WO2019080784A1 - 智能空气净化系统 - Google Patents

智能空气净化系统

Info

Publication number
WO2019080784A1
WO2019080784A1 PCT/CN2018/111109 CN2018111109W WO2019080784A1 WO 2019080784 A1 WO2019080784 A1 WO 2019080784A1 CN 2018111109 W CN2018111109 W CN 2018111109W WO 2019080784 A1 WO2019080784 A1 WO 2019080784A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter element
filter
data
module
control module
Prior art date
Application number
PCT/CN2018/111109
Other languages
English (en)
French (fr)
Inventor
钟耀武
张帆
李清恩
冯征祥
皮小春
Original Assignee
佛山市顺德区阿波罗环保器材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区阿波罗环保器材有限公司 filed Critical 佛山市顺德区阿波罗环保器材有限公司
Publication of WO2019080784A1 publication Critical patent/WO2019080784A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to the field of air purification, and in particular to an intelligent air purification system.
  • the life in the filter element used in the calculation product is often monitored by a countdown method.
  • the service life of the filter element is different for different use environments. For example, in the newly renovated new house, the service life of the formaldehyde filter core will be greatly shortened, and in the area where the air is better, the service life of the filter element will increase for a long time. The simple use of the countdown method does not accurately determine the service life in the filter element.
  • Manufacturers or service providers should do after-sales service to assist users in identifying counterfeit filter elements or filter elements with service life; when users encounter the above-mentioned counterfeit filter elements or filter elements with service life.
  • Manufacturers or service providers need to know the condition of the filter element in the user's air purification equipment in time to carry out better after-sales service, and combine intelligent air purification equipment and after-sales service that can distinguish the authenticity of the filter element and the service life of the filter element, and benefit the user. To this end, there is an urgent need for an intelligent air purification system to meet these requirements.
  • the object of the present invention is to provide an intelligent air purification system, including a cloud server, a user terminal and an air purifier, the air purifier can identify the authenticity of the filter element and the service life of the filter element, and the air purifier will also identify the filter element and the life of the filter element.
  • the data is sent to the cloud server, and the user terminal can learn the authenticity of the filter element and its service life from the cloud server.
  • the manufacturer or the service provider can monitor the service life of the filter element and the authenticity of the filter element through the cloud server to perform more. Good after-sales service.
  • an intelligent air purification system comprising:
  • Cloud server Cloud server, user terminal and air purifier
  • the air purifier includes a body, a filter element identification component, and a communication module, a control module, an interaction module, and a filter life detecting module all disposed on the body, the filter element identification component including a filter element identification device disposed on the body And a filter element chip disposed on the filter element of the air purifier;
  • the control module is electrically connected to the filter identification device, the communication module, the filter life detecting module, the interaction module, and the fan of the purifier; the communication module is respectively wirelessly connected to the user terminal and the cloud server, The filter identification device and the filter element chip wireless communication connection;
  • the control module processes the filter identification data generated by the filter identification device and sends the filter identification data to the interaction module and the communication module respectively, and the control module processes the filter life data generated by the filter life detection module and separately transmits Up to the interaction module and the communication module, the communication module wirelessly transmits the filter identification data and the filter life data to the cloud server, wherein the user terminal acquires the filter identification data and the filter element through the cloud server.
  • the interaction module processes the filter identification data and the filter life data and emits an acoustic signal or an optical signal to the outside.
  • the filter life detecting module includes a harmful gas concentration detecting device, and the harmful gas concentration detecting device includes a plurality of harmful gas concentration sensors and a first calculating unit, wherein the first calculating unit is electrically connected to the plurality of The harmful gas concentration sensor, wherein the plurality of harmful gas concentration sensors are respectively disposed at an air inlet end and an air outlet end of the filter element;
  • the first calculating unit generates the filter life data by calculating a ratio of harmful gas concentration of the air inlet end and the air outlet end of the filter element, and the first calculating unit sends the filter element life data to the control module.
  • the filter life detecting module further includes a differential pressure meter, the differential pressure meter includes a plurality of pressure sensors and a second calculating unit, wherein the second calculating unit is electrically connected to the plurality of the pressure sensors, respectively.
  • a plurality of the pressure sensors are respectively disposed at an air inlet end and an air outlet end of the filter element;
  • the second calculating unit generates the filter life data by calculating an air pressure difference between the air inlet end and the air outlet end of the filter element, and the second calculating unit sends the filter element life data to the control module.
  • the filter life detecting module further comprises a particulate matter concentration detecting device, wherein the particulate matter concentration detecting device comprises a plurality of first particulate matter concentration sensors and a third calculating unit, wherein the third calculating unit is electrically connected to the plurality of The first particulate matter concentration sensor, a plurality of the first particulate matter concentration sensors are respectively disposed at an air inlet end and an air outlet end of the filter element;
  • the third calculating unit generates the filter life data by calculating a ratio of the concentration of the particulate matter at the air inlet end and the air outlet end of the filter element, and the third calculating unit transmits the filter element life data to the control module.
  • the filter element identification chip is an electronic tag
  • the filter element identification device is an electronic tag data reader/writer
  • the electronic tag data reader/writer and the electronic tag are paired and identified by data exchange.
  • the air purifier further includes a positioning module disposed on the body, the positioning module being electrically connected to the control module;
  • the positioning module acquires current geographic location information of the purifier and sends the information to the control module, and the control module obtains environmental monitoring data of the current geographic location through the communication module by using the current geographic location information;
  • the control module sends the environmental monitoring data to the interaction module, and the interaction module processes the environmental monitoring data and sends an optical signal or an acoustic signal to the outside.
  • the body is further provided with an acoustic sensor, the acoustic sensor is electrically connected to the control module;
  • the sound sensitive sensor detects a current environment and generates ambient sound data, the sound sensitive sensor transmits the ambient sound data to the control module, and the control module adjusts an air volume of the fan according to the ambient sound data .
  • the body is further provided with a photosensitive sensor, and the photosensitive sensor is electrically connected to the control module;
  • the photosensitive sensor detects a current environment and generates ambient illumination data, and the photosensitive sensor transmits the ambient illumination data to the control module, and the control module adjusts an air volume of the fan according to the ambient illumination data.
  • the filter life detecting module further includes an air volume detecting device, wherein the air volume detecting device includes an air volume sensor and a fourth calculating unit, wherein the fourth calculating unit is electrically connected to the air volume sensor, and the air volume sensor is configured On the air inlet end or the air outlet end of the filter element;
  • the fourth calculation unit generates the filter life data by calculating an air volume flowing through the filter element, and the fourth calculation unit transmits the filter life data to the control module.
  • the body is further provided with a second particle concentration sensor, and the second particle concentration sensor is electrically connected to the control module;
  • the second particulate matter concentration sensor detects a current environmental particulate matter concentration and generates environmental particulate matter concentration data, and the second particulate matter concentration sensor transmits the environmental particulate matter concentration data to the control module;
  • the control module processes the environmental particulate matter concentration data and sends the same to the interaction module and the communication module, and the interaction module processes the environmental particulate matter concentration data and sends an acoustic signal or an optical signal to the outside,
  • the user terminal acquires the environmental particulate matter concentration data through the communication module; and the control module adjusts an airflow amount of the wind turbine according to the environmental particulate matter concentration data.
  • the filter element life detecting module further comprises a first particle concentration sensor, an air volume sensor for detecting an air volume flowing through the filter element, a timing device and a fifth calculating unit, wherein the fifth calculating unit is respectively electrically Connected to the first particulate concentration sensor, the air volume sensor and the timing device, the first particulate concentration sensor is disposed at an air inlet end of the filter element, and the air volume sensor is disposed at an air inlet end or an air outlet end of the filter element on;
  • the fifth calculating unit generates the filter life data according to the particle concentration, the air volume flowing through the filter element, the running time of the fan, a preset quantitative coefficient, and the pre-contained amount of the filter element.
  • the fifth calculation unit transmits the filter life data to the control module.
  • the intelligent air purification system of the invention comprises a cloud server, a user terminal and an air purifier, wherein the air purifier is respectively wirelessly connected to the cloud server and the user terminal, and the air purifier comprises a filter core identification component and a filter life detecting module, so that the air purifier It can identify the authenticity of the filter element and the service life of the filter element.
  • the air purifier can also send the filter identification data and the filter life data to the cloud server through the communication module.
  • the user terminal can know the authenticity of the filter element from the cloud server and The service life, manufacturers or service providers can monitor the life of the filter element and the authenticity of the filter element through the cloud server for better after-sales service.
  • FIG. 1 is a schematic diagram of the principle of an intelligent air purification system according to an embodiment of the present invention
  • FIG. 2 is a second schematic diagram of the principle of the intelligent air purification system according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a harmful gas concentration detecting device of an intelligent air purification system according to an embodiment of the present invention
  • FIG. 4 is a schematic view of a differential pressure meter of an intelligent air purification system according to an embodiment of the present invention.
  • FIG. 5 is a schematic view of a particulate matter concentration detecting device of an intelligent air purification system according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an air volume detecting device of an intelligent air purification system according to an embodiment of the present invention.
  • FIG. 7 is a partial schematic diagram of a filter life detecting module of a smart air purification system according to an embodiment of the present invention.
  • FIG. 8 is a schematic view showing a part of working steps of the intelligent air purification system according to an embodiment of the present invention.
  • 10 air purifier; 10A, body; 10B, filter; 11, fan; 12, control module; 13, interactive module; 14, communication module; 15, filter identification component; 151, filter identification device; 152, filter Identity chip; 16, filter life detecting module; 161, harmful gas concentration detecting device; 1611, first calculating unit; 1612, harmful gas concentration sensor; 162, differential pressure meter; 1621, second calculating unit; 1622, pressure sensor; 163, particle concentration detecting device; 1631, third calculating unit; 1632, first particle concentration sensor; 1633, second particle concentration sensor; 164, timing device; 165, air volume detecting device; 1651, fourth calculating unit; Air volume sensor; 166, fifth computing unit; 17, acoustic sensor; 18, photosensitive sensor; 19, positioning module; 20, cloud server; 30, user terminal.
  • the smart air purification system of the present invention is schematically shown in conjunction with FIG. 1, and includes a cloud server 20, a user terminal 30, and an air cleaner 10.
  • the air cleaner 10 includes a body 10A, a filter element identification component 15, and both are disposed on the body.
  • the communication module 14, the control module 12, the interaction module 13 and the filter life detecting module 16 on the 10A, the filter element identification assembly 15 includes a filter element identification device 151 disposed on the body 10A, and a filter element identification chip 152 disposed on the filter element 10B of the purifier.
  • the filter cartridge 10B is detachably disposed in the air cleaner 10, and the filter cartridge 10B is provided with a plurality of filter cartridges 10B.
  • Each of the filter cartridges 10B is provided with a filter core identification chip 152, and the filter core identification device 151 can identify a plurality of filter core identification chips 152. And verifying the authenticity of the filter element 10B; and the filter life detecting module 16 can detect the service life of the plurality of filter elements 10B, the interaction module 13 can emit an optical signal or an acoustic signal, and the user can control the operation of the air purifier 10 through the interaction module 13 and understand The authenticity of the filter element 10B and the life of the filter element 10B.
  • the control module 12 is electrically connected to the filter identification device 151, the communication module 14, the filter life detecting module 16, the interaction module 13 and the fan 11 of the air purifier, respectively, and the communication module 14 is wirelessly connected to the user terminal 30 and the cloud server 20, respectively.
  • the filter identification device 151 and the filter core identification chip 152 are connected by wireless communication; the control module 12 processes the filter identification data generated by the filter identification device 151 and sends the filter identification data to the interaction module 13 and the communication module 14, respectively, and the control module 12 detects the filter life.
  • the filter life data generated by the module 16 is processed and sent to the interaction module 13 and the communication module 14, respectively.
  • the communication module 14 wirelessly transmits the filter identification data and the filter life data to the cloud server 20, and the user terminal 30 obtains the filter through the cloud server 20.
  • the identification data and filter life data are processed, and the interaction module 13 processes the filter identification data and the filter life data and emits an acoustic or optical signal to the outside.
  • the interaction module 13 directly feeds back the authenticity and service life of the filter cartridge 10B to the user on the air cleaner 10;
  • the user terminal 30 can be a user's mobile communication device, such as a mobile phone, and the user terminal 30 can also be an App in the mobile communication device;
  • the module 12 includes, but is not limited to, an electronic control component such as a single chip microcomputer or a chip; the manufacturer or the service provider determines the authenticity and the service life of the user filter element 10B through the relevant data of the user filter element 10B stored in the cloud server 20 for better after-sales service; Even if the user does not know how to use the air purifier 10, the user can turn to the manufacturer or the service provider, and let the professional of the manufacturer or the service provider assist the user to remotely diagnose the authenticity of the filter element 10B and the service life of the filter element 10B; the manufacturer or service provider It is also possible to directly provide relevant user suggestions or perform after-sales service according to the relevant data of the user's filter element 10B in the cloud server 20; in addition, the
  • the filter element 10B of the household carries out the life-time monitoring from the authenticity of the installed filter element to the life monitoring of the filter element. It is no longer the traditional one. It can only monitor the service life of the filter element or the authenticity of the filter element through the cloud server, helping the user from start to finish.
  • the authenticity and service life of the filter element 10B are monitored; the smart air purifier capable of discriminating the authenticity of the filter element 10B and detecting the service life of the filter element 10B is organically combined with the after-sales service, and is wirelessly connected to the cloud server 20 and the user through the air cleaner 10
  • the means of the terminal 30 bridges the mutual communication between the manufacturer or the service provider, the user terminal 30, the cloud server 20, and the air cleaner 10.
  • the filter life detecting module 16 includes a harmful gas concentration detecting device 161 , and the harmful gas concentration detecting device 161 includes a plurality of harmful gas concentration sensors 1612 and a first calculating unit 1611 .
  • the first calculating unit 1611 is electrically connected to the plurality of harmful gas concentration sensors 1612, and the plurality of harmful gas concentration sensors 1612 are respectively disposed at the air inlet end and the air outlet end of the filter element, and the first calculating unit 1611 calculates the air inlet end of the filter element.
  • the filter life data is generated by the ratio of the harmful gas concentration at the outlet end, and the first calculation unit 1611 sends the filter life data to the control module 12; this is configured to detect the harmful gas concentration at the air inlet end of the filter element and the harmful gas concentration at the air outlet end of the filter element, so that The service life of the filter element is measured by the ratio of the concentration of harmful gas before and after filtration of the filter element.
  • the air at the air inlet end of the filter element is unfiltered air
  • the air at the air outlet end of the filter element is filtered air, that is, the air flow direction flows from the air inlet end to the air outlet end through the filter element; wherein the present invention
  • the inlet end (outlet end) of the filter not only refers to the inlet (outlet) side of the filter element, but is designed to prevent the rapid airflow in the vicinity of the filter element from interfering with the detection effect of the sensor in the present invention.
  • the sensor at the end (outlet end) can also be installed near the air inlet (air outlet) of the air purifier body, and the air inlet (air outlet) and the air inlet (air outlet) also belong to the air inlet end (
  • the reference range of the outlet end; and the above-mentioned harmful gases include, but are not limited to, harmful gases appearing indoors such as formaldehyde, toluene, TVOC, ammonia, hydrazine, carbon dioxide, carbon monoxide, and ozone.
  • the method for judging the life of the filter element through the harmful gas concentration at the air inlet end and the air outlet end of the filter element is: determining whether the concentration of the harmful gas at the outlet end of the filter element is greater than A; if the concentration of the harmful gas at the outlet end of the filter element is less than A, determining the filter element Whether it exceeds the longest life of the filter element, it is necessary to replace the filter element, otherwise it is not necessary to replace the filter element; if the concentration of harmful gas at the outlet end of the filter element is greater than A, then determine whether the concentration of harmful gas at the outlet end of the filter element is greater than the concentration of harmful gas at the inlet end. B times, it is necessary to replace the filter element, otherwise there is no need to replace the filter element.
  • the value of the value A is less than or equal to 0.08 mg/m 3 , because the indoor formaldehyde concentration of the national standard is not more than 0.08 mg/m 3 .
  • the value of the value B is 0.3 to 0.7.
  • the filter life detecting module 16 can also detect the service life of the filter element by the differential pressure gauge 162 or the particulate matter concentration detecting device 163.
  • the differential pressure meter 162 includes a plurality of pressure sensors 1622 and a second calculation unit 1621.
  • the second calculation unit 1621 is electrically connected to the plurality of pressure sensors 1622, respectively.
  • the plurality of pressure sensors 1622 are respectively disposed at the air inlet end and the air outlet end of the filter element.
  • the second calculating unit 1621 generates the filter life data by calculating the air pressure difference between the air inlet end and the air outlet end of the filter element, and the second calculating unit 1621 sends the filter element life data to the control module 12; if the air pressure difference exceeds the preset threshold value, This indicates that the filter element needs to be replaced, otherwise it does not need to be replaced.
  • the particulate matter concentration detecting device 163 includes a plurality of first particulate matter concentration sensors 1632 and a third calculating unit 1631.
  • the third calculating unit 1631 is electrically connected to the plurality of first particulate matter concentration sensors 1632, respectively, and the plurality of first particulate matter concentration sensors 1632 are respectively set.
  • the third calculating unit 1631 At the air inlet end and the air outlet end of the filter element, the third calculating unit 1631 generates filter element life data by calculating the ratio of the particle concentration of the air inlet end and the air outlet end of the filter element, and the third calculating unit 1631 sends the filter element life data to the control module 12; In this way, the concentration of the particulate matter at the air inlet end of the filter element and the concentration of the particulate matter at the air outlet end of the filter element can be detected, so that the service life of the filter element can be measured by the ratio of the concentration of the particulate matter before and after the filter element is filtered.
  • the particulate matter detecting sensor provided at the air inlet end of the filter element is also responsible for detecting the concentration of particulate matter in the unfiltered air, that is, the concentration of particulate matter in the environment in which the air purifier 10 is located.
  • the filter life detecting module 16 further includes an air volume detecting device 165.
  • the air volume detecting device 165 includes an air volume sensor 1652 and a fourth calculating unit 1651 for detecting the volume of air flowing through the filter element.
  • the fourth calculating unit 1651 is electrically connected.
  • the air volume sensor 1652 the air volume sensor 1652 is disposed on the air inlet end or the air outlet end of the filter element 10B; the fourth calculating unit 1651 generates filter element life data by calculating the air volume flowing through the filter element 10B, and the fourth calculating unit 1651 calculates the filter element life data.
  • the filter life detecting module 16 further includes a first particulate matter concentration unit 1632, a timing device 164, and a fifth calculating unit 166.
  • the fifth calculating unit 166 is electrically connected to the first particulate matter concentration sensor 1632, the air volume sensor 165, and the timing device, respectively.
  • the first particulate matter concentration sensor 1632 is disposed at the air inlet end of the filter element, and the air volume sensor 1652 is disposed at the air inlet end or the air outlet end of the filter element; the fifth calculating unit 166 is based on the particle concentration, the air volume flowing through the filter element, and the fan.
  • the running time and the preset quantitative coefficient and the pre-contained volume calculation of the filter element generate filter life data
  • the fifth calculating unit 166 sends the filter life data to the control module 12, specifically the particle concentration* the air volume flowing through the filter element*
  • the module 13 reminds the user to replace the filter element.
  • the interaction module 13 when the volume of the contained dirt reaches 80% of the preset pre-contained amount, the interaction module 13 emits an acoustic signal or The light signal reminds the user that "the filter element is about to be replaced”. When the volume of the contained dirt reaches 120% of the preset pre-contained volume, the interaction module 13 emits an acoustic signal or an optical signal to remind the user that "the filter element is completely disabled", and the control module 12 can A stop operation command is issued to the fan 11.
  • the quantitative coefficient is the manufacturer preset data, and it should be noted that the preset quantitative coefficient is not limited to being preset in the air purifier 10 before the air purifier 10 leaves the factory, and the user is using the air purifier. At 10 o'clock, the manufacturer updates the quantitative coefficient in the user's air purifier 10 through the cloud server 20.
  • a second particulate matter concentration sensor 1633 is further disposed on the body, and the second particulate matter concentration sensor 1633 is electrically connected to the control module 12; the second particulate matter concentration sensor 1633 detects the current environmental particulate matter concentration and generates an environmental particulate matter concentration. Data, the second particulate matter concentration sensor 1633 sends the environmental particulate matter concentration data to the control module 12; the control module 12 processes the environmental particulate matter concentration data and sends them to the interaction module 13 and the communication module 14, respectively, and the interaction module 13 performs the environmental particulate matter concentration data.
  • the user terminal 30 acquires the environmental particulate matter concentration data through the communication module 14; and the control module 12 adjusts the airflow amount of the blower 11 according to the environmental particulate matter concentration data, such that the air purifier 10 can be configured According to the indoor air quality, it can be automatically adjusted to different gear positions.
  • the indoor air quality is good, the air volume of the fan 11 can be reduced, which is energy-saving and environmentally friendly.
  • the number of the harmful gas concentration sensor 1612, the pressure sensor 1622, the first particulate matter concentration sensor 1632, or the air volume sensor 1652 is plural, and is not limited to the number of sensors in the drawings.
  • the harmful gas concentration sensor 1612 disposed at the air inlet end of the filter element can also transmit the detected harmful gas concentration data to the interaction module 13 and the communication module 14, so that the user can timely understand the air purification from the user terminal 30 and the interaction module 13.
  • the dirt concentration information of the environment in which the device 10 is located can also transmit the detected harmful gas concentration data to the interaction module 13 and the communication module 14, so that the user can timely understand the air purification from the user terminal 30 and the interaction module 13.
  • the cartridge identity chip 152 is an electronic tag
  • the cartridge identification device 151 is an electronic tag reader
  • the tag reader and the tag are paired and identified by data exchange.
  • the air cleaner 10 further includes a positioning module 19, an acoustic sensor 17 and a photosensor 18, which are respectively disposed on the body 10A, a positioning module 19, an acoustic sensor 17 and a photosensor 18 Each is electrically connected to the control module 12.
  • the positioning module 19 obtains the current geographic location information of the air purifier 10 and sends it to the control module 12, and the control module 12 obtains the environmental monitoring data of the current geographical location from the network side through the communication module 14 through the current geographic location information, and the control module 12 will monitor the environmental monitoring data.
  • the module is sent to the interaction module 13, and the interaction module 13 processes the environmental monitoring data and sends an optical signal or an acoustic signal to the outside.
  • the acoustic sensor 17 detects the current environment and generates ambient sound data.
  • the sound sensitive sensor 17 sends the ambient sound data to the control module 12, and the control module 12 adjusts the airflow amount of the fan 11 according to the ambient sound data;
  • the photosensitive sensor 18 detects the current environment and generates The ambient light data, the light sensor 18 sends the ambient light data to the control module 12, and the control module 12 adjusts the air volume of the fan 11 based on the ambient light data.
  • the photosensor 18 and the acoustic sensor 17 can detect the illumination intensity and the sound size of the environment in which the air purifier 10 is currently located, and determine whether the user enters a sleep state, thereby automatically controlling the air volume of the fan 11 without affecting the user's sleep.
  • the intelligent air purification system of the present invention comprises a cloud server, a user terminal and an air purifier, and the air purifier is wirelessly connected to the cloud server, and the air purifier comprises a filter core identification component and a filter life detecting module to enable air purification.
  • the device can identify the authenticity of the filter element and the service life of the filter element.
  • the air purifier can also send the filter identification data and the filter life data to the cloud server through the communication module, and the user can use the user terminal to obtain the authenticity of the filter element and the filter element through the cloud server.
  • the service life, manufacturers or service providers can monitor the life of the filter element and the authenticity of the filter element through the cloud server for better after-sales service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

本发明涉及空气净化领域,具体涉及了一种智能空气净化系统,包括:云端服务器、用户终端和空气净化器;空气净化器包括本体、滤芯识别组件、通信模块、控制模块、交互模块和滤芯寿命检测模块,滤芯识别组件包括设在本体上的滤芯识别装置以及设在滤芯上的滤芯身份芯片;控制模块电性连接于滤芯识别装置、通信模块、滤芯寿命检测模块、交互模块和空气净化器的风机,通信模块无线通信连接于云端服务器。本发明的空气净化器能够识别滤芯的真伪以及使用寿命,并将滤芯的相关数据发送至云端服务器,用户终端还能通过云端服务器获取滤芯的相关数据,厂商或服务商能通过云端服务器监测用户的滤芯的使用寿命和滤芯的真伪,以进行更好的售后服务。

Description

智能空气净化系统 技术领域
本发明涉及空气净化领域,特别是涉及一种智能空气净化系统。
背景技术
近年来各个城市因为雾霾日趋严重,空气净化器也被广泛应用于家居生活,而空气净化器的滤芯需要定期更换,才能保持良好的过滤效果。由于此类空气净化器的市场销售行情较好,网络上出现大量的滤芯仿冒产品,价格低廉,做工参差不齐,质量得不到保障,过滤性能远低于原装的滤芯,使用该仿冒的滤芯并不能达到净化空气的效果,且使用寿命低,有损消费者的利益,对整机厂的声誉也造成不良影响。
另外,何时需要更换滤芯也是消费者关心的问题。滤芯的使用寿命到达时不更换则空气净化器完全没有净化效果,但是在滤芯的使用寿命还没有达到就更换一块好的滤网会产生较大的费用。在传统技术中,往往采用倒计时的方式监测计算产品上使用的滤芯中的寿命。但是,针对不同的使用环境,滤芯的使用寿命是不同的,比如在刚装修的新房中,除甲醛滤芯的使用寿命会大大缩短,而在空气较好的地区,滤芯的使用寿命会增加很长,简单的使用倒计时的方式不能准确的得出滤芯中的使用寿命。
同时,毕竟用户并不都是本领域的专家,厂商或服务商应当做好售后服务,辅助用户辨别仿冒滤芯或者是使用寿命到达的滤芯;当用户遇到了上述仿冒滤芯或使用寿命到达的滤芯时,厂商或服务商需要及时了解到用户空气净化设备中滤芯的情况,以进行更好的售后服务,将能够辨别滤芯真伪以及滤芯使用寿命的智能空气净化设备与售后服务有机结合,造福于用户,为此,现亟需一种智能空气净化系统 来满足这些要求。
发明内容
本发明的目的是提供一种智能空气净化系统,包括云端服务器、用户终端和空气净化器,空气净化器能够识别滤芯的真伪以及滤芯的使用寿命,空气净化器还将滤芯识别数据和滤芯寿命数据一并发送至云端服务器,用户终端可以从云端服务器上了解到滤芯的真伪及其使用寿命,厂商或服务商能通过云端服务器监测用户的滤芯的使用寿命和滤芯的真伪,以进行更好的售后服务。
为了解决上述问题,本发明提供了一种智能空气净化系统,包括:
云端服务器、用户终端和空气净化器;
所述空气净化器包括本体、滤芯识别组件以及均设在所述本体上的通信模块、控制模块、交互模块和滤芯寿命检测模块,所述滤芯识别组件包括设在所述本体上的滤芯识别装置以及设在所述空气净化器的滤芯上的滤芯身份芯片;
所述控制模块分别电性连接于所述滤芯识别装置、通信模块、滤芯寿命检测模块、交互模块和净化器的风机;所述通信模块分别无线通信连接于所述用户终端和云端服务器,所述滤芯识别装置和滤芯身份芯片无线通信连接;
所述控制模块将所述滤芯识别装置产生的滤芯识别数据进行处理并分别发送至所述交互模块和通信模块,所述控制模块将所述滤芯寿命检测模块产生的滤芯寿命数据进行处理并分别发送至所述交互模块和通信模块,所述通信模块将所述滤芯识别数据和滤芯寿命数据一并无线传输至所述云端服务器,所述用户终端通过所述云端服务器获取所述滤芯识别数据和滤芯寿命数据,所述交互模块对所述滤芯识别数据和滤芯寿命数据进行处理并向外界发出声信号或光信号。
作为优选的,所述滤芯寿命检测模块包括有害气体浓度检测装置,所述有害气体浓度检测装置包括多个有害气体浓度传感器及第一 计算单元,所述第一计算单元分别电性连接于多个所述有害气体浓度传感器,多个所述有害气体浓度传感器分别设在所述滤芯的进风端和出风端;
所述第一计算单元通过计算所述滤芯的进风端和出风端的有害气体浓度比例产生所述滤芯寿命数据,所述第一计算单元将所述滤芯寿命数据发送至所述控制模块。
作为优选的,所述滤芯寿命检测模块还包括压差计,所述压差计包括多个压力传感器及第二计算单元,所述第二计算单元分别电性连接于多个所述压力传感器,多个所述压力传感器分别设在所述滤芯的进风端和出风端;
所述第二计算单元通过计算所述滤芯的进风端和出风端的空气压力差产生所述滤芯寿命数据,所述第二计算单元将所述滤芯寿命数据发送至所述控制模块。
作为优选的,所述滤芯寿命检测模块还包括颗粒物浓度检测装置,所述颗粒物浓度检测装置包括多个第一颗粒物浓度传感器及第三计算单元,所述第三计算单元分别电性连接于多个所述第一颗粒物浓度传感器,多个所述第一颗粒物浓度传感器分别设在所述滤芯的进风端和出风端;
所述第三计算单元通过计算所述滤芯的进风端和出风端的颗粒物浓度比例产生所述滤芯寿命数据,所述第三计算单元将所述滤芯寿命数据发送至所述控制模块。
作为优选的,所述滤芯身份芯片为电子标签,所述滤芯识别装置为电子标签数据读写器,所述电子标签数据读写器和电子标签通过数据交换进行配对识别。
作为优选的,所述空气净化器还包括设在所述本体上的定位模块,所述定位模块电性连接于所述控制模块;
所述定位模块获取所述净化器当前地理位置信息并发送至所述 控制模块,所述控制模块通过所述当前地理位置信息经过所述通信模块获取当前地理位置的环境监测数据;
所述控制模块将所述环境监测数据发送至所述交互模块,所述交互模块对所述环境监测数据进行处理并向外界发出光信号或声信号。
作为优选的,所述本体上还设有声敏传感器,所述声敏传感器电性连接于所述控制模块;
所述声敏传感器检测当前环境并产生环境声音数据,所述声敏传感器将所述环境声音数据发送至所述控制模块,所述控制模块根据所述环境声音数据来调整所述风机的出风量。
作为优选的,所述本体上还设有光敏传感器,所述光敏传感器电性连接于所述控制模块;
所述光敏传感器检测当前环境并产生环境光照数据,所述光敏传感器将所述环境光照数据发送至所述控制模块,所述控制模块根据所述环境光照数据来调整所述风机的出风量。
作为优选的,所述滤芯寿命检测模块还包括风量检测装置,所述风量检测装置包括风量传感器及第四计算单元,所述第四计算单元电性连接于所述风量传感器,所述风量传感器设在所述滤芯的进风端或出风端上;
所述第四计算单元通过计算流经所述滤芯的空气体积产生所述滤芯寿命数据,所述第四计算单元将所述滤芯寿命数据发送至所述控制模块。
作为优选的,所述本体上还设有第二颗粒物浓度传感器,所述第二颗粒物浓度传感器电性连接于所述控制模块;
所述第二颗粒物浓度传感器检测当前环境颗粒物浓度并产生环境颗粒物浓度数据,所述第二颗粒物浓度传感器将所述环境颗粒物浓度数据发送至所述控制模块;
所述控制模块对所述环境颗粒物浓度数据进行处理并分别发送 至所述交互模块和通信模块,所述交互模块对所述环境颗粒物浓度数据进行处理并向外界发出声信号或光信号,所述用户终端通过所述通信模块获取所述环境颗粒物浓度数据;以及,所述控制模块根据所述环境颗粒物浓度数据来调整所述风机的出风量。
作为优选的,所述滤芯寿命检测模块还包括第一颗粒物浓度传感器、用于检测流经所述滤芯的空气体积的风量传感器、计时装置和第五计算单元,所述第五计算单元分别电性连接于所述第一颗粒物浓度传感器、风量传感器和计时装置,所述第一颗粒物浓度传感器设在所述滤芯的进风端,所述风量传感器设在所述滤芯的进风端或出风端上;
所述第五计算单元根据颗粒物浓度、流经所述滤芯的空气体积、所述风机的运行时长以及预先设定的定量系数和所述滤芯的预容污量计算产生所述滤芯寿命数据,所述第五计算单元将所述滤芯寿命数据发送至所述控制模块。
本发明的智能空气净化系统,包括云端服务器、用户终端和空气净化器,空气净化器分别无线通信连接于云端服务器和用户终端,空气净化器包括滤芯识别组件和滤芯寿命检测模块,使得空气净化器能够识别滤芯的真伪以及滤芯的使用寿命,空气净化器还能通过通信模块将滤芯识别数据和滤芯寿命数据一并发送至云端服务器,用户终端可以从云端服务器上了解到滤芯的真伪及其使用寿命,厂商或服务商能通过云端服务器监测用户的滤芯的使用寿命和滤芯的真伪,以进行更好的售后服务。
附图说明
图1是本发明实施例的智能空气净化系统的原理示意图之一;
图2是本发明实施例的智能空气净化系统的原理示意图之二;
图3是本发明实施例的智能空气净化系统的有害气体浓度检测装置的示意图;
图4是本发明实施例的智能空气净化系统的压差计的示意图;
图5是本发明实施例的智能空气净化系统的颗粒物浓度检测装置的示意图;
图6是本发明实施例的智能空气净化系统的风量检测装置的示意图;
图7是本发明实施例的智能空气净化系统的滤芯寿命检测模块的部分原理示意图;
图8是本发明实施例的智能空气净化系统的部分工作步骤示意图。
其中,10、空气净化器;10A、本体;10B、滤芯;11、风机;12、控制模块;13、交互模块;14、通信模块;15、滤芯识别组件;151、滤芯识别装置;152、滤芯身份芯片;16、滤芯寿命检测模块;161、有害气体浓度检测装置;1611、第一计算单元;1612、有害气体浓度传感器;162、压差计;1621、第二计算单元;1622、压力传感器;163、颗粒物浓度检测装置;1631、第三计算单元;1632、第一颗粒物浓度传感器;1633、第二颗粒物浓度传感器;164、计时装置;165、风量检测装置;1651、第四计算单元;1652、风量传感器;166、第五计算单元;17、声敏传感器;18、光敏传感器;19、定位模块;20、云端服务器;30、用户终端。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
结合图1所示,示意性地显示了本发明的智能空气净化系统,包括云端服务器20、用户终端30和空气净化器10,空气净化器10包括本体10A、滤芯识别组件15以及均设在本体10A上的通信模块14、控制模块12、交互模块13和滤芯寿命检测模块16,滤芯识别组件15包括设在本体10A上的滤芯识别装置151以及设在净化器的滤芯 10B上的滤芯身份芯片152;其中,滤芯10B可拆卸地设在空气净化器10内,滤芯10B可以有多个,每个滤芯10B上均设有滤芯身份芯片152,滤芯识别装置151能够识别出多个滤芯身份芯片152,并验证滤芯10B的真伪;而滤芯寿命检测模块16能够检测多个滤芯10B的使用寿命,交互模块13能够发出光信号或者声信号,用户能通过交互模块13控制空气净化器10的运行并了解滤芯10B的真伪和滤芯10B使用寿命。控制模块12分别电性连接于滤芯识别装置151、通信模块14、滤芯寿命检测模块16、交互模块13和空气净化器的风机11,通信模块14分别无线通信连接于用户终端30和云端服务器20,滤芯识别装置151和滤芯身份芯片152之间通过无线通信连接;控制模块12将滤芯识别装置151产生的滤芯识别数据进行处理并分别发送至交互模块13和通信模块14,控制模块12将滤芯寿命检测模块16产生的滤芯寿命数据进行处理并分别发送至交互模块13和通信模块14,通信模块14将滤芯识别数据和滤芯寿命数据一并无线传输至云端服务器20,用户终端30通过云端服务器20获取滤芯识别数据和滤芯寿命数据,交互模块13对滤芯识别数据和滤芯寿命数据进行处理并向外界发出声信号或光信号。交互模块13直接在空气净化器10上向用户反馈滤芯10B的真伪和使用寿命;用户终端30可以是用户的移动通讯设备,例如手机,用户终端30也可以是移动通讯设备中的App;控制模块12包括但不仅限于单片机、芯片等电子控制元件;厂商或服务商通过云端服务器20中存储的用户滤芯10B的相关数据判断用户滤芯10B的真伪以及使用寿命,以进行更好的售后服务;即便用户完全不懂得如何使用空气净化器10,用户也能求助于厂商或服务商,让厂商或服务商的专业人员辅助用户远程诊断滤芯10B的真伪以及滤芯10B的使用寿命;厂商或服务商还能够直接依据云端服务器20中用户的滤芯10B的相关数据,站在本领域专业人士的角度为用户提供相关的使用建议或进行售后服务;此外,厂商或服 务商通过云端服务器30中获取到的用户滤芯10B的滤芯识别数据以及滤芯寿命数据,对用户的滤芯10B进行从安装后的滤芯真伪判断到滤芯使用寿命监测的全寿命监控,不再是传统的只能够通过云端服务器监测滤芯使用寿命或者滤芯的真伪,帮助用户由始到终地监测滤芯10B的真伪以及使用寿命;此举将能够辨别滤芯10B真伪和检测滤芯10B使用寿命的智能空气净化器与售后服务有机结合,通过空气净化器10无线通信连接于云端服务器20以及用户终端30的手段,搭起了厂商或服务商、用户终端30、云端服务器20和空气净化器10相互沟通的桥梁。
结合图3至图8所示,为了检测滤芯的使用寿命,滤芯寿命检测模块16包括有害气体浓度检测装置161,有害气体浓度检测装置161包括多个有害气体浓度传感器1612及第一计算单元1611,第一计算单元1611分别电性连接于多个有害气体浓度传感器1612,多个有害气体浓度传感器1612分别设在滤芯的进风端和出风端,第一计算单元1611通过计算滤芯的进风端和出风端的有害气体浓度比例产生滤芯寿命数据,第一计算单元1611将滤芯寿命数据发送至控制模块12;这样设置能够检测出滤芯进风端的有害气体浓度和滤芯出风端的有害气体浓度,以便通过滤芯过滤前和过滤后的有害气体浓度比例测算该滤芯的使用寿命。需要说明的是,滤芯的进风端的空气是未经过滤的空气,滤芯的出风端的空气是经过过滤的空气,即空气流动方向从进风端流经滤芯至出风端;其中,本发明中的进风端(出风端)不仅指代滤芯的进风(出风)一侧,为了避免滤芯附近的快速气流干扰本发明中的传感器的检测效果,本发明中所述设在进风端(出风端)的传感器还可以安设在空气净化器本体的进风口(出风口)的附近,进风口(出风口)以及进风口(出风口)的附近也属于所述进风端(出风端)的指代范围;以及,上述有害气体包含但不限于甲醛,甲苯,TVOC,氨,氡,二氧化碳,一氧化碳,臭氧等室内所出现的有害气 体。
进一步的,通过滤芯的进风端和出风端的有害气体浓度来判断滤芯寿命的方法是:判断滤芯出风端的有害气体浓度是否大于A;若滤芯出风端的有害气体浓度小于A,再判断滤芯是否超过了滤芯最长使用期限,是则需要更换滤芯,否则不需要更换滤芯;若滤芯出风端的有害气体浓度大于A,再判断滤芯出风端的有害气体浓度是否大于进风端的有害气体浓度的B倍,是则需要更换滤芯,否则不需要更换滤芯。此举能更加客观地判断滤芯的使用寿命。其中,有害气体为甲醛的情况下,数值A的取值小于或等于0.08mg/m 3,因为国家标准的室内甲醛浓度是不得大于0.08mg/m 3。优选的,为了使滤芯使用寿命的判断更加客观真实,数值B的取值为0.3~0.7。
滤芯寿命检测模块16还可通过压差计162或颗粒物浓度检测装置163来检测滤芯的使用寿命。压差计162包括多个压力传感器1622及第二计算单元1621,第二计算单元1621分别电性连接于多个压力传感器1622,多个压力传感器1622分别设在滤芯的进风端和出风端,第二计算单元1621通过计算滤芯的进风端和出风端的空气压力差产生滤芯寿命数据,第二计算单元1621将滤芯寿命数据发送至控制模块12;若气压差值超过预设阈值时,则表明滤芯需要更换,否则不需要更换。颗粒物浓度检测装置163包括多个第一颗粒物浓度传感器1632及第三计算单元1631,第三计算单元1631分别电性连接于多个第一颗粒物浓度传感器1632,多个第一颗粒物浓度传感器1632分别设在滤芯的进风端和出风端,第三计算单元1631通过计算滤芯的进风端和出风端的颗粒物浓度比例产生滤芯寿命数据,第三计算单元1631将滤芯寿命数据发送至控制模块12;这样设置能够检测出滤芯进风端的颗粒物浓度和滤芯出风端的颗粒物浓度,以便通过滤芯过滤前和过滤后的颗粒物浓度比例测算该滤芯的使用寿命。设在滤芯进风端的颗粒物检测传感器同样是可以负责检测未过滤空气中的颗粒物 浓度,即空气净化器10所在环境的颗粒物浓度。
除此之外,滤芯寿命检测模块16还包括风量检测装置165,风量检测装置165包括用于检测流经滤芯的空气体积的风量传感器1652及第四计算单元1651,第四计算单元1651电性连接于风量传感器1652,风量传感器1652设在滤芯10B的进风端或出风端上;第四计算单元1651通过计算流经滤芯10B的空气体积产生滤芯寿命数据,第四计算单元1651将滤芯寿命数据发送至控制模块12。进一步的,滤芯寿命检测模块16还包括第一颗粒物浓度传感器1632、计时装置164和第五计算单元166,第五计算单元166分别电性连接于第一颗粒物浓度传感器1632、风量传感器165和计时装置164,第一颗粒物浓度传感器1632设在滤芯的进风端,风量传感器1652设在滤芯的进风端或出风端上;第五计算单元166根据颗粒物浓度、流经滤芯的空气体积、风机的运行时长以及预先设定的定量系数和滤芯的预容污量计算产生滤芯寿命数据,第五计算单元166将滤芯寿命数据发送至控制模块12,具体为颗粒物浓度*流经滤芯的空气体积*风机运行时长*定量系数=已容污量,滤芯预容污量-已容污量=滤芯剩余寿命,当已容污量到达控制模块12中预设的预容污量时,控制模块12通过交互模块13提醒用户更换滤芯,例如当已容污量达到预设的预容污量的80%时,交互模块13发出声信号或光信号提醒用户“即将更换滤芯”,当已容污量达到预设的预容污量的120%时,交互模块13发出声信号或光信号提醒用户“滤芯完全失效”,同时控制模块12可对风机11发出停止工作指令。其中,定量系数为厂商预设数据,还需注意的是,预先设定的定量系数不限于在空气净化器10出厂前就预设在空气净化器10中,还包括在用户在使用空气净化器10时,厂商通过云端服务器20更新用户的空气净化器10中的定量系数。
为了检测当前环境的污染状况,本体上还设有第二颗粒物浓度传感器1633,第二颗粒物浓度传感器1633电性连接于控制模块12;第 二颗粒物浓度传感器1633检测当前环境颗粒物浓度并产生环境颗粒物浓度数据,第二颗粒物浓度传感器1633将环境颗粒物浓度数据发送至控制模块12;控制模块12对环境颗粒物浓度数据进行处理并分别发送至交互模块13和通信模块14,交互模块13对环境颗粒物浓度数据进行处理并向外界发出声信号或光信号,用户终端30通过通信模块14获取环境颗粒物浓度数据;以及,控制模块12根据环境颗粒物浓度数据来调整风机11的出风量,这样设置能够使空气净化器10根据室内的空气质量自动调整到不同的档位,室内空气质量较好时可以降低风机11的出风量,节能环保。
对于图3至图7,有害气体浓度传感器1612、压力传感器1622、第一颗粒物浓度传感器1632或者风量传感器1652的数量均为多个,不限于附图中传感器的个数。
上述设在滤芯进风端的有害气体浓度传感器1612也能将其检测到的有害气体浓度数据传输至交互模块13和通信模块14,使用户能够从用户终端30和交互模块13上及时了解到空气净化器10所在环境的污物浓度信息。
作为优选的,滤芯身份芯片152为电子标签,滤芯识别装置151为电子标签阅读器,电子标签阅读器和电子标签通过数据交换进行配对识别。
结合图2所示,在本实施例中,空气净化器10还包括均设在本体10A上的定位模块19、声敏传感器17和光敏传感器18,定位模块19、声敏传感器17和光敏传感器18均电性连接于控制模块12。定位模块19获取空气净化器10当前地理位置信息并发送至控制模块12,控制模块12通过当前地理位置信息经过通信模块14从网络侧获取当前地理位置的环境监测数据,控制模块12将环境监测数据发送至交互模块13,交互模块13对环境监测数据进行处理并向外界发出光信号或声信号。声敏传感器17检测当前环境并产生环境声音数据, 声敏传感器17将环境声音数据发送至控制模块12,控制模块12根据环境声音数据来调整风机11的出风量;光敏传感器18检测当前环境并产生环境光照数据,光敏传感器18将环境光照数据发送至控制模块12,控制模块12根据环境光照数据来调整风机11的出风量。光敏传感器18和声敏传感器17能够检测空气净化器10当前所在环境的光照强度和声音大小,判断用户是否进入睡眠状态,由此自动控制风机11的出风量,不影响用户睡眠。
综上所述,本发明的智能空气净化系统,包括云端服务器、用户终端和空气净化器,空气净化器无线通信连接于云端服务器,空气净化器包括滤芯识别组件和滤芯寿命检测模块,使得空气净化器能够识别滤芯的真伪以及滤芯的使用寿命,空气净化器还能通过通信模块将滤芯识别数据和滤芯寿命数据一并发送至云端服务器,用户能用用户终端通过云端服务器获知滤芯真伪以及滤芯使用寿命,厂商或服务商能通过云端服务器监测用户的滤芯的使用寿命和滤芯的真伪,以进行更好的售后服务。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (11)

  1. 一种智能空气净化系统,其特征在于,包括:
    云端服务器、用户终端和空气净化器;
    所述空气净化器包括本体、滤芯识别组件以及均设在所述本体上的通信模块、控制模块、交互模块和滤芯寿命检测模块,所述滤芯识别组件包括设在所述本体上的滤芯识别装置以及设在所述空气净化器的滤芯上的滤芯身份芯片;
    所述控制模块分别电性连接于所述滤芯识别装置、通信模块、滤芯寿命检测模块、交互模块和净化器的风机;所述通信模块分别无线通信连接于所述用户终端和云端服务器,所述滤芯识别装置和滤芯身份芯片无线通信连接;
    所述控制模块将所述滤芯识别装置产生的滤芯识别数据进行处理并分别发送至所述交互模块和通信模块,所述控制模块将所述滤芯寿命检测模块产生的滤芯寿命数据进行处理并分别发送至所述交互模块和通信模块,所述通信模块将所述滤芯识别数据和滤芯寿命数据一并无线传输至所述云端服务器,所述用户终端通过所述云端服务器获取所述滤芯识别数据和滤芯寿命数据,所述交互模块对所述滤芯识别数据和滤芯寿命数据进行处理并向外界发出声信号或光信号。
  2. 根据权利要求1所述的智能空气净化系统,其特征在于,所述滤芯寿命检测模块包括有害气体浓度检测装置,所述有害气体浓度检测装置包括多个有害气体浓度传感器及第一计算单元,所述第一计算单元分别电性连接于多个所述有害气体浓度传感器,多个所述有害气体浓度传感器分别设在所述滤芯的进风端和出风端;
    所述第一计算单元通过计算所述滤芯的进风端和出风端的有害气体浓度比例产生所述滤芯寿命数据,所述第一计算单元将所述滤芯 寿命数据发送至所述控制模块。
  3. 根据权利要求1所述的智能空气净化系统,其特征在于,所述滤芯寿命检测模块还包括压差计,所述压差计包括多个压力传感器及第二计算单元,所述第二计算单元分别电性连接于多个所述压力传感器,多个所述压力传感器分别设在所述滤芯的进风端和出风端;
    所述第二计算单元通过计算所述滤芯的进风端和出风端的空气压力差产生所述滤芯寿命数据,所述第二计算单元将所述滤芯寿命数据发送至所述控制模块。
  4. 根据权利要求1所述的智能空气净化系统,其特征在于,所述滤芯寿命检测模块还包括颗粒物浓度检测装置,所述颗粒物浓度检测装置包括多个第一颗粒物浓度传感器及第三计算单元,所述第三计算单元分别电性连接于多个所述第一颗粒物浓度传感器,多个所述第一颗粒物浓度传感器分别设在所述滤芯的进风端和出风端;
    所述第三计算单元通过计算所述滤芯的进风端和出风端的颗粒物浓度比例产生所述滤芯寿命数据,所述第三计算单元将所述滤芯寿命数据发送至所述控制模块。
  5. 根据权利要求1所述的智能空气净化系统,其特征在于,所述滤芯身份芯片为电子标签,所述滤芯识别装置为电子标签数据读写器,所述电子标签数据读写器和电子标签通过数据交换进行配对识别。
  6. 根据权利要求1所述的智能空气净化系统,其特征在于,所述空气净化器还包括设在所述本体上的定位模块,所述定位模块电性连接于所述控制模块;
    所述定位模块获取所述净化器当前地理位置信息并发送至所述控制模块,所述控制模块通过所述当前地理位置信息经过所述通信模 块获取当前地理位置的环境监测数据;
    所述控制模块将所述环境监测数据发送至所述交互模块,所述交互模块对所述环境监测数据进行处理并向外界发出光信号或声信号。
  7. 根据权利要求1所述的智能空气净化系统,其特征在于,所述本体上还设有声敏传感器,所述声敏传感器电性连接于所述控制模块;
    所述声敏传感器检测当前环境并产生环境声音数据,所述声敏传感器将所述环境声音数据发送至所述控制模块,所述控制模块根据所述环境声音数据来调整所述风机的出风量。
  8. 根据权利要求1所述的智能空气净化系统,其特征在于,所述本体上还设有光敏传感器,所述光敏传感器电性连接于所述控制模块;
    所述光敏传感器检测当前环境并产生环境光照数据,所述光敏传感器将所述环境光照数据发送至所述控制模块,所述控制模块根据所述环境光照数据来调整所述风机的出风量。
  9. 根据权利要求1所述的智能空气净化系统,其特征在于,所述滤芯寿命检测模块还包括风量检测装置,所述风量检测装置包括风量传感器及第四计算单元,所述第四计算单元电性连接于所述风量传感器,所述风量传感器设在所述滤芯的进风端或出风端上;
    所述第四计算单元通过计算流经所述滤芯的空气体积产生所述滤芯寿命数据,所述第四计算单元将所述滤芯寿命数据发送至所述控制模块。
  10. 根据权利要求1所述的智能空气净化系统,其特征在于,所述本体上还设有第二颗粒物浓度传感器,所述第二颗粒物浓度传感器电性连接于所述控制模块;
    所述第二颗粒物浓度传感器检测当前环境颗粒物浓度并产生环境颗粒物浓度数据,所述第二颗粒物浓度传感器将所述环境颗粒物浓度数据发送至所述控制模块;
    所述控制模块对所述环境颗粒物浓度数据进行处理并分别发送至所述交互模块和通信模块,所述交互模块对所述环境颗粒物浓度数据进行处理并向外界发出声信号或光信号,所述用户终端通过所述通信模块获取所述环境颗粒物浓度数据;以及,所述控制模块根据所述环境颗粒物浓度数据来调整所述风机的出风量。
  11. 根据权利要求1所述的智能空气净化系统,其特征在于,所述滤芯寿命检测模块还包括第一颗粒物浓度传感器、用于检测流经所述滤芯的空气体积的风量传感器、计时装置和第五计算单元,所述第五计算单元分别电性连接于所述第一颗粒物浓度传感器、风量传感器和计时装置,所述第一颗粒物浓度传感器设在所述滤芯的进风端,所述风量传感器设在所述滤芯的进风端或出风端上;
    所述第五计算单元根据颗粒物浓度、流经所述滤芯的空气体积、所述风机的运行时长以及预先设定的定量系数和所述滤芯的预容污量计算产生所述滤芯寿命数据,所述第五计算单元将所述滤芯寿命数据发送至所述控制模块。
PCT/CN2018/111109 2017-10-26 2018-10-19 智能空气净化系统 WO2019080784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711032625.6A CN108168022B (zh) 2017-10-26 2017-10-26 智能空气净化系统
CN201711032625.6 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019080784A1 true WO2019080784A1 (zh) 2019-05-02

Family

ID=62526851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111109 WO2019080784A1 (zh) 2017-10-26 2018-10-19 智能空气净化系统

Country Status (2)

Country Link
CN (1) CN108168022B (zh)
WO (1) WO2019080784A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168022B (zh) * 2017-10-26 2019-09-13 佛山市顺德区阿波罗环保器材有限公司 智能空气净化系统
CN111401917B (zh) * 2018-12-29 2024-03-19 佛山市顺德区美的饮水机制造有限公司 滤芯鉴伪方法、水处理装置及计算机可读存储介质
CN109764475B (zh) * 2019-01-15 2021-12-03 广东美的制冷设备有限公司 空气处理设备及其控制方法、装置、计算机可读存储介质
CN109823147A (zh) * 2019-03-11 2019-05-31 上海网互物联网科技有限公司 一种汽车空调滤芯或发动机空气滤芯寿命智能监测系统
CN110177121B (zh) * 2019-06-17 2020-11-17 珠海格力电器股份有限公司 净化器滤网的监测方法、计算机装置以及计算机可读存储介质
CN112268340A (zh) * 2019-07-08 2021-01-26 湖南美业环境科技有限公司 一种新风和空气净化器滤网的监测方法
CN110514569B (zh) * 2019-07-08 2022-07-19 佛山市顺德区阿波罗环保器材有限公司 油烟滤芯一次过滤性能检测系统的风道组件
CN111023528A (zh) * 2019-12-06 2020-04-17 西安和光明宸科技有限公司 一种室内环境检测系统
CN113932412A (zh) * 2021-10-08 2022-01-14 青岛海尔空调器有限总公司 一种空气净化设备的提醒方法、提醒系统及空气净化设备
CN114251824A (zh) * 2021-12-17 2022-03-29 深圳市中航大记环境技术有限公司 一种滤芯及空气净化器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048387A (zh) * 2014-07-08 2014-09-17 陈南 空气净化器的调节控制方法、装置、系统及空气净化器
CN104436911A (zh) * 2014-11-03 2015-03-25 佛山市顺德区阿波罗环保器材有限公司 一种基于滤芯识别防伪的空气净化器
CN104913439A (zh) * 2015-05-22 2015-09-16 佛山市顺德区阿波罗环保器材有限公司 一种空气净化器的远程控制方法
CN105785904A (zh) * 2016-03-30 2016-07-20 康颂净水科技(上海)有限公司 一种智能净水服务器及其使用方法
CN108168022A (zh) * 2017-10-26 2018-06-15 佛山市顺德区阿波罗环保器材有限公司 智能空气净化系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205119245U (zh) * 2015-09-11 2016-03-30 北京三五二环保科技有限公司 一种智能联动空气净化系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048387A (zh) * 2014-07-08 2014-09-17 陈南 空气净化器的调节控制方法、装置、系统及空气净化器
CN104436911A (zh) * 2014-11-03 2015-03-25 佛山市顺德区阿波罗环保器材有限公司 一种基于滤芯识别防伪的空气净化器
CN104913439A (zh) * 2015-05-22 2015-09-16 佛山市顺德区阿波罗环保器材有限公司 一种空气净化器的远程控制方法
CN105785904A (zh) * 2016-03-30 2016-07-20 康颂净水科技(上海)有限公司 一种智能净水服务器及其使用方法
CN108168022A (zh) * 2017-10-26 2018-06-15 佛山市顺德区阿波罗环保器材有限公司 智能空气净化系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Also Published As

Publication number Publication date
CN108168022A (zh) 2018-06-15
CN108168022B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2019080784A1 (zh) 智能空气净化系统
CN109196286B (zh) 空气净化设备
CN207478175U (zh) 可检测滤芯寿命的空气净化器
US9920947B2 (en) Networked filter condition indicator
CN205506110U (zh) 一种纺织企业环境监测系统
GB2544916A (en) Air quality notifying device connecting air quality measurement device and wireless terminal, and air quality notifying method therefor
KR102450172B1 (ko) IoT 기술 기반으로 센싱 데이터를 모니터링하여 동작 상태를 제어하는 지능형 산소 발생 시스템
CN203704164U (zh) 空气质量检测净化器
WO2016011975A1 (zh) 净水系统以及基于净水系统的滤芯管控方法
CN117433136A (zh) 空气处理设备,传感器装置和操作方法
US8430951B2 (en) Low cost fluid flow sensor
CN109282427A (zh) 一种滤网寿命的检测方法和装置
CN104501865A (zh) 一种环境参数监测器及监测方法
CN105823511A (zh) 一种纺织企业环境监测系统及方法
CN107636392B (zh) 空气净化系统及方法
CN111023442A (zh) 空气净化设备净化效率风险识别、滤网重置提醒系统及方法
CN111111342A (zh) 过滤组件及过滤网脏堵检测方法
CN107389131A (zh) 一种环境监测装置及环境监测方法
CN207335067U (zh) 智能空气净化系统
CN110570618A (zh) 一种基于两总线的点型吸气式火灾探测系统及方法
CN108489010B (zh) 一种空气净化控制器
CN205807745U (zh) 一种空气质量检测仪
CN205919473U (zh) 室内空气监测与净化智能控制系统
WO2020229850A2 (en) Measuring device of atmospheric air components
US20210116423A1 (en) Particle filter monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871759

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18871759

Country of ref document: EP

Kind code of ref document: A1