WO2019080547A1 - 用于5g系统的微带辐射单元及天线 - Google Patents

用于5g系统的微带辐射单元及天线

Info

Publication number
WO2019080547A1
WO2019080547A1 PCT/CN2018/095603 CN2018095603W WO2019080547A1 WO 2019080547 A1 WO2019080547 A1 WO 2019080547A1 CN 2018095603 W CN2018095603 W CN 2018095603W WO 2019080547 A1 WO2019080547 A1 WO 2019080547A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip
radiation unit
microstrip line
ghz
radiator
Prior art date
Application number
PCT/CN2018/095603
Other languages
English (en)
French (fr)
Inventor
袁鹏亮
丁勇
丁晋凯
俞思捷
Original Assignee
武汉虹信通信技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉虹信通信技术有限责任公司 filed Critical 武汉虹信通信技术有限责任公司
Publication of WO2019080547A1 publication Critical patent/WO2019080547A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the invention relates to the technical field of an antenna radiation unit, in particular to a microstrip radiation unit and an antenna applied to a 5G system.
  • the 4.5G and 5G base station antennas will be different from the current conventional base station antenna form and will appear in an array form.
  • the antenna radiating element in the array form will directly cascade the T/R active components, and the antenna can support both horizontal and vertical beamforming under the control of active components and systems.
  • the dense array Due to the need for active components and systems for precise control of the amplitude and phase of the radiating element, the dense array also has an integrated amplitude/phase calibration network built in.
  • the calibration network will be strictly amplitude and phase from the calibration port to each radiating element. Control is within the specified range of values.
  • the base station antenna will face enormous challenges, the traditional base station antenna can no longer meet the needs of the 5G system, and the radiation unit as the core component of the antenna is the first to bear the brunt.
  • the radiating element of the antenna is generally realized by die casting or the like.
  • the radiating element in this form has the disadvantages of complicated structure, high production difficulty, high cost and large interference between polarizations, and is high in 5G.
  • the size of the radiating element is small, and the precise size must be satisfied.
  • the traditional radiating element implementation form can not guarantee the dimensional accuracy of the processing, and the error is large. These errors are often fatal under the requirements of the high frequency band of the 5G system.
  • the microstrip radiation unit designed by the invention not only has high precision, is small in size, simple in structure, high in gain, excellent in pattern performance, and easy to implement, and is suitable for a base station antenna of a future 5G communication system, and is a radiation unit of a base station antenna in the future. Common form.
  • the main object of the present invention is to solve the technical deficiencies and defects of the radiating unit in the 5G communication system, and provide a high frequency band, high gain, high precision, single polarization, miniaturized microstrip radiation unit, and provide corresponding antennas.
  • the invention provides a microstrip radiation unit for a 5G system, comprising a PCB sheet 1, a metal guiding sheet 2, a radiator, a ground layer 6, a PCB sheet 1 as a substrate, a radiator layer being a copper layer, and being attached to the PCB.
  • the radiator includes the radiating body 3 and the microstrip line 5, and the microstrip line 5 intersects the radiation body 3 at the feed point L1 at the feed point L1, the microstrip line 5 and the radiation body 3 are in the same direction, and the microstrip line 5 is provided with a matching section 4.
  • the microstrip line 5 is a 50 ohm microstrip line having a length of 13 to 16 mm and a width of 0.6 to 1.2 mm.
  • the frequency band in which the microstrip radiation unit operates supports 4.7 GHz to 5.1 GHz.
  • a matching groove is designed at the feeding point L1 of the radiating body 3, and when the operating frequency band is 4.7 GHz to 5.1 GHz, the length is 2.5 mm to 2.7 mm, and the width is 1.8 mm to 2.8 mm.
  • the matching section 4 is 6.4 mm away from the feeding point L1, and when the operating frequency band is 4.7 GHz to 5.1 GHz, the length is 3.5 mm to 4.0 mm, and the width is 1.5 mm to 2.5 mm.
  • the microstrip line 5 forms a ⁇ 45° polarized radiation unit at an angle of ⁇ 45° with the horizontal direction, or forms a horizontally polarized radiation unit at an angle of 0° with the horizontal direction, or an angle of 90° with the horizontal direction.
  • a vertically polarized radiation unit can be formed.
  • the metal guiding piece 2 is a square metal material guiding piece, and the vertical height from the radiation main body 3 is 2.0 mm to 6.0 mm.
  • the working frequency band is 4.7 GHz to 5.1 GHz
  • the size is 22.0 mm. ⁇ 25.0 mm, width 22.0 mm to 25.0 mm, thickness 1.0 mm to 2.0 mm. .
  • the size of the radiation main body 3 includes a width W and a length L, W is 0.1 to 0.5 times the wavelength, and L is 0.15 to 0.3 times the wavelength, wherein the wavelength is a free space calculation value at a center frequency of 4.7 GHz to 5.1 GHz.
  • the selected type of the PCB sheet 1 is a Rogers 4730JXR sheet.
  • the present invention also provides an antenna employing the microstrip radiation unit for a 5G system as described above.
  • the microstrip radiation unit of the 5G system provided by the invention adopts microstrip line feeding, has small size and simple structure, and lays a foundation for realizing miniaturization of the antenna; is a planar structure, is integrally formed, has simple assembly at a later stage, and has high reliability. , reducing the various uncertainties brought about by the manufacturing process.
  • the invention is applicable to the 4.7 GHz to 5.1 GHz frequency band, and has the characteristics of strong anti-interference, high gain, good standing wave ratio, excellent performance of the pattern, and the microstrip line realization form can make the radiation unit
  • the size is small, the precision is higher, and the realization and control of the index are easier, so that the base station antenna is made thinner, smaller, more stable, lower in production cost, simpler in assembly, higher in production efficiency, and simple in structure. Reliable installation.
  • the design of the invention is in a leading position in the world, and will be widely used in the promotion and application of 5G technology, and has important market value.
  • FIG. 1 is a front plan view of an antenna radiating element according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of an antenna radiating unit according to an embodiment of the present invention.
  • FIG. 3 is a top plan view of an antenna radiating element according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a 4.7 GHz frequency gain according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a 4.8 GHz frequency gain according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a 4.9 GHz frequency gain according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a 5.0 GHz frequency gain according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a 5.1 GHz frequency gain according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a width of a half-power lobe of a 4.7/4.8/4.9/5.0/5.1 GHz frequency point according to an embodiment of the present invention.
  • FIG. 10 is a graph of a 4.7/4.8/4.9/5.0/5.1 GHz frequency point S11 according to an embodiment of the present invention.
  • FIG. 11 is a 4.7/4.8/4.9/5.0/5.1 GHz frequency VSWR graph according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing two forms of a ⁇ 45° dual-polarized radiation unit according to an embodiment of the present invention.
  • the radiation unit designed by the invention adopts the microstrip patch array form, has a simple structure and a fast assembly, and provides an advantageous technical basis for miniaturization of the 5G base station antenna.
  • the radiation unit designed by the invention adopts a planar structure and is integrally formed, and is mainly composed of a PCB sheet 1 , a metal guiding sheet 2 , a radiator body and a ground layer 6 , and the PCB sheet 1 is a substrate.
  • the radiator is a copper coating layer attached to the upper surface of the PCB sheet 1; the metal guiding sheet 2 is suspended directly above the radiator; the ground layer 6 is a copper coating layer attached to the lower surface of the PCB sheet 1; the radiator includes a radiation body 3 and the microstrip line 5, the microstrip line 5 intersects the radiation main body 3 at the feeding point L1 at the feeding point L1, the direction of the microstrip line 5 and the radiating body 3 is the same, and the microstrip line 5 is designed with a matching section 4 .
  • This unique structure is the first of its kind and has not appeared in the prior art.
  • the PCB sheet 1 is a substrate
  • the radiator is a copper-clad layer having a thickness of 0.035 mm, and is attached to the upper surface of the PCB
  • the metal-directed sheet 2 is simulated by HFSS software, it can be suspended 4 mm directly above the radiator.
  • the ground layer 6 is a copper layer of 0.035 mm, which is attached to the lower surface of the PCB.
  • the specific parameter values of the radiating element can be simulated by using HFSS simulation software.
  • the plate has the advantages of small signal loss, excellent PIM value, low insertion loss, low density, and good circuit consistency.
  • the metal guiding piece 2 is a square metal material guiding piece, and the vertical height from the radiator 3 is 2.0 mm to 6.0 mm.
  • the working frequency band is 4.7 GHz to 5.1 GHz
  • the size is 22.0 mm to 25.0.
  • Mm width is 22.0 mm to 25.0 mm
  • thickness is 1.0 mm to 2.0 mm, that is, 22.0 mm * 22.0 mm * 1.0 mm - 25.0 * 25.0 * 2.0 mm.
  • the metal guiding piece 2 is a metal piece of 22 mm*22 mm*1 mm
  • the copper layer having a thickness of 0.035 mm is covered with a copper clad process on the PCB sheet, and is composed of a radiation main body 3, a matching section 4, and a 50 ohm microstrip line 5.
  • the radiation body 3 is an effective radiation part, and functions as a radiation signal for transmitting and receiving, and is placed on the upper surface of the plate at an angle of 45° with the PCB sheet.
  • a groove is designed on the radiation body 3 to function as a matching circuit; the feeding point L1 is located at the center of the groove, and a 50 ohm microstrip line 5 in the same direction as the radiation body 3 is taken out from the feeding point. Matching circuit and signal transmission.
  • the matching segment 4 is on the 50 ohm microstrip line 5, and the distance from the feeding point L1 is 6.4 mm, which serves as a circuit matching function.
  • the dimensions W and L of the radiation body 3 are calculated by the formula and optimized by simulation. In the embodiment, the width W is 0.1 to 0.5 times the wavelength, and the length L is 0.15 to 0.3 times, wherein the wavelength is 4.7 GHz to 5.1 GHz.
  • the theoretical value of the width W and the length L of the radiation body 3 can be calculated according to the microstrip antenna formula.
  • the microstrip antenna formula is as follows:
  • ⁇ e represents the effective dielectric constant and ⁇ L is the equivalent radiation gap length.
  • C 3.0*10 8 m/s
  • the frequency center of the selected frequency band f 4.9GHz
  • PCB dielectric constant ⁇ r 3.0
  • the position of the 50 ohm matching feed point of the radiating element can be calculated by the formula to calculate the position L 1 , that is, the distance of the feeding point L1 from the long side (L direction) of the radiation body 3:
  • ⁇ re is an intermediate variable proposed to simplify the expression of the formula.
  • a groove can be formed at the feeding point by simulation in the HFSS, and then the line width of the matched 50 ohm microstrip line 5 is calculated and optimized by simulation, the length is 14.6. Mm, width 0.7mm, leading from the groove.
  • a 50-ohm microstrip line 4 is added with a simulation-optimized matching section 4 for fine adjustment, the size of which is 3.7 mm * 1.9 mm.
  • the microstrip line radiation unit provided by the invention adopts microstrip line feeding, and the 50 ohm microstrip line is excited by the lumped port for simulation optimization.
  • the radiating surface can be rotated by an angle of ⁇ 45° with the X coordinate axis in the figure to become ⁇ 45° polarization.
  • the two 45° polarized radiating elements formed after +45° and -45° rotation are discharged side by side.
  • This form of radiation element not only has a good cross-polarization ratio, but also has an improvement effect on the degree of isolation.
  • a horizontally polarized radiating element can also be formed when it is at an angle of 0° to the horizontal.
  • a vertically polarized radiation unit can be formed, which can be applied to different scenes.
  • FIG. 4 is a 4.7 GHz frequency gain diagram with a value of 8.72 dB
  • Figure 5 is a 4.8 GHz frequency gain diagram with a value of 8.84 dB
  • Figure 6 is a 4.9 GHz frequency gain diagram with a value of 8.98 dB
  • Figure 7 is 5.0 GHz.
  • the base station antenna may be provided by using the microstrip radiation unit array for the 5G system as described above.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明提供用于5G系统的微带辐射单元及天线,微带辐射单元包括PCB板材(1)、金属引向片(2)、辐射体、接地层(6),PCB板材(1)为基材,辐射体为覆铜层,附着在PCB板材(1)上表面;金属引向片(2)悬浮在辐射体正上方;接地层(6)为覆铜层,附着在PCB板材(1)下表面;所述辐射体包括辐射主体(3)和微带线(5),微带线(5)与辐射主体(3)相交于馈电点L1处馈电点L1,微带线(5)和辐射主体(3)的方向相同,微带线(5)上设有匹配段(4)。本发明设计的辐射单元,采用微带贴片阵子形式,结构简洁、装配快速,并且为5G基站天线小型化提供了有利的技术基础。

Description

用于5G系统的微带辐射单元及天线 技术领域
本发明涉及天线辐射单元技术领域,具体的是一种应用于5G系统下的微带辐射单元及天线。
背景技术
伴随移动互联网和物联网的发展,4G移动通讯系统的网络速率、网络容量、终端连接数量及空口时延已不能满足市场与技术演进的需求,未来需要带宽更宽、速率更高、功耗更低、时延更短及连接更密集更安全的4.5G及5G技术。
应对下一代移动通讯系统的需要,4.5G及5G基站天线将会异于目前常规基站天线形态,将以阵列形态出现。阵列形态下的天线辐射单元将直接级联T/R有源组件,天线在有源组件及系统控制下可同时支持水平及垂直面波束赋型。由于涉及到需要有源组件及系统针对辐射单元进行幅度及相位的精准控制,所以密集阵列同时内置集成了幅度/相位校准网络,此校准网络从校准口到每一路辐射单元幅度与相位将会严格控制在规定的范围值内。鉴于此,基站天线将面临着巨大的挑战,传统基站天线已不能满足5G系统的需求,而作为天线核心部件的辐射单元受到的挑战更是首当其冲。
在现有技术中,天线的辐射单元一般是通过压铸等形式来实现,此形式下的辐射单元不仅有结构复杂、生产难度大、成本高以及极化之间干扰大的缺点,而且在5G高频段要求下,辐射单元尺寸很小,精准的尺寸又是必须要满足的,传统辐射单元实现形式导致加工尺寸精度无法保证,误差大,在5G系统高频段要求下,这些误差往往是致命的。而本发明设计的微带辐射单元不仅精度高,更具有小型化,结构简单,高增益,方向图性能优良,易于实现等特点,适用于未来5G通信系统基站天线,是未来基站天线辐射单元的常见形态。
发明内容
本发明的主要目的在于解决5G通信系统下辐射单元的技术不足与缺陷,提供一种高频段,高增益,高精度,单极化,小型化微带辐射单元,并提供相应天线。
本发明提供一种用于5G系统的微带辐射单元,包括PCB板材1、金属引向片2、辐射体、接地层6,PCB板材1为基材,辐射体为覆铜层,附着在PCB板材1上表面;金属 引向片2悬浮在辐射体正上方;接地层6为覆铜层,附着在PCB板材1下表面;所述辐射体包括辐射主体3和微带线5,微带线5与辐射主体3相交于馈电点L1处馈电点L1,微带线5和辐射主体3的方向相同,微带线5上设有匹配段4。
而且,微带线5采用50欧姆微带线,其尺寸大小为长度在13~16mm,宽度在0.6~1.2mm。
而且,微带辐射单元工作的频段支持4.7GHz~5.1GHz。
而且,辐射主体3馈电点L1处设计有一个匹配凹槽,当工作的频段为4.7GHz~5.1GHz,其大小为长度是2.5mm~2.7mm,宽度为1.8mm~2.8mm。
而且,所述匹配段4距离馈电点L1距离为6.4mm,当工作的频段为4.7GHz~5.1GHz,其大小为长度是3.5mm~4.0mm,宽度为1.5mm~2.5mm。
而且,微带线5与水平方向放置呈±45°夹角形成±45°极化辐射单元,或者与水平方向呈0°夹角形成水平极化辐射单元,或者与水平方向呈90°夹角可形成垂直极化辐射单元。
而且,用于组合形成极化分离的辐射单元。
而且,所述金属引向片2为一个方形金属材质引向片,距离辐射主体3垂直高度为2.0mm~6.0mm,当工作的频段为4.7GHz~5.1GHz,其尺寸大小为长度是22.0mm~25.0mm,宽度为22.0mm~25.0mm,厚度为1.0mm~2.0mm。。
而且,辐射主体3的尺寸包括宽度W与长度L,W为0.1~0.5倍波长,L为0.15~0.3倍波长,其中波长为以4.7GHz~5.1GHz中心频点在自由空间计算值。
而且,所述PCB板材1的选用类型为Rogers 4730JXR板材。
本发明还提供一种天线,采用如上所述用于5G系统的微带辐射单元。本发明提供的一种5G系统的微带辐射单元,采用微带线馈电,尺寸小,结构简单,为实现天线小型化奠定基础;是一个平面结构,整体成型,后期装配简单,可靠性高,减少了生产制造过程中带来的各种不确定性难题。本发明与现有的技术相比,适用于4.7GHz~5.1GHz频段,不仅具有抗干扰强,增益高,驻波比良好,方向图性能优良等特点,而且微带线实现形式可以使辐射单元尺寸小,精度更高,更容易指标的实现以及控制,从而使基站天线整机做的更薄,也更小型化,性能更稳定,生产成本低,装配更简洁,生产效率提高,结构简单,使用安装可靠。本发明设计在国际上处于领先地位,将在5G技术应用推广中广泛使用,具有重要的市场价值。
附图说明
图1为本发明实施例的天线辐射单元正面俯视图;
图2为本发明实施例的天线辐射单元侧面示意图;
图3为本发明实施例的天线辐射单元背面俯视图;
图4为本发明实施例的4.7GHz频点增益示意图;
图5为本发明实施例的4.8GHz频点增益示意图;
图6为本发明实施例的4.9GHz频点增益示意图;
图7为本发明实施例的5.0GHz频点增益示意图;
图8为本发明实施例的5.1GHz频点增益示意图;
图9为本发明实施例的4.7/4.8/4.9/5.0/5.1GHz频点水平半功率波瓣宽度示意图;
图10为本发明实施例的4.7/4.8/4.9/5.0/5.1GHz频点S11曲线图;
图11为本发明实施例的4.7/4.8/4.9/5.0/5.1GHz频点VSWR曲线图。
图12为本发明实施例的±45°双极化辐射单元两种形式示意图。
具体实施方式
本发明设计的辐射单元,采用微带贴片阵子形式,结构简洁、装配快速,并且为5G基站天线小型化提供了有利的技术基础。
下面通过附图结合实施例,来对本发明技术方案进行详细说明。
5G时代高频段阵列天线相位要求对同轴电缆需要极其高的精度控制,往往是很难实现的,而本发明可消除这方面影响,达到对相位精准的控制,从而大大提高了移动通信的性能。参见图1、图2和图3,本发明设计的辐射单元采用平面结构,整体成型,主要由PCB板材1、金属引向片2、辐射体、接地层6构成,PCB板材1为基材,辐射体为覆铜层,附着在PCB板材1上表面;金属引向片2悬浮在辐射体正上方;接地层6为覆铜层,附着在PCB板材1下表面;所述辐射体包括辐射主体3和微带线5,微带线5与辐射主体3相交于馈电点L1处馈电点L1,微带线5和辐射主体3的方向相同,微带线5上设计有一段匹配段4。这种独特结构为首创,是现有技术中未有出现的。
实施例中PCB板材1为基材,辐射体为厚度是0.035mm的覆铜层,附着在PCB上表面;金属引向片2通过HFSS软件仿真时,可设置悬浮在辐射体正上方4mm处,具体工程上实现时,采用塑料支撑件一端固定在PCB板材上,另一端用于支撑固定引向片;接地层6为0.035mm的覆铜层,附着在PCB下表面。具体实施时,该辐射元的 具体参数值可通过运用HFSS仿真软件仿真而成。
其中,
PCB板材1为选用的罗杰斯PCB Rogers 4730JXR板材,介电常数为ε r=3.0,长宽尺寸对应为50mm*50mm,厚度为h=0.762mm。此板材拥有信号损失小,PIM值优良,插入损耗低,低密度,电路一致性好的优点。
所述金属引向片2为一个方形金属材质引向片,距离辐射体3垂直高度为2.0mm~6.0mm,当工作的频段为4.7GHz~5.1GHz,其尺寸大小为长度是22.0mm~25.0mm,宽度为22.0mm~25.0mm,厚度为1.0mm~2.0mm,即22.0mm*22.0mm*1.0mm~25.0*25.0*2.0mm。实施例中,金属引向片2为一个22mm*22mm*1mm的金属片,距离辐射片3的高度H=4mm,在HFSS进行辐射单元仿真时,通过加载一个金属引向片,可以起到改善辐射单元电压驻波比和水平波束宽度指标的效果,其大小和高度通过仿真验证。
实施例中,辐射体为厚度是0.035mm的铜层以覆铜工艺覆着在PCB板材上,由辐射主体3,匹配段4以及50欧姆的微带线5构成。其中辐射主体3为有效辐射部分,起辐射信号的收发作用,与PCB板材呈水平45°夹角覆着于板材上表面。在辐射主体3上设计有一个凹槽,起匹配电路作用;馈电点L1位于凹槽里面中心位置,从馈电点处引出一段和辐射主体3相同方向的50欧姆微带线5,起到匹配电路以及信号传输作用。匹配段4在50欧姆微带线5上,距离馈电点L1距离为6.4mm,起电路匹配作用。辐射主体3的尺寸W与L经过公式计算以及仿真优化后的大小,实施例中宽度W为0.1~0.5倍波长,长度L为0.15~0.3倍波长,其中波长为以4.7GHz~5.1GHz中心频点在自由空间计算值,包括光速以C=3.0*10 8m/s速度在自由空间中传播,此时波长以公式
Figure PCTCN2018095603-appb-000001
计算所得值。
实施例中,设计辐射单元形状时,首先根据微带天线公式可算出辐射主体3宽度W与长度L的理论值,为便于实施参考起见,提供微带天线公式如下:
Figure PCTCN2018095603-appb-000002
Figure PCTCN2018095603-appb-000003
Figure PCTCN2018095603-appb-000004
Figure PCTCN2018095603-appb-000005
其中,ε e代表有效介电常数,ΔL为等效辐射缝隙长度。把C=3.0*10 8m/s,频率选取频段的中心频点f=4.9GHz,PCB板材介电常数ε r=3.0以及h=0.762mm代入公式计算出W与L。然后辐射单元的50欧姆匹配馈电点位置可经过公式计算出位置L 1,即馈电点L1离辐射主体3的长边边长(L方向)的距离:
Figure PCTCN2018095603-appb-000006
Figure PCTCN2018095603-appb-000007
其中, ξre为简化公式表达提出的中间变量。
最后通过在HFSS里建立模型,仿真优化后,最终可得出辐射元的尺寸大小W=11.6mm,L=17.3mm。
馈电点的位置在HFSS仿真模型中,也通过仿真优化,最后可得在距离辐射体边长L方向上为L 1=2.55mm,在W方向上为居中。
为更好的匹配电路参数,在HFSS里通过仿真,可在馈电点处形成一个凹槽,然后计算出匹配的50欧姆的微带线5的线宽,并经过仿真优化,其长度为14.6mm,宽度为0.7mm,从凹槽处引出。凹槽的大小仿真优化后为长度L 1=2.55mm,宽度2.5mm,即在50欧姆微带线4两边各有一个宽度为0.9mm的边长。
为达到更好的电路匹配,在50欧姆微带线4上增加有一段通过仿真优化后的匹配段4进行微调,其大小为3.7mm*1.9mm。
本发明提供的微带线辐射单元,采用微带线馈电,50欧姆微带线采用集总端口进行激励来仿真优化。辐射面经过旋转可与图示中X坐标轴呈现±45°夹角,从而成为±45°极化,经过+45°与-45°旋转后所形成的两个45°极化辐射单元并列排放可组合成一个±45°极化分离的辐射单元,如图12所示。此形式辐射元不仅交叉极化比好,而且在隔 离度上也可起到改善效果。其与水平方向呈0°夹角时还可形成水平极化辐射单元。其微带线与水平方向呈90°夹角时,可形成垂直极化辐射单元,可适用于不同场景。在PCB板材背面有一0.035mm厚度覆铜层作为辐射单元的接地层6。
参见图1、图2和图3,基于本发明设计的辐射单元在HFSS仿真软件里建立好模型后,开始仿真,可得各频点方向图指标结果。图4为4.7GHz频点增益示意图,数值为8.72dB;图5为4.8GHz频点增益示意图,数值为8.84dB;图6为4.9GHz频点增益示意图,数值为8.98dB;图7为5.0GHz频点增益示意图,数值为9.08dB;图8为5.1GHz频点增益示意图,数值为9.19dB;图9为4.7/4.8/4.9/5.0/5.1GHz频点水平面半功率波瓣宽度示意图,4.7GHz为65.30°,4.8GHz为64.32°,4.9GHz为63.33°,5.0GHz为62.32°,5.1GHz为61.33°;图10为4.7/4.8/4.9/5.0/5.1GHz频点回波损耗S11曲线图,4.7GHz为-9.86dB,4.8GHz为-19.18dB,4.9GHz为-25.01dB,5.0GHz为-17.57dB,5.1GHz为-17.06dB;图11为4.7/4.8/4.9/5.0/5.1GHz频点电压驻波比VSWR曲线图,4.7GHz为1.95,4.8GHz为1.25,4.9GHz为1.12,5.0GHz为1.30,5.1GHz为1.33。
具体实施时,可以采用如上所述用于5G系统的微带辐射单元组阵提供基站天线。
以上所述的实施例仅表达了本发明的某种实施方式,其描述较为具体和详细,对于本领域的普通技术人员来说,通读本说明书后,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明权利要求的保护范围。

Claims (10)

  1. 一种用于5G系统的微带辐射单元,包括PCB板材(1)、金属引向片(2)、辐射体、接地层(6),PCB板材(1)为基材,辐射体为覆铜层,附着在PCB板材(1)上表面;金属引向片(2)悬浮在辐射体正上方;接地层(6)为覆铜层,附着在PCB板材(1)下表面;所述辐射体包括辐射主体(3)和微带线(5),微带线(5)与辐射主体(3)相交于馈电点L1处馈电点L1,微带线(5)和辐射主体(3)的方向相同,微带线(5)上设有匹配段(4)。
  2. 根据权利要求1所述用于5G系统的微带辐射单元,其特征在于:微带线(5)采用50欧姆微带线,其尺寸大小为长度在13~16mm,宽度在0.6~1.2mm。
  3. 根据权利要求2所述用于5G系统的微带辐射单元,其特征在于:微带辐射单元工作的频段支持4.7GHz~5.1GHz。
  4. 根据权利要求3所述用于5G系统的微带辐射单元,其特征在于:辐射主体(3)馈电点L1处设计有一个匹配凹槽,当工作的频段为4.7GHz~5.1GHz,其大小为长度是2.5mm~2.7mm,宽度为1.8mm~2.8mm。
  5. 根据权利要求4所述用于5G系统的微带辐射单元,其特征在于:微带线(5)上设有一段匹配段(4),所述匹配段(4)距离馈电点L1距离为6.4mm,当工作的频段为4.7GHz~5.1GHz,其大小为长度是3.5mm~4.0mm,宽度为1.5mm~2.5mm。
  6. 根据权利要求1或2或3或4或5所述用于5G系统的微带辐射单元,其特征在于:微带线(5)与水平方向放置呈±45°夹角形成±45°极化辐射单元,或者与水平方向呈0°夹角形成水平极化辐射单元,或者与水平方向呈90°夹角可形成垂直极化辐射单元。
  7. 根据权利要求1或2或3或4或5所述用于5G系统的微带辐射单元,其特征在于:用于组合形成极化分离的辐射单元。
  8. 根据权利要求1或2或3或4或5所述用于5G系统的微带辐射单元,其特征在于:所述金属引向片(2)为一个方形金属材质引向片,距离辐射主体(3)垂直高度为2.0mm~6.0mm,当工作的频段为4.7GHz~5.1GHz,其尺寸大小为长度是22.0mm~25.0mm,宽度为22.0mm~25.0mm,厚度为1.0mm~2.0mm。。
  9. 根据权利要求1或2或3或4或5所述用于5G系统的微带辐射单元,其特征在于:辐射主体(3)的尺寸包括宽度W与长度L,W为0.1~0.5倍波长,L为0.15~0.3倍波长,其中波长为以4.7GHz~5.1GHz中心频点在自由空间计算值。
  10. 一种天线,其特征在于:采用如权利要求1-9所述用于5G系统的微带辐射单元。
PCT/CN2018/095603 2017-10-26 2018-07-13 用于5g系统的微带辐射单元及天线 WO2019080547A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711016975.3 2017-10-26
CN201711016975.3A CN107910638A (zh) 2017-10-26 2017-10-26 用于5g系统的微带辐射单元及天线

Publications (1)

Publication Number Publication Date
WO2019080547A1 true WO2019080547A1 (zh) 2019-05-02

Family

ID=61841779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095603 WO2019080547A1 (zh) 2017-10-26 2018-07-13 用于5g系统的微带辐射单元及天线

Country Status (2)

Country Link
CN (1) CN107910638A (zh)
WO (1) WO2019080547A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910638A (zh) * 2017-10-26 2018-04-13 武汉虹信通信技术有限责任公司 用于5g系统的微带辐射单元及天线
CN109037937A (zh) * 2018-08-06 2018-12-18 北方工业大学 一种应用于卫星定位的宽波束圆极化天线
CN110311224A (zh) * 2019-07-23 2019-10-08 深圳锐越微技术有限公司 小间距微带天线阵列
CN110444894A (zh) * 2019-07-26 2019-11-12 西安电子科技大学 基于石墨烯柔性导电膜的圆极化可穿戴天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060097926A1 (en) * 2004-11-05 2006-05-11 Tomoharu Fujii Patch antenna, array antenna, and mounting board having the same
CN101345337A (zh) * 2007-07-11 2009-01-14 西北工业大学 一种新型的x波段双频微带天线
CN101471494A (zh) * 2007-12-28 2009-07-01 西北工业大学 基于负介电传输线的x波段高增益微带天线
CN102361166A (zh) * 2011-09-18 2012-02-22 西北工业大学 一种采用干簧管的可重构天线
CN102570015A (zh) * 2011-11-18 2012-07-11 中国船舶重工集团公司第七二四研究所 一种t形微带馈电低剖面双极化瓦片天线单元设计方法
CN107910638A (zh) * 2017-10-26 2018-04-13 武汉虹信通信技术有限责任公司 用于5g系统的微带辐射单元及天线

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202585738U (zh) * 2012-05-09 2012-12-05 中国计量学院 基于方形环缝结构的微带贴片天线
CN104157972A (zh) * 2014-08-25 2014-11-19 罗森伯格技术(昆山)有限公司 双极化振子
CN104409833A (zh) * 2014-11-26 2015-03-11 摩比天线技术(深圳)有限公司 天线辐射单元及具有该天线辐射单元的通信基站
CN204834863U (zh) * 2015-08-20 2015-12-02 深圳通诚无限科技有限公司 一种5.8G高增益Wifi覆盖天线
CN105914460A (zh) * 2016-07-05 2016-08-31 江苏亨鑫科技有限公司 一种双极化宽频辐射单元以及小型化天线
CN107086363A (zh) * 2017-06-06 2017-08-22 安谱络(苏州)通讯技术有限公司 一种超宽带微带贴片天线及多频天线阵列

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060097926A1 (en) * 2004-11-05 2006-05-11 Tomoharu Fujii Patch antenna, array antenna, and mounting board having the same
CN101345337A (zh) * 2007-07-11 2009-01-14 西北工业大学 一种新型的x波段双频微带天线
CN101471494A (zh) * 2007-12-28 2009-07-01 西北工业大学 基于负介电传输线的x波段高增益微带天线
CN102361166A (zh) * 2011-09-18 2012-02-22 西北工业大学 一种采用干簧管的可重构天线
CN102570015A (zh) * 2011-11-18 2012-07-11 中国船舶重工集团公司第七二四研究所 一种t形微带馈电低剖面双极化瓦片天线单元设计方法
CN107910638A (zh) * 2017-10-26 2018-04-13 武汉虹信通信技术有限责任公司 用于5g系统的微带辐射单元及天线

Also Published As

Publication number Publication date
CN107910638A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2021120771A1 (zh) 毫米波端射圆极化天线及无线通信设备
CN105720361B (zh) 一种基于人工磁导体结构的宽带低剖面双极化全向天线
CN104900998B (zh) 低剖面双极化基站天线
WO2019080547A1 (zh) 用于5g系统的微带辐射单元及天线
US20180309203A1 (en) Antenna element structure suitable for 5g mobile terminal devices
CN104103906A (zh) 一种多层pcb工艺的低成本微波毫米波圆极化天线
CN110380193B (zh) 一种小型化多波段共口径圆极化天线
WO2018040839A1 (zh) 一种低剖面基站天线辐射单元及天线
CN108736147A (zh) 一种超宽带Vivaldi圆极化相控阵天线单元
CN102610926A (zh) 用于高空平台通信系统的介质透镜天线
CN112688079A (zh) 一种基于加载弯折接地金属柱的双极化宽波束天线
CN102769183B (zh) 应用于北斗系统的四螺旋分布加载振子微带天线
CN107196069B (zh) 紧凑型基片集成波导背腔缝隙天线
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
CN113270716A (zh) 一种应用于5g新型mimo毫米波圆极化贴片天线
CN109560388A (zh) 基于基片集成波导喇叭的毫米波宽带圆极化天线
CN103401068B (zh) 高增益宽带立体式缝隙八木天线
CN112310630A (zh) 宽频带高增益印刷天线
CN109309281B (zh) 一种微带竖环天线
CN102800953B (zh) 带有辐射型负载的间接馈电型全向印刷天线
CN107394391B (zh) 一种宽带方向图分集贴片天线
CN102760944B (zh) 加载型耦合馈电的全向辐射振子阵列天线
CN102760945B (zh) 带有辐射型负载的直接馈电型全向印刷天线
CN210838098U (zh) 一种低交叉极化水平的宽带双极化基站天线
Kenari Ultra wideband patch antenna for Ka band applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870278

Country of ref document: EP

Kind code of ref document: A1