • the determination unit 74 determines the type and authenticity of the sheet 100 using the detection data 81 and the determination data 82 stored in the storage unit 80.
  • the determination data 82 is a reference indicating the features of the infrared reflective ink in the first area 101, the special ink A in the second area 102, the special ink B in the third area 103, and the infrared absorbing ink in the fourth area 104. Contains data.
  • FIG. 8 is a diagram for explaining a method of determining the type and authenticity of the sheet 100.
  • FIGS. 8A to 8C show examples of the reflectance obtained in the first area 101 to the fourth area 104 of the paper sheet 100.
  • FIG. The vertical axis is the reflectance
  • the horizontal axis is the wavelength band of the light irradiated to the paper sheet 100, which is a wavelength that represents the wavelength band such as the peak wavelength.
  • IR1 on the horizontal axis is the peak wavelength of the first infrared light and indicates the wavelength band of the first infrared light
  • IR2 is the peak wavelength of the second infrared light and the wavelength band of the second infrared light
  • IR3 is the peak wavelength of the third infrared light and indicates the wavelength band of the third infrared light.
  • FIG. 8A shows the reflectance curve 301 obtained in the first region 101, the reflectance curve 302 obtained in the second region 102, the reflectance curve 303 obtained in the third region 103, and the fourth region 104.
  • the determination unit 74 determines the reflectance 301a of the first infrared light (IR1), the reflectance 301b of the second infrared light (IR2), and the reflection of the third infrared light (IR3), which are obtained in the first region 101. It is determined which of the infrared reflective ink, the special ink A, the special ink B, and the infrared absorbing ink, which is prepared in advance as the determination data 82, the feature of the rate 301c matches. For example, based on the fact that the values of the reflectances 301a, 301b, and 301c obtained in the first area 101 fall within the predetermined range, the determination unit 74 prints the first area 101 with infrared reflective ink.
  • the determination unit 74 determines that the fourth area 104 is an area printed with infrared absorbing ink, based on the values of the reflectances 304a, 304b, and 304c obtained in the fourth area 104 and the fluctuation range. Do. That is, the determination unit 74 determines that the infrared reflection ink is used when the reflectance value is high and the fluctuation range is small, and determines that the infrared absorption ink is used when the reflectance value is low and the fluctuation range is small. .
  • the method of determining the region in which the infrared reflective ink is used and the region in which the infrared absorbing ink is used is not limited to this.
  • the determination may be performed using the fact that the reflectances of the first region 101 to the fourth region 104 have different values.
  • the determination unit 74 determines that the first region 101 having the maximum reflectance 301 b when irradiated with the second infrared light is a region printed with infrared reflective ink.
  • the determination unit 74 determines that the fourth area 104 having the minimum reflectance 304 b is an area printed with the infrared absorbing ink.
  • the determination unit 74 After identifying the first area 101 printed with the infrared reflective ink and the fourth area 104 printed with the infrared absorbing ink in this manner, the determination unit 74 subsequently prints the second area 102 and the third area 103.
  • the special ink A exhibits a downward-sloping reflectance curve in which the reflectance decreases as the wavelength of infrared light increases.
  • the special ink B shows a reflectance curve rising upward to the right where the reflectance increases as the wavelength of infrared light increases.
  • the reflectance 302a of the first infrared light (IR1) exhibits a value higher than the reflectance 302b of the second infrared light (IR2), and this reflectance Reference numeral 302 b indicates a value higher than the reflectance 302 c of the third infrared light (IR 3). That is, the reflectance decreases as the wavelength of infrared light increases.
  • the determination unit 74 determines that the second area 102 is an area printed with the special ink A.
  • the reflectance 303a of the first infrared light (IR1) exhibits a value lower than the reflectance 303b of the second infrared light (IR2), and the reflectance 303b is a third infrared light ( It shows a value lower than the reflectance 303c of IR3). That is, the reflectance increases as the wavelength of infrared light increases.
  • the determination unit 74 determines that the third area 103 is an area printed with the special ink B.
  • each ink Can be distinguished and detected.
  • the second infrared light the reflectance of the first infrared light (IR1) and the reflectance of the third infrared light (IR3) are compared with each other.
  • the special ink C showing the valley-shaped reflectance curve 402 with low reflectance of IR2 is used, and even when the special ink B showing the reflectance curve 303 rising rightward is used, 3 By comparing the reflectances of the two wavelength bands, they can be distinguished and detected.
  • the special ink C showing the valley-shaped reflectance curve 402 is used, and in the third region 103, the first infrared light (IR1) Even when the special ink D showing a mountain-shaped reflectance curve 503 in which the reflectance of the second infrared light (IR2) is higher than the reflectance of the third infrared light (IR3) and the reflectance of the third infrared light (IR3) is used. These can be distinguished and detected by comparing the reflectances of the three wavelength bands.
  • the reflection is obtained by irradiating the paper sheet 100 with three types of infrared light of the first infrared light, the second infrared light, and the third infrared light having different wavelength bands to obtain the reflectance.
  • the infrared reflection ink, the infrared absorption ink, and the special inks A to D having different rate waveforms can be separately detected.
  • each value of the reflectance of the first infrared light, the reflectance of the second infrared light, and the reflectance of the third infrared light may be a reference value of each reflectance prepared in advance for each ink and a predetermined range.
  • the type of ink is determined based on whether or not there is a match.
  • the ratio of each value of the reflectance of the first infrared light, the reflectance of the second infrared light, and the reflectance of the third infrared light is the value of each reflectance prepared in advance for each ink.
  • the type of ink is determined based on whether or not the ratio matches within a predetermined range. Also, for example, the magnitude relationship between the respective values of the reflectance of the first infrared light, the reflectance of the second infrared light, and the reflectance of the third infrared light is the value of each reflectance prepared in advance for each ink. The type of ink is determined on the basis of whether or not the magnitude relationship between the values and the predetermined relationship with each other matches. How to determine the characteristics such as the reflectance value, the ratio of the values, the magnitude relationship, etc. is appropriately set using the values and features that can distinguish the inks to be detected. .
  • the determination data 82 includes information indicating the relationship between the type of paper sheet 100 and the type of ink used in each of the areas 101 to 104. For example, after determining the type of ink used in each of the areas 101 to 104, the determination unit 74 determines the type of the sheet 100 with reference to the determination data 82. Also, for example, after the determination unit 74 first determines the type of the paper sheet 100 based on the data obtained in the visible region, etc., the determination data 74 refers to the determination data 82, and each type of paper sheet is selected. The type of ink that should be used for printing in the areas 101 to 104 is read out. Then, the determination unit 74 determines the authenticity of the paper sheet 100 based on whether or not the ink type actually detected in each of the areas 101 to 104 of the paper sheet 100 matches the read ink type. Determine
  • each of the first region 101 to the fourth region 104 reflection characteristics of three types of infrared light of the first infrared light, the second infrared light, and the third infrared light having different wavelength bands are obtained.
  • the type of ink used for printing each region such as infrared reflection ink, infrared absorption ink, and other special ink.
  • the type and authenticity of the sheet 100 can be determined based on the type of ink used in each area.
  • red light, green light, blue light, first infrared light, second infrared light and third infrared light are sequentially emitted from the light emitting unit 20 to the paper sheet 100 to receive light.
  • each light receiving element 11 which forms the part 10 was shown. In this example, all types of light having different wavelength bands are received by one light receiving element 11.
  • each pixel data forming the sheet image is data acquired by one light receiving element 11.
  • each pixel data forming a paper sheet image is one light receiving element It becomes the data acquired in 11.
  • the configuration of the light receiving unit 10 is not limited to the example shown in FIG.
  • FIG. 9 is a diagram for explaining another configuration example of the light receiving unit 10.
  • FIG. 11 is a diagram for explaining yet another configuration example of the light receiving unit 10.
  • these configuration examples will be described.
  • the light receiving unit 10 illustrated in FIG. 9A is a line sensor configured by arranging a plurality of element units 111 in the main scanning direction. As shown in FIGS. 9B and 9C, each element section 111 is formed by arranging four square light receiving elements 112 (112a to 112d) in two rows and two columns. Bandpass filters 113 (113a to 113d) are attached to the respective light receiving elements 112a to 112d. Thus, the light receiving elements 112a to 112d receive only the light of the predetermined wavelength band transmitted through the band pass filters 113a to 113d. Specifically, the band pass filter 113a transmits red light in a wavelength band of 600 to 700 nm, and the light receiving element 112a receives red light in this wavelength band.
  • the band pass filter 113b transmits green light in a wavelength band of 500 to 600 nm, and the light receiving element 112b receives green light in this wavelength band.
  • the band pass filter 113c transmits blue light in a wavelength band of 400 to 500 nm, and the light receiving element 112c receives blue light in this wavelength band.
  • the band pass filter 113d transmits infrared light in a wavelength band of 700 to 1100 nm, and the light receiving element 112d receives infrared light in this wavelength band.
  • FIG. 10 is a timing chart showing the operation of the sensor unit 1 including the light receiving unit 10 shown in FIG. While the sheet 100 transported by the transport unit 60 passes the detection position by the sensor unit 1, the sensor unit 1 repeatedly executes the cycle with phases 1 to 4 shown in FIG. 10 as one cycle. Thereby, the data acquisition unit 73 can acquire data relating to the reflected light from the entire surface of the paper sheet 100.
  • the red light, the green light, and the blue light are simultaneously irradiated to the paper sheet 100, and the data relating to the reflected light is provided to the plurality of light receiving elements 112a to The point acquired simultaneously using 112c differs from the timing chart shown in FIG.
  • the light emission control unit 72 simultaneously turns on the red light source (R) 21, the green light source (G) 21, and the blue light source (B) 21. While the red light, the green light and the blue light are irradiated to the paper sheet 100, the light receiving unit 10 receives the red light, the green light and the blue light reflected by the paper sheet 100, respectively. Light is received simultaneously at 112c.
  • the data acquisition unit 73 acquires red light data (R-Data), green light data (G-Data) and blue light data (B-Data) from the respective light receiving elements 112a to 112c.
  • the light emission control unit 72 turns on only the first infrared light source (IR1) 21.
  • the data acquiring unit 73 receives the first infrared light reflected by the paper 100 with the light receiving element 112 d, and Acquire infrared light data (IR1-Data). In addition, the data acquisition unit 73 stores the red light data (R-Data), the green light data (G-Data), and the blue light data (B-Data) acquired in phase 1 in the storage unit 80 as the detection data 81. Do. In phase 3, the light emission control unit 72 turns on only the second infrared light source (IR2) 21.
  • IR2 second infrared light source
  • the data acquiring unit 73 receives the second infrared light reflected by the paper 100 with the light receiving element 112 d, Acquire infrared light data (IR2-Data). Further, the data acquisition unit 73 stores the first infrared light data (IR 1 -Data) acquired in phase 2 in the storage unit 80 as detection data 81. In the phase 4, the light emission control unit 72 turns on only the third infrared light source (IR3) 21.
  • the data acquiring unit 73 receives the third infrared light reflected by the paper 100 with the light receiving element 112 d, Acquire infrared light data (IR1-Data). Further, the data acquisition unit 73 stores the second infrared light data (IR2-Data) acquired in phase 3 in the storage unit 80 as detection data 81. The third infrared light data (IR3-Data) acquired in phase 4 is stored in the storage unit 80 as detection data 81 at the time of processing of phase 1 of the next cycle performed subsequently. . By repeatedly acquiring data while the paper sheet 100 passes the detection position by the sensor unit 1, data relating to the reflected light can be acquired on the entire surface of the paper sheet 100.
  • red light, green light, blue light, and the first infrared light reflected by the paper sheet 100 are the same as in the light receiving unit 10 having the configuration shown in FIG.
  • the light, the second infrared light, and the third infrared light can be detected to obtain data of each wavelength band.
  • the type of ink used in the partial area on the sheet 100 can be determined, and the type and authenticity of the sheet 100 can be determined.
  • the light receiving unit 10 illustrated in FIG. 11A is a line sensor configured by arranging a plurality of element units 211 in the main scanning direction. As shown in FIGS. 11B and 11C, the element portion 211 has a square shape, and is formed by arranging three rectangular light receiving elements 212 (212a to 212c).
  • Band pass filters 213 are attached to the respective light receiving elements 212a to 212c.
  • the light receiving elements 212a to 212c receive only the light of the predetermined wavelength band transmitted through the band pass filters 213a to 213c.
  • the band pass filter 213a transmits red light and infrared light in a wavelength band of 600 to 1100 nm, and the light receiving element 212a receives red light and infrared light in this wavelength band.
  • the band pass filter 213b transmits green light in a wavelength band of 500 to 600 nm, and the light receiving element 212a receives green light in this wavelength band.
  • the band pass filter 213c transmits blue light in a wavelength band of 400 to 500 nm, and the light receiving element 212c receives blue light in this wavelength band.
  • FIG. 12 is a timing chart showing the operation of the sensor unit 1 including the light receiving unit 10 shown in FIG. While the paper sheet 100 transported by the transport unit 60 passes the detection position by the sensor unit 1, the sensor unit 1 repeatedly executes the cycle with phases 1 to 4 shown in FIG. 12 as one cycle. Thereby, the data acquisition unit 73 can acquire data relating to the reflected light from the entire surface of the paper sheet 100.
  • the timing chart shown in FIG. 12 is that the same light receiving element 212a receives data relating to the reflected light when the infrared light, the first infrared light, the second infrared light and the third infrared light are irradiated, This is different from the timing chart shown in FIG.
  • the light emission control unit 72 simultaneously turns on the red light source (R) 21, the green light source (G) 21, and the blue light source (B) 21. While the red light, the green light and the blue light are irradiated to the paper sheet 100, the light receiving unit 10 receives the red light, the green light and the blue light reflected by the paper sheet 100, respectively. Light is received simultaneously at 212c.
  • the data acquisition unit 73 acquires red light data (R-Data), green light data (G-Data) and blue light data (B-Data) from the respective light receiving elements 212a to 212c.
  • the light emission control unit 72 turns on only the first infrared light source (IR1) 21.
  • the data acquiring unit 73 receives the first infrared light reflected by the paper 100 with the light receiving element 212 a, and Acquire infrared light data (IR1-Data). In addition, the data acquisition unit 73 stores the red light data (R-Data), the green light data (G-Data), and the blue light data (B-Data) acquired in phase 1 in the storage unit 80 as the detection data 81. Do. In phase 3, the light emission control unit 72 turns on only the second infrared light source (IR2) 21.
  • IR2 second infrared light source
  • the data acquiring unit 73 receives the second infrared light reflected by the paper 100 with the light receiving element 212 a, and Acquire infrared light data (IR2-Data). Further, the data acquisition unit 73 stores the first infrared light data (IR 1 -Data) acquired in phase 2 in the storage unit 80 as detection data 81. In the phase 4, the light emission control unit 72 turns on only the third infrared light source (IR3) 21.
  • the data acquiring unit 73 receives the third infrared light reflected by the paper 100 with the light receiving element 212 a, and Acquire infrared light data (IR1-Data). Further, the data acquisition unit 73 stores the second infrared light data (IR2-Data) acquired in phase 3 in the storage unit 80 as detection data 81. The third infrared light data (IR3-Data) acquired in phase 4 is stored in the storage unit 80 as detection data 81 at the time of processing of phase 1 of the next cycle performed subsequently. . By repeatedly acquiring data while the paper sheet 100 passes the detection position by the sensor unit 1, data relating to the reflected light can be acquired on the entire surface of the paper sheet 100.
  • red light, green light, blue light, and first red reflected by the paper sheet 100 are the same as in the light receiving unit 10 having the configuration shown in FIG.
  • the ambient light, the second infrared light, and the third infrared light can be detected to obtain data of each wavelength band.
  • the type of ink used in the partial area on the sheet 100 can be determined, and the type and authenticity of the sheet 100 can be determined.
  • the number and the arrangement position of the sensor part 1 are not limited to this.
  • the sensor unit 1 may be disposed below the transport path 61, and data relating to the reflected light may be acquired on both the upper surface and the lower surface of the paper sheet 100.
  • the light receiving unit 10 is disposed below the transport path 61 and in addition to the intensity of the reflected light described above, the intensity of light transmitted through the paper sheet 100 is detected. It may be
  • the peak wavelength is used as the representative value of the wavelength band, but the central wavelength of the wavelength band may be used. Specifically, the central value of the full width at half maximum of the wavelength band may be used as the central wavelength representing the wavelength band.
  • the range in which the silicon (Si) photodiode can detect in the infrared region is 780 nm to 1100 nm, and the peak wavelengths of the first infrared light, the second infrared light, and the third infrared light are in this range.
  • each peak wavelength or each central wavelength it is not essential that each peak wavelength or each central wavelength be within this range. All or a part of each wavelength band of the first infrared light, the second infrared light, and the third infrared light is included in the range of 780 nm to 1100 nm in which the silicon (Si) photodiode can detect in the infrared region.
  • the center wavelength of the third infrared light is 1120 nm and the full width at half maximum is 100 nm, it is possible to detect the intensity of the light in the wavelength band of the third infrared light.
  • the upper limit of the wavelength detectable by the silicon (Si) photodiode is theoretically 1100 nm, but the sensitivity near the upper limit is small. Therefore, the first infrared light, the second infrared light and the second infrared light can be detected in the range of 780 nm to 1000 nm. All or part of each wavelength band of the third infrared light may be included.
  • the wavelength band of the infrared light to be irradiated be 780 nm or more of the lower limit of the infrared region. This is because if the visible range is included in the wavelength band of infrared light, it is affected by the ink such as red ink which is close to the infrared range and has no feature in the infrared range. In order to avoid this influence, for example, when the central wavelength of the first infrared light is 800 nm, it is preferable to design the light source so that the full width at half maximum is 40 nm or less.
  • the wavelength band to which the light receiving element receiving infrared light has sensitivity corresponding to the first infrared light, the second infrared light and the third infrared light irradiated to the paper sheet 100 is the lower limit of the infrared region Of 780 nm or more is desirable.
  • the light receiving element is influenced by the ink such as red ink which is close to the infrared region and has no feature in the infrared region.
  • the band pass filter 113d may be designed so that the lower limit value of the full width at half maximum is 780 nm or more.
  • the lower limit of the wavelength transmitted by the band pass filter 113d may be 780 nm or more.
  • the intensity of light is detected by the same light receiving element in each of a plurality of infrared wavelength bands has been described, but a plurality of light receiving elements provided with band pass filters corresponding to each of a plurality of infrared wavelength bands
  • the light intensity may be detected by
  • the infrared light source may be provided for each infrared wavelength band, or one infrared light source capable of emitting infrared light widely corresponding to each infrared wavelength band may be used.
  • the infrared wavelength band for detecting the light intensity may be four or more depending on the detection target.
  • the sensor unit 1 it is possible to irradiate a sheet with a plurality of infrared light of different wavelengths and to investigate the optical characteristics of the sheet. For example, by irradiating paper sheets with three types of infrared light having different wavelengths, it is possible to distinguish and detect a plurality of types of ink having characteristic optical characteristics in the infrared region.
  • the light sensor, the light sensor module, and the sheet processing apparatus according to the present invention are useful for detecting the optical characteristics of the sheet in the infrared region with high accuracy.
  • SYMBOLS 1 sensor unit 10 light receiving unit 11, 112, 212 light receiving element 20 light emitting unit 21 light source 21a light emitting element 22 light guiding member 30 light collecting member 31 rod lens 40 substrate 50 window unit 60 conveyance unit 61 conveyance path 70 control unit 71 conveyance control unit 72 light emission control unit 73 data acquisition unit 74 determination unit 75 output unit 80 storage unit 111, 211 element unit 113, 213 band pass filter 211 element unit 212 light receiving element

Abstract

In order to detect, with high accuracy, optical characteristics in an infrared region of a sheet of paper, this optical sensor used for detecting the optical characteristics comprises: a light-emitting unit having a light-emitting element corresponding to at least three infrared bands included in an infrared region with a wavelength of 1,100 nm or less; and a light-receiving unit having a light-receiving element that is sensitive to the at least three infrared bands. The light-receiving unit is configured so as to detect, using the light-receiving element, the intensity of light in each of the at least three infrared bands.

Description

光センサ、光センサモジュール及び紙葉類処理装置Optical sensor, optical sensor module, and sheet processing apparatus
 この発明は、赤外領域の光学特性を検出する光センサ、該光センサを含む光センサモジュール及び紙葉類処理装置に関する。 The present invention relates to an optical sensor for detecting optical characteristics in an infrared region, an optical sensor module including the optical sensor, and a sheet processing apparatus.
 従来、銀行券や有価証券等の偽造を防止するためのセキュリティ特徴として、赤外領域の反射特性や吸収特性に特徴のあるインクが利用されている。このようなインクを使用して印刷されているか否かを判定する方法として、特許文献1及び2には、赤外領域における所定波長帯の光の反射強度を検出して、基準となるデータと比較する方法が開示されている。特許文献1に記載された装置は、赤外領域における複数の波長帯で印刷物の反射強度を検出し、基準レベルデータと比較して所定インクによる印刷の有無を判定する。特許文献2に記載された装置は、複数の波長帯で得られたインクの反射強度が所定の大小関係を有するか否かに基づいて、インクの種類を判定する。 Conventionally, as a security feature for preventing forgery of banknotes, securities, and the like, an ink having a characteristic of reflection and absorption in an infrared region has been used. As a method of determining whether or not printing is performed using such an ink, Patent Documents 1 and 2 detect the reflection intensity of light of a predetermined wavelength band in the infrared region, and use as reference data A method of comparison is disclosed. The device described in Patent Document 1 detects the reflection intensity of a printed matter in a plurality of wavelength bands in the infrared region, and determines the presence or absence of printing with a predetermined ink by comparing with reference level data. The device described in Patent Document 2 determines the type of ink based on whether or not the reflection intensities of the ink obtained in a plurality of wavelength bands have a predetermined magnitude relationship.
 赤外領域における光を検出するセンサとして、例えばフォトダイオードが用いられる。インジウム・ガリウム・ヒ素(InGaAs)を材料としたフォトダイオードを用いれば、赤外領域の広い波長域で光を検出することができるが、可視領域の光は検出できない。シリコン(Si)を材料としたフォトダイオードを用いれば、可視領域の光を検出することができる。シリコンを用いた場合、赤外領域で検出できる光の波長の上限は、理論上1100nmで、実用上は1000nm付近となる。特許文献3及び4には、可視領域及び近赤外領域の両方で画像を取得可能なラインセンサが開示されている。これらのラインセンサは、シリコン上に回路を形成し、フォトダイオードを直線的に配置して構成されている。搬送装置で紙葉類を搬送しながらラインセンサで紙葉類の表面を走査して紙葉類の画像を取得する。 For example, a photodiode is used as a sensor that detects light in the infrared region. If a photodiode made of indium gallium arsenide (InGaAs) is used, light can be detected in a wide wavelength range in the infrared range, but light in the visible range can not be detected. When a photodiode made of silicon (Si) is used, light in the visible region can be detected. When silicon is used, the upper limit of the wavelength of light that can be detected in the infrared region is theoretically 1100 nm and practically around 1000 nm. Patent Documents 3 and 4 disclose line sensors capable of acquiring an image in both the visible region and the near infrared region. These line sensors are configured by forming a circuit on silicon and linearly arranging photodiodes. While the sheet is being conveyed by the conveying device, the surface of the sheet is scanned by the line sensor to acquire an image of the sheet.
 特許文献3のラインセンサは、発光波長が異なる複数のLEDを光源として利用する発光部と、バンドパスフィルタを利用して各波長帯の光を受光する複数の受光素子を有する受光部とを備える。複数波長帯の光を紙葉類に向けて同時に照射して、紙葉類で反射された各波長帯の光又は紙葉類を透過した各波長帯の光を、複数の受光素子で同時に受光する。紙葉類を搬送しながらデータを取得することにより、複数の波長帯それぞれの紙葉類画像を取得することができる。この場合、波長帯の異なる複数種類の紙葉類画像のデータを同時に取得するので画素毎の受光素子の数が多くなる。このため、各受光素子の面積が小さくなって感度面で不利になるが、各紙葉類画像の対応する画素が、紙葉類上の同じ位置で取得したデータになるという利点がある。 The line sensor of Patent Document 3 includes a light emitting unit using a plurality of LEDs having different light emission wavelengths as a light source, and a light receiving unit having a plurality of light receiving elements receiving light of each wavelength band using a band pass filter. . A plurality of light receiving elements simultaneously receive the light of each wavelength band reflected by the paper or the light of each wavelength transmitted through the paper simultaneously by irradiating the light of a plurality of wavelength bands toward the paper. Do. By acquiring data while conveying a sheet, it is possible to acquire a sheet image of each of a plurality of wavelength bands. In this case, since data of a plurality of types of paper sheet images having different wavelength bands are simultaneously acquired, the number of light receiving elements for each pixel is increased. For this reason, although the area of each light receiving element becomes small and the sensitivity becomes disadvantageous, there is an advantage that the corresponding pixels of each sheet image become data acquired at the same position on the sheet.
 特許文献4のラインセンサは、発光波長帯が異なる複数のLEDを光源として利用する発光部と、各光源の波長の光を受光可能な1つの受光素子を有する受光部とを備える。複数波長帯の光を一波長ずつ順に照射して、1つの受光素子で、各波長帯の光を順に受光する。紙葉類を搬送しながらデータを取得することにより、複数の波長帯それぞれの紙葉類画像を取得することができる。この場合、波長帯の異なる複数種類の紙葉類画像のデータを順に取得するので画素毎の受光素子の数は1つでよい。このため、各紙葉類画像の対応する画素が、紙葉類上の異なる位置で取得したデータになるが、受光素子の面積を大きくできるので感度面では有利になる。 The line sensor of Patent Document 4 includes a light emitting unit using a plurality of LEDs having different light emission wavelength bands as light sources, and a light receiving unit having one light receiving element capable of receiving light of the wavelength of each light source. Light of a plurality of wavelength bands is sequentially emitted one by one, and one light receiving element sequentially receives light of each wavelength band. By acquiring data while conveying a sheet, it is possible to acquire a sheet image of each of a plurality of wavelength bands. In this case, since the data of a plurality of types of paper sheet images having different wavelength bands are sequentially acquired, the number of light receiving elements per pixel may be one. Therefore, although corresponding pixels of each sheet image are data acquired at different positions on the sheet, the area of the light receiving element can be increased, which is advantageous in sensitivity.
特開2005-246821号公報Japanese Patent Application Publication No. 2005-246821 特開平6-217130号公報Japanese Patent Application Laid-Open No. 6-217130 特開2016-53783号公報JP, 2016-53783, A 特許5005760号公報Patent No. 5005760
 赤外領域で特徴的な光学特性を示す様々なインクが存在するが、従来技術では、各インクの光学特性を高精度に検出できない場合がある。例えば、赤外領域に含まれる複数の波長帯で各インクの反射率が異なる場合に、上記従来技術では各インクを区別して検出することができない。 There are various inks that exhibit characteristic optical characteristics in the infrared region, but in the prior art, there are cases where the optical characteristics of each ink can not be detected with high accuracy. For example, when the reflectance of each ink is different in a plurality of wavelength bands included in the infrared region, the above-described conventional techniques can not distinguish and detect each ink.
 本発明は、上記従来技術による課題を解決するためになされたものであって、赤外領域における紙葉類の光学特性を高精度に検出することができる光センサ、光センサモジュール及び紙葉類処理装置を提供することにある。 The present invention has been made to solve the above-mentioned problems of the prior art, and it is possible to accurately detect the optical characteristics of a sheet in the infrared region, an optical sensor module, and a sheet. It is in providing a processing apparatus.
 上述した課題を解決し、目的を達成するため、本発明は、光センサであって、波長が1100nm以下の赤外領域に含まれる少なくとも3つの赤外波長帯に対応する発光素子を有する発光部と、前記少なくとも3つの赤外波長帯に感度を持つ受光素子を有し、前記少なくとも3つの赤外波長帯それぞれの光の強度を検出する受光部とを備えることを特徴とする。 In order to solve the problems described above and to achieve the object, the present invention is an optical sensor, and a light emitting unit having light emitting elements corresponding to at least three infrared wavelength bands included in an infrared region having a wavelength of 1100 nm or less And a light receiving unit having sensitivity to the at least three infrared wavelength bands, and a light receiving unit configured to detect the intensity of each of the at least three infrared wavelength bands.
 また、本発明は、上記発明において、前記受光部は、前記少なくとも3つの赤外波長帯それぞれの光の強度を、同一の受光素子で検出することを特徴とする。 Further, the present invention is characterized in that, in the above-mentioned invention, the light receiving section detects the intensity of the light of each of the at least three infrared wavelength bands with the same light receiving element.
 また、本発明は、上記発明において、前記受光部は、前記少なくとも3つの赤外波長帯の光の強度を、少なくとも3つの受光素子で検出することを特徴とする。 The present invention is characterized in that, in the above-mentioned invention, the light receiving section detects the intensity of the light of the at least three infrared wavelength bands with at least three light receiving elements.
 また、本発明は、上記発明において、前記発光部は、400~700nmの波長範囲に含まれる少なくとも1つの可視波長帯に対応する発光素子をさらに有し、前記受光素子は、さらに前記可視波長帯に感度を持つことを特徴とする。 Further, according to the present invention, in the above invention, the light emitting portion further includes a light emitting element corresponding to at least one visible wavelength band included in a wavelength range of 400 to 700 nm, and the light receiving element further includes the visible wavelength band It is characterized by having sensitivity to
 また、本発明は、上記発明において、前記受光素子は、シリコンフォトダイオードであることを特徴とする。 Further, the present invention is characterized in that, in the above-mentioned invention, the light receiving element is a silicon photodiode.
 また、本発明は、上記発明において、前記少なくとも3つの赤外波長帯は、波長が1000nm以下の赤外領域に含まれることを特徴とする。 Further, the present invention is characterized in that, in the above-mentioned invention, the at least three infrared wavelength bands are included in an infrared region having a wavelength of 1000 nm or less.
 また、本発明は、上記発明において、前記少なくとも3つの赤外波長帯は、波長が760nm以上の赤外領域に含まれることを特徴とする。 Further, the present invention is characterized in that, in the above-mentioned invention, the at least three infrared wavelength bands are included in an infrared region having a wavelength of 760 nm or more.
 また、本発明は、上記発明において、前記赤外領域は、波長が780nm以上であることを特徴とする。 The present invention is characterized in that, in the above-mentioned invention, the infrared region has a wavelength of 780 nm or more.
 また、本発明は、上記発明において、前記赤外領域は、波長が760nm以上であることを特徴とする。 The present invention is characterized in that, in the above-mentioned invention, the infrared region has a wavelength of 760 nm or more.
 また、本発明は、光センサモジュールであって、上記発明に係る光センサと、前記光センサで検出した光の強度を外部へ出力する出力部とを備え、前記光センサの前記受光部は、複数の前記受光素子を直線状に配置した構造を有することを特徴とする。 The present invention is a light sensor module, comprising: the light sensor according to the above invention; and an output unit for outputting the intensity of light detected by the light sensor to the outside, wherein the light receiving unit of the light sensor is It has a structure in which a plurality of the light receiving elements are linearly arranged.
 また、本発明は、紙葉類処理装置であって、上記発明に係る光センサと、セキュリティ特徴を有する紙葉類を搬送する搬送部と、前記光センサによって、前記搬送部が搬送する紙葉類のセキュリティ特徴から取得した前記少なくとも3つの赤外波長帯の光の強度に基づいて、前記セキュリティ特徴の真偽を判定する判定部とを備えることを特徴とする。 Further, according to the present invention, there is provided a sheet processing apparatus, wherein the optical sensor according to the above-described invention, a transport unit for transporting a sheet having security features, and a sheet transported by the transport unit by the optical sensor. And a determination unit that determines the authenticity of the security feature based on the light intensity of the at least three infrared wavelength bands acquired from the security feature of the type.
 本発明によれば、赤外領域に含まれる複数の波長帯それぞれの光を紙葉類に照射して、各波長帯の光を検出することができる。例えば、各波長帯で異なる反射率を示す複数種類のインクが使用された紙葉類がある場合でも、各インクの種類を特定することができる。 According to the present invention, the light of each wavelength band can be detected by irradiating the sheet with the light of each of the plurality of wavelength bands included in the infrared region. For example, even in the case where there is a sheet in which a plurality of types of ink having different reflectances in each wavelength band are used, the type of each ink can be specified.
図1は、紙葉類処理装置の構成概要を示すブロック図である。FIG. 1 is a block diagram showing an outline of the configuration of a sheet processing apparatus. 図2は、紙葉類処理装置の動作を説明するための断面模式図である。FIG. 2 is a schematic cross-sectional view for explaining the operation of the sheet processing apparatus. 図3は、発光部の構造を示す模式図である。FIG. 3 is a schematic view showing the structure of the light emitting unit. 図4は、受光部の構造を示す模式図である。FIG. 4 is a schematic view showing the structure of the light receiving unit. 図5は、集光レンズの構造を示す模式図である。FIG. 5 is a schematic view showing the structure of a condensing lens. 図6は、センサ部の動作を示すタイミングチャートである。FIG. 6 is a timing chart showing the operation of the sensor unit. 図7は、光学特性の異なる領域を有する紙葉類の例を示す図である。FIG. 7 is a view showing an example of a sheet having regions having different optical characteristics. 図8は、紙葉類の種類や真偽を判定する方法を説明するための図である。FIG. 8 is a diagram for explaining a method of determining the type and authenticity of a sheet. 図9は、受光部の別の構成例を説明するための図である。FIG. 9 is a diagram for explaining another configuration example of the light receiving unit. 図10は、図9に示す受光部を含むセンサ部の動作を示すタイミングチャートである。FIG. 10 is a timing chart showing the operation of the sensor unit including the light receiving unit shown in FIG. 図11は、受光部のさらに別の構成例を説明するための図である。FIG. 11 is a diagram for explaining yet another configuration example of the light receiving unit. 図12は、図11に示す受光部を含むセンサ部の動作を示すタイミングチャートである。FIG. 12 is a timing chart showing the operation of the sensor unit including the light receiving unit shown in FIG.
 以下、添付図面を参照しながら、本発明に係る光センサ、光センサモジュール及び紙葉類処理装置の好適な実施例について詳細に説明する。本実施形態では、紙葉類の光学特性を調べる紙葉類処理装置を例に説明する。ここで、紙葉類とは、ギフトカード、小切手、手形などの有価証券や銀行券などのシート状の媒体である。紙の銀行券や樹脂の銀行券があるように、紙葉類の材質は特に限定されず、紙、樹脂、その他の材質であってもよい。 Hereinafter, preferred embodiments of an optical sensor, an optical sensor module, and a sheet processing apparatus according to the present invention will be described in detail with reference to the attached drawings. In the present embodiment, a sheet processing apparatus for examining optical characteristics of sheets will be described as an example. Here, the paper sheet is a sheet-like medium such as a gift card, a check, a security such as a bill, a banknote, and the like. As with paper banknotes and resin banknotes, the material of the paper sheet is not particularly limited, and may be paper, resin, or another material.
 可視領域の範囲は、短波長側を360nmから400nm の間、長波長側を760nmから830nmの間とし、赤外領域の範囲は、可視領域の波長より長く1mmまでとするのが一般的である(例えばJIS Z 8113照明用語)。また、IEC60050-845:1987を参照すると、IR-Aの下限値は780nmである。よって、本発明では赤外領域の下限を760~780nmとするが、本実施形態では赤外領域の下限を780nmとして説明する。 The range of the visible region is between 360 nm and 400 nm on the short wavelength side and between 760 nm and 830 nm on the long wavelength side, and the range of the infrared region is generally 1 mm longer than the wavelength in the visible region (For example, JIS Z 8113 lighting terms). Further, referring to IEC 60050-845: 1987, the lower limit value of IR-A is 780 nm. Therefore, in the present invention, the lower limit of the infrared region is set to 760 to 780 nm, but in the present embodiment, the lower limit of the infrared region is set to 780 nm.
 図1は、紙葉類処理装置の構成概要を示すブロック図である。紙葉類処理装置は、センサ部1、搬送部60、制御部70及び記憶部80を備える。センサ部1は、受光部10及び発光部20を含む。発光部20は、可視領域の複数の波長帯それぞれの光を紙葉類に照射する光源と、赤外領域の複数の波長帯それぞれの光を紙葉類に照射する光源とを含む。受光部10は、発光部20の各光源から紙葉類に照射され、紙葉類で反射された光の強度を検出する受光素子を含む。すなわち、受光部10の受光素子は、発光部20が紙葉類に照射する可視領域の複数波長帯及び赤外領域の複数波長帯に感度を持つ。 FIG. 1 is a block diagram showing an outline of the configuration of a sheet processing apparatus. The sheet processing apparatus includes a sensor unit 1, a conveyance unit 60, a control unit 70, and a storage unit 80. The sensor unit 1 includes a light receiving unit 10 and a light emitting unit 20. The light emitting unit 20 includes a light source for irradiating the sheet with light of each of a plurality of wavelength bands in the visible region, and a light source for irradiating the sheet with light of each of a plurality of wavelength bands in the infrared region. The light receiving unit 10 includes light receiving elements that are irradiated to the paper sheets from the light sources of the light emitting unit 20 and detect the intensity of the light reflected by the paper sheets. That is, the light receiving element of the light receiving unit 10 is sensitive to the plurality of wavelength bands of the visible region and the plurality of wavelength bands of the infrared region that the light emitting unit 20 irradiates to the paper sheet.
 搬送部60は、複数のローラやベルト等を回転駆動して、装置内に設けた搬送路に沿って紙葉類を1枚ずつ搬送する。搬送部60は、ローラ等の回転量に同期するロータリーエンコーダを備え、紙葉類の搬送距離に応じたパルス信号(以下「メカクロック」と記載する)を出力する。記憶部80は、半導体メモリ等の不揮発性の記憶装置から成り、内部には、検出データ81及び判定用データ82が保存されている。検出データ81は、搬送部60が搬送する紙葉類に向けて発光部20から光を照射して、紙葉類で反射された光を受光部10で検出したデータである。判定用データ82は、紙葉類から検出したデータに基づいて、この紙葉類の種類、真偽等を判定するために予め準備されたデータである。 The transport unit 60 rotationally drives a plurality of rollers, belts, and the like to transport paper sheets one by one along a transport path provided in the apparatus. The transport unit 60 includes a rotary encoder synchronized with the amount of rotation of a roller or the like, and outputs a pulse signal (hereinafter referred to as “mecha clock”) according to the transport distance of the sheet. The storage unit 80 is formed of a non-volatile storage device such as a semiconductor memory, and the detection data 81 and the determination data 82 are stored therein. The detection data 81 is data obtained by irradiating the light from the light emitting unit 20 toward the sheet transported by the transport unit 60 and detecting the light reflected by the sheet by the light receiving unit 10. The determination data 82 is data prepared in advance to determine the type, authenticity or the like of the sheet based on the data detected from the sheet.
 制御部70は、搬送制御部71、発光制御部72、データ取得部73、判定部74及び出力部75を有する。搬送制御部71は、搬送部60を制御して、搬送路に沿って紙葉類を搬送する。発光制御部72は、発光部20を制御して、搬送部60が搬送する紙葉類に向けて複数の波長帯それぞれの光を照射する。データ取得部73は、受光部10を制御して、紙葉類で反射された光の強度を検出したデータを取得する。データ取得部73は、基板40(図2参照)を介して受光部10からデータを取得する。搬送制御部71、発光制御部72及びデータ取得部73が協働することにより、紙葉類が搬送されてくるタイミングに合わせて複数の波長帯それぞれの光を紙葉類に照射し、紙葉類で反射された光の強度を検出することができる。判定部74は、データ取得部73が紙葉類から取得したデータを、予め判定用データ82として準備されているデータと比較して、紙葉類の種類や真偽等を判定する。出力部75は、データ取得部73が取得したデータ、判定部74による判定結果等を外部装置へ出力する。 The control unit 70 includes a conveyance control unit 71, a light emission control unit 72, a data acquisition unit 73, a determination unit 74, and an output unit 75. The transport control unit 71 controls the transport unit 60 to transport paper sheets along the transport path. The light emission control unit 72 controls the light emitting unit 20 to irradiate light of each of a plurality of wavelength bands toward the sheet transported by the transport unit 60. The data acquisition unit 73 controls the light receiving unit 10 to acquire data obtained by detecting the intensity of the light reflected by the sheet. The data acquisition unit 73 acquires data from the light receiving unit 10 via the substrate 40 (see FIG. 2). The cooperation of the conveyance control unit 71, the light emission control unit 72, and the data acquisition unit 73 causes the paper sheets to be irradiated with light of each of a plurality of wavelength bands in accordance with the timing at which the paper sheets are conveyed. The intensity of the light reflected by the class can be detected. The determination unit 74 compares the data acquired from the sheet by the data acquisition unit 73 with the data prepared in advance as the determination data 82 to determine the type, authenticity, and the like of the sheet. The output unit 75 outputs the data acquired by the data acquisition unit 73, the determination result by the determination unit 74, and the like to an external device.
 図2は、紙葉類処理装置の動作を説明するための断面模式図である。図2は、紙葉類処理装置内に設けられたセンサ部1を側方から見た断面を示している。紙葉類処理装置は、装置外から受けた紙葉類を装置内で搬送する。具体的には、図2に示すように、搬送部60が、装置内に設けられた搬送路61に沿って矢印200で示す方向へ紙葉類100を搬送する。搬送路61は、上側ガイド板61aと下側ガイド板61bとの間に形成されている。センサ部1は、ケース1aの下面が、上側ガイド板61aの下面と同一平面を形成するように、搬送路61の上側に配置されている。センサ部1のケース1a内には、基板40上に設けられた受光部10、2つの発光部20(20a、20b)及び集光レンズ30が設けられている。一方の発光部20aは受光部10に対して搬送方向上流側に配置され、他方の発光部20bは受光部10に対して搬送方向下流側に配置されている。集光レンズ30は、受光部10の下方で、2つの発光部20a、20bの間に配置されている。ケース1aの下面には、透明部材から成る窓部50が設けられている。 FIG. 2 is a schematic cross-sectional view for explaining the operation of the sheet processing apparatus. FIG. 2 shows a cross section of the sensor unit 1 provided in the sheet processing apparatus as viewed from the side. The sheet processing apparatus transports the sheet received from the outside of the apparatus in the apparatus. Specifically, as shown in FIG. 2, the transport unit 60 transports the paper sheet 100 in the direction indicated by the arrow 200 along the transport path 61 provided in the apparatus. The transport path 61 is formed between the upper guide plate 61 a and the lower guide plate 61 b. The sensor unit 1 is disposed on the upper side of the transport path 61 so that the lower surface of the case 1a is flush with the lower surface of the upper guide plate 61a. In the case 1 a of the sensor unit 1, a light receiving unit 10 provided on a substrate 40, two light emitting units 20 (20 a and 20 b), and a condensing lens 30 are provided. One light emitting unit 20 a is disposed upstream of the light receiving unit 10 in the conveying direction, and the other light emitting unit 20 b is disposed downstream of the light receiving unit 10 in the conveying direction. The condensing lens 30 is disposed below the light receiving unit 10 and between the two light emitting units 20 a and 20 b. A window 50 made of a transparent member is provided on the lower surface of the case 1a.
 図3は、発光部20の構造を示す模式図である。図3(a)に示すように、発光部20は、紙葉類100の搬送方向(Y軸方向)と垂直な主走査方向(X軸方向)に長い棒形状の導光体22と、導光体22の端面に設けられた光源21とを含む。図3(b)に示すように、光源21には、LED等の発光素子21aが複数設けられている。光源21の発光素子21aが発光すると、この光が導光体22内部に進入して導光体22が均等に発光する。導光体22の主走査方向の長さは、紙葉類100の主走査方向の長さより長い。これにより、光源21が発した光を、導光体22を介して、紙葉類100の主走査方向全体に照射することができる。 FIG. 3 is a schematic view showing the structure of the light emitting unit 20. As shown in FIG. As shown in FIG. 3A, the light emitting unit 20 is provided with a rod-shaped light guide 22 which is long in the main scanning direction (X-axis direction) perpendicular to the conveyance direction (Y-axis direction) of the paper sheet 100; And a light source 21 provided on the end face of the light 22. As shown in FIG. 3 (b), the light source 21 is provided with a plurality of light emitting elements 21 a such as LEDs. When the light emitting element 21a of the light source 21 emits light, the light enters the inside of the light guide 22 and the light guide 22 emits light uniformly. The length of the light guide 22 in the main scanning direction is longer than the length of the paper sheet 100 in the main scanning direction. Thereby, the light emitted from the light source 21 can be irradiated to the entire main scanning direction of the paper sheet 100 through the light guide 22.
 光源21は、可視領域で、赤色光、緑色光及び青色光の3つの波長帯の光を照射する。波長帯が異なる3種類の可視光を紙葉類100に照射するため、光源21は、ピーク波長が650nmの赤色光を発する発光素子21a、ピーク波長が550nmの緑色光を発する発光素子21a、ピーク波長が450nmの青色光を発する発光素子21aを有する。また、光源21は、赤外領域で、それぞれ波長が異なる第1赤外光、第2赤外光及び第3赤外光の3つの波長帯の光を照射する。波長帯が異なる3種類の赤外光を紙葉類100に照射するため、光源21は、ピーク波長が800nmの第1赤外光を発する発光素子21a、ピーク波長が880nmの第2赤外光を発する発光素子21a、ピーク波長が950nmの第3赤外光を発する発光素子21aを有する。 The light source 21 emits light in three wavelength bands of red light, green light and blue light in the visible region. In order to irradiate the paper sheet 100 with three types of visible light having different wavelength bands, the light source 21 is a light emitting element 21a that emits red light with a peak wavelength of 650 nm, a light emitting element 21a that emits green light with a peak wavelength of 550 nm, It has a light emitting element 21a that emits blue light having a wavelength of 450 nm. Further, the light source 21 emits light in three wavelength bands of a first infrared light, a second infrared light, and a third infrared light, which have different wavelengths in the infrared region. In order to irradiate the paper sheet 100 with three types of infrared light having different wavelength bands, the light source 21 is a light emitting element 21a that emits a first infrared light having a peak wavelength of 800 nm and a second infrared light having a peak wavelength of 880 nm. And a light emitting element 21a that emits a third infrared light having a peak wavelength of 950 nm.
 なお、各発光素子21aが発する光は、ピーク波長とピーク波長の近辺の波長を含む波長帯の光である。この波長帯の幅は、例えば発光素子21aのスペクトルの半値全幅で規定される。また、各発光素子21aのピーク波長は適宜変更可能である。例えば、第1赤外光~第3赤外光を発する発光素子21aのピーク波長は、それぞれ検出対象に応じて赤外領域内において変更してもよい。また、各発光素子21aの半値全幅も適宜変更可能である。 The light emitted from each light emitting element 21 a is light in a wavelength band including a peak wavelength and a wavelength near the peak wavelength. The width of this wavelength band is defined, for example, by the full width at half maximum of the spectrum of the light emitting element 21a. Moreover, the peak wavelength of each light emitting element 21a can be changed suitably. For example, the peak wavelengths of the light emitting elements 21a that emit the first to third infrared light may be changed in the infrared region depending on the detection target. In addition, the full width at half maximum of each light emitting element 21a can be changed as appropriate.
 発光制御部72は、光源21が有する複数種類の発光素子21aの中から選択した発光素子21aを発光させる。すなわち、光源21を点灯して、赤色光、緑色光、青色光、第1赤外光、第2赤外光及び第3赤外光のうち1又は複数の光を発することができる。光源21が発した光が、導光体22を介して紙葉類100に照射される。 The light emission control unit 72 causes the light emitting element 21 a selected from the plurality of types of light emitting elements 21 a included in the light source 21 to emit light. That is, the light source 21 can be turned on to emit one or more of red light, green light, blue light, first infrared light, second infrared light, and third infrared light. The light emitted from the light source 21 is irradiated to the paper sheet 100 through the light guide 22.
 図4は、受光部10の構造を示す模式図である。受光部10は、複数の受光素子11を主走査方向に複数並べて構成したラインセンサである。各受光素子11は、発光部20から照射可能な赤色光、緑色光、青色光、第1赤外光、第2赤外光及び第3赤外光の各波長帯に感度を持つ。各受光素子11は、可視領域及び赤外領域の光を受光して、受光した光の強度に応じた電気信号を出力する。 FIG. 4 is a schematic view showing the structure of the light receiving unit 10. The light receiving unit 10 is a line sensor configured by arranging a plurality of light receiving elements 11 in the main scanning direction. Each light receiving element 11 is sensitive to each wavelength band of red light, green light, blue light, first infrared light, second infrared light, and third infrared light that can be emitted from the light emitting unit 20. Each light receiving element 11 receives light in the visible region and the infrared region, and outputs an electrical signal according to the intensity of the received light.
 各受光素子11には、可視領域から波長が1100nmまでの赤外領域まで感度を持つ、シリコン(Si)フォトダイオードを用いるのがよい。この場合、各受光素子が検出できる赤外領域の光は波長が780nm~1100nmの範囲である。このため、第1赤外光、第2赤外光及び第3赤外光のピーク波長を、この範囲内とする。 As each light receiving element 11, it is preferable to use a silicon (Si) photodiode having sensitivity from the visible region to the infrared region up to a wavelength of 1100 nm. In this case, the light in the infrared region that can be detected by each light receiving element has a wavelength in the range of 780 nm to 1100 nm. Therefore, the peak wavelengths of the first infrared light, the second infrared light, and the third infrared light are in this range.
 図5は、集光レンズ30の構造を示す模式図である。集光レンズ30は、複数のロッドレンズ31を主走査方向に直線状に2列に並べて構成したロッドレンズアレイである。ロッドレンズは、紙葉類100で反射された可視領域の光及び赤外領域の光を、受光部10の受光素子11に集光する。 FIG. 5 is a schematic view showing the structure of the condenser lens 30. As shown in FIG. The condenser lens 30 is a rod lens array in which a plurality of rod lenses 31 are linearly arranged in two rows in the main scanning direction. The rod lens condenses the light in the visible region and the light in the infrared region reflected by the paper sheet 100 on the light receiving element 11 of the light receiving unit 10.
 受光部10の主走査方向の長さは、紙葉類100の主走査方向の長さより長い。集光レンズ30は、受光部10を構成する受光素子11に対応して設けられている。これにより、紙葉類100の主走査方向全体で、紙葉類100で反射された光を集光レンズ30で集光して受光部10で受光し、反射光に係るデータを取得することができる。発光部20が紙葉類100の主走査方向全体にわたって光を照射し、受光部10が紙葉類100の主走査方向全体で反射された光を受光する。紙葉類100を搬送しながら、発光部20による光の照射と受光部10による光の受光を継続することにより、紙葉類100の全面を対象に、反射光に係るデータを取得することができる The length of the light receiving unit 10 in the main scanning direction is longer than the length of the paper sheet 100 in the main scanning direction. The condenser lens 30 is provided corresponding to the light receiving element 11 that constitutes the light receiving unit 10. Thus, the light reflected by the paper sheet 100 is collected by the collecting lens 30 and received by the light receiving unit 10 in the entire main scanning direction of the paper sheet 100, and data relating to the reflected light is acquired. it can. The light emitting unit 20 emits light over the entire main scanning direction of the paper sheet 100, and the light receiving unit 10 receives light reflected along the entire main scanning direction of the paper sheet 100. By continuing the irradiation of light by the light emitting unit 20 and the light reception of light by the light receiving unit 10 while conveying the paper sheet 100, it is possible to acquire data relating to the reflected light for the entire surface of the paper sheet 100. it can
 具体的には、搬送制御部71は、搬送部60を制御して、図2に示すように矢印200で示す搬送方向へ、搬送路61に沿って紙葉類100を搬送する。紙葉類100が、搬送路61に設けられたセンサ部1の下方を通過する際に、発光制御部72が発光部20を発光させる。発光部20の光は、窓部50を透過して、搬送路61の紙葉類100に照射される。紙葉類100で反射された光は、窓部50を透過して、集光レンズ30に入射する。集光レンズ30は、入射した光を受光部10に集光する。受光部10は、集光レンズ30によって集光された光を受光する。データ取得部73は、受光部10が受光した光の強度に応じたデータを取得する。受光部10を形成する複数の受光素子11から取得したデータにより主走査方向に長いラインデータが得られる。データ取得部73は、搬送部60が紙葉類100を搬送する間、データの取得を継続する。データ取得部73は、取得したデータを、検出データ81として記憶部80に保存する。判定部74は、検出データ81として保存されたデータを参照することで、受光部10の各受光素子11で受光した光の強度、すなわち紙葉類100上の部分領域で反射された光の強度を得ることができる。 Specifically, the transport control unit 71 controls the transport unit 60 to transport the paper sheet 100 along the transport path 61 in the transport direction indicated by the arrow 200 as illustrated in FIG. 2. When the sheet 100 passes under the sensor unit 1 provided in the conveyance path 61, the light emission control unit 72 causes the light emitting unit 20 to emit light. The light of the light emitting unit 20 is transmitted through the window unit 50 and irradiated to the paper sheet 100 in the conveyance path 61. The light reflected by the sheet 100 is transmitted through the window 50 and is incident on the condenser lens 30. The condensing lens 30 condenses the incident light on the light receiving unit 10. The light receiving unit 10 receives the light collected by the collecting lens 30. The data acquisition unit 73 acquires data according to the intensity of the light received by the light receiving unit 10. Line data long in the main scanning direction can be obtained from data obtained from the plurality of light receiving elements 11 forming the light receiving unit 10. The data acquisition unit 73 continues acquisition of data while the conveyance unit 60 conveys the sheet 100. The data acquisition unit 73 stores the acquired data as the detection data 81 in the storage unit 80. The determination unit 74 refers to the data stored as the detection data 81 to determine the intensity of the light received by each light receiving element 11 of the light receiving unit 10, that is, the intensity of the light reflected by the partial area on the paper sheet 100. You can get
 次に、センサ部1の動作について説明する。センサ部1は、赤色光、緑色光、青色光、第1赤外光、第2赤外光及び第3赤外光を紙葉類100に照射して、紙葉類100で反射された光を検出する。図6は、センサ部1の動作を示すタイミングチャートである。センサ部1は、搬送部60が出力する発振するメカクロックに基づいて、図6に示すフェーズ1~6の6フェーズを実行する。搬送部60が搬送する紙葉類100がセンサ部1による反射光の検出位置を通過する間、センサ部1は、フェーズ1~6を1サイクルとして、該サイクルを繰り返し実行する。これにより、データ取得部73は、紙葉類100の全面から反射光に係るデータを取得することができる。 Next, the operation of the sensor unit 1 will be described. The sensor unit 1 irradiates the sheet 100 with red light, green light, blue light, first infrared light, second infrared light and third infrared light, and the light reflected by the sheet 100 To detect FIG. 6 is a timing chart showing the operation of the sensor unit 1. The sensor unit 1 executes six phases of phases 1 to 6 shown in FIG. 6 based on the oscillating mechanical clock output by the transport unit 60. While the paper sheet 100 conveyed by the conveyance unit 60 passes the detection position of the reflected light by the sensor unit 1, the sensor unit 1 repeatedly executes the cycle with phases 1 to 6 as one cycle. Thereby, the data acquisition unit 73 can acquire data relating to the reflected light from the entire surface of the paper sheet 100.
 フェーズ1では、発光制御部72が、赤色光の発光素子21aのみ、すなわち発光部20の赤色光光源(図6「R」)21のみを点灯する(図6「ON」)。発光部20が紙葉類100に赤色光を照射している間、受光部10の各受光素子11は、紙葉類100で反射された赤色光を受光する。データ取得部73は、各受光素子11から赤色光データ(図6「R-Data」)を取得する。フェーズ2では、発光制御部72が、緑色光の発光素子21aのみ、すなわち緑色光光源(G)21のみを点灯する。発光部20が紙葉類に緑色光を照射している間、データ取得部73が、紙葉類100で反射された緑色光を受光部10の各受光素子11で受光して、緑色光データ(G-Data)を取得する。また、データ取得部73は、フェーズ1で取得した赤色光データ(R-Data)を、検出データ81として記憶部80に保存する。フェーズ3では、発光制御部72が、青色光の発光素子21aのみ、すなわち青色光光源(B)21のみを点灯する。発光部20が紙葉類に青色光を照射している間、データ取得部73が、紙葉類100で反射された青色光を受光部10の各受光素子11で受光して、青色光のデータ(B-Data)を取得する。また、データ取得部73は、フェーズ2で取得した緑色光データ(G-Data)を、検出データ81として記憶部80に保存する。フェーズ4では、発光制御部72が、第1赤外光の発光素子21aのみ、すなわち第1赤外光光源(IR1)21のみを点灯する。発光部20が紙葉類に第1赤外光を照射している間、データ取得部73が、紙葉類100で反射された第1赤外光を受光部10の各受光素子11で受光して、第1赤外光のデータ(IR1-Data)を取得する。また、データ取得部73は、フェーズ3で取得した青色光データ(B-Data)を、検出データ81として記憶部80に保存する。フェーズ5では、発光制御部72が、第2赤外光の発光素子21aのみ、すなわち第2赤外光光源(IR2)21のみを点灯する。発光部20が紙葉類に第2赤外光を照射している間、データ取得部73が、紙葉類100で反射された第2赤外光を受光部10の各受光素子11で受光して、第2赤外光のデータ(IR2-Data)を取得する。また、データ取得部73は、フェーズ4で取得した第1赤外光データ(IR1-Data)を、検出データ81として記憶部80に保存する。フェーズ6では、発光制御部72が、第3赤外光の発光素子21aのみ、すなわち第3赤外光光源(IR3)21のみを点灯する。発光部20が紙葉類に第3赤外光を照射している間、データ取得部73が、紙葉類100で反射された第3赤外光を受光部10の各受光素子11で受光して、第3赤外光のデータ(IR3-Data)を取得する。また、データ取得部73は、フェーズ5で取得した第2赤外光データ(IR2-Data)を、検出データ81として記憶部80に保存する。なお、フェーズ6で取得した第3赤外光データ(IR3-Data)は、続いて行われる次のサイクルのフェーズ1の処理時に、データ取得部73が、検出データ81として記憶部80に保存する。 In phase 1, the light emission control unit 72 turns on only the red light emitting element 21a, that is, only the red light source ("R" in FIG. 6) of the light emitting unit 20 ("ON" in FIG. 6). While the light emitting unit 20 irradiates the sheet 100 with red light, each light receiving element 11 of the light receiving unit 10 receives the red light reflected by the sheet 100. The data acquisition unit 73 acquires red light data (“R-Data” in FIG. 6) from each light receiving element 11. In phase 2, the light emission control unit 72 turns on only the light emitting element 21a of green light, that is, only the green light source (G) 21. While the light emitting unit 20 irradiates the sheet with green light, the data acquiring unit 73 receives the green light reflected by the sheet 100 by each light receiving element 11 of the light receiving unit 10, and the green light data Get (G-Data). Further, the data acquisition unit 73 stores the red light data (R-Data) acquired in phase 1 in the storage unit 80 as detection data 81. In phase 3, the light emission control unit 72 turns on only the blue light emitting element 21a, that is, only the blue light source (B) 21. While the light emitting unit 20 irradiates the sheet with blue light, the data acquiring unit 73 receives the blue light reflected by the sheet 100 by each light receiving element 11 of the light receiving unit 10, and Get data (B-Data). Further, the data acquisition unit 73 stores the green light data (G-Data) acquired in phase 2 in the storage unit 80 as detection data 81. In phase 4, the light emission control unit 72 turns on only the light emitting element 21a of the first infrared light, that is, only the first infrared light source (IR1) 21. While the light emitting unit 20 irradiates the paper with the first infrared light, the data acquiring unit 73 receives the first infrared light reflected by the paper 100 by each light receiving element 11 of the light receiving unit 10 Then, data (IR1-Data) of the first infrared light is acquired. Further, the data acquisition unit 73 stores the blue light data (B-Data) acquired in phase 3 in the storage unit 80 as detection data 81. In phase 5, the light emission control unit 72 turns on only the light emitting element 21a of the second infrared light, that is, only the second infrared light source (IR2) 21. While the light emitting unit 20 irradiates the paper with the second infrared light, the data acquiring unit 73 receives the second infrared light reflected by the paper 100 by each light receiving element 11 of the light receiving unit 10. The second infrared light data (IR2-Data) is acquired. Further, the data acquisition unit 73 stores the first infrared light data (IR 1 -Data) acquired in phase 4 in the storage unit 80 as detection data 81. In the phase 6, the light emission control unit 72 turns on only the light emitting element 21a of the third infrared light, that is, only the third infrared light source (IR3) 21. While the light emitting unit 20 irradiates the paper with the third infrared light, the data acquiring unit 73 receives the third infrared light reflected by the paper 100 by each light receiving element 11 of the light receiving unit 10 The third infrared light data (IR3-Data) is acquired. Also, the data acquisition unit 73 stores the second infrared light data (IR2-Data) acquired in phase 5 in the storage unit 80 as detection data 81. Note that the third infrared light data (IR3-Data) acquired in phase 6 is stored in the storage unit 80 as detection data 81 at the time of processing of phase 1 of the next cycle performed subsequently. .
 このように、センサ部1は、赤色光、緑色光、青色光、第1赤外光、第2赤外光及び第3赤外光の光を順に紙葉類100に照射して、紙葉類100で反射された光を検出する。これにより、赤色光のデータ、緑色光のデータ、青色光のデータ、第1赤外光のデータ、第2赤外光のデータ及び第3赤外光のデータの6種類のデータが得られる。 Thus, the sensor unit 1 sequentially irradiates the sheet 100 with light of red light, green light, blue light, first infrared light, second infrared light, and third infrared light to The light reflected by the class 100 is detected. Thereby, six types of data of red light data, green light data, blue light data, first infrared light data, second infrared light data, and third infrared light data are obtained.
 例えば、紙葉類100上の各位置で、発光部20から照射した光の強度である基準強度Isと受光部10で受光した光の強度Irから、反射率I(=Ir/Is)のデータを得ることができる。センサ部1による反射光の検出位置を紙葉類100が通過する間、フェーズ1~6を繰り返し実行することにより、データ取得部73は、紙葉類100の全面から反射率のデータを得ることができる。具体的には、赤色光の反射率データ、緑色光の反射率データ、青色光の反射率データ、第1赤外光の反射率データ、第2赤外光の反射率データ及び第3赤外光の反射率データの6種類の反射率データが得られる。なお、基準強度Isとして、基準媒体に発光部20から光を照射して受光部10で受光した光の強度を使用してもよい。このときの基準媒体は、例えば白色の紙や樹脂シートなど、適切な紙葉類を定めて用いる。 For example, data of reflectance I (= Ir / Is) from reference intensity Is that is the intensity of light emitted from light emitting unit 20 at each position on paper sheet 100 and intensity Ir of light received by light receiving unit 10 You can get The data acquisition unit 73 obtains reflectance data from the entire surface of the paper sheet 100 by repeatedly executing phases 1 to 6 while the paper sheet 100 passes the detection position of the reflected light by the sensor unit 1. Can. Specifically, red light reflectance data, green light reflectance data, blue light reflectance data, first infrared light reflectance data, second infrared light reflectance data, and third infrared light Six types of reflectance data of light reflectance data are obtained. As the reference intensity Is, the intensity of the light received by the light receiving unit 10 by irradiating the light from the light emitting unit 20 to the reference medium may be used. As a reference medium at this time, for example, suitable paper sheets such as white paper and a resin sheet are defined and used.
 また、例えば、受光部10で取得したデータから、紙葉類100の画像を生成することができる。受光部10で得られるデータは、主走査方向に直前状に配置した受光素子11で得られたラインデータである。紙葉類100を搬送して、すなわち副走査方向に走査して、得られた各ラインデータから、反射強度Ir又は反射率Iを画素値に変換して紙葉類100全面の反射画像を生成することができる。具体的には、赤色光の紙葉類画像、緑色光の紙葉類画像、青色光の紙葉類画像、第1赤外光の紙葉類画像、第2赤外光の紙葉類画像及び第3赤外光の紙葉類画像の6種類の紙葉類画像が得られる。 Further, for example, an image of the paper sheet 100 can be generated from the data acquired by the light receiving unit 10. The data obtained by the light receiving unit 10 is line data obtained by the light receiving element 11 disposed immediately before the main scanning direction. The paper sheet 100 is conveyed, that is, scanned in the sub scanning direction, and from each line data obtained, the reflection intensity Ir or the reflectance I is converted to a pixel value to generate a reflection image of the entire paper sheet 100 can do. Specifically, a red light paper sheet image, a green light paper sheet image, a blue light paper sheet image, a first infrared light paper sheet image, and a second infrared light paper sheet image And six types of sheet images of the sheet image of the third infrared light are obtained.
 反射率データ及び紙葉類画像の主走査方向(X軸方向)の解像度は、受光部10を形成する受光素子11の大きさ及び数に応じた解像度となる。一方、副走査方向(Y軸方向)の解像度は、搬送部60のメカクロックを基準とした搬送速度に応じた解像度となる。 The resolution data in the main scanning direction (X-axis direction) of the reflectance data and the sheet image is a resolution according to the size and number of the light receiving elements 11 forming the light receiving unit 10. On the other hand, the resolution in the sub-scanning direction (Y-axis direction) corresponds to the transport speed based on the mechanical clock of the transport unit 60.
 紙葉類100は、光学特性の異なる複数の領域を含む。センサ部1を利用して、紙葉類100全面の光学特性を検出することにより、紙葉類100の種類や真偽等を判定することができる。以下、赤外領域の光学特性に基づいて、紙葉類の種類を判定する方法について具体例を示しながら説明する。 Paper sheet 100 includes a plurality of regions having different optical characteristics. By detecting the optical characteristics of the entire surface of the paper sheet 100 using the sensor unit 1, the type, authenticity or the like of the paper sheet 100 can be determined. Hereinafter, a method of determining the type of paper sheet based on the optical characteristics of the infrared region will be described with reference to a specific example.
 図7は、光学特性の異なる領域を有する紙葉類100の例を示す図である。図7に示す紙葉類100は、赤外領域で特徴的な反射特性を示す第1領域101~第4領域104の4つの領域を含んでいる。第1領域101は、赤外光を反射する赤外反射インクで印刷された領域である。第4領域104は、赤外光を吸収する赤外吸収インクで印刷された領域である。第2領域102は、赤外領域で特徴的な反射特性を示す特殊インクAで印刷された領域である。第3領域103は、赤外領域で、特殊インクAと異なる特徴的な反射特性を示す特殊インクBで印刷された領域である。 FIG. 7 is a view showing an example of a sheet 100 having regions having different optical characteristics. The paper sheet 100 shown in FIG. 7 includes four regions of a first region 101 to a fourth region 104 which exhibit characteristic reflection characteristics in the infrared region. The first area 101 is an area printed with infrared reflective ink that reflects infrared light. The fourth area 104 is an area printed with an infrared absorbing ink that absorbs infrared light. The second area 102 is an area printed with the special ink A exhibiting a characteristic reflection characteristic in the infrared area. The third area 103 is an area printed with the special ink B which exhibits a characteristic reflection characteristic different from the special ink A in the infrared area.
 搬送制御部71が搬送部60を制御して紙葉類100を搬送し、発光制御部72及びデータ取得部73が図6に示すサイクルを繰り返し実行する。データ取得部73は、赤色光、緑色光、青色光、第1赤外光、第2赤外光及び第3赤外光それぞれを紙葉類100に照射した際の反射率のデータを、紙葉類100の全面で取得する。データ取得部73は、得られた反射率のデータを、検出データ81として記憶部80に保存する。 The transport control unit 71 controls the transport unit 60 to transport the paper sheet 100, and the light emission control unit 72 and the data acquisition unit 73 repeatedly execute the cycle shown in FIG. The data acquisition unit 73 outputs data of reflectance when each of the red light, green light, blue light, first infrared light, second infrared light and third infrared light is irradiated to the paper sheet 100, Acquired on the entire surface of leaves 100. The data acquisition unit 73 stores the acquired reflectance data as the detection data 81 in the storage unit 80.
 判定部74は、記憶部80に保存された検出データ81及び判定用データ82を利用して、紙葉類100の種類や真偽を判定する。判定用データ82は、第1領域101の赤外反射インク、第2領域102の特殊インクA、第3領域103の特殊インクB、第4領域104の赤外吸収インクのそれぞれの特徴を示す基準データを含んでいる。 The determination unit 74 determines the type and authenticity of the sheet 100 using the detection data 81 and the determination data 82 stored in the storage unit 80. The determination data 82 is a reference indicating the features of the infrared reflective ink in the first area 101, the special ink A in the second area 102, the special ink B in the third area 103, and the infrared absorbing ink in the fourth area 104. Contains data.
 図8は、紙葉類100の種類や真偽を判定する方法を説明するための図である。図8(a)~(c)は、紙葉類100の第1領域101~第4領域104で得られる反射率の例を示している。縦軸が反射率、横軸が紙葉類100に照射した光の波長帯であって、ピーク波長など波長帯を代表する波長である。すなわち、横軸のIR1は第1赤外光のピーク波長であって第1赤外光の波長帯を示し、IR2は第2赤外光のピーク波長であって第2赤外光の波長帯を示し、IR3は第3赤外光のピーク波長であって第3赤外光の波長帯を示している。 FIG. 8 is a diagram for explaining a method of determining the type and authenticity of the sheet 100. As shown in FIG. FIGS. 8A to 8C show examples of the reflectance obtained in the first area 101 to the fourth area 104 of the paper sheet 100. FIG. The vertical axis is the reflectance, and the horizontal axis is the wavelength band of the light irradiated to the paper sheet 100, which is a wavelength that represents the wavelength band such as the peak wavelength. That is, IR1 on the horizontal axis is the peak wavelength of the first infrared light and indicates the wavelength band of the first infrared light, IR2 is the peak wavelength of the second infrared light and the wavelength band of the second infrared light And IR3 is the peak wavelength of the third infrared light and indicates the wavelength band of the third infrared light.
 図8(a)は、第1領域101で得られた反射率曲線301、第2領域102で得られた反射率曲線302、第3領域103で得られた反射率曲線303、第4領域104で得られた反射率曲線304を示している。 FIG. 8A shows the reflectance curve 301 obtained in the first region 101, the reflectance curve 302 obtained in the second region 102, the reflectance curve 303 obtained in the third region 103, and the fourth region 104. The reflectance curve 304 obtained by FIG.
 判定部74は、第1領域101で得られた、第1赤外光(IR1)の反射率301a、第2赤外光(IR2)の反射率301b、第3赤外光(IR3)の反射率301cが、判定用データ82として予め準備されている赤外反射インク、特殊インクA、特殊インクB、赤外吸収インクのいずれのインクの特徴と一致するかを判定する。例えば、第1領域101で得られた反射率301a、301b、301cの値が、所定範囲内に入っていることに基づいて、判定部74は、第1領域101は赤外反射インクで印刷された領域であると判定する。同様に、判定部74は、第4領域104で得られた反射率304a、304b、304cの値及び変動幅に基づいて、第4領域104は赤外吸収インクで印刷された領域であると判定する。すなわち、判定部74は、反射率の値が高く変動幅が小さい場合に赤外反射インクであると判定し、反射率の値が低く変動幅が小さい場合に赤外吸収インクであると判定する。 The determination unit 74 determines the reflectance 301a of the first infrared light (IR1), the reflectance 301b of the second infrared light (IR2), and the reflection of the third infrared light (IR3), which are obtained in the first region 101. It is determined which of the infrared reflective ink, the special ink A, the special ink B, and the infrared absorbing ink, which is prepared in advance as the determination data 82, the feature of the rate 301c matches. For example, based on the fact that the values of the reflectances 301a, 301b, and 301c obtained in the first area 101 fall within the predetermined range, the determination unit 74 prints the first area 101 with infrared reflective ink. It is determined that the area is Similarly, the determination unit 74 determines that the fourth area 104 is an area printed with infrared absorbing ink, based on the values of the reflectances 304a, 304b, and 304c obtained in the fourth area 104 and the fluctuation range. Do. That is, the determination unit 74 determines that the infrared reflection ink is used when the reflectance value is high and the fluctuation range is small, and determines that the infrared absorption ink is used when the reflectance value is low and the fluctuation range is small. .
 ただし、赤外反射インクが使用された領域及び赤外吸収インクが使用された領域を判定する方法が、これに限定されるものではない。例えば、第1領域101~第4領域104の反射率が異なる値を示すことを利用して判定を行う態様であってもよい。例えば、判定部74は、第2赤外光を照射した際に最大の反射率301bを示した第1領域101が赤外反射インクで印刷された領域であると判定する。また、判定部74は、最小の反射率304bを示した第4領域104が赤外吸収インクで印刷された領域であると判定する。 However, the method of determining the region in which the infrared reflective ink is used and the region in which the infrared absorbing ink is used is not limited to this. For example, the determination may be performed using the fact that the reflectances of the first region 101 to the fourth region 104 have different values. For example, the determination unit 74 determines that the first region 101 having the maximum reflectance 301 b when irradiated with the second infrared light is a region printed with infrared reflective ink. In addition, the determination unit 74 determines that the fourth area 104 having the minimum reflectance 304 b is an area printed with the infrared absorbing ink.
 こうして赤外反射インクで印刷された第1領域101及び赤外吸収インクで印刷された第4領域104を特定した後、続いて、判定部74は、第2領域102及び第3領域103の印刷に用いられているインクの判定を行う。 After identifying the first area 101 printed with the infrared reflective ink and the fourth area 104 printed with the infrared absorbing ink in this manner, the determination unit 74 subsequently prints the second area 102 and the third area 103. Of the ink used in the
 例えば、特殊インクAは、赤外光の波長が長いほど反射率が低下する右下がりの反射率曲線を示すものとする。一方、特殊インクBは、赤外光の波長が長いほど反射率が上昇する右上がりの反射率曲線を示すものとする。 For example, it is assumed that the special ink A exhibits a downward-sloping reflectance curve in which the reflectance decreases as the wavelength of infrared light increases. On the other hand, it is assumed that the special ink B shows a reflectance curve rising upward to the right where the reflectance increases as the wavelength of infrared light increases.
 図8(a)に示すように、第2領域102では、第1赤外光(IR1)の反射率302aが第2赤外光(IR2)の反射率302bより高い値を示し、この反射率302bが第3赤外光(IR3)の反射率302cより高い値を示す。すなわち、赤外光の波長が長いほど反射率が低下している。この結果に基づいて、判定部74は、第2領域102は、特殊インクAで印刷された領域であると判定する。また、第3領域103では、第1赤外光(IR1)の反射率303aが第2赤外光(IR2)の反射率303bより低い値を示し、この反射率303bが第3赤外光(IR3)の反射率303cより低い値を示す。すなわち、赤外光の波長が長いほど反射率が上昇している。この結果に基づいて、判定部74は、第3領域103は、特殊インクBで印刷された領域であると判定する。 As shown in FIG. 8A, in the second region 102, the reflectance 302a of the first infrared light (IR1) exhibits a value higher than the reflectance 302b of the second infrared light (IR2), and this reflectance Reference numeral 302 b indicates a value higher than the reflectance 302 c of the third infrared light (IR 3). That is, the reflectance decreases as the wavelength of infrared light increases. Based on this result, the determination unit 74 determines that the second area 102 is an area printed with the special ink A. In the third region 103, the reflectance 303a of the first infrared light (IR1) exhibits a value lower than the reflectance 303b of the second infrared light (IR2), and the reflectance 303b is a third infrared light ( It shows a value lower than the reflectance 303c of IR3). That is, the reflectance increases as the wavelength of infrared light increases. Based on the result, the determination unit 74 determines that the third area 103 is an area printed with the special ink B.
 波長の異なる第1赤外光、第2赤外光及び第3赤外光の反射率を取得することにより、特殊インクA及び特殊インクBとは異なるインクが使用されている場合も、各インクを区別して検出することができる。例えば、図8(b)に示すように、第2領域102では、第1赤外光(IR1)の反射率及び第3赤外光(IR3)の反射率に比べて第2赤外光(IR2)の反射率が低い谷型の反射率曲線402を示す特殊インクCが使用され、第3領域103では、右上がりの反射率曲線303を示す特殊インクBが使用されている場合も、3つの波長帯の反射率を比較することにより、これらを区別して検出することができる。 Even when inks different from the special ink A and the special ink B are used by acquiring the reflectances of the first infrared light, the second infrared light, and the third infrared light having different wavelengths, each ink Can be distinguished and detected. For example, as shown in FIG. 8B, in the second region 102, the second infrared light (the reflectance of the first infrared light (IR1) and the reflectance of the third infrared light (IR3) are compared with each other. In the third region 103, the special ink C showing the valley-shaped reflectance curve 402 with low reflectance of IR2) is used, and even when the special ink B showing the reflectance curve 303 rising rightward is used, 3 By comparing the reflectances of the two wavelength bands, they can be distinguished and detected.
 また、例えば、図8(c)に示すように、第2領域102では、谷型の反射率曲線402を示す特殊インクCが使用され、第3領域103では、第1赤外光(IR1)の反射率及び第3赤外光(IR3)の反射率に比べて第2赤外光(IR2)の反射率が高い山型の反射率曲線503を示す特殊インクDが使用されている場合も、3つの波長帯の反射率を比較することにより、これらを区別して検出することができる。 Also, for example, as shown in FIG. 8C, in the second region 102, the special ink C showing the valley-shaped reflectance curve 402 is used, and in the third region 103, the first infrared light (IR1) Even when the special ink D showing a mountain-shaped reflectance curve 503 in which the reflectance of the second infrared light (IR2) is higher than the reflectance of the third infrared light (IR3) and the reflectance of the third infrared light (IR3) is used. These can be distinguished and detected by comparing the reflectances of the three wavelength bands.
 このように、波長帯の異なる第1赤外光、第2赤外光及び第3赤外光の3種類の赤外光を紙葉類100に照射して反射率を取得することで、反射率波形が異なる赤外反射インク、赤外吸収インク、特殊インクA~Dのそれぞれを区別して検出することができる。 As described above, the reflection is obtained by irradiating the paper sheet 100 with three types of infrared light of the first infrared light, the second infrared light, and the third infrared light having different wavelength bands to obtain the reflectance. The infrared reflection ink, the infrared absorption ink, and the special inks A to D having different rate waveforms can be separately detected.
 反射率の値及び反射曲線の特徴からインクの種類を特定する判定方法は、特に限定されない。例えば、第1赤外光の反射率、第2赤外光の反射率、第3赤外光の反射率の各値が、各インクについて予め準備された各反射率の基準値と所定の範囲内で一致するか否かに基づいて、インクの種類を判定する。また、例えば、第1赤外光の反射率、第2赤外光の反射率、第3赤外光の反射率の各値の比率が、各インクについて予め準備された各反射率の値の比率と所定の範囲内で一致するか否かに基づいて、インクの種類を判定する。また、例えば、第1赤外光の反射率、第2赤外光の反射率、第3赤外光の反射率の各値の大小関係が、各インクについて予め準備された各反射率の値の大小関係と所定の範囲内で一致するか否かに基づいて、インクの種類を判定する。反射率の値、該値の比率や大小関係等、どのような特徴をどのように判定するかについては、検出対象とする各インクを区別可能な値や特徴等を利用して適宜設定される。 The determination method for identifying the type of ink from the reflectance value and the characteristics of the reflection curve is not particularly limited. For example, each value of the reflectance of the first infrared light, the reflectance of the second infrared light, and the reflectance of the third infrared light may be a reference value of each reflectance prepared in advance for each ink and a predetermined range. The type of ink is determined based on whether or not there is a match. In addition, for example, the ratio of each value of the reflectance of the first infrared light, the reflectance of the second infrared light, and the reflectance of the third infrared light is the value of each reflectance prepared in advance for each ink. The type of ink is determined based on whether or not the ratio matches within a predetermined range. Also, for example, the magnitude relationship between the respective values of the reflectance of the first infrared light, the reflectance of the second infrared light, and the reflectance of the third infrared light is the value of each reflectance prepared in advance for each ink. The type of ink is determined on the basis of whether or not the magnitude relationship between the values and the predetermined relationship with each other matches. How to determine the characteristics such as the reflectance value, the ratio of the values, the magnitude relationship, etc. is appropriately set using the values and features that can distinguish the inks to be detected. .
 判定用データ82には、紙葉類100の種類と、各領域101~104で使用されるインクの種類との関係を示す情報が含まれる。例えば、判定部74は、各領域101~104で使用されているインクの種類を判定した後、判定用データ82を参照して、紙葉類100の種類を判定する。また、例えば、判定部74は、可視領域で得られたデータ等に基づいて先に紙葉類100の種類を判定した後、判定用データ82を参照して、この種類の紙葉類で各領域101~104の印刷に使用されているはずのインクの種類を読み出す。そして、判定部74は、紙葉類100の各領域101~104で実際に検出したインクの種類が、読み出したインクの種類と一致しているか否かに基づいて、紙葉類100の真偽を判定する。 The determination data 82 includes information indicating the relationship between the type of paper sheet 100 and the type of ink used in each of the areas 101 to 104. For example, after determining the type of ink used in each of the areas 101 to 104, the determination unit 74 determines the type of the sheet 100 with reference to the determination data 82. Also, for example, after the determination unit 74 first determines the type of the paper sheet 100 based on the data obtained in the visible region, etc., the determination data 74 refers to the determination data 82, and each type of paper sheet is selected. The type of ink that should be used for printing in the areas 101 to 104 is read out. Then, the determination unit 74 determines the authenticity of the paper sheet 100 based on whether or not the ink type actually detected in each of the areas 101 to 104 of the paper sheet 100 matches the read ink type. Determine
 このように、第1領域101~第4領域104の各領域で、波長帯の異なる第1赤外光、第2赤外光及び第3赤外光の3種類の赤外光の反射特性を調べることにより、赤外反射インク、赤外吸収インク、その他の特殊インク等、各領域の印刷に使用されているインクの種類を判定することができる。また、各領域で使用されているインクの種類に基づいて、紙葉類100の種類や真偽を判定することができる。 As described above, in each of the first region 101 to the fourth region 104, reflection characteristics of three types of infrared light of the first infrared light, the second infrared light, and the third infrared light having different wavelength bands are obtained. By examining, it is possible to determine the type of ink used for printing each region, such as infrared reflection ink, infrared absorption ink, and other special ink. Further, the type and authenticity of the sheet 100 can be determined based on the type of ink used in each area.
 図4では、発光部20から紙葉類100に向けて、赤色光、緑色光、青色光、第1赤外光、第2赤外光及び第3赤外光を、順に照射して、受光部10を形成する各受光素子11で受光する例を示した。この例では、波長帯が異なる全ての種類の光を、1つの受光素子11で受光する。例えば赤色光を照射して紙葉類100の画像を生成した場合、紙葉類画像を形成する各画素データは、1つの受光素子11で取得したデータとなる。同様に、緑色光、青色光、第1赤外光、第2赤外光及び第3赤外光の紙葉類画像についても、紙葉類画像を形成する各画素データが、1つの受光素子11で取得したデータとなる。 In FIG. 4, red light, green light, blue light, first infrared light, second infrared light and third infrared light are sequentially emitted from the light emitting unit 20 to the paper sheet 100 to receive light. The example which light-receives by each light receiving element 11 which forms the part 10 was shown. In this example, all types of light having different wavelength bands are received by one light receiving element 11. For example, when an image of a sheet 100 is generated by emitting red light, each pixel data forming the sheet image is data acquired by one light receiving element 11. Similarly, with regard to paper sheets of green light, blue light, first infrared light, second infrared light and third infrared light, each pixel data forming a paper sheet image is one light receiving element It becomes the data acquired in 11.
 受光部10の構成は、図4に示す例に限定されない。図9は、受光部10の別の構成例を説明するための図である。図11は、受光部10のさらに別の構成例を説明するための図である。以下、これらの構成例について説明する。 The configuration of the light receiving unit 10 is not limited to the example shown in FIG. FIG. 9 is a diagram for explaining another configuration example of the light receiving unit 10. FIG. 11 is a diagram for explaining yet another configuration example of the light receiving unit 10. Hereinafter, these configuration examples will be described.
 図9(a)に示す受光部10は、主走査方向に複数の素子部111を並べて構成したラインセンサである。図9(b)及び図9(c)に示すように、各素子部111は、正方形形状の4つの受光素子112(112a~112d)を2行2列に配置して形成されている。各受光素子112a~112dには、バンドパスフィルタ113(113a~113d)が取り付けられている。これにより、各受光素子112a~112dは、各バンドパスフィルタ113a~113dを透過した所定波長帯の光のみを受光する。具体的には、バンドパスフィルタ113aは600~700nmの波長帯で赤色光を透過し、受光素子112aは、この波長帯の赤色光を受光する。バンドパスフィルタ113bは500~600nmの波長帯で緑色光を透過し、受光素子112bは、この波長帯の緑色光を受光する。バンドパスフィルタ113cは400~500nmの波長帯で青色光を透過し、受光素子112cは、この波長帯の青色光を受光する。バンドパスフィルタ113dは700~1100nmの波長帯で赤外光を透過し、受光素子112dは、この波長帯の赤外光を受光する。 The light receiving unit 10 illustrated in FIG. 9A is a line sensor configured by arranging a plurality of element units 111 in the main scanning direction. As shown in FIGS. 9B and 9C, each element section 111 is formed by arranging four square light receiving elements 112 (112a to 112d) in two rows and two columns. Bandpass filters 113 (113a to 113d) are attached to the respective light receiving elements 112a to 112d. Thus, the light receiving elements 112a to 112d receive only the light of the predetermined wavelength band transmitted through the band pass filters 113a to 113d. Specifically, the band pass filter 113a transmits red light in a wavelength band of 600 to 700 nm, and the light receiving element 112a receives red light in this wavelength band. The band pass filter 113b transmits green light in a wavelength band of 500 to 600 nm, and the light receiving element 112b receives green light in this wavelength band. The band pass filter 113c transmits blue light in a wavelength band of 400 to 500 nm, and the light receiving element 112c receives blue light in this wavelength band. The band pass filter 113d transmits infrared light in a wavelength band of 700 to 1100 nm, and the light receiving element 112d receives infrared light in this wavelength band.
 図10は、図9に示す受光部10を含むセンサ部1の動作を示すタイミングチャートである。搬送部60が搬送する紙葉類100がセンサ部1による検出位置を通過する間、センサ部1は、図10に示すフェーズ1~4を1サイクルとして、該サイクルを繰り返し実行する。これにより、データ取得部73は、紙葉類100の全面から反射光に係るデータを取得することができる。 FIG. 10 is a timing chart showing the operation of the sensor unit 1 including the light receiving unit 10 shown in FIG. While the sheet 100 transported by the transport unit 60 passes the detection position by the sensor unit 1, the sensor unit 1 repeatedly executes the cycle with phases 1 to 4 shown in FIG. 10 as one cycle. Thereby, the data acquisition unit 73 can acquire data relating to the reflected light from the entire surface of the paper sheet 100.
 図10に示すタイミングチャートは、紙葉類100に赤色光、緑色光及び青色光を同時に照射して、反射光に係るデータを、各波長帯に対応して設けられた複数の受光素子112a~112cを利用して同時に取得する点が、図6に示すタイミングチャートと異なっている。 In the timing chart shown in FIG. 10, the red light, the green light, and the blue light are simultaneously irradiated to the paper sheet 100, and the data relating to the reflected light is provided to the plurality of light receiving elements 112a to The point acquired simultaneously using 112c differs from the timing chart shown in FIG.
 具体的には、フェーズ1では、発光制御部72が、赤色光光源(R)21、緑色光光源(G)21及び青色光光源(B)21を同時に点灯する。紙葉類100に赤色光、緑色光及び青色光が照射されている間、受光部10は、紙葉類100で反射された赤色光、緑色光及び青色光を、それぞれ対応する受光素子112a~112cで同時に受光する。データ取得部73は、それぞれの受光素子112a~112cから、赤色光データ(R-Data)、緑色光データ(G-Data)及び青色光データ(B-Data)を取得する。フェーズ2では、発光制御部72が、第1赤外光光源(IR1)21のみを点灯する。発光部20が紙葉類に第1赤外光を照射している間、データ取得部73は、紙葉類100で反射された第1赤外光を受光素子112dで受光して、第1赤外光のデータ(IR1-Data)を取得する。また、データ取得部73は、フェーズ1で取得した赤色光データ(R-Data)、緑色光データ(G-Data)及び青色光データ(B-Data)を、検出データ81として記憶部80に保存する。フェーズ3では、発光制御部72が、第2赤外光光源(IR2)21のみを点灯する。発光部20が紙葉類に第2赤外光を照射している間、データ取得部73は、紙葉類100で反射された第2赤外光を受光素子112dで受光して、第2赤外光のデータ(IR2-Data)を取得する。また、データ取得部73は、フェーズ2で取得した第1赤外光データ(IR1-Data)を、検出データ81として記憶部80に保存する。フェーズ4では、発光制御部72が、第3赤外光光源(IR3)21のみを点灯する。発光部20が紙葉類に第3赤外光を照射している間、データ取得部73は、紙葉類100で反射された第3赤外光を受光素子112dで受光して、第3赤外光のデータ(IR1-Data)を取得する。また、データ取得部73は、フェーズ3で取得した第2赤外光データ(IR2-Data)を、検出データ81として記憶部80に保存する。なお、フェーズ4で取得した第3赤外光データ(IR3-Data)は、続いて行われる次のサイクルのフェーズ1の処理時に、データ取得部73が、検出データ81として記憶部80に保存する。紙葉類100が、センサ部1による検出位置を通過する間、データを繰り返し取得することにより、紙葉類100全面で、反射光に係るデータを取得することができる。 Specifically, in phase 1, the light emission control unit 72 simultaneously turns on the red light source (R) 21, the green light source (G) 21, and the blue light source (B) 21. While the red light, the green light and the blue light are irradiated to the paper sheet 100, the light receiving unit 10 receives the red light, the green light and the blue light reflected by the paper sheet 100, respectively. Light is received simultaneously at 112c. The data acquisition unit 73 acquires red light data (R-Data), green light data (G-Data) and blue light data (B-Data) from the respective light receiving elements 112a to 112c. In phase 2, the light emission control unit 72 turns on only the first infrared light source (IR1) 21. While the light emitting unit 20 irradiates the paper with the first infrared light, the data acquiring unit 73 receives the first infrared light reflected by the paper 100 with the light receiving element 112 d, and Acquire infrared light data (IR1-Data). In addition, the data acquisition unit 73 stores the red light data (R-Data), the green light data (G-Data), and the blue light data (B-Data) acquired in phase 1 in the storage unit 80 as the detection data 81. Do. In phase 3, the light emission control unit 72 turns on only the second infrared light source (IR2) 21. While the light emitting unit 20 irradiates the paper with the second infrared light, the data acquiring unit 73 receives the second infrared light reflected by the paper 100 with the light receiving element 112 d, Acquire infrared light data (IR2-Data). Further, the data acquisition unit 73 stores the first infrared light data (IR 1 -Data) acquired in phase 2 in the storage unit 80 as detection data 81. In the phase 4, the light emission control unit 72 turns on only the third infrared light source (IR3) 21. While the light emitting unit 20 irradiates the paper with the third infrared light, the data acquiring unit 73 receives the third infrared light reflected by the paper 100 with the light receiving element 112 d, Acquire infrared light data (IR1-Data). Further, the data acquisition unit 73 stores the second infrared light data (IR2-Data) acquired in phase 3 in the storage unit 80 as detection data 81. The third infrared light data (IR3-Data) acquired in phase 4 is stored in the storage unit 80 as detection data 81 at the time of processing of phase 1 of the next cycle performed subsequently. . By repeatedly acquiring data while the paper sheet 100 passes the detection position by the sensor unit 1, data relating to the reflected light can be acquired on the entire surface of the paper sheet 100.
 このように、図9示す構成の受光部10でも、図4に示す構成の受光部10の場合と同様に、紙葉類100で反射された赤色光、緑色光、青色光、第1赤外光、第2赤外光及び第3赤外光を検出して、各波長帯のデータを得ることができる。これにより、上述したように、紙葉類100上の部分領域で使用されているインクの種類を判定したり、紙葉類100の種類や真偽を判定したりすることができる。 Thus, even in the light receiving unit 10 having the configuration shown in FIG. 9, red light, green light, blue light, and the first infrared light reflected by the paper sheet 100 are the same as in the light receiving unit 10 having the configuration shown in FIG. The light, the second infrared light, and the third infrared light can be detected to obtain data of each wavelength band. As a result, as described above, the type of ink used in the partial area on the sheet 100 can be determined, and the type and authenticity of the sheet 100 can be determined.
 図11(a)に示す受光部10は、主走査方向に複数の素子部211を並べて構成したラインセンサである。図11(b)及び図11(c)に示すように、素子部211は、正方形形状を有し、矩形形状の3つの受光素子212(212a~212c)を配置して形成されている。 The light receiving unit 10 illustrated in FIG. 11A is a line sensor configured by arranging a plurality of element units 211 in the main scanning direction. As shown in FIGS. 11B and 11C, the element portion 211 has a square shape, and is formed by arranging three rectangular light receiving elements 212 (212a to 212c).
 各受光素子212a~212cには、バンドパスフィルタ213(213a~213c)が取り付けられている。これにより、各受光素子212a~212cは、各バンドパスフィルタ213a~213cを透過した所定波長帯の光のみを受光する。具体的には、バンドパスフィルタ213aは600~1100nmの波長帯で赤色光及び赤外光を透過し、受光素子212aは、この波長帯で赤色光及び赤外光を受光する。バンドパスフィルタ213bは500~600nmの波長帯で緑色光を透過し、受光素子212aは、この波長帯で緑色光を受光する。バンドパスフィルタ213cは400~500nmの波長帯で青色光を透過し、受光素子212cは、この波長帯で青色光を受光する。 Band pass filters 213 (213a to 213c) are attached to the respective light receiving elements 212a to 212c. Thus, the light receiving elements 212a to 212c receive only the light of the predetermined wavelength band transmitted through the band pass filters 213a to 213c. Specifically, the band pass filter 213a transmits red light and infrared light in a wavelength band of 600 to 1100 nm, and the light receiving element 212a receives red light and infrared light in this wavelength band. The band pass filter 213b transmits green light in a wavelength band of 500 to 600 nm, and the light receiving element 212a receives green light in this wavelength band. The band pass filter 213c transmits blue light in a wavelength band of 400 to 500 nm, and the light receiving element 212c receives blue light in this wavelength band.
 図12は、図11に示す受光部10を含むセンサ部1の動作を示すタイミングチャートである。搬送部60が搬送する紙葉類100がセンサ部1による検出位置を通過する間に、センサ部1が、図12に示すフェーズ1~4を1サイクルとして、該サイクルを繰り返し実行する。これにより、データ取得部73は、紙葉類100の全面から反射光に係るデータを取得することができる。 FIG. 12 is a timing chart showing the operation of the sensor unit 1 including the light receiving unit 10 shown in FIG. While the paper sheet 100 transported by the transport unit 60 passes the detection position by the sensor unit 1, the sensor unit 1 repeatedly executes the cycle with phases 1 to 4 shown in FIG. 12 as one cycle. Thereby, the data acquisition unit 73 can acquire data relating to the reflected light from the entire surface of the paper sheet 100.
 図12に示すタイミングチャートは、赤外光、第1赤外光、第2赤外光及び第3赤外光を照射した際の反射光に係るデータを同じ受光素子212aで受光する点が、図10に示すタイミングチャートと異なっている。 The timing chart shown in FIG. 12 is that the same light receiving element 212a receives data relating to the reflected light when the infrared light, the first infrared light, the second infrared light and the third infrared light are irradiated, This is different from the timing chart shown in FIG.
 具体的には、フェーズ1では、発光制御部72が、赤色光光源(R)21、緑色光光源(G)21及び青色光光源(B)21を同時に点灯する。紙葉類100に赤色光、緑色光及び青色光が照射されている間、受光部10は、紙葉類100で反射された赤色光、緑色光及び青色光を、それぞれ対応する受光素子212a~212cで同時に受光する。データ取得部73は、それぞれの受光素子212a~212cから、赤色光データ(R-Data)、緑色光データ(G-Data)及び青色光データ(B-Data)を取得する。フェーズ2では、発光制御部72が、第1赤外光光源(IR1)21のみを点灯する。発光部20が紙葉類に第1赤外光を照射している間、データ取得部73は、紙葉類100で反射された第1赤外光を受光素子212aで受光して、第1赤外光のデータ(IR1-Data)を取得する。また、データ取得部73は、フェーズ1で取得した赤色光データ(R-Data)、緑色光データ(G-Data)及び青色光データ(B-Data)を、検出データ81として記憶部80に保存する。フェーズ3では、発光制御部72が、第2赤外光光源(IR2)21のみを点灯する。発光部20が紙葉類に第2赤外光を照射している間、データ取得部73は、紙葉類100で反射された第2赤外光を受光素子212aで受光して、第2赤外光のデータ(IR2-Data)を取得する。また、データ取得部73は、フェーズ2で取得した第1赤外光データ(IR1-Data)を、検出データ81として記憶部80に保存する。フェーズ4では、発光制御部72が、第3赤外光光源(IR3)21のみを点灯する。発光部20が紙葉類に第3赤外光を照射している間、データ取得部73は、紙葉類100で反射された第3赤外光を受光素子212aで受光して、第3赤外光のデータ(IR1-Data)を取得する。また、データ取得部73は、フェーズ3で取得した第2赤外光データ(IR2-Data)を、検出データ81として記憶部80に保存する。なお、フェーズ4で取得した第3赤外光データ(IR3-Data)は、続いて行われる次のサイクルのフェーズ1の処理時に、データ取得部73が、検出データ81として記憶部80に保存する。紙葉類100が、センサ部1による検出位置を通過する間、データを繰り返し取得することにより、紙葉類100全面で、反射光に係るデータを取得することができる。 Specifically, in phase 1, the light emission control unit 72 simultaneously turns on the red light source (R) 21, the green light source (G) 21, and the blue light source (B) 21. While the red light, the green light and the blue light are irradiated to the paper sheet 100, the light receiving unit 10 receives the red light, the green light and the blue light reflected by the paper sheet 100, respectively. Light is received simultaneously at 212c. The data acquisition unit 73 acquires red light data (R-Data), green light data (G-Data) and blue light data (B-Data) from the respective light receiving elements 212a to 212c. In phase 2, the light emission control unit 72 turns on only the first infrared light source (IR1) 21. While the light emitting unit 20 irradiates the paper with the first infrared light, the data acquiring unit 73 receives the first infrared light reflected by the paper 100 with the light receiving element 212 a, and Acquire infrared light data (IR1-Data). In addition, the data acquisition unit 73 stores the red light data (R-Data), the green light data (G-Data), and the blue light data (B-Data) acquired in phase 1 in the storage unit 80 as the detection data 81. Do. In phase 3, the light emission control unit 72 turns on only the second infrared light source (IR2) 21. While the light emitting unit 20 irradiates the paper with the second infrared light, the data acquiring unit 73 receives the second infrared light reflected by the paper 100 with the light receiving element 212 a, and Acquire infrared light data (IR2-Data). Further, the data acquisition unit 73 stores the first infrared light data (IR 1 -Data) acquired in phase 2 in the storage unit 80 as detection data 81. In the phase 4, the light emission control unit 72 turns on only the third infrared light source (IR3) 21. While the light emitting unit 20 irradiates the paper with the third infrared light, the data acquiring unit 73 receives the third infrared light reflected by the paper 100 with the light receiving element 212 a, and Acquire infrared light data (IR1-Data). Further, the data acquisition unit 73 stores the second infrared light data (IR2-Data) acquired in phase 3 in the storage unit 80 as detection data 81. The third infrared light data (IR3-Data) acquired in phase 4 is stored in the storage unit 80 as detection data 81 at the time of processing of phase 1 of the next cycle performed subsequently. . By repeatedly acquiring data while the paper sheet 100 passes the detection position by the sensor unit 1, data relating to the reflected light can be acquired on the entire surface of the paper sheet 100.
 このように、図11に示す構成の受光部10でも、図4に示す構成の受光部10の場合と同様に、紙葉類100で反射された赤色光、緑色光、青色光、第1赤外光、第2赤外光及び第3赤外光を検出して、各波長帯のデータを得ることができる。これにより、上述したように、紙葉類100上の部分領域で使用されているインクの種類を判定したり、紙葉類100の種類や真偽を判定したりすることができる。 Thus, even in the light receiving unit 10 having the configuration shown in FIG. 11, red light, green light, blue light, and first red reflected by the paper sheet 100 are the same as in the light receiving unit 10 having the configuration shown in FIG. The ambient light, the second infrared light, and the third infrared light can be detected to obtain data of each wavelength band. As a result, as described above, the type of ink used in the partial area on the sheet 100 can be determined, and the type and authenticity of the sheet 100 can be determined.
 本実施形態では、図2に示すように搬送路61の上側に1つのセンサ部1を設ける例を示したが、センサ部1の数及び配置位置がこれに限定されるものではない。例えば、搬送路61の下側にもセンサ部1を配置して、紙葉類100の上面と下面の両方で、反射光に係るデータを取得する態様であってもよい。また、図2に示す構成に加えて、搬送路61の下側に受光部10を配置して、上述した反射光の強度に加えて、紙葉類100を透過した光の強度を検出する態様であってもよい。 Although the example which provides one sensor part 1 above the conveyance path 61 was shown in this embodiment as shown in FIG. 2, the number and the arrangement position of the sensor part 1 are not limited to this. For example, the sensor unit 1 may be disposed below the transport path 61, and data relating to the reflected light may be acquired on both the upper surface and the lower surface of the paper sheet 100. Further, in addition to the configuration shown in FIG. 2, an embodiment in which the light receiving unit 10 is disposed below the transport path 61 and in addition to the intensity of the reflected light described above, the intensity of light transmitted through the paper sheet 100 is detected. It may be
 本実施形態では、波長帯の代表値にピーク波長を用いたが、波長帯の中心波長を用いてもよい。具体的には、波長帯の半値全幅の中央値を、波長帯を代表する中心波長としてもよい。 In the present embodiment, the peak wavelength is used as the representative value of the wavelength band, but the central wavelength of the wavelength band may be used. Specifically, the central value of the full width at half maximum of the wavelength band may be used as the central wavelength representing the wavelength band.
 本実施形態では、シリコン(Si)フォトダイオードが赤外領域で検出可能な範囲を780nm~1100nmとし、第1赤外光、第2赤外光及び第3赤外光のピーク波長が、この範囲内にある場合を説明したが、各ピーク波長又は各中心波長が、この範囲内にあることが必須ではない。シリコン(Si)フォトダイオードが赤外領域で検出可能な780nm~1100nmの範囲内に、第1赤外光、第2赤外光及び第3赤外光の各波長帯の全部又は一部が含まれていれば、複数の赤外波長帯それぞれで光の強度を検出することが可能である。例えば、第3赤外光の中心波長が1120nmで半値全幅が100nmであれば、第3赤外光の波長帯の光の強度を検出することができる。 In the present embodiment, the range in which the silicon (Si) photodiode can detect in the infrared region is 780 nm to 1100 nm, and the peak wavelengths of the first infrared light, the second infrared light, and the third infrared light are in this range. Although the case has been described, it is not essential that each peak wavelength or each central wavelength be within this range. All or a part of each wavelength band of the first infrared light, the second infrared light, and the third infrared light is included in the range of 780 nm to 1100 nm in which the silicon (Si) photodiode can detect in the infrared region. If so, it is possible to detect the light intensity in each of a plurality of infrared wavelength bands. For example, if the center wavelength of the third infrared light is 1120 nm and the full width at half maximum is 100 nm, it is possible to detect the intensity of the light in the wavelength band of the third infrared light.
 また、シリコン(Si)フォトダイオードが検出可能な波長の上限は理論上1100nmであるが、上限付近の感度は小さいので、780nm~1000nm範囲内に、第1赤外光、第2赤外光及び第3赤外光の各波長帯の全部又は一部が含まれるようにしてもよい。 The upper limit of the wavelength detectable by the silicon (Si) photodiode is theoretically 1100 nm, but the sensitivity near the upper limit is small. Therefore, the first infrared light, the second infrared light and the second infrared light can be detected in the range of 780 nm to 1000 nm. All or part of each wavelength band of the third infrared light may be included.
 さらに、照射する赤外光の波長帯は、赤外領域下限の780nm以上にあることが望ましい。赤外光の波長帯に可視領域が含まれると、赤色インクなど赤外領域に近くて赤外領域に特徴の無いインクの影響を受けるためである。この影響を避けるため、例えば、第1赤外光の中心波長が800nmのとき、半値全幅が40nm以下になるように光源を設計するのがよい。 Furthermore, it is desirable that the wavelength band of the infrared light to be irradiated be 780 nm or more of the lower limit of the infrared region. This is because if the visible range is included in the wavelength band of infrared light, it is affected by the ink such as red ink which is close to the infrared range and has no feature in the infrared range. In order to avoid this influence, for example, when the central wavelength of the first infrared light is 800 nm, it is preferable to design the light source so that the full width at half maximum is 40 nm or less.
 紙葉類100に照射された第1赤外光、第2赤外光及び第3赤外光に対応して、赤外光を受光する受光素子が感度を持つ波長帯は、赤外領域下限の780nm以上にあることが望ましい。この受光素子が感度を持つ波長帯に可視領域が含まれると、赤色インクなど赤外領域に近くて赤外領域に特徴の無いインクの影響を受けるためである。この影響を避けるため、例えば、赤外光を受光する受光素子112dの受光感度において、半値全幅の下限値が780nm以上になるようにバンドパスフィルタ113dを設計するとよい。また、バンドパスフィルタ113dが透過する波長の下限を780nm以上としてもよい。 The wavelength band to which the light receiving element receiving infrared light has sensitivity corresponding to the first infrared light, the second infrared light and the third infrared light irradiated to the paper sheet 100 is the lower limit of the infrared region Of 780 nm or more is desirable. When the visible region is included in the wavelength band in which the light receiving element has sensitivity, the light receiving element is influenced by the ink such as red ink which is close to the infrared region and has no feature in the infrared region. In order to avoid this influence, for example, in the light receiving sensitivity of the light receiving element 112d that receives infrared light, the band pass filter 113d may be designed so that the lower limit value of the full width at half maximum is 780 nm or more. In addition, the lower limit of the wavelength transmitted by the band pass filter 113d may be 780 nm or more.
 本実施形態では、複数の赤外波長帯それぞれにおいて同一の受光素子で光の強度を検出する例を説明したが、複数の赤外波長帯それぞれに応じたバンドパスフィルを備えた複数の受光素子で光の強度を検出してもよい。このとき、赤外光源は赤外波長帯毎に設けてもよく、各赤外波長帯に対応して幅広く赤外光を照射できる1つの赤外光源を用いてもよい。 In the present embodiment, an example in which the intensity of light is detected by the same light receiving element in each of a plurality of infrared wavelength bands has been described, but a plurality of light receiving elements provided with band pass filters corresponding to each of a plurality of infrared wavelength bands The light intensity may be detected by At this time, the infrared light source may be provided for each infrared wavelength band, or one infrared light source capable of emitting infrared light widely corresponding to each infrared wavelength band may be used.
 本実施形態では、3つの赤外波長帯で光の強度を検出する例を説明したが、光の強度を検出する赤外波長帯は、検出対象に応じて4つ以上としてもよい。 In the present embodiment, an example in which the light intensity is detected in three infrared wavelength bands has been described, but the infrared wavelength band for detecting the light intensity may be four or more depending on the detection target.
 上述したように、本実施形態に係るセンサ部1によれば、波長の異なる複数の赤外光を紙葉類に照射して、紙葉類の光学特性を調べることができる。例えば、波長の異なる3種類の赤外光を紙葉類に照射することにより、赤外領域で特徴的な光学特性を示す複数種類のインクを区別して検出することができる。 As described above, according to the sensor unit 1 according to the present embodiment, it is possible to irradiate a sheet with a plurality of infrared light of different wavelengths and to investigate the optical characteristics of the sheet. For example, by irradiating paper sheets with three types of infrared light having different wavelengths, it is possible to distinguish and detect a plurality of types of ink having characteristic optical characteristics in the infrared region.
 以上のように、本発明に係る光センサ、光センサモジュール及び紙葉類処理装置は、赤外領域における紙葉類の光学特性を高精度に検出するために有用である。 As described above, the light sensor, the light sensor module, and the sheet processing apparatus according to the present invention are useful for detecting the optical characteristics of the sheet in the infrared region with high accuracy.
1 センサ部
10 受光部
11、112、212 受光素子
20 発光部
21 光源
21a 発光素子
22 導光体
30 集光レンズ
31 ロッドレンズ
40 基板
50 窓部
60 搬送部
61 搬送路
70 制御部
71 搬送制御部
72 発光制御部
73 データ取得部
74 判定部
75 出力部
80 記憶部
111、211 素子部
113、213 バンドパスフィルタ
211 素子部
212 受光素子
DESCRIPTION OF SYMBOLS 1 sensor unit 10 light receiving unit 11, 112, 212 light receiving element 20 light emitting unit 21 light source 21a light emitting element 22 light guiding member 30 light collecting member 31 rod lens 40 substrate 50 window unit 60 conveyance unit 61 conveyance path 70 control unit 71 conveyance control unit 72 light emission control unit 73 data acquisition unit 74 determination unit 75 output unit 80 storage unit 111, 211 element unit 113, 213 band pass filter 211 element unit 212 light receiving element

Claims (11)

  1.  波長が1100nm以下の赤外領域に含まれる少なくとも3つの赤外波長帯に対応する発光素子を有する発光部と、
     前記少なくとも3つの赤外波長帯に感度を持つ受光素子を有し、前記少なくとも3つの赤外波長帯それぞれの光の強度を検出する受光部と
    を備えることを特徴とする光センサ。
    A light emitting portion having a light emitting element corresponding to at least three infrared wavelength bands included in an infrared region having a wavelength of 1100 nm or less;
    An optical sensor comprising: a light receiving element having sensitivity to the at least three infrared wavelength bands; and a light receiving section for detecting the intensity of light of each of the at least three infrared wavelength bands.
  2.  前記受光部は、前記少なくとも3つの赤外波長帯それぞれの光の強度を、同一の受光素子で検出することを特徴とする請求項1に記載の光センサ。 The optical sensor according to claim 1, wherein the light receiving unit detects the intensity of light in each of the at least three infrared wavelength bands with the same light receiving element.
  3.  前記受光部は、前記少なくとも3つの赤外波長帯の光の強度を、少なくとも3つの受光素子で検出することを特徴とする請求項1に記載の光センサ。 The optical sensor according to claim 1, wherein the light receiving unit detects the intensity of the light in the at least three infrared wavelength bands with at least three light receiving elements.
  4.  前記発光部は、400~700nmの波長範囲に含まれる少なくとも1つの可視波長帯に対応する発光素子をさらに有し、
     前記受光素子は、さらに前記可視波長帯に感度を持つ
    ことを特徴とする請求項1~3のいずれか1項に記載の光センサ。
    The light emitting unit further includes a light emitting element corresponding to at least one visible wavelength band included in a wavelength range of 400 to 700 nm,
    The light sensor according to any one of claims 1 to 3, wherein the light receiving element is further sensitive to the visible wavelength band.
  5.  前記受光素子は、シリコンフォトダイオードであることを特徴とする請求項1~4のいずれか1項に記載の光センサ。 The light sensor according to any one of claims 1 to 4, wherein the light receiving element is a silicon photodiode.
  6.  前記少なくとも3つの赤外波長帯は、波長が1000nm以下の赤外領域に含まれることを特徴とする請求項1~5のいずれか1項に記載の光センサ。 The optical sensor according to any one of claims 1 to 5, wherein the at least three infrared wavelength bands are included in an infrared region having a wavelength of 1000 nm or less.
  7.  前記少なくとも3つの赤外波長帯は、波長が760nm以上の赤外領域に含まれることを特徴とする請求項6に記載の光センサ。 The light sensor according to claim 6, wherein the at least three infrared wavelength bands are included in an infrared region having a wavelength of 760 nm or more.
  8.  前記赤外領域は、波長が780nm以上であることを特徴とする請求項1~5のいずれか1項に記載の光センサ。 The optical sensor according to any one of claims 1 to 5, wherein the infrared region has a wavelength of 780 nm or more.
  9.  前記赤外領域は、波長が760nm以上であることを特徴とする請求項8に記載の光センサ。 The optical sensor according to claim 8, wherein the infrared region has a wavelength of 760 nm or more.
  10.  請求項1~9のいずれか1項に記載の光センサと、
     前記光センサで検出した光の強度を外部へ出力する出力部と
    を備え、
     前記光センサの前記受光部は、複数の前記受光素子を直線状に配置した構造を有する
    ことを特徴とする光センサモジュール。
    An optical sensor according to any one of claims 1 to 9;
    And an output unit for outputting the intensity of light detected by the light sensor to the outside,
    An optical sensor module, wherein the light receiving portion of the optical sensor has a structure in which a plurality of the light receiving elements are linearly arranged.
  11.  請求項1~9のいずれか1項に記載の光センサと、
     セキュリティ特徴を有する紙葉類を搬送する搬送部と、
     前記光センサによって、前記搬送部が搬送する紙葉類のセキュリティ特徴から取得した前記少なくとも3つの赤外波長帯の光の強度に基づいて、前記セキュリティ特徴の真偽を判定する判定部と
    を備えることを特徴とする紙葉類処理装置。
    An optical sensor according to any one of claims 1 to 9;
    A transport unit for transporting a sheet having security features;
    And a determination unit that determines the authenticity of the security feature based on the light intensity of the at least three infrared wavelength bands acquired from the security feature of the paper sheet transported by the transport unit by the optical sensor. A paper processing apparatus characterized in that.
PCT/JP2017/038226 2017-10-23 2017-10-23 Optical sensor, optical sensor module, and paper processing device WO2019082251A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038226 WO2019082251A1 (en) 2017-10-23 2017-10-23 Optical sensor, optical sensor module, and paper processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038226 WO2019082251A1 (en) 2017-10-23 2017-10-23 Optical sensor, optical sensor module, and paper processing device

Publications (1)

Publication Number Publication Date
WO2019082251A1 true WO2019082251A1 (en) 2019-05-02

Family

ID=66246301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038226 WO2019082251A1 (en) 2017-10-23 2017-10-23 Optical sensor, optical sensor module, and paper processing device

Country Status (1)

Country Link
WO (1) WO2019082251A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4050580A1 (en) 2021-02-25 2022-08-31 Glory Ltd. Sheet recognition unit and sheet recognition method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023110A (en) * 2010-07-12 2012-02-02 Vienex Corp Ultraviolet light source and optical reader using the same
JP2016053783A (en) * 2014-09-03 2016-04-14 グローリー株式会社 Light receiving sensor, sensor module, and paper sheet processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023110A (en) * 2010-07-12 2012-02-02 Vienex Corp Ultraviolet light source and optical reader using the same
JP2016053783A (en) * 2014-09-03 2016-04-14 グローリー株式会社 Light receiving sensor, sensor module, and paper sheet processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4050580A1 (en) 2021-02-25 2022-08-31 Glory Ltd. Sheet recognition unit and sheet recognition method

Similar Documents

Publication Publication Date Title
EP3147873B1 (en) Fluorescence/phosphorescence detection device
JP6242570B2 (en) Image reading apparatus and paper sheet processing apparatus
JP5367509B2 (en) Photodetection device and paper sheet processing apparatus provided with the photodetection device
JP4320656B2 (en) Image reading device
JP4484211B2 (en) Optical sensor device for detecting optical characteristics of valuable paper
JP4703403B2 (en) Inspection device
AU2009259721A1 (en) Sensor device for the spectrally resolved capture of valuable documents and a corresponding method
US6881962B2 (en) Paper fluorescence detection sensor
US20110273717A1 (en) Device and method for detecting reflected and/or emitted light of an object
EP3447740A1 (en) Invisible-feature detection device, sheet recognition device, sheet handling device, print inspection device, and invisible-feature detection method
JP2001052232A (en) Paper sheet genuine/false discrimination device
RU2318240C2 (en) Device for checking banknotes
JPH11179288A (en) Level detector and treating device using the same
EP3680867A1 (en) Image acquisition device, sheet handling device, banknote handling device, and image acquisition method
US20230015962A1 (en) Optical sensor and sheet recognition unit
WO2019082251A1 (en) Optical sensor, optical sensor module, and paper processing device
EP2549445A1 (en) Genuine/counterfeit distinguishing unit, genuine/counterfeit distinguishing method, and fluorescent sensor
JP6009992B2 (en) Paper sheet identification device and optical sensor device
WO2019194152A1 (en) Light detection sensor, light detection device, sheets processing device, and light detection method
JP4074917B1 (en) Paper sheet identification device
JP7218429B2 (en) Image Acquisition Apparatus, Paper Sheet Processing Apparatus, and Image Acquisition Method
JPH0944633A (en) Paper sheet discriminating device
JP7418542B2 (en) Optical sensor, paper sheet identification device, and paper sheet processing device
JP2010273302A (en) Image reading apparatus
US20240029497A1 (en) Multifeed detection device and multifeed detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP