WO2019080562A1 - 精准模拟触摸控制方法及装置 - Google Patents

精准模拟触摸控制方法及装置

Info

Publication number
WO2019080562A1
WO2019080562A1 PCT/CN2018/097060 CN2018097060W WO2019080562A1 WO 2019080562 A1 WO2019080562 A1 WO 2019080562A1 CN 2018097060 W CN2018097060 W CN 2018097060W WO 2019080562 A1 WO2019080562 A1 WO 2019080562A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
signal
gain
signal receiving
Prior art date
Application number
PCT/CN2018/097060
Other languages
English (en)
French (fr)
Inventor
黄炜
Original Assignee
上海飞智电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海飞智电子科技有限公司 filed Critical 上海飞智电子科技有限公司
Publication of WO2019080562A1 publication Critical patent/WO2019080562A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to a precision analog touch control method and apparatus.
  • the principle is realized by a matrix of criss-crossing electrodes, and the intersection of the vertical and horizontal electrodes is a touch point.
  • Inductive finger touch as the resolution of the touch screen becomes higher and higher, for example, 1920*1080, if pixel-level touch is to be realized, it is easier to set a matrix of 1920*1080 vertical and horizontal electrodes, thereby Realize the touch of each pixel.
  • the present invention provides a precision analog touch control method for a capacitive touch screen, the capacitive touch screen comprising: a plurality of signal transmitting electrodes and a plurality of signal receiving electrodes arranged in a crisscross array
  • the signal transmitting electrodes are arranged along a first coordinate axis on a plane of the capacitive touch screen, and the signal receiving electrodes are arranged along a second coordinate axis perpendicular to the first coordinate axis on a plane of the capacitive touch screen;
  • the precise touch control method includes: a target touch point corresponding to the touch to be simulated, a first signal transmitting electrode, a second signal transmitting electrode, a first signal receiving electrode, and a second disposed adjacent to or falling on the target touch point a signal component respectively corresponding to a gain component, wherein a magnitude relationship between respective gain components of the first signal transmitting electrode and the second signal transmitting electrode determines a target touch point at the first signal transmitting electrode and the second signal a
  • the target touch point has a plurality of; the method includes: if the plurality of target touch points are located between two adjacent signal receiving electrodes, The excitation signals on the respective signal receiving electrodes corresponding to the target touch points are processed by the gain and sent to the two signal receiving electrodes.
  • the target touch point has a plurality of; the method includes: when the plurality of target touch points are located between two adjacent signal transmitting electrodes, the phase is The excitation signals of the two adjacent signal transmitting electrodes are respectively processed by the gain and sent to respective signal receiving electrodes adjacent to the plurality of target touch points.
  • the number of signal transmitting electrodes is less than or equal to the number of pixels in the first coordinate axis defined by the resolution of the capacitive touch screen; the number of the signal receiving electrodes is less than or equal to the number The resolution of the capacitive touch screen is at the pixel of the second coordinate axis.
  • the target touch point corresponds to a pixel point.
  • the present invention provides a precision analog touch control device for a capacitive touch screen, the capacitive touch screen comprising: a plurality of signal transmitting electrodes and a plurality of signal receiving electrodes arranged in a crisscross array
  • the signal transmitting electrodes are arranged along a first coordinate axis on a plane of the capacitive touch screen, and the signal receiving electrodes are arranged along a second coordinate axis perpendicular to the first coordinate axis on a plane of the capacitive touch screen;
  • the precise touch control device includes: a plurality of gain processing units; and a signal control circuit; each of the gain processing units has an input terminal connected to the signal transmitting electrode, and an output end connected to the signal receiving electrode; the signal a control circuit, connected to each of the gain processing units, for causing the excitation signals on the first signal transmitting electrode and the second signal transmitting electrode adjacent to the target touch point of the touch to be simulated to be subjected to the gain processing of the corresponding gain processing
  • the target touch point has a plurality of; in the case that the plurality of target touch points are located between two adjacent signal receiving electrodes, the signal control circuit causes the The excitation signals on the respective signal receiving electrodes corresponding to the plurality of target touch points are processed by the gain of the corresponding gain processing unit and then sent to the two signal receiving electrodes.
  • the target touch point has a plurality of; in the case that the plurality of target touch points are located between two adjacent signal transmitting electrodes, the signal control circuit causes the phase The excitation signals of the two adjacent signal transmitting electrodes are respectively processed by the gain and sent to respective signal receiving electrodes adjacent to the plurality of target touch points.
  • the number of signal transmitting electrodes is less than or equal to the number of pixels in the first coordinate axis defined by the resolution of the capacitive touch screen; the number of the signal receiving electrodes is less than or equal to the number The resolution of the capacitive touch screen is at the pixel of the second coordinate axis.
  • the target touch point corresponds to a pixel point.
  • the gain of the input gain circuit and/or the output gain circuit is adjustable.
  • the accurate analog touch control method and apparatus of the present invention performs gain processing on an excitation signal adjacent to two signal transmitting electrodes adjacent to a target touch point on a capacitive touch screen, and then transmits the two signals adjacent to the target touch point.
  • a signal receiving electrode to realize an analog touch to the target touch point the invention has a signal transmitting electrode and a signal receiving electrode on the existing capacitive screen, and adopts a gain control method for the excitation signal to realize a pixel point level.
  • the analog touch can reduce the amount of electrode used, solve the problems of the prior art, and effectively reduce the cost.
  • FIG. 1 is a schematic diagram showing a partial structure of a capacitive touch screen according to an embodiment of the invention.
  • FIG. 2 shows a schematic diagram of the principle of implementing an analog touch operation of the target touch point a in FIG.
  • Figure 3 shows a schematic diagram of the logical processing equivalent to Figure 2.
  • FIG. 4 is a schematic diagram showing the circuit structure of a precision analog touch control device according to an embodiment of the present invention.
  • the solution of the present invention is applied to an analog touch of a target touch point on a capacitive touch screen, wherein the capacitive touch screen is a mutual capacitance touch screen having a plurality of signal transmitting electrodes and a plurality of signal receiving electrodes arranged in a crisscross array.
  • the intersection of each of the signal transmitting electrode and the signal receiving electrode is a touch point; the present invention controls the gain change of the signal on the signal transmitting electrode and outputs the signal to the signal receiving electrode, thereby realizing the target touch point at a more fine position.
  • Touch operations such as touch operations at the pixel level.
  • an electronic device using a capacitive touch screen such as a smart phone or a tablet computer
  • 1920 signal transmitting electrodes and 1080 signal receiving electrodes are required, which is costly; the invention can achieve the same by using a smaller number of signal transmitting electrodes and signal receiving electrodes.
  • FIG. 1 a schematic structural view of a portion of a capacitive touch screen in an embodiment is shown.
  • a rectangular coordinate system is established on a plane of the capacitive touch screen, the vertical direction is an x-axis, and the horizontal direction is a y-axis.
  • the pair of signal transmitting electrodes are defined as x and x+1, and the pair of signal receiving electrodes are The target touch points in the area surrounded by y and y+1, the x electrode, the x+1 electrode, the y electrode, and the y+1 electrode are A.
  • FIG. 2 a schematic diagram of the principle of signal processing for realizing the analog touch operation of the A point is shown.
  • the x electrode corresponds to the gain i
  • the x+1 electrode corresponds to the gain j
  • the y electrode corresponds to the gain m
  • the y+1 electrode corresponds to the gain n
  • i, j, m, and n are all used for the signal transmitting electrode.
  • the excitation signal is used for gain amplification; the present invention uses gain control to adjust the strong-weak relationship between the x and x+1 electrodes or the excitation signals on the y and y+1 electrodes to represent x+1 and The x position of the target touch point A between the x electrodes, or the y position of the target touch point A between the y and y+1 electrodes, for example, the excitation signal on the x+1 electrode is stronger than the x electrode after the gain processing, Then point A is closer to the x+1 electrode on the x-axis.
  • the position of the point A between the x and x+1 electrodes that is, the magnitude relationship between the corresponding gain i and the gain j, in y and
  • the position of point A between the y+1 electrodes corresponds to the magnitude relationship between the gain m and the gain n.
  • the positional coordinates of the point A in the plane rectangular coordinate system can be expressed by the magnitude relationship of the above gains.
  • the signals of the adjacent two signal transmitting electrodes need to be processed by gain processing and then sent to the two signal receiving electrodes respectively, and the gain is used as a gain component, and the target gain used by the gain processing is Superposition of a gain component corresponding to a signal transmitting electrode as a transmitter of the excitation signal and a signal receiving electrode as a receiving side thereof.
  • the excitation signal of the x electrode is amplified by the gain i and amplified by the gain m to the y electrode, and the excitation signal of the x electrode is amplified by the gain i and then amplified by the gain n to the y+1.
  • the excitation signal of the x+1 electrode is amplified by the gain j and amplified by the gain m to the y electrode, and the excitation signal of the x+1 electrode is amplified by the gain j and amplified by the gain n to the y+1 electrode.
  • Figure 3 shows the equivalent operation principle of this process, that is, the excitation signal of the x electrode is amplified by the gain i and the excitation signal of the x+1 electrode is amplified by the gain j and then combined (in this embodiment, added), and then The gain is amplified by the gain m to the y electrode, and amplified by the gain n to the y+1 electrode to realize the analog touch operation of the point A; of course, if the point A falls on a signal transmitting electrode and is located between the two signal receiving electrodes When, for example, falling on the x electrode and between the y and y+1 electrodes, the excitation signal of the x electrode is amplified by the gain i and the gain m and output to the y electrode, and the excitation signal of the x electrode is passed through the gain i and the gain n.
  • the excitation signal of the x electrode is amplified by the gain i and the gain m, and then output to the y electrode.
  • the excitation signal of the x+1 electrode is amplified by the gain j and the gain m, and then output to the y electrode to simulate the touch of the A point. .
  • Figures 1 through 3 illustrate an embodiment of a single touch, which in practice may be implemented in such a way as to achieve multi-touch.
  • each target touch point in the multi-touch is a touch point that is not adjacent to the same electrode, for example, between the x and x+1 electrodes Point A, and point C between the x+2 and x+3 electrodes.
  • a plurality of target touch points may be located between two signal transmitting electrodes, for example, a target touch point D, E, F between the y electrode and the y+1 electrode, and the D point is located at x a and Between x a+1 electrodes, point E is between x b and x b+1 electrodes, point F is between x c and x c+1 electrodes, then x a and x a+1 electrodes are used during analog touch operation , x b and x b + 1 electrode, x c x c + excitation signal and on the electrode are carried out as before being sent to the electrode and the y electrode y + 1 after the gain processing example described embodiments.
  • a plurality of target touch points may be located between two signal receiving electrodes, for example, a target touch point D, E, F between the y electrode and the y+1 electrode, and the D point is located at x a and Between x a+1 electrodes, point E is between x b and x b+1 electrodes, and point F is between x c and x c+1 electrodes, then x a and x a+ during simulated multi-touch operation
  • the excitation signals on the 1 electrode, x b and x b+1 electrodes, x c and x c+1 electrodes are all subjected to gain processing as described in the previous embodiment and then sent to the y electrode and the y+1 electrode, for example x
  • the a and x a+1 electrodes have corresponding gains of o, p, y and y+1 electrodes corresponding to gains m, n, and then the gain superimposition process is applied to the excitation signals and sent to y and
  • multiple target touch points may be located between two signal transmitting electrodes, for example, there are target touch points G, H, I between the x electrode and the x+1 electrode, and the G point is located at y a and Between the y a+1 electrodes, the H point is between the y b and y b+1 electrodes, and the I point is between the y c and y c+1 electrodes.
  • the excitation signals on the x and x+1 electrodes respectively correspond to different signal receiving electrodes (y a , y a+1 , y b , y b+1 , y c , Or y c+1 electrode) is subjected to gain processing and then sent to the corresponding signal receiving electrode.
  • FIG. 4 an embodiment of a circuit implementation of a precision analog touch control device in accordance with an embodiment of the present invention is shown.
  • each electrode has its corresponding gain, and when an excitation signal is transmitted from the signal transmitting electrode to the signal receiving electrode, it is subjected to gain processing corresponding to the gain superposition of the two electrodes, that is, corresponding to each
  • a pair of signal transmitting electrodes and signal receiving electrodes are provided to provide a gain processing unit 41a, 41b, 41c, or 41d, and the target gain used to process the excitation signal is a superposition of the gain components of the pair of electrodes, for example, in the circuit application of FIG. In the embodiment of FIG.
  • the gain processing unit 41a, 41b, 41c, or 41d may be implemented by an operational amplifier circuit, and each of the gain processing units 41a, 41b, 41c, or 41d may communicate with a signal transmitting electrode corresponding thereto. And the signal receiving electrode.
  • the precision analog touch control device further includes a signal control circuit 42 that can be implemented by, for example, an MCU, an FPGA, a CPLD, a switching circuit, or the like, for controlling each gain by a software program or a hardware circuit. Whether the processing unit 41a, 41b, 41c, or 41d operates or is in communication with a corresponding signal transmitting electrode (x, x+1 electrode) and a signal receiving electrode (y, y+1 electrode).
  • the target gain used by each of the gain processing units 41a, 41b, 41c, or 41d is adjustable, thereby implementing an analog touch operation on a target touch point at an arbitrary position between adjacent electrodes;
  • the target gain of the gain processing unit may also be fixed in the case where the number of electrodes is large and the distribution density is high without requiring very high precision.
  • FIG. 4 is only a circuit structure design. In other embodiments, the circuit structure may be changed according to actual needs, and is not limited to the embodiment.
  • a gain processing unit corresponding to its gain component is disposed corresponding to each electrode, and any one of the signal transmitting electrodes and the gain processing unit of the signal receiving electrode is selected as needed, which is equivalent to a single gain processing in this embodiment.
  • the unit has the same function, but the degree of freedom in designing the circuit structure is higher.
  • the accurate analog touch control method and apparatus of the present invention performs gain processing on an excitation signal adjacent to two signal transmitting electrodes adjacent to a target touch point on a capacitive touch screen, and then transmits the signal to the target touch point adjacent to the target touch point.
  • Two signal receiving electrodes are used to implement an analog touch on the target touch point; the present invention has a signal transmitting electrode and a signal receiving electrode on the existing capacitive screen, and adopts a gain control method for the excitation signal to realize the pixel point.
  • the level of analog touch which can reduce the amount of electrode used, solve the problems of the prior art, and effectively reduce costs.
  • the invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明的精准模拟触摸控制方法及装置,通过对与电容触摸屏上目标触摸点相邻两个信号发送电极的激励信号进行增益处理后发送至与所述目标触摸点相邻的两个信号接收电极,以实现对所述目标触摸点的模拟触摸;本发明在现有电容屏上已有信号发送电极和信号接收电极的基础上,采用对激励信号增益控制方式来实现像素点级别的模拟触摸,这样就能减少电极使用量,解决现有技术的问题,有效降低成本。

Description

精准模拟触摸控制方法及装置 技术领域
本发明涉及触控技术领域,特别是涉及精准模拟触摸控制方法及装置。
背景技术
目前的触控技术中,以电容触摸屏为例,无论是互容式还是自容式电容触摸屏,其原理均是通过纵横交错的电极矩阵来实现,纵、横电极的交叉点为触摸点,用于感应手指触摸;随着触摸屏的分辨率越来越高,例如1920*1080,如果要实现像素点级别的触控,比较容易想到的是设置1920*1080个纵、横电极构成的矩阵,从而实现每个像素点的触控。
但是,如此一来,势必会增加纵、横电极的数量,提升成本;因此,如何采用少量电极来实现像素点级别的触控,已成为业界亟待解决的问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供精准模拟触摸控制方法及装置,用于解决现有技术中的问题。
为实现上述目的及其他相关目的,本发明提供一种精准模拟触摸控制方法,应用于电容触摸屏,所述电容触摸屏包括:按纵横交错阵列形式排布的多个信号发送电极及多个信号接收电极,所述信号发送电极沿电容触摸屏所在平面上的第一坐标轴排列设置,所述信号接收电极沿电容触摸屏所在平面上的垂直于所述第一坐标轴的第二坐标轴排列设置;所述精确触摸控制方法包括:对应待模拟触摸的目标触摸点,预设有与所述目标触摸点相邻或落在的第一信号发送电极、第二信号发送电极、第一信号接收电极和第二信号接收电极分别对应的增益分量,其中,所述第一信号发送电极和第二信号发送电极所分别对应的增益分量间的大小关系决定目标触摸点在所述第一信号发送电极和第二信号发送电极间的位置;所述第一信号接收电极和第二信号接收电极所对应的增益分量间的大小关系决定目标触摸点在所述第一信号接收电极和第二信号接收电极间的位置;对所述第一信号发送电极及第二信号发送电极上的激励信号进行增益处理,且将增益处理后的激励信号均发送至所述第一信号接收电极和第二信号接收电极以实现对目标触摸点的模拟触摸操作;其中,所述增益处理所使用的目标增益的大小是与作为所述激励信号发送方的信号发送电极和作为其接收方的信号接收电极所对应的增益分量的叠加。
于本发明的一实施例中,所述目标触摸点有多个;所述方法包括:在所述多个目标触摸 点位于相邻的两个信号接收电极之间的情况下,将所述多个目标触摸点对应的各个信号接收电极上的激励信号经所述增益处理后发送至所述两个信号接收电极。
于本发明的一实施例中,所述目标触摸点有多个;所述方法包括:在所述多个目标触摸点位于相邻的两个信号发送电极之间的情况下,令所述相邻的两个信号发送电极的激励信号经所述增益处理后分别发送至与所述多个目标触摸点相邻的各个信号接收电极。
于本发明的一实施例中,所述信号发送电极的数量小于或等于所述电容触摸屏的分辨率所定义的在第一坐标轴的像素数量;所述信号接收电极的数量小于或等于所述电容触摸屏的分辨率在所述第二坐标轴的像素。
于本发明的一实施例中,所述目标触摸点对应于一像素点。
为实现上述目的及其他相关目的,本发明提供一种精准模拟触摸控制装置,应用于电容触摸屏,所述电容触摸屏包括:按纵横交错阵列形式排布的多个信号发送电极及多个信号接收电极,所述信号发送电极沿电容触摸屏所在平面上的第一坐标轴排列设置,所述信号接收电极沿电容触摸屏所在平面上的垂直于所述第一坐标轴的第二坐标轴排列设置;所述精确触摸控制装置包括:多个增益处理单元;以及信号控制电路;每个所述增益处理单元,其输入端连接一所述信号发送电极,其输出端连接一所述信号接收电极;所述信号控制电路,连接各所述增益处理单元,用于令与待模拟触摸的目标触摸点相邻的第一信号发送电极和第二信号发送电极上的激励信号受到对应的增益处理单元的增益处理后,发送至与所述目标触摸点相邻的第一信号接收电极和第二信号接收电极,以实现对目标触摸点的模拟触摸操作;其中,预设有与所述目标触摸点相邻或落在的第一信号发送电极、第二信号发送电极、第一信号接收电极和第二信号接收电极分别对应的增益分量,其中,所述第一信号发送电极和第二信号发送电极所分别对应的增益分量间的大小关系决定目标触摸点在所述第一信号发送电极和第二信号发送电极间的位置;所述第一信号接收电极和第二信号接收电极所对应的增益分量间的大小关系决定目标触摸点在所述第一信号接收电极和第二信号接收电极间的位置;每个所述增益处理单元进行所述增益处理所使用的目标增益的大小是与作为所述激励信号发送方的信号发送电极和作为其接收方的信号接收电极所对应的增益分量的叠加。
于本发明的一实施例中,所述目标触摸点有多个;在所述多个目标触摸点位于相邻的两个信号接收电极之间的情况下,所述信号控制电路令将所述多个目标触摸点对应的各个信号接收电极上的激励信号经对应增益处理单元的增益处理后发送至所述两个信号接收电极。
于本发明的一实施例中,所述目标触摸点有多个;在所述多个目标触摸点位于相邻的两个信号发送电极之间的情况下,所述信号控制电路令所述相邻的两个信号发送电极的激励信 号经所述增益处理后分别发送至与所述多个目标触摸点相邻的各个信号接收电极。
于本发明的一实施例中,所述信号发送电极的数量小于或等于所述电容触摸屏的分辨率所定义的在第一坐标轴的像素数量;所述信号接收电极的数量小于或等于所述电容触摸屏的分辨率在所述第二坐标轴的像素。
于本发明的一实施例中,所述目标触摸点对应于一像素点。
于本发明的一实施例中,所述输入增益电路和/或输出增益电路的增益可调。
如上所述,本发明的精准模拟触摸控制方法及装置,通过对与电容触摸屏上目标触摸点相邻两个信号发送电极的激励信号进行增益处理后发送至与所述目标触摸点相邻的两个信号接收电极,以实现对所述目标触摸点的模拟触摸;本发明在现有电容屏上已有信号发送电极和信号接收电极的基础上,采用对激励信号增益控制方式来实现像素点级别的模拟触摸,这样就能减少电极使用量,解决现有技术的问题,有效降低成本。
附图说明
图1显示为本发明一实施例中的电容触摸屏局部结构示意图。
图2显示为实现图1中目标触摸点a的模拟触摸操作的原理示意图。
图3显示为与图2等效的逻辑处理示意图。
图4显示为本发明一实施例中的精准模拟触摸控制装置的电路结构示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅以下图示。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
本发明的方案,应用于电容触摸屏上目标触摸点的模拟触摸,其中,所述电容触摸屏是互电容触摸屏,其具有按纵横交错阵列形式排布的多个信号发送电极及多个信号接收电极,每个信号发送电极和信号接收电极的交叉点为触摸点;本发明通过对信号发送电极上的激励 信号进行增益变化控制后输出至信号接收电极,从而实现模拟处于更加精细位置的目标触摸点的触摸操作,例如像素点级别的触摸操作。
在现有技术中,采用电容触摸屏的电子设备例如智能手机、平板电脑等,其分辨率已经普遍达到1920*1080的程度,也就对应1920*1080个像素点,如果要实现其中每个像素点均能是目标触摸点的话,若按背景技术的方式则需要1920根信号发送电极和1080根信号接收电极,成本较高;本发明使用较少量的信号发送电极和信号接收电极就能实现相同的1920*1080个像素点的模拟触摸操作。
如图1所示,展示一实施例中电容触摸屏上局部的结构示意图。在本实施例中,电容触摸屏所在平面上建立有直角坐标系,纵向为x轴,横向为y轴,定义所述一对信号发送电极为x和x+1,所述一对信号接收电极为y和y+1,x电极、x+1电极、y电极和y+1电极所围区域内的目标触摸点为A。
如图2所示,展示本发明提供的实现该A点模拟触摸操作的信号处理的原理示意图。
预先设定x电极对应有增益i,x+1电极对应有增益j,y电极对应有增益m,y+1电极对应有增益n,i、j、m、n均是用于对信号发送电极发出的激励信号进行增益放大使用的;本发明利用增益控制的方式来调整x和x+1电极之间或y和y+1电极上激励信号之间的强弱关系,以能表示x+1和x电极之间目标触摸点A的x位置,或表示y和y+1电极之间目标触摸点A的y位置,举例来说,x+1电极上激励信号在增益处理后强于x电极,则A点在x轴上更靠近x+1电极。
换言之,在各个信号发送电极或信号接收电极的初始激励信号的强度是相同的情况下,在x和x+1电极之间的A点位置即对应增益i和增益j的大小关系,在y和y+1电极之间的A点位置即对应增益m和增益n的大小关系。
因此,通过上述增益的大小关系即能表示A点在所述平面直角坐标系中的位置坐标。
为实现目标触摸点模拟操作,需要将相邻两个信号发送电极的信号经增益处理后分别发送给两个信号接收电极,将上述增益作为增益分量,所述增益处理所使用的目标增益大小是与作为激励信号发送方的信号发送电极和作为其接收方的信号接收电极所对应的增益分量的叠加。
具体的,在模拟A点触摸操作时,x电极的激励信号经增益i放大再经增益m放大输出到y电极,x电极的激励信号经增益i放大再经增益n放大输出到y+1,x+1电极的激励信号经增益j放大再经增益m放大输出到y电极,x+1电极的激励信号经增益j放大再经增益n放大输出到y+1电极。
图3展示了这一过程的等效的运算原理,即将x电极的激励信号经增益i放大和x+1电极的激励信号经增益j放大后进行合并(本实施例中即相加),再分别经增益m放大输出到y电极,经增益n放大输出到y+1电极,实现A点的模拟触摸操作;当然,若A点落在一信号发送电极上且位于两个信号接收电极之间时,例如落在x电极上,并位于y和y+1电极之间,则x电极的激励信号经增益i和增益m放大后输出到y电极,x电极的激励信号经增益i和增益n放大后输出到y+1电极,来模拟A点触摸;或者A点落在两个信号发送电极之间,并落在一信号接收电极上时,例如落在x和x+1电极之间,并位于y电极上,则x电极的激励信号经增益i和增益m放大后输出到y电极,x+1电极的激励信号经增益j和增益m放大后输出到y电极,来模拟A点触摸。
图1至图3展示了单点触摸的实施例,在实际情况中,可以以此类推来实现多点触摸。
在实际情况中,由于电容触摸屏本身的原理使然,相邻电极之间的两个触摸点会被识别是同一个,例如x和x+1电极之间的A点,和x+1及x+2电极之间的B点,会被识别为同一个点;因此,多点触摸中的各个目标触摸点均是不会与同一个电极相邻的触摸点,例如x和x+1电极之间的A点,和x+2及x+3电极之间的C点。
在实现多点触摸操作时,多个目标触摸点可能位于两个信号发送电极之间,例如y电极和y+1电极之间有目标触摸点D、E、F,且D点位于x a和x a+1电极之间,E点位于x b和x b+1电极之间,F点位于x c和x c+1电极之间,则在模拟触摸操作时x a和x a+1电极,x b和x b+1电极,x c和x c+1电极上的激励信号均进行如之前实施例所描述的增益处理后发送到所述y电极和y+1电极。
在实现多点触摸操作时,多个目标触摸点可能位于两个信号接收电极之间,例如y电极和y+1电极之间有目标触摸点D、E、F,且D点位于x a和x a+1电极之间,E点位于x b和x b+1电极之间,F点位于x c和x c+1电极之间,则在模拟多点触摸操作时x a和x a+1电极,x b和x b+1电极,x c和x c+1电极上的激励信号均进行如之前实施例所描述的增益处理后发送到所述y电极和y+1电极,例如x a和x a+1电极对应增益为o、p,y和y+1电极对应增益为m、n,然后如前述实施例所展示原理般对激励信号进行增益叠加的处理并发送给y和y+1电极。
在实现多点触摸操作时,多个目标触摸点可能位于两个信号发送电极之间,例如x电极和x+1电极之间有目标触摸点G、H、I,且G点位于y a和y a+1电极之间,H点位于y b和y b+1电极之间,I点位于y c和y c+1电极之间,则在模拟多点触摸操作时,y a和y a+1电极,y b和y b+1电极,x和x+1电极上的激励信号分别对应不同的信号接收电极(y a、y a+1、y b、y b+1、y c、或y c+1电极)进行增益处理后发送给对应的信号接收电极。
如图4所示,展示本发明于一实施例中精准模拟触摸控制装置的电路实现的实施例。
承前所述,每个电极有其对应的增益,而在将一激励信号从信号发送电极发送到信号接收电极时,需经过对应该两个电极的增益叠加的增益处理,也就是说,对应每一对信号发送电极和信号接收电极来设置一增益处理单元41a、41b、41c、或41d,其处理激励信号所使用的目标增益是该对电极的增益分量的叠加,例如在图4的电路应用于图2实施例中,连接x和y电极的增益处理单元41a,其增益大小为a=i*m;连接x和y+1电极的增益处理单元41b,其增益大小为b=i*n;连接x+1和y电极的增益处理单元41c,其增益大小为c=j*m;连接x+1和y+1电极的增益处理单元41d,其增益大小为d=j*n。
于本发明的一实施例中,所述增益处理单元41a、41b、41c、或41d可以通过运算放大器电路实现,每个增益处理单元41a、41b、41c、或41d可以连通与其对应的信号发送电极和信号接收电极,另外,所述精准模拟触摸控制装置还包括信号控制电路42,其可通过例如MCU、FPGA、CPLD、开关电路等实现,用于通过软件程序或硬件电路的方式来控制各个增益处理单元41a、41b、41c、或41d是否工作或是否与对应的信号发送电极(x、x+1电极)和信号接收电极(y、y+1电极)连通。
另外,可选的,每个所述增益处理单元41a、41b、41c、或41d所使用的目标增益是可调的,从而实现对相邻电极间任意位置的目标触摸点的模拟触摸操作;当然,在电极数量较大,分布密度较高的情况下,而不需要非常高的精度的情况下,该增益处理单元的目标增益也可以是固定的。
需特别说明的是,图4实施例展示的仅是一种电路结构设计,在其它实施例中,电路结构可以根据实际需求加以变化,并非以本实施例为限。
例如,在一实施例中,对应每个电极均设置对应其增益分量的增益处理单元,根据需要来选择任意一个信号发送电极和信号接收电极的增益处理单元连通,等同本实施例中单个增益处理单元相同的功能,但是该种电路结构设计的自由度更高。
综上所述,本发明的精准模拟触摸控制方法及装置,通过对与电容触摸屏上目标触摸点相邻两个信号发送电极的激励信号进行增益处理后发送至与所述目标触摸点相邻的两个信号接收电极,以实现对所述目标触摸点的模拟触摸;本发明在现有电容屏上已有信号发送电极和信号接收电极的基础上,采用对激励信号增益控制方式来实现像素点级别的模拟触摸,这样就能减少电极使用量,解决现有技术的问题,有效降低成本。
本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (11)

  1. 一种精准模拟触摸控制方法,其特征在于,应用于电容触摸屏,所述电容触摸屏包括:按纵横交错阵列形式排布的多个信号发送电极及多个信号接收电极,所述信号发送电极沿电容触摸屏所在平面上的第一坐标轴排列设置,所述信号接收电极沿电容触摸屏所在平面上的垂直于所述第一坐标轴的第二坐标轴排列设置;所述精确触摸控制方法包括:
    对应待模拟触摸的目标触摸点,预设有与所述目标触摸点相邻或落在的第一信号发送电极、第二信号发送电极、第一信号接收电极和第二信号接收电极分别对应的增益分量,其中,所述第一信号发送电极和第二信号发送电极所分别对应的增益分量间的大小关系决定目标触摸点在所述第一信号发送电极和第二信号发送电极间的位置;所述第一信号接收电极和第二信号接收电极所对应的增益分量间的大小关系决定目标触摸点在所述第一信号接收电极和第二信号接收电极间的位置;
    对所述第一信号发送电极及第二信号发送电极上的激励信号进行增益处理,且将增益处理后的激励信号均发送至所述第一信号接收电极和第二信号接收电极以实现对目标触摸点的模拟触摸操作;其中,所述增益处理所使用的目标增益的大小是与作为所述激励信号发送方的信号发送电极和作为其接收方的信号接收电极所对应的增益分量的叠加。
  2. 根据权利要求1所述的精准模拟触摸控制方法,其特征在于,所述目标触摸点有多个;所述方法包括:
    在所述多个目标触摸点位于相邻的两个信号接收电极之间的情况下,将所述多个目标触摸点对应的各个信号接收电极上的激励信号经所述增益处理后发送至所述两个信号接收电极。
  3. 根据权利要求1所述的精准模拟触摸控制方法,其特征在于,所述目标触摸点有多个;所述方法包括:
    在所述多个目标触摸点位于相邻的两个信号发送电极之间的情况下,令所述相邻的两个信号发送电极的激励信号经所述增益处理后分别发送至与所述多个目标触摸点相邻的各个信号接收电极。
  4. 根据权利要求1所述的精准模拟触摸控制方法,其特征在于,所述信号发送电极的数量小于或等于所述电容触摸屏的分辨率所定义的在第一坐标轴的像素数量;所述信号接收电极的数量小于或等于所述电容触摸屏的分辨率在所述第二坐标轴的像素。
  5. 根据权利要求4所述的精准模拟触摸控制方法,其特征在于,所述目标触摸点对应于一像素点。
  6. 一种精准模拟触摸控制装置,其特征在于,应用于电容触摸屏,所述电容触摸屏包括:按 纵横交错阵列形式排布的多个信号发送电极及多个信号接收电极,所述信号发送电极沿电容触摸屏所在平面上的第一坐标轴排列设置,所述信号接收电极沿电容触摸屏所在平面上的垂直于所述第一坐标轴的第二坐标轴排列设置;所述精确触摸控制装置包括:多个增益处理单元;以及信号控制电路;
    每个所述增益处理单元,其输入端连接一所述信号发送电极,其输出端连接一所述信号接收电极;
    所述信号控制电路,连接各所述增益处理单元,用于令与待模拟触摸的目标触摸点相邻的第一信号发送电极和第二信号发送电极上的激励信号受到对应的增益处理单元的增益处理后,发送至与所述目标触摸点相邻的第一信号接收电极和第二信号接收电极,以实现对目标触摸点的模拟触摸操作;
    其中,预设有与所述目标触摸点相邻或落在的第一信号发送电极、第二信号发送电极、第一信号接收电极和第二信号接收电极分别对应的增益分量,其中,所述第一信号发送电极和第二信号发送电极所分别对应的增益分量间的大小关系决定目标触摸点在所述第一信号发送电极和第二信号发送电极间的位置;所述第一信号接收电极和第二信号接收电极所对应的增益分量间的大小关系决定目标触摸点在所述第一信号接收电极和第二信号接收电极间的位置;
    每个所述增益处理单元进行所述增益处理所使用的目标增益的大小是与作为所述激励信号发送方的信号发送电极和作为其接收方的信号接收电极所对应的增益分量的叠加。
  7. 根据权利要求6所述的精准模拟触摸控制装置,其特征在于,所述目标触摸点有多个;
    在所述多个目标触摸点位于相邻的两个信号接收电极之间的情况下,所述信号控制电路令将所述多个目标触摸点对应的各个信号接收电极上的激励信号经对应增益处理单元的增益处理后发送至所述两个信号接收电极。
  8. 根据权利要求6所述的精准模拟触摸控制装置,其特征在于,所述目标触摸点有多个;
    在所述多个目标触摸点位于相邻的两个信号发送电极之间的情况下,所述信号控制电路令所述相邻的两个信号发送电极的激励信号经所述增益处理后分别发送至与所述多个目标触摸点相邻的各个信号接收电极。
  9. 根据权利要求6所述的精准模拟触摸控制装置,其特征在于,所述信号发送电极的数量小于或等于所述电容触摸屏的分辨率所定义的在第一坐标轴的像素数量;所述信号接收电极的数量小于或等于所述电容触摸屏的分辨率在所述第二坐标轴的像素。
  10. 根据权利要求9所述的精准模拟触摸控制装置,其特征在于,所述目标触摸点对应于一像 素点。
  11. 根据权利要求6所述的精准模拟触摸控制装置,其特征在于,每个所述增益处理单元的目标增益可调。
PCT/CN2018/097060 2017-10-27 2018-07-25 精准模拟触摸控制方法及装置 WO2019080562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711027695.2 2017-10-27
CN201711027695.2A CN107894860A (zh) 2017-10-27 2017-10-27 精准模拟触摸控制方法及装置

Publications (1)

Publication Number Publication Date
WO2019080562A1 true WO2019080562A1 (zh) 2019-05-02

Family

ID=61802592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097060 WO2019080562A1 (zh) 2017-10-27 2018-07-25 精准模拟触摸控制方法及装置

Country Status (2)

Country Link
CN (1) CN107894860A (zh)
WO (1) WO2019080562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238684A (zh) * 2021-06-24 2021-08-10 科世达(上海)机电有限公司 二维触摸的定位方法、装置、设备及计算机可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894860A (zh) * 2017-10-27 2018-04-10 上海飞智电子科技有限公司 精准模拟触摸控制方法及装置
US20200379599A1 (en) * 2018-07-25 2020-12-03 Shanghai Flydigi Electronics Technology Co., Ltd. Touch control device applied to capacitive touch screen, processing device, and touch control system
CN111897459B (zh) * 2020-08-19 2023-04-07 RealMe重庆移动通信有限公司 盲孔屏的盲孔位置信号处理方法、存储介质、装置和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027348A1 (en) * 2010-04-08 2013-01-31 Melfas, Inc. Touch sensing panel and device for detecting multi-touch signal
CN103026326A (zh) * 2010-05-14 2013-04-03 电子触控产品解决方案 用于检测触摸传感器上的触摸位置的系统和方法
CN107894860A (zh) * 2017-10-27 2018-04-10 上海飞智电子科技有限公司 精准模拟触摸控制方法及装置
CN107908317A (zh) * 2017-10-27 2018-04-13 上海飞智电子科技有限公司 应用于电容触摸屏的触控设备及触控方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027348A1 (en) * 2010-04-08 2013-01-31 Melfas, Inc. Touch sensing panel and device for detecting multi-touch signal
CN103026326A (zh) * 2010-05-14 2013-04-03 电子触控产品解决方案 用于检测触摸传感器上的触摸位置的系统和方法
CN107894860A (zh) * 2017-10-27 2018-04-10 上海飞智电子科技有限公司 精准模拟触摸控制方法及装置
CN107908317A (zh) * 2017-10-27 2018-04-13 上海飞智电子科技有限公司 应用于电容触摸屏的触控设备及触控方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238684A (zh) * 2021-06-24 2021-08-10 科世达(上海)机电有限公司 二维触摸的定位方法、装置、设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN107894860A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
WO2019080562A1 (zh) 精准模拟触摸控制方法及装置
US10488992B2 (en) Multi-chip touch architecture for scalability
JP5282079B2 (ja) マルチディスプレイシステム、端末、方法及びプログラム
CN106648198B (zh) 用于电容触摸感应触摸屏面板的差动电流模式模拟前端电路
WO2016165251A1 (zh) 触摸屏及触控装置
CN104461198B (zh) 一种触控基板及终端
US10884521B2 (en) Dial device and related interactive display device capable of determining a rotation angle
CN103135832A (zh) 计算触控面板上的触碰座标的方法
CN104375733A (zh) 用于触摸显示屏的驱动电路和驱动方法
CN103488368B (zh) 在安卓系统下触摸屏的校屏方法和装置
GB2506675A (en) A touch sensor with a non-linear pattern of electrodes
CN107908317B (zh) 应用于电容触摸屏的触控设备及触控方法
CN103984478B (zh) 一种动态图标的展示方法及系统
WO2020147386A1 (zh) 双模式触控显示装置及其实现方法
WO2015035779A1 (zh) 改变触摸屏幕终端图标位置的方法、装置及移动终端
KR20200007922A (ko) 데이터 검출 방법과 장치, 저장 매체 및 터치 장치
CN105260066A (zh) 使用单层感应图形的触摸面板及包含其的触摸感应装置
TWI680399B (zh) 觸控電路
CN102375664B (zh) 一种图标移动方法和装置
TWI479403B (zh) 電磁式觸控裝置
CN103092425A (zh) 一种通过鼠标人机接口实现触摸屏控制的方法
CN109126117B (zh) 应用于电容触摸屏的触控方法、触控装置以及触控系统
CN109669565B (zh) 用于缓慢触摸移动的触摸运动跟踪和报告技术
TW201741831A (zh) 觸控面板、電子裝置及偵測三點觸控的方法
CN101655760A (zh) 电阻式触摸屏屏体、触摸屏控制器及多触摸点识别方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18871450

Country of ref document: EP

Kind code of ref document: A1