WO2019080744A1 - 控制通道实现方法、装置、设备、存储介质和处理方法 - Google Patents

控制通道实现方法、装置、设备、存储介质和处理方法

Info

Publication number
WO2019080744A1
WO2019080744A1 PCT/CN2018/110421 CN2018110421W WO2019080744A1 WO 2019080744 A1 WO2019080744 A1 WO 2019080744A1 CN 2018110421 W CN2018110421 W CN 2018110421W WO 2019080744 A1 WO2019080744 A1 WO 2019080744A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signaling
control
network cluster
node
channel
Prior art date
Application number
PCT/CN2018/110421
Other languages
English (en)
French (fr)
Inventor
崔瑞
赵永利
王大江
王铭江
郁小松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019080744A1 publication Critical patent/WO2019080744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0033Construction using time division switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, a device, a computer readable storage medium, and a method for processing control signaling.
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • SDN Software Defined Network
  • SDN originated from the 2006 Stanford University Clean Slate research project. In 2009, Professor Mckeown and others formally proposed the SDN concept.
  • SDN separates data from control, which enables flexible control of network traffic and provides a good platform for innovation in core networks and applications.
  • the control level including a logically centralized and programmable controller, the global network information can be mastered, allowing operators and researchers to manage the configuration network and deploy new protocols.
  • switches including dumb switches (unlike Layer 2 switches, specifically for devices that forward data) provide simple data forwarding, which can quickly process matching packets and adapt to increasingly traffic. Growing demand.
  • the two layers interact with an open unified interface (such as OpenFlow).
  • OpenFlow open unified interface
  • the controller sends a unified standard rule to the switch through the standard interface. The switch only needs to perform corresponding actions according to these rules. Therefore, SDN technology can effectively reduce the equipment load, help network operators to better control the infrastructure, reduce overall operating costs, and become one of the most promising network technologies.
  • the SDN control architecture is prone to delays in control signaling transmission, which in turn leads to reduced control performance of the controller.
  • an embodiment of the present invention provides a method, an apparatus, a device, a computer readable storage medium, and a control signaling processing method for implementing a control channel, which can reduce a delay of a control signaling transmission process in an SDN control architecture. Improve the control performance of the controller.
  • a control channel implementation method comprising the steps of:
  • a fixed wavelength resource is reserved for the optical path where the control signaling route is located as a control signaling transmission channel, and time slot allocation is performed according to the number of nodes in the network cluster for the control signaling transmission channel in the same network cluster.
  • a control channel implementation apparatus includes: a control signaling routing module and a control channel construction module;
  • the control signaling routing module is configured to determine, according to a network cluster average equalization degree and an average distance from the controller to each node, a control signaling route that the controller reaches each node;
  • the control channel construction module is configured to reserve a fixed wavelength resource as a control signaling transmission channel for the optical path where the control signaling route is located, and control signaling transmission channels in the same network cluster according to the number of nodes in the network cluster. Time slot allocation is performed.
  • a method for processing control signaling comprising the steps of:
  • control signaling transmission channel is not occupied in the current time slot, responding to the control signaling transmission request; if the control signaling transmission channel is occupied in the current time slot, entering a waiting queue, waiting for the next time slot .
  • a control channel implementing device comprising: a memory, a processor, and a control channel stored on the memory and operable on the processor
  • the program is implemented, and the control channel implementation program implements the steps of the control channel implementation method described above when executed by the processor.
  • a computer readable storage medium having a control channel implementation program stored thereon, the control channel implementing program implementing the above control when executed by a processor The steps of the channel implementation method.
  • the method, device, device, computer readable storage medium and control signaling processing method of the control channel of the embodiment of the invention reduce the delay and control in the control signaling transmission process through the constructed control signaling transmission channel
  • the control performance of the device reduces the photoelectric and electro-optical conversion equipment and reduces the cost.
  • FIG. 1 is a schematic flowchart of a method for implementing a control channel according to an embodiment of the present invention
  • FIG. 2 is another schematic flowchart of a method for implementing a control channel according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an apparatus for implementing a control channel according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for processing control signaling according to an embodiment of the present invention.
  • FIG. 5 is another schematic flowchart of a method for processing control signaling according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a device for implementing a control channel according to an embodiment of the present invention.
  • FIGS. 7-8 are schematic diagrams showing the structure of an SDN control architecture
  • FIG. 9 is a schematic structural diagram of an OTDM system according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a spectrum resource allocation structure of a control channel according to an embodiment of the present invention.
  • FIG. 16 are schematic diagrams showing the structure of an application scenario of a control channel according to an embodiment of the present invention.
  • the controller and the switch use a southbound protocol (such as the openflow protocol) to communicate, mainly by the controller to issue control commands (such as topology discovery, construction and deletion services, etc.), and the switch is responsible for receiving The command is forwarded and the corresponding data is forwarded, or the switch actively reports the message (such as network node failure, traffic data, etc.) to the controller.
  • a southbound protocol such as the openflow protocol
  • control commands such as topology discovery, construction and deletion services, etc.
  • the switch is responsible for receiving The command is forwarded and the corresponding data is forwarded, or the switch actively reports the message (such as network node failure, traffic data, etc.) to the controller.
  • There is a certain physical distance between the controller and the switch and the control signaling sent by the controller in the south direction is transmitted by IP layer packet switching.
  • the packet switching itself has a high delay, which causes delay in the control signaling transmission. This in turn leads to a reduction in the control performance of the controller.
  • the southbound protocol is used for communication between the SDN controller and the underlying device node, and the underlying device nodes include A1-A3, B1-B3, and C1-C3.
  • the control channel between the SDN controller and the underlying device node (eg, the control channel between the SDN controller and C1 in the figure) is set to transmit various control signaling.
  • the solid line in FIG. 7 is the control channel of the SDN controller and B2, and the specific transmission process of the control signaling can be referred to FIG. As can be seen from FIG.
  • the SDN controller first needs to go to the C1 node through the signaling protocol field, and then successively passes through the C3 and B3 nodes through photoelectric conversion, and then goes to the B2 node through the electro-optical conversion and signaling protocol fields.
  • the control signaling transmission process several photoelectric conversions and routing jumps have been experienced, resulting in delays in the control signaling transmission, which in turn leads to a decrease in the control performance of the controller.
  • a large number of photoelectric and electro-optical conversion equipments lead to an increase in control costs.
  • This embodiment provides a control channel implementation method based on OTDM (Optical Time Division Multiplexing) technology.
  • OTDM Optical Time Division Multiplexing
  • OTDM technology is a capacity expansion solution that can effectively overcome the "bottleneck" of electronic circuit bandwidth and make full use of low-loss bandwidth resources.
  • WDM Widelength Division Multiplexing
  • the OTDM system only needs a single light source, and the optical amplification is not limited by the gain bandwidth of the amplifier.
  • the research on OTDM started late, it has made great progress in a short period of time, indicating that OTDM has a strong vitality.
  • the OTDM divides a multiplexed channel into several time slots, each baseband data optical pulse stream is allocated to occupy one time slot, and the N baseband signals are time-domain multiplexed in the optical transmitter using ultra-narrow optical pulses to adjust to a higher speed.
  • the optical signal is then placed in the fiber for transmission. As shown in Figure 9, signaling is all-optical transmission during intermediate node propagation.
  • an embodiment of the present invention provides a method for implementing a control channel, where the method includes the following steps:
  • determining, according to the network cluster average equalization and the average distance from the controller to each node, determining the control signaling route that the controller reaches each node includes the following steps:
  • control signaling is all-optical transmission during the propagation of the intermediate node, the routing algorithm based on the number of nodes hops is not applicable here.
  • a control signaling route is first selected based on a heuristic algorithm of transmission distance and network cluster equalization.
  • N is the number of nodes in the network topology
  • N 1 , N 2 ... N N respectively represent the first node, the second node, and the Nth node in the network topology.
  • the network cluster average equalization Bd is expressed by the following formula:
  • the optimal network cluster equalization route set G can be determined by the above formula 1, even if the Bd reaches the minimum routing plan set, as follows:
  • G ⁇ G 1 , G 2 ... G k ⁇ k ⁇ 1.
  • the average distance S k of the controller to each node is calculated.
  • the calculation of S k can be referred to the following formula:
  • G k route average distance Where s(L ij ) is the physical distance of the optical path, that is, the distance of the jth optical path of the i-th network cluster.
  • L ij is the optical path of the control signaling route in the network cluster, i represents the network cluster where the optical path is located, and the number of optical paths of the control signaling route of each network cluster is equal to the number of nodes in the network cluster, that is, the j value of the i-th network cluster
  • the maximum value is n i .
  • G min min k ⁇ S 1 , S 2 ... S k ⁇ .
  • S12 Reserve a fixed wavelength resource as a control signaling transmission channel for the optical path where the control signaling route is located, and perform time slot allocation according to the number of nodes in the network cluster for the control signaling transmission channel in the same network cluster.
  • step S11 the optical network control channel needs to be constructed according to the routing result in the existing network optical path.
  • the control signaling since the control signaling is transmitted in the form of all-optical mode, the wavelength consistency is required. Therefore, in the spectrum resource allocation process, the fixed wavelength resource is reserved for the optical path where the control signaling is located as the control signaling transmission. aisle.
  • a wavelength capacity can be reserved for the optical path where the control signaling route is located to transmit control signaling, so that the control channel can be minimized. cost.
  • the embodiment can be applied to a C-band 40-wave and below wavelength system in a dense wavelength division device, the channel spacing is 100 GHz, and the control channel selects a light wave with a nominal center wavelength of 1525.55 nm.
  • the transmission channel, the remaining 39 bands are used for data service transmission.
  • the step of performing time slot allocation according to the number of nodes in the network cluster for the control signaling transmission channel in the same network cluster includes the following steps:
  • the fixed wavelength resource of the control signaling transmission channel is sliced in a fixed-size time slot in the time domain; the slot period of the control signaling transmission channel in the same network cluster is the number of nodes in the network cluster.
  • the fixed wavelength resource of the control signaling transmission channel is sliced in a fixed-size time slot in the time domain by using an OTDM technology; the slot cycle of the control signaling transmission channel in the same network cluster is The number of nodes in the network cluster; each time slot to which control signaling may be sent (or the node acting as a source node to actively report to the controller) allocates a time slot.
  • the network topology based on the SDN architecture includes an SDN controller and nodes numbered 0-13. It can also be seen from the figure that the physical distance of the optical path of the SDN controller and the node, and the physical distance of the optical path between the nodes.
  • the control signaling route that the controller reaches each node is determined.
  • the determined control signaling route can be divided into four network clusters as shown in FIG. 12 and FIG. 13, the network cluster 1 includes nodes 1, 3, and 4, and the network cluster 2 includes nodes 2, 5, 9, and 12, and network clusters. 3 includes nodes 0, 6, and 7, and network cluster 4 includes nodes 8, 10, 11, and 13.
  • the network cluster average equalization is 0.25 and the average path length is 450Km.
  • All the links in FIG. 12 are assigned a wavelength resource as a control signaling transmission channel, and the control signaling transmission channels in the same network cluster are allocated time slots according to the number of nodes in the network cluster. So far, the construction of the control signaling transmission channel is realized.
  • the control signaling transport channel is split in the time domain, the four time slots are in one cycle, and the four time slots correspond to four nodes of the network cluster.
  • the destination node with 4 control signalings is node 2
  • the destination nodes of 2 control signaling are node 5
  • nodes 9 and 12 have 1 node respectively.
  • Control signaling needs to be transmitted.
  • the channel transmits the control signaling of the destination node as node 2.
  • the OTDM technology can reuse the control channel, improve the resource utilization efficiency of the wavelength, and save control overhead.
  • FIG. 16 is a schematic structural diagram of a control signaling transmission process.
  • the control signaling requires the necessary photoelectric and electro-optic conversion at both ends of the source and the sink, and the entire node passes through the full light.
  • the delay caused by pure optical network transmission will greatly reduce the delay of the entire control process compared to packet switching.
  • the control channel implementation method of the embodiment of the invention reduces the delay in the control signaling transmission process, improves the control performance of the controller, reduces the photoelectric and electro-optical conversion equipment, and reduces the control signaling transmission channel. cost.
  • an embodiment of the present invention further provides a control channel implementation apparatus, where the apparatus includes: a control signaling routing module 21 and a control channel construction module 22;
  • the control signaling routing module 21 is configured to determine a control signaling route that the controller reaches each node according to the network cluster average equalization and the average distance of the controller to each node.
  • control signaling routing module 21 is configured to construct a network cluster according to the network cluster average equalization; and calculate an average distance of the controller to each node according to the constructed network cluster; Calculating the average distance of the controller to each node determines the control signaling route that the controller reaches each node.
  • a control signaling route is first selected based on a heuristic algorithm of transmission distance and network cluster equalization.
  • N is the number of nodes in the network topology
  • N 1 , N 2 ... N N respectively represent the first node, the second node, and the Nth node in the network topology.
  • the network cluster average equalization Bd is expressed by the following formula:
  • the optimal network cluster equalization route set G can be determined by the above formula 1, even if the Bd reaches the minimum routing plan set, as follows:
  • G ⁇ G 1 , G 2 ... G k ⁇ k ⁇ 1.
  • G k route average distance Where s(L ij ) is the physical distance of the optical path, that is, the distance of the jth optical path of the i-th network cluster.
  • L ij is the optical path of the control signaling route in the network cluster, i represents the network cluster where the optical path is located, and the number of optical paths of the control signaling route of each network cluster is equal to the number of nodes in the network cluster, that is, the j value of the i-th network cluster
  • the maximum value is n i .
  • G min min k ⁇ S 1 , S 2 ... S k ⁇ .
  • the control channel construction module 22 is configured to reserve a fixed wavelength resource as a control signaling transmission channel for the optical path where the control signaling route is located, and perform control signaling transmission channels in the same network cluster according to nodes in the network cluster. The number is assigned to the time slot.
  • control signaling routing module 21 After the control signaling routing module 21 determines that the controller arrives at the control signaling route of each node, it needs to construct an optical network control channel according to the routing result in the existing network optical path. As an implementation manner, since the control signaling is transmitted in the form of all-optical mode, the wavelength consistency is required. Therefore, in the spectrum resource allocation process, the fixed wavelength resource is reserved for the optical path where the control signaling is located as the control signaling transmission. aisle.
  • a wavelength capacity can be reserved for the optical path where the control signaling route is located to transmit control signaling, so that the control channel can be minimized. cost.
  • the embodiment can be applied to a C-band 40-wave and below wavelength system in a dense wavelength division device with a channel spacing of 100 GHz, and the control channel selects a light wave with a nominal center wavelength of 1529.55 nm as a transmission channel.
  • the remaining 39 bands are used for data service transmission.
  • control channel construction module 22 is configured to slice the fixed wavelength resource of the control signaling transmission channel in a fixed time slot in the time domain; and control signaling transmission channel in the same network cluster.
  • the slot cycle is the number of nodes in the network cluster.
  • the fixed wavelength resource of the control signaling transmission channel is sliced in a fixed-size time slot in the time domain by using an OTDM technology; the slot cycle of the control signaling transmission channel in the same network cluster is The number of nodes in the network cluster; each time slot to which control signaling may be sent (or the node acting as a source node to actively report to the controller) allocates a time slot.
  • the control channel implementing device of the embodiment of the invention reduces the delay in the control signaling transmission process by providing the control signaling transmission channel, provides the control performance of the controller, reduces the photoelectric and electro-optical conversion equipment, and reduces the cost.
  • the embodiment of the present invention provides a method for processing control signaling, which includes the following steps:
  • control signaling transmission request is a control signaling transmission request sent by the controller or a control signaling transmission request sent by the node.
  • the control signaling transmission request sent by the node actively reports the control signaling for the node.
  • control signaling transmission channel can be referred to the foregoing embodiment, and details are not described herein.
  • control signaling transmission channel If the control signaling transmission channel is not occupied in the current time slot, respond to the control signaling transmission request; if the control signaling transmission channel is occupied in the current time slot, enter a waiting queue and wait for the next one. Time slot.
  • control signaling transmission request sent by the controller and the control signaling transmission request sent by the node are described below with reference to FIG. 5:
  • the controller issues a control signaling transmission request
  • the destination node of the control signaling corresponds to a unique control signaling transmission channel
  • the control signaling transmission channel needs to be determined. Whether the current time slot is occupied, if it has been occupied by the control time slots of other nodes, the current control signaling transmission request needs to enter the waiting queue, waiting for the time slot corresponding to the control signaling destination node to start transmission. If not occupied by the control slots of other nodes, the control signaling transmission channel starts transmitting control signaling to the destination node, so that the destination node receives the control signaling.
  • the destination node of the control signaling corresponds to a unique control signaling transmission channel.
  • the control signaling processing method of the embodiment of the present invention reduces the delay in the control signaling transmission process by providing the control signaling transmission channel, provides the control performance of the controller, and reduces the photoelectric and electro-optical conversion equipment. Reduced costs.
  • an embodiment of the present invention further provides a control channel implementation device, where the control channel implementation device includes: a memory 41, a processor 42 and is stored on the memory 41 and can be on the processor 42.
  • the operating control channel implementation program when the control channel implementation program is executed by the processor 42, is used to implement the steps of the control channel implementation method described below:
  • a fixed wavelength resource is reserved for the optical path where the control signaling route is located as a control signaling transmission channel, and time slot allocation is performed according to the number of nodes in the network cluster for the control signaling transmission channel in the same network cluster.
  • control channel implementation program When the control channel implementation program is executed by the processor 42, it is also used to implement the steps of the control channel implementation method described below:
  • Determining, by the average cluster equalization degree of the network cluster and the average distance from the controller to each node, determining a control signaling route that the controller reaches each node includes the following steps:
  • a control signaling route that the controller reaches each node is determined based on the calculated average distance of the controller to each node.
  • control channel implementation program When the control channel implementation program is executed by the processor 42, it is also used to implement the steps of the control channel implementation method described below:
  • the fixed wavelength resource is a light wave of one wavelength.
  • control channel implementation program When the control channel implementation program is executed by the processor 42, it is also used to implement the steps of the control channel implementation method described below:
  • the step of performing time slot allocation according to the number of nodes in the network cluster for the control signaling transmission channel in the same network cluster includes the following steps:
  • the fixed wavelength resource of the control signaling transmission channel is sliced in a fixed-size time slot in the time domain; the slot period of the control signaling transmission channel in the same network cluster is the number of nodes in the network cluster.
  • the control channel implementing device of the embodiment of the invention reduces the delay in the control signaling transmission process, improves the control performance of the controller, reduces the photoelectric and electro-optical conversion equipment, and reduces the control signaling transmission channel. cost.
  • the embodiment of the present invention further provides a computer readable storage medium, where the control channel implementation program is stored on the computer readable storage medium, and the control channel implementation program is implemented by the processor to implement the control channel implemented in the foregoing embodiment.
  • the steps of the method are described in detail below.
  • the computer readable storage medium of the embodiment of the invention reduces the delay in the control signaling transmission process, improves the control performance of the controller, reduces the photoelectric and electro-optical conversion equipment, and reduces the control signaling transmission channel. The cost.
  • Computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules, or other data. , removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种控制通道实现方法、装置、设备、计算机可读存储介质以及控制信令的处理方法,该方法包括步骤:根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由(S11);对所述控制信令路由所在的光路预留固定波长资源作为控制信令传输通道,并对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配(S12)。

Description

控制通道实现方法、装置、设备、存储介质和处理方法 技术领域
本文涉及通信技术领域,尤其涉及一种控制通道实现方法、装置、设备、计算机可读存储介质以及控制信令的处理方法。
背景技术
在一些情况下,基于传输控制协议/因特网互联协议(Transmission Control Protocol/Internet Protocol,TCP/IP)的网络体系由于其先天不足导致的网络结构臃肿、成本不断攀升以及网络管理困难等缺陷,已经无法满足互联网高速发展的需求。在这种背景下,SDN(Software Defined Network,软件定义网络)应运而生。
SDN起源于2006年斯坦福大学的Clean Slate研究课题。2009年,Mckeown教授等人正式提出了SDN概念。SDN将数据与控制相分离,从而实现了网络流量的灵活控制,为核心网络及应用的创新提供了良好的平台。在控制层,包括具有逻辑中心化和可编程的控制器,可掌握全局网络信息,方便运营商和科研人员管理配置网络和部署新协议等。在数据层,包括哑的(dumb)交换机在内的交换机(与二层交换机不同,专指用于转发数据的设备)仅提供简单的数据转发功能,可以快速处理匹配的数据包,适应流量日益增长的需求。两层之间采用开放的统一接口(如OpenFlow等)进行交互。控制器通过标准接口向交换机下发统一标准规则,交换机仅需按照这些规则执行相应的动作即可。因此,SDN技术能够有效降低设备负载,协助网络运营商更好地控制基础设施,降低整体运营成本,成为最具前途的网络技术之一。
在一些情况下,SDN控制架构容易导致控制信令传输存在延时现象,进而导致控制器的控制性能降低。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的 保护范围。
有鉴于此,本发明实施例提供了一种控制通道实现方法、装置、设备、计算机可读存储介质以及控制信令的处理方法,能够减小SDN控制架构中,控制信令传输过程的延时,提高控制器的控制性能。
本发明实施例所采用的技术方案如下:
根据本发明实施例的一个方面,提供的一种控制通道实现方法,所述方法包括步骤:
根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由;
对所述控制信令路由所在的光路预留固定波长资源作为控制信令传输通道,并对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配。
根据本发明实施例的另一个方面,提供的一种控制通道实现装置,所述装置包括:控制信令路由选择模块和控制通道构建模块;
所述控制信令路由选择模块,设置为根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由;
所述控制通道构建模块,设置为对所述控制信令路由所在的光路预留固定波长资源作为控制信令传输通道,并对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配。
根据本发明实施例的另一个方面,提供的一种控制信令的处理方法,所述方法包括步骤:
接收控制信令传输请求;
根据接收到的控制信令传输请求,判断控制信令传输通道在当前时隙是否被占用;
若所述控制信令传输通道在当前时隙未被占用,则响应所述控制信令传输请求;若所述控制信令传输通道在当前时隙被占用,进入等待队列,等待下一个时隙。
根据本发明实施例的另一个方面,提供的一种控制通道实现设备,所述控制通道实现设备包括:存储器、处理器及存储在所述存储器上并可在所述处理 器上运行的控制通道实现程序,所述控制通道实现程序被所述处理器执行时实现上述的控制通道实现方法的步骤。
根据本发明实施例的另一个方面,提供的一种计算机可读存储介质,所述计算机可读存储介质上存储有控制通道实现程序,所述控制通道实现程序被处理器执行时实现上述的控制通道实现方法的步骤。
本发明实施例的控制通道实现方法、装置、设备、计算机可读存储介质以及控制信令的处理方法,通过构建的控制信令传输通道,减小控制信令传输过程中的延时、提高控制器的控制性能,减少了光电、电光转化设备,降低了成本。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例的控制通道实现方法流程示意图;
图2为本发明实施例的控制通道实现方法另一流程示意图;
图3为本发明实施例的控制通道实现装置结构示意图;
图4为本发明实施例的控制信令的处理方法流程示意图;
图5为本发明实施例的控制信令的处理方法另一流程示意图;
图6为本发明实施例的控制通道实现设备结构示意图;
图7-图8为SDN控制架构结构示意图;
图9为本发明实施例的OTDM系统结构示意图;
图10为本发明实施例的控制通道的频谱资源分配结构示意图;
图11-图16为本发明实施例的控制通道的应用场景结构示意图。
详述
以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在一些情况下,SDN控制架构中,控制器和交换机之间使用南向协议(如 openflow协议)进行通信,主要由控制器来发出控制指令(如拓扑发现、建删业务等),交换机负责接收指令并进行相应的数据转发,或者是交换机主动上报消息(如网络节点故障、流量数据等)给控制器。控制器与交换机之间存在一定的物理距离,而且控制器南向发出的控制信令均采用IP层分组交换的方式进行传输,分组交换本身时延高,导致控制信令传输存在延时现象,进而导致控制器的控制性能降低。
在阐述本发明实施例之前,以下以图7-图8为例,对SDN控制架构进行进一步地说明:
如图7所示,在SDN控制架构中,SDN控制器和底层设备节点之间使用南向协议进行通信,底层设备节点包括A1-A3、B1-B3、C1-C3。SDN控制器和底层设备节点之间的控制通道(例如:图中的SDN控制器和C1之间的控制通道)设置为传输各种控制信令。图7中的实线为SDN控制器与B2的控制通道,控制信令的具体传输过程可参考图8所示。从图8可以看出,SDN控制器首先需要通过信令协议字段转到C1节点,然后通过光电转换相继经过C3、B3节点,再通过电光转换和信令协议字段转到B2节点。在控制信令传输过程中,经历了若干次光电转换和路由跳转,导致控制信令传输存在延时现象,进而导致控制器的控制性能降低。同时大量的光电、电光转化设备导致控制成本增大。
本实施例基于OTDM(Optical Time Division Multiplexing,光时分复用)技术提出一种控制通道实现方法。以下对OTDM技术进行简要说明:
OTDM技术是一种能有效克服电子电路带宽“瓶颈”、充分利用低损耗带宽资源的扩容方案。与WDM(Wavelength Division Multiplexing,波分复用)系统比,OTDM系统只需要单个光源,光放大时不受放大器增益带宽的限制,传输过程中不存在四波混频等非线性参量过程引起的串扰,且具有便于用户接入、易于与现行的同步数字序列及异步传输模式兼容等特点。虽然OTDM的研究起步较晚,但在短短时间里取得了很大的进展,说明OTDM具有很强的生命力。一些发达国家投入了大量的人力物力,在推进WDM光通信的实用化的同时,也积极推进OTDM的发展。同时,将WDM和OTDM结合起来,就可以充分发挥各自的优点而摒弃它们的缺点,共同构建高速、大容量的光纤通信系统。因 此,OTDM/WDM系统已经成为未来高速、大容量光通信系统的一种发展趋势。OTDM将一条复用信道划分成若干个时隙,每个基带数据光脉冲流分配占用一个时隙,N个基带信号在光发射器里利用超窄光脉冲进行时域复用,调整成为更高速的光信号后再放到光纤里进行传输。如图9所示,信令在中间节点传播过程中是全光传输。
如图1所示,本发明实施例提供一种控制通道实现方法,所述方法包括步骤:
S11、根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由。
请参考图2所示,在本实施例中,所述根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由包括步骤:
S110、根据所述网络簇平均均衡度构建网络簇;
S111、根据构建的网络簇,计算所述控制器到每个节点的平均距离;
S112、根据计算的控制器到每个节点的平均距离,确定所述控制器到达每个节点的控制信令路由。
请参考前述内容,由于控制信令在中间节点传播过程中是全光传输,因此基于节点跳数的路由算法在这里不适用。本实施例首先基于传输距离与网络簇均衡的启发式算法对控制信令路由进行选择。
作为一种实现方式,网络拓扑结构决定网络簇的数量m,即网络拓扑中SDN控制器直接相连节点的数量;n 1,n 2……n m分别表示1到m网络簇里节点的数量,满足关系n 1+n 2+…+n m=N。其中N为网络拓扑结构中节点的数量,N 1,N 2……N N分别表示网络拓扑结构中的第一个节点、第二个节点、第N个节点。
网络簇平均均衡度Bd越大,网络簇的平均均衡度越差,反之越好。网络簇平均均衡度Bd用如下公式表示:
Figure PCTCN2018110421-appb-000001
通过上述公式1可确定最优网络簇均衡度路由集合G,即使Bd达到最小值的路由方案集合,如下所示:
G={G 1,G 2……G k}k≥1。
然后,根据上述构建的网络簇,计算所述控制器到每个节点的平均距离S k。作为一种实现方式,S k的计算可参考以下公式所示:
G k路由平均距离
Figure PCTCN2018110421-appb-000002
其中s(L ij)为光路物理距离,即第i个网络簇第j条光路的距离。L ij为网络簇中控制信令路由所在光路,i表示光路所在的网络簇,每个网络簇的控制信令路由所在光路数量等于该网络簇中节点数量,即第i个网络簇的j值最大取值为n i
通过上述公式2,可确定控制信令路由最优选择G min,即所述控制器到达每个节点的控制信令路由。如下所示:
G min=min k{S 1,S 2……S k}。
S12、对所述控制信令路由所在的光路预留固定波长资源作为控制信令传输通道,并对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配。
在实施步骤S11之后,需要在已有网络光路中按照路由选择结果构建光网络控制信道。作为一种实现方式,由于采用全光的形式传输控制信令,需要满足波长一致性,所以在频谱资源分配过程中对所述控制信令路由所在的光路预留固定波长资源作为控制信令传输通道。
在本实施例中,由于控制信令本身数据量小,因此可对所述控制信令路由所在的光路预留一个波长的容量来传输控制信令,这样可以最大程度地减小控制通道构建的成本。
作为一种实现方式,请参考图10所示,本实施例可应用在密集波分设备为C波段40波及以下波长系统,通路间隔为100GHz,控制通道选择标称中心波长为1529.55nm的光波作传输信道,其余39个波段用于数据业务传输。
在本实施例中,所述对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配包括步骤:
将所述控制信令传输通道的固定波长资源,在时域上以固定大小时隙进行切片;同一网络簇中的控制信令传输通道的时隙周期为该网络簇中节点数量。
作为一种实现方式,采用OTDM技术将所述控制信令传输通道的固定波长 资源,在时域上以固定大小时隙进行切片;同一网络簇中的控制信令传输通道的时隙周期为该网络簇中节点数量;对控制信令可能发往的每个目的节点(或者节点作为源节点向控制器主动上报)分配一个时隙。
为了更好地阐述本实施例,以下结合图11-图13对控制通道的应用场景进行说明:
如图11所示,基于SDN架构的网络拓扑结构包括SDN控制器和编号0-13的节点。从该图中还可以看出,SDN控制器和节点的光路物理距离、以及节点之间的光路物理距离。
根据图11网络拓扑结构中的网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由。确定的控制信令路由可参考图12和图13所示,一共分为4个网络簇,网络簇1包括节点1、3、4,网络簇2包括节点2、5、9、12,网络簇3包括节点0、6、7,网络簇4包括节点8、10、11、13。网络簇平均均衡度为0.25,平均路径长度为450Km。
对图12中所有链路分配一个波长资源作为控制信令传输通道,并对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配。至此,实现控制信令传输通道的构建。
以下再结合图14-15,对通过构建的控制信令传输通道传输控制信令的过程进行说明,
如图14所示,当A,B,C同时有控制需求时(A控制2号节点、B控制9号节点、C控制12号节点),三者从控制器发出的控制信令会共用同一条控制信令传输通道。
将控制信令传输信道在时域上进行切分,4个时隙单位为一个周期,4个时隙对应该网络簇的4个节点。如图15所示,在某个时间区间内,有4个控制信令的目的节点为2号节点,2个控制信令的目的节点为5号节点,9号节点和12号节点分别有1个控制信令需要传输。在当前时隙,信道传输的是目的节点为2号节点的控制信令。采用OTDM技术能够复用控制通道,提高波长的资源利用效率,节约控制开销。
请再参考图16所示,图16为控制信令传输过程结构示意图,从图中可以看出,控制信令除了源宿两端需要必要的光电、电光转换外,在中间节点是通 过全光的方式进行交换,纯光网络传输带来的时延相较于分组交换会大大降低整个控制过程的时延。
本发明实施例的控制通道实现方法,通过构建的控制信令传输通道,减小了控制信令传输过程中的延时、提高了控制器的控制性能,减少了光电、电光转化设备,降低了成本。
如图3所示,本发明实施例还提供了一种控制通道实现装置,所述装置包括:控制信令路由选择模块21和控制通道构建模块22;
所述控制信令路由选择模块21,设置为根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由。
作为一种实现方式,所述控制信令路由选择模块21是设置为根据所述网络簇平均均衡度构建网络簇;根据构建的网络簇,计算所述控制器到每个节点的平均距离;根据计算的控制器到每个节点的平均距离,确定所述控制器到达每个节点的控制信令路由。
由于控制信令在中间节点传播过程中是全光传输,因此基于节点跳数的路由算法在这里不适用。本实施例首先基于传输距离与网络簇均衡的启发式算法对控制信令路由进行选择。
作为一种实现方式,网络拓扑结构决定网络簇的数量m,即网络拓扑中SDN控制器直接相连节点的数量;n 1,n 2……n m分别表示1到m网络簇里节点的数量,满足关系n 1+n 2+…+n m=N。其中N为网络拓扑结构中节点的数量,N 1,N 2……N N分别表示网络拓扑结构中的第一个节点、第二个节点、第N个节点。
网络簇平均均衡度Bd越大,网络簇的平均均衡度越差,反之越好。网络簇平均均衡度Bd用如下公式表示:
Figure PCTCN2018110421-appb-000003
通过上述公式1可确定最优网络簇均衡度路由集合G,即使Bd达到最小值的路由方案集合,如下所示:
G={G 1,G 2……G k}k≥1。
然后,根据上述构建的网络簇,计算所述控制器到每个节点的平均距离S k。 S k的计算可参考以下公式所示:
G k路由平均距离
Figure PCTCN2018110421-appb-000004
其中s(L ij)为光路物理距离,即第i个网络簇第j条光路的距离。L ij为网络簇中控制信令路由所在光路,i表示光路所在的网络簇,每个网络簇的控制信令路由所在光路数量等于该网络簇中节点数量,即第i个网络簇的j值最大取值为n i
通过上述公式2,可确定控制信令路由最优选择G min,即所述控制器到达每个节点的控制信令路由。如下所示:
G min=min k{S 1,S 2……S k}。
所述控制通道构建模块22,设置为对所述控制信令路由所在的光路预留固定波长资源作为控制信令传输通道,并对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配。
在控制信令路由选择模块21确定控制器到达每个节点的控制信令路由之后,需要在已有网络光路中按照路由选择结果构建光网络控制信道。作为一种实现方式,由于采用全光的形式传输控制信令,需要满足波长一致性,所以在频谱资源分配过程中对所述控制信令路由所在的光路预留固定波长资源作为控制信令传输通道。
在本实施例中,由于控制信令本身数据量小,因此可对所述控制信令路由所在的光路预留一个波长的容量来传输控制信令,这样可以最大程度地减小控制通道构建的成本。
作为示例地,请参考图10所示,本实施例可应用在密集波分设备为C波段40波及以下波长系统,通路间隔为100GHz,控制通道选择标称中心波长为1529.55nm的光波作传输信道,其余39个波段用于数据业务传输。
在本实施例中,所述控制通道构建模块22设置为将所述控制信令传输通道的固定波长资源,在时域上以固定大小时隙进行切片;同一网络簇中的控制信令传输通道的时隙周期为该网络簇中节点数量。
作为一种实现方式,采用OTDM技术将所述控制信令传输通道的固定波长 资源,在时域上以固定大小时隙进行切片;同一网络簇中的控制信令传输通道的时隙周期为该网络簇中节点数量;对控制信令可能发往的每个目的节点(或者节点作为源节点向控制器主动上报)分配一个时隙。
本发明实施例的控制通道实现装置,通过构建的控制信令传输通道,减小了控制信令传输过程中的延时、提供了控制器的控制性能,减少了光电、电光转化设备,降低了成本。
基于上述实施例控制通道实现装置构建的控制信令传输通道,如图4所示,本发明实施例提供一种控制信令的处理方法,所述方法包括步骤:
S31、接收控制信令传输请求。
在本实施例中,所述控制信令传输请求为控制器发出的控制信令传输请求或者节点发出的控制信令传输请求。其中节点发出的控制信令传输请求,为节点主动上报控制信令。
S32、根据接收到的控制信令传输请求,判断控制信令传输通道在当前时隙是否被占用。
控制信令传输通道的实现可参考前述实施例,在此不作赘述。
S33、若所述控制信令传输通道在当前时隙未被占用,则响应所述控制信令传输请求;若所述控制信令传输通道在当前时隙被占用,进入等待队列,等待下一个时隙。
为了更好地阐述本实施例,以下结合图5对控制器发出的控制信令传输请求和节点发出的控制信令传输请求进行说明:
如图5所示,如果控制器发出控制信令传输请求,由之前的实施例可知,控制信令的目的节点对应唯一的控制信令传输通道,在OTDM系统中,需要判断控制信令传输通道在当前时隙是否被占用,如果已经被其他节点的控制时隙占用,当前的控制信令传输请求需要进入等待队列,等待到该控制信令目的节点对应的时隙开始传输。如果未被其他节点的控制时隙占用,则控制信令传输通道开始传输控制信令到目的节点,以使得目的节点接收该控制信令。
如果节点发出控制信令传输请求,即节点主动上报控制信令,控制信令的 目的节点对应唯一的控制信令传输通道,在OTDM系统中,需要判断控制信令传输通道在当前时隙是否被占用,如果已经被其他节点的控制时隙占用,当前的控制信令传输请求需要进入等待队列,等待到该控制信令目的节点对应的时隙开始传输。如果未被其他节点的控制时隙占用,则控制信令传输通道开始传输控制信令到控制器,以使得控制器接收该控制信令。
本发明实施例的控制信令的处理方法,通过构建的控制信令传输通道,减小了控制信令传输过程中的延时、提供了控制器的控制性能,减少了光电、电光转化设备,降低了成本。
如图6所示,本发明实施例还提供一种控制通道实现设备,所述控制通道实现设备包括:存储器41、处理器42及存储在所述存储器41上并可在所述处理器42上运行的控制通道实现程序,所述控制通道实现程序被所述处理器42执行时,用于实现以下所述的控制通道实现方法的步骤:
根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由;
对所述控制信令路由所在的光路预留固定波长资源作为控制信令传输通道,并对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配。
所述控制通道实现程序被所述处理器42执行时,还用于实现以下所述的控制通道实现方法的步骤:
所述根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由包括步骤:
根据所述网络簇平均均衡度构建网络簇;
根据构建的网络簇,计算所述控制器到每个节点的平均距离;
根据计算的控制器到每个节点的平均距离,确定所述控制器到达每个节点的控制信令路由。
所述控制通道实现程序被所述处理器42执行时,还用于实现以下所述的控制通道实现方法的步骤:
所述固定波长资源为一个波长的光波。
所述控制通道实现程序被所述处理器42执行时,还用于实现以下所述的控制通道实现方法的步骤:
所述对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配包括步骤:
将所述控制信令传输通道的固定波长资源,在时域上以固定大小时隙进行切片;同一网络簇中的控制信令传输通道的时隙周期为该网络簇中节点数量。
本发明实施例的控制通道实现设备,通过构建的控制信令传输通道,减小了控制信令传输过程中的延时、提高了控制器的控制性能,减少了光电、电光转化设备,降低了成本。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有控制通道实现程序,所述控制通道实现程序被处理器执行时实现前述实施例所述的控制通道实现方法的步骤。
本发明实施例的计算机可读存储介质,通过构建的控制信令传输通道,减小了控制信令传输过程中的延时、提高了控制器的控制性能,减少了光电、电光转化设备,降低了成本。
需要说明的是,上述装置实施例与方法实施例属于同一构思,其具体实现过程详见方法实施例,且方法实施例中的技术特征在装置实施例中均对应适用,这里不再赘述。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理单元的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上, 计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。以上参照附图说明了本发明的可选实施例,并非因此局限本发明的权利范围。本领域技术人员不脱离本发明的范围和实质,可以有多种变型方案实现本发明,比如作为一个实施例的特征可用于另一实施例而得到又一实施例。凡在运用本发明的技术构思之内所作的任何修改、等同替换和改进,均应在本发明的权利范围之内。

Claims (10)

  1. 一种控制通道实现方法,所述方法包括步骤:
    根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由(S11);
    对所述控制信令路由所在的光路预留固定波长资源作为控制信令传输通道,并对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配(S12)。
  2. 根据权利要求1所述的一种控制通道实现方法,其中,所述根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由(S11)包括:
    根据所述网络簇平均均衡度构建网络簇(S110);
    根据构建的网络簇,计算所述控制器到每个节点的平均距离(S111);
    根据计算的控制器到每个节点的平均距离,确定所述控制器到达每个节点的控制信令路由(S112)。
  3. 根据权利要求1所述的一种控制通道实现方法,其中,所述固定波长资源为一个波长的光波。
  4. 根据权利要求1所述的一种控制通道实现方法,其中,所述对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配(S12)包括:
    将所述控制信令传输通道的固定波长资源,在时域上以固定大小时隙进行切片;同一网络簇中的控制信令传输通道的时隙周期为该网络簇中节点数量。
  5. 一种控制通道实现装置,所述装置包括:控制信令路由选择模块(21)和控制通道构建模块(22);
    所述控制信令路由选择模块(21),设置为根据网络簇平均均衡度和控制器到每个节点的平均距离,确定控制器到达每个节点的控制信令路由;
    所述控制通道构建模块(22),设置为对所述控制信令路由所在的光路预 留固定波长资源作为控制信令传输通道,并对同一网络簇中的控制信令传输通道按照该网络簇中节点数量进行时隙分配。
  6. 根据权利要求5所述的一种控制通道实现装置,其中,所述固定波长资源为一个波长的光波。
  7. 一种基于权利要求5至6任一所述的控制通道实现装置的控制信令的处理方法,所述方法包括步骤:
    接收控制信令传输请求(S31);
    根据接收到的控制信令传输请求,判断控制信令传输通道在当前时隙是否被占用(S32);
    若所述控制信令传输通道在当前时隙未被占用,则响应所述控制信令传输请求;若所述控制信令传输通道在当前时隙被占用,进入等待队列,等待下一个时隙(S33)。
  8. 根据权利要求7所述的一种控制信令的处理方法,其中,所述控制信令传输请求为控制器发出的控制信令传输请求或者节点发出的控制信令传输请求。
  9. 一种控制通道实现设备,所述控制通道实现设备包括:存储器(41)、处理器(42)及存储在所述存储器(41)上并可在所述处理器(42)上运行的控制通道实现程序,所述控制通道实现程序被所述处理器(42)执行时实现如权利要求1至4中任一项所述的控制通道实现方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储有控制通道实现程序,所述控制通道实现程序被处理器执行时实现如权利要求1至4中任一项所述的控制通道实现方法的步骤。
PCT/CN2018/110421 2017-10-23 2018-10-16 控制通道实现方法、装置、设备、存储介质和处理方法 WO2019080744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710995395.7 2017-10-23
CN201710995395.7A CN109698982B (zh) 2017-10-23 2017-10-23 控制通道实现方法、装置、设备、存储介质和处理方法

Publications (1)

Publication Number Publication Date
WO2019080744A1 true WO2019080744A1 (zh) 2019-05-02

Family

ID=66226064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110421 WO2019080744A1 (zh) 2017-10-23 2018-10-16 控制通道实现方法、装置、设备、存储介质和处理方法

Country Status (2)

Country Link
CN (1) CN109698982B (zh)
WO (1) WO2019080744A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112449007A (zh) * 2020-11-13 2021-03-05 江西师范大学 一种基于加权距离的工业物联网资源调度方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120023264A1 (en) * 2010-07-26 2012-01-26 Thales Distributed node network adapted to tolerate a given number of network node breakdowns
CN103051565A (zh) * 2013-01-04 2013-04-17 中兴通讯股份有限公司 一种等级软件定义网络控制器的架构系统及实现方法
CN104618475A (zh) * 2015-01-28 2015-05-13 清华大学 用于异构sdn网络的水平方向通信方法和sdn系统
CN106341324A (zh) * 2016-09-30 2017-01-18 赛特斯信息科技股份有限公司 Sdn和nfv融合网络动态建立sdn控制器的方法
CN106850587A (zh) * 2017-01-09 2017-06-13 中国人民解放军国防科学技术大学 基于ieee 802.11的分布式天线系统mac协议改进方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792973B (zh) * 2016-12-30 2020-06-30 武汉中原电子信息有限公司 一种能量异构无线传感器网络中的簇首选举及其轮换方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120023264A1 (en) * 2010-07-26 2012-01-26 Thales Distributed node network adapted to tolerate a given number of network node breakdowns
CN103051565A (zh) * 2013-01-04 2013-04-17 中兴通讯股份有限公司 一种等级软件定义网络控制器的架构系统及实现方法
CN104618475A (zh) * 2015-01-28 2015-05-13 清华大学 用于异构sdn网络的水平方向通信方法和sdn系统
CN106341324A (zh) * 2016-09-30 2017-01-18 赛特斯信息科技股份有限公司 Sdn和nfv融合网络动态建立sdn控制器的方法
CN106850587A (zh) * 2017-01-09 2017-06-13 中国人民解放军国防科学技术大学 基于ieee 802.11的分布式天线系统mac协议改进方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112449007A (zh) * 2020-11-13 2021-03-05 江西师范大学 一种基于加权距离的工业物联网资源调度方法和系统
CN112449007B (zh) * 2020-11-13 2022-06-28 江西师范大学 一种基于加权距离的工业物联网资源调度方法和系统

Also Published As

Publication number Publication date
CN109698982B (zh) 2021-09-21
CN109698982A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
US7466917B2 (en) Method and system for establishing transmission priority for optical light-trails
US9608763B2 (en) All-optical time slice switching method and system based on time synchronization
EP2502403A2 (en) Communication system and method for managing data transfer through a communication network
US8385349B2 (en) Medium access control device and method for optical packet-switched metro WDM slotted-ring networks
Yahaya et al. A review of routing strategies for optical burst switched networks
JP5739960B2 (ja) パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム
US20150043911A1 (en) Network Depth Limited Network Followed by Compute Load Balancing Procedure for Embedding Cloud Services in Software-Defined Flexible-Grid Optical Transport Networks
EP3038279B1 (en) Bandwidth map update method and device
Chen et al. Hybrid switching and p-routing for optical burst switching networks
Biswas et al. Energy-efficient network planning and traffic provisioning in IP-over-elastic optical networks
González-Ortega et al. LOBS-H: an enhanced OBS with wavelength sharable home circuits
WO2019080744A1 (zh) 控制通道实现方法、装置、设备、存储介质和处理方法
Pradhan et al. Multicast dynamic traffic grooming using bin packing method in WDM mesh networks
Pradhan et al. Multicast protection and grooming scheme in survivable WDM optical networks
Liu et al. Joint jobs scheduling and routing for metro-scaled micro datacenters over elastic optical networks
Parthiban et al. Cost comparison of optical circuit-switched and burst-switched networks
Bouabdallah et al. Cost-effective single-hub WDM ring networks: A proposal and analysis
Cao et al. Dynamic optical packet switching network with advanced SDN/OpenFlow control
Misawa et al. Resource management architecture of metro aggregation network for IoT traffic
Nleya et al. A bursts contention avoidance scheme based on streamline effect awareness and limited intermediate node buffering in the core network
Dutta et al. Priority based wavelength routed WDM networks: A queueing theory approach
Zhang Research on control routing technology in communication network
Drainakis et al. Optical Intra-and Inter-Rack Switching Architecture for Scalable, Low-Latency Data Center Networks
Alahmadi et al. Optimization of Processing Allocation in Vehicular Edge Cloud based Architecture
Alqahtani Energy efficiency of fog computing in access networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18871019

Country of ref document: EP

Kind code of ref document: A1