WO2019078339A1 - Electronic apparatus - Google Patents

Electronic apparatus Download PDF

Info

Publication number
WO2019078339A1
WO2019078339A1 PCT/JP2018/038947 JP2018038947W WO2019078339A1 WO 2019078339 A1 WO2019078339 A1 WO 2019078339A1 JP 2018038947 W JP2018038947 W JP 2018038947W WO 2019078339 A1 WO2019078339 A1 WO 2019078339A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
image
imaging
light
unit
Prior art date
Application number
PCT/JP2018/038947
Other languages
French (fr)
Japanese (ja)
Inventor
明 徳世
佳孝 宮谷
法明 幸塚
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/754,398 priority Critical patent/US11368609B2/en
Priority to CN201880066131.6A priority patent/CN111201771B/en
Priority to EP18868174.6A priority patent/EP3700182A4/en
Priority to JP2019548814A priority patent/JP7247890B2/en
Priority to KR1020207009788A priority patent/KR20200062220A/en
Publication of WO2019078339A1 publication Critical patent/WO2019078339A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/62Control of parameters via user interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces

Definitions

  • the present disclosure relates to an electronic device, and more particularly to an electronic device having a function of imaging the surroundings of a user.
  • the imaging device which does not use an imaging lens as shown by a nonpatent literature 1 and patent documents 1 and 2 can be miniaturized as there is no imaging lens, and expansion of an application range is expected.
  • the present disclosure has been made in view of such a situation, and enables downsizing of an electronic device having a function of imaging the surroundings of a user.
  • An imaging apparatus is an imaging unit disposed in a position where the surroundings of a user who is wearing or using the electronic device are photographed in an electronic device worn or used by the user, and the imaging lens and The imaging unit includes a plurality of pixel output units that receive incident light from an object incident without passing through any of the pinholes and output one detection signal indicating an output pixel value modulated by the incident angle of the incident light. .
  • the surroundings of the user wearing or using the electronic device are imaged by a plurality of pixel output units, and a detection signal is output.
  • an electronic device having a function of capturing an image of a user's surroundings.
  • FIG. 1 It is a figure for demonstrating the difference in the image quality of a narrow view angle pixel and a wide view angle pixel. It is a figure for demonstrating the difference in the image quality of a narrow view angle pixel and a wide view angle pixel. It is a figure explaining the example which combines the pixel of a several view angle. It is a flowchart explaining the imaging process by the imaging device of FIG. It is a figure explaining the reduction method of processing load. It is a figure explaining the reduction method of processing load. It is a figure explaining the reduction method of processing load. It is a figure explaining the reduction method of processing load. It is a figure explaining the reduction method of processing load. It is a figure explaining the reduction method of processing load. It is a figure explaining the reduction method of processing load. It is a figure explaining the reduction method of processing load. FIG.
  • 21 is a block diagram illustrating a configuration example of an electronic device to which the technology of the present disclosure is applied. It is a figure which shows the example of arrangement
  • the imaging device 51 in which the detection sensitivity of each pixel is made to have incident angle directivity is used.
  • incident angle directivity to the detection sensitivity of each pixel means that the light receiving sensitivity characteristic according to the incident angle of incident light to each pixel is different for each pixel.
  • the light receiving sensitivity characteristics of all the pixels do not have to be completely different, and the light receiving sensitivity characteristics of some pixels may be the same.
  • the object plane 31 of the upper left object in FIG. 1 is composed of the point light source PA to the point light source PC, and the point light source PA to the point light source PC respectively emit a plurality of light rays of light intensity a to light intensity c around It shall be.
  • the imaging device 51 includes pixels (hereinafter, referred to as pixels Pa to Pc) having different incident angle directivity at positions Pa to Pc.
  • rays of the same light intensity emitted from the same point light source are made incident on the respective pixels of the image sensor 51.
  • a light beam of light intensity a emitted from the point light source PA is incident on the pixels Pa to Pc of the imaging device 51, respectively.
  • rays emitted from the same point light source are incident at different incident angles for each pixel.
  • light rays from the point light source PA are incident on the pixels Pa to Pc at different incident angles.
  • the incident angle directivity of the pixels Pa to Pc is different from each other, light rays of the same light intensity emitted from the same point light source are detected with different sensitivities in each pixel. As a result, rays of the same light intensity are detected at different detection signal levels for each pixel. For example, detection signal levels for light rays of light intensity a from the point light source PA have different values in the pixels Pa to Pc.
  • the light receiving sensitivity level of each pixel with respect to the light beam from each point light source is determined by multiplying the light intensity of the light beam by a coefficient indicating the light receiving sensitivity (that is, the incident angle directivity) with respect to the incident angle of the light beam.
  • the detection signal level of the pixel Pa with respect to the light beam from the point light source PA multiplies the light intensity a of the light beam of the point light source PA by a coefficient indicating the incident angle directivity of the pixel Pa with respect to the incident angle of the light beam to the pixel Pa It is determined by
  • the detection signal levels DA, DB, DC of the pixels Pc, Pb, Pa are expressed by the following formulas (1) to (3), respectively.
  • DA ⁇ 1 ⁇ a + ⁇ 1 ⁇ b + ⁇ 1 ⁇ c ...
  • DB ⁇ 2 ⁇ a + ⁇ 2 ⁇ b + ⁇ 2 ⁇ c ...
  • DC ⁇ 3 ⁇ a + ⁇ 3 ⁇ b + ⁇ 3 ⁇ c ...
  • the coefficient ⁇ 1 is a coefficient indicating the incident angle directivity of the pixel Pc with respect to the incident angle of the ray from the point light source PA to the pixel Pc, and is set according to the incident angle. Further, ⁇ 1 ⁇ a indicates the detection signal level of the pixel Pc with respect to the light beam from the point light source PA.
  • the coefficient ⁇ 1 is a coefficient indicating the incident angle directivity of the pixel Pc with respect to the incident angle of a ray from the point light source PB to the pixel Pc, and is set according to the incident angle. Further, ⁇ 1 ⁇ b represents the detection signal level of the pixel Pc with respect to the ray from the point light source PB.
  • the coefficient ⁇ 1 is a coefficient indicating the incident angle directivity of the pixel Pc with respect to the incident angle of the light beam from the point light source PC to the pixel Pc, and is set according to the incident angle. Further, ⁇ 1 ⁇ c indicates the detection signal level of the pixel Pc with respect to the ray from the point light source PC.
  • the detection signal level DA of the pixel Pa includes the light intensities a, b and c of the light rays from the point light sources PA, PB and PC at the pixel Pc, and the incident angle directivity according to the respective incident angles. It is obtained by product-sum with coefficients ⁇ 1, ⁇ 1, and ⁇ 1.
  • the detection signal level DB of the pixel Pb is, as shown in equation (2), the respective light intensities a, b and c of the light rays from the point light sources PA, PB and PC in the pixel Pb It is obtained by the product-sum with the coefficients ⁇ 2, ⁇ 2, and ⁇ 2 indicating the incident angle directivity according to the angle.
  • the detection signal level DC of the pixel Pc is, as shown in the equation (3), the respective light intensities a, b and c of the light rays from the point light sources PA, PB and PC at the pixel Pa and the respective incident angles It is determined by product-sum with the coefficients ⁇ 2, ⁇ 2 and ⁇ 2 indicating the incident angle directivity according to
  • the detection signal levels DA, DB, DC of the pixels Pa, Pb, Pc are light of the light beams emitted from the point light sources PA, PB, PC as shown in the equations (1) to (3).
  • the strengths a, b and c are mixed. Therefore, as shown in the upper right of FIG. 1, the detection signal level in the imaging device 51 is different from the light intensity of each point light source on the object plane 31. Therefore, the image obtained by the imaging device 51 is different from that on which the image of the object plane 31 is formed.
  • a set of coefficients for example, coefficients ⁇ 1, ⁇ 1, ⁇ 1 for each of the equations constituting the simultaneous equations is referred to as a coefficient set.
  • a set of a plurality of coefficient sets corresponding to a plurality of equations included in the simultaneous equations for example, coefficient set ⁇ 1, ⁇ 1, ⁇ 1, coefficient set ⁇ 2, ⁇ 2, ⁇ 2, coefficient set ⁇ 3, ⁇ 3, ⁇ 3) Is called a coefficient set group.
  • Patent Document 1 Non-Patent Document 1
  • Patent Document etc. It is possible to realize an imaging device in which the element 51 is an essential component.
  • the imaging lens, the pinhole, and the optical filter described in the patent document and the like do not become an essential component, the height of the imaging device can be reduced, that is, the thickness in the incident direction of light in the configuration realizing the imaging function. It becomes possible to make it thinner.
  • the essential configuration is only the imaging device 51, it is possible to improve the degree of freedom in design.
  • FIG. 2 is a block diagram showing a configuration example of an imaging device 101 which is a basic imaging device to which the technology of the present disclosure is applied.
  • the imaging device 101 includes an imaging element 121, a restoration unit 122, a control unit 123, an input unit 124, a detection unit 125, an association unit 126, a display unit 127, a storage unit 128, a recording and reproduction unit 129, a recording medium 130, and a communication unit. 131 is provided. Further, signal processing and imaging are performed by the restoration unit 122, the control unit 123, the input unit 124, the detection unit 125, the association unit 126, the display unit 127, the storage unit 128, the recording and reproducing unit 129, the recording medium 130, and the communication unit 131.
  • a signal processing control unit 111 that controls the device 101 is configured. Note that the imaging device 101 does not include an imaging lens (imaging lens free).
  • the imaging device 121, the restoration unit 122, the control unit 123, the input unit 124, the detection unit 125, the association unit 126, the display unit 127, the storage unit 128, the recording and reproduction unit 129, and the communication unit 131 are connected via the bus B1. Are connected to each other, and transmit and receive data via the bus B1.
  • the description of the bus B1 in the case where each unit of the imaging apparatus 101 transmits and receives data via the bus B1 is omitted.
  • the input unit 124 supplies data to the control unit 123 via the bus B1
  • the input unit 124 supplies data to the control unit 123.
  • the image pickup device 121 corresponds to the image pickup device 51 described with reference to FIG. 1 and includes a pixel having incident angle directivity, and an image formed of a detection signal indicating a detection signal level corresponding to the amount of incident light. Are output to the restoration unit 122 or the bus B1.
  • the imaging device 121 may have the same basic structure as that of a general imaging device such as a complementary metal oxide semiconductor (CMOS) image sensor.
  • CMOS complementary metal oxide semiconductor
  • the imaging device 121 has a configuration in which the incident angle directivity is given, as will be described later with reference to FIGS. ing.
  • the image sensor 121 varies (changes) the light reception sensitivity in accordance with the incident angle of incident light for each pixel, and has incident angle directivity with respect to the incident angle of incident light in pixel units.
  • the image output from the imaging element 121 is an image constituted by a detection signal in which the image of the subject is not formed as shown in the upper right of FIG. 1 described above, the subject can be visually recognized. Can not. That is, although the detection image which consists of a detection signal which image sensor 121 outputs is a set of pixel signals, it is an image which can not recognize a subject even if a user looks at a subject (it can not see a subject).
  • an image composed of a detection signal on which the image of the subject is not formed, that is, an image captured by the imaging element 121 is referred to as a detected image.
  • the imaging device 121 may not be configured as a pixel array, and may be configured as, for example, a line sensor.
  • the incident angle directivity does not necessarily have to be all different for each pixel, and the incident angle directivity may include the same pixels.
  • the restoration unit 122 corresponds to the subject distance corresponding to the distance from the imaging device 51 to the subject plane 31 (the subject plane corresponding to the restored image) in FIG. 1, for example, and the coefficients ⁇ 1 to ⁇ 3, ⁇ 1 to ⁇ 3, ⁇ 1 described above.
  • the coefficient set group corresponding to ⁇ 3 is acquired from the storage unit 128.
  • the restoration unit 122 uses the detection signal level of each pixel of the detection image output from the imaging device 121 and the acquired coefficient set group to be represented by the above-described Equations (1) to (3). Make simultaneous equations. Then, the reconstruction unit 122 solves the created simultaneous equations to obtain the pixel values of the respective pixels constituting the image on which the image of the subject shown in the lower right of FIG. 1 is formed.
  • an image from which the user can visually recognize and recognize the subject (and can visually recognize the subject) is restored from the detected image.
  • an image restored from the detected image will be referred to as a restored image.
  • the restored image is not an image that can identify the subject as a normal image, but also in this case the restored image It is called.
  • a restored image which is an image in a state in which an image of a subject is formed, and an image before color separation such as demosaicing processing or synchronization processing is referred to as a RAW image
  • the detected image is distinguished as an image according to the array of color filters but not a RAW image.
  • the number of pixels of the imaging device 121 and the number of pixels of the pixels forming the restored image do not necessarily have to be the same.
  • the restoration unit 122 performs demosaicing processing, ⁇ correction, white balance adjustment, conversion processing to a predetermined compression format, and the like on the restored image as necessary. Then, the restoration unit 122 outputs the restored image to the bus B1.
  • the control unit 123 includes, for example, various processors, and controls each unit of the imaging apparatus 101.
  • the input unit 124 includes an input device (for example, a key, a switch, a button, a dial, a touch panel, a remote controller, and the like) for performing an operation of the imaging apparatus 101, an input of data used for processing, and the like.
  • the input unit 124 outputs an operation signal, input data, and the like to the bus B1.
  • the detection unit 125 includes the imaging device 101 and various sensors used to detect the state of the subject and the like.
  • the detection unit 125 may be an acceleration sensor or a gyro sensor that detects the posture or movement of the imaging device 101, a position detection sensor (for example, a GNSS (Global Navigation Satellite System) receiver) that detects the position of the imaging device 101, an object A distance measuring sensor or the like for detecting a distance is provided.
  • the detection unit 125 outputs a signal indicating the detection result to the bus B1.
  • the associating unit 126 associates the detection image obtained by the imaging device 121 with the metadata corresponding to the detection image.
  • the metadata includes, for example, a coefficient set group for restoring a restored image using a target detection image, an object distance, and the like.
  • the method of associating the detection image with the metadata is not particularly limited as long as the correspondence between the detection image and the metadata can be specified. For example, metadata is added to image data including a detected image, the same ID is added to a detected image and metadata, or the detected image and metadata are recorded on the same recording medium 130. Metadata is associated.
  • the display unit 127 is, for example, a display, and displays various types of information (for example, a restored image and the like). Note that the display unit 127 can also be provided with an audio output unit such as a speaker to output audio.
  • the storage unit 128 includes one or more storage devices such as a read only memory (ROM), a random access memory (RAM), and a flash memory, and stores, for example, programs and data used for processing of the imaging device 101.
  • the storage unit 128 stores coefficient set groups corresponding to the above-described coefficients ⁇ 1 to ⁇ 3, ⁇ 1 to ⁇ 3, and ⁇ 1 to ⁇ 3 in association with various object distances. More specifically, for example, the storage unit 128 stores, for each subject plane 31 at each subject distance, a coefficient set group including a coefficient for each pixel 121a of the image sensor 121 for each point light source set on the subject plane 31. doing.
  • the recording and reproduction unit 129 performs recording of data on the recording medium 130 and reproduction (reading) of data recorded on the recording medium 130.
  • the recording / reproducing unit 129 records the restored image on the recording medium 130 or reads the restored image from the recording medium 130.
  • the recording / reproducing unit 129 records the detection image and the corresponding metadata on the recording medium 130 or reads out from the recording medium 130.
  • the recording medium 130 is made of, for example, any of a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or a combination thereof.
  • HDD hard disk drive
  • SSD solid state drive
  • magnetic disk magnetic disk
  • optical disk magnetic disk
  • magneto-optical disk magnetic disk
  • semiconductor memory or a combination thereof.
  • the communication unit 131 communicates with another device (for example, another imaging device, a signal processing device, and the like) by a predetermined communication method.
  • the communication method of the communication unit 131 may be wired or wireless. Further, the communication unit 131 can also correspond to a plurality of communication methods.
  • FIG. 3 shows a front view of a part of the pixel array portion of the imaging element 121.
  • FIG. 3 shows an example in which the number of pixels in the pixel array portion is 6 vertical pixels ⁇ 6 horizontal pixels, the number of pixels in the pixel array portion is not limited to this.
  • a light shielding film 121b which is one of the modulation elements, is provided for each pixel 121a so as to cover a part of the light receiving area (light receiving surface) of the photodiode. Incident incident light is optically modulated according to the incident angle. Then, for example, by providing the light shielding film 121b in a different range for each pixel 121a, the light receiving sensitivity with respect to the incident angle of incident light differs for each pixel 121a, and each pixel 121a has different incident angle directivity .
  • the light shielding film 121b-1 and the light shielding film 121b-2 provided in the pixel 121a-1 and the pixel 121a-2 have different ranges for shielding the light receiving region of the photodiode (a light shielding region (position), And at least one of the shaded areas). That is, in the pixel 121a-1, the light shielding film 121b-1 is provided so as to shield a part of the left side of the light receiving region of the photodiode by a predetermined width. On the other hand, in the pixel 121a-2, a light shielding film 121b-2 is provided so as to shield a part of the right side of the light receiving region by a predetermined width.
  • the width at which the light shielding film 121b-1 shields the light receiving area of the photodiode may be different from or the same as the width at which the light shielding film 121b-2 shields the light receiving area of the photodiode. .
  • the light shielding films 121b are randomly arranged in the pixel array so as to shield a different range of the light receiving area for each pixel.
  • the amount of light that can be received by the photodiode decreases as the rate at which the light shielding film 121b obscures the light receiving area of each pixel increases. Therefore, it is desirable that the area of the light shielding film 121b be such an area that a desired light quantity can be secured, and for example, a restriction of up to about 3/4 of the light receiving area may be added. By doing this, it is possible to secure a light amount of a desired amount or more. However, it is possible to receive a minimum amount of light if each pixel is provided with an unshielded range having a width corresponding to the wavelength of light to be received. That is, for example, in the case of the B pixel (blue pixel), the wavelength is about 500 nm, but it is possible to receive the minimum light amount unless the light is blocked beyond the width corresponding to this wavelength.
  • the upper part of FIG. 4 is a side cross-sectional view of the first configuration example of the imaging device 121
  • the middle part of FIG. 4 is a top view of the first configuration example of the imaging device 121.
  • the side cross-sectional view of the upper stage of FIG. 4 is an AB cross section in the middle stage of FIG. 4.
  • the lower part of FIG. 4 is a circuit configuration example of the imaging element 121.
  • the adjacent pixels 121a-1 and 121a-2 are so-called back side illumination type in which the wiring layer Z12 is provided in the lowermost layer in the drawing and the photoelectric conversion layer Z11 is provided thereon.
  • the description of the numbers at the end of the reference numerals is omitted and simply referred to as the pixel 121a.
  • the numbers at the end of the reference numerals may be omitted in the same manner for the other configurations.
  • FIG. 4 shows only the side view and the top view of two pixels constituting the pixel array of the image sensor 121, and needless to say, although more pixels 121a are arranged, Is omitted.
  • the pixels 121a-1 and 121a-2 respectively include photodiodes 121e-1 and 121e-2 in the photoelectric conversion layer Z11.
  • on-chip lenses 121c-1 and 121c-2 and color filters 121d-1 and 121d-2 are stacked on the photodiodes 121e-1 and 121e-2, respectively.
  • the on-chip lenses 121c-1 and 121c-2 condense incident light on the photodiodes 121e-1 and 121e-2.
  • the color filters 121d-1 and 121d-2 are optical filters that transmit light of a specific wavelength, such as red, green, blue, infrared, and white. In the case of white, the color filters 121d-1 and 121d-2 may or may not be transparent filters.
  • Light shielding films 121g-1 to 121g-3 are formed at the boundaries between the pixels in the photoelectric conversion layer Z11 of the pixels 121a-1 and 121a-2, and for example, as shown in FIG. L is incident on an adjacent pixel to suppress the occurrence of crosstalk.
  • the light shielding films 121b-1 and 121b-2 shield a part of the light receiving surface S as viewed from the top.
  • different ranges are shielded by the light shielding films 121b-1 and 121b-2, respectively, whereby different incident angles are obtained.
  • the directivity is set independently for each pixel.
  • the light shielding range does not have to be different for all the pixels 121 a of the imaging device 121, and some pixels 121 a may have the same light shielding region.
  • the light shielding film 121b-1 and the light shielding film 121g-1 are connected to each other, and are L-shaped when viewed from the side.
  • the light shielding film 121b-2 and the light shielding film 121g-2 are connected to each other, and are configured in an L shape when viewed from the side.
  • the light shielding film 121b-1, the light shielding film 121b-2, and the light shielding films 121g-1 to 121g-3 are made of metal, and for example, tungsten (W), aluminum (Al), or Al and copper Composed of an alloy with (Cu).
  • the light shielding film 121b-1, the light shielding film 121b-2, and the light shielding films 121g-1 to 121g-3 are simultaneously formed of the same metal as the wiring in the same process as the wiring in the semiconductor process. It may be done.
  • the film thicknesses of the light shielding film 121b-1, the light shielding film 121b-2, and the light shielding films 121g-1 to 121g-3 may not be the same depending on the position.
  • the pixel 121 a includes a photodiode 161 (corresponding to the photodiode 121 e), a transfer transistor 162, an FD (Floating Diffusion: floating diffusion) portion 163, a selection transistor 164, and an amplification transistor 165. And a reset transistor 166, and is connected to the current source 168 via the vertical signal line 167.
  • the anode electrode of the photodiode 161 is grounded, and the cathode electrode is connected to the gate electrode of the amplification transistor 165 via the transfer transistor 162.
  • the transfer transistor 162 is driven according to the transfer signal TG. For example, when the transfer signal TG supplied to the gate electrode of the transfer transistor 162 becomes high level, the transfer transistor 162 is turned on. Thereby, the charge accumulated in the photodiode 161 is transferred to the FD unit 163 via the transfer transistor 162.
  • the amplification transistor 165 is an input portion of a source follower which is a readout circuit for reading out a signal obtained by photoelectric conversion in the photodiode 161, and a pixel signal of a level corresponding to the charge stored in the FD portion 163 is a vertical signal line 167. Output to That is, the amplification transistor 165 has a drain terminal connected to the power supply VDD and a source terminal connected to the vertical signal line 167 via the selection transistor 164, thereby connecting the current source 168 connected to one end of the vertical signal line 167. Configure a source follower.
  • the FD unit 163 is a floating diffusion region having a charge capacity C1 provided between the transfer transistor 162 and the amplification transistor 165, and temporarily accumulates the charge transferred from the photodiode 161 via the transfer transistor 162.
  • the FD unit 163 is a charge detection unit that converts a charge into a voltage, and the charge stored in the FD unit 163 is converted into a voltage by the amplification transistor 165.
  • the selection transistor 164 is driven according to the selection signal SEL, and is turned on when the selection signal SEL supplied to the gate electrode becomes high level, and connects the amplification transistor 165 and the vertical signal line 167.
  • the reset transistor 166 is driven according to the reset signal RST. For example, the reset transistor 166 is turned on when the reset signal RST supplied to the gate electrode becomes high level, discharges the charge stored in the FD unit 163 to the power supply VDD, and resets the FD unit 163.
  • the pixel circuit shown in the lower part of FIG. 4 operates as follows.
  • the reset transistor 166 and the transfer transistor 162 are turned on, the charge stored in the FD unit 163 is discharged to the power supply VDD, and the FD unit 163 is reset.
  • the reset transistor 166 and the transfer transistor 162 are turned off, and during the exposure period, the photodiode 161 accumulates a charge according to the amount of incident light.
  • the reset transistor 166 is turned on and the FD section 163 is reset, and then the reset transistor 166 is turned off.
  • the FD unit 163 is set to the reference potential.
  • the potential of the FD section 163 in a reset state is output from the amplification transistor 165 as a reference potential.
  • the transfer transistor 162 is turned on, and the charge accumulated in the photodiode 161 is transferred to the FD portion 163.
  • the potential of the FD section 163 to which the charge of the photodiode is transferred is output from the amplification transistor 165 as a signal potential.
  • a signal obtained by subtracting the reference potential from the signal potential by CDS is output as a detection signal (pixel signal) of the pixel 121a.
  • the value (output pixel value) of the detection signal is modulated according to the incident angle of incident light from the subject, and the characteristic (directivity) differs depending on the incident angle (having incident angle directivity).
  • FIG. 5 is a diagram showing a second configuration example of the imaging device 121.
  • the upper side of FIG. 5 shows a side cross-sectional view of the pixel 121a of the imaging device 121 which is the second configuration example, and the middle stage of FIG. 5 shows a top view of the imaging device 121.
  • the side cross-sectional view of the upper stage of FIG. Furthermore, the lower part of FIG. 5 is a circuit configuration example of the imaging element 121.
  • the imaging device 121 of FIG. 5 In the imaging device 121 of FIG. 5, four photodiodes 121f-1 to 121f-4 are formed in one pixel 121a, and a light shielding film 121g is formed in a region separating the photodiodes 121f-1 to 121f-4.
  • the configuration is different from that of the imaging device 121 of FIG. That is, in the imaging element 121 of FIG. 5, the light shielding film 121 g is formed in a “+” shape when viewed from the upper surface.
  • symbol same as FIG. 4 is attached
  • the photodiodes 121 f-1 to 121 f-4 are separated by the light shielding film 121 g, so that electrical and optical crosstalk between the photodiodes 121 f-1 to 121 f-4 occurs. It is prevented. That is, the light shielding film 121g of FIG. 5 is for preventing crosstalk similarly to the light shielding film 121g of the imaging device 121 of FIG. 4, and is not for providing incident angle directivity.
  • one FD unit 163 is shared by the four photodiodes 121f-1 to 121f-4.
  • the lower part of FIG. 5 shows an example of a circuit configuration in which one FD portion 163 is shared by four photodiodes 121f-1 to 121f-4. In the lower part of FIG. 5, the description of the same configuration as the lower part of FIG. 4 is omitted.
  • the lower part of FIG. 5 differs from the circuit configuration of the lower part of FIG. 4 in that photodiodes 161-1 to 161- are used instead of the photodiode 161 (corresponding to the photodiode 121e in the upper part of FIG. 4) and the transfer transistor 162. 4 (corresponding to the photodiodes 121f-1 to 121f-4 in the upper part of FIG. 5) and the transfer transistors 162-1 to 162-4 and share the FD section 163.
  • the charge accumulated in the photodiodes 121f-1 to 121f-4 has a predetermined capacitance provided at the connection portion between the photodiodes 121f-1 to 121f-4 and the gate electrode of the amplification transistor 165. It is transferred to the common FD unit 163. Then, a signal corresponding to the level of the charge held in the FD unit 163 is read as a detection signal (pixel signal) (however, the CDS processing is performed as described above).
  • the charges accumulated in the photodiodes 121f-1 to 121f-4 can be selectively contributed to the output of the pixel 121a, that is, the detection signal in various combinations. That is, the photodiodes 121f-1 to 121f-4 are configured to be able to read out the charge independently, and the photodiodes 121f-1 to 121f-4 (the photodiodes 121f-1 to 121f-4 output Different incident angle directivity can be obtained.
  • the incident angle directivity in the left-right direction can be obtained.
  • the incident angle directivity in the vertical direction by transferring the electric charges of the photodiode 121f-1 and the photodiode 121f-3 to the FD portion 163 and adding the signals obtained by reading out each, the incident angle directivity in the left-right direction can be obtained.
  • the incident angle directivity in the vertical direction by transferring the electric charges of the photodiode 121f-1 and the photodiode 121f-2 to the FD portion 163 and adding the signals obtained by reading the respective, it is possible to obtain the incident angle directivity in the vertical direction.
  • a signal obtained based on the charges selectively read out independently from the four photodiodes 121f-1 to 121f-4 is a detection signal corresponding to one pixel constituting the detection image.
  • the contribution of (the charge of) each photodiode 121f to the detection signal is not limited to, for example, whether or not the charge (the detected value) of each photodiode 121f is transferred to the FD unit 163, but also using an electronic shutter function. This can also be realized by resetting the charge accumulated in the photodiode 121 f before transfer to the FD unit 163. For example, if the charge of the photodiode 121f is reset immediately before transfer to the FD portion 163, the photodiode 121f does not contribute to the detection signal at all. On the other hand, by giving time to the charge of the photodiode 121f between the reset and the transfer of the charge to the FD portion 163, the photodiode 121f partially contributes to the detection signal.
  • the combination of the four photodiodes 121 f-1 to 121 f-4 used for the detection signal is changed to have different incident angle directivity for each pixel.
  • the detection signal output from each pixel 121a of the image sensor 121 in FIG. 5 has a value (output pixel value) modulated according to the incident angle of the incident light from the subject, and the characteristic (directivity) according to the incident angle Are different (having incident angle directivity).
  • the pixel output unit includes at least one or more photodiodes, and generally, each pixel 121a of the imaging device 121 corresponds to one pixel output unit.
  • one pixel output unit includes one photodiode 121 e.
  • one pixel 121e constitutes one pixel output unit.
  • the incident angle directivity of each pixel output unit can be made different.
  • incident light to each pixel 121a is optically modulated using the light shielding film 121b, and as a result, the incident angle is directed by the signal output from the photodiode 121e of each pixel 121a.
  • a detection signal for one pixel of the detected image reflecting the polarity is obtained. That is, the image pickup device 121 of FIG. 4 includes a plurality of pixel output units for receiving incident light from an object incident without any of the imaging lens and the pinhole, and each pixel output unit includes one photodiode 121e.
  • the characteristic (incident angle directivity) with respect to the incident angle of incident light from the subject is set for each pixel output unit.
  • one pixel output unit includes four photodiodes 121e. Become. In other words, one pixel output unit is configured by the four photodiodes 121 f. On the other hand, individual pixel output units are not configured by each photodiode 121e alone.
  • the incident angle directivity for each pixel output unit is different. It becomes a thing. That is, in the imaging device 121 of FIG. 5, the range not contributing to the output (detection signal) among the four photodiodes 121f-1 to 121f-4 functions in the same manner as the light-shielded region. Then, by combining the signals output from the photodiodes 121f-1 to 121f-4, a detection signal for one pixel of the detection image reflecting the incident angle directivity is obtained. That is, the imaging device 121 of FIG.
  • each pixel output unit includes a plurality of photodiodes (for example, Characteristics (incident angle directivity) of each pixel output unit with respect to the incident angle of incident light from the subject by providing the photodiodes 121f-1 to 121f-4) and varying (the degree of) the photodiodes contributing to the output Are different from each other.
  • photodiodes for example, Characteristics (incident angle directivity) of each pixel output unit with respect to the incident angle of incident light from the subject by providing the photodiodes 121f-1 to 121f-4) and varying (the degree of) the photodiodes contributing to the output Are different from each other.
  • incident light is incident on all the photodiodes 121f-1 to 121f-4 without being optically modulated, so that the detection signal is a signal obtained by optical modulation. Absent. Further, hereinafter, the photodiode 121 f not contributing to the detection signal is also referred to as a photodiode 121 f not contributing to a pixel output unit or an output.
  • the light receiving surface of the pixel output unit (pixel 121a) is equally divided into four, and photodiodes 121f having the same size as the light receiving surface are arranged in each region, that is, four photodiodes, etc.
  • the division number and division position of the photodiode can be set arbitrarily.
  • the photodiodes do not necessarily have to be equally divided, and the division positions of the photodiodes may be different for each pixel output unit.
  • the incident angle directivity differs between the pixel output units.
  • by setting the number of divisions to be different between pixel output units it is possible to more freely set the incident angle directivity.
  • both the division number and the division position may be made different between pixel output units.
  • each of the image sensor 121 of FIG. 4 and the image sensor 121 of FIG. 5 has a configuration in which each pixel output unit can independently set the incident angle directivity.
  • each pixel output unit of an image sensor does not have the composition which can set up incidence angle directivity independently.
  • the incident angle directivity of each pixel output unit is set by the light shielding film 121 b at the time of manufacture.
  • the image sensor 121 of FIG. 4 the image sensor 121 of FIG.
  • the division number and division position of the photodiode of each pixel output unit are set at the time of manufacture, but the incident angle directivity of each pixel output unit (combination of photodiodes contributing to output) Can be set at the time of use (for example, at the time of imaging).
  • the imaging device 121 of FIG. 4 and the imaging device 121 of FIG. 5 it is not necessary to have a configuration in which all the pixel output units have incident angle directivity.
  • each pixel of the imaging device corresponds to one pixel output unit, but as described later, there may be a case where one pixel output unit is formed by a plurality of pixels. . The following description will be made assuming that each pixel of the imaging device corresponds to one pixel output unit unless otherwise noted.
  • the incident angle directivity of each pixel of the imaging element 121 is generated, for example, according to the principle shown in FIG.
  • the upper left part and the upper right part of FIG. 6 are diagrams for explaining the generation principle of the incident angle directivity in the imaging element 121 of FIG. 4, and the lower left part and the lower right part of FIG. 6 are for the imaging element 121 of FIG. It is a figure explaining the generation
  • Each of the upper left and upper right pixels in FIG. 6 includes one photodiode 121 e.
  • the lower left and lower right pixels in FIG. 6 each include two photodiodes 121 f.
  • an example in which one pixel includes two photodiodes 121 f is shown here, this is for convenience of explanation, and the number of photodiodes 121 f provided in one pixel may be another number. .
  • a light shielding film 121b-11 is formed to shield the right half of the light receiving surface of the photodiode 121e-11. Further, in the pixel at the upper right portion of FIG. 6, a light shielding film 121b-12 is formed so as to shield the left half of the light receiving surface of the photodiode 121e-12. Note that the alternate long and short dash line in the drawing is an auxiliary line which passes through the horizontal center of the light receiving surface of the photodiode 121e and is perpendicular to the light receiving surface.
  • incident light from the upper right direction forming the incident angle ⁇ 1 with respect to the alternate long and short dash line in the drawing is left unshielded by the light shielding film 121b-11 of the photodiode 121e-11. It is easy to receive light by the half range.
  • incident light from the upper left direction forming the incident angle ⁇ 2 with respect to the alternate long and short dash line in the figure is hard to be received by the left half range not blocked by the light shielding film 121b-11 of the photodiode 121e-11. . Therefore, the pixel in the upper left part of FIG. 6 has high incidence sensitivity with respect to incident light from the upper right in the figure and low sensitivity to incident light from the upper left. .
  • incident light from the upper right direction forming the incident angle ⁇ 1 is received by the left half range shielded by the light shielding film 121b-12 of the photodiode 121e-12. Hateful.
  • incident light from the upper left direction forming the incident angle ⁇ 2 is likely to be received by the right half range which is not blocked by the light shielding film 121b-12 of the photodiode 121e-12. Therefore, the pixel in the upper right part of FIG. 6 has low incident sensitivity to incident light from the upper right in the figure and high incident sensitivity to incident light from the upper left. .
  • photodiodes 121f-11 and 121f-12 are provided on the left and right in the drawing, and a light shielding film 121b is provided by reading out one of the detection signals. It is set as the structure which has incident angle directivity.
  • incident angle directivity similar to that of the upper left part in FIG. You can get it. That is, incident light from the upper right direction forming the incident angle ⁇ 1 with respect to the alternate long and short dash line in the figure is incident on the photodiode 121f-11 and a signal corresponding to the amount of light received is read out from the photodiode 121f-11. It contributes to the detection signal output from the pixel.
  • incident light from the upper left direction forming the incident angle ⁇ 2 with respect to the alternate long and short dash line in the figure is incident on the photodiode 121f-12 but is not read out from the photodiode 121f-12. It does not contribute to the output detection signal.
  • incident light from the upper left direction forming the incident angle ⁇ 2 is incident on the photodiode 121f-14, and a signal corresponding to the amount of light received is read out from the photodiode 121f-14, so that it is output from this pixel Contribute to the detection signal.
  • the upper graph in FIG. 7 shows the incident angle directivity of the middle and lower pixels in FIG.
  • the horizontal axis represents the incident angle ⁇
  • the vertical axis represents the detection signal level.
  • the incident angle ⁇ is 0 degrees when the direction of incident light coincides with the alternate long and short dash line in the middle left of FIG. 7, and the middle left incident angle ⁇ 21 in FIG. 7 is a positive direction.
  • the right incident angle ⁇ 22 side is a negative direction. Therefore, with respect to the on-chip lens 121c, the incident angle of the incident light entering from the upper right is larger than the incident angle of the incident light entering from the upper left. That is, the incident angle ⁇ becomes larger as the traveling direction of the incident light leans to the left (larger in the positive direction) and smaller as it leans to the right (larger in the negative direction).
  • the pixels in the middle left part of FIG. 7 are the on-chip lens 121 c-11 for condensing incident light and the color filters 121 d-11 for transmitting light of a predetermined wavelength to the pixels in the upper left part of FIG. Is added. That is, in this pixel, the on-chip lens 121c-11, the color filter 121d-11, the light shielding film 121b-11, and the photodiode 121e-11 are laminated in order from the incident direction of the upper light in the drawing.
  • the pixel at the middle right of FIG. 7, the pixel at the lower left of FIG. 7, and the pixel at the lower right of FIG. 7 are respectively the pixel at the upper right of FIG. 6 and the lower left of FIG.
  • the on-chip lens 121 c-11 and the color filter 121 d-11 or the on-chip lens 121 c-12 and the color filter 121 d-12 are added to the pixel of FIG.
  • the detection signal level (light receiving sensitivity) of the photodiode 121e-11 changes according to the incident angle ⁇ of incident light. That is, the larger the incident angle ⁇ which is the angle formed by the incident light with respect to the alternate long and short dash line in the figure (the larger the incident angle ⁇ in the positive direction (the more inclined in the right direction in the figure)) When the light is collected in the range in which 11 is not provided, the detection signal level of the photodiode 121e-11 is increased.
  • the smaller the incident angle ⁇ of the incident light the larger the incident angle ⁇ in the negative direction (the more inclined in the left direction in the figure)
  • the light is collected in the range in which the light shielding film 121b-11 is provided.
  • the detection signal level of the photodiode 121e-11 decreases.
  • the detection signal level (light receiving sensitivity) of the photodiode 121e-12 changes according to the incident angle ⁇ of incident light.
  • the incident angle ⁇ of the incident light is larger (the incident angle ⁇ is larger in the positive direction)
  • the light is condensed in the range in which the light shielding film 121b-12 is provided, thereby the photodiode 121e-12.
  • the detection signal level increases.
  • the waveforms of the solid line and the dotted line shown in the upper part of FIG. 7 can be changed according to the range of the light shielding film 121 b. Therefore, it is possible to give different incident angle directivity to each other in pixel units by the range of the light shielding film 121b.
  • the incident angle directivity is a characteristic of the light receiving sensitivity of each pixel according to the incident angle ⁇ , but this is a characteristic of the light blocking value according to the incident angle ⁇ in the middle pixel of FIG. It can be said that That is, although the light shielding film 121 b blocks incident light in a specific direction at a high level, incident light from other directions can not be blocked sufficiently.
  • the change of the light shieldable level produces different detection signal levels according to the incident angle ⁇ as shown in the upper part of FIG.
  • the direction in which light can be blocked at the highest level in each pixel is defined as the light blocking direction of each pixel, having different incident angle directivity in pixel units means, in other words, light blocking mutually different in pixel units It means that it has a direction.
  • the middle left pixel in FIG. 7 It is possible to obtain incident angle directivity similar to that of the pixels of a part. That is, when the incident angle ⁇ of the incident light increases (when the incident angle ⁇ increases in the positive direction), the light is collected in the range of the photodiode 121f-11 from which the signal is read, and the detection signal level is large. Become. Conversely, the smaller the incident angle ⁇ of the incident light (the larger the incident angle ⁇ in the negative direction), the more light is collected in the range of the photodiode 121 f-12 from which the signal is not read out, and thus the detection signal level Becomes smaller.
  • the signal of only the photodiode 121 f-14 in the right in FIG. An incident angle directivity similar to that of the pixel in the middle right part of can be obtained. That is, when the incident angle ⁇ of incident light increases (when the incident angle ⁇ increases in the positive direction), light is collected in the range of the photodiode 121 f-13 that does not contribute to the output (detection signal). The level of the unit detection signal decreases.
  • the smaller the incident angle ⁇ of the incident light the larger the incident angle ⁇ in the negative direction
  • the more light is collected in the range of the photodiode 121f-14 that contributes to the output (detection signal)
  • the level of the detection signal in units of pixels is increased.
  • each photodiode has directivity with respect to the incident angle of incident light
  • the on-chip lens 121c is an essential component of each pixel in order to generate incident angle directivity in pixel units.
  • the incident angle directivity it is desirable that the randomness be high in pixel units.
  • the above-described equations (1) to (3) or equations (4) to (6) described later may be the same as each other.
  • the number of equations is insufficient for the unknowns that are solutions of simultaneous equations, which may make it impossible to obtain the pixel values that make up the restored image.
  • the light shielding film 121b that shields the entire light receiving surface of the pixel 121a in the vertical direction and shields the light receiving surface with a predetermined width in the horizontal direction It is called a band type light shielding film 121b.
  • a light shielding film 121b that shields the entire light receiving surface of the pixel 121a in the horizontal direction and shields the light receiving surface at a predetermined height in the vertical direction is referred to as a vertical band type light shielding film 121b.
  • an L-shaped light shielding film 121 b is formed for each pixel of the Bayer arrangement. It may be provided.
  • the black range represents the light shielding film 121b, and the same applies to the following drawings unless otherwise noted.
  • the pixels 121a-21 and 121a-24 of G (green) pixels, the pixels 121a-22 of R (red) pixels, and the pixels 121a-23 of B (blue) pixels, which are in the Bayer array, are provided.
  • L-shaped light shielding films 121b-21 to 121b-24 are provided for each of them.
  • each pixel 121a has incident angle directivity as shown in the right part of FIG. That is, in the right part of FIG. 8, the distribution of the light receiving sensitivity of each pixel 121a is shown, the horizontal axis represents the incident angle ⁇ x in the horizontal direction (x direction) of the incident light, and the vertical axis is the vertical of the incident light
  • the incident angle ⁇ y in the direction (y direction) is represented.
  • the light receiving sensitivity in the range C4 is higher than the outside of the range C4
  • the light receiving sensitivity in the range C3 is higher than the outside of the range C3
  • the light receiving sensitivity in the range C2 is higher than the outside of the range C2.
  • the light reception sensitivity in the range C1 is higher than the outside of the range C1.
  • the detection signal level for the incident light in which the incident angle ⁇ x in the horizontal direction (x direction) and the incident angle ⁇ y in the vertical direction (y direction) fall within the range C1 is the highest. Then, the detection signal level decreases in the order of incident light in which the incident angle ⁇ x and the incident angle ⁇ y fall within the range C2, within the range C3, within the range C4, and outside the range C4.
  • the intensity distribution of the light receiving sensitivity shown in the right part of FIG. 8 is determined by the range shielded by the light shielding film 121b in each pixel 121a regardless of the Bayer arrangement.
  • the light shielding film 121b is generically referred to as an L-shaped light shielding film 121b.
  • the light shielding range in the horizontal direction of the light shielding film 121b is from the left end of the pixel 121a to the position A, and the light shielding range in the vertical direction is from the upper end of the pixel 121a
  • the range is up to B.
  • the weights Wx and Wy change as in the graph of FIG. 9 when ideal conditions are satisfied.
  • the incident angle directivity of each pixel 121a that is, the coefficient corresponding to the light receiving sensitivity characteristic
  • a value obtained by multiplying the weight Wx corresponding to the incident angle ⁇ x of incident light from a certain point light source on the object surface 31 and the weight Wy corresponding to the incident angle ⁇ y is set as the coefficient for the point light source.
  • the inclination (1 / 2 ⁇ ) indicating the change of the weight in the range in which the weight Wx in the horizontal direction and the weight Wy in the vertical direction are around 0.5 is obtained by using the on-chip lens 121c having different focal lengths. It can be set.
  • the focal length of the on-chip lens 121c matches the surface of the light shielding film 121b
  • the focal length of the on-chip lens 121c changes with the curvature of the on-chip lens 121c. Therefore, different incident angle directivity, that is, different light receiving sensitivity characteristics can be obtained by changing the focal length of the on-chip lens 121 c using the on-chip lens 121 c having different curvatures.
  • the incident angle directivity of the pixel 121a can be adjusted by the combination of the range in which the photodiode 121e is shielded by the light shielding film 121b and the curvature of the on-chip lens 121c.
  • the curvature of the on-chip lens may be the same for all the pixels 121 a of the imaging device 121 or may be different for some of the pixels 121 a.
  • each pixel 121a For example, based on the position of each pixel 121a, the shape, position and range of the light shielding film 121b of each pixel 121a, and the curvature of the on-chip lens 121c as an index indicating the incident angle directivity of each pixel 121a of the image sensor 121.
  • the characteristics of the weight Wx and the weight Wy as in the graph of FIG. 9 are set for each pixel 121a.
  • the incident angle of the light beam from the point light source to the pixel 121a is obtained.
  • the coefficient of the pixel 121a with respect to the point light source is determined.
  • the coefficients are obtained as described above to obtain the coefficient sets ⁇ 1 and ⁇ 1 of the equations (1) to (3) described above.
  • the coefficient set group of the image sensor 121 with respect to the object plane 31 can be obtained, such as ⁇ 1, ⁇ 1, coefficient set ⁇ 2, ⁇ 2, ⁇ 2, coefficient set ⁇ 3, ⁇ 3, ⁇ 3.
  • the incident angle of the light beam from each point light source of the subject surface 31 to the imaging device 121 is Because they are different, different coefficient set groups are required for each subject distance.
  • each pixel 121 a needs to be set so as to ensure the independence of the above-described simultaneous equations.
  • the imaging element 121 does not require an optical block or a pinhole formed of an imaging lens, but as described above, the on-chip lens 121 c is provided.
  • the on-chip lens 121c and the imaging lens have different physical actions.
  • the imaging lens 152 is designed to condense diffused light incident at different angles from the point light source P101 at the pixel position P111 and form an image of the point light source P101.
  • the pixel position P111 is specified by the chief ray L101 passing through the point light source P101 and the center of the imaging lens 152.
  • the imaging lens 152 is designed to condense diffused light incident at different angles from the point light source P102 at the pixel position P112 and form an image of the point light source P102.
  • the pixel position P112 is specified by the chief ray L102 passing through the point light source P102 and the center of the imaging lens 152.
  • the imaging lens 152 forms images of point light sources P101 and P102 having different chief rays at different pixel positions P111 and P112 on the imaging element 151.
  • the imaging lens 152 when the point light source P101 is at infinity, a part of the diffused light emitted from the point light source P101 is incident on the imaging lens 152 as parallel light parallel to the chief ray L101.
  • parallel light which is a light ray between the light ray L121 and the light ray L122 parallel to the chief ray L101, enters the imaging lens 152.
  • the parallel light incident on the imaging lens 152 is condensed at the pixel position P111 on the imaging element 151. That is, the imaging lens 152 is designed to condense parallel light from the point light source P101 existing at infinity into the pixel position P111 and form an image of the point light source P101.
  • the imaging lens 152 causes diffused light from a point light source having a chief ray incident angle ⁇ 1 to enter into the pixel (pixel output unit) P1 and has a chief ray incident angle ⁇ 2 different from the chief ray incident angle ⁇ 1. It has a light collecting function of causing diffused light from a light source to be incident on a pixel (pixel output unit) P2 different from the pixel P1. That is, the imaging lens 152 has a light collecting function for causing diffused light from light sources with different incident angles of principal rays to a plurality of pixels (pixel output units) adjacent to each other. However, for example, light from point light sources close to each other or point light sources existing at infinity and substantially close to each other may be incident on the same pixel (pixel output unit).
  • the light passing through the on-chip lens 121c is received by the photodiode 121e or the photodiode 121f constituting the corresponding pixel (pixel output unit). It is incident only on the surface.
  • the on-chip lens 121 c is provided for each pixel (pixel output unit), and condenses incident light incident thereon to only the corresponding pixel (pixel output unit). That is, the on-chip lens 121c does not have a light collecting function for causing light from different point light sources to be incident on different pixels (pixel output units).
  • the incident angle directivity can not be set freely and freely for each pixel.
  • DA ⁇ 1 ⁇ a + ⁇ 1 ⁇ b + ⁇ 1 ⁇ c ...
  • DB ⁇ 2 ⁇ a + ⁇ 2 ⁇ b + ⁇ 2 ⁇ c ...
  • DC ⁇ 3 ⁇ a + ⁇ 3 ⁇ b + ⁇ 3 ⁇ c ...
  • the object surface 31 ′ at which the object distance to the image pickup element 121 is a distance d 2 larger by d than the distance d 1 is a distance d 2 larger by d than the distance d 1
  • the detection signal levels at the pixels Pc, Pb and Pa on the image sensor 121 are the same as the detection signal levels DA, DB and DC as shown in the lower center of FIG. become.
  • the coefficient set group consisting of the coefficient sets ⁇ 11, ⁇ 11, ⁇ 11, the coefficient sets ⁇ 12, ⁇ 12, ⁇ 12, the coefficient sets ⁇ 13, ⁇ 13, ⁇ 13 is the coefficient sets ⁇ 1, ⁇ 1, ⁇ 1 and the coefficient sets ⁇ 2, ⁇ 2 for the object surface 31. , ⁇ 2, and coefficient sets ⁇ 3, ⁇ 3, and ⁇ 3 for the object plane 31 ′.
  • the object plane can be obtained by solving the simultaneous equations of equations (4) to (6) using preset coefficient set groups ⁇ 11, ⁇ 11, ⁇ 11, ⁇ 12, ⁇ 12, ⁇ 13, ⁇ 13, ⁇ 13.
  • the point light source PA ′ of the object surface 31 ′ as shown in the lower right of FIG. 13, in the same manner as in the case of obtaining the light intensities a, b and c of the light from the 31 point light sources PA, PB and PC.
  • the light intensities a ', b' and c 'of the rays from PB' and PC ' can be determined. As a result, it is possible to restore the restored image of the subject surface 31 '.
  • a coefficient set group for each distance (subject distance) from the imaging element 121 to the subject surface is prepared in advance, and the coefficient set group is switched for each subject distance to perform simultaneous equations.
  • the coefficient set group is switched according to the distance to the object surface using the recorded detected image, and the restored image is restored. It is possible to generate a restored image of the object plane.
  • the pixels having incident angle directivity suitable for imaging the subject surface corresponding to the specified subject distance and angle of view without using all the pixels.
  • the detection signal may be used to generate a restored image.
  • a restored image can be generated using detection signals of pixels suitable for imaging the object plane corresponding to the specified object distance and angle of view.
  • FIG. 15 shows an example of the incident angle of incident light from the object plane 31 to the center position C1 of the image sensor 121.
  • FIG. 15 shows an example of the incident angle of incident light in the horizontal direction, the same applies to the vertical direction.
  • the pixels 121a and 121a 'in FIG. 14 are shown.
  • the pixel 121a of FIG. 14 when the pixel 121a of FIG. 14 is disposed at the center position C1 of the imaging element 121, the range of the incident angle of incident light from the object plane 31 to the pixel 121a is an angle as shown in the left part of FIG. It becomes A1. Accordingly, the pixel 121a can receive incident light for the width W1 in the horizontal direction of the object plane 31.
  • the pixel 121a ′ when the pixel 121a 'in FIG. 14 is disposed at the center position C1 of the imaging device 121, the pixel 121a' has a wider range of light shielding than the pixel 121a.
  • the range of the incident angle of the incident light is the angle A2 ( ⁇ A1) as shown in the left part of FIG. Therefore, the pixel 121 a ′ can receive incident light corresponding to the width W 2 ( ⁇ W 1) in the horizontal direction of the object surface 31.
  • the pixel 121 a having a narrow light shielding range is a wide angle of view pixel suitable for imaging a wide range on the object surface 31
  • the pixel 121 a ′ having a wide light shielding range is narrow on the object surface 31. It is a narrow angle-of-view pixel suitable for imaging a range.
  • the wide angle of view pixel and the narrow angle of view pixel are expressions for comparing both of the pixels 121a and 121a 'in FIG. 14 and are not limited to the case of comparing pixels of other angles of view.
  • pixel 121a is used to restore image I1 of FIG.
  • the image I1 is an image of an angle of view SQ1 corresponding to the subject width W1 including the whole of the person H101 as the subject in the upper stage of FIG.
  • the pixel 121a ' is used to restore the image I2 of FIG.
  • the image I2 is an image of an angle of view SQ2 corresponding to the subject width W2 in which the periphery of the face of the person H101 in the upper part of FIG. 16 is zoomed up.
  • the pixel 121a of FIG. 14 is specified in the range ZA surrounded by the dotted line of the imaging device 121, and the pixel 121a ′ is specified in the range ZB surrounded by the dashed dotted line. It is conceivable to collect and arrange each pixel number. Then, for example, when the image of the angle of view SQ1 corresponding to the subject width W1 is restored, the image of the angle of view SQ1 is appropriately restored by using the detection signal of each pixel 121a in the range ZA. it can. On the other hand, when the image of the angle of view SQ2 corresponding to the subject width W2 is restored, the image of the angle of view SQ2 can be appropriately restored by using the detection signal of each pixel 121a 'in the range ZB. .
  • the angle of view SQ2 is narrower than the angle of view SQ1
  • the image of the angle of view SQ2 is restored rather than the image of the angle of view SQ1. It is possible to obtain a higher quality restored image.
  • the right part of FIG. 17 shows a configuration example within the range ZA of the imaging device 121 of FIG.
  • the left part of FIG. 17 shows a configuration example of the pixel 121a in the range ZA.
  • the range shown in black is the light shielding film 121b, and the light shielding range of each pixel 121a is determined, for example, according to the rule shown in the left part of FIG.
  • the main light-shielding portion Z101 in the left part of FIG. 17 is a range in which light is shielded in common in each pixel 121a.
  • the main light shielding portion Z101 has a height in the range of dx1 from the left side and the right side of the pixel 121a and in the range from the upper side and the lower side of the pixel 121a to the inside of the pixel 121a. It is the range of dy1.
  • a rectangular opening Z111 which is not shielded by the light shielding film 121b is provided within the range Z102 inside the main light shielding portion Z101. Therefore, in each pixel 121a, the range other than the opening Z111 is shielded by the light shielding film 121b.
  • the openings Z111 of the pixels 121a are regularly arranged. Specifically, the horizontal position of the opening Z111 in each pixel 121a is the same in the pixels 121a in the same vertical direction. Further, the position in the vertical direction of the opening Z111 in each pixel 121a is the same in the pixels 121a in the same horizontal row.
  • the horizontal position of the opening Z111 in each pixel 121a is shifted at a predetermined interval according to the horizontal position of the pixel 121a. That is, as the position of the pixel 121a advances to the right, the left side of the opening Z111 moves to the position shifted to the right from the left side of the pixel 121a by the widths dx1, dx2,.
  • the distance between the width dx1 and the width dx2, the distance between the width dx2 and the width dx3, ..., the distance between the width dxn-1 and the width dxn is the length obtained by subtracting the width of the opening Z111 from the width of the range Z102 Divided by the number of pixels n-1 in the horizontal direction.
  • the position in the vertical direction of the opening Z111 in each pixel 121a is shifted at a predetermined interval according to the position in the vertical direction of the pixel 121a. That is, as the position of the pixel 121a moves downward, the upper side of the opening Z111 moves downward from the upper side of the pixel 121a by heights dy1, dy2,.
  • the distance between the height dy1 and the height dy2, the distance between the height dy2 and the height dy3, ..., the distance between the height dyn-1 and the height dyn are respectively from the vertical height of the range Z102 to the opening Z111
  • the length obtained by subtracting the height of the image is divided by the number of pixels m-1 in the vertical direction.
  • the right part of FIG. 18 shows a configuration example within the range ZB of the imaging device 121 of FIG.
  • the left part of FIG. 18 shows a configuration example of the pixel 121a 'in the range ZB.
  • the range shown in black is the light shielding film 121b ', and the light shielding range of each pixel 121a' is determined, for example, according to the rule shown in the left part of FIG.
  • the main light shielding portion Z151 at the left part of FIG. 18 is a range in which light is shielded in common in each pixel 121a '. Specifically, the main light shielding portion Z151 goes from the left side and the right side of the pixel 121a 'to the inside of the pixel 121a' and in the range of the width dx1 'and from the upper side and the lower side of the pixel 121a' And the height dy1 '.
  • a rectangular opening Z161 which is not shielded by the light shielding film 121b' is provided in a range Z152 inside the main light shielding portion Z151. Therefore, in each pixel 121a ', the range other than the opening Z161 is shielded by the light shielding film 121b'.
  • the opening Z161 of each pixel 121a ' is regularly arranged similarly to the opening Z111 of each pixel 121a of FIG. Specifically, the horizontal position of the opening Z161 in each pixel 121a 'is the same in the pixels 121a' in the same vertical direction. Further, the vertical position of the opening Z 161 in each pixel 121 a ′ is the same in the pixels 121 a ′ in the same horizontal row.
  • the horizontal position of the opening Z161 in each pixel 121a ' is shifted at a predetermined interval in accordance with the horizontal position of the pixel 121a'. That is, as the position of the pixel 121a 'proceeds to the right, the left side of the opening Z161 moves to the position shifted to the right by the widths dx1', dx2 ', ..., dxn' from the left side of the pixel 121a '. Do.
  • the length obtained by subtracting the width is divided by the number of pixels n-1 in the horizontal direction.
  • the position in the vertical direction of the opening Z161 in each pixel 121a ' is shifted at a predetermined interval according to the position in the vertical direction of the pixel 121a'. That is, as the position of the pixel 121a 'moves downward, the upper side of the opening Z161 is shifted downward by height dy1', dy2 ', ..., dyn' from the upper side of the pixel 121a '.
  • the distance between the height dy1 ′ and the height dy2 ′, the distance between the height dy2 ′ and the height dy3 ′,..., The distance between the height dyn ⁇ 1 ′ and the height dyn ′ are in the vertical direction of the range Z152
  • the length obtained by subtracting the height of the opening Z161 from the height is divided by the number of pixels m-1 in the vertical direction.
  • the length obtained by subtracting the width of the opening Z111 from the width of the range Z102 of the pixel 121a in FIG. 17 is the width of the opening Z161 from the width of the range Z152 of the pixel 121a ′ in FIG. It becomes larger than the width which I pulled. Therefore, the intervals of change in the widths dx1, dx2,..., Dxn in FIG. 17 are larger than the intervals of changes in the widths dx1 ', dx2',.
  • the length obtained by subtracting the height of the opening Z111 from the height in the vertical direction of the range Z102 of the pixel 121a of FIG. 17 is the height of the opening Z161 in the vertical direction of the range Z152 of the pixel 121a ′ of FIG. It is larger than the length minus the height. Accordingly, the change intervals of the heights dy1, dy2... Dyn in FIG. 17 are larger than the change intervals of the heights dy1 ', dy2'.
  • the interval of change of the position in the horizontal direction and the vertical direction of the opening Z111 of the light shielding film 121b of each pixel 121a of FIG. 17 and the horizontal direction of the opening Z161 of the light shielding film 121b ′ of each pixel 121a ′ of FIG. It is different from the interval of change of position in the direction and vertical direction.
  • the difference in this interval is the difference in object resolution (angular resolution) in the restored image. That is, the change in the horizontal and vertical positions of the opening Z161 of the light shielding film 121b 'of each pixel 121a' in FIG. 18 corresponds to the horizontal direction of the opening Z111 of the light shielding film 121b in each pixel 121a of FIG.
  • the restored image restored using the detection signal of each pixel 121a 'in FIG. 18 has a higher subject resolution than the restored image restored using the detection signal of each pixel 121a in FIG. Become.
  • the imaging device 121 including pixels (having various incident angle directivity) of various angles of view is realized. It becomes possible.
  • the pixel 121a and the pixel 121a ′ are divided into the range ZA and the range ZB is described above, this is to simplify the description, and the pixels 121a corresponding to different angles of view are the same. It is desirable to be mixedly arranged in the area.
  • each unit U is a pixel 121a-W with a wide angle of view, a middle angle of view
  • pixels of a pixel 121a-M, a pixel 121a-N with a narrow angle of view, and a pixel 121a-AN with a very narrow angle of view are used.
  • images of intermediate angles of view of four types of angle of view and images of angles of view before and after that may be generated by interpolation from images of four types of angle of view, and images of various angles of view are seamlessly generated By doing this, a pseudo optical zoom may be realized.
  • all wide angle of view pixels may be used, or part of the wide angle of view pixels may be used.
  • all narrow angle of view pixels may be used, or a part of narrow angle of view pixels may be used.
  • Imaging processing by the imaging device 101 in FIG. 2 will be described with reference to the flowchart in FIG.
  • step S1 the imaging element 121 captures an image of a subject.
  • a detection signal indicating a detection signal level corresponding to the light amount of incident light from the subject is output from each pixel 121a of the imaging device 121 having different incident angle directivity, and the imaging device 121 detects each pixel 121a.
  • the detection image composed of a signal is supplied to the restoration unit 122.
  • step S2 the restoration unit 122 obtains a coefficient used for image restoration. Specifically, the restoration unit 122 sets the distance to the object plane 31 to be restored, that is, the object distance. Note that any method can be adopted as a method of setting the subject distance. For example, the restoration unit 122 sets the subject distance input by the user via the input unit 124 or the subject distance detected by the detection unit 125 as the distance to the subject plane 31 to be restored.
  • the restoration unit 122 reads out from the storage unit 128 the coefficient set group associated with the set subject distance.
  • step S3 the restoration unit 122 restores the image using the detected image and the coefficients. Specifically, the restoration unit 122 uses the detection signal level of each pixel of the detection image and the coefficient set group acquired in the process of step S2 to set the above-mentioned equation (1) to equation (3) or The simultaneous equations described with reference to equations (4) to (6) are created. Next, the restoration unit 122 calculates the light intensity of each point light source on the object plane 31 corresponding to the set object distance by solving the created simultaneous equations. Then, the restoration unit 122 arranges the pixels having pixel values according to the calculated light intensity according to the arrangement of the point light sources of the object plane 31 to generate a restored image on which the image of the object is formed.
  • step S4 the imaging apparatus 101 performs various processes on the restored image.
  • the restoration unit 122 performs demosaicing processing, ⁇ correction, white balance adjustment, conversion processing to a predetermined compression format, and the like on the restored image as necessary.
  • the restoration unit 122 supplies, for example, a restored image to the display unit 127 for display, or supplies the restored image to the recording and reproduction unit 129, and records the restored image on the recording medium 130 as needed. , Output to other devices.
  • the example of restoring the restored image from the detected image using the image sensor 121 and the coefficient set group associated with the subject distance has been described, but, for example, as described above in addition to the subject distance
  • the set of coefficients corresponding to the angle of view of the restored image may be further prepared, and the set of coefficients corresponding to the subject distance and the angle of view may be used to restore the restored image.
  • the resolution for the subject distance and the angle of view depends on the number of coefficient set groups prepared.
  • the example using detection signals of all the pixels included in the detected image has been described, but the subject distance specified among the pixels constituting the image sensor 121 And a detection image consisting of detection signals of pixels having incident angle directivity corresponding to the angle of view may be generated and used to restore a restored image.
  • Such processing enables the restored image to be restored with a detected image suitable for the subject distance and angle of view of the restored image to be obtained, and the restoration accuracy and image quality of the restored image are improved. That is, when the image corresponding to the specified subject distance and angle of view is, for example, an image corresponding to the angle of view SQ1 in FIG. 16, the pixel 121a having the incident angle directivity corresponding to the angle of view SQ1 is selected. By restoring the restored image with the detected image obtained from these, it is possible to restore the image of the angle of view SQ1 with high accuracy.
  • the imaging device 101 having the imaging device 121 as an essential component in which each pixel is made to have incident angle directivity.
  • the imaging lens, the pinhole, and the optical filter described in the above-mentioned patent documents and the like become unnecessary, it is possible to increase the degree of freedom in the design of the device, and configured separately from the imaging device 121
  • it becomes unnecessary to use an optical element assumed to be mounted together with the imaging device 121 at the stage of configuring as an imaging device it becomes possible to realize miniaturization of the device with respect to the incident direction of incident light It is possible to reduce the cost.
  • a lens corresponding to an imaging lens for forming an optical image such as a focus lens, is not necessary.
  • a zoom lens for changing the magnification may be provided.
  • a detection image is recorded, for example, without performing a decompression
  • the restored image may be restored using a detected image at a desired timing.
  • restoration of the restored image may be performed by the imaging device 101 or may be performed by another device.
  • a restored image is obtained by solving simultaneous equations created using coefficient set groups according to an arbitrary subject distance and an angle of view, thereby obtaining an restored object for the object plane of an arbitrary subject distance and an angle of view. It is possible to realize refocusing and the like.
  • the imaging apparatus 101 it is possible to restore the restored image of an arbitrary subject distance or angle of view by switching the coefficient set group in this manner, so the focal length (that is, object distance) or angle of view changes variously. This eliminates the need for processing such as repeated imaging while making it happen.
  • the user switches the coefficient set group corresponding to different subject distance and angle of view, and displays the restored image on the display unit 127 while restoring the restored image of the desired subject distance and angle of view. It is also possible to get.
  • Metadata is associated with the detected image. For example, metadata is added to image data including a detected image, the same ID is added to a detected image and metadata, or the detected image and metadata are recorded on the same recording medium 130. Metadata is associated.
  • the detected image and the metadata can be recorded on different recording media, or can be output individually from the imaging apparatus 101.
  • the metadata may or may not include the coefficient set group used for restoration.
  • the subject distance and the angle of view at the time of restoration are included in the metadata, and at the time of restoration, a coefficient set group corresponding to the subject distance and the angle of view is acquired from the storage unit 128 or the like.
  • the restored image is immediately restored at the time of imaging, it is possible to select, for example, an image to be recorded or output to the outside from among the detected image and the restored image.
  • both images may be recorded or output to the outside, or only one of the images may be recorded or output to the outside.
  • the presence or absence of restoration of a restored image and selection of an image to be recorded or output to the outside can be performed for each frame. For example, it is possible to switch the presence or absence of restoration of a restored image for each frame. In addition, for example, it is possible to individually switch the presence / absence of recording of the detected image and the presence / absence of recording of the restored image for each frame. Also, for example, while adding metadata to a detection image of a useful frame that may be used later, the detection images of all the frames may be recorded.
  • an autofocus function as in an imaging apparatus using an imaging lens.
  • the autofocus function can be realized by determining the optimum subject distance by the hill climbing method similar to the contrast AF (Auto Focus) method based on the restored image.
  • the imaging device 121 is an essential component, and for example, the optical filter described in the above-mentioned patent documents and the like are not required. It is possible to realize an imaging device with high environmental resistance without distortion.
  • the imaging lens, the pinhole, and the optical filter described in the above-mentioned patent documents and the like are not required, so the degree of freedom in design of a configuration having an imaging function is improved. It becomes possible.
  • the processing by the restoration unit 122 is performed as the randomness of the difference in the light shielding range increases.
  • the load on the Therefore, the processing load may be reduced by reducing the randomness by setting a part of the change in the light shielding range of the light shielding film 121b of each pixel 121a to be regular.
  • the L-shaped light shielding film 121b is formed by combining the vertical band type and the horizontal band type, and the horizontal band type light shielding film 121b having the same width is combined in a predetermined column direction. In the row direction of, the vertical band type light shielding films 121b of the same height are combined.
  • the light blocking range of the light blocking film 121b of each pixel 121a changes randomly in pixel units while having regularity in the column direction and the row direction.
  • the difference in light blocking range of the light blocking film 121b of each pixel 121a that is, the randomness of the difference in incident angle directivity can be reduced, and the processing load of the restoration unit 122 can be reduced.
  • the horizontal band type light shielding film 121b having the same width X0 is used for all pixels in the same column indicated by the range Z130.
  • a vertical band type light shielding film 121b of the same height Y0 is used for the pixels in the same row indicated by the range Z150.
  • an L-shaped light shielding film 121b in which these are combined is used for the pixels 121a specified in each row and column.
  • the light shielding film 121b of the horizontal band type having the same width X1 is used, and the same row indicated by the range Z151 adjacent to the range Z150.
  • the vertical band type light shielding film 121b of the same height Y1 is used for the pixel of.
  • the light shielding film 121b of the horizontal band type having the same width X2 is used for all pixels in the same row indicated by the range Z152 adjacent to the range Z151.
  • a vertical band type light shielding film 121b of the same height Y2 is used for the pixels 121a specified in each row and column.
  • each element of matrix N of (N ⁇ N) rows ⁇ (N ⁇ N) rows of coefficient sets, and (N ⁇ N) rows ⁇ 1 row vector X representing a restored image It is shown that the result of multiplication of is a vector Y of (N ⁇ N) rows ⁇ 1 column representing a detected image. Then, from this relationship, simultaneous equations corresponding to, for example, the above-described Equation (1) to Equation (3) or Equation (4) to Equation (6) are configured.
  • each element of the first column indicated by the range Z201 of the matrix A corresponds to an element of the first row of the vector X
  • an N ⁇ N column indicated by the range Z202 of the matrix A Indicates that each element of X corresponds to an element of the N ⁇ Nth row of the vector X.
  • the matrix A is a diagonal matrix in which all the down-tilting diagonal components become one.
  • the matrix A does not form a diagonal matrix.
  • the restored image is obtained by solving the simultaneous equations based on the determinant shown in FIG. 22 and finding each element of the vector X.
  • the matrix A can not be accurately determined, the matrix A can not be accurately measured, the basis vector of the matrix A can not be solved in the case near linear dependence, and each element of the detected image It contains noise. And it may not be possible to solve simultaneous equations by any of those reasons or their combination.
  • a t is the transposed matrix of the matrix A
  • I is the identity matrix
  • the matrix A the matrix AL of N rows ⁇ N columns, decomposed into matrix AR T of N rows ⁇ N columns, N rows ⁇ N columns, each representing a restored image
  • the result obtained by multiplying the former stage and the latter stage of the matrix X of X is made to be an N-row ⁇ N-column matrix Y representing a detected image.
  • matrix AL of number of elements is (N ⁇ N)
  • AR T the number of elements of each matrix is 1 / (N ⁇ N).
  • a matrix matrix AL in parentheses of formula (8) is realized by an inverse matrix of the transposed matrix of the matrix A and matrix AR T.
  • the element group Z222 is obtained by multiplying each element group Z221 of the corresponding column of the matrix AL by the element of interest Xp in the matrix X Be Further, by multiplying the elements in the row corresponding to the element of interest Xp the element group Z222 matrix AR T, 2-dimensional response Z224 that corresponds to the element of interest Xp is calculated. Then, the two-dimensional response Z 224 corresponding to all elements of the matrix X is integrated to obtain the matrix Y.
  • the matrix can be made smaller, the capacity of the memory used for calculation can be reduced, and the device cost can be reduced.
  • FIG. 21 shows an example in which the light shielding range (light receiving range) is changed in pixel units while giving predetermined regularity in the horizontal direction and the vertical direction, but in the present disclosure, such an example is shown.
  • the light blocking range (light receiving range) is not completely randomly set in a pixel unit, it is considered that the light blocking range (light receiving range) is also set randomly at some random settings. In other words, in the present disclosure, not only when the light blocking range (light receiving range) is completely set randomly on a pixel basis, but also to a certain degree random (for example, regularity for some of all pixels).
  • the degree of freedom of arrangement of the pixels 121a is high.
  • at least a part of a user wearing or using an electronic device is photographed in various electronic devices by using the degree of freedom of arrangement of each pixel 121a of the imaging device 121.
  • An imaging element 121 is provided at a position, at least a part of the user is imaged, and various application processes are performed using a restored image obtained by the restoration process.
  • At least a part of the user is, for example, any part of the user's body, such as the user's entire body, face, eyes, head, torso, hands, feet and the like.
  • at least a part of the user may be not only outside the user but also inside the user (for example, in the oral cavity, in the viscera, etc.).
  • FIG. 26 is a block diagram illustrating a configuration example of the electronic device 301 according to the first embodiment of the present disclosure.
  • parts corresponding to those of the imaging apparatus 101 in FIG. 2 are assigned the same reference numerals, and the description thereof will be omitted as appropriate.
  • the electronic device 301 includes, for example, a wearable device, a portable information terminal worn or carried by a user such as a smartphone, a tablet, or a portable telephone, a personal computer, a wearable device, a game machine, a video playback device, a music playback device, and the like.
  • a wearable device for example, various methods such as a head-mounted type, a watch type, a bracelet type, a necklace type, and a neck band type mounted on the head of the user can be adopted.
  • the head-mounted wearable devices include, for example, glasses, goggles, head mounts, earphones, headsets, masks, and hats. Note that, for example, depending on the shape of the wearable device, one wearable device may correspond to a plurality of methods (for example, a goggle type and a head mount type).
  • the electronic device 301 includes an imaging unit 311 and a signal processing control unit 312.
  • the imaging unit 311 includes one or more n imaging devices 121-1 to 121-n.
  • Each imaging element 121 supplies a detection signal set including a detection signal output from each pixel 121 a to the restoration unit 321 or outputs it to the bus B2.
  • a detection image is generated by the detection signal set from each imaging element 121. Therefore, when the imaging unit 311 includes only one imaging element 121, a detection image is generated by one detection signal set from the imaging element 121.
  • each imaging element 121 may be installed in the same housing or may be installed in a different housing.
  • the signal processing control unit 312 includes a restoration unit 321, a control unit 322, an input unit 323, a detection unit 324, an association unit 325, an output unit 326, a storage unit 327, a recording and reproduction unit 328, a recording medium 329, and a communication unit 330. Prepare.
  • the restoration unit 321, the control unit 322, the input unit 323, the detection unit 324, the association unit 325, the output unit 326, the storage unit 327, the recording and reproduction unit 328, and the communication unit 330 are mutually connected via the bus B2. And transmit and receive data via the bus B2.
  • the description of the bus B2 in the case where each part of the electronic device 301 transmits and receives data via the bus B2 is omitted.
  • the restoration unit 321 performs restoration processing and the like of a restored image by the same processing as the restoration unit 122 of the imaging apparatus 101 in FIG. 2 using the detection signal set acquired from each of the imaging elements 121.
  • the restoration unit 321 outputs the restored image to the bus B2.
  • the control unit 322 includes, for example, various processors, and performs control of each unit of the electronic device 301, various application processing, and the like.
  • the input unit 323 includes an input device (for example, a key, a switch, a button, a dial, a touch panel, a remote controller, and the like) for performing an operation of the electronic device 301, an input of data used for processing, and the like.
  • the input unit 323 outputs an operation signal, input data, and the like to the bus B2.
  • the associating unit 325 associates the detection signal set of each imaging element 121 with the metadata corresponding to each detection signal set.
  • the output unit 326 includes, for example, an output device that outputs an image such as a display, a speaker, a lamp, a buzzer, and a vibration element, sound, light, vibration, and the like, and outputs various information and data.
  • an output device that outputs an image such as a display, a speaker, a lamp, a buzzer, and a vibration element, sound, light, vibration, and the like, and outputs various information and data.
  • the storage unit 327 includes one or more storage devices such as a ROM, a RAM, and a flash memory, and stores, for example, programs and data used for processing of the electronic device 301.
  • the storage unit 327 stores a coefficient set group corresponding to each imaging device 121.
  • the coefficient set group is prepared, for example, for each assumed subject distance and angle of view.
  • the recording and reproducing unit 328 performs recording of data on the recording medium 329 and reproduction (reading) of data recorded on the recording medium 329.
  • the recording / reproducing unit 328 records the restored image on the recording medium 329 or reads the restored image from the recording medium 329.
  • the recording / reproducing unit 328 records the detection signal set and the corresponding metadata on the recording medium 329 or reads out from the recording medium 329.
  • the recording medium 329 is made of, for example, an HDD, an SSD, a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like, or a combination thereof.
  • the communication unit 330 communicates with other devices by a predetermined communication method.
  • the communication method of the communication unit 330 may be wired or wireless. Further, the communication unit 330 can also correspond to a plurality of communication methods.
  • FIG. 27A to 27C show an example in which (the respective pixels 121a of) the imaging element 121 are arranged around the left lens 411L and the right lens 411R which are the eyepieces of the wearable device 401. It is done.
  • the eyepiece portion is a portion close to the eyes of the user who wears or uses the electronic device 301, and includes, for example, an eyepiece lens such as the left lens 411L and the right lens 411R.
  • an eyepiece lens such as the left lens 411L and the right lens 411R.
  • the eyepiece unit is a proximity lens, for example, the user can view an image (for example, an image or an image of an object) through the proximity lens.
  • the imaging element 121-1 is on the back of the frame 412, that is, above the left lens 411L on the surface facing the user's face when the user wears the wearable device 401.
  • the imaging element 121-2 is disposed above the right lens 411R on the back surface of the frame 412.
  • the imaging device 121 is disposed in the vicinity of the bridge on the back surface of the frame 412.
  • the imaging device 121-1 is disposed to surround the periphery of the left lens 411L on the back surface of the frame 412, and the imaging device 121-2 to surround the periphery of the right lens 411R on the back surface of the frame 412. Is arranged.
  • the imaging element 121 can be disposed in the empty space of the frame 412 of the wearable device 401 while suppressing an increase in size and a decrease in design.
  • the imaging element 121 is disposed at a position where the vicinity of both eyes of the user wearing the wearable device 401 is captured, and imaging around both eyes of the user can be performed.
  • each pixel 121a of each imaging element 121 of each of FIGS. 27A to 27C is the eye of the user who is in proximity to the left lens 411L and the right lens 411R when the wearable device 401 is attached. It is desirable that the light receiving sensitivity with respect to the direction be set to be high. As a result, in each pixel 121a, the light reception sensitivity to incident light from the direction of the eye of the user who is the main imaging target becomes high, and it is possible to capture the eye of the user more clearly.
  • FIG. 28A shows a view of the left lens 411L as viewed from the inside (the side facing the user's eyes)
  • FIG. 28B shows a cross-sectional view of the left lens 411L as viewed from the side.
  • the arrows in the figure indicate the tendency of the incident angle directivity of the pixels 121a in the respective regions of the imaging element 121-1. Further, hereinafter, in A of FIG. 28 and B of FIG. 28, the direction from the left lens 421 L to the left eye 421 (the right direction of B of FIG. 28) is taken as the backward direction.
  • the incidence angle directivity of the pixel 121a in the upper area of the imaging element 121-1 is set to the rear and downward direction, and the light reception sensitivity to the direction of the left eye 421L is high.
  • the incident angle directivity of the pixel 121a in the region on the left side of the imaging element 121-1 is set to the diagonally right backward direction, and the light reception sensitivity with respect to the direction of the left eye 421L is high.
  • the incident angle directivity of the pixel 121a in the area on the right side of the image pickup device 121-1 is set to the left diagonal backward direction, and the light reception sensitivity with respect to the direction of the left eye 421L is high.
  • the incident angle directivity of the pixel 121a in the lower area of the imaging element 121-1 is set to the rear upper side, and the light receiving sensitivity with respect to the direction of the left eye 421L is high.
  • the imaging element 121-1 As a result, in the imaging element 121-1, the light reception sensitivity to incident light from the direction of the left eye 421L of the user who is the main imaging target becomes high, and it becomes possible to pick up the left eye 421L more clearly.
  • the incident angle directivity of each pixel 121a is set in the direction of the right eye 421R of the user who is the main imaging target Ru.
  • the light reception sensitivity to the incident light from the right eye 421R of the user becomes high, and it becomes possible to capture the right eye 421R more clearly.
  • the imaging element 121 is disposed as in C in FIG. 27, and the incident angle directivity of each pixel 121a is uneven. It is desirable to use it.
  • the incident angle directivity of each pixel 121a varies, the diversity of coefficient sets with respect to simultaneous equations used for restoration of a restored image is enhanced, and restoration accuracy is improved.
  • the incident angle directivity of all the pixels 121 a does not necessarily have to be set so as to increase the light reception sensitivity with respect to the direction of the user's eyes.
  • the number of pixels 121a having incident angle directivity, in which the light reception sensitivity with respect to the direction of the user's eyes is high may be larger than the number of pixels 121a having other incident angle directivity.
  • a camera 431 is schematically shown as an example of the electronic device 301 in A of FIG. 29 to C of FIG. Although only the periphery of the finder 441 of the camera 431 is illustrated in A of FIG. 29 to C of FIG. 29, for example, a display or a touch panel may be provided on the back of the camera 431 (the same side as the finder 441). And a user operation unit.
  • each of the imaging elements 121 (each pixel 121a of the imaging device 121) is disposed around a finder 441 which is an eyepiece of the camera 431 is shown in A of FIG.
  • the imaging element 121-1 is disposed in the vertically long rectangular area on the left side of the finder 441, and the imaging element 121-2 is disposed in the vertically long rectangular area on the right side of the finder 441. It is arranged.
  • the imaging device 121 is disposed in a horizontally long rectangular area above the finder 441.
  • the imaging element 121 is disposed in the L-shaped area above and to the left of the finder 441.
  • the imaging element 121-1 is disposed in the horizontally long rectangular area above the finder 441, and the imaging element 121-2 is disposed in the horizontally long rectangular area below the finder 441.
  • the imaging device 121 is disposed so as to surround the finder 441.
  • the image pickup device 121 can be disposed in the empty space around the finder 441 of the camera 431 while suppressing the size increase and the design decrease.
  • the image pickup element 121 is disposed at a position where the eye periphery of the user is captured, and performs imaging of the eye periphery of the user be able to.
  • each pixel 121a of each imaging element 121 of each of A to E in FIG. 29 is the direction of the eye of the user approaching the finder 441 when looking through the finder 441 (for example, in front of the finder 441). It is desirable that the light receiving sensitivity to the above be set to be high.
  • a part of a goggle type head mounted display 461 mounted so as to cover the user's eyes is schematically shown in A of FIG.
  • the inner surface of the head mounted display 461 that is, the surface facing the user's face when worn by the user is shown.
  • An example is shown in which 121a) is disposed around the left lens 471L and the right lens 471R which are the eyepieces of the head mounted display 461.
  • the imaging element 121-1 is disposed in the rectangular area on the left side of the left lens 471L, and the imaging element 121-2 is disposed in the rectangular area on the right side of the right lens 471R. ing.
  • the imaging element 121-1 is disposed in the horizontally long rectangular area above the left lens 471L, and the imaging element 121-2 is disposed in the horizontally long rectangular area above the right lens 471R. There is.
  • the imaging element 121-1 is disposed in the horizontally long rectangular area below the left lens 471L, and the imaging element 121-2 is disposed in the rectangular area below the right lens 471R.
  • the imaging element 121 can be disposed in the free space around the left lens 471L and the right lens 471R of the head mounted display 461 while suppressing an increase in size and a decrease in design. Then, for example, it is possible to perform imaging around both eyes of the user wearing the head mounted display 461.
  • each pixel 121a of each imaging element 121 of each of FIGS. 30A to 30C is the same as that of the wearable device 401 of FIG. It is desirable that the light receiving sensitivity with respect to the direction be set to be high.
  • a notebook PC (personal computer) 491 is schematically shown as an example of the electronic device 301 in A of FIG. 31 to C of FIG.
  • a cover provided with the display 501 which is a display unit, and a base provided with a keyboard 503, which is a user operation unit, are rotatably connected by a hinge to open and close the cover. be able to. Then, the display 501 and the keyboard 503 are exposed to the outside in a state in which the lid is opened as illustrated in A to 31C of FIG. 31, and the user can use the PC 491.
  • the display 501 by providing a touch panel on the display 501, the display 501 (strictly speaking, the touch panel) can be used as a user operation unit.
  • FIG. 31A to 31C show an example in which (the respective pixels 121a of) the imaging device 121 are arranged around the display 501.
  • FIG. 31A to 31C show an example in which (the respective pixels 121a of) the imaging device 121 are arranged around the display 501.
  • the imaging device 121 is disposed on the upper side of the bezel 502 around the display 501.
  • the imaging device 121-1 is disposed on the left side of the bezel 502, and the imaging device 121-2 is disposed on the right side of the bezel 502.
  • the imaging element 121 is disposed on four sides of the bezel 502 so as to surround the display 501.
  • the imaging element 121 can be disposed in the empty space of the bezel 502 while suppressing increase in size and reduction in design, and narrowing of the bezel can be realized. Further, the imaging element 121 is disposed at a position facing the user using the keyboard 503 while looking at the display 501 of the PC 491 and at a position where the periphery of the user's face is captured. It can be performed.
  • each pixel 121a of each image sensor 121 of each of FIGS. 31A to 31C corresponds to the direction of the face of the user who is using the keyboard 503 while looking at the display 501 of the PC 491 (for example, display It is desirable that the light receiving sensitivity with respect to the front of 501) be set to be high.
  • step S101 each imaging element 121 of the electronic device 301 performs imaging of the user by the same processing as that of step S1 in FIG.
  • imaging of the area around both eyes of the user wearing the wearable device 401 is performed.
  • Each imaging element 121 supplies the detection signal set including the detection signal of each pixel 121a to the associating unit 325.
  • step S102 the restoration unit 321 obtains a coefficient used for image restoration. Specifically, the restoration unit 321 sets the subject distance by the same process as the process performed by the restoration unit 122 of the imaging apparatus 101 in step S2 of FIG. Then, the restoration unit 321 reads out, from the storage unit 327, the coefficient set group associated with the set subject distance.
  • step S103 the reconstruction unit 321 reconstructs an image using the detection signal set and the coefficients. That is, the restoration unit 321 performs the same processing as the processing performed by the restoration unit 122 of the imaging apparatus 101 in step S3 in FIG. 20, the detection signal set output from each imaging element 121, and the coefficient obtained in the processing in step S102.
  • the set group is used to restore the restored image.
  • step S104 the electronic device 301 performs various processes on the restored image.
  • the restoration unit 321 performs demosaicing processing, ⁇ correction, white balance adjustment, conversion processing to a predetermined compression format, and the like on the restored image as necessary.
  • the restoration unit 321 supplies, for example, a restored image to the output unit 326 for display, or supplies the restored image to the recording and reproduction unit 328, and records the image on the recording medium 329 as needed. , Output to other devices.
  • step S105 the electronic device 301 executes an application process using the restored image (that is, the image of the user).
  • the control unit 322 performs the gaze detection of the user based on the image of the user's eyes in the restored image.
  • arbitrary methods can be used for gaze detection.
  • the control unit 322 generates an operation command corresponding to the movement of the user's line of sight, and transmits the operation command to another electronic device (not shown) via the communication unit 330.
  • the user can operate another electronic device simply by wearing the wearable device 401 and moving his / her eyes.
  • the control unit 322 performs the gaze detection of the user based on the image of the user's eyes in the restored image.
  • arbitrary methods can be used for gaze detection.
  • the control unit 322 controls each unit of the camera 431 to move the position (focus point) of the subject to be focused according to the movement of the user's line of sight, or performs various processes of the camera 431.
  • the user can set the focus point or perform various operations on the camera 431 simply by looking at the finder 441 and moving the line of sight.
  • control unit 322 performs user recognition processing or authentication processing based on the inside of the restored image.
  • the recognition process is, for example, a process of specifying a user or recognizing a feature of the user.
  • the authentication process for example, a user whose user is registered in advance or a legitimate user by, for example, collating a restored image with an image (for example, a face image, an eye image, etc.) registered in advance. It is a process which performs judgment etc. whether it is etc.
  • recognition processing and authentication processing may be partially overlapped without being clearly distinguished.
  • any method can be used for the user recognition process and authentication process. For example, various biometric authentication such as face authentication and iris authentication can be used for recognition processing.
  • control unit 322 causes the display of the output unit 326 to display a user interface screen corresponding to the recognized or authenticated user based on the recognition result or authentication result of the user, or changes the setting of the camera 431.
  • Authorize the use of a specific function eg, playback, etc.
  • the control unit 322 performs the gaze detection of the user based on the image of the user's eyes in the restored image.
  • arbitrary methods can be used for gaze detection.
  • the control unit 322 controls each unit of the head mount display 461 to perform various processes of the head mounted display 461 according to the movement of the user's line of sight.
  • the user can perform various operations on the head mounted display 461 simply by mounting the head mounted display 461 and moving the line of sight.
  • control unit 322 performs user recognition processing or authentication processing based on the image of the user's face in the restored image. Then, for example, the control unit 322 displays a user interface screen corresponding to the recognized or authenticated user on the display of the output unit 326 based on the recognition result or the authentication result of the user, or the setting of the PC 491 (for example, custom setting , Image quality setting, parental control setting, etc., login to a specific account, access to a specific folder or file, and permission to use a specific function.
  • the setting of the PC 491 for example, custom setting , Image quality setting, parental control setting, etc., login to a specific account, access to a specific folder or file, and permission to use a specific function.
  • a coefficient set group corresponding to the angle of view of the restored image may be further prepared, and the restored image may be restored using the coefficient set group corresponding to the subject distance and the angle of view.
  • the imaging element 121 it is possible to dispose the imaging element 121 while suppressing an increase in size and a decrease in design of the electronic device 301, and to image a user who uses the electronic device. Then, the user's image can be restored, and various application processes can be executed based on the restored image.
  • imaging of a user who uses the electronic device 301 is performed, and various application processing is executed using an image of the user obtained by the restoration processing.
  • imaging around the user using the electronic device 301 is performed, and various application processes are executed using images around the user obtained by the restoration process.
  • the electronic device 301 of FIG. 26 is used as in the first embodiment.
  • the imaging device 121 is disposed at a position where the surroundings of the user wearing or using the electronic device 301 are captured.
  • a glasses-type wearable device 601 worn to cover the eyes of the user is schematically shown as an example of the electronic device 301.
  • 33A to 33C show an example in which the imaging element 121 (each pixel 121a of the imaging element 121) is disposed on the surface of the frame 612 exposed to the outside when the wearable device 601 is worn by the user. It is done.
  • the imaging element 121-1 is disposed above the left lens 611L on the surface of the frame 612, and the imaging element 121-2 is disposed above the right lens 611R on the surface of the frame 612. It is arranged.
  • the imaging device 121-1 is disposed on the right side of the left lens 611L on the surface of the frame 612, and the imaging device 121-2 is disposed on the left side of the right lens 611R on the surface of the frame 612.
  • the imaging device 121-1 is disposed to surround the left lens 611L of the surface of the frame 612, and the imaging device 121-2 is disposed to surround the right lens 611R of the surface of the frame 612. Is arranged.
  • the image sensor 121 can be disposed in the empty space of the frame 612 of the wearable device 601 while suppressing the increase in size and the decrease in design. Then, for example, imaging in front of the user wearing the wearable device 601 can be performed.
  • a camera 631 is schematically shown as an example of the electronic device 301 in A of FIG. 34 to C of FIG. Further, an example in which (the respective pixels 121 a of) the imaging element 121 is disposed on the front surface of the casing of the camera 631 is shown.
  • the imaging element 121 is disposed in a vertically long rectangular area on the left side of the mount 641 and near the left end of the camera 631 in the front surface of the main body of the camera 631 There is.
  • the imaging elements 121-1 to 121-4 are respectively disposed in four rectangular areas near the four corners of the mount 641 in the front surface of the main body of the camera 631.
  • the imaging device 121 is disposed on the front surface of the flash built-in portion 642 in which the flash of the camera 631 is built.
  • the imaging device 121 is disposed in a ring-shaped area along the outer periphery of the mount 641 of the camera 631.
  • the imaging element 121 can be disposed in the vacant space on the front surface of the housing of the camera 631 while suppressing the increase in size and the reduction in design. Then, for example, imaging in the imaging direction of the camera 631 can be performed.
  • a goggle type head mounted display 661 mounted so as to cover the user's eyes is schematically shown in A of FIG. 35 to D of FIG. Also, in A to D of FIG. 35, there is an example in which the imaging element 121 (each pixel 121a of the image pickup element 121) is disposed on the front surface of the housing exposed to the outside when the user mounts the head mounted display 661. It is shown.
  • the imaging device 121 is disposed in a horizontally long rectangular area below the front surface of the main body 671.
  • the imaging element 121 is disposed in a horizontally long region at the upper end of the front surface of the main body 671.
  • the imaging element 121 is disposed in the rectangular area on the front surface of the head pad 672.
  • the imaging device 121-1 and the imaging device 121-2 are disposed in the left and right rectangular regions on the front surface of the main body portion 671.
  • the imaging element 121 can be disposed in the empty space on the front surface of the housing of the head mounted display 661 while suppressing an increase in size and a decrease in design. Then, for example, imaging in front of the user wearing the head mounted display 661 can be performed.
  • An overhead type headphone 691 is schematically shown as an example of the electronic device 301 in A to D of FIG. A of FIG. 36 and B of FIG. 36 show perspective views of the headphones 691 as viewed obliquely from the front, and C of FIGS. 37 and D of FIG. 37 show perspective views of the headphones 691 as viewed obliquely from the rear.
  • the imaging device 121-1 is disposed near the front center of the side surface of the left housing 701L, and the imaging device 121-2 is disposed near the front center of the side surface of the right housing 701R.
  • the imaging device 121 is disposed in the area along the front surface of the headset 702.
  • the imaging element 121-1 is disposed near the rear center of the side surface of the left housing 701L, and the imaging element 121-2 is disposed near the rear center of the side surface of the right housing 701R.
  • the imaging device 121 is disposed in the area along the back surface of the headset 702.
  • the image sensor 121 can be disposed in a vacant space on the surface exposed to the outside in a state where the user wears the headphones 691 while suppressing an increase in size and a decrease in design. Then, for example, imaging in front of or behind the user wearing the headphones 691 can be performed.
  • a neck band type headphone 721 is schematically shown as an example of the electronic device 301.
  • the imaging device 121-1 is disposed in front of the side surface of the left housing 731L.
  • the imaging device 121-2 is disposed in front of the side surface of the right housing 731R.
  • the imaging element 121 is disposed in the vicinity of the rear of the neck band 732.
  • the image sensor 121 can be disposed in a vacant space on the surface exposed to the outside in a state where the user wears the headphones 721 while suppressing an increase in size and a decrease in design. Then, for example, imaging in front of or behind the user wearing the headphones 721 can be performed.
  • each imaging element 121 is configured to image other directions (for example, side, upper, lower, etc.) around the user. You may install it.
  • each imaging element 121 of the electronic device 301 performs imaging of the surroundings of the user by the same processing as step S1 in FIG.
  • imaging in front of the user wearing the wearable device 601 is performed.
  • imaging in front of or behind the user wearing the headphone 721 is performed.
  • Each imaging element 121 supplies the detection signal set including the detection signal of each pixel 121a to the associating unit 325.
  • step S202 the restoration unit 321 obtains a coefficient used for image restoration. Specifically, the restoration unit 321 sets the subject distance by the same process as the process performed by the restoration unit 122 of the imaging apparatus 101 in step S2 of FIG. Then, the restoration unit 321 reads out, from the storage unit 327, the coefficient set group associated with the set subject distance.
  • the image sensor 121 When the image sensor 121 is disposed at a deformable portion, such as the headset 702 of the headphone 691 of FIGS. 36 and 37 and the neck band 732 of the headphone 721 of FIG. The relative position between 121a changes.
  • the coefficient set group of simultaneous equations used for restoring the restored image described above is set on the premise that the relative position of each pixel 121a does not change.
  • a coefficient set group corresponding to the degree of deformation is prepared in advance, and the degree of deformation is detected, and the coefficient corresponding to the detected degree of deformation A set group may be used.
  • the deformable portion is a portion that can change its shape when, for example, the electronic device 301 is used or mounted.
  • the type of deformation is not particularly limited, and includes, for example, elongation, contraction, bending, deviation, twisting, separation, and the like.
  • the deformable portion includes, for example, a portion which is deformed by an externally applied force, and a portion which changes its shape by an actuator or the like.
  • a bending sensor may be provided in the headset 702 of the headphone 691 of FIGS. 36 and 37, and a coefficient set group corresponding to the bending condition of the headset detected by the bending sensor may be used.
  • coefficient set groups corresponding to the degree of bending of the three patterns of the bending sensor 751 of FIG. 40A to FIG. 40C are prepared in advance. Then, restoration of a restored image is performed using a coefficient set group corresponding to the bending condition closest to the detection result of the bending sensor 751 when the user wears the headphone 691.
  • step S203 as in the process of step S103 of FIG. 32, the image is restored using the detection signal set and the coefficients.
  • step S204 various processes are performed on the restored image, as in the process of step S104 in FIG.
  • step S205 the electronic device 301 executes application processing using a restored image (that is, an image around the user).
  • the control unit 322 performs recognition processing of the surroundings of the user based on the restored image.
  • arbitrary methods can be used for the recognition process of a user's circumference.
  • the control unit 322 controls the output unit 326 so that the user visually recognizes an image or information corresponding to the environment around the user obtained by the recognition processing through the left lens 611L and the right lens 611R. Superimpose in the field of view to realize AR (Augmented Reality).
  • control unit 322 controls the recording and reproducing unit 328 to record the restored image on the recording medium 329 as the user's life log.
  • the control unit 322 performs tracking processing of the subject, recognition of a scene, and the like by performing recognition processing of the surroundings of the user based on the restored image.
  • arbitrary methods can be used for the recognition process of a user's circumference. Thereby, for example, it is possible to follow the subject even during the shutter operation of an imaging device (not shown) which takes an image through the lens 643 of the camera 631. In addition, for example, a wider range than the lens 643 can be sensed to follow an object or recognize a scene.
  • control unit 322 controls the output unit 326 to superimpose part or all of the restored image in the image viewed by the user.
  • the control unit 322 performs recognition processing of the user's surroundings based on the restored image.
  • arbitrary methods can be used for the recognition process of a user's circumference.
  • the control unit 322 controls the output unit 326 and the like to perform user assistance and the like. For example, when a danger such as the approach of a vehicle is detected, the danger is notified by vibration, voice, etc., assistance is given by voice to people with impaired eyes, the name of the person who recognized is voiced Be notified.
  • control unit 322 controls the recording and reproducing unit 328 to record the restored image on the recording medium 329 as the user's life log.
  • a coefficient set group corresponding to the angle of view of the restored image may be further prepared, and the restored image may be restored using the coefficient set group corresponding to the subject distance and the angle of view.
  • the imaging element 121 it is possible to dispose the imaging element 121 while suppressing the increase in the size and the design of the electronic device 301, and to capture the surroundings of the user who uses the electronic device. Then, the image around the user can be restored, and various application processes can be executed based on the restored image.
  • a detection signal set may be recorded instead of the restored image, and the image may be restored as needed.
  • the detection signal set acquired by each imaging element 121 is associated with the metadata corresponding to each detection signal set.
  • the metadata may or may not include, for example, a coefficient set group at the time of restoration.
  • the metadata includes, for example, a subject distance used at the time of restoration, an angle of view, deformation information of a portion where the imaging device 121 is disposed, and the like.
  • the method of associating the detection signal set with the metadata is not particularly limited as long as the correspondence between the detection signal set and the metadata can be specified.
  • detection is performed by adding metadata to data including a detection signal set, assigning the same ID to the detection signal set and metadata, or recording the detection signal set and metadata on the same recording medium 329.
  • Signal sets and metadata are associated.
  • metadata may be individually associated with each detection signal set, or metadata may be associated with data in which the detection signal sets are combined into one.
  • FIG. 26 shows an example in which one electronic device 301 executes imaging processing of a user or his surroundings, restoration processing of a restored image, and application processing using a restored image, two or more devices perform these processing. You may share and go.
  • the information processing system 801 in FIG. 41 includes an electronic device 811 and a signal processing device 812. Then, the electronic device 811 and the signal processing device 812 may share the imaging process, the restoration process, and the application process.
  • the electronic device 811 may perform imaging processing, and the signal processing device 812 may perform restoration processing and application processing.
  • the electronic device 811 may perform imaging processing and application processing, and the signal processing device 812 may perform restoration processing.
  • the electronic device 811 and the signal processing device 812 may jointly perform some of the imaging process, the restoration process, and the application process.
  • the present disclosure can be applied to an electronic device having a function of imaging the user or the surroundings of the user other than those described above.
  • the imaging element 121 is disposed around the eyepiece unit and the display unit.
  • the imaging element 121 is disposed on the surface exposed to the outside in a state of being worn by the user. Note that the arrangement of the imaging element 121 is not limited to the above-described example, and can be appropriately changed according to the main imaging target and the like.
  • the imaging element 121 may be disposed in the eyepiece unit or the display unit, not around the eyepiece unit or the display unit of the electronic device.
  • the imaging device 121 may be provided on the surface of the left lens 411L and the right lens 411R in FIG. 27, the surface of the finder 441 in FIG. 29, the surface of the left lens 471L and the right lens 471R in FIG. It is possible to arrange.
  • each pixel 121a As the shape of the light shielding film 121b of each pixel 121a, it is possible to adopt a shape other than the above-described horizontal band type, vertical band type, L-shaped type, and a type provided with a rectangular opening.
  • one pixel output unit may include nine photodiodes 121 f.
  • the photodiodes 121f-11, 121f-114, 121f-117 to 121f-119 are substantially made.
  • An incident angle characteristic similar to that of the pixel 121a provided with the L-shaped light shielding film 121b in which the light shielding film 121b is set in the range of -117 to 121f -119 can be obtained.
  • the incident angle directivity can be changed as in the case where the position and the range shielded by the light shielding film 121 b are changed.
  • one pixel output unit is configured by one pixel 121a.
  • one pixel output unit may be configured by a plurality of pixels 121a.
  • each of the pixels 121 a-111 to 121 a-119 includes, for example, one photodiode and does not include an on-chip lens.
  • the incident angle directivity of the pixel output unit 851 b can be realized.
  • the pixel signals of the pixels 121a-112, 121a-113, 121a-115, and 121a-116 are added to generate a detection signal, and the pixels 121a-111, 121a-114, and It is possible to obtain the same incident angle directivity as in the case where the L-shaped light shielding film 121b is provided in the range of the pixels 121a-117 to the pixels 121a-119.
  • the incident angle directivity can be set to different values as in the case where the position and the range shielded by the light shielding film 121b are changed.
  • the range of the pixel output unit can be changed by changing the combination of the pixels 121a.
  • a pixel output unit 851 s can be configured of pixels 121 a-111, pixels 121 a-112, pixels 121 a-114, and pixels 121 a of 2 rows ⁇ 2 columns including the pixels 121 a-115.
  • the range of the pixel output unit later by recording the pixel signals of all the pixels 121a and setting the combination of the pixels 121a later. Furthermore, it is possible to set the incident angle directivity of a pixel output unit later by selecting the pixel 121a which adds a pixel signal to a detection signal among the pixels 121a in the set pixel output unit.
  • FIG. 4 illustrates an example in which different incident angle directivity is given to each pixel by using the light shielding film 121b as the modulation element or changing the combination of photodiodes contributing to the output. Then, for example, as shown in FIG. 44, it is also possible to use an optical filter 902 covering the light receiving surface of the imaging element 901 as a modulation element so that each pixel has incident angle directivity.
  • the optical filter 902 is disposed to cover the entire surface of the light receiving surface 901A at a predetermined interval from the light receiving surface 901A of the imaging element 901.
  • the light from the subject surface 31 is modulated by the optical filter 902, and then enters the light receiving surface 901 ⁇ / b> A of the image sensor 901.
  • optical filter 902BW having a black and white lattice pattern shown in FIG.
  • a white pattern portion that transmits light and a black pattern portion that blocks light are randomly disposed.
  • the size of each pattern is set independently of the size of the pixel of the image sensor 901.
  • FIG. 46 shows the light receiving sensitivity characteristics of the image sensor 901 with respect to light from the point light source PA and the point light source PB on the object plane 31 when the optical filter 902BW is used.
  • the light from the point light source PA and the light from the point light source PB are respectively modulated by the optical filter 902BW, and then enter the light receiving surface 901A of the imaging element 901.
  • the light reception sensitivity characteristic of the image pickup device 901 with respect to the light from the point light source PA becomes like a waveform Sa. That is, since a shadow is generated by the black pattern portion of the optical filter 902BW, a light and dark pattern is generated in the image on the light receiving surface 901A for the light from the point light source PA.
  • the light receiving sensitivity characteristic of the image sensor 901 with respect to the light from the point light source PB becomes like a waveform Sb. That is, since a shadow is generated by the black pattern portion of the optical filter 902BW, a light and dark pattern is generated in the image on the light receiving surface 901A for the light from the point light source PB.
  • each pixel of the image sensor 901 has incident angle directivity with respect to each point light source of the object plane 31.
  • the optical filter 902HW of FIG. 47 may be used instead of the optical filter 902BW.
  • the optical filter 902HW includes a linear polarization element 911A and a linear polarization element 911B having the same polarization direction, and a half wave plate 912.
  • the half wave plate 912 is between the linear polarization element 911A and the linear polarization element 911B. It is pinched.
  • a polarized portion shown by oblique lines is provided, and the white pattern portion and the polarized portion are randomly arranged.
  • the linear polarization element 911A transmits only light of a predetermined polarization direction out of substantially non-polarized light emitted from the point light source PA.
  • the linear polarization element 911A transmits only light whose polarization direction is parallel to the drawing.
  • the polarized light transmitted through the linear polarizing element 911A the polarized light transmitted through the polarizing portion of the half-wave plate 912 is changed in polarization direction in a direction perpendicular to the drawing as the plane of polarization is rotated.
  • the linear polarization element 911A transmits the polarized light transmitted through the white pattern portion, and hardly transmits the polarized light transmitted through the polarized portion. Therefore, the quantity of polarized light transmitted through the polarizing section is smaller than that of polarized light transmitted through the white pattern section. As a result, a pattern of shading similar to that in the case of using the optical filter BW is generated on the light receiving surface 901A of the imaging element 901.
  • optical filter 902LF it is possible to use an optical interference mask as the optical filter 902LF.
  • the light emitted from the point light sources PA and PB of the object plane 31 is irradiated onto the light receiving surface 901A of the imaging element 901 through the optical filter 902LF.
  • corrugation of a wavelength grade is provided in the light-incidence surface of optical filter 902LF, for example.
  • the optical filter 902LF maximizes transmission of light of a specific wavelength emitted from the vertical direction.
  • the optical path length changes.
  • the light weakens when the optical path length is an odd multiple of a half wavelength, and the light strengthens when an even multiple of a half wavelength. That is, the intensity of the transmitted light of the specific wavelength emitted from the point light sources PA and PB and transmitted through the optical filter 902LF is modulated according to the incident angle with respect to the optical filter 902LF as shown in B of FIG.
  • the light is incident on the light receiving surface 901A. Therefore, the detection signal output from each pixel output unit of the imaging element 901 is a signal obtained by combining the light intensity after modulation of each point light source for each pixel output unit.
  • the present disclosure can also be applied to an imaging device and an imaging element that perform imaging of light of wavelengths other than visible light such as infrared light.
  • the restored image is not an image that allows the user to visually recognize the subject, but is an image in which the user can not visually recognize the subject.
  • the present technology is effective, for example, when imaging far infrared light.
  • biometric authentication is performed based on an image obtained by capturing the face and eyes of the user
  • biometric authentication is performed based on an image obtained by capturing another part of the user such as fingerprint authentication. It can be applied to the case where it is performed.
  • the present disclosure can be applied to the case of detecting a movement or a state of the user's eyes other than the line of sight of the user.
  • the present disclosure can be applied to the case where blink detection, sleep detection, or the like is performed based on an image obtained by capturing an eye or a face of a user.
  • the present disclosure can also be applied to, for example, detection of attachment of an electronic device 301 such as a wearable device.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is applicable to an imaging unit such as a medical device, for example, an endoscopic surgery system, a capsule endoscope, and the like.
  • FIG. 49 is a diagram showing an example of a schematic configuration of an endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied.
  • an operator (doctor) 5067 is illustrated operating a patient 5071 on a patient bed 5069 using the endoscopic surgery system 5000.
  • the endoscopic surgery system 5000 includes an endoscope 5001, other surgical instruments 5017, a support arm device 5027 for supporting the endoscope 5001, and various devices for endoscopic surgery. And a cart 5037 on which the
  • trockers 5025a to 5025d are punctured in the abdominal wall. Then, the barrel 5003 of the endoscope 5001 and other surgical tools 5017 are inserted into the body cavity of the patient 5071 from the trocars 5025 a to 5025 d.
  • an insufflation tube 5019, an energy treatment instrument 5021 and a forceps 5023 are inserted into the body cavity of the patient 5071 as the other surgical instruments 5017.
  • the energy treatment tool 5021 is a treatment tool that performs incision and peeling of tissue, sealing of a blood vessel, or the like by high-frequency current or ultrasonic vibration.
  • the illustrated surgical tool 5017 is merely an example, and various surgical tools generally used in endoscopic surgery, such as forceps and retractors, may be used as the surgical tool 5017, for example.
  • An image of a surgical site in a body cavity of a patient 5071 captured by the endoscope 5001 is displayed on the display device 5041.
  • the operator 5067 performs a treatment such as excision of the affected area using the energy treatment tool 5021 and the forceps 5023 while viewing the image of the operative part displayed on the display device 5041 in real time.
  • a treatment such as excision of the affected area using the energy treatment tool 5021 and the forceps 5023
  • the insufflation tube 5019, the energy treatment instrument 5021 and the forceps 5023 are supported by the operator 5067 or an assistant during the operation.
  • the support arm device 5027 includes an arm portion 5031 extending from the base portion 5029.
  • the arm unit 5031 includes joints 5033 a, 5033 b, 5033 c, and links 5035 a, 5035 b, and is driven by control from the arm control device 5045.
  • the endoscope 5001 is supported by the arm unit 5031 and the position and posture thereof are controlled. In this way, stable position fixation of the endoscope 5001 can be realized.
  • the endoscope 5001 includes a lens barrel 5003 whose region of a predetermined length from the tip is inserted into a body cavity of a patient 5071 and a camera head 5005 connected to the proximal end of the lens barrel 5003.
  • the endoscope 5001 configured as a so-called rigid endoscope having a rigid barrel 5003 is illustrated, but the endoscope 5001 is configured as a so-called flexible mirror having a flexible barrel 5003 It is also good.
  • the endoscope 5001 may be a straight endoscope, or may be a oblique endoscope or a side endoscope.
  • An optical system and an imaging device are provided inside the camera head 5005, and the reflected light (observation light) from the observation target is condensed on the imaging device by the optical system.
  • the observation light is photoelectrically converted by the imaging element to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal is transmitted as RAW data to a camera control unit (CCU: Camera Control Unit) 5039.
  • the camera head 5005 has a function of adjusting the magnification and the focal length by driving the optical system appropriately.
  • a plurality of imaging devices may be provided in the camera head 5005 in order to cope with, for example, stereoscopic vision (3D display).
  • a plurality of relay optical systems are provided inside the lens barrel 5003 in order to guide observation light to each of the plurality of imaging elements.
  • the CCU 5039 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and centrally controls the operation of the endoscope 5001 and the display device 5041. Specifically, the CCU 5039 subjects the image signal received from the camera head 5005 to various types of image processing for displaying an image based on the image signal, such as development processing (demosaicing processing). The CCU 5039 provides the display device 5041 with the image signal subjected to the image processing. Also, the CCU 5039 transmits a control signal to the camera head 5005 to control the driving thereof.
  • the control signal may include information on imaging conditions such as magnification and focal length.
  • the display device 5041 displays an image based on the image signal subjected to the image processing by the CCU 5039 under the control of the CCU 5039.
  • the endoscope 5001 corresponds to high resolution imaging such as 4K (horizontal pixel number 3840 ⁇ vertical pixel number 2160) or 8K (horizontal pixel number 7680 ⁇ vertical pixel number 4320), and / or 3D display
  • the display device 5041 corresponds to each of the display devices, those capable of high-resolution display and / or those capable of 3D display may be used.
  • the display device 5041 can have a size of 55 inches or more to obtain a further immersive feeling. Further, a plurality of display devices 5041 different in resolution and size may be provided depending on the application.
  • the light source device 5043 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 5001 with irradiation light when imaging the surgical site.
  • a light source such as an LED (light emitting diode)
  • the arm control device 5045 is constituted by a processor such as a CPU, for example, and operates in accordance with a predetermined program to control driving of the arm portion 5031 of the support arm device 5027 according to a predetermined control method.
  • the input device 5047 is an input interface to the endoscopic surgery system 5000.
  • the user can input various instructions and input instructions to the endoscopic surgery system 5000 via the input device 5047.
  • the user inputs various information related to surgery, such as physical information of a patient and information on an operation procedure of the surgery, through the input device 5047.
  • the user instructs, via the input device 5047, an instruction to drive the arm unit 5031 or an instruction to change the imaging condition (type of irradiated light, magnification, focal length, etc.) by the endoscope 5001. , An instruction to drive the energy treatment instrument 5021, and the like.
  • the type of the input device 5047 is not limited, and the input device 5047 may be any of various known input devices.
  • a mouse, a keyboard, a touch panel, a switch, a foot switch 5057, and / or a lever may be applied as the input device 5047.
  • the touch panel may be provided on the display surface of the display device 5041.
  • the input device 5047 is a device mounted by the user, for example, a wearable device of glasses type or an HMD (Head Mounted Display), and various types of input according to the user's gesture or line of sight detected by these devices. Is done. Further, the input device 5047 includes a camera capable of detecting the motion of the user, and various inputs are performed in accordance with the user's gesture and the line of sight detected from the image captured by the camera. Furthermore, the input device 5047 includes a microphone capable of collecting the user's voice, and various inputs are performed by voice via the microphone.
  • a wearable device of glasses type or an HMD Head Mounted Display
  • the user for example, the operator 5067
  • the input device 5047 being configured to be able to input various information in a non-contact manner. Is possible.
  • the user can operate the device without releasing his / her hand from the operating tool, the convenience of the user is improved.
  • the treatment tool control device 5049 controls the drive of the energy treatment instrument 5021 for ablation of tissue, incision, sealing of a blood vessel, and the like.
  • the insufflation apparatus 5051 has a gas in the body cavity via the insufflation tube 5019 in order to expand the body cavity of the patient 5071 for the purpose of securing a visual field by the endoscope 5001 and securing a working space of the operator.
  • Send The recorder 5053 is a device capable of recording various types of information regarding surgery.
  • the printer 5055 is a device capable of printing various types of information regarding surgery in various types such as texts, images, and graphs.
  • the support arm device 5027 includes a base portion 5029 which is a base and an arm portion 5031 extending from the base portion 5029.
  • the arm unit 5031 includes a plurality of joints 5033 a, 5033 b and 5033 c and a plurality of links 5035 a and 5035 b connected by the joints 5033 b, but in FIG.
  • the structure of the arm unit 5031 is simplified and illustrated. In practice, the shapes, the number and arrangement of the joints 5033a to 5033c and the links 5035a and 5035b, and the direction of the rotation axis of the joints 5033a to 5033c are appropriately set so that the arm 5031 has a desired degree of freedom. obtain.
  • the arm unit 5031 may be preferably configured to have six or more degrees of freedom.
  • the endoscope 5001 can be freely moved within the movable range of the arm unit 5031. Therefore, the lens barrel 5003 of the endoscope 5001 can be inserted into the body cavity of the patient 5071 from a desired direction. It will be possible.
  • the joints 5033 a to 5033 c are provided with an actuator, and the joints 5033 a to 5033 c are configured to be rotatable around a predetermined rotation axis by driving the actuators.
  • the drive of the actuator is controlled by the arm control device 5045, whereby the rotation angles of the joint portions 5033a to 5033c are controlled, and the drive of the arm portion 5031 is controlled. Thereby, control of the position and posture of the endoscope 5001 can be realized.
  • the arm control device 5045 can control the drive of the arm unit 5031 by various known control methods such as force control or position control.
  • the driving of the arm unit 5031 is appropriately controlled by the arm control device 5045 according to the operation input, and
  • the position and attitude of the endoscope 5001 may be controlled.
  • the endoscope 5001 at the tip of the arm unit 5031 is moved from an arbitrary position to an arbitrary position, the endoscope 5001 can be fixedly supported at the position after the movement.
  • the arm unit 5031 may be operated by a so-called master slave method. In this case, the arm unit 5031 can be remotely controlled by the user via the input device 5047 installed at a location distant from the operating room.
  • the arm control device 5045 receives the external force from the user, and the actuator of each joint 5033 a to 5033 c is moved so that the arm 5031 moves smoothly following the external force. So-called power assist control may be performed. Accordingly, when the user moves the arm unit 5031 while directly touching the arm unit 5031, the arm unit 5031 can be moved with a relatively light force. Therefore, it is possible to move the endoscope 5001 more intuitively and with a simpler operation, and the convenience of the user can be improved.
  • the endoscope 5001 is supported by a doctor called scopist.
  • the support arm device 5027 by using the support arm device 5027, the position of the endoscope 5001 can be more reliably fixed without manual operation, so that an image of the operation site can be stably obtained. , Can be performed smoothly.
  • the arm control device 5045 may not necessarily be provided in the cart 5037. Also, the arm control device 5045 may not necessarily be one device. For example, the arm control device 5045 may be provided at each joint 5033a to 5033c of the arm 5031 of the support arm device 5027, and the arm control devices 5045 cooperate with one another to drive the arm 5031. Control may be realized.
  • the light source device 5043 supplies the endoscope 5001 with irradiation light for imaging the operative part.
  • the light source device 5043 is composed of, for example, a white light source configured of an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Adjustments can be made.
  • the laser light from each of the RGB laser light sources is irradiated on the observation target in time division, and the drive of the imaging device of the camera head 5005 is controlled in synchronization with the irradiation timing to cope with each of RGB. It is also possible to capture a shot image in time division. According to the method, a color image can be obtained without providing a color filter in the imaging device.
  • the drive of the light source device 5043 may be controlled to change the intensity of the light to be output at predetermined time intervals.
  • the drive of the imaging element of the camera head 5005 is controlled in synchronization with the timing of the change of the light intensity to acquire images in time division, and by combining the images, high dynamic without so-called blackout and whiteout is obtained. An image of the range can be generated.
  • the light source device 5043 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, the mucous membrane surface layer is irradiated by irradiating narrow band light as compared with irradiation light (that is, white light) at the time of normal observation using the wavelength dependency of light absorption in body tissue.
  • the so-called narrow band imaging is performed to image a predetermined tissue such as a blood vessel with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiation with excitation light.
  • a body tissue is irradiated with excitation light and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue while being locally injected. What irradiates the excitation light corresponding to the fluorescence wavelength of the reagent, and obtains a fluorescence image etc. can be performed.
  • the light source device 5043 can be configured to be able to supply narrow band light and / or excitation light corresponding to such special light observation.
  • FIG. 50 is a block diagram showing an example of a functional configuration of the camera head 5005 and the CCU 5039 shown in FIG.
  • the camera head 5005 has a lens unit 5007, an imaging unit 5009, a drive unit 5011, a communication unit 5013, and a camera head control unit 5015 as its functions.
  • the CCU 5039 also has a communication unit 5059, an image processing unit 5061, and a control unit 5063 as its functions.
  • the camera head 5005 and the CCU 5039 are communicably connected in both directions by a transmission cable 5065.
  • the lens unit 5007 is an optical system provided at the connection with the lens barrel 5003.
  • the observation light taken in from the tip of the lens barrel 5003 is guided to the camera head 5005 and enters the lens unit 5007.
  • the lens unit 5007 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the optical characteristic of the lens unit 5007 is adjusted so as to condense the observation light on the light receiving surface of the imaging element of the imaging unit 5009.
  • the zoom lens and the focus lens are configured such that the position on the optical axis can be moved in order to adjust the magnification and the focus of the captured image.
  • the imaging unit 5009 includes an imaging element and is disposed downstream of the lens unit 5007.
  • the observation light which has passed through the lens unit 5007 is condensed on the light receiving surface of the imaging device, and an image signal corresponding to the observation image is generated by photoelectric conversion.
  • the image signal generated by the imaging unit 5009 is provided to the communication unit 5013.
  • an imaging element which comprises the imaging part 5009 it is an image sensor of a CMOS (Complementary Metal Oxide Semiconductor) type, for example, and a color imaging
  • CMOS Complementary Metal Oxide Semiconductor
  • photography of the high resolution image of 4K or more may be used, for example.
  • an imaging element constituting the imaging unit 5009 is configured to have a pair of imaging elements for acquiring image signals for right eye and left eye corresponding to 3D display.
  • the 3D display enables the operator 5067 to more accurately grasp the depth of the living tissue at the operation site.
  • the imaging unit 5009 is configured as a multi-plate type, a plurality of lens units 5007 are also provided corresponding to each imaging element.
  • the imaging unit 5009 may not necessarily be provided in the camera head 5005.
  • the imaging unit 5009 may be provided inside the lens barrel 5003 immediately after the objective lens.
  • the drive unit 5011 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 5007 along the optical axis by a predetermined distance under the control of the camera head control unit 5015. Thereby, the magnification and the focus of the captured image by the imaging unit 5009 may be appropriately adjusted.
  • the communication unit 5013 is configured of a communication device for transmitting and receiving various types of information to and from the CCU 5039.
  • the communication unit 5013 transmits the image signal obtained from the imaging unit 5009 to the CCU 5039 via the transmission cable 5065 as RAW data.
  • the image signal be transmitted by optical communication in order to display the captured image of the surgical site with low latency.
  • the operator 5067 performs the operation while observing the condition of the affected area by the captured image, so for safer and more reliable operation, the moving image of the operation site is displayed in real time as much as possible It is because that is required.
  • the communication unit 5013 is provided with a photoelectric conversion module which converts an electrical signal into an optical signal.
  • the image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5039 via the transmission cable 5065.
  • the communication unit 5013 also receives, from the CCU 5039, a control signal for controlling the drive of the camera head 5005.
  • the the control signal for example, information that specifies the frame rate of the captured image, information that specifies the exposure value at the time of imaging, and / or magnification and information, etc. indicating that specifies the focal point of the captured image, captured Contains information about the condition.
  • the communication unit 5013 provides the received control signal to the camera head control unit 5015.
  • the control signal from CCU 5039 may also be transmitted by optical communication.
  • the communication unit 5013 is provided with a photoelectric conversion module that converts an optical signal into an electric signal, and the control signal is converted into an electric signal by the photoelectric conversion module and is then provided to the camera head control unit 5015.
  • the imaging conditions such as the frame rate, the exposure value, the magnification, and the focus described above are automatically set by the control unit 5063 of the CCU 5039 based on the acquired image signal. That is, so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are installed in the endoscope 5001.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Automatic White Balance
  • the camera head control unit 5015 controls the drive of the camera head 5005 based on the control signal from the CCU 5039 received via the communication unit 5013. For example, the camera head control unit 5015 controls the drive of the imaging element of the imaging unit 5009 based on the information to specify the frame rate of the captured image and / or the information to specify the exposure at the time of imaging. Also, for example, the camera head control unit 5015 appropriately moves the zoom lens and the focus lens of the lens unit 5007 via the drive unit 5011 based on the information indicating that the magnification and the focus of the captured image are designated.
  • the camera head control unit 5015 may further have a function of storing information for identifying the lens barrel 5003 and the camera head 5005.
  • the camera head 5005 can have resistance to autoclave sterilization.
  • the communication unit 5059 is configured of a communication device for transmitting and receiving various types of information to and from the camera head 5005.
  • the communication unit 5059 receives an image signal transmitted from the camera head 5005 via the transmission cable 5065.
  • the image signal can be suitably transmitted by optical communication.
  • the communication unit 5059 is provided with a photoelectric conversion module that converts an optical signal into an electrical signal in response to optical communication.
  • the communication unit 5059 provides the image processing unit 5061 with the image signal converted into the electrical signal.
  • the communication unit 5059 transmits a control signal for controlling driving of the camera head 5005 to the camera head 5005.
  • the control signal may also be transmitted by optical communication.
  • An image processing unit 5061 performs various types of image processing on an image signal that is RAW data transmitted from the camera head 5005.
  • image processing for example, development processing, high image quality processing (band emphasis processing, super-resolution processing, NR (noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing) And various other known signal processings.
  • the image processing unit 5061 also performs detection processing on the image signal to perform AE, AF, and AWB.
  • the image processing unit 5061 is configured by a processor such as a CPU or a GPU, and the image processing and the detection processing described above can be performed by the processor operating according to a predetermined program.
  • the image processing unit 5061 is configured by a plurality of GPUs, the image processing unit 5061 appropriately divides the information related to the image signal, and performs image processing in parallel by the plurality of GPUs.
  • the control unit 5063 performs various types of control regarding imaging of the surgical site by the endoscope 5001 and display of the imaged image. For example, the control unit 5063 generates a control signal for controlling the drive of the camera head 5005. At this time, when the imaging condition is input by the user, the control unit 5063 generates a control signal based on the input by the user. Alternatively, when the endoscope 5001 is equipped with the AE function, the AF function, and the AWB function, the control unit 5063 determines the optimum exposure value, focal length, and the like according to the result of the detection processing by the image processing unit 5061. The white balance is appropriately calculated to generate a control signal.
  • control unit 5063 causes the display device 5041 to display an image of the operative site based on the image signal subjected to the image processing by the image processing unit 5061.
  • control unit 5063 recognizes various objects in the surgical site image using various image recognition techniques. For example, the control unit 5063 detects a shape, a color, and the like of an edge of an object included in an operation part image, thereby enabling a surgical tool such as forceps, a specific living part, bleeding, mist when using the energy treatment tool 5021, and the like. It can be recognized.
  • control unit 5063 When the control unit 5063 causes the display device 5041 to display the image of the operation unit, the control unit 5063 superimposes and displays various types of surgery support information on the image of the operation unit, using the recognition result.
  • the operation support information is superimposed and presented to the operator 5067, which makes it possible to proceed with the operation more safely and reliably.
  • a transmission cable 5065 connecting the camera head 5005 and the CCU 5039 is an electrical signal cable compatible with communication of electrical signals, an optical fiber compatible with optical communication, or a composite cable of these.
  • communication is performed by wire communication using the transmission cable 5065, but communication between the camera head 5005 and the CCU 5039 may be performed wirelessly.
  • the communication between the two is performed wirelessly, it is not necessary to lay the transmission cable 5065 in the operating room, so that the movement of the medical staff in the operating room can be eliminated by the transmission cable 5065.
  • the endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied has been described.
  • the endoscopic surgery system 5000 was demonstrated as an example here, the system to which the technique which concerns on this indication can be applied is not limited to this example.
  • the technology according to the present disclosure may be applied to a flexible endoscopic system for examination or a microsurgical system.
  • the technology according to the present disclosure can be suitably applied to the imaging unit 5009.
  • the imaging unit 5009 can be miniaturized.
  • the degree of freedom of arrangement of each pixel of the imaging device is high, it is easy to obtain a surgical site image at a desired position, and it is possible to perform surgery more safely and more reliably.
  • FIG. 51 is a diagram showing an example of a schematic configuration of an in-vivo information acquiring system 5400 to which the technology according to the present disclosure can be applied.
  • the in-vivo information acquisition system 5400 includes a capsule endoscope 5401 and an external control device 5423 that comprehensively controls the operation of the in-vivo information acquisition system 5400.
  • the capsule endoscope 5401 is swallowed by the patient.
  • the capsule endoscope 5401 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and intestine by peristaltic movement and the like while being naturally discharged from the patient, Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information on the in-vivo images is sequentially wirelessly transmitted to the external control device 5423 outside the body.
  • the external control device 5423 generates image data for displaying the in-vivo image on a display device (not shown) based on the received information about the in-vivo image.
  • the in-vivo information acquiring system 5400 it is possible to obtain an image obtained by imaging the appearance of the inside of the patient's body at any time during the period from when the capsule endoscope 5401 is swallowed until it is discharged.
  • the capsule endoscope 5401 includes a light source unit 5405, an imaging unit 5407, an image processing unit 5409, a wireless communication unit 5411, a power feeding unit 5415, a power supply unit 5417, and a state detection in a capsule casing 5403.
  • the functions of the unit 5419 and the control unit 5421 are installed.
  • the light source unit 5405 is formed of, for example, a light source such as a light emitting diode (LED), and emits light to the imaging field of the imaging unit 5407.
  • a light source such as a light emitting diode (LED)
  • the imaging unit 5407 includes an imaging device and an optical system including a plurality of lenses provided in front of the imaging device. Reflected light is irradiated to the body tissue to be observed light (hereinafter, referred to as observation light) is condensed by the optical system and is incident on the imaging element.
  • the imaging device receives the observation light and performs photoelectric conversion to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal generated by the imaging unit 5407 is provided to the image processing unit 5409.
  • an imaging element of the imaging unit 5407 various known imaging elements such as a complementary metal oxide semiconductor (CMOS) image sensor or a charge coupled device (CCD) image sensor may be used.
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the image processing unit 5409 is configured by a processor such as a central processing unit (CPU) or a graphics processing unit (GPU), and performs various signal processing on the image signal generated by the imaging unit 5407.
  • the signal processing may be minimum processing for transmitting the image signal to the external control device 5423 (eg, compression of image data, conversion of frame rate, conversion of data rate, and / or conversion of format, etc.) .
  • the image processing unit 5409 By configuring the image processing unit 5409 to perform only the minimum necessary processing, the image processing unit 5409 can be realized with smaller size and lower power consumption. It is suitable. However, if space in the housing 5403 or the power consumption is sufficient, the image processing unit 5409 may perform additional signal processing (for example, noise removal processing or other high image quality processing). Good.
  • the image processing unit 5409 supplies the image signal subjected to the signal processing to the wireless communication unit 5411 as RAW data.
  • the image processing unit 5409 associates the information with the information to wirelessly transmit the image signal.
  • the communication unit 5411 may be provided. Thereby, the captured image can be associated with the position in the body in which the image is captured, the imaging direction of the image, and the like.
  • the wireless communication unit 5411 is configured of a communication device capable of transmitting and receiving various information to and from the external control device 5423.
  • the communication device includes an antenna 5413 and a processing circuit that performs modulation for transmitting and receiving a signal.
  • the wireless communication unit 5411 performs predetermined processing such as modulation processing on the image signal subjected to the signal processing by the image processing unit 5409, and transmits the image signal to the external control device 5423 through the antenna 5413.
  • the wireless communication unit 5411 receives a control signal related to drive control of the capsule endoscope 5401 from the external control device 5423 via the antenna 5413.
  • the wireless communication unit 5411 provides the received control signal to the control unit 5421.
  • the feeding portion 5415 includes an antenna coil for receiving power, a power regeneration circuit which regenerates power from current generated in the antenna coil, a booster circuit, and the like.
  • power is generated using a so-called contactless charging principle. Specifically, when a magnetic field (electromagnetic wave) of a predetermined frequency is applied to the antenna coil of the feeding portion 5415 from the outside, an induced electromotive force is generated in the antenna coil.
  • the electromagnetic wave may be, for example, a carrier wave transmitted from the external control device 5423 via the antenna 5425. Electric power is regenerated from the induced electromotive force by the electric power regenerating circuit, and the electric potential is appropriately adjusted in the booster circuit to generate electric power for storage.
  • the power generated by the power supply unit 5415 is stored in the power supply unit 5417.
  • the power supply unit 5417 is formed of a secondary battery, and stores the power generated by the power supply unit 5415.
  • an arrow or the like indicating the supply destination of the power from the power supply unit 5417 is omitted to avoid the drawing being complicated, but the power stored in the power supply unit 5417 is the light source unit 5405.
  • the image pickup unit 5407, the image processing unit 5409, the wireless communication unit 5411, the state detection unit 5419, and the control unit 5421 can be used to drive them.
  • the state detection unit 5419 includes a sensor for detecting the state of the capsule endoscope 5401 such as an acceleration sensor and / or a gyro sensor.
  • the state detection unit 5419 can obtain information on the state of the capsule endoscope 5401 from the detection result of the sensor.
  • the state detection unit 5419 provides the image processing unit 5409 with information on the acquired state of the capsule endoscope 5401. In the image processing unit 5409, as described above, information on the state of the capsule endoscope 5401 may be associated with the image signal.
  • the control unit 5421 is configured by a processor such as a CPU, and centrally controls the operation of the capsule endoscope 5401 by operating according to a predetermined program.
  • Control unit 5421 drives light source unit 5405, imaging unit 5407, image processing unit 5409, wireless communication unit 5411, power supply unit 5415, power supply unit 5417, and state detection unit 5419 according to a control signal transmitted from external control device 5423. By appropriately controlling, the functions of the respective units as described above are realized.
  • the external control device 5423 can be a processor such as a CPU or a GPU, or a microcomputer or a control board on which memory elements such as a processor and a memory are mixed.
  • the external control device 5423 has an antenna 5425, and can transmit and receive various types of information to and from the capsule endoscope 5401 via the antenna 5425.
  • the external control device 5423 controls the operation of the capsule endoscope 5401 by transmitting a control signal to the control unit 5421 of the capsule endoscope 5401. For example, with the control signal from the external control device 5423, the irradiation condition of light to the observation target in the light source unit 5405 can be changed.
  • an imaging condition for example, a frame rate in the imaging unit 5407, an exposure value, and the like
  • an imaging condition for example, a frame rate in the imaging unit 5407, an exposure value, and the like
  • the contents of processing in the image processing unit 5409 and conditions (for example, transmission interval, number of transmission images, etc.) under which the wireless communication unit 5411 transmits an image signal may be changed by a control signal from the external control device 5423.
  • the external control device 5423 performs various types of image processing on the image signal transmitted from the capsule endoscope 5401 and generates image data for displaying the captured in-vivo image on the display device.
  • image processing for example, development processing (demosaicing processing), high image quality processing (band emphasis processing, super-resolution processing, NR (noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various known signal processing may be performed, such as electronic zoom processing).
  • the external control device 5423 controls the drive of the display device (not shown) to display the in-vivo image captured based on the generated image data.
  • the external control device 5423 may cause the recording device (not shown) to record the generated image data, or may cause the printing device (not shown) to print out.
  • the technology according to the present disclosure can be suitably applied to the imaging unit 5407.
  • the capsule endoscope 5401 can be further miniaturized, and thus the burden on the patient can be further reduced.
  • the series of processes described above can be performed by hardware or software.
  • a program that configures the software is installed on a computer.
  • the computer includes a computer (for example, the control unit 123 or the like) incorporated in dedicated hardware.
  • the program executed by the computer can be provided by being recorded in, for example, a recording medium (eg, the recording medium 130 or the like) as a package medium or the like. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • a recording medium eg, the recording medium 130 or the like
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program executed by the computer may be a program that performs processing in chronological order according to the order described in this specification, in parallel, or when necessary, such as when a call is made. It may be a program to be processed.
  • a system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same case. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
  • the present technology can have a cloud computing configuration in which one function is shared and processed by a plurality of devices via a network.
  • each step described in the above-described flowchart can be executed by one device or in a shared manner by a plurality of devices.
  • the plurality of processes included in one step can be executed by being shared by a plurality of devices in addition to being executed by one device.
  • the present disclosure can also have the following configurations.
  • the imaging unit is disposed at a position where the surroundings of a user wearing or using the electronic device are captured, and receives incident light from an object that is incident without passing through either the imaging lens or the pinhole,
  • An electronic apparatus comprising: an imaging unit including a plurality of pixel output units for outputting one detection signal indicating an output pixel value modulated by an incident angle of incident light.
  • the electronic device is a headphone
  • the electronic device is a camera.
  • the restoration unit restores the restored image using a plurality of coefficients indicating the incident angle directivity of each pixel output unit.
  • At least a part of the pixel output units are arranged in the deformable part of the electronic device;
  • Electronic device described in. (14) The imaging unit includes one or more imaging devices. The electronic device according to any one of (1) to (13), wherein the plurality of pixel output units are provided in the imaging device. (15) The electronic apparatus according to any one of (1) to (14), wherein each of the pixel output units is disposed in two or more distant regions. (16) The electronic apparatus according to any one of (1) to (15), wherein the plurality of pixel output units have a configuration capable of independently setting the incident angle directivity.
  • the plurality of pixel output units are With one photodiode, An electronic device according to (16), further comprising: a light shielding film configured to block incidence of a part of the incident light to the photodiode.
  • a light shielding film configured to block incidence of a part of the incident light to the photodiode.
  • at least two pixel output units include a plurality of photodiodes, and the photodiodes contributing to the output are different from each other, so that the incident angle directivity differs from each other (16) Electronic device described.
  • the imaging unit has a configuration for causing the incident angle directivity to the incident light of output pixel values of at least two pixel output units among the plurality of pixel output units to be different from each other.
  • the electronic device according to any one of (1) to (18).
  • SYMBOLS 101 imaging apparatus 111 signal processing control part, 121 imaging element, 121a, 121a 'pixel, 121A light receiving surface, 121b light shielding film, 121c on-chip lens, 121e, 121f photodiode, 122 restoration part, 123 control part, 125 detection part , 126 association unit, 301 electronic device, 311 imaging unit, 312 signal processing control unit, 321 restoration unit, 322 control unit, 325 association unit, 326 output unit, 328 recording and reproduction unit, 401 wearable device, 411L, 411R lens, 412 Frame, 431 camera, 441 finder, 461 head mounted display, 471L, 471R lens, 491 PC, 501 display Ray, 502 bezel, 601 wearable device, 611L, 611R lens, 612 frame, 631 camera, 641 mount, 642 flash unit, 643 lens, 661 head mounted display, 671 main unit, 672 head pad, 691 headphones, 701L,

Abstract

The present disclosure relates to an electronic apparatus that makes it possible to reduce the size of an electronic apparatus that functions to capture images of the surroundings of a user. An electronic apparatus that a user wears or uses, wherein the electronic apparatus comprises an imaging part: that is arranged in a position from which the surroundings of the user that is wearing or using the electronic apparatus appear; that receives, from a subject, incident light that does not enter through an imaging lens or a pinhole; and that comprises a plurality of pixel output units that output single detection signals that indicate output pixel values that have been modulated on the basis of the angle of incidence of the incident light. The present disclosure can be applied, for example, to wearable devices.

Description

電子機器Electronics
 本開示は、電子機器に関し、特に、ユーザの周囲を撮像する機能を有する電子機器に関する。 The present disclosure relates to an electronic device, and more particularly to an electronic device having a function of imaging the surroundings of a user.
 従来、撮像レンズを用いずに、撮像素子の受光面を覆う格子状の光学フィルタや回折格子からなる光学フィルタにより被写体からの光を変調して撮像し、所定の演算処理により被写体の像が結像された画像を復元する撮像装置が提案されている(例えば、非特許文献1、特許文献1、2参照)。 Conventionally, light from a subject is modulated and imaged without using an imaging lens by a grating-like optical filter covering the light receiving surface of an imaging element or an optical filter consisting of a diffraction grating, and an image of the subject is formed by predetermined arithmetic processing. There has been proposed an imaging device which restores an imaged image (see, for example, Non-Patent Document 1, Patent Documents 1 and 2).
特表2016-510910号公報Japanese Patent Publication No. 2016-510910 gazette 国際公開第2016/123529号WO 2016/123529
 ところで、非特許文献1や特許文献1、2に示されるような撮像レンズを用いない撮像装置は、撮像レンズがない分小型化が可能であり、適用範囲の拡大が期待されている。 By the way, the imaging device which does not use an imaging lens as shown by a nonpatent literature 1 and patent documents 1 and 2 can be miniaturized as there is no imaging lens, and expansion of an application range is expected.
 本開示は、このような状況に鑑みてなされたものであり、ユーザの周囲を撮像する機能を有する電子機器を小型化できるようにするものである。 The present disclosure has been made in view of such a situation, and enables downsizing of an electronic device having a function of imaging the surroundings of a user.
 本開示の一側面の撮像装置は、ユーザが装着又は使用する電子機器において、前記電子機器を装着又は使用しているユーザの周囲が写る位置に配置されている撮像部であって、撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を1つ出力する画素出力単位を複数備える撮像部を備える。 An imaging apparatus according to one aspect of the present disclosure is an imaging unit disposed in a position where the surroundings of a user who is wearing or using the electronic device are photographed in an electronic device worn or used by the user, and the imaging lens and The imaging unit includes a plurality of pixel output units that receive incident light from an object incident without passing through any of the pinholes and output one detection signal indicating an output pixel value modulated by the incident angle of the incident light. .
 本開示の一側面においては、複数の画素出力単位により、電子機器を装着又は使用しているユーザの周囲が撮像され、検出信号が出力される。 In one aspect of the present disclosure, the surroundings of the user wearing or using the electronic device are imaged by a plurality of pixel output units, and a detection signal is output.
 本開示の一側面によれば、ユーザの周囲を撮像する機能を有する電子機器を小型化することができる。 According to one aspect of the present disclosure, it is possible to miniaturize an electronic device having a function of capturing an image of a user's surroundings.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
本開示の技術を適用した撮像装置における撮像の原理を説明する図である。It is a figure explaining the principle of the imaging in the imaging device to which the art of this indication is applied. 本開示の技術を適用した撮像装置の基本的な構成例を示すブロック図である。It is a block diagram showing an example of basic composition of an imaging device to which art of this indication is applied. 図2の撮像素子の画素アレイ部の構成例を示す図である。It is a figure which shows the structural example of the pixel array part of the image pick-up element of FIG. 図2の撮像素子の第1の構成例を説明する図である。It is a figure explaining the 1st structural example of the image pick-up element of FIG. 図2の撮像素子の第2の構成例を説明する図である。It is a figure explaining the 2nd structural example of the image pick-up element of FIG. 入射角指向性の発生の原理を説明する図である。It is a figure explaining the principle of generation | occurrence | production of incident angle directivity. オンチップレンズを利用した入射角指向性の変化を説明する図である。It is a figure explaining the change of the incident angle directivity using an on-chip lens. 遮光膜のタイプの例を示す図である。It is a figure which shows the example of the type of a light shielding film. 入射角指向性の設計を説明する図である。It is a figure explaining design of incidence angle directivity. オンチップレンズと撮像レンズとの違いを説明する図である。It is a figure explaining the difference between an on-chip lens and an imaging lens. オンチップレンズと撮像レンズとの違いを説明する図である。It is a figure explaining the difference between an on-chip lens and an imaging lens. オンチップレンズと撮像レンズとの違いを説明する図である。It is a figure explaining the difference between an on-chip lens and an imaging lens. 被写体距離と入射角指向性を示す係数との関係を説明する図である。It is a figure explaining the relationship between a to-be-photographed object distance and the coefficient which shows incident angle directivity. 狭画角画素と広画角画素との関係を説明する図である。It is a figure explaining the relationship between a narrow view angle pixel and a wide view angle pixel. 狭画角画素と広画角画素との関係を説明する図である。It is a figure explaining the relationship between a narrow view angle pixel and a wide view angle pixel. 狭画角画素と広画角画素との関係を説明する図である。It is a figure explaining the relationship between a narrow view angle pixel and a wide view angle pixel. 狭画角画素と広画角画素の画質の違いを説明するための図である。It is a figure for demonstrating the difference in the image quality of a narrow view angle pixel and a wide view angle pixel. 狭画角画素と広画角画素の画質の違いを説明するための図である。It is a figure for demonstrating the difference in the image quality of a narrow view angle pixel and a wide view angle pixel. 複数の画角の画素を組み合わせる例を説明する図である。It is a figure explaining the example which combines the pixel of a several view angle. 図2の撮像装置による撮像処理を説明するフローチャートである。It is a flowchart explaining the imaging process by the imaging device of FIG. 処理負荷の低減方法を説明する図である。It is a figure explaining the reduction method of processing load. 処理負荷の低減方法を説明する図である。It is a figure explaining the reduction method of processing load. 処理負荷の低減方法を説明する図である。It is a figure explaining the reduction method of processing load. 処理負荷の低減方法を説明する図である。It is a figure explaining the reduction method of processing load. 処理負荷の低減方法を説明する図である。It is a figure explaining the reduction method of processing load. 本開示の技術を適用した電子機器の構成例を示すブロック図である。FIG. 21 is a block diagram illustrating a configuration example of an electronic device to which the technology of the present disclosure is applied. ウエアラブルデバイスにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in a wearable device. 撮像素子の入射角指向性の例を示す図である。It is a figure which shows the example of the incident angle directivity of an image pick-up element. カメラにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in a camera. ヘッドマウントディスプレイにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in a head mounted display. PCにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in PC. ユーザ撮像制御処理を説明するフローチャートである。It is a flow chart explaining user imaging control processing. ウエアラブルデバイスにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in a wearable device. カメラにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in a camera. ヘッドマウントディスプレイにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in a head mounted display. オーバーヘッド型のヘッドフォンにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in an overhead type headphone. オーバーヘッド型のヘッドフォンにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in an overhead type headphone. ネックバンド型のヘッドフォンにおける撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image pick-up element in the headphone of a neck band type | mold. ユーザ周囲撮像制御処理を説明するフローチャートである。It is a flow chart explaining user circumference imaging control processing. 撮像素子の設置位置の形状の変形への対応方法を説明する図である。It is a figure explaining the response | compatibility method to the deformation | transformation of the shape of the installation position of an image pick-up element. 本開示の技術を適用した情報処理システムの構成例を示すブロック図である。It is a block diagram showing an example of composition of an information processing system to which art of this indication is applied. 図5の撮像素子の変形例を示す図である。It is a figure which shows the modification of the image pick-up element of FIG. 画素出力単位の変形例を説明する図である。It is a figure explaining the modification of a pixel output unit. 撮像素子の変形例を示す図である。It is a figure which shows the modification of an image pick-up element. 撮像素子の変形例を示す図である。It is a figure which shows the modification of an image pick-up element. 撮像素子の変形例を示す図である。It is a figure which shows the modification of an image pick-up element. 撮像素子の変形例を示す図である。It is a figure which shows the modification of an image pick-up element. 撮像素子の変形例を示す図である。It is a figure which shows the modification of an image pick-up element. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of a schematic structure of an endoscopic surgery system. 図49に示すカメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of a function structure of the camera head shown in FIG. 49, and CCU. 体内情報取得システムの概略的な構成の一例を示すブロック図である。It is a block diagram showing an example of rough composition of an internal information acquisition system.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を適宜省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description will be appropriately omitted.
 また、以下の順序で説明を行う。
  1.本開示の撮像装置の概要
  2.本開示の撮像装置の基本的な構成例
  3.第1の実施の形態:ユーザを撮像する場合
  4.第2の実施の形態:ユーザの周囲を撮像する場合
  5.変形例
  6.応用例
  7.その他
Also, the description will be made in the following order.
1. Overview of Imaging Device of Present Disclosure Basic configuration example of imaging device of the present disclosure 3. First Embodiment: Case of Imaging a User Second Embodiment: Case of Imaging around User Modifications 6. Application example 7. Other
 <<1.本開示の撮像装置の概要>>
 まず、本開示の撮像装置の概要について説明する。
<< 1. Overview of Imaging Device of the Present Disclosure >>
First, an overview of the imaging device of the present disclosure will be described.
 本開示の撮像装置においては、図1の左上に示されるように、各画素の検出感度に入射角指向性を持たせた撮像素子51が用いられる。ここで、各画素の検出感度に入射角指向性を持たせるとは、各画素への入射光の入射角度に応じた受光感度特性を画素毎に異なるものとすることである。ただし、全ての画素の受光感度特性が完全に異なるものである必要はなく、一部の画素の受光感度特性が同一であってもよい。 In the imaging device of the present disclosure, as shown in the upper left of FIG. 1, the imaging device 51 in which the detection sensitivity of each pixel is made to have incident angle directivity is used. Here, to impart incident angle directivity to the detection sensitivity of each pixel means that the light receiving sensitivity characteristic according to the incident angle of incident light to each pixel is different for each pixel. However, the light receiving sensitivity characteristics of all the pixels do not have to be completely different, and the light receiving sensitivity characteristics of some pixels may be the same.
 ここで、例えば、全ての被写体は点光源の集合であり、各点光源からあらゆる方向に光が出射されているものとする。例えば、図1の左上の被写体の被写体面31が、点光源PA乃至点光源PCにより構成され、点光源PA乃至点光源PCが、それぞれ光強度a乃至光強度cの複数の光線を周囲に発しているものとする。また、以下、撮像素子51は、位置Pa乃至位置Pcに入射角指向性がそれぞれ異なる画素(以下、画素Pa乃至画素Pcと称する)を備えるものとする。 Here, for example, it is assumed that all objects are a set of point light sources, and light is emitted from each point light source in all directions. For example, the object plane 31 of the upper left object in FIG. 1 is composed of the point light source PA to the point light source PC, and the point light source PA to the point light source PC respectively emit a plurality of light rays of light intensity a to light intensity c around It shall be. In addition, hereinafter, the imaging device 51 includes pixels (hereinafter, referred to as pixels Pa to Pc) having different incident angle directivity at positions Pa to Pc.
 この場合、図1の左上に示されるように、同一の点光源より発せられた同一の光強度の光線が、撮像素子51の各画素に入射される。例えば、点光源PAから発せられた光強度aの光線が、撮像素子51の画素Pa乃至画素Pcにそれぞれ入射される。一方、同一の点光源より発せられた光線は、画素毎にそれぞれ異なる入射角度で入射される。例えば、点光源PAからの光線は、画素Pa乃至画素Pcにそれぞれ異なる入射角度で入射される。 In this case, as shown in the upper left of FIG. 1, rays of the same light intensity emitted from the same point light source are made incident on the respective pixels of the image sensor 51. For example, a light beam of light intensity a emitted from the point light source PA is incident on the pixels Pa to Pc of the imaging device 51, respectively. On the other hand, rays emitted from the same point light source are incident at different incident angles for each pixel. For example, light rays from the point light source PA are incident on the pixels Pa to Pc at different incident angles.
 ここで、画素Pa乃至画素Pcの入射角指向性がそれぞれ異なるため、同一の点光源より発せられた同一の光強度の光線が、各画素で異なる感度で検出される。その結果、同一の光強度の光線が画素毎に異なる検出信号レベルで検出される。例えば、点光源PAからの光強度aの光線に対する検出信号レベルが、画素Pa乃至画素Pcでそれぞれ異なる値になる。 Here, since the incident angle directivity of the pixels Pa to Pc is different from each other, light rays of the same light intensity emitted from the same point light source are detected with different sensitivities in each pixel. As a result, rays of the same light intensity are detected at different detection signal levels for each pixel. For example, detection signal levels for light rays of light intensity a from the point light source PA have different values in the pixels Pa to Pc.
 そして、各点光源からの光線に対する各画素の受光感度レベルは、その光線の光強度に、その光線の入射角度に対する受光感度(すなわち、入射角指向性)を示す係数を乗じることにより求められる。例えば、点光源PAからの光線に対する画素Paの検出信号レベルは、点光源PAの光線の光強度aに、当該光線の画素Paへの入射角度に対する画素Paの入射角指向性を示す係数を乗じることにより求められる。 The light receiving sensitivity level of each pixel with respect to the light beam from each point light source is determined by multiplying the light intensity of the light beam by a coefficient indicating the light receiving sensitivity (that is, the incident angle directivity) with respect to the incident angle of the light beam. For example, the detection signal level of the pixel Pa with respect to the light beam from the point light source PA multiplies the light intensity a of the light beam of the point light source PA by a coefficient indicating the incident angle directivity of the pixel Pa with respect to the incident angle of the light beam to the pixel Pa It is determined by
 従って、画素Pc,Pb,Paの検出信号レベルDA,DB,DCは、それぞれ以下の式(1)乃至式(3)で表される。 Therefore, the detection signal levels DA, DB, DC of the pixels Pc, Pb, Pa are expressed by the following formulas (1) to (3), respectively.
 DA=α1×a+β1×b+γ1×c
                            ・・・(1)
 DB=α2×a+β2×b+γ2×c
                            ・・・(2)
 DC=α3×a+β3×b+γ3×c
                            ・・・(3)
DA = α1 × a + β1 × b + γ1 × c
... (1)
DB = α2 × a + β2 × b + γ2 × c
... (2)
DC = α3 × a + β3 × b + γ3 × c
... (3)
 ここで、係数α1は、点光源PAから画素Pcへの光線の入射角度に対する画素Pcの入射角指向性を示す係数であり、当該入射角度に応じて設定される。また、α1×aは、点光源PAからの光線に対する画素Pcの検出信号レベルを示している。 Here, the coefficient α1 is a coefficient indicating the incident angle directivity of the pixel Pc with respect to the incident angle of the ray from the point light source PA to the pixel Pc, and is set according to the incident angle. Further, α1 × a indicates the detection signal level of the pixel Pc with respect to the light beam from the point light source PA.
 係数β1は、点光源PBから画素Pcへの光線の入射角度に対する画素Pcの入射角指向性を示す係数であり、当該入射角度に応じて設定される。また、β1×bは、点光源PBからの光線に対する画素Pcの検出信号レベルを示している。 The coefficient β1 is a coefficient indicating the incident angle directivity of the pixel Pc with respect to the incident angle of a ray from the point light source PB to the pixel Pc, and is set according to the incident angle. Further, β1 × b represents the detection signal level of the pixel Pc with respect to the ray from the point light source PB.
 係数γ1は、点光源PCから画素Pcへの光線の入射角度に対する画素Pcの入射角指向性を示す係数であり、当該入射角度に応じて設定される。また、γ1×cは、点光源PCからの光線に対する画素Pcの検出信号レベルを示している。 The coefficient γ1 is a coefficient indicating the incident angle directivity of the pixel Pc with respect to the incident angle of the light beam from the point light source PC to the pixel Pc, and is set according to the incident angle. Further, γ1 × c indicates the detection signal level of the pixel Pc with respect to the ray from the point light source PC.
 このように、画素Paの検出信号レベルDAは、画素Pcにおける点光源PA,PB,PCからの光線のそれぞれの光強度a,b,cと、それぞれの入射角度に応じた入射角指向性を示す係数α1,β1,γ1との積和により求められる。 As described above, the detection signal level DA of the pixel Pa includes the light intensities a, b and c of the light rays from the point light sources PA, PB and PC at the pixel Pc, and the incident angle directivity according to the respective incident angles. It is obtained by product-sum with coefficients α1, β1, and γ1.
 同様に、画素Pbの検出信号レベルDBは、式(2)に示されるように、画素Pbにおける点光源PA,PB,PCからの光線のそれぞれの光強度a,b,cと、それぞれの入射角度に応じた入射角指向性を示す係数α2,β2,γ2との積和により求められる。また、画素Pcの検出信号レベルDCは、式(3)に示されるように、画素Paにおける点光源PA,PB,PCからの光線のそれぞれの光強度a,b,cと、それぞれの入射角度に応じた入射角指向性を示す係数α2,β2,γ2との積和により求められる。 Similarly, the detection signal level DB of the pixel Pb is, as shown in equation (2), the respective light intensities a, b and c of the light rays from the point light sources PA, PB and PC in the pixel Pb It is obtained by the product-sum with the coefficients α2, β2, and γ2 indicating the incident angle directivity according to the angle. Further, the detection signal level DC of the pixel Pc is, as shown in the equation (3), the respective light intensities a, b and c of the light rays from the point light sources PA, PB and PC at the pixel Pa and the respective incident angles It is determined by product-sum with the coefficients α 2, β 2 and γ 2 indicating the incident angle directivity according to
 ただし、画素Pa,Pb,Pcの検出信号レベルDA、DB、DCは、式(1)乃至式(3)に示されるように、点光源PA,PB,PCのそれぞれより発せられた光線の光強度a,b,cが入り交じっている。従って、図1の右上に示されるように、撮像素子51における検出信号レベルは、被写体面31上の各点光源の光強度とは異なる。従って、撮像素子51により得られる画像は、被写体面31の像が結像されたものとは異なるものとなる。 However, the detection signal levels DA, DB, DC of the pixels Pa, Pb, Pc are light of the light beams emitted from the point light sources PA, PB, PC as shown in the equations (1) to (3). The strengths a, b and c are mixed. Therefore, as shown in the upper right of FIG. 1, the detection signal level in the imaging device 51 is different from the light intensity of each point light source on the object plane 31. Therefore, the image obtained by the imaging device 51 is different from that on which the image of the object plane 31 is formed.
 一方、式(1)乃至式(3)からなる連立方程式を作成し、作成した連立方程式を解くことにより、各点光源PA乃至点光源PCの光線の光強度a乃至光強度cが求められる。そして、求めた光強度a乃至光強度cに応じた画素値を有する画素を点光源PA乃至点光源PCの配置(相対位置)に合わせて並べることにより、図1の右下に示されるように、被写体面31の像が結像された復元画像が復元される。 On the other hand, by creating simultaneous equations of equations (1) to (3) and solving the created simultaneous equations, light intensities a to c of the rays of the point light sources PA to PC can be obtained. Then, as shown in the lower right of FIG. 1, pixels having pixel values corresponding to the determined light intensity a to light intensity c are arranged in accordance with the arrangement (relative position) of the point light source PA to the point light source PC. The restored image on which the image of the object plane 31 is formed is restored.
 なお、以下、連立方程式を構成する式毎に係数をまとめたもの(例えば、係数α1、β1、γ1)を係数セットと称する。また、以下、連立方程式に含まれる複数の式に対応する複数の係数セットをまとめたもの(例えば、係数セットα1、β1、γ1、係数セットα2、β2、γ2、係数セットα3、β3、γ3)を係数セット群と称する。 In the following, a set of coefficients (for example, coefficients α1, β1, γ1) for each of the equations constituting the simultaneous equations is referred to as a coefficient set. Also, hereinafter, a set of a plurality of coefficient sets corresponding to a plurality of equations included in the simultaneous equations (for example, coefficient set α1, β1, γ1, coefficient set α2, β2, γ2, coefficient set α3, β3, γ3) Is called a coefficient set group.
 このようにして、撮像レンズ、ピンホール、並びに、特許文献1及び非特許文献1(以下、特許文献等と称する)に示される光学フィルタを必要とせず、各画素において入射角指向性を有する撮像素子51を必須構成とする撮像装置を実現することが可能となる。結果として、撮像レンズ、ピンホール、及び、特許文献等に記載の光学フィルタが必須構成とならないので、撮像装置の低背化、すなわち、撮像機能を実現する構成における光の入射方向に対する厚さを薄くすることが可能になる。 In this way, imaging with incident angle directivity is performed in each pixel without the need for an imaging lens, a pinhole, and the optical filters shown in Patent Document 1 and Non-Patent Document 1 (hereinafter referred to as Patent Document etc.) It is possible to realize an imaging device in which the element 51 is an essential component. As a result, since the imaging lens, the pinhole, and the optical filter described in the patent document and the like do not become an essential component, the height of the imaging device can be reduced, that is, the thickness in the incident direction of light in the configuration realizing the imaging function. It becomes possible to make it thinner.
 また、必須構成が撮像素子51のみになるので、設計の自由度を向上させることが可能となる。例えば、従来の撮像レンズを用いた撮像装置では、撮像レンズにより被写体の像が結像される位置に合わせて、撮像素子の画素を2次元のアレイ状に配置する必要があるが、撮像素子51を用いた撮像装置では、その必要がない。そのため、各画素の配置の自由度が向上し、例えば、被写体からの光が入射する範囲内において、各画素を自由に配置することが可能になる。例えば、各画素を円形の領域内に並べたり、中空方形(ロの字型)の領域内に並べたり、複数の領域に分散して配置したりすることが可能になる。 In addition, since the essential configuration is only the imaging device 51, it is possible to improve the degree of freedom in design. For example, in an imaging apparatus using a conventional imaging lens, it is necessary to arrange the pixels of the imaging element in a two-dimensional array according to the position where the image of the subject is formed by the imaging lens. There is no need for that in an imaging device using. Therefore, the degree of freedom of arrangement of each pixel is improved, and for example, each pixel can be freely arranged in a range where light from a subject is incident. For example, it becomes possible to arrange the pixels in a circular area, arrange them in a hollow rectangular area, or distribute them in a plurality of areas.
 そして、各画素の配置に関わらず、被写体面31上の各点光源からの光線の各画素への入射角度に応じた係数を用いて、上述した式(1)乃至式(3)で示されるような連立方程式を作成し、解くことにより、各点光源からの光線の光強度を求めることができる。そして、求めた各点光源の光強度に応じた画素値を有する画素を被写体面31上の各点光源の配置に合わせて並べることにより、被写体面31の像が結像された復元画像を復元することができる。 Then, regardless of the arrangement of each pixel, it is expressed by the above-mentioned equations (1) to (3) using coefficients corresponding to the incident angles of light rays from each point light source on the object plane 31 to each pixel. By creating and solving such simultaneous equations, it is possible to determine the light intensity of the ray from each point light source. Then, the restored image on which the image of the object plane 31 is formed is restored by arranging the pixels having pixel values according to the light intensity of each point light source determined according to the arrangement of the point light sources on the object plane 31 can do.
 <<2.本開示の撮像装置の基本的な構成例>>
 次に、図2乃至図25を参照して、本開示の撮像装置の基本的な構成例について説明する。
<< 2. Basic Configuration Example of Imaging Device of the Present Disclosure >>
Next, with reference to FIGS. 2 to 25, a basic configuration example of the imaging device of the present disclosure will be described.
 <撮像装置101の構成例>
 図2は、本開示の技術を適用した基本的な撮像装置である撮像装置101の構成例を示すブロック図である。
<Configuration Example of Imaging Device 101>
FIG. 2 is a block diagram showing a configuration example of an imaging device 101 which is a basic imaging device to which the technology of the present disclosure is applied.
 撮像装置101は、撮像素子121、復元部122、制御部123、入力部124、検出部125、関連付け部126、表示部127、記憶部128、記録再生部129、記録媒体130、及び、通信部131を備える。また、復元部122、制御部123、入力部124、検出部125、関連付け部126、表示部127、記憶部128、記録再生部129、記録媒体130、及び、通信部131により、信号処理や撮像装置101の制御等を行う信号処理制御部111が構成される。なお、撮像装置101は、撮像レンズを含まない(撮像レンズフリー)。 The imaging device 101 includes an imaging element 121, a restoration unit 122, a control unit 123, an input unit 124, a detection unit 125, an association unit 126, a display unit 127, a storage unit 128, a recording and reproduction unit 129, a recording medium 130, and a communication unit. 131 is provided. Further, signal processing and imaging are performed by the restoration unit 122, the control unit 123, the input unit 124, the detection unit 125, the association unit 126, the display unit 127, the storage unit 128, the recording and reproducing unit 129, the recording medium 130, and the communication unit 131. A signal processing control unit 111 that controls the device 101 is configured. Note that the imaging device 101 does not include an imaging lens (imaging lens free).
 また、撮像素子121、復元部122、制御部123、入力部124、検出部125、関連付け部126、表示部127、記憶部128、記録再生部129、及び、通信部131は、バスB1を介して相互に接続されており、バスB1を介してデータの送受信等を行う。なお、以下、説明を簡単にするために、撮像装置101の各部がバスB1を介してデータの送受信等を行う場合のバスB1の記載を省略する。例えば、入力部124がバスB1を介して制御部123にデータを供給する場合、入力部124が制御部123にデータを供給すると記載する。 The imaging device 121, the restoration unit 122, the control unit 123, the input unit 124, the detection unit 125, the association unit 126, the display unit 127, the storage unit 128, the recording and reproduction unit 129, and the communication unit 131 are connected via the bus B1. Are connected to each other, and transmit and receive data via the bus B1. In the following, in order to simplify the description, the description of the bus B1 in the case where each unit of the imaging apparatus 101 transmits and receives data via the bus B1 is omitted. For example, when the input unit 124 supplies data to the control unit 123 via the bus B1, it is described that the input unit 124 supplies data to the control unit 123.
 撮像素子121は、図1を参照して説明した撮像素子51に対応するものであり、入射角指向性を有する画素を含み、入射光の光量に応じた検出信号レベルを示す検出信号からなる画像を復元部122又はバスB1に出力する撮像素子である。 The image pickup device 121 corresponds to the image pickup device 51 described with reference to FIG. 1 and includes a pixel having incident angle directivity, and an image formed of a detection signal indicating a detection signal level corresponding to the amount of incident light. Are output to the restoration unit 122 or the bus B1.
 より具体的には、撮像素子121は、基本的な構造において、一般の、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子からなるものと同様のものであっても良い。ただし、撮像素子121は、画素アレイを構成する各画素の構成が一般のものと異なり、例えば、図3乃至図5を参照して後述するように、入射角指向性を持たせる構成を有している。そして、撮像素子121は、画素毎に入射光の入射角度に応じて受光感度が異なり(変化し)、画素単位で入射光の入射角度に対する入射角指向性を有している。 More specifically, the imaging device 121 may have the same basic structure as that of a general imaging device such as a complementary metal oxide semiconductor (CMOS) image sensor. However, the imaging device 121 has a configuration in which the incident angle directivity is given, as will be described later with reference to FIGS. ing. The image sensor 121 varies (changes) the light reception sensitivity in accordance with the incident angle of incident light for each pixel, and has incident angle directivity with respect to the incident angle of incident light in pixel units.
 なお、撮像素子121が出力する画像は、上述した図1の右上に示されるように被写体の像が結像されていない検出信号により構成される画像となるので、目視により被写体を認識することができない。すなわち、撮像素子121が出力する検出信号からなる検出画像は、画素信号の集合ではあるが、ユーザが目視しても被写体を認識できない(被写体を視認不可能な)画像である。 In addition, since the image output from the imaging element 121 is an image constituted by a detection signal in which the image of the subject is not formed as shown in the upper right of FIG. 1 described above, the subject can be visually recognized. Can not. That is, although the detection image which consists of a detection signal which image sensor 121 outputs is a set of pixel signals, it is an image which can not recognize a subject even if a user looks at a subject (it can not see a subject).
 そこで、以降においては、図1の右上に示されるように被写体の像が結像されていない検出信号より構成される画像、すなわち、撮像素子121により撮像される画像を、検出画像と称するものとする。 Therefore, in the following, as shown in the upper right of FIG. 1, an image composed of a detection signal on which the image of the subject is not formed, that is, an image captured by the imaging element 121 is referred to as a detected image. Do.
 尚、撮像素子121は、画素アレイとして構成されなくてもよく、例えば、ラインセンサとして構成されてもよい。また、入射角指向性は必ずしも画素単位で全て異なる必要はなく、入射角指向が同じ画素を含んでいてもよい。 The imaging device 121 may not be configured as a pixel array, and may be configured as, for example, a line sensor. In addition, the incident angle directivity does not necessarily have to be all different for each pixel, and the incident angle directivity may include the same pixels.
 復元部122は、例えば、図1における撮像素子51から被写体面31(復元画像に対応する被写体面)までの距離に相当する被写体距離に対応し、上述した係数α1乃至α3,β1乃至β3,γ1乃至γ3に相当する係数セット群を記憶部128から取得する。また、復元部122は、撮像素子121から出力される検出画像の各画素の検出信号レベルと、取得した係数セット群とを用いて、上述した式(1)乃至式(3)で示されるような連立方程式を作成する。そして、復元部122は、作成した連立方程式を解くことにより、図1の右下に示される被写体の像が結像された画像を構成する各画素の画素値を求める。これにより、ユーザが目視して被写体を認識できる(被写体を視認可能な)画像が検出画像から復元される。以降においては、この検出画像から復元される画像を復元画像と称するものとする。ただし、撮像素子121が紫外線などの視認可能な波長帯域以外の光のみに感度を有する場合、復元画像も通常の画像のように被写体を識別できるような画像とはならないが、この場合も復元画像と称する。 The restoration unit 122 corresponds to the subject distance corresponding to the distance from the imaging device 51 to the subject plane 31 (the subject plane corresponding to the restored image) in FIG. 1, for example, and the coefficients α1 to α3, β1 to β3, γ1 described above. The coefficient set group corresponding to γ3 is acquired from the storage unit 128. In addition, the restoration unit 122 uses the detection signal level of each pixel of the detection image output from the imaging device 121 and the acquired coefficient set group to be represented by the above-described Equations (1) to (3). Make simultaneous equations. Then, the reconstruction unit 122 solves the created simultaneous equations to obtain the pixel values of the respective pixels constituting the image on which the image of the subject shown in the lower right of FIG. 1 is formed. As a result, an image from which the user can visually recognize and recognize the subject (and can visually recognize the subject) is restored from the detected image. Hereinafter, an image restored from the detected image will be referred to as a restored image. However, when the image sensor 121 is sensitive to only light other than visible wavelength bands such as ultraviolet light, the restored image is not an image that can identify the subject as a normal image, but also in this case the restored image It is called.
 また、以降においては、被写体の像が結像された状態の画像である復元画像であって、デモザイク処理等の色分離や同時化処理前の画像をRAW画像と称し、撮像素子121により撮像された検出画像については、色フィルタの配列に従った画像ではあるが、RAW画像ではないものとして区別する。 Further, hereinafter, a restored image which is an image in a state in which an image of a subject is formed, and an image before color separation such as demosaicing processing or synchronization processing is referred to as a RAW image The detected image is distinguished as an image according to the array of color filters but not a RAW image.
 尚、撮像素子121の画素数と、復元画像を構成する画素の画素数とは、必ずしも同一である必要はない。 Note that the number of pixels of the imaging device 121 and the number of pixels of the pixels forming the restored image do not necessarily have to be the same.
 また、復元部122は、必要に応じて、復元画像に対してデモザイク処理、γ補正、ホワイトバランス調整、所定の圧縮形式への変換処理等を行う。そして、復元部122は、復元画像をバスB1に出力する。 Further, the restoration unit 122 performs demosaicing processing, γ correction, white balance adjustment, conversion processing to a predetermined compression format, and the like on the restored image as necessary. Then, the restoration unit 122 outputs the restored image to the bus B1.
 制御部123は、例えば、各種のプロセッサを備え、撮像装置101の各部を制御する。 The control unit 123 includes, for example, various processors, and controls each unit of the imaging apparatus 101.
 入力部124は、撮像装置101の操作や、処理に用いるデータの入力等を行うための入力デバイス(例えば、キー、スイッチ、ボタン、ダイヤル、タッチパネル、リモートコントローラ等)を備える。入力部124は、操作信号や入力されたデータ等をバスB1に出力する。 The input unit 124 includes an input device (for example, a key, a switch, a button, a dial, a touch panel, a remote controller, and the like) for performing an operation of the imaging apparatus 101, an input of data used for processing, and the like. The input unit 124 outputs an operation signal, input data, and the like to the bus B1.
 検出部125は、撮像装置101や被写体の状態等の検出に用いる各種のセンサ等を備える。例えば、検出部125は、撮像装置101の姿勢や動きを検出する加速度センサやジャイロセンサ、撮像装置101の位置を検出する位置検出センサ(例えば、GNSS(Global Navigation Satellite System)受信機等)、被写体距離を検出する測距センサ等を備える。検出部125は、検出結果を示す信号をバスB1に出力する。 The detection unit 125 includes the imaging device 101 and various sensors used to detect the state of the subject and the like. For example, the detection unit 125 may be an acceleration sensor or a gyro sensor that detects the posture or movement of the imaging device 101, a position detection sensor (for example, a GNSS (Global Navigation Satellite System) receiver) that detects the position of the imaging device 101, an object A distance measuring sensor or the like for detecting a distance is provided. The detection unit 125 outputs a signal indicating the detection result to the bus B1.
 関連付け部126は、撮像素子121により得られる検出画像と、検出画像に対応するメタデータとの関連付けを行う。メタデータは、例えば、対象となる検出画像を用いて復元画像を復元するための係数セット群や被写体距離等を含む。 The associating unit 126 associates the detection image obtained by the imaging device 121 with the metadata corresponding to the detection image. The metadata includes, for example, a coefficient set group for restoring a restored image using a target detection image, an object distance, and the like.
 なお、検出画像とメタデータを関連付ける方法は、検出画像とメタデータとの対応関係を特定することができれば、特に限定されない。例えば、検出画像を含む画像データにメタデータを付与したり、検出画像とメタデータに同じIDを付与したり、検出画像とメタデータを同じ記録媒体130に記録させたりすることにより、検出画像とメタデータが関連付けられる。 The method of associating the detection image with the metadata is not particularly limited as long as the correspondence between the detection image and the metadata can be specified. For example, metadata is added to image data including a detected image, the same ID is added to a detected image and metadata, or the detected image and metadata are recorded on the same recording medium 130. Metadata is associated.
 表示部127は、例えば、ディスプレイにより構成され、各種の情報(例えば、復元画像等)の表示を行う。なお、表示部127が、スピーカ等の音声出力部を備え、音声の出力を行うようにすることも可能である。 The display unit 127 is, for example, a display, and displays various types of information (for example, a restored image and the like). Note that the display unit 127 can also be provided with an audio output unit such as a speaker to output audio.
 記憶部128は、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ等の記憶装置を1つ以上備え、例えば、撮像装置101の処理に用いられるプログラムやデータ等を記憶する。例えば、記憶部128は、様々な被写体距離に対応付けて、上述した係数α1乃至α3,β1乃至β3,γ1乃至γ3に相当する係数セット群を記憶している。より具体的には、例えば、記憶部128は、各被写体距離における被写体面31毎に、被写体面31上に設定した各点光源に対する撮像素子121の各画素121aに対する係数を含む係数セット群を記憶している。 The storage unit 128 includes one or more storage devices such as a read only memory (ROM), a random access memory (RAM), and a flash memory, and stores, for example, programs and data used for processing of the imaging device 101. For example, the storage unit 128 stores coefficient set groups corresponding to the above-described coefficients α1 to α3, β1 to β3, and γ1 to γ3 in association with various object distances. More specifically, for example, the storage unit 128 stores, for each subject plane 31 at each subject distance, a coefficient set group including a coefficient for each pixel 121a of the image sensor 121 for each point light source set on the subject plane 31. doing.
 記録再生部129は、記録媒体130へのデータの記録、及び、記録媒体130に記録されているデータの再生(読み出し)を行う。例えば、記録再生部129は、復元画像を記録媒体130に記録したり、記録媒体130から読み出したりする。また、例えば、記録再生部129は、検出画像及び対応するメタデータを、記録媒体130に記録したり、記録媒体130から読み出したりする。 The recording and reproduction unit 129 performs recording of data on the recording medium 130 and reproduction (reading) of data recorded on the recording medium 130. For example, the recording / reproducing unit 129 records the restored image on the recording medium 130 or reads the restored image from the recording medium 130. Also, for example, the recording / reproducing unit 129 records the detection image and the corresponding metadata on the recording medium 130 or reads out from the recording medium 130.
 記録媒体130は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光ディスク、光磁気ディスク、及び、半導体メモリ等のいずれか、又は、それらの組合せなどからなる。 The recording medium 130 is made of, for example, any of a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or a combination thereof.
 通信部131は、所定の通信方式により、他の機器(例えば、他の撮像装置や信号処理装置等)と通信を行う。なお、通信部131の通信方式は、有線又は無線のいずれであってもよい。また、通信部131が複数の通信方式に対応することも可能である。 The communication unit 131 communicates with another device (for example, another imaging device, a signal processing device, and the like) by a predetermined communication method. The communication method of the communication unit 131 may be wired or wireless. Further, the communication unit 131 can also correspond to a plurality of communication methods.
 <撮像素子121の第1の構成例>
 次に、図3及び図4を参照して、図2の撮像装置101の撮像素子121の第1の構成例について説明する。
<First Configuration Example of Imaging Element 121>
Next, with reference to FIG. 3 and FIG. 4, a first configuration example of the imaging element 121 of the imaging device 101 of FIG. 2 will be described.
 図3は、撮像素子121の画素アレイ部の一部の正面図を示している。尚、図3においては、画素アレイ部の画素数が縦6画素×横6画素である場合の例を示しているが、画素アレイ部の画素数は、これに限るものではない。 FIG. 3 shows a front view of a part of the pixel array portion of the imaging element 121. FIG. Although FIG. 3 shows an example in which the number of pixels in the pixel array portion is 6 vertical pixels × 6 horizontal pixels, the number of pixels in the pixel array portion is not limited to this.
 図3の撮像素子121では、画素121a毎に、そのフォトダイオードの受光領域(受光面)の一部を覆うように変調素子の1つである遮光膜121bが設けられており、各画素121aに入射する入射光が、入射角度に応じて光学的に変調される。そして、例えば、画素121a毎に異なる範囲に遮光膜121bを設けることにより、画素121a毎に入射光の入射角度に対する受光感度が異なるものとなり、各画素121aが異なる入射角指向性を有するようになる。 In the image sensor 121 of FIG. 3, a light shielding film 121b, which is one of the modulation elements, is provided for each pixel 121a so as to cover a part of the light receiving area (light receiving surface) of the photodiode. Incident incident light is optically modulated according to the incident angle. Then, for example, by providing the light shielding film 121b in a different range for each pixel 121a, the light receiving sensitivity with respect to the incident angle of incident light differs for each pixel 121a, and each pixel 121a has different incident angle directivity .
 例えば、画素121a-1と画素121a-2とでは、設けられている遮光膜121b-1と遮光膜121b-2とによりフォトダイオードの受光領域を遮光する範囲が異なる(遮光する領域(位置)、および遮光する面積の少なくともいずれかが異なる)。すなわち、画素121a-1においては、フォトダイオードの受光領域の左側の一部を所定の幅だけ遮光するように遮光膜121b-1が設けられている。一方、画素121a-2においては、受光領域の右側の一部を所定の幅だけ遮光するように遮光膜121b-2が設けられている。なお、遮光膜121b-1がフォトダイオードの受光領域を遮光する幅と、遮光膜121b-2がフォトダイオードの受光領域を遮光する幅とは、異なっていてもよいし、同じであってもよい。その他の画素121aにおいても、同様に、遮光膜121bが、画素毎に受光領域の異なる範囲を遮光するように、画素アレイ内でランダムに配置されている。 For example, the light shielding film 121b-1 and the light shielding film 121b-2 provided in the pixel 121a-1 and the pixel 121a-2 have different ranges for shielding the light receiving region of the photodiode (a light shielding region (position), And at least one of the shaded areas). That is, in the pixel 121a-1, the light shielding film 121b-1 is provided so as to shield a part of the left side of the light receiving region of the photodiode by a predetermined width. On the other hand, in the pixel 121a-2, a light shielding film 121b-2 is provided so as to shield a part of the right side of the light receiving region by a predetermined width. The width at which the light shielding film 121b-1 shields the light receiving area of the photodiode may be different from or the same as the width at which the light shielding film 121b-2 shields the light receiving area of the photodiode. . Similarly, in the other pixels 121a, the light shielding films 121b are randomly arranged in the pixel array so as to shield a different range of the light receiving area for each pixel.
 尚、遮光膜121bが各画素の受光領域を覆い隠す割合が大きくなるほど、フォトダイオードが受光できる光量が少ない状態となる。従って、遮光膜121bの面積は、所望の光量が確保できる程度の面積とすることが望ましく、例えば、最大で受光領域の3/4程度までといった制限を加えるようにしてもよい。このようにすることで、所望量以上の光量を確保することが可能となる。ただし、各画素において、受光する光の波長に相当する幅の遮光されていない範囲が設けられていれば、最小限の光量を受光することは可能である。すなわち、例えば、B画素(青色画素)の場合、波長は500nm程度となるが、この波長に相当する幅以上に遮光されていなければ、最小限の光量を受光することは可能である。 The amount of light that can be received by the photodiode decreases as the rate at which the light shielding film 121b obscures the light receiving area of each pixel increases. Therefore, it is desirable that the area of the light shielding film 121b be such an area that a desired light quantity can be secured, and for example, a restriction of up to about 3/4 of the light receiving area may be added. By doing this, it is possible to secure a light amount of a desired amount or more. However, it is possible to receive a minimum amount of light if each pixel is provided with an unshielded range having a width corresponding to the wavelength of light to be received. That is, for example, in the case of the B pixel (blue pixel), the wavelength is about 500 nm, but it is possible to receive the minimum light amount unless the light is blocked beyond the width corresponding to this wavelength.
 図4の上段は、撮像素子121の第1の構成例における側面断面図であり、図4の中段は、撮像素子121の第1の構成例における上面図である。また、図4の上段の側面断面図は、図4の中段におけるAB断面となる。さらに、図4の下段は、撮像素子121の回路構成例である。 The upper part of FIG. 4 is a side cross-sectional view of the first configuration example of the imaging device 121, and the middle part of FIG. 4 is a top view of the first configuration example of the imaging device 121. Further, the side cross-sectional view of the upper stage of FIG. 4 is an AB cross section in the middle stage of FIG. 4. Furthermore, the lower part of FIG. 4 is a circuit configuration example of the imaging element 121.
 図4の上段の撮像素子121においては、図中の上方から下方に向けて入射光が入射する。隣接する画素121a-1,121a-2は、それぞれ図中の最下層に配線層Z12が設けられており、その上に光電変換層Z11が設けられている、いわゆる、裏面照射型である。 In the imaging element 121 in the upper part of FIG. 4, incident light is incident from the top to the bottom in the drawing. The adjacent pixels 121a-1 and 121a-2 are so-called back side illumination type in which the wiring layer Z12 is provided in the lowermost layer in the drawing and the photoelectric conversion layer Z11 is provided thereon.
 尚、画素121a-1,121a-2を区別する必要がない場合、符号の末尾の数字の記載を省略し、単に、画素121aと称する。以下、明細書内において、他の構成についても、同様に符号の末尾の数字を省略する場合がある。 When it is not necessary to distinguish the pixels 121a-1 and 121a-2, the description of the numbers at the end of the reference numerals is omitted and simply referred to as the pixel 121a. Hereinafter, in the description, the numbers at the end of the reference numerals may be omitted in the same manner for the other configurations.
 また、図4においては、撮像素子121の画素アレイを構成する2画素分の側面図および上面図のみを示しており、いうまでもなく、これ以上の数の画素121aが配置されているが図示が省略されている。 Further, FIG. 4 shows only the side view and the top view of two pixels constituting the pixel array of the image sensor 121, and needless to say, although more pixels 121a are arranged, Is omitted.
 さらに、画素121a-1,121a-2は、それぞれ光電変換層Z11にフォトダイオード121e-1,121e-2を備えている。また、フォトダイオード121e-1,121e-2の上には、それぞれ上からオンチップレンズ121c-1,121c-2、およびカラーフィルタ121d-1,121d-2が積層されている。 Further, the pixels 121a-1 and 121a-2 respectively include photodiodes 121e-1 and 121e-2 in the photoelectric conversion layer Z11. In addition, on-chip lenses 121c-1 and 121c-2 and color filters 121d-1 and 121d-2 are stacked on the photodiodes 121e-1 and 121e-2, respectively.
 オンチップレンズ121c-1,121c-2は、入射光をフォトダイオード121e-1,121e-2上に集光させる。 The on-chip lenses 121c-1 and 121c-2 condense incident light on the photodiodes 121e-1 and 121e-2.
 カラーフィルタ121d-1,121d-2は、例えば、赤色、緑色、青色、赤外および白色等の特定の波長の光を透過させる光学フィルタである。尚、白色の場合、カラーフィルタ121d-1,121d-2は、透明のフィルタでもよいし、無くてもよい。 The color filters 121d-1 and 121d-2 are optical filters that transmit light of a specific wavelength, such as red, green, blue, infrared, and white. In the case of white, the color filters 121d-1 and 121d-2 may or may not be transparent filters.
 画素121a-1,121a-2の光電変換層Z11における、それぞれ画素間の境界には、遮光膜121g-1乃至121g-3が形成されており、例えば、図4に示されるように、入射光Lが隣接する画素に入射し、クロストークが発生するのを抑制する。 Light shielding films 121g-1 to 121g-3 are formed at the boundaries between the pixels in the photoelectric conversion layer Z11 of the pixels 121a-1 and 121a-2, and for example, as shown in FIG. L is incident on an adjacent pixel to suppress the occurrence of crosstalk.
 また、図4の上段及び中段に示されるように、遮光膜121b-1,121b-2が、上面から見て受光面Sの一部を遮光している。画素121a-1,121a-2におけるフォトダイオード121e-1,121e-2の受光面Sにおいては、遮光膜121b-1,121b-2により、それぞれ異なる範囲が遮光されており、これにより異なる入射角指向性が画素毎に独立に設定される。ただし、遮光される範囲は、撮像素子121の全画素121aで異なっている必要はなく、一部で同一の範囲が遮光される画素121aが存在していてもよい。 Further, as shown in the upper and middle parts of FIG. 4, the light shielding films 121b-1 and 121b-2 shield a part of the light receiving surface S as viewed from the top. In the light receiving surfaces S of the photodiodes 121e-1 and 121e-2 in the pixels 121a-1 and 121a-2, different ranges are shielded by the light shielding films 121b-1 and 121b-2, respectively, whereby different incident angles are obtained. The directivity is set independently for each pixel. However, the light shielding range does not have to be different for all the pixels 121 a of the imaging device 121, and some pixels 121 a may have the same light shielding region.
 なお、図4の上段に示されるように、遮光膜121b-1と遮光膜121g-1とは互いに接続されており、側面から見てL字型に構成されている。同様に、遮光膜121b-2と遮光膜121g-2とは互いに接続されており、側面から見てL字型に構成されている。また、遮光膜121b-1、遮光膜121b-2、及び、遮光膜121g-1乃至121g-3は、金属により構成されており、例えば、タングステン(W)、アルミニウム(Al)、またはAlと銅(Cu)との合金により構成される。また、遮光膜121b-1、遮光膜121b-2、及び、遮光膜121g-1乃至121g-3は、半導体プロセスにおける配線が形成されるプロセスと同一のプロセスで、配線と同一の金属により同時に形成されるようにしてもよい。尚、遮光膜121b-1、遮光膜121b-2、及び、遮光膜121g-1乃至121g-3の膜厚は、位置に応じて同一の厚さにしなくてもよい。 As shown in the upper part of FIG. 4, the light shielding film 121b-1 and the light shielding film 121g-1 are connected to each other, and are L-shaped when viewed from the side. Similarly, the light shielding film 121b-2 and the light shielding film 121g-2 are connected to each other, and are configured in an L shape when viewed from the side. The light shielding film 121b-1, the light shielding film 121b-2, and the light shielding films 121g-1 to 121g-3 are made of metal, and for example, tungsten (W), aluminum (Al), or Al and copper Composed of an alloy with (Cu). The light shielding film 121b-1, the light shielding film 121b-2, and the light shielding films 121g-1 to 121g-3 are simultaneously formed of the same metal as the wiring in the same process as the wiring in the semiconductor process. It may be done. The film thicknesses of the light shielding film 121b-1, the light shielding film 121b-2, and the light shielding films 121g-1 to 121g-3 may not be the same depending on the position.
 また、図4の下段に示されるように、画素121aは、フォトダイオード161(フォトダイオード121eに対応する)、転送トランジスタ162、FD(Floating Diffusion:フローティングディフュージョン)部163、選択トランジスタ164、増幅トランジスタ165、およびリセットトランジスタ166を備え、垂直信号線167を介して電流源168に接続されている。 Further, as shown in the lower part of FIG. 4, the pixel 121 a includes a photodiode 161 (corresponding to the photodiode 121 e), a transfer transistor 162, an FD (Floating Diffusion: floating diffusion) portion 163, a selection transistor 164, and an amplification transistor 165. And a reset transistor 166, and is connected to the current source 168 via the vertical signal line 167.
 フォトダイオード161は、アノード電極が接地され、カソード電極が、転送トランジスタ162を介して増幅トランジスタ165のゲート電極に接続されている。 The anode electrode of the photodiode 161 is grounded, and the cathode electrode is connected to the gate electrode of the amplification transistor 165 via the transfer transistor 162.
 転送トランジスタ162は、転送信号TGに従って駆動する。例えば、転送トランジスタ162のゲート電極に供給される転送信号TGがハイレベルになると、転送トランジスタ162はオンとなる。これにより、フォトダイオード161に蓄積されている電荷が転送トランジスタ162を介してFD部163に転送される。 The transfer transistor 162 is driven according to the transfer signal TG. For example, when the transfer signal TG supplied to the gate electrode of the transfer transistor 162 becomes high level, the transfer transistor 162 is turned on. Thereby, the charge accumulated in the photodiode 161 is transferred to the FD unit 163 via the transfer transistor 162.
 増幅トランジスタ165は、フォトダイオード161での光電変換によって得られる信号を読み出す読出し回路であるソースフォロワの入力部となり、FD部163に蓄積されている電荷に応じたレベルの画素信号を垂直信号線167に出力する。すなわち、増幅トランジスタ165は、ドレイン端子が電源VDDに接続され、ソース端子が選択トランジスタ164を介して垂直信号線167に接続されることで、垂直信号線167の一端に接続される電流源168とソースフォロワを構成する。 The amplification transistor 165 is an input portion of a source follower which is a readout circuit for reading out a signal obtained by photoelectric conversion in the photodiode 161, and a pixel signal of a level corresponding to the charge stored in the FD portion 163 is a vertical signal line 167. Output to That is, the amplification transistor 165 has a drain terminal connected to the power supply VDD and a source terminal connected to the vertical signal line 167 via the selection transistor 164, thereby connecting the current source 168 connected to one end of the vertical signal line 167. Configure a source follower.
 FD部163は、転送トランジスタ162と増幅トランジスタ165との間に設けられる電荷容量C1を有する浮遊拡散領域であり、転送トランジスタ162を介してフォトダイオード161から転送される電荷を一時的に蓄積する。FD部163は、電荷を電圧に変換する電荷検出部であって、FD部163に蓄積されている電荷が増幅トランジスタ165において電圧に変換される。 The FD unit 163 is a floating diffusion region having a charge capacity C1 provided between the transfer transistor 162 and the amplification transistor 165, and temporarily accumulates the charge transferred from the photodiode 161 via the transfer transistor 162. The FD unit 163 is a charge detection unit that converts a charge into a voltage, and the charge stored in the FD unit 163 is converted into a voltage by the amplification transistor 165.
 選択トランジスタ164は、選択信号SELに従って駆動し、ゲート電極に供給される選択信号SELがハイレベルになるとオンとなって、増幅トランジスタ165と垂直信号線167とを接続する。 The selection transistor 164 is driven according to the selection signal SEL, and is turned on when the selection signal SEL supplied to the gate electrode becomes high level, and connects the amplification transistor 165 and the vertical signal line 167.
 リセットトランジスタ166は、リセット信号RSTに従って駆動する。例えば、リセットトランジスタ166は、ゲート電極に供給されるリセット信号RSTがハイレベルになるとオンとなり、FD部163に蓄積されている電荷を電源VDDに排出して、FD部163をリセットする。 The reset transistor 166 is driven according to the reset signal RST. For example, the reset transistor 166 is turned on when the reset signal RST supplied to the gate electrode becomes high level, discharges the charge stored in the FD unit 163 to the power supply VDD, and resets the FD unit 163.
 例えば、図4の下段に示される画素回路は以下のように動作する。 For example, the pixel circuit shown in the lower part of FIG. 4 operates as follows.
 すなわち、第一動作として、リセットトランジスタ166および転送トランジスタ162がオンにされ、FD部163に蓄積されている電荷を電源VDDに排出して、FD部163をリセットする。 That is, as a first operation, the reset transistor 166 and the transfer transistor 162 are turned on, the charge stored in the FD unit 163 is discharged to the power supply VDD, and the FD unit 163 is reset.
 第二動作として、リセットトランジスタ166および転送トランジスタ162がオフにされ、露光期間となり、フォトダイオード161により、入射光の光量に応じた電荷が蓄積される。 As a second operation, the reset transistor 166 and the transfer transistor 162 are turned off, and during the exposure period, the photodiode 161 accumulates a charge according to the amount of incident light.
 第三動作として、リセットトランジスタ166がオンにされて、FD部163がリセットされた後、リセットトランジスタ166がオフにされる。この動作により、FD部163が基準電位に設定される。 As a third operation, the reset transistor 166 is turned on and the FD section 163 is reset, and then the reset transistor 166 is turned off. By this operation, the FD unit 163 is set to the reference potential.
 第四動作として、リセットされた状態のFD部163の電位が、基準電位として増幅トランジスタ165より出力される。 As a fourth operation, the potential of the FD section 163 in a reset state is output from the amplification transistor 165 as a reference potential.
 第五動作として、転送トランジスタ162がオンにされて、フォトダイオード161に蓄積された電荷がFD部163に転送される。 As a fifth operation, the transfer transistor 162 is turned on, and the charge accumulated in the photodiode 161 is transferred to the FD portion 163.
 第六動作として、フォトダイオードの電荷が転送されたFD部163の電位が、信号電位として増幅トランジスタ165より出力される。 As a sixth operation, the potential of the FD section 163 to which the charge of the photodiode is transferred is output from the amplification transistor 165 as a signal potential.
 そして、CDS(相関二重サンプリング)により信号電位から基準電位が減算された信号が、画素121aの検出信号(画素信号)として出力される。この検出信号の値(出力画素値)は、被写体からの入射光の入射角に応じて変調されており、入射角により特性(指向性)が異なる(入射角指向性を有する)。 Then, a signal obtained by subtracting the reference potential from the signal potential by CDS (correlated double sampling) is output as a detection signal (pixel signal) of the pixel 121a. The value (output pixel value) of the detection signal is modulated according to the incident angle of incident light from the subject, and the characteristic (directivity) differs depending on the incident angle (having incident angle directivity).
 <撮像素子121の第2の構成例>
 図5は、撮像素子121の第2の構成例を示す図である。図5の上段には、第2の構成例である撮像素子121の画素121aの側面断面図が示されており、図5の中段には、撮像素子121の上面図が示されている。また、図5の上段の側面断面図は、図5の中段におけるAB断面となる。さらに、図5の下段は、撮像素子121の回路構成例である。
<Second Configuration Example of Imaging Element 121>
FIG. 5 is a diagram showing a second configuration example of the imaging device 121. As shown in FIG. The upper side of FIG. 5 shows a side cross-sectional view of the pixel 121a of the imaging device 121 which is the second configuration example, and the middle stage of FIG. 5 shows a top view of the imaging device 121. Further, the side cross-sectional view of the upper stage of FIG. Furthermore, the lower part of FIG. 5 is a circuit configuration example of the imaging element 121.
 図5の撮像素子121は、1つの画素121aに4つのフォトダイオード121f-1乃至121f-4が形成され、遮光膜121gがフォトダイオード121f-1乃至121f-4同士を分離する領域に形成されている点で、図4の撮像素子121と異なる構成となっている。即ち、図5の撮像素子121では、遮光膜121gは、上面から見て「+」形状に形成されている。なお、それらの共通の構成については図4と同一の符号を付しており、詳細な説明は省略する。 In the imaging device 121 of FIG. 5, four photodiodes 121f-1 to 121f-4 are formed in one pixel 121a, and a light shielding film 121g is formed in a region separating the photodiodes 121f-1 to 121f-4. The configuration is different from that of the imaging device 121 of FIG. That is, in the imaging element 121 of FIG. 5, the light shielding film 121 g is formed in a “+” shape when viewed from the upper surface. In addition, about the structure common to them, the code | symbol same as FIG. 4 is attached | subjected, and detailed description is abbreviate | omitted.
 図5の撮像素子121では、遮光膜121gによりフォトダイオード121f-1乃至121f-4が分離されることによって、フォトダイオード121f-1乃至121f-4間の電気的および光学的なクロストークの発生が防止される。すなわち、図5の遮光膜121gは、図4の撮像素子121の遮光膜121gと同様にクロストークを防止するためのものであって、入射角指向性を与えるためのものではない。 In the image pickup device 121 of FIG. 5, the photodiodes 121 f-1 to 121 f-4 are separated by the light shielding film 121 g, so that electrical and optical crosstalk between the photodiodes 121 f-1 to 121 f-4 occurs. It is prevented. That is, the light shielding film 121g of FIG. 5 is for preventing crosstalk similarly to the light shielding film 121g of the imaging device 121 of FIG. 4, and is not for providing incident angle directivity.
 また、図5の撮像素子121では、1個のFD部163が4個のフォトダイオード121f-1乃至121f-4で共有される。図5の下段は、1個のFD部163を4個のフォトダイオード121f-1乃至121f-4で共有するようにした回路構成例を示している。尚、図5の下段において、図4の下段と同一の構成については、その説明を省略する。 Further, in the imaging device 121 of FIG. 5, one FD unit 163 is shared by the four photodiodes 121f-1 to 121f-4. The lower part of FIG. 5 shows an example of a circuit configuration in which one FD portion 163 is shared by four photodiodes 121f-1 to 121f-4. In the lower part of FIG. 5, the description of the same configuration as the lower part of FIG. 4 is omitted.
 図5の下段において、図4の下段の回路構成と異なる点は、フォトダイオード161(図4の上段におけるフォトダイオード121eに対応する)および転送トランジスタ162に代えて、フォトダイオード161-1乃至161-4(図5の上段におけるフォトダイオード121f-1乃至121f-4に対応する)および転送トランジスタ162-1乃至162-4を設け、FD部163を共有する構成としている点である。 The lower part of FIG. 5 differs from the circuit configuration of the lower part of FIG. 4 in that photodiodes 161-1 to 161- are used instead of the photodiode 161 (corresponding to the photodiode 121e in the upper part of FIG. 4) and the transfer transistor 162. 4 (corresponding to the photodiodes 121f-1 to 121f-4 in the upper part of FIG. 5) and the transfer transistors 162-1 to 162-4 and share the FD section 163.
 このような構成により、フォトダイオード121f-1乃至121f-4に蓄積された電荷は、フォトダイオード121f-1乃至121f-4と増幅トランジスタ165のゲート電極との接続部に設けられる所定の容量を有する共通のFD部163に転送される。そして、FD部163に保持されている電荷のレベルに応じた信号が検出信号(画素信号)として読み出される(ただし、上述したようにCDS処理が行われる)。 With such a configuration, the charge accumulated in the photodiodes 121f-1 to 121f-4 has a predetermined capacitance provided at the connection portion between the photodiodes 121f-1 to 121f-4 and the gate electrode of the amplification transistor 165. It is transferred to the common FD unit 163. Then, a signal corresponding to the level of the charge held in the FD unit 163 is read as a detection signal (pixel signal) (however, the CDS processing is performed as described above).
 このため、フォトダイオード121f-1乃至121f-4で蓄積された電荷を様々な組み合わせで選択的に画素121aの出力、すなわち検出信号に寄与させることができる。すなわち、フォトダイオード121f-1乃至121f-4毎に独立して電荷を読み出すことができる構成とし、出力に寄与するフォトダイオード121f-1乃至121f-4(フォトダイオード121f-1乃至121f-4が出力に寄与する度合い)を互いに異ならせることで、異なる入射角指向性を得ることができる。 Therefore, the charges accumulated in the photodiodes 121f-1 to 121f-4 can be selectively contributed to the output of the pixel 121a, that is, the detection signal in various combinations. That is, the photodiodes 121f-1 to 121f-4 are configured to be able to read out the charge independently, and the photodiodes 121f-1 to 121f-4 (the photodiodes 121f-1 to 121f-4 output Different incident angle directivity can be obtained.
 例えば、フォトダイオード121f-1とフォトダイオード121f-3の電荷をFD部163に転送し、それぞれを読み出して得られる信号を加算することにより、左右方向の入射角指向性を得ることができる。同様に、フォトダイオード121f-1とフォトダイオード121f-2の電荷をFD部163に転送し、それぞれを読み出して得られる信号を加算することにより、上下方向の入射角指向性を得ることができる。 For example, by transferring the electric charges of the photodiode 121f-1 and the photodiode 121f-3 to the FD portion 163 and adding the signals obtained by reading out each, the incident angle directivity in the left-right direction can be obtained. Similarly, by transferring the electric charges of the photodiode 121f-1 and the photodiode 121f-2 to the FD portion 163 and adding the signals obtained by reading the respective, it is possible to obtain the incident angle directivity in the vertical direction.
 また、4つのフォトダイオード121f-1乃至121f-4より独立して選択的に読み出される電荷に基づいて得られる信号は、検出画像を構成する1画素分に相当する検出信号となる。 Further, a signal obtained based on the charges selectively read out independently from the four photodiodes 121f-1 to 121f-4 is a detection signal corresponding to one pixel constituting the detection image.
 なお、各フォトダイオード121f(の電荷)の検出信号への寄与は、例えば、各フォトダイオード121fの電荷(検出値)をFD部163に転送するか否かだけでなく、電子シャッタ機能を用いてFD部163への転送前にフォトダイオード121fに蓄積された電荷をリセットすること等でも実現することができる。例えば、FD部163への転送直前にフォトダイオード121fの電荷をリセットすれば、そのフォトダイオード121fは、検出信号に全く寄与しない状態となる。一方、フォトダイオード121fの電荷をリセットとFD部163への電荷の転送との間に時間を持たせることにより、そのフォトダイオード121fは、部分的に検出信号に寄与する状態となる。 The contribution of (the charge of) each photodiode 121f to the detection signal is not limited to, for example, whether or not the charge (the detected value) of each photodiode 121f is transferred to the FD unit 163, but also using an electronic shutter function. This can also be realized by resetting the charge accumulated in the photodiode 121 f before transfer to the FD unit 163. For example, if the charge of the photodiode 121f is reset immediately before transfer to the FD portion 163, the photodiode 121f does not contribute to the detection signal at all. On the other hand, by giving time to the charge of the photodiode 121f between the reset and the transfer of the charge to the FD portion 163, the photodiode 121f partially contributes to the detection signal.
 以上のように、図5の撮像素子121の場合、4つのフォトダイオード121f-1乃至121f-4のうち、検出信号に用いるものの組み合わせを変更することで、画素毎に異なる入射角指向性を持たせることができる。また、図5の撮像素子121の各画素121aから出力される検出信号は、被写体からの入射光の入射角に応じて変調された値(出力画素値)となり、入射角により特性(指向性)が異なる(入射角指向性を有する)。 As described above, in the case of the imaging device 121 of FIG. 5, the combination of the four photodiodes 121 f-1 to 121 f-4 used for the detection signal is changed to have different incident angle directivity for each pixel. You can The detection signal output from each pixel 121a of the image sensor 121 in FIG. 5 has a value (output pixel value) modulated according to the incident angle of the incident light from the subject, and the characteristic (directivity) according to the incident angle Are different (having incident angle directivity).
 なお、以下、検出画像の1画素分に相当する検出信号を出力する単位を画素出力単位と称する。画素出力単位は、少なくとも1つ以上のフォトダイオードを備え、通常は、撮像素子121の各画素121aが、それぞれ1つの画素出力単位に相当する。 Hereinafter, a unit that outputs a detection signal corresponding to one pixel of a detected image is referred to as a pixel output unit. The pixel output unit includes at least one or more photodiodes, and generally, each pixel 121a of the imaging device 121 corresponds to one pixel output unit.
 例えば、図4の撮像素子121では、1つの画素121aにそれぞれ1つのフォトダイオード121eが設けられているため、1つの画素出力単位がそれぞれ1つのフォトダイオード121eを備えることになる。換言すれば、1つのフォトダイオード121eにより、1つの画素出力単位が構成される。 For example, in the imaging device 121 of FIG. 4, since one photodiode 121 e is provided for each pixel 121 a, one pixel output unit includes one photodiode 121 e. In other words, one pixel 121e constitutes one pixel output unit.
 そして、各画素121aの遮光膜121bによる遮光の状態をそれぞれ異なるものとすることで、各画素出力単位の入射角指向性を異なるものとすることができる。そして、図4の撮像素子121では、遮光膜121bを用いて各画素121aへの入射光が光学的に変調され、その結果、各画素121aのフォトダイオード121eから出力される信号により、入射角指向性を反映した検出画像の1画素分の検出信号が得られる。すなわち、図4の撮像素子121は、撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光する複数の画素出力単位を備え、各画素出力単位が1つのフォトダイオード121eを備え、被写体からの入射光の入射角に対する特性(入射角指向性)が画素出力単位毎に設定されている。 Then, by making the light shielding state by the light shielding film 121b of each pixel 121a different, the incident angle directivity of each pixel output unit can be made different. Then, in the imaging device 121 of FIG. 4, incident light to each pixel 121a is optically modulated using the light shielding film 121b, and as a result, the incident angle is directed by the signal output from the photodiode 121e of each pixel 121a. A detection signal for one pixel of the detected image reflecting the polarity is obtained. That is, the image pickup device 121 of FIG. 4 includes a plurality of pixel output units for receiving incident light from an object incident without any of the imaging lens and the pinhole, and each pixel output unit includes one photodiode 121e. The characteristic (incident angle directivity) with respect to the incident angle of incident light from the subject is set for each pixel output unit.
 一方、図5の撮像素子121では、1つの画素121aにそれぞれ4つのフォトダイオード121f-1乃至121f-4が設けられているため、1つの画素出力単位がそれぞれ4つのフォトダイオード121eを備えることになる。換言すれば、4つのフォトダイオード121fにより、1つの画素出力単位が構成される。一方、各フォトダイオード121e単体により、個別の画素出力単位が構成されることはない。 On the other hand, in the image pickup device 121 of FIG. 5, since four photodiodes 121f-1 to 121f-4 are provided in one pixel 121a, one pixel output unit includes four photodiodes 121e. Become. In other words, one pixel output unit is configured by the four photodiodes 121 f. On the other hand, individual pixel output units are not configured by each photodiode 121e alone.
 そして、上述したように4つのフォトダイオード121f-1乃至121f-4のうち検出信号に寄与するフォトダイオード121fを画素121a毎に異なるものとすることで、画素出力単位毎の入射角指向性が異なるものとなる。すなわち、図5の撮像素子121では、4個のフォトダイオード121f-1乃至121f-4のうち出力(検出信号)に寄与しない範囲が遮光された領域と同様に機能する。そして、フォトダイオード121f-1乃至121f-4から出力される信号の組合せにより、入射角指向性を反映した検出画像の1画素分の検出信号が得られる。すなわち、図5の撮像素子121は、撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光する複数の画素出力単位を備え、各画素出力単位が複数のフォトダイオード(例えば、フォトダイオード121f-1乃至121f-4)を備え、出力に寄与するフォトダイオード(の度合い)を異ならせることで、被写体からの入射光の入射角に対する各画素出力単位の特性(入射角指向性)が互いに異なる。 Then, among the four photodiodes 121f-1 to 121f-4 as described above, by making the photodiode 121f contributing to the detection signal different for each pixel 121a, the incident angle directivity for each pixel output unit is different. It becomes a thing. That is, in the imaging device 121 of FIG. 5, the range not contributing to the output (detection signal) among the four photodiodes 121f-1 to 121f-4 functions in the same manner as the light-shielded region. Then, by combining the signals output from the photodiodes 121f-1 to 121f-4, a detection signal for one pixel of the detection image reflecting the incident angle directivity is obtained. That is, the imaging device 121 of FIG. 5 includes a plurality of pixel output units for receiving incident light from an object incident without any of the imaging lens and the pinhole, and each pixel output unit includes a plurality of photodiodes (for example, Characteristics (incident angle directivity) of each pixel output unit with respect to the incident angle of incident light from the subject by providing the photodiodes 121f-1 to 121f-4) and varying (the degree of) the photodiodes contributing to the output Are different from each other.
 なお、図5の撮像素子121では、入射光が光学的に変調されずに全てのフォトダイオード121f-1乃至121f-4に入射されるため、検出信号は、光学的な変調により得られる信号ではない。また、以降において、検出信号に寄与しないフォトダイオード121fのことを、画素出力単位又は出力に寄与しないフォトダイオード121fとも称する。 In the image sensor 121 of FIG. 5, incident light is incident on all the photodiodes 121f-1 to 121f-4 without being optically modulated, so that the detection signal is a signal obtained by optical modulation. Absent. Further, hereinafter, the photodiode 121 f not contributing to the detection signal is also referred to as a photodiode 121 f not contributing to a pixel output unit or an output.
 なお、図5には、画素出力単位(画素121a)の受光面を4等分して、各領域にそれぞれ受光面が同じ大きさのフォトダイオード121fを配置した例、すなわち、フォトダイオードを4等分した例を示しているが、フォトダイオードの分割数や分割位置は任意に設定することが可能である。 In FIG. 5, the light receiving surface of the pixel output unit (pixel 121a) is equally divided into four, and photodiodes 121f having the same size as the light receiving surface are arranged in each region, that is, four photodiodes, etc. Although the divided example is shown, the division number and division position of the photodiode can be set arbitrarily.
 例えば、フォトダイオードを必ずしも等分する必要はなく、画素出力単位毎にフォトダイオードの分割位置を異ならせてもよい。これにより、例えば、複数の画素出力単位間で同じ位置のフォトダイオード121fを出力に寄与させるようにしたとしても、画素出力単位間で入射角指向性が異なるようになる。また、例えば、画素出力単位間で分割数を異なるものとすることにより、より自由に入射角指向性を設定することが可能になる。さらに、例えば、画素出力単位間で分割数及び分割位置の両方を異ならせるようにしてもよい。 For example, the photodiodes do not necessarily have to be equally divided, and the division positions of the photodiodes may be different for each pixel output unit. As a result, for example, even when the photodiodes 121 f at the same position contribute to the output among the plurality of pixel output units, the incident angle directivity differs between the pixel output units. Also, for example, by setting the number of divisions to be different between pixel output units, it is possible to more freely set the incident angle directivity. Furthermore, for example, both the division number and the division position may be made different between pixel output units.
 また、図4の撮像素子121及び図5の撮像素子121のいずれも、各画素出力単位が入射角指向性を独立に設定可能な構成を有している。一方、上述した非特許文献1や特許文献1、2に示される撮像装置では、撮像素子の各画素出力単位が入射角指向性を独立に設定可能な構成を有していない。なお、図4の撮像素子121では、各画素出力単位の入射角指向性が、遮光膜121bにより製造時に設定される。一方、図5の撮像素子121では、各画素出力単位のフォトダイオードの分割数や分割位置は製造時に設定されるが、各画素出力単位の入射角指向性(出力に寄与させるフォトダイオードの組合せ)は使用時(例えば、撮像時)に設定することができる。なお、図4の撮像素子121及び図5の撮像素子121のいずれにおいても、必ずしも全ての画素出力単位が、入射角指向性を持たせる構成を備える必要はない。 Further, each of the image sensor 121 of FIG. 4 and the image sensor 121 of FIG. 5 has a configuration in which each pixel output unit can independently set the incident angle directivity. On the other hand, in the imaging device shown by the above-mentioned nonpatent literature 1 and patent documents 1 and 2, each pixel output unit of an image sensor does not have the composition which can set up incidence angle directivity independently. In the image sensor 121 of FIG. 4, the incident angle directivity of each pixel output unit is set by the light shielding film 121 b at the time of manufacture. On the other hand, in the image sensor 121 of FIG. 5, the division number and division position of the photodiode of each pixel output unit are set at the time of manufacture, but the incident angle directivity of each pixel output unit (combination of photodiodes contributing to output) Can be set at the time of use (for example, at the time of imaging). In addition, in any of the imaging device 121 of FIG. 4 and the imaging device 121 of FIG. 5, it is not necessary to have a configuration in which all the pixel output units have incident angle directivity.
 なお、上述したように、通常は、撮像素子の各画素が、それぞれ1つの画素出力単位に相当するが、後述するように、複数の画素により、1つの画素出力単位が構成される場合もある。以降においては、特に記載がない限り、撮像素子の各画素が、それぞれ1つの画素出力単位に相当するものとして、説明を行う。 As described above, normally, each pixel of the imaging device corresponds to one pixel output unit, but as described later, there may be a case where one pixel output unit is formed by a plurality of pixels. . The following description will be made assuming that each pixel of the imaging device corresponds to one pixel output unit unless otherwise noted.
 <入射角指向性を生じさせる原理について>
 撮像素子121の各画素の入射角指向性は、例えば、図6に示されるような原理により発生する。尚、図6の左上部および右上部は、図4の撮像素子121における入射角指向性の発生原理を説明する図であり、図6の左下部および右下部は、図5の撮像素子121における入射角指向性の発生原理を説明する図である。
<Principle of generating incident angle directivity>
The incident angle directivity of each pixel of the imaging element 121 is generated, for example, according to the principle shown in FIG. The upper left part and the upper right part of FIG. 6 are diagrams for explaining the generation principle of the incident angle directivity in the imaging element 121 of FIG. 4, and the lower left part and the lower right part of FIG. 6 are for the imaging element 121 of FIG. It is a figure explaining the generation | occurrence | production principle of incident angle directivity.
 図6の左上部および右上部の画素は、いずれも1個のフォトダイオード121eを備える。これに対して、図6の左下部および右下部の画素は、いずれも2個のフォトダイオード121fを備える。尚、ここでは、1画素が2個のフォトダイオード121fを備える例を示しているが、これは説明の便宜上であり、1画素が備えるフォトダイオード121fの数は、その他の個数であってもよい。 Each of the upper left and upper right pixels in FIG. 6 includes one photodiode 121 e. On the other hand, the lower left and lower right pixels in FIG. 6 each include two photodiodes 121 f. Although an example in which one pixel includes two photodiodes 121 f is shown here, this is for convenience of explanation, and the number of photodiodes 121 f provided in one pixel may be another number. .
 図6の左上部の画素においては、フォトダイオード121e-11の受光面の右半分を遮光するように遮光膜121b-11が形成されている。また、図6の右上部の画素においては、フォトダイオード121e-12の受光面の左半分を遮光するように遮光膜121b-12が形成されている。尚、図中の一点鎖線は、フォトダイオード121eの受光面の水平方向の中心を通り、受光面に対して垂直な補助線である。 In the upper left pixel in FIG. 6, a light shielding film 121b-11 is formed to shield the right half of the light receiving surface of the photodiode 121e-11. Further, in the pixel at the upper right portion of FIG. 6, a light shielding film 121b-12 is formed so as to shield the left half of the light receiving surface of the photodiode 121e-12. Note that the alternate long and short dash line in the drawing is an auxiliary line which passes through the horizontal center of the light receiving surface of the photodiode 121e and is perpendicular to the light receiving surface.
 例えば、図6の左上部の画素においては、図中の一点鎖線に対して入射角θ1を成す右上方向からの入射光は、フォトダイオード121e-11の遮光膜121b-11により遮光されていない左半分の範囲により受光され易い。これに対して、図中の一点鎖線に対して入射角θ2を成す左上方向からの入射光は、フォトダイオード121e-11の遮光膜121b-11により遮光されていない左半分の範囲により受光されにくい。したがって、図6の左上部の画素は、図中の右上方からの入射光に対して受光感度が高く、左上方からの入射光に対して受光感度が低い入射角指向性を備えることになる。 For example, in the pixel at the upper left of FIG. 6, incident light from the upper right direction forming the incident angle θ1 with respect to the alternate long and short dash line in the drawing is left unshielded by the light shielding film 121b-11 of the photodiode 121e-11. It is easy to receive light by the half range. On the other hand, incident light from the upper left direction forming the incident angle θ2 with respect to the alternate long and short dash line in the figure is hard to be received by the left half range not blocked by the light shielding film 121b-11 of the photodiode 121e-11. . Therefore, the pixel in the upper left part of FIG. 6 has high incidence sensitivity with respect to incident light from the upper right in the figure and low sensitivity to incident light from the upper left. .
 一方、例えば、図6の右上部の画素においては、入射角θ1を成す右上方向からの入射光は、フォトダイオード121e-12の遮光膜121b-12により遮光されている左半分の範囲により受光されにくい。これに対して、入射角θ2を成す左上方向からの入射光は、フォトダイオード121e-12の遮光膜121b-12により遮光されていない右半分の範囲により受光され易い。したがって、図6の右上部の画素は、図中の右上方からの入射光に対して受光感度が低く、左上方からの入射光に対して受光感度が高い入射角指向性を備えることになる。 On the other hand, for example, in the pixel in the upper right part of FIG. 6, incident light from the upper right direction forming the incident angle θ1 is received by the left half range shielded by the light shielding film 121b-12 of the photodiode 121e-12. Hateful. On the other hand, incident light from the upper left direction forming the incident angle θ2 is likely to be received by the right half range which is not blocked by the light shielding film 121b-12 of the photodiode 121e-12. Therefore, the pixel in the upper right part of FIG. 6 has low incident sensitivity to incident light from the upper right in the figure and high incident sensitivity to incident light from the upper left. .
 また、図6の左下部の画素は、図中の左右にフォトダイオード121f-11,121f-12が設けられており、いずれか一方の検出信号を読み出すようにすることで、遮光膜121bを設けることなく入射角指向性を有する構成とされている。 Further, in the pixel at the lower left part of FIG. 6, photodiodes 121f-11 and 121f-12 are provided on the left and right in the drawing, and a light shielding film 121b is provided by reading out one of the detection signals. It is set as the structure which has incident angle directivity.
 すなわち、図6の左下部の画素では、図中の左側に設けられたフォトダイオード121f-11の信号のみを読み出すようにすることで、図6の左上部の画素と同様の入射角指向性を得ることができる。すなわち、図中の一点鎖線に対して入射角θ1を成す右上方向からの入射光は、フォトダイオード121f-11に入射し、受光量に対応する信号がフォトダイオード121f-11から読み出されるため、この画素から出力される検出信号に寄与する。これに対して、図中の一点鎖線に対して入射角θ2を成す左上方向からの入射光は、フォトダイオード121f-12に入射するが、フォトダイオード121f-12から読み出されないため、この画素から出力される検出信号に寄与しない。 That is, by reading out only the signal of the photodiode 121f-11 provided on the left side in the lower left part of FIG. 6, incident angle directivity similar to that of the upper left part in FIG. You can get it. That is, incident light from the upper right direction forming the incident angle θ1 with respect to the alternate long and short dash line in the figure is incident on the photodiode 121f-11 and a signal corresponding to the amount of light received is read out from the photodiode 121f-11. It contributes to the detection signal output from the pixel. On the other hand, incident light from the upper left direction forming the incident angle θ2 with respect to the alternate long and short dash line in the figure is incident on the photodiode 121f-12 but is not read out from the photodiode 121f-12. It does not contribute to the output detection signal.
 同様に、図6の右下部の画素のように、2個のフォトダイオード121f-13,121f-14を備える場合、図中の右側に設けられたフォトダイオード121f-14の信号のみを読み出すようにすることで、図6の右上部の画素と同様の入射角指向性を得ることができる。すなわち、入射角θ1を成す右上方向からの入射光は、フォトダイオード121f-13に入射するが、フォトダイオード121f-13から信号が読み出されないため、この画素から出力される検出信号に寄与しない。これに対して、入射角θ2を成す左上方向からの入射光は、フォトダイオード121f-14に入射し、受光量に対応する信号がフォトダイオード121f-14から読み出されるため、この画素から出力される検出信号に寄与する。 Similarly, when two photodiodes 121f-13 and 121f-14 are provided as in the pixel at the lower right part of FIG. 6, only the signal of the photodiode 121f-14 provided on the right side in the drawing is read out By doing this, the incident angle directivity similar to that of the pixel in the upper right part of FIG. 6 can be obtained. That is, incident light from the upper right direction forming the incident angle θ1 is incident on the photodiode 121f-13, but since no signal is read out from the photodiode 121f-13, it does not contribute to the detection signal output from this pixel. On the other hand, incident light from the upper left direction forming the incident angle θ2 is incident on the photodiode 121f-14, and a signal corresponding to the amount of light received is read out from the photodiode 121f-14, so that it is output from this pixel Contribute to the detection signal.
 尚、図6の上部の画素においては、画素(フォトダイオード121eの受光面)の水平方向の中心位置で遮光される範囲と遮光されない範囲が分かれる例を示したが、その他の位置で分かれるようにしてもよい。また、図6の下部の画素においては、画素の水平方向の中心位置で、2つのフォトダイオード121fが分かれる例を示したが、その他の位置で分かれるようにしてもよい。このように、遮光範囲又はフォトダイオード121fが分かれる位置を変えることにより、異なる入射角指向性を生じさせることができる。 In the pixel in the upper part of FIG. 6, an example is shown in which the range shielded from light and the range not shielded from light are separated at the center position in the horizontal direction of the pixel (the light receiving surface of the photodiode 121e). May be Further, in the lower pixel in FIG. 6, an example in which the two photodiodes 121 f are separated at the center position in the horizontal direction of the pixel is shown, but may be separated at other positions. Thus, different incident angle directivity can be produced by changing the light shielding range or the position where the photodiode 121f is divided.
 <オンチップレンズを含む構成における入射角指向性について>
 次に、図7を参照して、オンチップレンズ121cを含めた構成における入射角指向性について説明する。
<Incidence angle directivity in a configuration including an on-chip lens>
Next, referring to FIG. 7, the incident angle directivity in the configuration including the on-chip lens 121 c will be described.
 図7の上段のグラフは、図7の中段及び下段の画素の入射角指向性を示している。なお、横軸が入射角度θであり、縦軸が検出信号レベルを示している。なお、入射角度θは、入射光の方向が、図7の中段左側の一点鎖線と一致する場合を0度とし、図7の中段左側の入射角度θ21側を正の方向とし、図7の中段右側の入射角度θ22側を負の方向とする。したがって、オンチップレンズ121cに対して、右上方より入射する入射光については、左上方より入射する入射光よりも入射角度が大きくなる。すなわち入射角度θは、入射光の進行方向が左に傾くほど大きくなり(正の方向に大きくなり)、右に傾くほど小さくなる(負の方向に大きくなる)。 The upper graph in FIG. 7 shows the incident angle directivity of the middle and lower pixels in FIG. The horizontal axis represents the incident angle θ, and the vertical axis represents the detection signal level. Note that the incident angle θ is 0 degrees when the direction of incident light coincides with the alternate long and short dash line in the middle left of FIG. 7, and the middle left incident angle θ21 in FIG. 7 is a positive direction. The right incident angle θ22 side is a negative direction. Therefore, with respect to the on-chip lens 121c, the incident angle of the incident light entering from the upper right is larger than the incident angle of the incident light entering from the upper left. That is, the incident angle θ becomes larger as the traveling direction of the incident light leans to the left (larger in the positive direction) and smaller as it leans to the right (larger in the negative direction).
 また、図7の中段左部の画素は、図6の上段左部の画素に、入射光を集光するオンチップレンズ121c-11、及び、所定の波長の光を透過させるカラーフィルタ121d-11を追加したものである。すなわち、この画素では、オンチップレンズ121c-11、カラーフィルタ121d-11、遮光膜121b-11、フォトダイオード121e-11が、図中上方の光の入射方向から順に積層されている。 Also, the pixels in the middle left part of FIG. 7 are the on-chip lens 121 c-11 for condensing incident light and the color filters 121 d-11 for transmitting light of a predetermined wavelength to the pixels in the upper left part of FIG. Is added. That is, in this pixel, the on-chip lens 121c-11, the color filter 121d-11, the light shielding film 121b-11, and the photodiode 121e-11 are laminated in order from the incident direction of the upper light in the drawing.
 同様に、図7の中段右部の画素、図7の下段左部の画素、及び、図7の下段右部の画素は、それぞれ、図6の上段右部の画素、図6の下段左部の画素、及び、図6の下段右部の画素に、オンチップレンズ121c-11及びカラーフィルタ121d-11、又は、オンチップレンズ121c-12及びカラーフィルタ121d-12を追加したものである。 Similarly, the pixel at the middle right of FIG. 7, the pixel at the lower left of FIG. 7, and the pixel at the lower right of FIG. 7 are respectively the pixel at the upper right of FIG. 6 and the lower left of FIG. The on-chip lens 121 c-11 and the color filter 121 d-11 or the on-chip lens 121 c-12 and the color filter 121 d-12 are added to the pixel of FIG.
 図7の中段左部の画素では、図7の上段の実線の波形で示されるように、入射光の入射角度θに応じてフォトダイオード121e-11の検出信号レベル(受光感度)が変化する。すなわち、図中の一点鎖線に対して入射光のなす角である入射角度θが大きいほど(入射角度θが正の方向に大きいほど(図中の右方向に傾くほど))、遮光膜121b-11が設けられていない範囲に光が集光されることで、フォトダイオード121e-11の検出信号レベルが大きくなる。逆に、入射光の入射角度θが小さいほど(入射角度θが負の方向に大きいほど(図中の左方向に傾くほど))、遮光膜121b-11が設けられている範囲に光が集光されることで、フォトダイオード121e-11の検出信号レベルが小さくなる。 In the pixel at the center left part of FIG. 7, as shown by the solid line waveform in the upper part of FIG. 7, the detection signal level (light receiving sensitivity) of the photodiode 121e-11 changes according to the incident angle θ of incident light. That is, the larger the incident angle θ which is the angle formed by the incident light with respect to the alternate long and short dash line in the figure (the larger the incident angle θ in the positive direction (the more inclined in the right direction in the figure)) When the light is collected in the range in which 11 is not provided, the detection signal level of the photodiode 121e-11 is increased. Conversely, the smaller the incident angle θ of the incident light (the larger the incident angle θ in the negative direction (the more inclined in the left direction in the figure)), the light is collected in the range in which the light shielding film 121b-11 is provided. By being illuminated, the detection signal level of the photodiode 121e-11 decreases.
 また、図7の中段右部の画素では、図7の上段の点線の波形で示されるように、入射光の入射角度θに応じてフォトダイオード121e-12の検出信号レベル(受光感度)が変化する。すなわち、入射光の入射角度θが大きいほど(入射角度θが正の方向に大きいほど)、遮光膜121b-12が設けられている範囲に光が集光されることで、フォトダイオード121e-12の検出信号レベルが小さくなる。逆に、入射光の入射角度θが小さいほど(入射角度θが負の方向に大きいほど)、遮光膜121b-12が設けられていない範囲に光が入射することで、フォトダイオード121e-12の検出信号レベルが大きくなる。 Further, in the pixel at the middle right part of FIG. 7, as indicated by the dotted line waveform in the upper part of FIG. 7, the detection signal level (light receiving sensitivity) of the photodiode 121e-12 changes according to the incident angle θ of incident light. Do. That is, as the incident angle θ of the incident light is larger (the incident angle θ is larger in the positive direction), the light is condensed in the range in which the light shielding film 121b-12 is provided, thereby the photodiode 121e-12. The detection signal level of Conversely, as the incident angle θ of incident light is smaller (as the incident angle θ is larger in the negative direction), light is incident in a range in which the light shielding film 121b-12 is not provided. The detection signal level increases.
 この図7の上段に示される実線および点線の波形は、遮光膜121bの範囲に応じて変化させることができる。従って、遮光膜121bの範囲により、画素単位で相互に異なる入射角指向性を持たせることが可能となる。 The waveforms of the solid line and the dotted line shown in the upper part of FIG. 7 can be changed according to the range of the light shielding film 121 b. Therefore, it is possible to give different incident angle directivity to each other in pixel units by the range of the light shielding film 121b.
 上述したように、入射角指向性とは、入射角度θに応じた各画素の受光感度の特性であるが、これは、図7の中段の画素では、入射角度θに応じた遮光値の特性であるとも言える。すなわち、遮光膜121bは、特定の方向の入射光は高いレベルで遮光するが、それ以外の方向からの入射光は十分に遮光できない。この遮光できるレベルの変化が、図7の上段に示されるような入射角度θに応じた異なる検出信号レベルを生じさせる。したがって、各画素において最も高いレベルで遮光可能な方向を各画素の遮光方向と定義すると、画素単位で相互に異なる入射角指向性を持つということは、換言すれば、画素単位で相互に異なる遮光方向を持つということになる。 As described above, the incident angle directivity is a characteristic of the light receiving sensitivity of each pixel according to the incident angle θ, but this is a characteristic of the light blocking value according to the incident angle θ in the middle pixel of FIG. It can be said that That is, although the light shielding film 121 b blocks incident light in a specific direction at a high level, incident light from other directions can not be blocked sufficiently. The change of the light shieldable level produces different detection signal levels according to the incident angle θ as shown in the upper part of FIG. Therefore, if the direction in which light can be blocked at the highest level in each pixel is defined as the light blocking direction of each pixel, having different incident angle directivity in pixel units means, in other words, light blocking mutually different in pixel units It means that it has a direction.
 また、図7の下段左部の画素では、図6の下段左部の画素と同様に、図中左部のフォトダイオード121f-11のみの信号を用いるようにすることで、図7の中段左部の画素と同様の入射角指向性を得ることができる。すなわち、入射光の入射角度θが大きくなると(入射角度θが正の方向に大きくなると)、信号が読み出されるフォトダイオード121f-11の範囲に光が集光されることで、検出信号レベルが大きくなる。逆に、入射光の入射角度θが小さいほど(入射角度θが負の方向に大きいほど)、信号が読み出されないフォトダイオード121f-12の範囲に光が集光されることで、検出信号レベルが小さくなる。 Also, in the lower left pixel in FIG. 7, as in the lower left pixel in FIG. 6, the middle left pixel in FIG. It is possible to obtain incident angle directivity similar to that of the pixels of a part. That is, when the incident angle θ of the incident light increases (when the incident angle θ increases in the positive direction), the light is collected in the range of the photodiode 121f-11 from which the signal is read, and the detection signal level is large. Become. Conversely, the smaller the incident angle θ of the incident light (the larger the incident angle θ in the negative direction), the more light is collected in the range of the photodiode 121 f-12 from which the signal is not read out, and thus the detection signal level Becomes smaller.
 また、同様に、図7の下段右部の画素では、図6の下段右部の画素と同様に、図中右部のフォトダイオード121f-14のみの信号を用いるようにすることで、図7の中段右部の画素と同様の入射角指向性を得ることができる。すなわち、入射光の入射角度θが大きくなると(入射角度θが正の方向に大きくなると)、出力(検出信号)に寄与しないフォトダイオード121f-13の範囲に光が集光されることで、画素単位の検出信号のレベルが小さくなる。逆に、入射光の入射角度θが小さいほど(入射角度θが負の方向に大きいほど)、出力(検出信号)に寄与するフォトダイオード121f-14の範囲に光が集光されることで、画素単位の検出信号のレベルが大きくなる。 Similarly, in the lower right pixel in FIG. 7, as in the lower right pixel in FIG. 6, the signal of only the photodiode 121 f-14 in the right in FIG. An incident angle directivity similar to that of the pixel in the middle right part of can be obtained. That is, when the incident angle θ of incident light increases (when the incident angle θ increases in the positive direction), light is collected in the range of the photodiode 121 f-13 that does not contribute to the output (detection signal). The level of the unit detection signal decreases. Conversely, the smaller the incident angle θ of the incident light (the larger the incident angle θ in the negative direction), the more light is collected in the range of the photodiode 121f-14 that contributes to the output (detection signal), The level of the detection signal in units of pixels is increased.
 なお、図7の下段の画素のように、画素内に複数のフォトダイオードを設け、出力に寄与するフォトダイオードを変更可能な画素において、各フォトダイオードに入射光の入射角に対する指向性を持たせ、画素単位での入射角指向性を生じさせるために、各画素にオンチップレンズ121cが必須構成となる。 Note that as in the lower pixel in FIG. 7, a plurality of photodiodes are provided in the pixel, and in the pixels that can change the photodiodes contributing to the output, each photodiode has directivity with respect to the incident angle of incident light The on-chip lens 121c is an essential component of each pixel in order to generate incident angle directivity in pixel units.
 尚、入射角指向性については、画素単位でランダム性が高い方が望ましい。例えば、隣り合う画素間で同一の入射角指向性を持つと、上述した式(1)乃至式(3)または、後述する式(4)乃至式(6)が相互に同一の式となる恐れがあり、その結果、連立方程式の解となる未知数に対して式の数が不足し、復元画像を構成する画素値を求められなくなる恐れがあるためである。 As for the incident angle directivity, it is desirable that the randomness be high in pixel units. For example, when the same incident angle directivity is provided between adjacent pixels, the above-described equations (1) to (3) or equations (4) to (6) described later may be the same as each other. As a result, the number of equations is insufficient for the unknowns that are solutions of simultaneous equations, which may make it impossible to obtain the pixel values that make up the restored image.
 なお、以下の説明では、図4の画素121aのように、遮光膜121bを用いて入射角指向性を実現する画素121aを用いる場合の例を中心に説明する。ただし、遮光膜121bが必須となる場合を除いて、基本的にフォトダイオードを分割して入射角指向性を実現する画素121aを用いることも可能である。 In the following description, as in the case of the pixel 121a in FIG. 4, an example in the case of using the pixel 121a which realizes the incident angle directivity using the light shielding film 121b will be mainly described. However, except for the case where the light shielding film 121b is essential, it is also possible to basically use the pixel 121a which divides the photodiode to realize the incident angle directivity.
 <遮光膜の構成について>
 以上においては、図3に示されるように、撮像素子121の各画素121aの遮光膜121bの構成として、垂直方向に対しては受光面全体を遮光し、水平方向の遮光幅や位置を変化させる例を示したが、当然のことながら、水平方向に対して受光面全体を遮光し、垂直方向の幅(高さ)や位置を変化させるようにして、各画素121aに入射角指向性を持たせるようにしてもよい。
<About the composition of the light shielding film>
In the above, as shown in FIG. 3, as the configuration of the light shielding film 121b of each pixel 121a of the imaging element 121, the entire light receiving surface is shielded in the vertical direction, and the light shielding width and position in the horizontal direction are changed. Although an example is shown, naturally, the entire light receiving surface is shielded in the horizontal direction, and the width (height) and the position in the vertical direction are changed, so that each pixel 121a has incident angle directivity. You may make it
 尚、以降においては、図3の例のように、垂直方向に対しては画素121aの受光面全体を遮光し、水平方向に対して所定の幅で受光面を遮光する遮光膜121bを、横帯タイプの遮光膜121bと称する。また、水平方向に対しては画素121aの受光面全体を遮光し、垂直方向に対して所定の高さで受光面を遮光する遮光膜121bを、縦帯タイプの遮光膜121bと称する。 In the following, as in the example of FIG. 3, the light shielding film 121b that shields the entire light receiving surface of the pixel 121a in the vertical direction and shields the light receiving surface with a predetermined width in the horizontal direction It is called a band type light shielding film 121b. A light shielding film 121b that shields the entire light receiving surface of the pixel 121a in the horizontal direction and shields the light receiving surface at a predetermined height in the vertical direction is referred to as a vertical band type light shielding film 121b.
 また、図8の左部に示されるように、縦帯タイプと横帯タイプの遮光膜121bを組み合わせて、例えば、ベイヤ配列のそれぞれの画素に対して、L字型のような遮光膜121bを設けるようにしてもよい。 In addition, as shown in the left part of FIG. 8, combining the vertical band type and horizontal band type light shielding films 121 b, for example, an L-shaped light shielding film 121 b is formed for each pixel of the Bayer arrangement. It may be provided.
 尚、図8においては、黒色の範囲が遮光膜121bを表しており、特に断りがない限り、以降の図面においても同様に表示する。また、図8の例では、ベイヤ配列となるG(緑色)画素の画素121a-21,121a-24、R(赤色)画素の画素121a-22、およびB(青色)画素の画素121a-23のそれぞれに対して、L字型の遮光膜121b-21乃至121b-24が設けられている。 In addition, in FIG. 8, the black range represents the light shielding film 121b, and the same applies to the following drawings unless otherwise noted. Further, in the example of FIG. 8, the pixels 121a-21 and 121a-24 of G (green) pixels, the pixels 121a-22 of R (red) pixels, and the pixels 121a-23 of B (blue) pixels, which are in the Bayer array, are provided. L-shaped light shielding films 121b-21 to 121b-24 are provided for each of them.
 この場合、各画素121aは、図8の右部に示されるような入射角指向性を有することになる。すなわち、図8の右部においては、各画素121aの受光感度の分布が示されており、横軸が入射光の水平方向(x方向)の入射角度θxを表し、縦軸が入射光の垂直方向(y方向)の入射角度θyを表している。そして、範囲C4内の受光感度が、範囲C4の外よりも高く、範囲C3内の受光感度が、範囲C3の外よりも高く、範囲C2内の受光感度が、範囲C2の外よりも高く、範囲C1内の受光感度が、範囲C1の外よりも高くなる。 In this case, each pixel 121a has incident angle directivity as shown in the right part of FIG. That is, in the right part of FIG. 8, the distribution of the light receiving sensitivity of each pixel 121a is shown, the horizontal axis represents the incident angle θx in the horizontal direction (x direction) of the incident light, and the vertical axis is the vertical of the incident light The incident angle θy in the direction (y direction) is represented. The light receiving sensitivity in the range C4 is higher than the outside of the range C4, the light receiving sensitivity in the range C3 is higher than the outside of the range C3, and the light receiving sensitivity in the range C2 is higher than the outside of the range C2. The light reception sensitivity in the range C1 is higher than the outside of the range C1.
 従って、各画素121aにおいて、水平方向(x方向)の入射角度θxと、垂直方向(y方向)の入射角度θyとが範囲C1内となる入射光に対する検出信号レベルが最も高くなる。そして、入射角度θxと入射角度θyが範囲C2内、範囲C3内、範囲C4内、および、範囲C4以外の範囲となる入射光の順に検出信号レベルが低くなる。尚、図8の右部に示される受光感度の強度分布は、ベイヤ配列とは無関係に、各画素121aにおける遮光膜121bにより遮光される範囲により決定されるものである。 Therefore, in each pixel 121a, the detection signal level for the incident light in which the incident angle θx in the horizontal direction (x direction) and the incident angle θy in the vertical direction (y direction) fall within the range C1 is the highest. Then, the detection signal level decreases in the order of incident light in which the incident angle θx and the incident angle θy fall within the range C2, within the range C3, within the range C4, and outside the range C4. The intensity distribution of the light receiving sensitivity shown in the right part of FIG. 8 is determined by the range shielded by the light shielding film 121b in each pixel 121a regardless of the Bayer arrangement.
 尚、以降においては、図8のL字型の遮光膜121b-21乃至121b-24のように、縦帯タイプの遮光膜と横帯タイプの遮光膜をそれぞれの端部でつなぎ合わせた形状の遮光膜121bを、L字タイプの遮光膜121bと総称するものとする。 In the following, like the L-shaped light shielding films 121 b-21 to 121 b-24 in FIG. 8, the shape in which the vertical band type light shielding film and the horizontal band type light shielding film are joined at their respective end portions The light shielding film 121b is generically referred to as an L-shaped light shielding film 121b.
 <入射角指向性の設定方法>
 次に、図9を参照して、入射角指向性の設定方法の例について説明する。
<Setting method of incident angle directivity>
Next, with reference to FIG. 9, an example of the setting method of the incident angle directivity will be described.
 例えば、図9の上段に示されるように、遮光膜121bの水平方向の遮光範囲が、画素121aの左端部から位置Aまでの範囲とし、垂直方向の遮光範囲が、画素121aの上端部から位置Bまでの範囲である場合について考える。 For example, as shown in the upper part of FIG. 9, the light shielding range in the horizontal direction of the light shielding film 121b is from the left end of the pixel 121a to the position A, and the light shielding range in the vertical direction is from the upper end of the pixel 121a Consider the case where the range is up to B.
 この場合、各画素の水平方向の中心位置からの入射角度θx(deg)に応じた重みであって、水平方向の入射角指向性の指標となる0乃至1の重みWxを設定する。より詳細には、位置Aに対応する入射角度θx=θaにおいて、重みWxが0.5になると仮定した場合、入射角度θx<θa-αにおいて重みWxが1となり、θa-α≦入射角度θx≦θa+αにおいて、重みWxが(-(θx-θa)/2α+0.5)となり、入射角度θx>θa+αにおいて重みWxが0となるように重みWxを設定する。 In this case, a weight Wx of 0 to 1 is set, which is a weight corresponding to the incident angle θx (deg) from the center position in the horizontal direction of each pixel, which is an index of the incident angle directivity in the horizontal direction. More specifically, assuming that the weight Wx is 0.5 at the incident angle θx = θa corresponding to the position A, the weight Wx is 1 at the incident angle θx <θa−α, and θa−α ≦ incident angle θx The weight Wx is set such that the weight Wx becomes (− (θx−θa) /2α+0.5) at ≦ θa + α and becomes 0 at the incident angle θx> θa + α.
 同様に、各画素の垂直方向の中心位置からの入射角度θy(deg)に応じた重みであって、垂直方向の入射角指向性の指標となる0乃至1の重みWyを設定する。より詳細には、位置Bに対応する入射角度θy=θbにおいて、重みWyが0.5になると仮定した場合、入射角度θy<θb-αにおいて重みWyが0となり、θb-α≦入射角度θy≦θb+αにおいて、重みWyが((θy-θb)/2α+0.5)となり、入射角度θy>θb+αにおいて重みWyが1となるように重みWyを設定する。 Similarly, a weight Wy of 0 to 1 which is a weight according to the incident angle θy (deg) from the center position in the vertical direction of each pixel and which is an index of the incident angle directivity in the vertical direction is set. More specifically, assuming that the weight Wy is 0.5 at the incident angle θy = θb corresponding to the position B, the weight Wy is 0 at the incident angle θy <θb−α, and θb−α ≦ incident angle θy The weight Wy is set such that the weight Wy becomes ((θy−θb) /2α+0.5) at ≦ θb + α and becomes 1 at the incident angle θy> θb + α.
 尚、重みWx及び重みWyが、図9のグラフのように変化するのは、理想的な条件が満たされる場合となる。 The weights Wx and Wy change as in the graph of FIG. 9 when ideal conditions are satisfied.
 そして、このようにして求められた重みWx,Wyを用いることにより、それぞれの画素121aの入射角指向性、すなわち、受光感度特性に対応する係数を求めることができる。例えば、被写体面31のある点光源からの入射光の入射角度θxに対応する重みWxと、入射角度θyに対応する重みWyとを乗じた値が、その点光源に対する係数に設定される。 Then, by using the weights Wx and Wy obtained in this manner, the incident angle directivity of each pixel 121a, that is, the coefficient corresponding to the light receiving sensitivity characteristic can be obtained. For example, a value obtained by multiplying the weight Wx corresponding to the incident angle θx of incident light from a certain point light source on the object surface 31 and the weight Wy corresponding to the incident angle θy is set as the coefficient for the point light source.
 また、このとき、水平方向の重みWxおよび垂直方向の重みWyが0.5前後となる範囲における重みの変化を示す傾き(1/2α)は、焦点距離の異なるオンチップレンズ121cを用いることで設定することができる。 Further, at this time, the inclination (1 / 2α) indicating the change of the weight in the range in which the weight Wx in the horizontal direction and the weight Wy in the vertical direction are around 0.5 is obtained by using the on-chip lens 121c having different focal lengths. It can be set.
 例えば、図9の下段の実線で示されるように、オンチップレンズ121cの焦点距離が遮光膜121bの表面に合っている場合、水平方向の重みWx及び垂直方向の重みWyの傾き(1/2α)は、急峻になる。すなわち、重みWxおよび重みWyは、値が0.5付近となる水平方向の入射角度θx=θa、および、垂直方向の入射角度θy=θbの境界付近において、急激に0または1に変化する。 For example, as shown by the solid line in the lower part of FIG. 9, when the focal length of the on-chip lens 121c matches the surface of the light shielding film 121b, the inclination of the weight Wx in the horizontal direction and the weight Wy in the vertical direction (1 / 2α ) Is steep. That is, the weight Wx and the weight Wy rapidly change to 0 or 1 near the boundary of the incident angle θx = θa in the horizontal direction and the incident angle θy = θb in the vertical direction, the values of which become around 0.5.
 また、例えば、図9の下段の点線で示されるように、オンチップレンズ121cの焦点距離がフォトダイオード121eの表面に合っている場合、水平方向の重みWx及び垂直方向の重みWyの傾き(1/2α)は、緩やかになる。すなわち、重みWxおよび重みWyは、値が0.5付近となる水平方向の入射角度θx=θa、および、垂直方向の入射角度θy=θbの境界付近において、緩やかに0または1に変化する。 For example, as shown by the dotted line at the bottom of FIG. 9, when the focal length of the on-chip lens 121c matches the surface of the photodiode 121e, the inclination of the weight Wx in the horizontal direction and the weight Wy in the vertical direction (1 / 2α) becomes moderate. That is, the weight Wx and the weight Wy gradually change to 0 or 1 near the boundary of the incident angle θx = θa in the horizontal direction and the incident angle θy = θb in the vertical direction, the values of which become around 0.5.
 例えば、オンチップレンズ121cの焦点距離は、オンチップレンズ121cの曲率により変化する。従って、曲率の異なるオンチップレンズ121cを用いて、オンチップレンズ121cの焦点距離を変化させることで異なる入射角指向性、すなわち、異なる受光感度特性を得ることができる。 For example, the focal length of the on-chip lens 121c changes with the curvature of the on-chip lens 121c. Therefore, different incident angle directivity, that is, different light receiving sensitivity characteristics can be obtained by changing the focal length of the on-chip lens 121 c using the on-chip lens 121 c having different curvatures.
 したがって、画素121aの入射角指向性は、遮光膜121bによりフォトダイオード121eが遮光される範囲と、オンチップレンズ121cの曲率との組み合わせにより調整することができる。尚、オンチップレンズの曲率は、撮像素子121の全ての画素121aで同一にしてもよいし、一部の画素121aで異なるようにしてもよい。 Therefore, the incident angle directivity of the pixel 121a can be adjusted by the combination of the range in which the photodiode 121e is shielded by the light shielding film 121b and the curvature of the on-chip lens 121c. The curvature of the on-chip lens may be the same for all the pixels 121 a of the imaging device 121 or may be different for some of the pixels 121 a.
 例えば、撮像素子121の各画素121aの入射角指向性を表す指標として、各画素121aの位置、各画素121aの遮光膜121bの形状、位置、範囲、オンチップレンズ121cの曲率等に基づいて、図9のグラフのような重みWx及び重みWyの特性が画素121a毎に設定される。また、所定の被写体距離の被写体面31上のある点光源と、撮像素子121のある画素121aとの位置関係に基づいて、当該点光源から当該画素121aへの光線の入射角度が求められる。そして、求めた入射角度、並びに、当該画素121aの重みWx及び重みWyの特性に基づいて、当該点光源に対する当該画素121aの係数が求められる。 For example, based on the position of each pixel 121a, the shape, position and range of the light shielding film 121b of each pixel 121a, and the curvature of the on-chip lens 121c as an index indicating the incident angle directivity of each pixel 121a of the image sensor 121. The characteristics of the weight Wx and the weight Wy as in the graph of FIG. 9 are set for each pixel 121a. Further, based on the positional relationship between a certain point light source on the object plane 31 of a predetermined object distance and the pixel 121a of the imaging device 121, the incident angle of the light beam from the point light source to the pixel 121a is obtained. Then, based on the determined incident angle and the characteristics of the weight Wx and the weight Wy of the pixel 121a, the coefficient of the pixel 121a with respect to the point light source is determined.
 同様に、被写体面31上の各点光源と撮像素子121の各画素121aとの組み合わせについて、上述したように係数を求めることにより、上述した式(1)乃至式(3)の係数セットα1,β1,γ1,係数セットα2,β2,γ2,係数セットα3,β3,γ3のような、被写体面31に対する撮像素子121の係数セット群を求めることができる。 Similarly, for the combination of each point light source on the object plane 31 and each pixel 121a of the imaging device 121, the coefficients are obtained as described above to obtain the coefficient sets α1 and α1 of the equations (1) to (3) described above. The coefficient set group of the image sensor 121 with respect to the object plane 31 can be obtained, such as β1, γ1, coefficient set α2, β2, γ2, coefficient set α3, β3, γ3.
 なお、図13を参照して後述するように、被写体面31から撮像素子121の受光面までの被写体距離が異なると、被写体面31の各点光源からの光線の撮像素子121への入射角が異なるため、被写体距離毎に異なる係数セット群が必要となる。 As described later with reference to FIG. 13, when the subject distance from the subject surface 31 to the light receiving surface of the imaging device 121 is different, the incident angle of the light beam from each point light source of the subject surface 31 to the imaging device 121 is Because they are different, different coefficient set groups are required for each subject distance.
 また、同じ被写体距離の被写体面31であっても、設定する点光源の数や配置が異なると、各点光源からの光線の撮像素子121への入射角が異なる。従って、同じ被写体距離の被写体面31に対して、複数の係数セット群が必要となる場合がある。また、各画素121aの入射角指向性は、上述した連立方程式の独立性を確保できるように設定する必要がある。 Further, even in the case of the object plane 31 having the same object distance, when the number and arrangement of the point light sources to be set are different, the incident angles of the light rays from the respective point light sources to the imaging device 121 are different. Therefore, a plurality of coefficient set groups may be required for the object plane 31 having the same object distance. In addition, the incident angle directivity of each pixel 121 a needs to be set so as to ensure the independence of the above-described simultaneous equations.
 <オンチップレンズと撮像レンズとの違い>
 本開示の撮像装置101においては、撮像素子121は、撮像レンズからなる光学ブロックやピンホールを必要としない構成であるが、上述したように、オンチップレンズ121cは設けられる。ここで、オンチップレンズ121cと撮像レンズとは、物理的作用が異なるものである。
<The difference between on-chip lens and imaging lens>
In the imaging device 101 of the present disclosure, the imaging element 121 does not require an optical block or a pinhole formed of an imaging lens, but as described above, the on-chip lens 121 c is provided. Here, the on-chip lens 121c and the imaging lens have different physical actions.
 例えば、図10に示されるように、点光源P101から発せられた拡散光のうち撮像レンズ152に入射した光は、撮像素子151上の画素位置P111において集光する。すなわち、撮像レンズ152は、点光源P101から異なる角度で入射する拡散光を、画素位置P111に集光し、点光源P101の像を結像させるように設計されている。この画素位置P111は、点光源P101と撮像レンズ152の中心とを通る主光線L101により特定される。 For example, as shown in FIG. 10, of diffused light emitted from the point light source P101, light incident on the imaging lens 152 is condensed at the pixel position P111 on the imaging element 151. That is, the imaging lens 152 is designed to condense diffused light incident at different angles from the point light source P101 at the pixel position P111 and form an image of the point light source P101. The pixel position P111 is specified by the chief ray L101 passing through the point light source P101 and the center of the imaging lens 152.
 また、例えば、図11に示されるように、点光源P101とは異なる点光源P102から発せられた拡散光のうち撮像レンズ152に入射した光は、撮像素子151上の画素位置P111とは異なる画素位置P112において集光する。すなわち、撮像レンズ152は、点光源P102から異なる角度で入射する拡散光を、画素位置P112に集光し、点光源P102の像を結像させるように設計されている。この画素位置P112は、点光源P102と撮像レンズ152の中心とを通る主光線L102により特定される。 Further, for example, as shown in FIG. 11, of diffused light emitted from a point light source P102 different from the point light source P101, light incident on the imaging lens 152 is a pixel different from the pixel position P111 on the imaging element 151 Light is collected at position P112. That is, the imaging lens 152 is designed to condense diffused light incident at different angles from the point light source P102 at the pixel position P112 and form an image of the point light source P102. The pixel position P112 is specified by the chief ray L102 passing through the point light source P102 and the center of the imaging lens 152.
 このように、撮像レンズ152は、撮像素子151上の異なる画素位置P111,P112に、それぞれ主光線が異なる点光源P101,P102の像を結像させる。 As described above, the imaging lens 152 forms images of point light sources P101 and P102 having different chief rays at different pixel positions P111 and P112 on the imaging element 151.
 さらに、図12に示されるように、点光源P101が無限遠に存在する場合、点光源P101から発せられた拡散光の一部が、主光線L101に平行な平行光として撮像レンズ152に入射する。例えば、主光線L101に対して平行な光線L121と光線L122の間の光線からなる平行光が撮像レンズ152に入射する。そして、撮像レンズ152に入射した平行光は、撮像素子151上の画素位置P111に集光する。すなわち、撮像レンズ152は、無限遠に存在する点光源P101からの平行光を、画素位置P111に集光し、点光源P101の像を結像させるように設計されている。 Furthermore, as shown in FIG. 12, when the point light source P101 is at infinity, a part of the diffused light emitted from the point light source P101 is incident on the imaging lens 152 as parallel light parallel to the chief ray L101. . For example, parallel light, which is a light ray between the light ray L121 and the light ray L122 parallel to the chief ray L101, enters the imaging lens 152. Then, the parallel light incident on the imaging lens 152 is condensed at the pixel position P111 on the imaging element 151. That is, the imaging lens 152 is designed to condense parallel light from the point light source P101 existing at infinity into the pixel position P111 and form an image of the point light source P101.
 従って、撮像レンズ152は、例えば、主光線入射角θ1を持つ点光源からの拡散光を画素(画素出力単位)P1に入射させ、主光線入射角θ1とは異なる主光線入射角θ2を持つ点光源からの拡散光を、画素P1とは異なる画素(画素出力単位)P2に入射させる集光機能を持つ。すなわち、撮像レンズ152は、主光線の入射角が異なる光源からの拡散光を、互いに隣接する複数の画素(画素出力単位)へ入射させるための集光機能を持つ。ただし、例えば、互いに近接している点光源や、無限遠に存在しており実質的に近接している点光源からの光は、同じ画素(画素出力単位)に入射する場合がある。 Therefore, for example, the imaging lens 152 causes diffused light from a point light source having a chief ray incident angle θ1 to enter into the pixel (pixel output unit) P1 and has a chief ray incident angle θ2 different from the chief ray incident angle θ1. It has a light collecting function of causing diffused light from a light source to be incident on a pixel (pixel output unit) P2 different from the pixel P1. That is, the imaging lens 152 has a light collecting function for causing diffused light from light sources with different incident angles of principal rays to a plurality of pixels (pixel output units) adjacent to each other. However, for example, light from point light sources close to each other or point light sources existing at infinity and substantially close to each other may be incident on the same pixel (pixel output unit).
 これに対して、例えば、図4,図5を参照して説明したように、オンチップレンズ121cを通る光は、対応する画素(画素出力単位)を構成するフォトダイオード121eまたはフォトダイオード121fの受光面のみに入射される。換言すれば、オンチップレンズ121cは、画素(画素出力単位)毎に設けられ、自身に入射する入射光を対応する画素(画素出力単位)のみに集光する。すなわち、オンチップレンズ121cは、異なる点光源からの光を、異なる画素(画素出力単位)へ入射させるための集光機能を持たない。 On the other hand, for example, as described with reference to FIGS. 4 and 5, the light passing through the on-chip lens 121c is received by the photodiode 121e or the photodiode 121f constituting the corresponding pixel (pixel output unit). It is incident only on the surface. In other words, the on-chip lens 121 c is provided for each pixel (pixel output unit), and condenses incident light incident thereon to only the corresponding pixel (pixel output unit). That is, the on-chip lens 121c does not have a light collecting function for causing light from different point light sources to be incident on different pixels (pixel output units).
 なお、ピンホールを用いた場合、各画素(画素出力単位)の位置と光の入射角の関係が一意に定まる。したがって、ピンホールと従来の撮像素子を用いた構成の場合、各画素に対して、入射角指向性を独立して自由に設定することができない。 When a pinhole is used, the relationship between the position of each pixel (pixel output unit) and the incident angle of light is uniquely determined. Therefore, in the case of the configuration using the pinhole and the conventional imaging device, the incident angle directivity can not be set freely and freely for each pixel.
 <被写体面と撮像素子との距離の関係>
 次に、図13を参照して、被写体面と撮像素子121との距離の関係について説明する。
<Relationship between the subject plane and the image sensor>
Next, with reference to FIG. 13, the relationship between the distance between the object plane and the image sensor 121 will be described.
 なお、図13の左上に示されるように、撮像素子121(図1の撮像素子51と同様)と被写体面31までの被写体距離が距離d1である場合、撮像素子121上の画素Pc,Pb,Paにおける検出信号レベルDA,DB,DCが、上述した式(1)乃至式(3)と同一の式で表されるものとする。 As shown in the upper left of FIG. 13, when the subject distance between the image sensor 121 (similar to the image sensor 51 in FIG. 1) and the subject surface 31 is the distance d1, the pixels Pc, Pb, It is assumed that the detection signal levels DA, DB, and DC at Pa are represented by the same equations as the equations (1) to (3) described above.
 DA=α1×a+β1×b+γ1×c
                            ・・・(1)
 DB=α2×a+β2×b+γ2×c
                            ・・・(2)
 DC=α3×a+β3×b+γ3×c
                            ・・・(3)
DA = α1 × a + β1 × b + γ1 × c
... (1)
DB = α2 × a + β2 × b + γ2 × c
... (2)
DC = α3 × a + β3 × b + γ3 × c
... (3)
 また、図13の左下に示されるように、撮像素子121との被写体距離が距離d1よりもdだけ大きな距離d2である被写体面31’、すなわち、撮像素子121から見て、被写体面31よりも奥の被写体面31’について考える場合も、撮像素子121上の画素Pc,Pb,Paにおける検出信号レベルは、図13の下段中央部に示されるように、検出信号レベルDA,DB,DCで同様になる。 Further, as shown in the lower left of FIG. 13, when viewed from the image pickup element 121, the object surface 31 ′ at which the object distance to the image pickup element 121 is a distance d 2 larger by d than the distance d 1, Also in the case of the far object plane 31 ', the detection signal levels at the pixels Pc, Pb and Pa on the image sensor 121 are the same as the detection signal levels DA, DB and DC as shown in the lower center of FIG. become.
 しかしながら、この場合、被写体面31’上の点光源PA’,PB’,PC’からの光強度a’,b’,c’の光線が撮像素子121の各画素において受光される。また、撮像素子121への光強度a’,b’,c’の光線の入射角度が異なる(変化する)ので、それぞれ異なる係数セット群が必要となる。従って、各画素Pa,Pb,Pcにおける検出信号レベルDA,DB,DCは、例えば、以下の式(4)乃至式(6)で表される。 However, in this case, light rays of light intensities a ', b' and c 'from the point light sources PA', PB 'and PC' on the object plane 31 'are received by the respective pixels of the image sensor 121. Further, since the incident angles of the light beams of the light intensities a ', b' and c 'to the imaging element 121 are different (change), different coefficient set groups are required. Therefore, the detection signal levels DA, DB, and DC at the pixels Pa, Pb, and Pc are expressed, for example, by the following formulas (4) to (6).
 DA=α11×a’+β11×b’+γ11×c’
                            ・・・(4)
 DB=α12×a’+β12×b’+γ12×c’
                            ・・・(5)
 DC=α13×a’+β13×b’+γ13×c’
                            ・・・(6)
DA = α11 × a ′ + β11 × b ′ + γ11 × c ′
... (4)
DB = α12 × a ′ + β12 × b ′ + γ12 × c ′
... (5)
DC = α13 × a ′ + β13 × b ′ + γ13 × c ′
... (6)
 ここで、係数セットα11,β11,γ11,係数セットα12,β12,γ12,係数セットα13,β13,γ13からなる係数セット群は、被写体面31に対する係数セットα1,β1,γ1,係数セットα2,β2,γ2,係数セットα3,β3,γ3に対応する被写体面31’に対する係数セット群である。 Here, the coefficient set group consisting of the coefficient sets α11, β11, γ11, the coefficient sets α12, β12, γ12, the coefficient sets α13, β13, γ13 is the coefficient sets α1, β1, γ1 and the coefficient sets α2, β2 for the object surface 31. , Γ2, and coefficient sets α3, β3, and γ3 for the object plane 31 ′.
 従って、式(4)乃至式(6)からなる連立方程式を、予め設定された係数セット群α11,β11,γ11,α12,β12,γ12,α13,β13,γ13を用いて解くことで、被写体面31の点光源PA,PB,PCからの光線の光強度a,b,cを求める場合と同様の手法で、図13の右下に示されるように、被写体面31’の点光源PA’,PB’,PC’からの光線の光強度a’,b’,c’を求めることができる。その結果、被写体面31’の復元画像を復元することが可能となる。 Therefore, the object plane can be obtained by solving the simultaneous equations of equations (4) to (6) using preset coefficient set groups α11, β11, γ11, α12, β12, γ12, α13, β13, γ13. The point light source PA ′ of the object surface 31 ′, as shown in the lower right of FIG. 13, in the same manner as in the case of obtaining the light intensities a, b and c of the light from the 31 point light sources PA, PB and PC. The light intensities a ', b' and c 'of the rays from PB' and PC 'can be determined. As a result, it is possible to restore the restored image of the subject surface 31 '.
 従って、図2の撮像装置101においては、撮像素子121からの被写体面までの距離(被写体距離)毎の係数セット群を予め用意しておき、被写体距離毎に係数セット群を切り替えて連立方程式を作成し、作成した連立方程式を解くことで、1個の検出画像に基づいて、様々な被写体距離の被写体面の復元画像を得ることが可能となる。例えば、検出画像を1回撮像し、記録した後、記録した検出画像を用いて、被写体面までの距離に応じて係数セット群を切り替えて、復元画像を復元することにより、任意の被写体距離の被写体面の復元画像を生成することが可能である。 Therefore, in the imaging apparatus 101 of FIG. 2, a coefficient set group for each distance (subject distance) from the imaging element 121 to the subject surface is prepared in advance, and the coefficient set group is switched for each subject distance to perform simultaneous equations. By creating and solving the simultaneous equations created, it is possible to obtain a restored image of the object plane at various object distances based on one detected image. For example, after capturing and recording a detected image once, the coefficient set group is switched according to the distance to the object surface using the recorded detected image, and the restored image is restored. It is possible to generate a restored image of the object plane.
 また、被写体距離や画角が特定できるような場合については、全ての画素を用いずに、特定された被写体距離や画角に対応した被写体面の撮像に適した入射角指向性を有する画素の検出信号を用いて、復元画像を生成するようにしてもよい。これにより、特定された被写体距離や画角に対応した被写体面の撮像に適した画素の検出信号を用いて復元画像を生成することができる。 Further, in the case where the subject distance and the angle of view can be specified, the pixels having incident angle directivity suitable for imaging the subject surface corresponding to the specified subject distance and angle of view without using all the pixels. The detection signal may be used to generate a restored image. As a result, a restored image can be generated using detection signals of pixels suitable for imaging the object plane corresponding to the specified object distance and angle of view.
 例えば、図14の上段に示されるように、4辺のそれぞれの端部から幅d1だけ遮光膜121bにより遮光されている画素121aと、図14の下段に示されるように、4辺のそれぞれの端部から幅d2(>d1)だけ遮光膜121bにより遮光されている画素121a’とを考える。 For example, as shown in the upper part of FIG. 14, the pixel 121a shielded by the light shielding film 121b from the end of each of the four sides by the width d1 and each of the four sides as shown in the lower part of FIG. Consider a pixel 121 a ′ that is shielded by the light shielding film 121 b by a width d 2 (> d 1) from the end.
 図15は、撮像素子121の中心位置C1への被写体面31からの入射光の入射角度の例を示している。なお、図15においては、水平方向の入射光の入射角度の例を示しているが、垂直方向についてもほぼ同様となる。また、図15の右部には、図14における画素121a,121a’が示されている。 FIG. 15 shows an example of the incident angle of incident light from the object plane 31 to the center position C1 of the image sensor 121. Although FIG. 15 shows an example of the incident angle of incident light in the horizontal direction, the same applies to the vertical direction. In the right part of FIG. 15, the pixels 121a and 121a 'in FIG. 14 are shown.
 例えば、図14の画素121aが撮像素子121の中心位置C1に配置されている場合、被写体面31から画素121aへの入射光の入射角の範囲は、図15の左部に示されるように角度A1となる。従って、画素121aは、被写体面31の水平方向の幅W1分の入射光を受光することができる。 For example, when the pixel 121a of FIG. 14 is disposed at the center position C1 of the imaging element 121, the range of the incident angle of incident light from the object plane 31 to the pixel 121a is an angle as shown in the left part of FIG. It becomes A1. Accordingly, the pixel 121a can receive incident light for the width W1 in the horizontal direction of the object plane 31.
 これに対して、図14の画素121a’が撮像素子121の中心位置C1に配置されている場合、画素121a’は画素121aよりも遮光される範囲が広いため、被写体面31から画素121a’への入射光の入射角の範囲は、図15の左部に示されるように角度A2(<A1)となる。従って、画素121a’は、被写体面31の水平方向の幅W2(<W1)分の入射光を受光することができる。 On the other hand, when the pixel 121a 'in FIG. 14 is disposed at the center position C1 of the imaging device 121, the pixel 121a' has a wider range of light shielding than the pixel 121a. The range of the incident angle of the incident light is the angle A2 (<A1) as shown in the left part of FIG. Therefore, the pixel 121 a ′ can receive incident light corresponding to the width W 2 (<W 1) in the horizontal direction of the object surface 31.
 つまり、遮光範囲が狭い画素121aは、被写体面31上の広い範囲を撮像するのに適した広画角画素であるのに対して、遮光範囲が広い画素121a’は、被写体面31上の狭い範囲を撮像するのに適した狭画角画素である。尚、ここでいう広画角画素および狭画角画素は、図14の画素121a,121a’の両者を比較する表現であって、その他の画角の画素を比較する上ではこの限りではない。 That is, while the pixel 121 a having a narrow light shielding range is a wide angle of view pixel suitable for imaging a wide range on the object surface 31, the pixel 121 a ′ having a wide light shielding range is narrow on the object surface 31. It is a narrow angle-of-view pixel suitable for imaging a range. Here, the wide angle of view pixel and the narrow angle of view pixel are expressions for comparing both of the pixels 121a and 121a 'in FIG. 14 and are not limited to the case of comparing pixels of other angles of view.
 従って、例えば、画素121aは、図14の画像I1を復元するために用いられる。画像I1は、図16の上段の被写体となる人物H101の全体を含み、被写体幅W1に対応する画角SQ1の画像である。これに対して、例えば、画素121a’は、図14の画像I2を復元するために用いられる。画像I2は、図16の上段の人物H101の顔の周辺がズームアップされた被写体幅W2に対応する画角SQ2の画像である。 Thus, for example, pixel 121a is used to restore image I1 of FIG. The image I1 is an image of an angle of view SQ1 corresponding to the subject width W1 including the whole of the person H101 as the subject in the upper stage of FIG. On the other hand, for example, the pixel 121a 'is used to restore the image I2 of FIG. The image I2 is an image of an angle of view SQ2 corresponding to the subject width W2 in which the periphery of the face of the person H101 in the upper part of FIG. 16 is zoomed up.
 また、例えば、図16の下段に示されるように、撮像素子121の点線で囲まれた範囲ZAに、図14の画素121aを、一点鎖線で囲まれた範囲ZBに画素121a’を、それぞれ所定画素数ずつ集めて配置することが考えられる。そして、例えば、被写体幅W1に対応する画角SQ1の画像を復元するときには、範囲ZA内の各画素121aの検出信号を用いるようにすることで、適切に画角SQ1の画像を復元することができる。一方、被写体幅W2に対応する画角SQ2の画像を復元するときには、範囲ZB内の各画素121a’の検出信号を用いるようにすることで、適切に画角SQ2の画像を復元することができる。 Further, for example, as shown in the lower part of FIG. 16, the pixel 121a of FIG. 14 is specified in the range ZA surrounded by the dotted line of the imaging device 121, and the pixel 121a ′ is specified in the range ZB surrounded by the dashed dotted line. It is conceivable to collect and arrange each pixel number. Then, for example, when the image of the angle of view SQ1 corresponding to the subject width W1 is restored, the image of the angle of view SQ1 is appropriately restored by using the detection signal of each pixel 121a in the range ZA. it can. On the other hand, when the image of the angle of view SQ2 corresponding to the subject width W2 is restored, the image of the angle of view SQ2 can be appropriately restored by using the detection signal of each pixel 121a 'in the range ZB. .
 なお、画角SQ2は、画角SQ1よりも狭いので、画角SQ2と画角SQ1の画像を同一の画素数で復元する場合、画角SQ1の画像よりも、画角SQ2の画像を復元する方が、より高画質な復元画像を得ることができる。 Since the angle of view SQ2 is narrower than the angle of view SQ1, when the images of the angle of view SQ2 and the angle of view SQ1 are restored with the same number of pixels, the image of the angle of view SQ2 is restored rather than the image of the angle of view SQ1. It is possible to obtain a higher quality restored image.
 つまり、同一画素数を用いて復元画像を得ることを考えた場合、より画角の狭い画像を復元する方が、より高画質な復元画像を得ることができる。 That is, when it is considered to obtain a restored image using the same number of pixels, a higher quality restored image can be obtained by restoring an image with a narrower angle of view.
 例えば、図17の右部は、図16の撮像素子121の範囲ZA内の構成例を示している。図17の左部は、範囲ZA内の画素121aの構成例を示している。 For example, the right part of FIG. 17 shows a configuration example within the range ZA of the imaging device 121 of FIG. The left part of FIG. 17 shows a configuration example of the pixel 121a in the range ZA.
 図17において、黒色で示された範囲が遮光膜121bであり、各画素121aの遮光範囲は、例えば、図17の左部に示される規則に従って決定される。 In FIG. 17, the range shown in black is the light shielding film 121b, and the light shielding range of each pixel 121a is determined, for example, according to the rule shown in the left part of FIG.
 図17の左部の主遮光部Z101(図17の左部の黒色部)は、各画素121aにおいて共通に遮光される範囲である。具体的には、主遮光部Z101は、画素121aの左辺及び右辺から画素121a内に向かって、それぞれ幅dx1の範囲、並びに、画素121aの上辺及び下辺から画素121a内に向かって、それぞれ高さdy1の範囲である。そして、各画素121aにおいて、主遮光部Z101の内側の範囲Z102内に、遮光膜121bにより遮光されない矩形の開口部Z111が設けられる。従って、各画素121aにおいて、開口部Z111以外の範囲が、遮光膜121bにより遮光される。 The main light-shielding portion Z101 in the left part of FIG. 17 (black part in the left part in FIG. 17) is a range in which light is shielded in common in each pixel 121a. Specifically, the main light shielding portion Z101 has a height in the range of dx1 from the left side and the right side of the pixel 121a and in the range from the upper side and the lower side of the pixel 121a to the inside of the pixel 121a. It is the range of dy1. Then, in each pixel 121a, a rectangular opening Z111 which is not shielded by the light shielding film 121b is provided within the range Z102 inside the main light shielding portion Z101. Therefore, in each pixel 121a, the range other than the opening Z111 is shielded by the light shielding film 121b.
 ここで、各画素121aの開口部Z111は規則的に配置されている。具体的には、各画素121a内における開口部Z111の水平方向の位置は、同じ垂直方向の列の画素121a内において同一になる。また、各画素121a内における開口部Z111の垂直方向の位置は、同じ水平方向の行の画素121a内において同一になる。 Here, the openings Z111 of the pixels 121a are regularly arranged. Specifically, the horizontal position of the opening Z111 in each pixel 121a is the same in the pixels 121a in the same vertical direction. Further, the position in the vertical direction of the opening Z111 in each pixel 121a is the same in the pixels 121a in the same horizontal row.
 一方、各画素121a内における開口部Z111の水平方向の位置は、画素121aの水平方向の位置に応じて所定の間隔でずれている。すなわち、画素121aの位置が右方向に進むに従って、開口部Z111の左辺が、画素121aの左辺からそれぞれ幅dx1、dx2、・・・、dxnだけ右方向にずれた位置に移動する。幅dx1と幅dx2の間隔、幅dx2と幅dx3の間隔、・・・、幅dxn-1と幅dxnの間隔は、それぞれ範囲Z102の水平方向の幅から開口部Z111の幅を引いた長さを水平方向の画素数n-1で割った値となる。 On the other hand, the horizontal position of the opening Z111 in each pixel 121a is shifted at a predetermined interval according to the horizontal position of the pixel 121a. That is, as the position of the pixel 121a advances to the right, the left side of the opening Z111 moves to the position shifted to the right from the left side of the pixel 121a by the widths dx1, dx2,. The distance between the width dx1 and the width dx2, the distance between the width dx2 and the width dx3, ..., the distance between the width dxn-1 and the width dxn is the length obtained by subtracting the width of the opening Z111 from the width of the range Z102 Divided by the number of pixels n-1 in the horizontal direction.
 また、各画素121a内における開口部Z111の垂直方向の位置は、画素121aの垂直方向の位置に応じて所定の間隔でずれている。すなわち、画素121aの位置が下方向に進むに従って、開口部Z111の上辺が、画素121aの上辺からそれぞれ高さdy1、dy2、・・・、dynだけ下方向にずれた位置に移動する。高さdy1と高さdy2の間隔、高さdy2と高さdy3の間隔、・・・、高さdyn-1と高さdynの間隔は、それぞれ範囲Z102の垂直方向の高さから開口部Z111の高さを引いた長さを垂直方向の画素数m-1で割った値となる。 Further, the position in the vertical direction of the opening Z111 in each pixel 121a is shifted at a predetermined interval according to the position in the vertical direction of the pixel 121a. That is, as the position of the pixel 121a moves downward, the upper side of the opening Z111 moves downward from the upper side of the pixel 121a by heights dy1, dy2,. The distance between the height dy1 and the height dy2, the distance between the height dy2 and the height dy3, ..., the distance between the height dyn-1 and the height dyn are respectively from the vertical height of the range Z102 to the opening Z111 The length obtained by subtracting the height of the image is divided by the number of pixels m-1 in the vertical direction.
 図18の右部は、図16の撮像素子121の範囲ZB内の構成例を示している。図18の左部は、範囲ZB内の画素121a’の構成例を示している。 The right part of FIG. 18 shows a configuration example within the range ZB of the imaging device 121 of FIG. The left part of FIG. 18 shows a configuration example of the pixel 121a 'in the range ZB.
 図18において、黒色で示された範囲が遮光膜121b’であり、各画素121a’の遮光範囲は、例えば、図18の左部に示される規則に従って決定される。 In FIG. 18, the range shown in black is the light shielding film 121b ', and the light shielding range of each pixel 121a' is determined, for example, according to the rule shown in the left part of FIG.
 図18の左部の主遮光部Z151(図18に左部の黒色部)は、各画素121a’において共通に遮光される範囲である。具体的には、主遮光部Z151は、画素121a’の左辺及び右辺から画素121a’内に向かって、それぞれ幅dx1’の範囲、並びに、画素121a’の上辺及び下辺から画素121a’内に向かって、それぞれ高さdy1’の範囲である。そして、各画素121a’において、主遮光部Z151の内側の範囲Z152内に、遮光膜121b’により遮光されない矩形の開口部Z161が設けられる。従って、各画素121a’において、開口部Z161以外の範囲が、遮光膜121b’により遮光される。 The main light shielding portion Z151 at the left part of FIG. 18 (black part at the left part in FIG. 18) is a range in which light is shielded in common in each pixel 121a '. Specifically, the main light shielding portion Z151 goes from the left side and the right side of the pixel 121a 'to the inside of the pixel 121a' and in the range of the width dx1 'and from the upper side and the lower side of the pixel 121a' And the height dy1 '. In each pixel 121a ', a rectangular opening Z161 which is not shielded by the light shielding film 121b' is provided in a range Z152 inside the main light shielding portion Z151. Therefore, in each pixel 121a ', the range other than the opening Z161 is shielded by the light shielding film 121b'.
 ここで、各画素121a’の開口部Z161は、図17の各画素121aの開口部Z111と同様に、規則的に配置されている。具体的には、各画素121a’内における開口部Z161の水平方向の位置は、同じ垂直方向の列の画素121a’内において同一になる。また、各画素121a’内における開口部Z161の垂直方向の位置は、同じ水平方向の行の画素121a’内において同一になる。 Here, the opening Z161 of each pixel 121a 'is regularly arranged similarly to the opening Z111 of each pixel 121a of FIG. Specifically, the horizontal position of the opening Z161 in each pixel 121a 'is the same in the pixels 121a' in the same vertical direction. Further, the vertical position of the opening Z 161 in each pixel 121 a ′ is the same in the pixels 121 a ′ in the same horizontal row.
 一方、各画素121a’内における開口部Z161の水平方向の位置は、画素121a’の水平方向の位置に応じて所定の間隔でずれている。すなわち、画素121a’の位置が右方向に進むに従って、開口部Z161の左辺が、画素121a’の左辺からそれぞれ幅dx1’、dx2’、・・・、dxn’だけ右方向にずれた位置に移動する。幅dx1’と幅dx2’の間隔、幅dx2’と幅dx3’の間隔、・・・、幅dxn-1’と幅dxn’の間隔は、それぞれ範囲Z152の水平方向の幅から開口部Z161の幅を引いた長さを水平方向の画素数n-1で割った値となる。 On the other hand, the horizontal position of the opening Z161 in each pixel 121a 'is shifted at a predetermined interval in accordance with the horizontal position of the pixel 121a'. That is, as the position of the pixel 121a 'proceeds to the right, the left side of the opening Z161 moves to the position shifted to the right by the widths dx1', dx2 ', ..., dxn' from the left side of the pixel 121a '. Do. The distance between the width dx1 'and the width dx2', the distance between the width dx2 'and the width dx3',..., The distance between the width dxn-1 'and the width dxn' The length obtained by subtracting the width is divided by the number of pixels n-1 in the horizontal direction.
 また、各画素121a’内における開口部Z161の垂直方向の位置は、画素121a’の垂直方向の位置に応じて所定の間隔でずれている。すなわち、画素121a’の位置が下方向に進むに従って、開口部Z161の上辺が、画素121a’の上辺からそれぞれ高さdy1’,dy2’、・・・、dyn’だけ下方向にずれた位置に移動する。高さdy1’と高さdy2’の間隔、高さdy2’と高さdy3’の間隔、・・・、高さdyn-1’と高さdyn’の間隔は、それぞれ範囲Z152の垂直方向の高さから開口部Z161の高さを引いた長さを垂直方向の画素数m-1で割った値となる。 Further, the position in the vertical direction of the opening Z161 in each pixel 121a 'is shifted at a predetermined interval according to the position in the vertical direction of the pixel 121a'. That is, as the position of the pixel 121a 'moves downward, the upper side of the opening Z161 is shifted downward by height dy1', dy2 ', ..., dyn' from the upper side of the pixel 121a '. Moving. The distance between the height dy1 ′ and the height dy2 ′, the distance between the height dy2 ′ and the height dy3 ′,..., The distance between the height dyn−1 ′ and the height dyn ′ are in the vertical direction of the range Z152 The length obtained by subtracting the height of the opening Z161 from the height is divided by the number of pixels m-1 in the vertical direction.
 ここで、図17の画素121aの範囲Z102の水平方向の幅から開口部Z111の幅を引いた長さは、図18の画素121a’の範囲Z152の水平方向の幅から開口部Z161の幅を引いた幅より大きくなる。従って、図17の幅dx1、dx2・・・dxnの変化の間隔は、図18の幅dx1’、dx2’・・・dxn’の変化の間隔より大きくなる。 Here, the length obtained by subtracting the width of the opening Z111 from the width of the range Z102 of the pixel 121a in FIG. 17 is the width of the opening Z161 from the width of the range Z152 of the pixel 121a ′ in FIG. It becomes larger than the width which I pulled. Therefore, the intervals of change in the widths dx1, dx2,..., Dxn in FIG. 17 are larger than the intervals of changes in the widths dx1 ', dx2',.
 また、図17の画素121aの範囲Z102の垂直方向の高さから開口部Z111の高さを引いた長さは、図18の画素121a’の範囲Z152の垂直方向の高さから開口部Z161の高さを引いた長さより大きくなる。従って、図17の高さdy1、dy2・・・dynの変化の間隔は、図18の高さdy1’、dy2’・・・dyn’の変化の間隔より大きくなる。 The length obtained by subtracting the height of the opening Z111 from the height in the vertical direction of the range Z102 of the pixel 121a of FIG. 17 is the height of the opening Z161 in the vertical direction of the range Z152 of the pixel 121a ′ of FIG. It is larger than the length minus the height. Accordingly, the change intervals of the heights dy1, dy2... Dyn in FIG. 17 are larger than the change intervals of the heights dy1 ', dy2'.
 このように、図17の各画素121aの遮光膜121bの開口部Z111の水平方向および垂直方向の位置の変化の間隔と、図18の各画素121a’の遮光膜121b’の開口部Z161の水平方向および垂直方向の位置の変化の間隔とは異なる。そして、この間隔の違いが、復元画像における被写体分解能(角度分解能)の違いとなる。すなわち、図18の各画素121a’の遮光膜121b’の開口部Z161の水平方向および垂直方向の位置の変化の間隔の方が、図17の各画素121aの遮光膜121bの開口部Z111の水平方向および垂直方向の位置の変化の間隔より狭くなる。従って、図18の各画素121a’の検出信号を用いて復元される復元画像は、図17の各画素121aの検出信号を用いて復元される復元画像より、被写体分解能が高くなり、高画質となる。 Thus, the interval of change of the position in the horizontal direction and the vertical direction of the opening Z111 of the light shielding film 121b of each pixel 121a of FIG. 17 and the horizontal direction of the opening Z161 of the light shielding film 121b ′ of each pixel 121a ′ of FIG. It is different from the interval of change of position in the direction and vertical direction. Then, the difference in this interval is the difference in object resolution (angular resolution) in the restored image. That is, the change in the horizontal and vertical positions of the opening Z161 of the light shielding film 121b 'of each pixel 121a' in FIG. 18 corresponds to the horizontal direction of the opening Z111 of the light shielding film 121b in each pixel 121a of FIG. It becomes narrower than the interval of change of position in the direction and vertical direction. Therefore, the restored image restored using the detection signal of each pixel 121a 'in FIG. 18 has a higher subject resolution than the restored image restored using the detection signal of each pixel 121a in FIG. Become.
 このように、主遮光部の遮光範囲と開口部の開口範囲との組み合わせを変化させることで、様々な画角の(様々な入射角指向性を持った)画素からなる撮像素子121を実現することが可能となる。 As described above, by changing the combination of the light shielding range of the main light shielding portion and the opening range of the opening, the imaging device 121 including pixels (having various incident angle directivity) of various angles of view is realized. It becomes possible.
 尚、以上においては、画素121aと画素121a’を範囲ZAと範囲ZBに分けて配置する例を示したが、これは説明を簡単にするためであり、異なる画角に対応する画素121aが同じ領域内に混在して配置されることが望ましい。 Although the example in which the pixel 121a and the pixel 121a ′ are divided into the range ZA and the range ZB is described above, this is to simplify the description, and the pixels 121a corresponding to different angles of view are the same. It is desirable to be mixedly arranged in the area.
 例えば、図19に示されるように、点線で示される2画素×2画素からなる4画素を1個の単位Uとして、それぞれの単位Uが、広画角の画素121a-W、中画角の画素121a-M、狭画角の画素121a-N、極狭画角の画素121a-ANの4画素から構成されるようにする。 For example, as shown in FIG. 19, four pixels of 2 pixels × 2 pixels shown by dotted lines are set as one unit U, and each unit U is a pixel 121a-W with a wide angle of view, a middle angle of view Four pixels of a pixel 121a-M, a pixel 121a-N with a narrow angle of view, and a pixel 121a-AN with a very narrow angle of view are used.
 この場合、例えば、全画素121aの画素数がXである場合、4種類の画角ごとにX/4画素ずつの検出画像を用いて復元画像を復元することが可能となる。この際、画角毎に異なる4種類の係数セット群が使用されて、4種類の異なる連立方程式により、それぞれ異なる画角の復元画像が復元される。 In this case, for example, when the number of pixels of all the pixels 121a is X, it is possible to restore a restored image using detection images of X / 4 pixels for each of four types of angle of view. At this time, four different sets of coefficient sets are used for each angle of view, and restored images of different angles of view are restored by four different simultaneous equations.
 従って、復元する復元画像の画角の撮像に適した画素から得られる検出画像を用いて復元画像を復元することで、4種類の画角に応じた適切な復元画像を得ることが可能となる。 Therefore, by restoring the restored image using the detected image obtained from the pixels suitable for capturing the angle of view of the restored image to be restored, it is possible to obtain an appropriate restored image corresponding to the four types of angle of view. .
 また、4種類の画角の中間の画角や、その前後の画角の画像を、4種類の画角の画像から補間生成するようにしてもよく、様々な画角の画像をシームレスに生成することで、疑似的な光学ズームを実現するようにしてもよい。 In addition, images of intermediate angles of view of four types of angle of view and images of angles of view before and after that may be generated by interpolation from images of four types of angle of view, and images of various angles of view are seamlessly generated By doing this, a pseudo optical zoom may be realized.
 尚、例えば、画角の広い画像を復元画像として得る場合、広画角画素を全て用いるようにしてもよいし、広画角画素の一部を用いるようにしてもよい。また、例えば、画角の狭い画像を復元画像として得る場合、狭画角画素を全て用いるようにしてもよいし、狭画角画素の一部を用いるようにしてもよい。 For example, when obtaining an image with a wide angle of view as a restored image, all wide angle of view pixels may be used, or part of the wide angle of view pixels may be used. Further, for example, when obtaining an image with a narrow angle of view as a restored image, all narrow angle of view pixels may be used, or a part of narrow angle of view pixels may be used.
 <撮像装置101による撮像処理>
 次に、図20のフローチャートを参照して、図2の撮像装置101による撮像処理について説明する。
<Imaging Process by Imaging Device 101>
Next, imaging processing by the imaging device 101 in FIG. 2 will be described with reference to the flowchart in FIG.
 ステップS1において、撮像素子121は、被写体の撮像を行う。これにより、異なる入射角指向性を備える撮像素子121の各画素121aから、被写体からの入射光の光量に応じた検出信号レベルを示す検出信号が出力され、撮像素子121は、各画素121aの検出信号からなる検出画像を復元部122に供給する。 In step S1, the imaging element 121 captures an image of a subject. As a result, a detection signal indicating a detection signal level corresponding to the light amount of incident light from the subject is output from each pixel 121a of the imaging device 121 having different incident angle directivity, and the imaging device 121 detects each pixel 121a. The detection image composed of a signal is supplied to the restoration unit 122.
 ステップS2において、復元部122は、画像の復元に用いる係数を求める。具体的には、復元部122は、復元対象となる被写体面31までの距離、すなわち被写体距離を設定する。なお、被写体距離の設定方法には、任意の方法を採用することができる。例えば、復元部122は、入力部124を介してユーザにより入力された被写体距離、又は、検出部125により検出された被写体距離を、復元対象となる被写体面31までの距離に設定する。 In step S2, the restoration unit 122 obtains a coefficient used for image restoration. Specifically, the restoration unit 122 sets the distance to the object plane 31 to be restored, that is, the object distance. Note that any method can be adopted as a method of setting the subject distance. For example, the restoration unit 122 sets the subject distance input by the user via the input unit 124 or the subject distance detected by the detection unit 125 as the distance to the subject plane 31 to be restored.
 次に、復元部122は、設定した被写体距離に対応付けられている係数セット群を記憶部128から読み出す。 Next, the restoration unit 122 reads out from the storage unit 128 the coefficient set group associated with the set subject distance.
 ステップS3において、復元部122は、検出画像及び係数を用いて、画像の復元を行う。具体的には、復元部122は、検出画像の各画素の検出信号レベルと、ステップS2の処理で取得した係数セット群とを用いて、上述した式(1)乃至式(3)、または、式(4)乃至式(6)を参照して説明した連立方程式を作成する。次に、復元部122は、作成した連立方程式を解くことにより、設定した被写体距離に対応する被写体面31上の各点光源の光強度を算出する。そして、復元部122は、算出した光強度に応じた画素値を有する画素を被写体面31の各点光源の配置に従って並べることにより、被写体の像が結像された復元画像を生成する。 In step S3, the restoration unit 122 restores the image using the detected image and the coefficients. Specifically, the restoration unit 122 uses the detection signal level of each pixel of the detection image and the coefficient set group acquired in the process of step S2 to set the above-mentioned equation (1) to equation (3) or The simultaneous equations described with reference to equations (4) to (6) are created. Next, the restoration unit 122 calculates the light intensity of each point light source on the object plane 31 corresponding to the set object distance by solving the created simultaneous equations. Then, the restoration unit 122 arranges the pixels having pixel values according to the calculated light intensity according to the arrangement of the point light sources of the object plane 31 to generate a restored image on which the image of the object is formed.
 ステップS4において、撮像装置101は、復元画像に対して各種の処理を行う。例えば、復元部122は、必要に応じて、復元画像に対して、デモザイク処理、γ補正、ホワイトバランス調整、所定の圧縮形式への変換処理等を行う。また、復元部122は、例えば、必要に応じて、復元画像を表示部127に供給し、表示させたり、記録再生部129に供給し、記録媒体130に記録させたり、通信部131を介して、他の機器に出力したりする。 In step S4, the imaging apparatus 101 performs various processes on the restored image. For example, the restoration unit 122 performs demosaicing processing, γ correction, white balance adjustment, conversion processing to a predetermined compression format, and the like on the restored image as necessary. In addition, the restoration unit 122 supplies, for example, a restored image to the display unit 127 for display, or supplies the restored image to the recording and reproduction unit 129, and records the restored image on the recording medium 130 as needed. , Output to other devices.
 その後、撮像処理は終了する。 Thereafter, the imaging process ends.
 尚、以上においては、撮像素子121と被写体距離に対応付けられた係数セット群を用いて、検出画像から復元画像を復元する例について説明してきたが、例えば、被写体距離に加えて、上述したように、復元画像の画角に対応する係数セット群をさらに用意して、被写体距離および画角に応じた係数セット群を用いて、復元画像を復元するようにしても良い。尚、被写体距離および画角に対する分解能は、用意される係数セット群の数によるものとなる。 In the above, the example of restoring the restored image from the detected image using the image sensor 121 and the coefficient set group associated with the subject distance has been described, but, for example, as described above in addition to the subject distance Alternatively, the set of coefficients corresponding to the angle of view of the restored image may be further prepared, and the set of coefficients corresponding to the subject distance and the angle of view may be used to restore the restored image. The resolution for the subject distance and the angle of view depends on the number of coefficient set groups prepared.
 また、図20のフローチャートを用いた処理の説明においては、検出画像に含まれる全ての画素の検出信号を用いる例について説明してきたが、撮像素子121を構成する画素のうち、特定された被写体距離および画角に対応する入射角指向性を備えた画素の検出信号からなる検出画像を生成し、これを用いて復元画像を復元するようにしても良い。このような処理により、求めようとする復元画像の被写体距離や画角に適した検出画像で復元画像を復元することが可能となり、復元画像の復元精度や画質が向上する。すなわち、特定された被写体距離および画角に対応する画像が、例えば、図16における画角SQ1に対応する画像である場合、画角SQ1に対応する入射角指向性を備えた画素121aを選択し、これらから得られる検出画像で復元画像を復元することにより、画角SQ1の画像を高い精度で復元することが可能となる。 Further, in the description of the process using the flowchart of FIG. 20, the example using detection signals of all the pixels included in the detected image has been described, but the subject distance specified among the pixels constituting the image sensor 121 And a detection image consisting of detection signals of pixels having incident angle directivity corresponding to the angle of view may be generated and used to restore a restored image. Such processing enables the restored image to be restored with a detected image suitable for the subject distance and angle of view of the restored image to be obtained, and the restoration accuracy and image quality of the restored image are improved. That is, when the image corresponding to the specified subject distance and angle of view is, for example, an image corresponding to the angle of view SQ1 in FIG. 16, the pixel 121a having the incident angle directivity corresponding to the angle of view SQ1 is selected. By restoring the restored image with the detected image obtained from these, it is possible to restore the image of the angle of view SQ1 with high accuracy.
 以上の処理により、各画素に入射角指向性を持たせるようにした撮像素子121を必須構成とした撮像装置101を実現することが可能となる。 By the above-described processing, it is possible to realize the imaging device 101 having the imaging device 121 as an essential component in which each pixel is made to have incident angle directivity.
 結果として、撮像レンズ、ピンホール、及び、上述した特許文献等に記載の光学フィルタが不要となるため、装置の設計の自由度を高めることが可能になると共に、撮像素子121と別体で構成され、撮像装置として構成する段階で撮像素子121と合わせて搭載されることが想定される光学素子が不要となるため、入射光の入射方向に対する装置の小型化を実現することが可能となり、製造コストを低減することが可能となる。また、フォーカスレンズなどのような、光学像を結像させるための撮像レンズに相当するレンズが不要となる。ただし、倍率を変化させるズームレンズは設けられていてもよい。 As a result, since the imaging lens, the pinhole, and the optical filter described in the above-mentioned patent documents and the like become unnecessary, it is possible to increase the degree of freedom in the design of the device, and configured separately from the imaging device 121 In addition, since it becomes unnecessary to use an optical element assumed to be mounted together with the imaging device 121 at the stage of configuring as an imaging device, it becomes possible to realize miniaturization of the device with respect to the incident direction of incident light It is possible to reduce the cost. Further, a lens corresponding to an imaging lens for forming an optical image, such as a focus lens, is not necessary. However, a zoom lens for changing the magnification may be provided.
 なお、以上においては、検出画像の撮像を行った後、すぐに所定の被写体距離に対応する復元画像を復元する処理について説明したが、例えば、すぐに復元処理を行わずに、検出画像を記録媒体130に記録したり、通信部131を介して、他の機器に出力したりした後、所望のタイミングで検出画像を用いて、復元画像を復元するようにしてもよい。この場合、復元画像の復元は、撮像装置101で行ってもよいし、他の装置で行ってもよい。この場合、例えば、任意の被写体距離や画角に応じた係数セット群を用いて作成した連立方程式を解いて復元画像を求めることで、任意の被写体距離や画角の被写体面に対する復元画像を得ることができ、リフォーカス等を実現することができる。 In addition, although the process which decompress | restores the decompression | restoration image corresponding to a predetermined | prescribed object distance immediately after imaging a detection image was demonstrated above, a detection image is recorded, for example, without performing a decompression | restoration process immediately. After recording on the medium 130 or outputting to another device via the communication unit 131, the restored image may be restored using a detected image at a desired timing. In this case, restoration of the restored image may be performed by the imaging device 101 or may be performed by another device. In this case, for example, a restored image is obtained by solving simultaneous equations created using coefficient set groups according to an arbitrary subject distance and an angle of view, thereby obtaining an restored object for the object plane of an arbitrary subject distance and an angle of view. It is possible to realize refocusing and the like.
 例えば、撮像レンズと従来の撮像素子からなる撮像装置を用いた場合、様々な焦点距離や画角の画像を得るためには、焦点距離や画角を様々に変化させながら、撮像しておく必要がある。一方、撮像装置101においては、このように係数セット群を切り替えて任意の被写体距離や画角の復元画像を復元させることができるので、焦点距離(すなわち、被写体距離)や画角を様々に変化させながら繰り返し撮像するといった処理が不要になる。 For example, in the case of using an imaging device including an imaging lens and a conventional imaging element, it is necessary to perform imaging while varying the focal length and the angle of view in order to obtain images of various focal lengths and angles of view. There is. On the other hand, in the imaging apparatus 101, it is possible to restore the restored image of an arbitrary subject distance or angle of view by switching the coefficient set group in this manner, so the focal length (that is, object distance) or angle of view changes variously. This eliminates the need for processing such as repeated imaging while making it happen.
 この場合、例えば、ユーザは、異なる被写体距離や画角に対応する係数セット群を切り替えながら、復元された復元画像をそれぞれ表示部127に表示させながら、所望の被写体距離や画角の復元画像を得ることも可能である。 In this case, for example, the user switches the coefficient set group corresponding to different subject distance and angle of view, and displays the restored image on the display unit 127 while restoring the restored image of the desired subject distance and angle of view. It is also possible to get.
 なお、検出画像を記録する場合、復元時の被写体距離や画角が決まっているとき、復元に用いるメタデータを検出画像と関連付けるようにしてもよい。例えば、検出画像を含む画像データにメタデータを付与したり、検出画像とメタデータに同じIDを付与したり、検出画像とメタデータを同じ記録媒体130に記録させたりすることにより、検出画像とメタデータが関連付けられる。 When the detected image is recorded, when the subject distance and the angle of view at the time of restoration are determined, metadata used for the restoration may be associated with the detected image. For example, metadata is added to image data including a detected image, the same ID is added to a detected image and metadata, or the detected image and metadata are recorded on the same recording medium 130. Metadata is associated.
 なお、検出画像とメタデータに同じIDが付与された場合は、検出画像とメタデータを異なる記録媒体に記録したり、個別に撮像装置101から出力したりすることが可能である。 When the same ID is assigned to the detected image and the metadata, the detected image and the metadata can be recorded on different recording media, or can be output individually from the imaging apparatus 101.
 また、メタデータには、復元に用いる係数セット群を含んでいてもよいし、含んでいなくてもよい。後者の場合、例えば、復元時の被写体距離や画角がメタデータに含まれ、復元時に、その被写体距離や画角に対応する係数セット群が記憶部128等から取得される。 Also, the metadata may or may not include the coefficient set group used for restoration. In the latter case, for example, the subject distance and the angle of view at the time of restoration are included in the metadata, and at the time of restoration, a coefficient set group corresponding to the subject distance and the angle of view is acquired from the storage unit 128 or the like.
 さらに、撮像時にすぐに復元画像の復元を行う場合、例えば、記録したり外部に出力したりする画像を、検出画像及び復元画像の中から選択することが可能である。例えば、両方の画像を記録又は外部に出力してもよいし、一方の画像のみを記録又は外部に出力してもよい。 Furthermore, when the restored image is immediately restored at the time of imaging, it is possible to select, for example, an image to be recorded or output to the outside from among the detected image and the restored image. For example, both images may be recorded or output to the outside, or only one of the images may be recorded or output to the outside.
 また、動画を撮像する場合も同様に、撮像時の復元画像の復元の有無や、記録又は外部に出力する画像の選択が可能である。例えば、動画の撮像を行いながら、各フレームの復元画像をすぐに復元するとともに、復元画像及び復元前の検出画像の両方又は一方を記録したり、外部に出力したりすることが可能である。この場合、撮像時に各フレームの復元画像をスルー画として表示させることも可能である。或いは、例えば、撮像時には復元処理を行わずに、各フレームの検出画像を記録したり、外部に出力したりすることが可能である。 In addition, also in the case of capturing a moving image, it is possible to select whether to restore the restored image at the time of capturing or to select an image to be recorded or output to the outside. For example, while capturing a moving image, it is possible to immediately restore the restored image of each frame, and to record or output the restored image and / or the detected image before restoration. In this case, it is also possible to display a restored image of each frame as a through image at the time of imaging. Alternatively, for example, it is possible to record a detected image of each frame or output the image outside without performing restoration processing at the time of imaging.
 さらに、動画の撮像時には、例えば、復元画像の復元の有無や、記録又は外部に出力する画像の選択をフレーム毎に行うことができる。例えば、フレーム毎に復元画像の復元の有無を切り替えることが可能である。また、例えば、フレーム毎に、検出画像の記録の有無、及び、復元画像の記録の有無を個別に切り替えることが可能である。また、例えば、後で使用する可能性のある有用なフレームの検出画像にメタデータを付与しながら、全てのフレームの検出画像を記録するようにしてもよい。 Furthermore, at the time of capturing a moving image, for example, the presence or absence of restoration of a restored image, and selection of an image to be recorded or output to the outside can be performed for each frame. For example, it is possible to switch the presence or absence of restoration of a restored image for each frame. In addition, for example, it is possible to individually switch the presence / absence of recording of the detected image and the presence / absence of recording of the restored image for each frame. Also, for example, while adding metadata to a detection image of a useful frame that may be used later, the detection images of all the frames may be recorded.
 また、撮像レンズを用いる撮像装置のように、オートフォーカス機能を実現することも可能である。例えば、復元画像に基づいてコントラストAF(Auto Focus)方式と同様の山登り方式で最適な被写体距離を決定することで、オートフォーカス機能を実現することができる。 Further, it is also possible to realize an autofocus function as in an imaging apparatus using an imaging lens. For example, the autofocus function can be realized by determining the optimum subject distance by the hill climbing method similar to the contrast AF (Auto Focus) method based on the restored image.
 さらに、上述した特許文献等に記載の光学フィルタと従来の撮像素子とからなる撮像装置などと比較して、画素単位で入射角指向性を持った撮像素子121により撮像される検出画像を用いて復元画像を生成することができるので、多画素化を実現したり、高解像度かつ高角度分解能の復元画像を得たりすることが可能となる。一方、光学フィルタと従来の撮像素子とからなる撮像装置では、画素を微細化しても、光学フィルタの微細化が難しいため、復元画像の高解像度化等の実現が難しい。 Furthermore, in comparison with an imaging apparatus and the like including the optical filter described in the above-mentioned patent documents and the like and a conventional imaging element, using a detection image captured by the imaging element 121 having incident angle directivity in pixel units Since a restored image can be generated, it is possible to realize the increase in the number of pixels and obtain a restored image of high resolution and high angular resolution. On the other hand, in an imaging device including an optical filter and a conventional imaging device, it is difficult to miniaturize the optical filter even if the pixels are miniaturized, so it is difficult to realize high resolution of the restored image.
 また、本開示の撮像装置101は、撮像素子121が必須構成であり、例えば、上述した特許文献等に記載の光学フィルタ等を必要としないので、使用環境が高温になって、光学フィルタが熱で歪むといったことがなく、環境耐性の高い撮像装置を実現することが可能となる。 Further, in the imaging device 101 of the present disclosure, the imaging device 121 is an essential component, and for example, the optical filter described in the above-mentioned patent documents and the like are not required. It is possible to realize an imaging device with high environmental resistance without distortion.
 さらに、本開示の撮像装置101においては、撮像レンズ、ピンホール、及び、上述した特許文献等に記載の光学フィルタを必要としないので、撮像する機能を備えた構成の設計の自由度を向上させることが可能となる。 Furthermore, in the imaging device 101 of the present disclosure, the imaging lens, the pinhole, and the optical filter described in the above-mentioned patent documents and the like are not required, so the degree of freedom in design of a configuration having an imaging function is improved. It becomes possible.
 <処理負荷の低減方法>
 ところで、撮像素子121の各画素121aの遮光膜121bの遮光範囲(すなわち、入射角指向性)にランダム性を持たせている場合、遮光範囲の違いの乱雑さが大きいほど、復元部122による処理の負荷は大きなものとなる。そこで、各画素121aの遮光膜121bの遮光範囲の変化の一部を規則的なものとして、乱雑さを低減させることで、処理負荷を低減させるようにしてもよい。
<Method of reducing processing load>
By the way, when randomness is given to the light shielding range (that is, incident angle directivity) of the light shielding film 121b of each pixel 121a of the image sensor 121, the processing by the restoration unit 122 is performed as the randomness of the difference in the light shielding range increases. The load on the Therefore, the processing load may be reduced by reducing the randomness by setting a part of the change in the light shielding range of the light shielding film 121b of each pixel 121a to be regular.
 例えば、縦帯タイプと横帯タイプとを組み合わせたL字タイプの遮光膜121bを構成するようにして、所定の列方向に対しては、同一幅の横帯タイプの遮光膜121bを組み合わせ、所定の行方向に対しては、同一の高さの縦帯タイプの遮光膜121bを組み合わせる。これにより、各画素121aの遮光膜121bの遮光範囲が、列方向および行方向で規則性を持ちつつ、画素単位ではランダムに変化するようになる。その結果、各画素121aの遮光膜121bの遮光範囲の違い、すなわち入射角指向性の違いの乱雑さを低減させ、復元部122の処理負荷を低減させることができる。 For example, the L-shaped light shielding film 121b is formed by combining the vertical band type and the horizontal band type, and the horizontal band type light shielding film 121b having the same width is combined in a predetermined column direction. In the row direction of, the vertical band type light shielding films 121b of the same height are combined. As a result, the light blocking range of the light blocking film 121b of each pixel 121a changes randomly in pixel units while having regularity in the column direction and the row direction. As a result, the difference in light blocking range of the light blocking film 121b of each pixel 121a, that is, the randomness of the difference in incident angle directivity can be reduced, and the processing load of the restoration unit 122 can be reduced.
 具体的には、例えば、図21の撮像素子121’’に示されるように、範囲Z130で示される同一列の画素については、いずれも同一の幅X0の横帯タイプの遮光膜121bが用いられ、範囲Z150で示される同一行の画素については、同一の高さY0の縦帯タイプの遮光膜121bが用いられる。その結果、各行と列で特定される画素121aについては、これらが組み合わされたL字タイプの遮光膜121bが用いられる。 Specifically, for example, as illustrated in the imaging element 121 ′ ′ of FIG. 21, the horizontal band type light shielding film 121b having the same width X0 is used for all pixels in the same column indicated by the range Z130. For the pixels in the same row indicated by the range Z150, a vertical band type light shielding film 121b of the same height Y0 is used. As a result, for the pixels 121a specified in each row and column, an L-shaped light shielding film 121b in which these are combined is used.
 同様に、範囲Z130に隣接する範囲Z131で示される同一列の画素については、いずれも同一の幅X1の横帯タイプの遮光膜121bが用いられ、範囲Z150に隣接する範囲Z151で示される同一行の画素については、同一の高さY1の縦帯タイプの遮光膜121bが用いられる。その結果、各行と列で特定される画素121aについては、これらが組み合わされたL字タイプの遮光膜121bが用いられる。 Similarly, for pixels in the same row indicated by the range Z131 adjacent to the range Z130, the light shielding film 121b of the horizontal band type having the same width X1 is used, and the same row indicated by the range Z151 adjacent to the range Z150. The vertical band type light shielding film 121b of the same height Y1 is used for the pixel of. As a result, for the pixels 121a specified in each row and column, an L-shaped light shielding film 121b in which these are combined is used.
 さらに、範囲Z131に隣接する範囲Z132で示される同一列の画素については、いずれも同一の幅X2の横帯タイプの遮光膜121bが用いられ、範囲Z151に隣接する範囲Z152で示される同一行の画素については、同一の高さY2の縦帯タイプの遮光膜121bが用いられる。その結果、各行と列で特定される画素121aについては、これらが組み合わされたL字タイプの遮光膜121bが用いられる。  Furthermore, for pixels in the same column indicated by the range Z132 adjacent to the range Z131, the light shielding film 121b of the horizontal band type having the same width X2 is used for all pixels in the same row indicated by the range Z152 adjacent to the range Z151. For the pixels, a vertical band type light shielding film 121b of the same height Y2 is used. As a result, for the pixels 121a specified in each row and column, an L-shaped light shielding film 121b in which these are combined is used.
 このようにすることで、遮光膜121bの水平方向の幅および位置、並びに、垂直方向の高さおよび位置に規則性を持たせつつ、画素単位で遮光膜の範囲を異なる値に設定することができるので、入射角指向性の変化の乱雑さを抑え込むことができる。結果として、係数セットのパターンを低減させることが可能となり、復元部122における演算処理の処理負荷を低減させることが可能となる。 By doing this, it is possible to set the range of the light shielding film to a different value for each pixel while giving regularity to the horizontal width and position of the light shielding film 121b and the height and position in the vertical direction. Because it can, the randomness of the change in incident angle directivity can be suppressed. As a result, it is possible to reduce the pattern of coefficient sets, and to reduce the processing load of the arithmetic processing in the restoration unit 122.
 より詳細には、図22の右上部に示されるように、N画素×N画素の検出画像PicからN×N画素の復元画像を求める場合、(N×N)行×1列の復元画像の各画素の画素値を要素とするベクトルX、(N×N)行×1列の検出画像の各画素の画素値を要素とするベクトルY、および、係数セット群からなる(N×N)行×(N×N)列の行列Aにより、図22の左部に示されるような関係が成立する。 More specifically, as shown in the upper right part of FIG. 22, when obtaining a restored image of N × N pixels from a detected image Pic of N pixels × N pixels, the restored image of (N × N) rows × 1 column A vector X having the pixel value of each pixel as an element, a vector Y having an element value of each pixel of the (N × N) rows × 1 column detected image as an element, and an (N × N) row consisting of a coefficient set group By the matrix A of (N × N) columns, the relationship shown in the left part of FIG. 22 is established.
 すなわち、図22においては、係数セット群からなる(N×N)行×(N×N)列の行列Aの各要素と、復元画像を表す(N×N)行×1列のベクトルXとを乗算した結果が、検出画像を表す(N×N)行×1列のベクトルYとなることが示されている。そして、この関係から、例えば、上述した式(1)乃至式(3)または式(4)乃至式(6)に対応する連立方程式が構成される。 That is, in FIG. 22, each element of matrix N of (N × N) rows × (N × N) rows of coefficient sets, and (N × N) rows × 1 row vector X representing a restored image It is shown that the result of multiplication of is a vector Y of (N × N) rows × 1 column representing a detected image. Then, from this relationship, simultaneous equations corresponding to, for example, the above-described Equation (1) to Equation (3) or Equation (4) to Equation (6) are configured.
 尚、図22においては、行列Aの範囲Z201で示される1列目の各要素が、ベクトルXの1行目の要素に対応しており、行列Aの範囲Z202で示されるN×N列目の各要素が、ベクトルXのN×N行目の要素に対応していることを示している。 Note that, in FIG. 22, each element of the first column indicated by the range Z201 of the matrix A corresponds to an element of the first row of the vector X, and an N × N column indicated by the range Z202 of the matrix A Indicates that each element of X corresponds to an element of the N × Nth row of the vector X.
 なお、ピンホールを用いた場合、及び、撮像レンズ等の同じ方向から入射した入射光を互いに隣接する画素出力単位の双方へ入射させるための集光機能を用いた場合、各画素の位置と光の入射角度の関係が一意に定まるので、行列Aは、右下がりの対角成分が全て1となる対角行列となる。逆に、図2の撮像装置101のようにピンホールおよび撮像レンズのいずれも用いない場合、各画素の位置と光の入射角度の関係は一意に定まらないので、行列Aは対角行列にならない。 In the case where a pinhole is used, and in the case where a condensing function for making incident light incident from the same direction, such as an imaging lens, incident on both of adjacent pixel output units, position and light of each pixel are used. Therefore, the matrix A is a diagonal matrix in which all the down-tilting diagonal components become one. Conversely, when neither a pinhole nor an imaging lens is used as in the imaging device 101 of FIG. 2, the relationship between the position of each pixel and the incident angle of light is not uniquely determined, so the matrix A does not form a diagonal matrix. .
 換言すれば、図22に示される行列式に基づいた連立方程式を解いて、ベクトルXの各要素を求めることにより復元画像が求められる。 In other words, the restored image is obtained by solving the simultaneous equations based on the determinant shown in FIG. 22 and finding each element of the vector X.
 ところで、一般的に、図22の行列式は、両辺に行列Aの逆行列A-1を左から乗じることにより、図23に示されるように変形され、検出画像のベクトルYに逆行列A-1を左から乗じることで、検出画像であるベクトルXの各要素が求められる。 However, in general, the determinant in Fig. 22, by multiplying the inverse matrix A -1 of the matrix A in both sides from the left, is deformed as shown in FIG. 23, the inverse matrix to a vector Y of the detected image A - By multiplying 1 from the left, each element of the vector X which is a detected image can be obtained.
 しかしながら、現実には、行列Aを正確に求められなかったり、行列Aを正確に測定できなかったり、行列Aの基底ベクトルが線形従属に近いケースで解けなかったり、および、検出画像の各要素にノイズが含まれたりする。そして、それらの理由のいずれか、または、それらの組み合わせで、連立方程式を解くことができないことがある。 However, in reality, the matrix A can not be accurately determined, the matrix A can not be accurately measured, the basis vector of the matrix A can not be solved in the case near linear dependence, and each element of the detected image It contains noise. And it may not be possible to solve simultaneous equations by any of those reasons or their combination.
 そこで、例えば、様々な誤差に対してロバストな構成を考え、正則化最小二乗法の概念を用いた次式(7)が用いられる。 Therefore, for example, the following equation (7) using the concept of the regularized least squares method is used in consideration of a configuration that is robust to various errors.
Figure JPOXMLDOC01-appb-M000001
                            ・・・(7)
Figure JPOXMLDOC01-appb-M000001
... (7)
 ここで、式(7)のxの上部に「^」が付されたものはベクトルXを、Aは行列Aを、YはベクトルYを、γはパラメータを、||A||はL2ノルム(二乗和平方根)を表している。ここで、右辺の第一項は、図22の両辺を最小にするときのノルムであり、右辺の第二項は正則化項である。 (7) where x is preceded by “^” is a vector X, A is a matrix A, Y is a vector Y, γ is a parameter, || A || is an L 2 norm It represents (square root of sum of squares). Here, the first term on the right side is the norm when minimizing both sides in FIG. 22, and the second term on the right side is a regularization term.
 この式(7)をxについて解くと、以下の式(8)となる。 If this equation (7) is solved for x, the following equation (8) is obtained.
Figure JPOXMLDOC01-appb-M000002
                            ・・・(8)
Figure JPOXMLDOC01-appb-M000002
... (8)
 ここで、Aは行列Aの転置行列であり、Iは単位行列である。 Here, A t is the transposed matrix of the matrix A, I is the identity matrix.
 しかしながら、行列Aは、膨大なサイズであるので、計算量や必要なメモリ量が大きくなる。 However, since the matrix A has an enormous size, the amount of calculation and the required memory amount become large.
 そこで、例えば、図24に示されるように、行列Aを、N行×N列の行列ALと、N行×N列の行列ARとに分解し、それぞれ復元画像を表すN行×N列の行列Xの前段と後段とから掛けた結果が、検出画像を表すN行×N列の行列Yとなるようにする。これにより、要素数(N×N)×(N×N)の行列Aに対して、要素数が(N×N)の行列AL、ARとなり、各行列の要素数が1/(N×N)になる。結果として、計算量や必要なメモリ量を低減させることができる。 Therefore, for example, as shown in Figure 24, the matrix A, the matrix AL of N rows × N columns, decomposed into matrix AR T of N rows × N columns, N rows × N columns, each representing a restored image The result obtained by multiplying the former stage and the latter stage of the matrix X of X is made to be an N-row × N-column matrix Y representing a detected image. Thus, with respect to the matrix A of the number of elements (N × N) × (N × N), matrix AL of number of elements is (N × N), AR T, and the number of elements of each matrix is 1 / (N × N). As a result, it is possible to reduce the amount of computation and the amount of memory required.
 図24に示される行列式は、例えば、式(8)のカッコ内の行列を行列ALとし、行列Aの転置行列の逆行列を行列ARとすることで実現される。 Determinant shown in FIG. 24, for example, a matrix matrix AL in parentheses of formula (8) is realized by an inverse matrix of the transposed matrix of the matrix A and matrix AR T.
 図24に示されるような計算では、図25に示されるように、行列Xにおける注目要素Xpに対して、行列ALの対応する列の各要素群Z221を乗算することで、要素群Z222が求められる。さらに、要素群Z222と行列ARの注目要素Xpに対応する行の要素とを乗算することで、注目要素Xpに対応する2次元応答Z224が求められる。そして、行列Xの全要素に対応する2次元応答Z224が積算されることで行列Yが求められる。 In the calculation as shown in FIG. 24, as shown in FIG. 25, the element group Z222 is obtained by multiplying each element group Z221 of the corresponding column of the matrix AL by the element of interest Xp in the matrix X Be Further, by multiplying the elements in the row corresponding to the element of interest Xp the element group Z222 matrix AR T, 2-dimensional response Z224 that corresponds to the element of interest Xp is calculated. Then, the two-dimensional response Z 224 corresponding to all elements of the matrix X is integrated to obtain the matrix Y.
 そこで、例えば、行列ALの各列の要素群Z221には、図21に示される撮像素子121の列毎に同一の幅に設定される横帯タイプの画素121aの入射角指向性に対応する係数が用いられる。 Therefore, for example, in the element group Z 221 of each column of the matrix AL, a coefficient corresponding to the incident angle directivity of the horizontal band type pixel 121 a set to the same width for each column of the imaging device 121 shown in FIG. Is used.
 同様に、例えば、行列ARの各行の要素群Z223には、図21に示される撮像素子121の行毎に同一の高さに設定される縦帯タイプの画素121aの入射角指向性に対応する係数が用いられる。 Similarly, for example, a matrix in the element group Z223 of each row of the AR T, corresponding to the incident angle directivity of vertical band type pixel 121a to be set at the same height in each row of the image sensor 121 shown in FIG. 21 Coefficients are used.
 この結果、検出画像に基づいて、復元画像を復元する際に使用する行列を小さくすることが可能となるので、計算量が低減し、処理速度を向上させ、計算に係る電力消費を低減させることが可能となる。また、行列を小さくできるので、計算に使用するメモリの容量を低減させることが可能となり、装置コストを低減させることが可能となる。 As a result, since it is possible to reduce the matrix used when restoring the restored image based on the detected image, the amount of calculation is reduced, the processing speed is improved, and the power consumption related to the calculation is reduced. Is possible. In addition, since the matrix can be made smaller, the capacity of the memory used for calculation can be reduced, and the device cost can be reduced.
 尚、図21には、水平方向、および垂直方向に所定の規則性を持たせつつ、画素単位で遮光範囲(受光範囲)を変化させる例が示されているが、本開示においては、このように画素単位で遮光範囲(受光範囲)が、完全にランダムに設定されてはいないものの、ある程度ランダムに設定されるものについても、ランダムに設定されるものとみなす。換言すれば、本開示においては、画素単位で遮光範囲(受光範囲)が完全にランダムに設定される場合のみならず、ある程度ランダムなもの(例えば、全画素のうち、一部については規則性を持たせた範囲を含むが、その他の範囲はランダムである場合)、または、ある程度規則性がなさそうなもの(全画素のうち、図21を参照して説明したような規則に従って配置されていることが確認できない配置の場合)についてもランダムであるものとみなす。 Note that FIG. 21 shows an example in which the light shielding range (light receiving range) is changed in pixel units while giving predetermined regularity in the horizontal direction and the vertical direction, but in the present disclosure, such an example is shown. Although the light blocking range (light receiving range) is not completely randomly set in a pixel unit, it is considered that the light blocking range (light receiving range) is also set randomly at some random settings. In other words, in the present disclosure, not only when the light blocking range (light receiving range) is completely set randomly on a pixel basis, but also to a certain degree random (for example, regularity for some of all pixels). The range which is given is included, but the other range is random) or something which seems to have some degree of regularity (of all the pixels, they are arranged according to the rule described with reference to FIG. 21) In the case of the arrangement where it can not be confirmed, it is regarded as random.
 <<3.第1の実施の形態>>
 次に、図26乃至図32を参照して、本開示の第1の実施の形態について説明する。
<< 3. First Embodiment >>
Next, a first embodiment of the present disclosure will be described with reference to FIGS. 26 to 32. FIG.
 上述したように、入射角指向性を有する画素を用いた撮像素子121においては、撮像レンズや光学フィルタ等を必要としないため、各画素121aの配置の自由度が高い。本開示の第1の実施の形態は、その撮像素子121の各画素121aの配置の自由度を活かして、各種の電子機器において、電子機器を装着又は使用しているユーザの少なくとも一部が写る位置に撮像素子121を設け、ユーザの少なくとも一部を撮像し、復元処理により得られる復元画像を用いて、各種のアプリケーション処理を実行するようにするものである。 As described above, in the imaging device 121 using pixels having incident angle directivity, an imaging lens, an optical filter, and the like are not necessary, so the degree of freedom of arrangement of the pixels 121a is high. In the first embodiment of the present disclosure, at least a part of a user wearing or using an electronic device is photographed in various electronic devices by using the degree of freedom of arrangement of each pixel 121a of the imaging device 121. An imaging element 121 is provided at a position, at least a part of the user is imaged, and various application processes are performed using a restored image obtained by the restoration process.
 ここで、ユーザの少なくとも一部とは、例えば、ユーザの全身、顔、目、頭部、胴体、手、足等のユーザの体の任意の部分である。また、例えば、医療機器等の場合、ユーザの少なくとも一部は、ユーザの外側だけでなく、ユーザの内側(例えば、口腔内、内臓内等)の場合もある。 Here, at least a part of the user is, for example, any part of the user's body, such as the user's entire body, face, eyes, head, torso, hands, feet and the like. In addition, for example, in the case of a medical device or the like, at least a part of the user may be not only outside the user but also inside the user (for example, in the oral cavity, in the viscera, etc.).
 <電子機器301の構成例>
 図26は、本開示の第1の実施の形態に係る電子機器301の構成例を示すブロック図である。なお、図中、図2の撮像装置101と対応する部分には同じ符号を付してあり、その説明は適宜省略する。
<Configuration Example of Electronic Device 301>
FIG. 26 is a block diagram illustrating a configuration example of the electronic device 301 according to the first embodiment of the present disclosure. In the figure, parts corresponding to those of the imaging apparatus 101 in FIG. 2 are assigned the same reference numerals, and the description thereof will be omitted as appropriate.
 電子機器301は、例えば、ウエアラブルデバイス、スマートフォン、タブレット、携帯電話機等のユーザが装着又は携帯する携帯情報端末、パーソナルコンピュータ、ウエアラブルデバイス、ゲーム機、動画再生装置、音楽再生装置等により構成される。また、ウエアラブルデバイスには、例えば、ユーザの頭部に装着される頭部装着型、腕時計型、ブレスレット型、ネックレス型、ネックバンド型等の各種の方式を採用することができる。また、頭部装着型のウエアラブルデバイスには、例えば、メガネ型、ゴーグル型、ヘッドマウント側、イヤフォン型、ヘッドセット型、マスク型、帽子型等がある。なお、例えば、ウエアラブルデバイスの形状等により、1つのウエアラブルデバイスが複数の方式(例えば、ゴーグル型とヘッドマウント型)に対応する場合がある。 The electronic device 301 includes, for example, a wearable device, a portable information terminal worn or carried by a user such as a smartphone, a tablet, or a portable telephone, a personal computer, a wearable device, a game machine, a video playback device, a music playback device, and the like. For the wearable device, for example, various methods such as a head-mounted type, a watch type, a bracelet type, a necklace type, and a neck band type mounted on the head of the user can be adopted. The head-mounted wearable devices include, for example, glasses, goggles, head mounts, earphones, headsets, masks, and hats. Note that, for example, depending on the shape of the wearable device, one wearable device may correspond to a plurality of methods (for example, a goggle type and a head mount type).
 電子機器301は、撮像部311及び信号処理制御部312を備える。 The electronic device 301 includes an imaging unit 311 and a signal processing control unit 312.
 撮像部311は、1以上のn個の撮像素子121-1乃至撮像素子121-nを備える。 The imaging unit 311 includes one or more n imaging devices 121-1 to 121-n.
 各撮像素子121は、各画素121aから出力される検出信号からなる検出信号セットを復元部321に供給したり、バスB2に出力したりする。 Each imaging element 121 supplies a detection signal set including a detection signal output from each pixel 121 a to the restoration unit 321 or outputs it to the bus B2.
 なお、各撮像素子121からの検出信号セットにより検出画像が生成される。従って、撮像部311が1つの撮像素子121のみを備える場合、その撮像素子121からの1つの検出信号セットにより検出画像が生成される。 A detection image is generated by the detection signal set from each imaging element 121. Therefore, when the imaging unit 311 includes only one imaging element 121, a detection image is generated by one detection signal set from the imaging element 121.
 また、各撮像素子121は、同じ筺体に設置されてもよいし、異なる筺体に設置されてもよい。 In addition, each imaging element 121 may be installed in the same housing or may be installed in a different housing.
 信号処理制御部312は、復元部321、制御部322、入力部323、検出部324、関連付け部325、出力部326、記憶部327、記録再生部328、記録媒体329、及び、通信部330を備える。 The signal processing control unit 312 includes a restoration unit 321, a control unit 322, an input unit 323, a detection unit 324, an association unit 325, an output unit 326, a storage unit 327, a recording and reproduction unit 328, a recording medium 329, and a communication unit 330. Prepare.
 復元部321、制御部322、入力部323、検出部324、関連付け部325、出力部326、記憶部327、記録再生部328、及び、通信部330は、バスB2を介して相互に接続されており、バスB2を介してデータの送受信等を行う。なお、以下、説明を簡単にするために、電子機器301の各部がバスB2を介してデータの送受信等を行う場合のバスB2の記載を省略する。 The restoration unit 321, the control unit 322, the input unit 323, the detection unit 324, the association unit 325, the output unit 326, the storage unit 327, the recording and reproduction unit 328, and the communication unit 330 are mutually connected via the bus B2. And transmit and receive data via the bus B2. In the following, in order to simplify the description, the description of the bus B2 in the case where each part of the electronic device 301 transmits and receives data via the bus B2 is omitted.
 復元部321は、各撮像素子121から取得した検出信号セットを用いて、図2の撮像装置101の復元部122と同様の処理により、復元画像の復元処理等を行う。復元部321は、復元画像をバスB2に出力する。 The restoration unit 321 performs restoration processing and the like of a restored image by the same processing as the restoration unit 122 of the imaging apparatus 101 in FIG. 2 using the detection signal set acquired from each of the imaging elements 121. The restoration unit 321 outputs the restored image to the bus B2.
 制御部322は、例えば、各種のプロセッサを備え、電子機器301の各部の制御や各種のアプリケーション処理等を行う。 The control unit 322 includes, for example, various processors, and performs control of each unit of the electronic device 301, various application processing, and the like.
 入力部323は、電子機器301の操作や、処理に用いるデータの入力等を行うための入力デバイス(例えば、キー、スイッチ、ボタン、ダイヤル、タッチパネル、リモートコントローラ等)を備える。入力部323は、操作信号や入力されたデータ等をバスB2に出力する。 The input unit 323 includes an input device (for example, a key, a switch, a button, a dial, a touch panel, a remote controller, and the like) for performing an operation of the electronic device 301, an input of data used for processing, and the like. The input unit 323 outputs an operation signal, input data, and the like to the bus B2.
 関連付け部325は、各撮像素子121の検出信号セットと、各検出信号セットに対応するメタデータとの関連付けを行う。 The associating unit 325 associates the detection signal set of each imaging element 121 with the metadata corresponding to each detection signal set.
 出力部326は、例えば、ディスプレイ、スピーカ、ランプ、ブザー、振動素子等の画像、音、光、振動等の出力を行う出力デバイスを備え、各種の情報やデータの出力を行う。 The output unit 326 includes, for example, an output device that outputs an image such as a display, a speaker, a lamp, a buzzer, and a vibration element, sound, light, vibration, and the like, and outputs various information and data.
 記憶部327は、ROM、RAM、フラッシュメモリ等の記憶装置を1つ以上備え、例えば、電子機器301の処理に用いられるプログラムやデータを記憶する。例えば、記憶部327は、各撮像素子121に対応する係数セット群を記憶している。この係数セット群は、例えば、想定される被写体距離及び画角毎に用意される。 The storage unit 327 includes one or more storage devices such as a ROM, a RAM, and a flash memory, and stores, for example, programs and data used for processing of the electronic device 301. For example, the storage unit 327 stores a coefficient set group corresponding to each imaging device 121. The coefficient set group is prepared, for example, for each assumed subject distance and angle of view.
 記録再生部328は、記録媒体329へのデータの記録、及び、記録媒体329に記録されているデータの再生(読み出し)を行う。例えば、記録再生部328は、復元画像を記録媒体329に記録したり、記録媒体329から読み出したりする。また、例えば、記録再生部328は、検出信号セット及び対応するメタデータを、記録媒体329に記録したり、記録媒体329から読み出したりする。 The recording and reproducing unit 328 performs recording of data on the recording medium 329 and reproduction (reading) of data recorded on the recording medium 329. For example, the recording / reproducing unit 328 records the restored image on the recording medium 329 or reads the restored image from the recording medium 329. Also, for example, the recording / reproducing unit 328 records the detection signal set and the corresponding metadata on the recording medium 329 or reads out from the recording medium 329.
 記録媒体329は、例えば、HDD、SSD、磁気ディスク、光ディスク、光磁気ディスク、及び、半導体メモリ等のいずれか、又は、それらの組合せなどからなる。 The recording medium 329 is made of, for example, an HDD, an SSD, a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like, or a combination thereof.
 通信部330は、所定の通信方式により、他の機器と通信を行う。なお、通信部330の通信方式は、有線又は無線のいずれであってもよい。また、通信部330が複数の通信方式に対応することも可能である。 The communication unit 330 communicates with other devices by a predetermined communication method. The communication method of the communication unit 330 may be wired or wireless. Further, the communication unit 330 can also correspond to a plurality of communication methods.
 <撮像素子121の配置例>
 次に、図27乃至図31を参照して、電子機器301の具体例を挙げながら、撮像素子121の配置例について説明する。
<Arrangement Example of Imaging Element 121>
Next, with reference to FIG. 27 to FIG. 31, an arrangement example of the imaging device 121 will be described while giving a specific example of the electronic device 301.
 図27のA乃至図27のCには、電子機器301の例として、ユーザの目を覆うように装着されるメガネ型のウエアラブルデバイス401の一部が模式的に示されている。また、図27のA乃至図27のCには、ウエアラブルデバイス401の接眼部である左レンズ411L及び右レンズ411Rの周囲に撮像素子121(の各画素121a)が配置されている例が示されている。 As an example of the electronic device 301, a part of the glasses-type wearable device 401 worn so as to cover the user's eyes is schematically shown in A of FIG. 27A to 27C show an example in which (the respective pixels 121a of) the imaging element 121 are arranged around the left lens 411L and the right lens 411R which are the eyepieces of the wearable device 401. It is done.
 ここで、接眼部とは、電子機器301を装着又は使用するユーザの目に近接する部分であり、例えば、左レンズ411L及び右レンズ411Rのような接眼レンズ等からなる。接眼部が近接レンズからなる場合、例えば、ユーザは、近接レンズを通して像(例えば、被写体の像や映像等)を見ることができる。 Here, the eyepiece portion is a portion close to the eyes of the user who wears or uses the electronic device 301, and includes, for example, an eyepiece lens such as the left lens 411L and the right lens 411R. When the eyepiece unit is a proximity lens, for example, the user can view an image (for example, an image or an image of an object) through the proximity lens.
 具体的には、図27のAの例では、フレーム412の裏面、すなわち、ユーザがウエアラブルデバイス401を装着した場合にユーザの顔と対向する面の左レンズ411Lの上方に撮像素子121-1が配置され、フレーム412の裏面の右レンズ411Rの上方に撮像素子121-2が配置されている。 Specifically, in the example of FIG. 27A, the imaging element 121-1 is on the back of the frame 412, that is, above the left lens 411L on the surface facing the user's face when the user wears the wearable device 401. The imaging element 121-2 is disposed above the right lens 411R on the back surface of the frame 412.
 図27のBの例では、フレーム412の裏面のブリッジ付近に撮像素子121が配置されている。 In the example of FIG. 27B, the imaging device 121 is disposed in the vicinity of the bridge on the back surface of the frame 412.
 図27のCの例では、フレーム412の裏面の左レンズ411Lの周囲を取り囲むように撮像素子121-1が配置され、フレーム412の裏面の右レンズ411Rの周囲を取り囲むように撮像素子121-2が配置されている。 In the example of FIG. 27C, the imaging device 121-1 is disposed to surround the periphery of the left lens 411L on the back surface of the frame 412, and the imaging device 121-2 to surround the periphery of the right lens 411R on the back surface of the frame 412. Is arranged.
 このように、サイズの大型化やデザインの低下を抑制しつつ、ウエアラブルデバイス401のフレーム412の空きスペースに撮像素子121を配置することができる。また、撮像素子121は、ウエアラブルデバイス401を装着しているユーザの両目付近が写る位置に配置されており、そのユーザの両目周辺の撮像を行うことができる。 As described above, the imaging element 121 can be disposed in the empty space of the frame 412 of the wearable device 401 while suppressing an increase in size and a decrease in design. In addition, the imaging element 121 is disposed at a position where the vicinity of both eyes of the user wearing the wearable device 401 is captured, and imaging around both eyes of the user can be performed.
 なお、図27のA乃至図27のCの各撮像素子121の各画素121aの入射角指向性は、ウエアラブルデバイス401を装着したときに、左レンズ411L及び右レンズ411Rに近接するユーザの目の方向に対する受光感度が高くなるように設定されることが望ましい。これにより、各画素121aにおいて、主要な撮像対象であるユーザの目の方向からの入射光に対する受光感度が高くなり、ユーザの目をより鮮明に撮像することが可能になる。 The incident angle directivity of each pixel 121a of each imaging element 121 of each of FIGS. 27A to 27C is the eye of the user who is in proximity to the left lens 411L and the right lens 411R when the wearable device 401 is attached. It is desirable that the light receiving sensitivity with respect to the direction be set to be high. As a result, in each pixel 121a, the light reception sensitivity to incident light from the direction of the eye of the user who is the main imaging target becomes high, and it is possible to capture the eye of the user more clearly.
 例えば、図28のA及び図28のBは、図27のCの撮像素子121-1の入射角指向性の例を模式的に示している。図28のA及び図28のBは、ウエアラブルデバイス401を装着した状態のユーザの左目421Lと左レンズ411L及び撮像素子121-1との位置関係を模式的に示している。図28のAは、左レンズ411Lを内側(ユーザの目と対向する面側)から見た図を示し、図28のBは、左レンズ411Lを横から見た断面図を示している。 For example, A of FIG. 28 and B of FIG. 28 schematically show an example of the incident angle directivity of the imaging device 121-1 of C of FIG. A of FIG. 28 and B of FIG. 28 schematically show the positional relationship between the left eye 421 L of the user with the wearable device 401 attached, the left lens 411 L, and the imaging element 12-1. FIG. 28A shows a view of the left lens 411L as viewed from the inside (the side facing the user's eyes), and FIG. 28B shows a cross-sectional view of the left lens 411L as viewed from the side.
 なお、図内の矢印は、撮像素子121-1の各領域の画素121aの入射角指向性の傾向を示している。また、以下、図28のA及び図28のBにおいて、左レンズ421Lから左目421に向かう方向(図28のBの右方向)を後ろ方向とする。 The arrows in the figure indicate the tendency of the incident angle directivity of the pixels 121a in the respective regions of the imaging element 121-1. Further, hereinafter, in A of FIG. 28 and B of FIG. 28, the direction from the left lens 421 L to the left eye 421 (the right direction of B of FIG. 28) is taken as the backward direction.
 撮像素子121-1の上方の領域内の画素121aは、入射角指向性が後ろ斜め下方向に設定されており、左目421Lの方向に対する受光感度が高くなっている。撮像素子121-1の左側の領域内の画素121aは、入射角指向性が右斜め後ろ方向に設定されており、左目421Lの方向に対する受光感度が高くなっている。撮像素子121-1の右側の領域内の画素121aは、入射角指向性が左斜め後ろ方向に設定されており、左目421Lの方向に対する受光感度が高くなっている。撮像素子121-1の下側の領域内の画素121aは、入射角指向性が後ろ斜め上方向に設定されており、左目421Lの方向に対する受光感度が高くなっている。 The incidence angle directivity of the pixel 121a in the upper area of the imaging element 121-1 is set to the rear and downward direction, and the light reception sensitivity to the direction of the left eye 421L is high. The incident angle directivity of the pixel 121a in the region on the left side of the imaging element 121-1 is set to the diagonally right backward direction, and the light reception sensitivity with respect to the direction of the left eye 421L is high. The incident angle directivity of the pixel 121a in the area on the right side of the image pickup device 121-1 is set to the left diagonal backward direction, and the light reception sensitivity with respect to the direction of the left eye 421L is high. The incident angle directivity of the pixel 121a in the lower area of the imaging element 121-1 is set to the rear upper side, and the light receiving sensitivity with respect to the direction of the left eye 421L is high.
 これにより、撮像素子121-1において、主要な撮像対象であるユーザの左目421Lの方向からの入射光に対する受光感度が高くなり、左目421Lをより鮮明に撮像することが可能になる。 As a result, in the imaging element 121-1, the light reception sensitivity to incident light from the direction of the left eye 421L of the user who is the main imaging target becomes high, and it becomes possible to pick up the left eye 421L more clearly.
 なお、図示は省略するが、右レンズ411Rの周囲に配置されている撮像素子121-2においても、各画素121aの入射角指向性が主要な撮像対象であるユーザの右目421Rの方向に設定される。これにより、ユーザの右目421Rからの入射光に対する受光感度が高くなり、右目421Rをより鮮明に撮像することが可能になる。 Although illustration is omitted, also in the imaging element 121-2 arranged around the right lens 411R, the incident angle directivity of each pixel 121a is set in the direction of the right eye 421R of the user who is the main imaging target Ru. As a result, the light reception sensitivity to the incident light from the right eye 421R of the user becomes high, and it becomes possible to capture the right eye 421R more clearly.
 なお、図27のA乃至図27のCの例のうち、復元画像の画質の観点から言えば、図27のCのように撮像素子121を配置し、各画素121aの入射角指向性をばらつかせる方が望ましい。各画素121aの入射角指向性がばらつくことにより、復元画像の復元に用いる連立方程式に対する係数セット群の多様性が高まり、復元精度が向上するからである。 Of the examples in A to C in FIG. 27, from the viewpoint of the image quality of the restored image, the imaging element 121 is disposed as in C in FIG. 27, and the incident angle directivity of each pixel 121a is uneven. It is desirable to use it. When the incident angle directivity of each pixel 121a varies, the diversity of coefficient sets with respect to simultaneous equations used for restoration of a restored image is enhanced, and restoration accuracy is improved.
 なお、必ずしも全ての画素121aの入射角指向性を、ユーザの目の方向に対する受光感度が高くなるように設定する必要はない。例えば、ユーザの目の方向に対する受光感度が高くなる入射角指向性を有する画素121aの数が、他の入射角指向性を有する画素121aの数より多くなっていればよい。 Note that the incident angle directivity of all the pixels 121 a does not necessarily have to be set so as to increase the light reception sensitivity with respect to the direction of the user's eyes. For example, the number of pixels 121a having incident angle directivity, in which the light reception sensitivity with respect to the direction of the user's eyes is high, may be larger than the number of pixels 121a having other incident angle directivity.
 図29のA乃至図29のCには、電子機器301の例として、カメラ431が模式的に示されている。なお、図29のA乃至図29のCには、カメラ431のファインダ441の周辺のみが図示されているが、例えば、カメラ431の背面(ファインダ441と同じ側の面)に、ディスプレイやタッチパネル等の表示部及びユーザ操作部が設けられている。 A camera 431 is schematically shown as an example of the electronic device 301 in A of FIG. 29 to C of FIG. Although only the periphery of the finder 441 of the camera 431 is illustrated in A of FIG. 29 to C of FIG. 29, for example, a display or a touch panel may be provided on the back of the camera 431 (the same side as the finder 441). And a user operation unit.
 また、図29のA乃至図29のCには、各撮像素子121(の各画素121a)が、カメラ431の接眼部であるファインダ441の周囲に配置されている例が示されている。 Also, an example in which each of the imaging elements 121 (each pixel 121a of the imaging device 121) is disposed around a finder 441 which is an eyepiece of the camera 431 is shown in A of FIG.
 具体的には、図29のAの例では、ファインダ441の左側の縦長の矩形の領域に撮像素子121-1が配置され、ファインダ441の右側の縦長の矩形の領域に撮像素子121-2が配置されている。 Specifically, in the example of FIG. 29A, the imaging element 121-1 is disposed in the vertically long rectangular area on the left side of the finder 441, and the imaging element 121-2 is disposed in the vertically long rectangular area on the right side of the finder 441. It is arranged.
 図29のBの例では、ファインダ441の上方の横長の矩形の領域に撮像素子121が配置されている。 In the example of FIG. 29B, the imaging device 121 is disposed in a horizontally long rectangular area above the finder 441.
 図29のCの例では、ファインダ441の上方及び左側のL字型の領域に撮像素子121が配置されている。 In the example of C in FIG. 29, the imaging element 121 is disposed in the L-shaped area above and to the left of the finder 441.
 図29のDの例では、ファインダ441の上方の横長の矩形の領域に撮像素子121-1が配置され、ファインダ441の下方の横長の矩形の領域に撮像素子121-2が配置されている。 In the example of FIG. 29D, the imaging element 121-1 is disposed in the horizontally long rectangular area above the finder 441, and the imaging element 121-2 is disposed in the horizontally long rectangular area below the finder 441.
 図29のEの例では、ファインダ441の周囲を取り囲むように撮像素子121が配置されている。 In the example of E of FIG. 29, the imaging device 121 is disposed so as to surround the finder 441.
 このように、サイズの大型化やデザインの低下を抑制しつつ、カメラ431のファインダ441の周囲の空きスペースに撮像素子121を配置することができる。また、撮像素子121は、ユーザがカメラ431を用いて撮影を行うためにファインダ441を覗いた場合に、そのユーザの目周辺が写る位置に配置されており、そのユーザの目周辺の撮像を行うことができる。 As described above, the image pickup device 121 can be disposed in the empty space around the finder 441 of the camera 431 while suppressing the size increase and the design decrease. In addition, when the user looks into the finder 441 to take a picture using the camera 431, the image pickup element 121 is disposed at a position where the eye periphery of the user is captured, and performs imaging of the eye periphery of the user be able to.
 なお、図29のA乃至図29のEの各撮像素子121の各画素121aの入射角指向性は、ファインダ441を覗くときにファインダ441に近接するユーザの目の方向(例えば、ファインダ441の前方)に対する受光感度が高くなるように設定されることが望ましい。 Note that the incident angle directivity of each pixel 121a of each imaging element 121 of each of A to E in FIG. 29 is the direction of the eye of the user approaching the finder 441 when looking through the finder 441 (for example, in front of the finder 441). It is desirable that the light receiving sensitivity to the above be set to be high.
 図30のA乃至図30のCには、電子機器301の例として、ユーザの目を覆うように装着されるゴーグル型のヘッドマウントディスプレイ461の一部が模式的に示されている。なお、図30のA乃至図30のCには、ヘッドマウントディスプレイ461の内面、すなわち、ユーザが装着した際にユーザの顔と対向する面が示されており、各撮像素子121(の各画素121a)が、ヘッドマウントディスプレイ461の接眼部である左レンズ471L及び右レンズ471Rの周囲に配置されている例が示されている。 As an example of the electronic device 301, a part of a goggle type head mounted display 461 mounted so as to cover the user's eyes is schematically shown in A of FIG. In A to C of FIG. 30, the inner surface of the head mounted display 461, that is, the surface facing the user's face when worn by the user is shown. An example is shown in which 121a) is disposed around the left lens 471L and the right lens 471R which are the eyepieces of the head mounted display 461.
 具体的には、図30のAの例では、左レンズ471Lの左側の矩形の領域に撮像素子121-1が配置され、右レンズ471Rの右側の矩形の領域に撮像素子121-2が配置されている。 Specifically, in the example of A in FIG. 30, the imaging element 121-1 is disposed in the rectangular area on the left side of the left lens 471L, and the imaging element 121-2 is disposed in the rectangular area on the right side of the right lens 471R. ing.
 図30のBの例では、左レンズ471Lの上方の横長の矩形の領域に撮像素子121-1が配置され、右レンズ471Rの上方の横長の矩形の領域に撮像素子121-2が配置されている。 In the example of FIG. 30B, the imaging element 121-1 is disposed in the horizontally long rectangular area above the left lens 471L, and the imaging element 121-2 is disposed in the horizontally long rectangular area above the right lens 471R. There is.
 図30のCの例では、左レンズ471Lの下方の横長の矩形の領域に撮像素子121-1が配置され、右レンズ471Rの下方の矩形の領域に撮像素子121-2が配置されている。 In the example of C in FIG. 30, the imaging element 121-1 is disposed in the horizontally long rectangular area below the left lens 471L, and the imaging element 121-2 is disposed in the rectangular area below the right lens 471R.
 このように、サイズの大型化やデザインの低下を抑制しつつ、ヘッドマウントディスプレイ461の左レンズ471L及び右レンズ471Rの周囲の空きスペースに撮像素子121を配置することができる。そして、例えば、ヘッドマウントディスプレイ461を装着したユーザの両目周辺の撮像を行うことができる。 As described above, the imaging element 121 can be disposed in the free space around the left lens 471L and the right lens 471R of the head mounted display 461 while suppressing an increase in size and a decrease in design. Then, for example, it is possible to perform imaging around both eyes of the user wearing the head mounted display 461.
 なお、図30のA乃至図30のCの各撮像素子121の各画素121aの入射角指向性は、図27のウエアラブルデバイス401と同様に、ヘッドマウントディスプレイ461を装着した状態のユーザの目の方向に対する受光感度が高くなるように設定されることが望ましい。 The incident angle directivity of each pixel 121a of each imaging element 121 of each of FIGS. 30A to 30C is the same as that of the wearable device 401 of FIG. It is desirable that the light receiving sensitivity with respect to the direction be set to be high.
 図31のA乃至図31のCには、電子機器301の例として、ノート型のPC(パーソナルコンピュータ)491が模式的に示されている。 A notebook PC (personal computer) 491 is schematically shown as an example of the electronic device 301 in A of FIG. 31 to C of FIG.
 PC491は、表示部であるディスプレイ501が設けられている蓋部と、ユーザ操作部であるキーボード503が設けられている台部とがヒンジ部により回転可能に接続されており、蓋部を開閉することができる。そして、図31のA乃至図31のCに示されるように蓋部を開いた状態において、ディスプレイ501及びキーボード503が外部に露出され、ユーザはPC491を使用することができる。なお、例えば、ディスプレイ501にタッチパネルを設けることにより、ディスプレイ501(厳密にはタッチパネル)をユーザ操作部とすることも可能である。 In the PC 491, a cover provided with the display 501, which is a display unit, and a base provided with a keyboard 503, which is a user operation unit, are rotatably connected by a hinge to open and close the cover. be able to. Then, the display 501 and the keyboard 503 are exposed to the outside in a state in which the lid is opened as illustrated in A to 31C of FIG. 31, and the user can use the PC 491. Note that, for example, by providing a touch panel on the display 501, the display 501 (strictly speaking, the touch panel) can be used as a user operation unit.
 また、図31のA乃至図31のCには、ディスプレイ501の周囲に撮像素子121(の各画素121a)が配置されている例が示されている。 31A to 31C show an example in which (the respective pixels 121a of) the imaging device 121 are arranged around the display 501. FIG.
 図31のAの例では、ディスプレイ501の周囲のベゼル502の上辺に撮像素子121が配置されている。 In the example of FIG. 31A, the imaging device 121 is disposed on the upper side of the bezel 502 around the display 501.
 図31のBの例では、ベゼル502の左辺に撮像素子121-1が配置され、ベゼル502の右辺に撮像素子121-2が配置されている。 In the example of FIG. 31B, the imaging device 121-1 is disposed on the left side of the bezel 502, and the imaging device 121-2 is disposed on the right side of the bezel 502.
 図31のCの例では、ベゼル502の4辺にディスプレイ501を囲むように撮像素子121が配置されている。 In the example of C in FIG. 31, the imaging element 121 is disposed on four sides of the bezel 502 so as to surround the display 501.
 このように、サイズの大型化やデザインの低下を抑制しつつ、ベゼル502の空きスペースに撮像素子121を配置することができるとともに、狭ベゼル化を実現することができる。また、撮像素子121は、PC491のディスプレイ501を見ながらキーボード503を使用しているユーザと対面する位置であって、ユーザの顔周辺が写る位置に配置されており、そのユーザの顔周辺の撮像を行うことができる。 As described above, the imaging element 121 can be disposed in the empty space of the bezel 502 while suppressing increase in size and reduction in design, and narrowing of the bezel can be realized. Further, the imaging element 121 is disposed at a position facing the user using the keyboard 503 while looking at the display 501 of the PC 491 and at a position where the periphery of the user's face is captured. It can be performed.
 なお、図31のA乃至図31のCの各撮像素子121の各画素121aの入射角指向性は、PC491のディスプレイ501を見ながらキーボード503を使用しているユーザの顔の方向(例えば、ディスプレイ501の前方)に対する受光感度が高くなるように設定されることが望ましい。 The incident angle directivity of each pixel 121a of each image sensor 121 of each of FIGS. 31A to 31C corresponds to the direction of the face of the user who is using the keyboard 503 while looking at the display 501 of the PC 491 (for example, display It is desirable that the light receiving sensitivity with respect to the front of 501) be set to be high.
 <ユーザ撮像制御処理>
 次に、図32のフローチャートを参照して、電子機器301により実行されるユーザ撮像制御処理について説明する。
<User imaging control processing>
Next, user imaging control processing executed by the electronic device 301 will be described with reference to the flowchart in FIG.
 ステップS101において、電子機器301の各撮像素子121は、図20のステップS1と同様の処理により、ユーザの撮像を行う。 In step S101, each imaging element 121 of the electronic device 301 performs imaging of the user by the same processing as that of step S1 in FIG.
 例えば、図27のウエアラブルデバイス401の場合、ウエアラブルデバイス401を装着しているユーザの両目周辺の撮像が行われる。 For example, in the case of the wearable device 401 of FIG. 27, imaging of the area around both eyes of the user wearing the wearable device 401 is performed.
 図29のカメラ431の場合、ファインダ441を覗いているユーザの目周辺の撮像が行われる。 In the case of the camera 431 of FIG. 29, imaging around the eyes of the user looking through the finder 441 is performed.
 図30のヘッドマウントディスプレイ461の場合、ヘッドマウントディスプレイ461を装着しているユーザの両目周辺の撮像が行われる。 In the case of the head mounted display 461 of FIG. 30, imaging around the eyes of the user wearing the head mounted display 461 is performed.
 図31のPC491の場合、ディスプレイ501を見ているユーザの顔周辺の撮像が行われる。 In the case of the PC 491 of FIG. 31, imaging around the face of the user looking at the display 501 is performed.
 各撮像素子121は、各画素121aの検出信号からなる検出信号セットを関連付け部325に供給する。 Each imaging element 121 supplies the detection signal set including the detection signal of each pixel 121a to the associating unit 325.
 ステップS102において、復元部321は、画像の復元に用いる係数を求める。具体的には、復元部321は、図20のステップS2の撮像装置101の復元部122による処理と同様の処理により、被写体距離を設定する。そして、復元部321は、設定した被写体距離に対応付けられている係数セット群を記憶部327から読み出す。 In step S102, the restoration unit 321 obtains a coefficient used for image restoration. Specifically, the restoration unit 321 sets the subject distance by the same process as the process performed by the restoration unit 122 of the imaging apparatus 101 in step S2 of FIG. Then, the restoration unit 321 reads out, from the storage unit 327, the coefficient set group associated with the set subject distance.
 ステップS103において、復元部321は、検出信号セット及び係数を用いて、画像の復元を行う。すなわち、復元部321は、図20のステップS3の撮像装置101の復元部122による処理と同様の処理により、各撮像素子121から出力された検出信号セット、及び、ステップS102の処理で求めた係数セット群を用いて、復元画像を復元する。 In step S103, the reconstruction unit 321 reconstructs an image using the detection signal set and the coefficients. That is, the restoration unit 321 performs the same processing as the processing performed by the restoration unit 122 of the imaging apparatus 101 in step S3 in FIG. 20, the detection signal set output from each imaging element 121, and the coefficient obtained in the processing in step S102. The set group is used to restore the restored image.
 ステップS104において、電子機器301は、復元画像に対して各種の処理を行う。例えば、復元部321は、必要に応じて、復元画像に対して、デモザイク処理、γ補正、ホワイトバランス調整、所定の圧縮形式への変換処理等を行う。また、復元部321は、例えば、必要に応じて、復元画像を出力部326に供給し、表示させたり、記録再生部328に供給し、記録媒体329に記録させたり、通信部330を介して、他の機器に出力したりする。 In step S104, the electronic device 301 performs various processes on the restored image. For example, the restoration unit 321 performs demosaicing processing, γ correction, white balance adjustment, conversion processing to a predetermined compression format, and the like on the restored image as necessary. In addition, the restoration unit 321 supplies, for example, a restored image to the output unit 326 for display, or supplies the restored image to the recording and reproduction unit 328, and records the image on the recording medium 329 as needed. , Output to other devices.
 ステップS105において、電子機器301は、復元画像(すなわち、ユーザの画像)を用いたアプリケーション処理を実行する。 In step S105, the electronic device 301 executes an application process using the restored image (that is, the image of the user).
 例えば、図27のウエアラブルデバイス401の場合、制御部322は、復元画像内のユーザの目の画像に基づいて、ユーザの視線検出を行う。なお、視線検出には、任意の方法を用いることができる。そして、例えば、制御部322は、ユーザの視線の動きに対応する操作コマンドを生成し、通信部330を介して、他の電子機器(不図示)に送信する。これにより、ユーザは、ウエアラブルデバイス401を装着して視線を動かすだけで、他の電子機器の操作を行うことができる。 For example, in the case of the wearable device 401 in FIG. 27, the control unit 322 performs the gaze detection of the user based on the image of the user's eyes in the restored image. In addition, arbitrary methods can be used for gaze detection. Then, for example, the control unit 322 generates an operation command corresponding to the movement of the user's line of sight, and transmits the operation command to another electronic device (not shown) via the communication unit 330. Thus, the user can operate another electronic device simply by wearing the wearable device 401 and moving his / her eyes.
 例えば、図29のカメラ431の場合、制御部322は、復元画像内のユーザの目の画像に基づいて、ユーザの視線検出を行う。なお、視線検出には、任意の方法を用いることができる。そして、例えば、制御部322は、カメラ431の各部を制御して、ユーザの視線の動きに応じて、フォーカスを合わせる被写体の位置(フォーカスポイント)を移動させたり、カメラ431の各種の処理を行ったりする。これにより、ユーザは、ファインダ441を覗いて視線を動かすだけで、フォーカスポイントを設定したり、カメラ431に対する各種の操作を行ったりすることができる。 For example, in the case of the camera 431 of FIG. 29, the control unit 322 performs the gaze detection of the user based on the image of the user's eyes in the restored image. In addition, arbitrary methods can be used for gaze detection. Then, for example, the control unit 322 controls each unit of the camera 431 to move the position (focus point) of the subject to be focused according to the movement of the user's line of sight, or performs various processes of the camera 431. To As a result, the user can set the focus point or perform various operations on the camera 431 simply by looking at the finder 441 and moving the line of sight.
 或いは、例えば、制御部322は、復元画像内に基づいて、ユーザの認識処理又は認証処理を行う。 Alternatively, for example, the control unit 322 performs user recognition processing or authentication processing based on the inside of the restored image.
 ここで、認識処理とは、例えば、ユーザの特定を行ったり、ユーザの特徴を認識したりする処理である。一方、認証処理とは、例えば、復元画像と予め登録されている画像(例えば、顔画像、目の画像等)との照合等を行うことにより、ユーザが予め登録されているユーザ又は正規のユーザ等であるかの判定等を行う処理である。なお、認識処理と認証処理とは、明確に区別されずに、一部が重複する場合がある。また、ユーザの認識処理及び認証処理には、任意の方法を用いることができる。例えば、認識処理には、顔認証、虹彩認証等の各種の生体認証を用いることができる。 Here, the recognition process is, for example, a process of specifying a user or recognizing a feature of the user. On the other hand, in the authentication process, for example, a user whose user is registered in advance or a legitimate user by, for example, collating a restored image with an image (for example, a face image, an eye image, etc.) registered in advance. It is a process which performs judgment etc. whether it is etc. In addition, recognition processing and authentication processing may be partially overlapped without being clearly distinguished. Further, any method can be used for the user recognition process and authentication process. For example, various biometric authentication such as face authentication and iris authentication can be used for recognition processing.
 そして、例えば、制御部322は、ユーザの認識結果又は認証結果に基づいて、認識又は認証したユーザに対応するユーザインタフェース画面を出力部326のディスプレイに表示させたり、カメラ431の設定を変更したり、特定の機能(例えば、再生等)の使用許可を行ったりする。 Then, for example, the control unit 322 causes the display of the output unit 326 to display a user interface screen corresponding to the recognized or authenticated user based on the recognition result or authentication result of the user, or changes the setting of the camera 431. , Authorize the use of a specific function (eg, playback, etc.).
 例えば、図30のヘッドマウントディスプレイ461の場合、制御部322は、復元画像内のユーザの目の画像に基づいて、ユーザの視線検出を行う。なお、視線検出には、任意の方法を用いることができる。そして、例えば、制御部322は、ヘッドマウンドディスプレイ461の各部を制御して、ユーザの視線の動きに応じて、ヘッドマウントディスプレイ461の各種の処理を行う。これにより、ユーザは、ヘッドマウントディスプレイ461を装着して視線を動かすだけで、ヘッドマウントディスプレイ461に対する各種の操作を行うことができる。 For example, in the case of the head mounted display 461 of FIG. 30, the control unit 322 performs the gaze detection of the user based on the image of the user's eyes in the restored image. In addition, arbitrary methods can be used for gaze detection. Then, for example, the control unit 322 controls each unit of the head mount display 461 to perform various processes of the head mounted display 461 according to the movement of the user's line of sight. As a result, the user can perform various operations on the head mounted display 461 simply by mounting the head mounted display 461 and moving the line of sight.
 例えば、図31のPC491の場合、制御部322は、復元画像内のユーザの顔の画像に基づいて、ユーザの認識処理又は認証処理を行う。そして、例えば、制御部322は、ユーザの認識結果又は認証結果に基づいて、認識又は認証したユーザに対応するユーザインタフェース画面を出力部326のディスプレイに表示させたり、PC491の設定(例えば、カスタム設定、画質設定、ペアレンタルコントロール設定)等を変更したり、特定のアカウントへのログイン、特定のフォルダやファイルへのアクセス、及び、特定の機能の使用等の許可を行ったりする。 For example, in the case of the PC 491 of FIG. 31, the control unit 322 performs user recognition processing or authentication processing based on the image of the user's face in the restored image. Then, for example, the control unit 322 displays a user interface screen corresponding to the recognized or authenticated user on the display of the output unit 326 based on the recognition result or the authentication result of the user, or the setting of the PC 491 (for example, custom setting , Image quality setting, parental control setting, etc., login to a specific account, access to a specific folder or file, and permission to use a specific function.
 その後、ユーザ撮像制御処理は終了する。 Thereafter, the user imaging control process ends.
 なお、以上においては、撮像素子121と被写体距離に対応付けられた係数セット群を用いて、検出信号セットから復元画像を復元する例について説明してきたが、例えば、被写体距離に加えて、上述したように、復元画像の画角に対応する係数セット群をさらに用意して、被写体距離および画角に応じた係数セット群を用いて、復元画像を復元するようにしても良い。 In addition, although the example which decompress | restores a decompression | restoration image from a detection signal set using the coefficient set group matched with the image pick-up element 121 and subject distance above was demonstrated, for example, in addition to subject distance, it mentioned above As described above, a coefficient set group corresponding to the angle of view of the restored image may be further prepared, and the restored image may be restored using the coefficient set group corresponding to the subject distance and the angle of view.
 以上のようにして、電子機器301のサイズの大型化やデザインの低下を抑制しつつ撮像素子121を配置し、電子機器を使用するユーザを撮像することができる。そして、ユーザの画像を復元し、復元した画像に基づいて、各種のアプリケーション処理を実行することができる。 As described above, it is possible to dispose the imaging element 121 while suppressing an increase in size and a decrease in design of the electronic device 301, and to image a user who uses the electronic device. Then, the user's image can be restored, and various application processes can be executed based on the restored image.
 <<4.第2の実施の形態>>
 次に、図33乃至図41を参照して、本開示の第2の実施の形態について説明する。
<< 4. Second embodiment >>
Next, a second embodiment of the present disclosure will be described with reference to FIGS. 33 to 41.
 上述した第1の実施の形態では、電子機器301を使用するユーザの撮像を行い、復元処理により得られるユーザの画像を用いて、各種のアプリケーション処理を実行する例を示した。一方、第2の実施の形態では、電子機器301を使用するユーザの周囲の撮像が行われ、復元処理により得られるユーザの周囲の画像を用いて、各種のアプリケーション処理が実行される。 In the first embodiment described above, an example is shown in which imaging of a user who uses the electronic device 301 is performed, and various application processing is executed using an image of the user obtained by the restoration processing. On the other hand, in the second embodiment, imaging around the user using the electronic device 301 is performed, and various application processes are executed using images around the user obtained by the restoration process.
 なお、第2の実施の形態では、第1の実施の形態と同様に、図26の電子機器301が用いられる。一方、第2の実施の形態では、第1の実施の形態と異なり、電子機器301を装着又は使用しているユーザの周囲が写る位置に撮像素子121が配置される。 In the second embodiment, the electronic device 301 of FIG. 26 is used as in the first embodiment. On the other hand, in the second embodiment, unlike the first embodiment, the imaging device 121 is disposed at a position where the surroundings of the user wearing or using the electronic device 301 are captured.
 <撮像素子121の配置例>
 ここで、図33乃至図40を参照して、電子機器301の具体例を挙げながら、撮像素子121の配置例について説明する。
<Arrangement Example of Imaging Element 121>
Here, with reference to FIG. 33 to FIG. 40, an arrangement example of the imaging device 121 will be described by giving a specific example of the electronic device 301.
 図33のA乃至図33のCには、電子機器301の例として、ユーザの目を覆うように装着されるメガネ型のウエアラブルデバイス601が模式的に示されている。また、図33のA乃至図33のCには、ウエアラブルデバイス601をユーザが装着した状態において外側に露出するフレーム612の表面に撮像素子121(の各画素121a)が配置されている例が示されている。 In A of FIG. 33 to C of FIG. 33, a glasses-type wearable device 601 worn to cover the eyes of the user is schematically shown as an example of the electronic device 301. 33A to 33C show an example in which the imaging element 121 (each pixel 121a of the imaging element 121) is disposed on the surface of the frame 612 exposed to the outside when the wearable device 601 is worn by the user. It is done.
 具体的には、図33のAの例では、フレーム612の表面の左レンズ611Lの上方に撮像素子121-1が配置され、フレーム612の表面の右レンズ611Rの上方に撮像素子121-2が配置されている。 Specifically, in the example of A of FIG. 33, the imaging element 121-1 is disposed above the left lens 611L on the surface of the frame 612, and the imaging element 121-2 is disposed above the right lens 611R on the surface of the frame 612. It is arranged.
 図33のBの例では、フレーム612の表面の左レンズ611Lの右側に撮像素子121-1が配置され、フレーム612の表面の右レンズ611Rの左側に撮像素子121-2が配置されている。 In the example of FIG. 33B, the imaging device 121-1 is disposed on the right side of the left lens 611L on the surface of the frame 612, and the imaging device 121-2 is disposed on the left side of the right lens 611R on the surface of the frame 612.
 図33のCの例では、フレーム612の表面の左レンズ611Lの周囲を取り囲むように撮像素子121-1が配置され、フレーム612の表面の右レンズ611Rの周囲を取り囲むように撮像素子121-2が配置されている。 In the example of FIG. 33C, the imaging device 121-1 is disposed to surround the left lens 611L of the surface of the frame 612, and the imaging device 121-2 is disposed to surround the right lens 611R of the surface of the frame 612. Is arranged.
 このように、サイズの大型化やデザインの低下を抑制しつつ、ウエアラブルデバイス601のフレーム612の空きスペースに撮像素子121を配置することができる。そして、例えば、ウエアラブルデバイス601を装着したユーザの前方の撮像を行うことができる。 As described above, the image sensor 121 can be disposed in the empty space of the frame 612 of the wearable device 601 while suppressing the increase in size and the decrease in design. Then, for example, imaging in front of the user wearing the wearable device 601 can be performed.
 図34のA乃至図34のCには、電子機器301の例として、カメラ631が模式的に示されている。また、カメラ631の筐体の前面に撮像素子121(の各画素121a)が配置されている例が示されている。 A camera 631 is schematically shown as an example of the electronic device 301 in A of FIG. 34 to C of FIG. Further, an example in which (the respective pixels 121 a of) the imaging element 121 is disposed on the front surface of the casing of the camera 631 is shown.
 具体的には、図34のAの例では、カメラ631の本体部の前面のうち、マウント641の左側であって、カメラ631の左端付近の縦長の矩形の領域に撮像素子121が配置されている。 Specifically, in the example of A of FIG. 34, the imaging element 121 is disposed in a vertically long rectangular area on the left side of the mount 641 and near the left end of the camera 631 in the front surface of the main body of the camera 631 There is.
 図34のBの例では、カメラ631の本体部の前面のうち、マウント641の四隅付近の4つの矩形の領域内に、撮像素子121-1乃至撮像素子121-4がそれぞれ配置されている。 In the example of FIG. 34B, the imaging elements 121-1 to 121-4 are respectively disposed in four rectangular areas near the four corners of the mount 641 in the front surface of the main body of the camera 631.
 図34のCの例では、カメラ631のフラッシュが内蔵されているフラッシュ内蔵部642の前面に撮像素子121が配置されている。 In the example of C in FIG. 34, the imaging device 121 is disposed on the front surface of the flash built-in portion 642 in which the flash of the camera 631 is built.
 図34のDの例では、カメラ631のマウント641の外周に沿ったリング状の領域に撮像素子121が配置されている。 In the example of FIG. 34D, the imaging device 121 is disposed in a ring-shaped area along the outer periphery of the mount 641 of the camera 631.
 このように、サイズの大型化やデザインの低下を抑制しつつ、カメラ631の筐体の前面の空きスペースに撮像素子121を配置することができる。そして、例えば、カメラ631の撮像方向の撮像を行うことができる。 As described above, the imaging element 121 can be disposed in the vacant space on the front surface of the housing of the camera 631 while suppressing the increase in size and the reduction in design. Then, for example, imaging in the imaging direction of the camera 631 can be performed.
 図35のA乃至図35のDには、電子機器301の例として、ユーザの目を覆うように装着されるゴーグル型のヘッドマウントディスプレイ661が模式的に示されている。また、図35のA乃至図35のDには、ヘッドマウントディスプレイ661をユーザが装着した状態において外側に露出する筐体の前面に撮像素子121(の各画素121a)が配置されている例が示されている。 As an example of the electronic device 301, a goggle type head mounted display 661 mounted so as to cover the user's eyes is schematically shown in A of FIG. 35 to D of FIG. Also, in A to D of FIG. 35, there is an example in which the imaging element 121 (each pixel 121a of the image pickup element 121) is disposed on the front surface of the housing exposed to the outside when the user mounts the head mounted display 661. It is shown.
 具体的には、図35のAの例では、本体部671の前面の下方の横長の矩形の領域に撮像素子121が配置されている。 Specifically, in the example of FIG. 35A, the imaging device 121 is disposed in a horizontally long rectangular area below the front surface of the main body 671.
 図35のBの例では、本体部671の前面の上端の横長の領域に撮像素子121が配置されている。 In the example of FIG. 35B, the imaging element 121 is disposed in a horizontally long region at the upper end of the front surface of the main body 671.
 図35のCの例では、ヘッドパッド672の前面の矩形の領域に撮像素子121が配置されている。 In the example of C in FIG. 35, the imaging element 121 is disposed in the rectangular area on the front surface of the head pad 672.
 図35のDの例では、本体部671の前面の左右の矩形の領域に撮像素子121-1及び撮像素子121-2が配置されている。 In the example of D in FIG. 35, the imaging device 121-1 and the imaging device 121-2 are disposed in the left and right rectangular regions on the front surface of the main body portion 671.
 このように、サイズの大型化やデザインの低下を抑制しつつ、ヘッドマウントディスプレイ661の筐体の前面の空きスペースに撮像素子121を配置することができる。そして、例えば、ヘッドマウントディスプレイ661を装着しているユーザの前方の撮像を行うことができる。 Thus, the imaging element 121 can be disposed in the empty space on the front surface of the housing of the head mounted display 661 while suppressing an increase in size and a decrease in design. Then, for example, imaging in front of the user wearing the head mounted display 661 can be performed.
 図36のA乃至図37のDには、電子機器301の例として、オーバーヘッド型のヘッドフォン691が模式的に示されている。図36のA及び図36のBは、ヘッドフォン691を斜め前から見た斜視図を示し、図37のC及び図37のDは、ヘッドフォン691を斜め後ろから見た斜視図を示している。 An overhead type headphone 691 is schematically shown as an example of the electronic device 301 in A to D of FIG. A of FIG. 36 and B of FIG. 36 show perspective views of the headphones 691 as viewed obliquely from the front, and C of FIGS. 37 and D of FIG. 37 show perspective views of the headphones 691 as viewed obliquely from the rear.
 図36のAの例では、左側のハウジング701Lの側面の前方中央付近に撮像素子121-1が配置され、右側のハウジング701Rの側面の前方中央付近に撮像素子121-2が配置されている。 In the example of FIG. 36A, the imaging device 121-1 is disposed near the front center of the side surface of the left housing 701L, and the imaging device 121-2 is disposed near the front center of the side surface of the right housing 701R.
 図36のBの例では、ヘッドセット702の前面に沿った領域に撮像素子121が配置されている。 In the example of FIG. 36B, the imaging device 121 is disposed in the area along the front surface of the headset 702.
 図37のCの例では、左側のハウジング701Lの側面の後方中央付近に撮像素子121-1が配置され、右側のハウジング701Rの側面の後方中央付近に撮像素子121-2が配置されている。 In the example of C of FIG. 37, the imaging element 121-1 is disposed near the rear center of the side surface of the left housing 701L, and the imaging element 121-2 is disposed near the rear center of the side surface of the right housing 701R.
 図37のDの例では、ヘッドセット702の後面に沿った領域に撮像素子121が配置されている。 In the example of FIG. 37D, the imaging device 121 is disposed in the area along the back surface of the headset 702.
 このように、サイズの大型化やデザインの低下を抑制しつつ、ユーザがヘッドフォン691を装着した状態において外側に露出する面の空きスペースに撮像素子121を配置することができる。そして、例えば、ヘッドフォン691を装着しているユーザの前方又は後方の撮像を行うことができる。 As described above, the image sensor 121 can be disposed in a vacant space on the surface exposed to the outside in a state where the user wears the headphones 691 while suppressing an increase in size and a decrease in design. Then, for example, imaging in front of or behind the user wearing the headphones 691 can be performed.
 図38のA及び図38のBには、電子機器301の例として、ネックバンド型のヘッドフォン721が模式的に示されている。 In A of FIG. 38 and B of FIG. 38, a neck band type headphone 721 is schematically shown as an example of the electronic device 301.
 図38のAの例では、左側のハウジング731Lの側面の前方に撮像素子121-1が配置されている。また、図示は省略するが、右側のハウジング731Rの側面の前方に撮像素子121-2が配置されている。 In the example of FIG. 38A, the imaging device 121-1 is disposed in front of the side surface of the left housing 731L. Although not shown, the imaging device 121-2 is disposed in front of the side surface of the right housing 731R.
 図38のBの例では、ネックバンド732の後方付近に撮像素子121が配置されている。 In the example of B of FIG. 38, the imaging element 121 is disposed in the vicinity of the rear of the neck band 732.
 このように、サイズの大型化やデザインの低下を抑制しつつ、ユーザがヘッドフォン721を装着した状態において外側に露出する面の空きスペースに撮像素子121を配置することができる。そして、例えば、ヘッドフォン721を装着しているユーザの前方又は後方の撮像を行うことができる。 As described above, the image sensor 121 can be disposed in a vacant space on the surface exposed to the outside in a state where the user wears the headphones 721 while suppressing an increase in size and a decrease in design. Then, for example, imaging in front of or behind the user wearing the headphones 721 can be performed.
 なお、以上の例では、ユーザの前方又は後方を撮像する例を示したが、ユーザの周囲の他の方向(例えば、側方、上方、下方等)を撮像するように、各撮像素子121を設置するようにしてもよい。 In the above example, an example of imaging the front or back of the user is described, but each imaging element 121 is configured to image other directions (for example, side, upper, lower, etc.) around the user. You may install it.
 <ユーザ周囲撮像制御処理>
 次に、図39のフローチャートを参照して、電子機器301により実行されるユーザ周囲撮像制御処理について説明する。
<User ambient imaging control processing>
Next, with reference to a flowchart of FIG. 39, a user surrounding imaging control process executed by the electronic device 301 will be described.
 ステップS201において、電子機器301の各撮像素子121は、図20のステップS1と同様の処理により、ユーザの周囲の撮像を行う。 In step S201, each imaging element 121 of the electronic device 301 performs imaging of the surroundings of the user by the same processing as step S1 in FIG.
 例えば、図33のウエアラブルデバイス601の場合、ウエアラブルデバイス601を装着しているユーザの前方の撮像が行われる。 For example, in the case of the wearable device 601 of FIG. 33, imaging in front of the user wearing the wearable device 601 is performed.
 図34のカメラ631の場合、カメラ631の撮像方向の撮像が行われる。 In the case of the camera 631 of FIG. 34, imaging in the imaging direction of the camera 631 is performed.
 図35のヘッドマウントディスプレイ661の場合、ヘッドマウントディスプレイ661を装着しているユーザの前方の撮像が行われる。 In the case of the head mounted display 661 of FIG. 35, imaging in front of the user wearing the head mounted display 661 is performed.
 図36及び図37のヘッドフォン691の場合、ヘッドフォン691を装着しているユーザの前方又は後方の撮像が行われる。 In the case of the headphones 691 of FIGS. 36 and 37, imaging in front of or behind the user wearing the headphones 691 is performed.
 図38のヘッドフォン721の場合、ヘッドフォン721を装着しているユーザの前方又は後方の撮像が行われる。 In the case of the headphone 721 of FIG. 38, imaging in front of or behind the user wearing the headphone 721 is performed.
 各撮像素子121は、各画素121aの検出信号からなる検出信号セットを関連付け部325に供給する。 Each imaging element 121 supplies the detection signal set including the detection signal of each pixel 121a to the associating unit 325.
 ステップS202において、復元部321は、画像の復元に用いる係数を求める。具体的には、復元部321は、図20のステップS2の撮像装置101の復元部122による処理と同様の処理により、被写体距離を設定する。そして、復元部321は、設定した被写体距離に対応付けられている係数セット群を記憶部327から読み出す。 In step S202, the restoration unit 321 obtains a coefficient used for image restoration. Specifically, the restoration unit 321 sets the subject distance by the same process as the process performed by the restoration unit 122 of the imaging apparatus 101 in step S2 of FIG. Then, the restoration unit 321 reads out, from the storage unit 327, the coefficient set group associated with the set subject distance.
 なお、図36及び図37のヘッドフォン691のヘッドセット702や、図38のヘッドフォン721のネックバンド732のように、変形可能な部分に撮像素子121が配置されている場合、変形に伴い、各画素121a間の相対位置が変化する。 When the image sensor 121 is disposed at a deformable portion, such as the headset 702 of the headphone 691 of FIGS. 36 and 37 and the neck band 732 of the headphone 721 of FIG. The relative position between 121a changes.
 一方、上述した復元画像の復元に用いる連立方程式の係数セット群は、各画素121aの相対位置が変化しないことを前提にして設定されている。 On the other hand, the coefficient set group of simultaneous equations used for restoring the restored image described above is set on the premise that the relative position of each pixel 121a does not change.
 そこで、電子機器301の変形可能な部分に撮像素子121が配置される場合、変形具合に応じた係数セット群を予め用意しておくとともに、変形具合を検出し、検出した変形具合に応じた係数セット群を用いるようにしてもよい。 Therefore, when the imaging device 121 is disposed at a deformable portion of the electronic device 301, a coefficient set group corresponding to the degree of deformation is prepared in advance, and the degree of deformation is detected, and the coefficient corresponding to the detected degree of deformation A set group may be used.
 ここで、変形可能な部分とは、例えば電子機器301を使用したり、装着したりする場合等に形を変わり得る部分である。なお、変形の種類は、特に限定されるものではなく、例えば、伸び、縮み、曲がり、ずれ、ねじれ、分離等が含まれる。また、変形可能な部分には、例えば、外から与えられる力により変形する部分、及び、アクチュエータ等により自らが形を変える部分がある。 Here, the deformable portion is a portion that can change its shape when, for example, the electronic device 301 is used or mounted. The type of deformation is not particularly limited, and includes, for example, elongation, contraction, bending, deviation, twisting, separation, and the like. Further, the deformable portion includes, for example, a portion which is deformed by an externally applied force, and a portion which changes its shape by an actuator or the like.
 例えば、図36及び図37のヘッドフォン691のヘッドセット702に曲げセンサを設け、曲げセンサにより検出されるヘッドセットの曲げ具合に対応する係数セット群を用いるようにしてもよい。 For example, a bending sensor may be provided in the headset 702 of the headphone 691 of FIGS. 36 and 37, and a coefficient set group corresponding to the bending condition of the headset detected by the bending sensor may be used.
 例えば、図40のA乃至図40のCの曲げセンサ751の3つのパターンの曲げ具合に対応する係数セット群が予め用意される。そして、ユーザがヘッドフォン691を装着した場合の曲げセンサ751の検出結果に最も近い曲げ具合に対応する係数セット群を用いて、復元画像の復元が行われる。 For example, coefficient set groups corresponding to the degree of bending of the three patterns of the bending sensor 751 of FIG. 40A to FIG. 40C are prepared in advance. Then, restoration of a restored image is performed using a coefficient set group corresponding to the bending condition closest to the detection result of the bending sensor 751 when the user wears the headphone 691.
 ステップS203において、図32のステップS103の処理と同様に、検出信号セット及び係数を用いて、画像の復元が行われる。 In step S203, as in the process of step S103 of FIG. 32, the image is restored using the detection signal set and the coefficients.
 ステップS204において、図32のステップS104の処理と同様に、復元画像に対して各種の処理が実行される。 In step S204, various processes are performed on the restored image, as in the process of step S104 in FIG.
 ステップS205において、電子機器301は、復元画像(すなわち、ユーザの周囲の画像)を用いたアプリケーション処理を実行する。 In step S205, the electronic device 301 executes application processing using a restored image (that is, an image around the user).
 例えば、図33のウエアラブルデバイス601の場合、制御部322は、復元画像に基づいて、ユーザの周囲の認識処理を行う。なお、ユーザの周囲の認識処理には、任意の方法を用いることができる。そして、例えば、制御部322は、出力部326を制御して、認識処理により得られたユーザの周囲の環境に対応する画像や情報を、左レンズ611L及び右レンズ611Rを介してユーザが視認する視野内に重畳し、AR(Augmented Reality)を実現する。 For example, in the case of the wearable device 601 of FIG. 33, the control unit 322 performs recognition processing of the surroundings of the user based on the restored image. In addition, arbitrary methods can be used for the recognition process of a user's circumference. Then, for example, the control unit 322 controls the output unit 326 so that the user visually recognizes an image or information corresponding to the environment around the user obtained by the recognition processing through the left lens 611L and the right lens 611R. Superimpose in the field of view to realize AR (Augmented Reality).
 或いは、例えば、制御部322は、記録再生部328を制御して、ユーザのライフログとして、復元画像を記録媒体329に記録させる。 Alternatively, for example, the control unit 322 controls the recording and reproducing unit 328 to record the restored image on the recording medium 329 as the user's life log.
 例えば、図34のカメラ631の場合、制御部322は、復元画像に基づいて、ユーザの周囲の認識処理を行うことにより、被写体の追従やシーンの認識等を行う。なお、ユーザの周囲の認識処理には、任意の方法を用いることができる。これにより、例えば、カメラ631のレンズ643を介して撮像する撮像素子(不図示)のシャッタ動作中においても被写体の追従を行うことができる。また、例えば、レンズ643より広い範囲をセンシングして、被写体の追従やシーンの認識を行うことができる。 For example, in the case of the camera 631 of FIG. 34, the control unit 322 performs tracking processing of the subject, recognition of a scene, and the like by performing recognition processing of the surroundings of the user based on the restored image. In addition, arbitrary methods can be used for the recognition process of a user's circumference. Thereby, for example, it is possible to follow the subject even during the shutter operation of an imaging device (not shown) which takes an image through the lens 643 of the camera 631. In addition, for example, a wider range than the lens 643 can be sensed to follow an object or recognize a scene.
 例えば、図35のヘッドマウントディスプレイ661の場合、制御部322は、出力部326を制御して、復元画像の一部又は全部を、ユーザが視認している画像内に重畳させる。 For example, in the case of the head mounted display 661 of FIG. 35, the control unit 322 controls the output unit 326 to superimpose part or all of the restored image in the image viewed by the user.
 例えば、図36及び図37のヘッドフォン691、又は、図38のヘッドフォン721の場合、制御部322は、復元画像に基づいて、ユーザの周囲の認識処理を行う。なお、ユーザの周囲の認識処理には、任意の方法を用いることができる。そして、制御部322は、認識結果に基づいて、出力部326等を制御してユーザの補助等を行う。例えば、車両の接近等の危険が検出された場合、振動や音声等により危険が通知されたり、目が不自由な方への音声等による支援が行われたり、認識した人の名前が音声で通知されたりする。 For example, in the case of the headphones 691 of FIG. 36 and FIG. 37 or the headphones 721 of FIG. 38, the control unit 322 performs recognition processing of the user's surroundings based on the restored image. In addition, arbitrary methods can be used for the recognition process of a user's circumference. Then, based on the recognition result, the control unit 322 controls the output unit 326 and the like to perform user assistance and the like. For example, when a danger such as the approach of a vehicle is detected, the danger is notified by vibration, voice, etc., assistance is given by voice to people with impaired eyes, the name of the person who recognized is voiced Be notified.
 或いは、例えば、制御部322は、記録再生部328を制御して、ユーザのライフログとして、復元画像を記録媒体329に記録させる。 Alternatively, for example, the control unit 322 controls the recording and reproducing unit 328 to record the restored image on the recording medium 329 as the user's life log.
 その後、ユーザ周囲撮像制御処理は終了する。 Thereafter, the user surrounding imaging control process ends.
 なお、以上においては、撮像素子121と被写体距離に対応付けられた係数セット群を用いて、検出信号セットから復元画像を復元する例について説明してきたが、例えば、被写体距離に加えて、上述したように、復元画像の画角に対応する係数セット群をさらに用意して、被写体距離および画角に応じた係数セット群を用いて、復元画像を復元するようにしても良い。 In addition, although the example which decompress | restores a decompression | restoration image from a detection signal set using the coefficient set group matched with the image pick-up element 121 and subject distance above was demonstrated, for example, in addition to subject distance, it mentioned above As described above, a coefficient set group corresponding to the angle of view of the restored image may be further prepared, and the restored image may be restored using the coefficient set group corresponding to the subject distance and the angle of view.
 以上のようにして、電子機器301のサイズの大型化やデザインの低下を抑制しつつ撮像素子121を配置し、電子機器を使用するユーザの周囲を撮像することができる。そして、ユーザの周囲の画像を復元し、復元した画像に基づいて、各種のアプリケーション処理を実行することができる。 As described above, it is possible to dispose the imaging element 121 while suppressing the increase in the size and the design of the electronic device 301, and to capture the surroundings of the user who uses the electronic device. Then, the image around the user can be restored, and various application processes can be executed based on the restored image.
 なお、以上においては、ライフログとして復元画像を記録する例を示したが、復元画像の代わりに検出信号セットを記録しておき、必要に応じて画像の復元を行うようにしてもよい。 Note that although an example in which a restored image is recorded as a life log has been described above, a detection signal set may be recorded instead of the restored image, and the image may be restored as needed.
 この場合、例えば、各撮像素子121により取得された検出信号セットと、各検出信号セットに対応するメタデータとの関連付けが行われる。 In this case, for example, the detection signal set acquired by each imaging element 121 is associated with the metadata corresponding to each detection signal set.
 なお、メタデータには、例えば、復元時の係数セット群を含んでいてもよいし、含んでいなくてもよい。後者の場合、例えば、復元時に用いられる被写体距離、画角、撮像素子121が配置されている部分の変形情報等がメタデータに含まれる。 The metadata may or may not include, for example, a coefficient set group at the time of restoration. In the latter case, the metadata includes, for example, a subject distance used at the time of restoration, an angle of view, deformation information of a portion where the imaging device 121 is disposed, and the like.
 また、検出信号セットとメタデータを関連付ける方法は、検出信号セットとメタデータとの対応関係を特定することができれば、特に限定されない。例えば、検出信号セットを含むデータにメタデータを付与したり、検出信号セットとメタデータに同じIDを付与したり、検出信号セットとメタデータを同じ記録媒体329に記録させたりすることにより、検出信号セットとメタデータが関連付けられる。また、各検出信号セットに個別にメタデータを関連付けてもよいし、検出信号セットを1つにまとめたデータにメタデータを関連付けてもよい。 Further, the method of associating the detection signal set with the metadata is not particularly limited as long as the correspondence between the detection signal set and the metadata can be specified. For example, detection is performed by adding metadata to data including a detection signal set, assigning the same ID to the detection signal set and metadata, or recording the detection signal set and metadata on the same recording medium 329. Signal sets and metadata are associated. Also, metadata may be individually associated with each detection signal set, or metadata may be associated with data in which the detection signal sets are combined into one.
 <<5.変形例>>
 以下、上述した本開示の実施の形態の変形例について説明する。
<< 5. Modified example >>
Hereinafter, modifications of the embodiment of the present disclosure described above will be described.
 <システムの構成例に関する変形例>
 図26では、1つの電子機器301が、ユーザ又はユーザの周囲の撮像処理、復元画像の復元処理、復元画像を用いたアプリケーション処理を実行する例を示したが、これらの処理を2以上の装置により分担して行ってもよい。
<Modification of system configuration example>
Although FIG. 26 shows an example in which one electronic device 301 executes imaging processing of a user or his surroundings, restoration processing of a restored image, and application processing using a restored image, two or more devices perform these processing. You may share and go.
 例えば、図41の情報処理システム801は、電子機器811及び信号処理装置812を備えている。そして、電子機器811及び信号処理装置812が、撮像処理、復元処理、アプリケーション処理を分担して行ってもよい。 For example, the information processing system 801 in FIG. 41 includes an electronic device 811 and a signal processing device 812. Then, the electronic device 811 and the signal processing device 812 may share the imaging process, the restoration process, and the application process.
 例えば、電子機器811が、撮像処理を行い、信号処理装置812が、復元処理及びアプリケーション処理を行ってもよい。或いは、例えば、電子機器811が、撮像処理及びアプリケーション処理を行い、信号処理装置812が、復元処理を行ってもよい。或いは、撮像処理、復元処理、及び、アプリケーション処理のうちのいくつかの処理を、電子機器811と信号処理装置812が共同で行ってもよい。 For example, the electronic device 811 may perform imaging processing, and the signal processing device 812 may perform restoration processing and application processing. Alternatively, for example, the electronic device 811 may perform imaging processing and application processing, and the signal processing device 812 may perform restoration processing. Alternatively, the electronic device 811 and the signal processing device 812 may jointly perform some of the imaging process, the restoration process, and the application process.
 また、本開示は、上述した以外のユーザ又はユーザの周囲を撮像する機能を有する電子機器に適用することができる。ユーザを撮像する機能を有する電子機器においては、例えば、上述した例のように、接眼部や表示部の周囲に撮像素子121が配置される。また、ユーザの周囲を撮像する機能を有する電子機器においては、例えば、上述した例のように、ユーザが装着した状態において、外側に露出する面に撮像素子121が配置される。なお、撮像素子121の配置は、上述した例に限定されるものではなく、主要な撮像対象等に応じて適宜変更することが可能である。 In addition, the present disclosure can be applied to an electronic device having a function of imaging the user or the surroundings of the user other than those described above. In an electronic device having a function of imaging a user, for example, as in the above-described example, the imaging element 121 is disposed around the eyepiece unit and the display unit. Further, in the electronic device having a function of imaging the surroundings of the user, for example, as in the example described above, the imaging element 121 is disposed on the surface exposed to the outside in a state of being worn by the user. Note that the arrangement of the imaging element 121 is not limited to the above-described example, and can be appropriately changed according to the main imaging target and the like.
 なお、電子機器の接眼部の周囲や表示部の周囲ではなく、例えば、接眼部や表示部に撮像素子121を配置するようにすることも可能である。例えば、図27の左レンズ411L及び右レンズ411Rの表面、図29のファインダ441の表面、図30の左レンズ471L及び右レンズ471Rの表面、図31のディスプレイ501の表面等に、撮像素子121を配置することが可能である。 Note that, for example, the imaging element 121 may be disposed in the eyepiece unit or the display unit, not around the eyepiece unit or the display unit of the electronic device. For example, the imaging device 121 may be provided on the surface of the left lens 411L and the right lens 411R in FIG. 27, the surface of the finder 441 in FIG. 29, the surface of the left lens 471L and the right lens 471R in FIG. It is possible to arrange.
 <撮像装置及び撮像素子に関する変形例>
 また、例えば、各画素121aの遮光膜121bの形状には、上述した横帯タイプ、縦帯タイプ、L字タイプ、矩形の開口部を設けたタイプ以外の形状を採用することが可能である。
<Modification Example Regarding Imaging Device and Imaging Element>
In addition, for example, as the shape of the light shielding film 121b of each pixel 121a, it is possible to adopt a shape other than the above-described horizontal band type, vertical band type, L-shaped type, and a type provided with a rectangular opening.
 さらに、例えば、図5を参照して上述した撮像素子121では、1つの画素121a内に2行×2列の4つのフォトダイオード121fを設ける例を示したが、フォトダイオード121fの数や配置は、この例に限定されるものではない。 Furthermore, for example, in the image pickup device 121 described above with reference to FIG. 5, an example in which four photodiodes 121 f of 2 rows × 2 columns are provided in one pixel 121 a is shown. It is not limited to this example.
 例えば、図42に示されるように、1つの画素121aにおいて、1個のオンチップレンズ121cに対して、3行×3列に並べられた9個のフォトダイオード121f-111乃至121f-119を設けるようにしてもよい。すなわち、1つの画素出力単位が、9個のフォトダイオード121fを備えるようにしてもよい。 For example, as illustrated in FIG. 42, nine photodiodes 121 f-111 to 121 f-119 arranged in 3 rows × 3 columns are provided to one on-chip lens 121 c in one pixel 121 a. You may do so. That is, one pixel output unit may include nine photodiodes 121 f.
 そして、例えば、フォトダイオード121f-111,121f-114,121f-117乃至121f-119の5画素の信号を読み出さないようにすることで、実質的に、フォトダイオード121f-111,121f-114,121f-117乃至121f-119の範囲に遮光膜121bが設定されたL字タイプの遮光膜121bを備える画素121aと同様の入射角特性を得ることができる。 Then, for example, by not reading out the signals of five pixels of the photodiodes 121f-11, 121f-114, 121f-117 to 121f-119, the photodiodes 121f-11, 121f-114, 121f are substantially made. An incident angle characteristic similar to that of the pixel 121a provided with the L-shaped light shielding film 121b in which the light shielding film 121b is set in the range of -117 to 121f -119 can be obtained.
 このようにして、遮光膜121bを設けることなく、遮光膜121bを設けた場合と同様の入射角特性を得ることができる。また、信号を読み出さないフォトダイオード121fのパターンを切り替えることにより、遮光膜121bにより遮光される位置と範囲を変えた場合と同様に、入射角指向性を変化させることができる。 In this way, it is possible to obtain the same incident angle characteristics as in the case where the light shielding film 121 b is provided without providing the light shielding film 121 b. In addition, by switching the pattern of the photodiode 121 f which does not read the signal, the incident angle directivity can be changed as in the case where the position and the range shielded by the light shielding film 121 b are changed.
 また、以上の説明では、1つの画素121aにより1つの画素出力単位が構成される例を示したが、複数の画素121aにより1つの画素出力単位を構成することも可能である。 In the above description, one pixel output unit is configured by one pixel 121a. However, one pixel output unit may be configured by a plurality of pixels 121a.
 例えば、図43に示されるように、3行×3列に並べられた画素121a-111乃至画素121a-119により1つの画素出力単位851bを構成することが可能である。なお、画素121a-111乃至画素121a-119は、例えば、それぞれ1つのフォトダイオードを備え、オンチップレンズを備えていない。 For example, as shown in FIG. 43, it is possible to form one pixel output unit 851 b by the pixels 121 a-111 to the pixels 121 a-119 arranged in 3 rows × 3 columns. Each of the pixels 121 a-111 to 121 a-119 includes, for example, one photodiode and does not include an on-chip lens.
 例えば、各画素121aからの画素信号を加算することにより、検出画像の1画素分の検出信号を生成するともに、一部の画素121aからの画素信号の出力を停止したり、加算しないようにすることにより、画素出力単位851bの入射角指向性を実現することができる。例えば、画素121a-112、画素121a-113、画素121a-115、及び、画素121a-116の画素信号を加算して検出信号を生成することにより、画素121a-111、画素121a-114、及び、画素121a-117乃至画素121a-119の範囲にL字タイプの遮光膜121bを設けた場合と同様の入射角指向性を得ることができる。 For example, by adding pixel signals from each pixel 121a, a detection signal for one pixel of a detected image is generated, and output of pixel signals from some pixels 121a is stopped or addition is not performed. Thus, the incident angle directivity of the pixel output unit 851 b can be realized. For example, the pixel signals of the pixels 121a-112, 121a-113, 121a-115, and 121a-116 are added to generate a detection signal, and the pixels 121a-111, 121a-114, and It is possible to obtain the same incident angle directivity as in the case where the L-shaped light shielding film 121b is provided in the range of the pixels 121a-117 to the pixels 121a-119.
 また、画素信号を検出信号に加算する画素121aのパターンを切り替えることにより、遮光膜121bにより遮光される位置と範囲を変えた場合と同様に、入射角指向性を異なる値に設定することができる。 Further, by switching the pattern of the pixel 121a for adding the pixel signal to the detection signal, the incident angle directivity can be set to different values as in the case where the position and the range shielded by the light shielding film 121b are changed. .
 また、この場合、例えば、画素121aの組合せを変更することにより、画素出力単位の範囲を変更することが可能である。例えば、画素121a-111、画素121a-112、画素121a-114、及び、画素121a-115からなる2行×2列の画素121aにより画素出力単位851sを構成することができる。 In this case, for example, the range of the pixel output unit can be changed by changing the combination of the pixels 121a. For example, a pixel output unit 851 s can be configured of pixels 121 a-111, pixels 121 a-112, pixels 121 a-114, and pixels 121 a of 2 rows × 2 columns including the pixels 121 a-115.
 さらに、例えば、全ての画素121aの画素信号を記録しておき、画素121aの組合せを後で設定することにより、画素出力単位の範囲を後で設定することが可能である。さらに、設定した画素出力単位内の画素121aのうち、画素信号を検出信号に加算する画素121aを選択することにより、画素出力単位の入射角指向性を後で設定することが可能である。 Furthermore, for example, it is possible to set the range of the pixel output unit later by recording the pixel signals of all the pixels 121a and setting the combination of the pixels 121a later. Furthermore, it is possible to set the incident angle directivity of a pixel output unit later by selecting the pixel 121a which adds a pixel signal to a detection signal among the pixels 121a in the set pixel output unit.
 また、図4では、変調素子として遮光膜121bを用いたり、出力に寄与するフォトダイオードの組合せを変更したりすることにより画素毎に異なる入射角指向性を持たせる例を示したが、本開示では、例えば、図44に示されるように、撮像素子901の受光面を覆う光学フィルタ902を変調素子として用いて、各画素に入射角指向性を持たせるようにすることも可能である。 Further, FIG. 4 illustrates an example in which different incident angle directivity is given to each pixel by using the light shielding film 121b as the modulation element or changing the combination of photodiodes contributing to the output. Then, for example, as shown in FIG. 44, it is also possible to use an optical filter 902 covering the light receiving surface of the imaging element 901 as a modulation element so that each pixel has incident angle directivity.
 具体的には、光学フィルタ902は、撮像素子901の受光面901Aから所定の間隔を空けて、受光面901Aの全面を覆うように配置されている。被写体面31からの光は、光学フィルタ902で変調されてから、撮像素子901の受光面901Aに入射する。 Specifically, the optical filter 902 is disposed to cover the entire surface of the light receiving surface 901A at a predetermined interval from the light receiving surface 901A of the imaging element 901. The light from the subject surface 31 is modulated by the optical filter 902, and then enters the light receiving surface 901 </ b> A of the image sensor 901.
 例えば、光学フィルタ902には、図45に示される白黒の格子状のパターンを有する光学フィルタ902BWを用いることが可能である。光学フィルタ902BWには、光を透過する白パターン部と光を遮光する黒パターン部がランダムに配置されている。各パターンのサイズは、撮像素子901の画素のサイズとは独立して設定されている。 For example, as the optical filter 902, it is possible to use an optical filter 902BW having a black and white lattice pattern shown in FIG. In the optical filter 902BW, a white pattern portion that transmits light and a black pattern portion that blocks light are randomly disposed. The size of each pattern is set independently of the size of the pixel of the image sensor 901.
 図46は、光学フィルタ902BWを用いた場合の被写体面31上の点光源PA及び点光源PBからの光に対する撮像素子901の受光感度特性を示している。点光源PA及び点光源PBからの光は、それぞれ光学フィルタ902BWで変調されてから、撮像素子901の受光面901Aに入射する。 FIG. 46 shows the light receiving sensitivity characteristics of the image sensor 901 with respect to light from the point light source PA and the point light source PB on the object plane 31 when the optical filter 902BW is used. The light from the point light source PA and the light from the point light source PB are respectively modulated by the optical filter 902BW, and then enter the light receiving surface 901A of the imaging element 901.
 例えば、点光源PAからの光に対する撮像素子901の受光感度特性は、波形Saのようになる。すなわち、光学フィルタ902BWの黒パターン部により影が生じるため、点光源PAからの光に対する受光面901A上の像に濃淡のパターンが生じる。同様に、点光源PBからの光に対する撮像素子901の受光感度特性は、波形Sbのようになる。すなわち、光学フィルタ902BWの黒パターン部により影が生じるため、点光源PBからの光に対する受光面901A上の像に濃淡のパターンが生じる。 For example, the light reception sensitivity characteristic of the image pickup device 901 with respect to the light from the point light source PA becomes like a waveform Sa. That is, since a shadow is generated by the black pattern portion of the optical filter 902BW, a light and dark pattern is generated in the image on the light receiving surface 901A for the light from the point light source PA. Similarly, the light receiving sensitivity characteristic of the image sensor 901 with respect to the light from the point light source PB becomes like a waveform Sb. That is, since a shadow is generated by the black pattern portion of the optical filter 902BW, a light and dark pattern is generated in the image on the light receiving surface 901A for the light from the point light source PB.
 なお、点光源PAからの光と点光源PBからの光とは、光学フィルタ902BWの各白パターン部に対する入射角度が異なるため、受光面に対する濃淡のパターンの現れ方にズレが生じる。従って、撮像素子901の各画素は、被写体面31の各点光源に対して入射角指向性を持つようになる。 Since the light from the point light source PA and the light from the point light source PB have different incident angles with respect to the white pattern portions of the optical filter 902BW, deviation occurs in how the light and dark patterns appear on the light receiving surface. Therefore, each pixel of the image sensor 901 has incident angle directivity with respect to each point light source of the object plane 31.
 この方式の詳細は、例えば、上述した非特許文献1に開示されている。 Details of this scheme are disclosed in, for example, Non-Patent Document 1 mentioned above.
 なお、光学フィルタ902BWの代わりに、図47の光学フィルタ902HWを用いるようにしてもよい。光学フィルタ902HWは、偏光方向が等しい直線偏光素子911Aと直線偏光素子911B、及び、1/2波長板912を備え、1/2波長板912は、直線偏光素子911Aと直線偏光素子911Bの間に挟まれている。1/2波長板912には、光学フィルタ902BWの黒パターン部の代わりに、斜線で示される偏光部が設けられ、白パターン部と偏光部がランダムに配置されている。 The optical filter 902HW of FIG. 47 may be used instead of the optical filter 902BW. The optical filter 902HW includes a linear polarization element 911A and a linear polarization element 911B having the same polarization direction, and a half wave plate 912. The half wave plate 912 is between the linear polarization element 911A and the linear polarization element 911B. It is pinched. In the half-wave plate 912, instead of the black pattern portion of the optical filter 902BW, a polarized portion shown by oblique lines is provided, and the white pattern portion and the polarized portion are randomly arranged.
 直線偏光素子911Aは、点光源PAから出射されたほぼ無偏光の光のうち、所定の偏光方向の光のみを透過する。以下、直線偏光素子911Aが、偏光方向が図面に平行な光のみを透過するものとする。直線偏光素子911Aを透過した偏光光のうち、1/2波長板912の偏光部を透過した偏光光は、偏光面が回転されることにより、偏光方向が図面に垂直な方向に変化する。一方、直線偏光素子911Aを透過した偏光光のうち、1/2波長板912の白パターン部を透過した偏光光は、偏光方向が図面に平行な方向のまま変化しない。そして、直線偏光素子911Bは、白パターン部を透過した偏光光を透過し、偏光部を透過した偏光光をほとんど透過しない。従って、偏光部を透過した偏光光は、白パターン部を透過した偏光光より光量が減少する。これにより、光学フィルタBWを用いた場合とほぼ同様の濃淡のパターンが、撮像素子901の受光面901A上に生じる。 The linear polarization element 911A transmits only light of a predetermined polarization direction out of substantially non-polarized light emitted from the point light source PA. Hereinafter, it is assumed that the linear polarization element 911A transmits only light whose polarization direction is parallel to the drawing. Among the polarized light transmitted through the linear polarizing element 911A, the polarized light transmitted through the polarizing portion of the half-wave plate 912 is changed in polarization direction in a direction perpendicular to the drawing as the plane of polarization is rotated. On the other hand, of the polarized light transmitted through the linear polarization element 911A, the polarized light transmitted through the white pattern portion of the half-wave plate 912 does not change its polarization direction as it is parallel to the drawing. Then, the linear polarization element 911 B transmits the polarized light transmitted through the white pattern portion, and hardly transmits the polarized light transmitted through the polarized portion. Therefore, the quantity of polarized light transmitted through the polarizing section is smaller than that of polarized light transmitted through the white pattern section. As a result, a pattern of shading similar to that in the case of using the optical filter BW is generated on the light receiving surface 901A of the imaging element 901.
 また、図48のAに示されるように、光干渉マスクを光学フィルタ902LFとして用いることが可能である。被写体面31の点光源PA,PBから出射された光は、光学フィルタ902LFを介して撮像素子901の受光面901Aに照射される。図48のAの下方の拡大図に示されるように、光学フィルタ902LFの例えば光入射面には、波長程度の凹凸が設けられている。また、光学フィルタ902LFは、鉛直方向から照射された特定波長の光の透過が最大となる。被写体面31の点光源PA,PBから出射された特定波長の光の光学フィルタ902LFに対する入射角の変化(鉛直方向に対する傾き)が大きくなると光路長が変化する。ここで、光路長が半波長の奇数倍であるときは光が弱めあい、半波長の偶数倍であるときは光が強めあう。すなわち、点光源PA,PBから出射されて光学フィルタ902LFを透過した特定波長の透過光の強度は、図48のBに示すように、光学フィルタ902LFに対する入射角に応じて変調されて撮像素子901の受光面901Aに入射する。したがって、撮像素子901の各画素出力単位から出力される検出信号は、画素出力単位毎に各点光源の変調後の光強度を合成した信号となる。 In addition, as shown in A of FIG. 48, it is possible to use an optical interference mask as the optical filter 902LF. The light emitted from the point light sources PA and PB of the object plane 31 is irradiated onto the light receiving surface 901A of the imaging element 901 through the optical filter 902LF. As shown in the enlarged view of the lower part of A of FIG. 48, the unevenness | corrugation of a wavelength grade is provided in the light-incidence surface of optical filter 902LF, for example. The optical filter 902LF maximizes transmission of light of a specific wavelength emitted from the vertical direction. When the change of the incident angle (the inclination with respect to the vertical direction) to the optical filter 902LF of the light of the specific wavelength emitted from the point light sources PA and PB of the object plane 31 increases, the optical path length changes. Here, the light weakens when the optical path length is an odd multiple of a half wavelength, and the light strengthens when an even multiple of a half wavelength. That is, the intensity of the transmitted light of the specific wavelength emitted from the point light sources PA and PB and transmitted through the optical filter 902LF is modulated according to the incident angle with respect to the optical filter 902LF as shown in B of FIG. The light is incident on the light receiving surface 901A. Therefore, the detection signal output from each pixel output unit of the imaging element 901 is a signal obtained by combining the light intensity after modulation of each point light source for each pixel output unit.
 この方式の詳細は、例えば、上述した特許文献1に開示されている。 Details of this method are disclosed, for example, in the above-mentioned Patent Document 1.
 なお、特許文献1及び非特許文献1の方式では、上述した図4の画素121a又は図5の画素121aを用いた撮像素子121のように、隣接する画素に影響することなく画素121a単位で入射角指向性を独立して設定することができない。従って、例えば、光学フィルタ902BWのパターン、又は、光学フィルタ902LFの回折格子のパターンが異なると、撮像素子901の少なくとも隣接する複数の画素の入射角指向性が共に異なるものとされることになる。また、近い位置にある画素121a間で、互いに近い入射角指向性を有することになる。 In the methods of Patent Document 1 and Non-patent Document 1, as in the image sensor 121 using the pixel 121a of FIG. 4 or the pixel 121a of FIG. 5 described above, light is incident in units of pixels 121a without affecting adjacent pixels. Angle directivity can not be set independently. Therefore, for example, when the pattern of the optical filter 902BW or the pattern of the diffraction grating of the optical filter 902LF is different, the incident angle directivity of at least a plurality of adjacent pixels of the imaging device 901 is different. In addition, adjacent pixels 121a have incident angle directivity close to each other.
 また、本開示は、赤外光等可視光以外の波長の光の撮像を行う撮像装置や撮像素子にも適用することが可能である。この場合、復元画像は、ユーザが目視して被写体を認識できる画像とはならず、ユーザが被写体を視認できない画像となる。なお、通常の撮像レンズは遠赤外光を透過することが困難であるため、本技術は、例えば、遠赤外光の撮像を行う場合に有効である。 The present disclosure can also be applied to an imaging device and an imaging element that perform imaging of light of wavelengths other than visible light such as infrared light. In this case, the restored image is not an image that allows the user to visually recognize the subject, but is an image in which the user can not visually recognize the subject. In addition, since it is difficult for the normal imaging lens to transmit far infrared light, the present technology is effective, for example, when imaging far infrared light.
 <その他の変形例>
 以上の説明では、ユーザの顔や目を撮像した画像に基づいて生体認証を行う例を示したが、本開示は、指紋認証等のユーザの他の部位を撮像した画像に基づいて生体認証を行う場合にも適用することができる。
<Other Modifications>
In the above description, an example in which biometric authentication is performed based on an image obtained by capturing the face and eyes of the user has been described, but in the present disclosure, biometric authentication is performed based on an image obtained by capturing another part of the user such as fingerprint authentication. It can be applied to the case where it is performed.
 また、本開示は、ユーザの視線以外のユーザの目の動き又は状態等を検出する場合にも適用することができる。例えば、ユーザの目や顔を撮像した画像に基づいて、瞬き検出や睡眠検出等を行う場合にも、本開示を適用することができる。さらに、本開示は、例えば、ウエアラブルデバイス等の電子機器301の装着等の検出を行う場合にも適用することができる。 In addition, the present disclosure can be applied to the case of detecting a movement or a state of the user's eyes other than the line of sight of the user. For example, the present disclosure can be applied to the case where blink detection, sleep detection, or the like is performed based on an image obtained by capturing an eye or a face of a user. Furthermore, the present disclosure can also be applied to, for example, detection of attachment of an electronic device 301 such as a wearable device.
 また、例えば、ディープラーニング等の機械学習を適用することにより、復元後の復元画像を用いずに、復元前の検出画像や検出信号セットを用いて画像認識等を行うようにすることも可能である。 Further, for example, by applying machine learning such as deep learning, it is possible to perform image recognition and the like using a detection image before restoration and a detection signal set without using a restoration image after restoration. is there.
 <<6.応用例>>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、医療機器、例えば、内視鏡手術システム、カプセル内視鏡等の撮像部に適用可能である。
<< 6. Application example >>
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure is applicable to an imaging unit such as a medical device, for example, an endoscopic surgery system, a capsule endoscope, and the like.
 図49は、本開示に係る技術が適用され得る内視鏡手術システム5000の概略的な構成の一例を示す図である。図49では、術者(医師)5067が、内視鏡手術システム5000を用いて、患者ベッド5069上の患者5071に手術を行っている様子が図示されている。図示するように、内視鏡手術システム5000は、内視鏡5001と、その他の術具5017と、内視鏡5001を支持する支持アーム装置5027と、内視鏡下手術のための各種の装置が搭載されたカート5037と、から構成される。 FIG. 49 is a diagram showing an example of a schematic configuration of an endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied. In FIG. 49, an operator (doctor) 5067 is illustrated operating a patient 5071 on a patient bed 5069 using the endoscopic surgery system 5000. As shown, the endoscopic surgery system 5000 includes an endoscope 5001, other surgical instruments 5017, a support arm device 5027 for supporting the endoscope 5001, and various devices for endoscopic surgery. And a cart 5037 on which the
 内視鏡手術では、腹壁を切って開腹する代わりに、トロッカ5025a~5025dと呼ばれる筒状の開孔器具が腹壁に複数穿刺される。そして、トロッカ5025a~5025dから、内視鏡5001の鏡筒5003や、その他の術具5017が患者5071の体腔内に挿入される。図示する例では、その他の術具5017として、気腹チューブ5019、エネルギー処置具5021及び鉗子5023が、患者5071の体腔内に挿入されている。また、エネルギー処置具5021は、高周波電流や超音波振動により、組織の切開及び剥離、又は血管の封止等を行う処置具である。ただし、図示する術具5017はあくまで一例であり、術具5017としては、例えば攝子、レトラクタ等、一般的に内視鏡下手術において用いられる各種の術具が用いられてよい。 In endoscopic surgery, instead of cutting and opening the abdominal wall, a plurality of cylindrical opening tools called trockers 5025a to 5025d are punctured in the abdominal wall. Then, the barrel 5003 of the endoscope 5001 and other surgical tools 5017 are inserted into the body cavity of the patient 5071 from the trocars 5025 a to 5025 d. In the illustrated example, an insufflation tube 5019, an energy treatment instrument 5021 and a forceps 5023 are inserted into the body cavity of the patient 5071 as the other surgical instruments 5017. In addition, the energy treatment tool 5021 is a treatment tool that performs incision and peeling of tissue, sealing of a blood vessel, or the like by high-frequency current or ultrasonic vibration. However, the illustrated surgical tool 5017 is merely an example, and various surgical tools generally used in endoscopic surgery, such as forceps and retractors, may be used as the surgical tool 5017, for example.
 内視鏡5001によって撮影された患者5071の体腔内の術部の画像が、表示装置5041に表示される。術者5067は、表示装置5041に表示された術部の画像をリアルタイムで見ながら、エネルギー処置具5021や鉗子5023を用いて、例えば患部を切除する等の処置を行う。なお、図示は省略しているが、気腹チューブ5019、エネルギー処置具5021及び鉗子5023は、手術中に、術者5067又は助手等によって支持される。 An image of a surgical site in a body cavity of a patient 5071 captured by the endoscope 5001 is displayed on the display device 5041. The operator 5067 performs a treatment such as excision of the affected area using the energy treatment tool 5021 and the forceps 5023 while viewing the image of the operative part displayed on the display device 5041 in real time. Although illustration is omitted, the insufflation tube 5019, the energy treatment instrument 5021 and the forceps 5023 are supported by the operator 5067 or an assistant during the operation.
 (支持アーム装置)
 支持アーム装置5027は、ベース部5029から延伸するアーム部5031を備える。図示する例では、アーム部5031は、関節部5033a、5033b、5033c、及びリンク5035a、5035bから構成されており、アーム制御装置5045からの制御により駆動される。アーム部5031によって内視鏡5001が支持され、その位置及び姿勢が制御される。これにより、内視鏡5001の安定的な位置の固定が実現され得る。
(Support arm device)
The support arm device 5027 includes an arm portion 5031 extending from the base portion 5029. In the illustrated example, the arm unit 5031 includes joints 5033 a, 5033 b, 5033 c, and links 5035 a, 5035 b, and is driven by control from the arm control device 5045. The endoscope 5001 is supported by the arm unit 5031 and the position and posture thereof are controlled. In this way, stable position fixation of the endoscope 5001 can be realized.
 (内視鏡)
 内視鏡5001は、先端から所定の長さの領域が患者5071の体腔内に挿入される鏡筒5003と、鏡筒5003の基端に接続されるカメラヘッド5005と、から構成される。図示する例では、硬性の鏡筒5003を有するいわゆる硬性鏡として構成される内視鏡5001を図示しているが、内視鏡5001は、軟性の鏡筒5003を有するいわゆる軟性鏡として構成されてもよい。
(Endoscope)
The endoscope 5001 includes a lens barrel 5003 whose region of a predetermined length from the tip is inserted into a body cavity of a patient 5071 and a camera head 5005 connected to the proximal end of the lens barrel 5003. In the illustrated example, the endoscope 5001 configured as a so-called rigid endoscope having a rigid barrel 5003 is illustrated, but the endoscope 5001 is configured as a so-called flexible mirror having a flexible barrel 5003 It is also good.
 鏡筒5003の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡5001には光源装置5043が接続されており、当該光源装置5043によって生成された光が、鏡筒5003の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者5071の体腔内の観察対象に向かって照射される。なお、内視鏡5001は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 At the tip of the lens barrel 5003, an opening into which an objective lens is fitted is provided. A light source device 5043 is connected to the endoscope 5001, and light generated by the light source device 5043 is guided to the tip of the lens barrel by a light guide extended inside the lens barrel 5003, and an objective The light is emitted to the observation target in the body cavity of the patient 5071 through the lens. In addition, the endoscope 5001 may be a straight endoscope, or may be a oblique endoscope or a side endoscope.
 カメラヘッド5005の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)5039に送信される。なお、カメラヘッド5005には、その光学系を適宜駆動させることにより、倍率及び焦点距離を調整する機能が搭載される。 An optical system and an imaging device are provided inside the camera head 5005, and the reflected light (observation light) from the observation target is condensed on the imaging device by the optical system. The observation light is photoelectrically converted by the imaging element to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image. The image signal is transmitted as RAW data to a camera control unit (CCU: Camera Control Unit) 5039. The camera head 5005 has a function of adjusting the magnification and the focal length by driving the optical system appropriately.
 なお、例えば立体視(3D表示)等に対応するために、カメラヘッド5005には撮像素子が複数設けられてもよい。この場合、鏡筒5003の内部には、当該複数の撮像素子のそれぞれに観察光を導光するために、リレー光学系が複数系統設けられる。 A plurality of imaging devices may be provided in the camera head 5005 in order to cope with, for example, stereoscopic vision (3D display). In this case, a plurality of relay optical systems are provided inside the lens barrel 5003 in order to guide observation light to each of the plurality of imaging elements.
 (カートに搭載される各種の装置)
 CCU5039は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡5001及び表示装置5041の動作を統括的に制御する。具体的には、CCU5039は、カメラヘッド5005から受け取った画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。CCU5039は、当該画像処理を施した画像信号を表示装置5041に提供する。また、CCU5039は、カメラヘッド5005に対して制御信号を送信し、その駆動を制御する。当該制御信号には、倍率や焦点距離等、撮像条件に関する情報が含まれ得る。
(Various devices installed in the cart)
The CCU 5039 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and centrally controls the operation of the endoscope 5001 and the display device 5041. Specifically, the CCU 5039 subjects the image signal received from the camera head 5005 to various types of image processing for displaying an image based on the image signal, such as development processing (demosaicing processing). The CCU 5039 provides the display device 5041 with the image signal subjected to the image processing. Also, the CCU 5039 transmits a control signal to the camera head 5005 to control the driving thereof. The control signal may include information on imaging conditions such as magnification and focal length.
 表示装置5041は、CCU5039からの制御により、当該CCU5039によって画像処理が施された画像信号に基づく画像を表示する。内視鏡5001が例えば4K(水平画素数3840×垂直画素数2160)又は8K(水平画素数7680×垂直画素数4320)等の高解像度の撮影に対応したものである場合、及び/又は3D表示に対応したものである場合には、表示装置5041としては、それぞれに対応して、高解像度の表示が可能なもの、及び/又は3D表示可能なものが用いられ得る。4K又は8K等の高解像度の撮影に対応したものである場合、表示装置5041として55インチ以上のサイズのものを用いることで一層の没入感が得られる。また、用途に応じて、解像度、サイズが異なる複数の表示装置5041が設けられてもよい。 The display device 5041 displays an image based on the image signal subjected to the image processing by the CCU 5039 under the control of the CCU 5039. In the case where the endoscope 5001 corresponds to high resolution imaging such as 4K (horizontal pixel number 3840 × vertical pixel number 2160) or 8K (horizontal pixel number 7680 × vertical pixel number 4320), and / or 3D display In the case where the display device 5041 corresponds to each of the display devices, those capable of high-resolution display and / or those capable of 3D display may be used. In the case of high-resolution imaging such as 4K or 8K, the display device 5041 can have a size of 55 inches or more to obtain a further immersive feeling. Further, a plurality of display devices 5041 different in resolution and size may be provided depending on the application.
 光源装置5043は、例えばLED(light emitting diode)等の光源から構成され、術部を撮影する際の照射光を内視鏡5001に供給する。 The light source device 5043 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 5001 with irradiation light when imaging the surgical site.
 アーム制御装置5045は、例えばCPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、所定の制御方式に従って支持アーム装置5027のアーム部5031の駆動を制御する。 The arm control device 5045 is constituted by a processor such as a CPU, for example, and operates in accordance with a predetermined program to control driving of the arm portion 5031 of the support arm device 5027 according to a predetermined control method.
 入力装置5047は、内視鏡手術システム5000に対する入力インタフェースである。ユーザは、入力装置5047を介して、内視鏡手術システム5000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、入力装置5047を介して、患者の身体情報や、手術の術式についての情報等、手術に関する各種の情報を入力する。また、例えば、ユーザは、入力装置5047を介して、アーム部5031を駆動させる旨の指示や、内視鏡5001による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示、エネルギー処置具5021を駆動させる旨の指示等を入力する。 The input device 5047 is an input interface to the endoscopic surgery system 5000. The user can input various instructions and input instructions to the endoscopic surgery system 5000 via the input device 5047. For example, the user inputs various information related to surgery, such as physical information of a patient and information on an operation procedure of the surgery, through the input device 5047. Further, for example, the user instructs, via the input device 5047, an instruction to drive the arm unit 5031 or an instruction to change the imaging condition (type of irradiated light, magnification, focal length, etc.) by the endoscope 5001. , An instruction to drive the energy treatment instrument 5021, and the like.
 入力装置5047の種類は限定されず、入力装置5047は各種の公知の入力装置であってよい。入力装置5047としては、例えば、マウス、キーボード、タッチパネル、スイッチ、フットスイッチ5057及び/又はレバー等が適用され得る。入力装置5047としてタッチパネルが用いられる場合には、当該タッチパネルは表示装置5041の表示面上に設けられてもよい。 The type of the input device 5047 is not limited, and the input device 5047 may be any of various known input devices. For example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5057, and / or a lever may be applied as the input device 5047. When a touch panel is used as the input device 5047, the touch panel may be provided on the display surface of the display device 5041.
 あるいは、入力装置5047は、例えばメガネ型のウエアラブルデバイスやHMD(Head Mounted Display)等の、ユーザによって装着されるデバイスであり、これらのデバイスによって検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。また、入力装置5047は、ユーザの動きを検出可能なカメラを含み、当該カメラによって撮像された映像から検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。更に、入力装置5047は、ユーザの声を収音可能なマイクロフォンを含み、当該マイクロフォンを介して音声によって各種の入力が行われる。このように、入力装置5047が非接触で各種の情報を入力可能に構成されることにより、特に清潔域に属するユーザ(例えば術者5067)が、不潔域に属する機器を非接触で操作することが可能となる。また、ユーザは、所持している術具から手を離すことなく機器を操作することが可能となるため、ユーザの利便性が向上する。 Alternatively, the input device 5047 is a device mounted by the user, for example, a wearable device of glasses type or an HMD (Head Mounted Display), and various types of input according to the user's gesture or line of sight detected by these devices. Is done. Further, the input device 5047 includes a camera capable of detecting the motion of the user, and various inputs are performed in accordance with the user's gesture and the line of sight detected from the image captured by the camera. Furthermore, the input device 5047 includes a microphone capable of collecting the user's voice, and various inputs are performed by voice via the microphone. In this manner, the user (for example, the operator 5067) belonging to the clean area operates the device belonging to the unclean area in a non-contact manner by the input device 5047 being configured to be able to input various information in a non-contact manner. Is possible. In addition, since the user can operate the device without releasing his / her hand from the operating tool, the convenience of the user is improved.
 処置具制御装置5049は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具5021の駆動を制御する。気腹装置5051は、内視鏡5001による視野の確保及び術者の作業空間の確保の目的で、患者5071の体腔を膨らめるために、気腹チューブ5019を介して当該体腔内にガスを送り込む。レコーダ5053は、手術に関する各種の情報を記録可能な装置である。プリンタ5055は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment tool control device 5049 controls the drive of the energy treatment instrument 5021 for ablation of tissue, incision, sealing of a blood vessel, and the like. The insufflation apparatus 5051 has a gas in the body cavity via the insufflation tube 5019 in order to expand the body cavity of the patient 5071 for the purpose of securing a visual field by the endoscope 5001 and securing a working space of the operator. Send The recorder 5053 is a device capable of recording various types of information regarding surgery. The printer 5055 is a device capable of printing various types of information regarding surgery in various types such as texts, images, and graphs.
 以下、内視鏡手術システム5000において特に特徴的な構成について、更に詳細に説明する。 Hereinafter, the characteristic features of the endoscopic surgery system 5000 will be described in more detail.
 (支持アーム装置)
 支持アーム装置5027は、基台であるベース部5029と、ベース部5029から延伸するアーム部5031と、を備える。図示する例では、アーム部5031は、複数の関節部5033a、5033b、5033cと、関節部5033bによって連結される複数のリンク5035a、5035bと、から構成されているが、図49では、簡単のため、アーム部5031の構成を簡略化して図示している。実際には、アーム部5031が所望の自由度を有するように、関節部5033a~5033c及びリンク5035a、5035bの形状、数及び配置、並びに関節部5033a~5033cの回転軸の方向等が適宜設定され得る。例えば、アーム部5031は、好適に、6自由度以上の自由度を有するように構成され得る。これにより、アーム部5031の可動範囲内において内視鏡5001を自由に移動させることが可能になるため、所望の方向から内視鏡5001の鏡筒5003を患者5071の体腔内に挿入することが可能になる。
(Support arm device)
The support arm device 5027 includes a base portion 5029 which is a base and an arm portion 5031 extending from the base portion 5029. In the illustrated example, the arm unit 5031 includes a plurality of joints 5033 a, 5033 b and 5033 c and a plurality of links 5035 a and 5035 b connected by the joints 5033 b, but in FIG. The structure of the arm unit 5031 is simplified and illustrated. In practice, the shapes, the number and arrangement of the joints 5033a to 5033c and the links 5035a and 5035b, and the direction of the rotation axis of the joints 5033a to 5033c are appropriately set so that the arm 5031 has a desired degree of freedom. obtain. For example, the arm unit 5031 may be preferably configured to have six or more degrees of freedom. Thus, the endoscope 5001 can be freely moved within the movable range of the arm unit 5031. Therefore, the lens barrel 5003 of the endoscope 5001 can be inserted into the body cavity of the patient 5071 from a desired direction. It will be possible.
 関節部5033a~5033cにはアクチュエータが設けられており、関節部5033a~5033cは当該アクチュエータの駆動により所定の回転軸まわりに回転可能に構成されている。当該アクチュエータの駆動がアーム制御装置5045によって制御されることにより、各関節部5033a~5033cの回転角度が制御され、アーム部5031の駆動が制御される。これにより、内視鏡5001の位置及び姿勢の制御が実現され得る。この際、アーム制御装置5045は、力制御又は位置制御等、各種の公知の制御方式によってアーム部5031の駆動を制御することができる。 The joints 5033 a to 5033 c are provided with an actuator, and the joints 5033 a to 5033 c are configured to be rotatable around a predetermined rotation axis by driving the actuators. The drive of the actuator is controlled by the arm control device 5045, whereby the rotation angles of the joint portions 5033a to 5033c are controlled, and the drive of the arm portion 5031 is controlled. Thereby, control of the position and posture of the endoscope 5001 can be realized. At this time, the arm control device 5045 can control the drive of the arm unit 5031 by various known control methods such as force control or position control.
 例えば、術者5067が、入力装置5047(フットスイッチ5057を含む)を介して適宜操作入力を行うことにより、当該操作入力に応じてアーム制御装置5045によってアーム部5031の駆動が適宜制御され、内視鏡5001の位置及び姿勢が制御されてよい。当該制御により、アーム部5031の先端の内視鏡5001を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、アーム部5031は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5031は、手術室から離れた場所に設置される入力装置5047を介してユーザによって遠隔操作され得る。 For example, when the operator 5067 appropriately inputs an operation via the input device 5047 (including the foot switch 5057), the driving of the arm unit 5031 is appropriately controlled by the arm control device 5045 according to the operation input, and The position and attitude of the endoscope 5001 may be controlled. According to the control, after the endoscope 5001 at the tip of the arm unit 5031 is moved from an arbitrary position to an arbitrary position, the endoscope 5001 can be fixedly supported at the position after the movement. The arm unit 5031 may be operated by a so-called master slave method. In this case, the arm unit 5031 can be remotely controlled by the user via the input device 5047 installed at a location distant from the operating room.
 また、力制御が適用される場合には、アーム制御装置5045は、ユーザからの外力を受け、その外力にならってスムーズにアーム部5031が移動するように、各関節部5033a~5033cのアクチュエータを駆動させる、いわゆるパワーアシスト制御を行ってもよい。これにより、ユーザが直接アーム部5031に触れながらアーム部5031を移動させる際に、比較的軽い力で当該アーム部5031を移動させることができる。従って、より直感的に、より簡易な操作で内視鏡5001を移動させることが可能となり、ユーザの利便性を向上させることができる。 Also, when force control is applied, the arm control device 5045 receives the external force from the user, and the actuator of each joint 5033 a to 5033 c is moved so that the arm 5031 moves smoothly following the external force. So-called power assist control may be performed. Accordingly, when the user moves the arm unit 5031 while directly touching the arm unit 5031, the arm unit 5031 can be moved with a relatively light force. Therefore, it is possible to move the endoscope 5001 more intuitively and with a simpler operation, and the convenience of the user can be improved.
 ここで、一般的に、内視鏡下手術では、スコピストと呼ばれる医師によって内視鏡5001が支持されていた。これに対して、支持アーム装置5027を用いることにより、人手によらずに内視鏡5001の位置をより確実に固定することが可能になるため、術部の画像を安定的に得ることができ、手術を円滑に行うことが可能になる。 Here, in general, in endoscopic surgery, the endoscope 5001 is supported by a doctor called scopist. On the other hand, by using the support arm device 5027, the position of the endoscope 5001 can be more reliably fixed without manual operation, so that an image of the operation site can be stably obtained. , Can be performed smoothly.
 なお、アーム制御装置5045は必ずしもカート5037に設けられなくてもよい。また、アーム制御装置5045は必ずしも1つの装置でなくてもよい。例えば、アーム制御装置5045は、支持アーム装置5027のアーム部5031の各関節部5033a~5033cにそれぞれ設けられてもよく、複数のアーム制御装置5045が互いに協働することにより、アーム部5031の駆動制御が実現されてもよい。 The arm control device 5045 may not necessarily be provided in the cart 5037. Also, the arm control device 5045 may not necessarily be one device. For example, the arm control device 5045 may be provided at each joint 5033a to 5033c of the arm 5031 of the support arm device 5027, and the arm control devices 5045 cooperate with one another to drive the arm 5031. Control may be realized.
 (光源装置)
 光源装置5043は、内視鏡5001に術部を撮影する際の照射光を供給する。光源装置5043は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成される。このとき、RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置5043において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド5005の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
(Light source device)
The light source device 5043 supplies the endoscope 5001 with irradiation light for imaging the operative part. The light source device 5043 is composed of, for example, a white light source configured of an LED, a laser light source, or a combination thereof. At this time, when a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Adjustments can be made. Further, in this case, the laser light from each of the RGB laser light sources is irradiated on the observation target in time division, and the drive of the imaging device of the camera head 5005 is controlled in synchronization with the irradiation timing to cope with each of RGB. It is also possible to capture a shot image in time division. According to the method, a color image can be obtained without providing a color filter in the imaging device.
 また、光源装置5043は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド5005の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 In addition, the drive of the light source device 5043 may be controlled to change the intensity of the light to be output at predetermined time intervals. The drive of the imaging element of the camera head 5005 is controlled in synchronization with the timing of the change of the light intensity to acquire images in time division, and by combining the images, high dynamic without so-called blackout and whiteout is obtained. An image of the range can be generated.
 また、光源装置5043は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察するもの(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得るもの等が行われ得る。光源装置5043は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 The light source device 5043 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, the mucous membrane surface layer is irradiated by irradiating narrow band light as compared with irradiation light (that is, white light) at the time of normal observation using the wavelength dependency of light absorption in body tissue. The so-called narrow band imaging (Narrow Band Imaging) is performed to image a predetermined tissue such as a blood vessel with high contrast. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiation with excitation light. In fluorescence observation, a body tissue is irradiated with excitation light and fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue while being locally injected. What irradiates the excitation light corresponding to the fluorescence wavelength of the reagent, and obtains a fluorescence image etc. can be performed. The light source device 5043 can be configured to be able to supply narrow band light and / or excitation light corresponding to such special light observation.
 (カメラヘッド及びCCU)
 図50を参照して、内視鏡5001のカメラヘッド5005及びCCU5039の機能についてより詳細に説明する。図50は、図49に示すカメラヘッド5005及びCCU5039の機能構成の一例を示すブロック図である。
(Camera head and CCU)
The functions of the camera head 5005 and the CCU 5039 of the endoscope 5001 will be described in more detail with reference to FIG. FIG. 50 is a block diagram showing an example of a functional configuration of the camera head 5005 and the CCU 5039 shown in FIG.
 図50を参照すると、カメラヘッド5005は、その機能として、レンズユニット5007と、撮像部5009と、駆動部5011と、通信部5013と、カメラヘッド制御部5015と、を有する。また、CCU5039は、その機能として、通信部5059と、画像処理部5061と、制御部5063と、を有する。カメラヘッド5005とCCU5039とは、伝送ケーブル5065によって双方向に通信可能に接続されている。 Referring to FIG. 50, the camera head 5005 has a lens unit 5007, an imaging unit 5009, a drive unit 5011, a communication unit 5013, and a camera head control unit 5015 as its functions. The CCU 5039 also has a communication unit 5059, an image processing unit 5061, and a control unit 5063 as its functions. The camera head 5005 and the CCU 5039 are communicably connected in both directions by a transmission cable 5065.
 まず、カメラヘッド5005の機能構成について説明する。レンズユニット5007は、鏡筒5003との接続部に設けられる光学系である。鏡筒5003の先端から取り込まれた観察光は、カメラヘッド5005まで導光され、当該レンズユニット5007に入射する。レンズユニット5007は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。レンズユニット5007は、撮像部5009の撮像素子の受光面上に観察光を集光するように、その光学特性が調整されている。また、ズームレンズ及びフォーカスレンズは、撮像画像の倍率及び焦点の調整のため、その光軸上の位置が移動可能に構成される。 First, the functional configuration of the camera head 5005 will be described. The lens unit 5007 is an optical system provided at the connection with the lens barrel 5003. The observation light taken in from the tip of the lens barrel 5003 is guided to the camera head 5005 and enters the lens unit 5007. The lens unit 5007 is configured by combining a plurality of lenses including a zoom lens and a focus lens. The optical characteristic of the lens unit 5007 is adjusted so as to condense the observation light on the light receiving surface of the imaging element of the imaging unit 5009. Further, the zoom lens and the focus lens are configured such that the position on the optical axis can be moved in order to adjust the magnification and the focus of the captured image.
 撮像部5009は撮像素子によって構成され、レンズユニット5007の後段に配置される。レンズユニット5007を通過した観察光は、当該撮像素子の受光面に集光され、光電変換によって、観察像に対応した画像信号が生成される。撮像部5009によって生成された画像信号は、通信部5013に提供される。 The imaging unit 5009 includes an imaging element and is disposed downstream of the lens unit 5007. The observation light which has passed through the lens unit 5007 is condensed on the light receiving surface of the imaging device, and an image signal corresponding to the observation image is generated by photoelectric conversion. The image signal generated by the imaging unit 5009 is provided to the communication unit 5013.
 撮像部5009を構成する撮像素子としては、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプのイメージセンサであり、Bayer配列を有するカラー撮影可能なものが用いられる。なお、当該撮像素子としては、例えば4K以上の高解像度の画像の撮影に対応可能なものが用いられてもよい。術部の画像が高解像度で得られることにより、術者5067は、当該術部の様子をより詳細に把握することができ、手術をより円滑に進行することが可能となる。 As an imaging element which comprises the imaging part 5009, it is an image sensor of a CMOS (Complementary Metal Oxide Semiconductor) type, for example, and a color imaging | photography thing which has Bayer arrangement is used. In addition, as the said image pick-up element, what can respond | correspond to imaging | photography of the high resolution image of 4K or more may be used, for example. By obtaining a high resolution image of the operation site, the operator 5067 can grasp the situation of the operation site in more detail, and can proceed the surgery more smoothly.
 また、撮像部5009を構成する撮像素子は、3D表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成される。3D表示が行われることにより、術者5067は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部5009が多板式で構成される場合には、各撮像素子に対応して、レンズユニット5007も複数系統設けられる。 In addition, an imaging element constituting the imaging unit 5009 is configured to have a pair of imaging elements for acquiring image signals for right eye and left eye corresponding to 3D display. The 3D display enables the operator 5067 to more accurately grasp the depth of the living tissue at the operation site. When the imaging unit 5009 is configured as a multi-plate type, a plurality of lens units 5007 are also provided corresponding to each imaging element.
 また、撮像部5009は、必ずしもカメラヘッド5005に設けられなくてもよい。例えば、撮像部5009は、鏡筒5003の内部に、対物レンズの直後に設けられてもよい。 In addition, the imaging unit 5009 may not necessarily be provided in the camera head 5005. For example, the imaging unit 5009 may be provided inside the lens barrel 5003 immediately after the objective lens.
 駆動部5011は、アクチュエータによって構成され、カメラヘッド制御部5015からの制御により、レンズユニット5007のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部5009による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 5011 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 5007 along the optical axis by a predetermined distance under the control of the camera head control unit 5015. Thereby, the magnification and the focus of the captured image by the imaging unit 5009 may be appropriately adjusted.
 通信部5013は、CCU5039との間で各種の情報を送受信するための通信装置によって構成される。通信部5013は、撮像部5009から得た画像信号をRAWデータとして伝送ケーブル5065を介してCCU5039に送信する。この際、術部の撮像画像を低レイテンシで表示するために、当該画像信号は光通信によって送信されることが好ましい。手術の際には、術者5067が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信が行われる場合には、通信部5013には、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は当該光電変換モジュールによって光信号に変換された後、伝送ケーブル5065を介してCCU5039に送信される。 The communication unit 5013 is configured of a communication device for transmitting and receiving various types of information to and from the CCU 5039. The communication unit 5013 transmits the image signal obtained from the imaging unit 5009 to the CCU 5039 via the transmission cable 5065 as RAW data. At this time, it is preferable that the image signal be transmitted by optical communication in order to display the captured image of the surgical site with low latency. During the operation, the operator 5067 performs the operation while observing the condition of the affected area by the captured image, so for safer and more reliable operation, the moving image of the operation site is displayed in real time as much as possible It is because that is required. In the case where optical communication is performed, the communication unit 5013 is provided with a photoelectric conversion module which converts an electrical signal into an optical signal. The image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5039 via the transmission cable 5065.
 また、通信部5013は、CCU5039から、カメラヘッド5005の駆動を制御するための制御信号を受信する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。通信部5013は、受信した制御信号をカメラヘッド制御部5015に提供する。なお、CCU5039からの制御信号も、光通信によって伝送されてもよい。この場合、通信部5013には、光信号を電気信号に変換する光電変換モジュールが設けられ、制御信号は当該光電変換モジュールによって電気信号に変換された後、カメラヘッド制御部5015に提供される。 The communication unit 5013 also receives, from the CCU 5039, a control signal for controlling the drive of the camera head 5005. The the control signal, for example, information that specifies the frame rate of the captured image, information that specifies the exposure value at the time of imaging, and / or magnification and information, etc. indicating that specifies the focal point of the captured image, captured Contains information about the condition. The communication unit 5013 provides the received control signal to the camera head control unit 5015. The control signal from CCU 5039 may also be transmitted by optical communication. In this case, the communication unit 5013 is provided with a photoelectric conversion module that converts an optical signal into an electric signal, and the control signal is converted into an electric signal by the photoelectric conversion module and is then provided to the camera head control unit 5015.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、取得された画像信号に基づいてCCU5039の制御部5063によって自動的に設定される。つまり、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡5001に搭載される。 Note that the imaging conditions such as the frame rate, the exposure value, the magnification, and the focus described above are automatically set by the control unit 5063 of the CCU 5039 based on the acquired image signal. That is, so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are installed in the endoscope 5001.
 カメラヘッド制御部5015は、通信部5013を介して受信したCCU5039からの制御信号に基づいて、カメラヘッド5005の駆動を制御する。例えば、カメラヘッド制御部5015は、撮像画像のフレームレートを指定する旨の情報及び/又は撮像時の露光を指定する旨の情報に基づいて、撮像部5009の撮像素子の駆動を制御する。また、例えば、カメラヘッド制御部5015は、撮像画像の倍率及び焦点を指定する旨の情報に基づいて、駆動部5011を介してレンズユニット5007のズームレンズ及びフォーカスレンズを適宜移動させる。カメラヘッド制御部5015は、更に、鏡筒5003やカメラヘッド5005を識別するための情報を記憶する機能を備えてもよい。 The camera head control unit 5015 controls the drive of the camera head 5005 based on the control signal from the CCU 5039 received via the communication unit 5013. For example, the camera head control unit 5015 controls the drive of the imaging element of the imaging unit 5009 based on the information to specify the frame rate of the captured image and / or the information to specify the exposure at the time of imaging. Also, for example, the camera head control unit 5015 appropriately moves the zoom lens and the focus lens of the lens unit 5007 via the drive unit 5011 based on the information indicating that the magnification and the focus of the captured image are designated. The camera head control unit 5015 may further have a function of storing information for identifying the lens barrel 5003 and the camera head 5005.
 なお、レンズユニット5007や撮像部5009等の構成を、気密性及び防水性が高い密閉構造内に配置することで、カメラヘッド5005について、オートクレーブ滅菌処理に対する耐性を持たせることができる。 Note that by disposing the lens unit 5007, the imaging unit 5009, and the like in a sealed structure with high airtightness and waterproofness, the camera head 5005 can have resistance to autoclave sterilization.
 次に、CCU5039の機能構成について説明する。通信部5059は、カメラヘッド5005との間で各種の情報を送受信するための通信装置によって構成される。通信部5059は、カメラヘッド5005から、伝送ケーブル5065を介して送信される画像信号を受信する。この際、上記のように、当該画像信号は好適に光通信によって送信され得る。この場合、光通信に対応して、通信部5059には、光信号を電気信号に変換する光電変換モジュールが設けられる。通信部5059は、電気信号に変換した画像信号を画像処理部5061に提供する。 Next, the functional configuration of the CCU 5039 will be described. The communication unit 5059 is configured of a communication device for transmitting and receiving various types of information to and from the camera head 5005. The communication unit 5059 receives an image signal transmitted from the camera head 5005 via the transmission cable 5065. At this time, as described above, the image signal can be suitably transmitted by optical communication. In this case, the communication unit 5059 is provided with a photoelectric conversion module that converts an optical signal into an electrical signal in response to optical communication. The communication unit 5059 provides the image processing unit 5061 with the image signal converted into the electrical signal.
 また、通信部5059は、カメラヘッド5005に対して、カメラヘッド5005の駆動を制御するための制御信号を送信する。当該制御信号も光通信によって送信されてよい。 Further, the communication unit 5059 transmits a control signal for controlling driving of the camera head 5005 to the camera head 5005. The control signal may also be transmitted by optical communication.
 画像処理部5061は、カメラヘッド5005から送信されたRAWデータである画像信号に対して各種の画像処理を施す。当該画像処理としては、例えば現像処理、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が含まれる。また、画像処理部5061は、AE、AF及びAWBを行うための、画像信号に対する検波処理を行う。 An image processing unit 5061 performs various types of image processing on an image signal that is RAW data transmitted from the camera head 5005. As the image processing, for example, development processing, high image quality processing (band emphasis processing, super-resolution processing, NR (noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing) And various other known signal processings. The image processing unit 5061 also performs detection processing on the image signal to perform AE, AF, and AWB.
 画像処理部5061は、CPUやGPU等のプロセッサによって構成され、当該プロセッサが所定のプログラムに従って動作することにより、上述した画像処理や検波処理が行われ得る。なお、画像処理部5061が複数のGPUによって構成される場合には、画像処理部5061は、画像信号に係る情報を適宜分割し、これら複数のGPUによって並列的に画像処理を行う。 The image processing unit 5061 is configured by a processor such as a CPU or a GPU, and the image processing and the detection processing described above can be performed by the processor operating according to a predetermined program. When the image processing unit 5061 is configured by a plurality of GPUs, the image processing unit 5061 appropriately divides the information related to the image signal, and performs image processing in parallel by the plurality of GPUs.
 制御部5063は、内視鏡5001による術部の撮像、及びその撮像画像の表示に関する各種の制御を行う。例えば、制御部5063は、カメラヘッド5005の駆動を制御するための制御信号を生成する。この際、撮像条件がユーザによって入力されている場合には、制御部5063は、当該ユーザによる入力に基づいて制御信号を生成する。あるいは、内視鏡5001にAE機能、AF機能及びAWB機能が搭載されている場合には、制御部5063は、画像処理部5061による検波処理の結果に応じて、最適な露出値、焦点距離及びホワイトバランスを適宜算出し、制御信号を生成する。 The control unit 5063 performs various types of control regarding imaging of the surgical site by the endoscope 5001 and display of the imaged image. For example, the control unit 5063 generates a control signal for controlling the drive of the camera head 5005. At this time, when the imaging condition is input by the user, the control unit 5063 generates a control signal based on the input by the user. Alternatively, when the endoscope 5001 is equipped with the AE function, the AF function, and the AWB function, the control unit 5063 determines the optimum exposure value, focal length, and the like according to the result of the detection processing by the image processing unit 5061. The white balance is appropriately calculated to generate a control signal.
 また、制御部5063は、画像処理部5061によって画像処理が施された画像信号に基づいて、術部の画像を表示装置5041に表示させる。この際、制御部5063は、各種の画像認識技術を用いて術部画像内における各種の物体を認識する。例えば、制御部5063は、術部画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具5021使用時のミスト等を認識することができる。制御部5063は、表示装置5041に術部の画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させる。手術支援情報が重畳表示され、術者5067に提示されることにより、より安全かつ確実に手術を進めることが可能になる。 Further, the control unit 5063 causes the display device 5041 to display an image of the operative site based on the image signal subjected to the image processing by the image processing unit 5061. At this time, the control unit 5063 recognizes various objects in the surgical site image using various image recognition techniques. For example, the control unit 5063 detects a shape, a color, and the like of an edge of an object included in an operation part image, thereby enabling a surgical tool such as forceps, a specific living part, bleeding, mist when using the energy treatment tool 5021, and the like. It can be recognized. When the control unit 5063 causes the display device 5041 to display the image of the operation unit, the control unit 5063 superimposes and displays various types of surgery support information on the image of the operation unit, using the recognition result. The operation support information is superimposed and presented to the operator 5067, which makes it possible to proceed with the operation more safely and reliably.
 カメラヘッド5005及びCCU5039を接続する伝送ケーブル5065は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 A transmission cable 5065 connecting the camera head 5005 and the CCU 5039 is an electrical signal cable compatible with communication of electrical signals, an optical fiber compatible with optical communication, or a composite cable of these.
 ここで、図示する例では、伝送ケーブル5065を用いて有線で通信が行われていたが、カメラヘッド5005とCCU5039との間の通信は無線で行われてもよい。両者の間の通信が無線で行われる場合には、伝送ケーブル5065を手術室内に敷設する必要がなくなるため、手術室内における医療スタッフの移動が当該伝送ケーブル5065によって妨げられる事態が解消され得る。 Here, in the illustrated example, communication is performed by wire communication using the transmission cable 5065, but communication between the camera head 5005 and the CCU 5039 may be performed wirelessly. When the communication between the two is performed wirelessly, it is not necessary to lay the transmission cable 5065 in the operating room, so that the movement of the medical staff in the operating room can be eliminated by the transmission cable 5065.
 以上、本開示に係る技術が適用され得る内視鏡手術システム5000の一例について説明した。なお、ここでは、一例として内視鏡手術システム5000について説明したが、本開示に係る技術が適用され得るシステムはかかる例に限定されない。例えば、本開示に係る技術は、検査用軟性内視鏡システムや顕微鏡手術システムに適用されてもよい。 Heretofore, an example of the endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied has been described. In addition, although the endoscopic surgery system 5000 was demonstrated as an example here, the system to which the technique which concerns on this indication can be applied is not limited to this example. For example, the technology according to the present disclosure may be applied to a flexible endoscopic system for examination or a microsurgical system.
 本開示に係る技術は、以上説明した構成のうち、撮像部5009に好適に適用され得る。撮像部5009に本開示に係る技術を適用することにより、撮像部5009を小型化することができる。また、撮像素子の各画素の配置の自由度が高いため、所望の位置の術部画像が得やすくなり、手術をより安全にかつより確実に行うことが可能になる。 Among the configurations described above, the technology according to the present disclosure can be suitably applied to the imaging unit 5009. By applying the technology according to the present disclosure to the imaging unit 5009, the imaging unit 5009 can be miniaturized. In addition, since the degree of freedom of arrangement of each pixel of the imaging device is high, it is easy to obtain a surgical site image at a desired position, and it is possible to perform surgery more safely and more reliably.
 図51は、本開示に係る技術が適用され得る体内情報取得システム5400の概略的な構成の一例を示す図である。図51を参照すると、体内情報取得システム5400は、カプセル型内視鏡5401と、体内情報取得システム5400の動作を統括的に制御する外部制御装置5423と、から構成される。検査時には、カプセル型内視鏡5401が患者によって飲み込まれる。カプセル型内視鏡5401は、撮像機能及び無線通信機能を有し、患者から自然排出されるまでの間、胃や腸等の臓器の内部を蠕動運動等によって移動しつつ、当該臓器の内部の画像(以下、体内画像ともいう)を所定の間隔で順次撮像し、その体内画像についての情報を体外の外部制御装置5423に順次無線送信する。外部制御装置5423は、受信した体内画像についての情報に基づいて、表示装置(図示せず)に当該体内画像を表示するための画像データを生成する。体内情報取得システム5400では、このようにして、カプセル型内視鏡5401が飲み込まれてから排出されるまでの間、患者の体内の様子を撮像した画像を随時得ることができる。 FIG. 51 is a diagram showing an example of a schematic configuration of an in-vivo information acquiring system 5400 to which the technology according to the present disclosure can be applied. Referring to FIG. 51, the in-vivo information acquisition system 5400 includes a capsule endoscope 5401 and an external control device 5423 that comprehensively controls the operation of the in-vivo information acquisition system 5400. At the time of examination, the capsule endoscope 5401 is swallowed by the patient. The capsule endoscope 5401 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and intestine by peristaltic movement and the like while being naturally discharged from the patient, Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information on the in-vivo images is sequentially wirelessly transmitted to the external control device 5423 outside the body. The external control device 5423 generates image data for displaying the in-vivo image on a display device (not shown) based on the received information about the in-vivo image. Thus, in the in-vivo information acquiring system 5400, it is possible to obtain an image obtained by imaging the appearance of the inside of the patient's body at any time during the period from when the capsule endoscope 5401 is swallowed until it is discharged.
 カプセル型内視鏡5401と外部制御装置5423の構成及び機能についてより詳細に説明する。図示するように、カプセル型内視鏡5401は、カプセル型の筐体5403内に、光源部5405、撮像部5407、画像処理部5409、無線通信部5411、給電部5415、電源部5417、状態検出部5419及び制御部5421の機能が搭載されて構成される。 The configurations and functions of the capsule endoscope 5401 and the external control device 5423 will be described in more detail. As illustrated, the capsule endoscope 5401 includes a light source unit 5405, an imaging unit 5407, an image processing unit 5409, a wireless communication unit 5411, a power feeding unit 5415, a power supply unit 5417, and a state detection in a capsule casing 5403. The functions of the unit 5419 and the control unit 5421 are installed.
 光源部5405は、例えばLED(light emitting diode)等の光源から構成され、撮像部5407の撮像視野に対して光を照射する。 The light source unit 5405 is formed of, for example, a light source such as a light emitting diode (LED), and emits light to the imaging field of the imaging unit 5407.
 撮像部5407は、撮像素子、及び当該撮像素子の前段に設けられる複数のレンズからなる光学系から構成される。観察対象である体組織に照射された光の反射光(以下、観察光という)は、当該光学系によって集光され、当該撮像素子に入射する。当該撮像素子は、観察光を受光して光電変換することにより、観察光に対応した電気信号、すなわち観察像に対応した画像信号を生成する。撮像部5407によって生成された画像信号は、画像処理部5409に提供される。なお、撮像部5407の撮像素子としては、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ又はCCD(Charge Coupled Device)イメージセンサ等、各種の公知の撮像素子が用いられてよい。 The imaging unit 5407 includes an imaging device and an optical system including a plurality of lenses provided in front of the imaging device. Reflected light is irradiated to the body tissue to be observed light (hereinafter, referred to as observation light) is condensed by the optical system and is incident on the imaging element. The imaging device receives the observation light and performs photoelectric conversion to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image. The image signal generated by the imaging unit 5407 is provided to the image processing unit 5409. Note that, as an imaging element of the imaging unit 5407, various known imaging elements such as a complementary metal oxide semiconductor (CMOS) image sensor or a charge coupled device (CCD) image sensor may be used.
 画像処理部5409は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって構成され、撮像部5407によって生成された画像信号に対して各種の信号処理を行う。当該信号処理は、画像信号を外部制御装置5423に伝送するための最小限の処理(例えば、画像データの圧縮、フレームレートの変換、データレートの変換及び/又はフォーマットの変換等)であってよい。画像処理部5409が必要最小限の処理のみを行うように構成されることにより、当該画像処理部5409を、より小型、より低消費電力で実現することができるため、カプセル型内視鏡5401に好適である。ただし、筐体5403内のスペースや消費電力に余裕がある場合であれば、画像処理部5409において、更なる信号処理(例えば、ノイズ除去処理や他の高画質化処理等)が行われてもよい。画像処理部5409は、信号処理を施した画像信号を、RAWデータとして無線通信部5411に提供する。なお、画像処理部5409は、状態検出部5419によってカプセル型内視鏡5401の状態(動きや姿勢等)についての情報が取得されている場合には、当該情報と紐付けて、画像信号を無線通信部5411に提供してもよい。これにより、画像が撮像された体内における位置や画像の撮像方向等と、撮像画像とを関連付けることができる。 The image processing unit 5409 is configured by a processor such as a central processing unit (CPU) or a graphics processing unit (GPU), and performs various signal processing on the image signal generated by the imaging unit 5407. The signal processing may be minimum processing for transmitting the image signal to the external control device 5423 (eg, compression of image data, conversion of frame rate, conversion of data rate, and / or conversion of format, etc.) . By configuring the image processing unit 5409 to perform only the minimum necessary processing, the image processing unit 5409 can be realized with smaller size and lower power consumption. It is suitable. However, if space in the housing 5403 or the power consumption is sufficient, the image processing unit 5409 may perform additional signal processing (for example, noise removal processing or other high image quality processing). Good. The image processing unit 5409 supplies the image signal subjected to the signal processing to the wireless communication unit 5411 as RAW data. When the state detection unit 5419 acquires information on the state (motion, posture, etc.) of the capsule endoscope 5401, the image processing unit 5409 associates the information with the information to wirelessly transmit the image signal. The communication unit 5411 may be provided. Thereby, the captured image can be associated with the position in the body in which the image is captured, the imaging direction of the image, and the like.
 無線通信部5411は、外部制御装置5423との間で各種の情報を送受信可能な通信装置によって構成される。当該通信装置は、アンテナ5413と、信号の送受信のための変調処理等を行う処理回路等から構成される。無線通信部5411は、画像処理部5409によって信号処理が施された画像信号に対して変調処理等の所定の処理を行い、その画像信号を、アンテナ5413を介して外部制御装置5423に送信する。また、無線通信部5411は、外部制御装置5423から、カプセル型内視鏡5401の駆動制御に関する制御信号を、アンテナ5413を介して受信する。無線通信部5411は、受信した制御信号を制御部5421に提供する。 The wireless communication unit 5411 is configured of a communication device capable of transmitting and receiving various information to and from the external control device 5423. The communication device includes an antenna 5413 and a processing circuit that performs modulation for transmitting and receiving a signal. The wireless communication unit 5411 performs predetermined processing such as modulation processing on the image signal subjected to the signal processing by the image processing unit 5409, and transmits the image signal to the external control device 5423 through the antenna 5413. In addition, the wireless communication unit 5411 receives a control signal related to drive control of the capsule endoscope 5401 from the external control device 5423 via the antenna 5413. The wireless communication unit 5411 provides the received control signal to the control unit 5421.
 給電部5415は、受電用のアンテナコイル、当該アンテナコイルに発生した電流から電力を再生する電力再生回路、及び昇圧回路等から構成される。給電部5415では、いわゆる非接触充電の原理を用いて電力が生成される。具体的には、給電部5415のアンテナコイルに対して外部から所定の周波数の磁界(電磁波)が与えられることにより、当該アンテナコイルに誘導起電力が発生する。当該電磁波は、例えば外部制御装置5423からアンテナ5425を介して送信される搬送波であってよい。当該誘導起電力から電力再生回路によって電力が再生され、昇圧回路においてその電位が適宜調整されることにより、蓄電用の電力が生成される。給電部5415によって生成された電力は、電源部5417に蓄電される。 The feeding portion 5415 includes an antenna coil for receiving power, a power regeneration circuit which regenerates power from current generated in the antenna coil, a booster circuit, and the like. In the feeding portion 5415, power is generated using a so-called contactless charging principle. Specifically, when a magnetic field (electromagnetic wave) of a predetermined frequency is applied to the antenna coil of the feeding portion 5415 from the outside, an induced electromotive force is generated in the antenna coil. The electromagnetic wave may be, for example, a carrier wave transmitted from the external control device 5423 via the antenna 5425. Electric power is regenerated from the induced electromotive force by the electric power regenerating circuit, and the electric potential is appropriately adjusted in the booster circuit to generate electric power for storage. The power generated by the power supply unit 5415 is stored in the power supply unit 5417.
 電源部5417は、二次電池によって構成され、給電部5415によって生成された電力を蓄電する。図51では、図面が煩雑になることを避けるために、電源部5417からの電力の供給先を示す矢印等の図示を省略しているが、電源部5417に蓄電された電力は、光源部5405、撮像部5407、画像処理部5409、無線通信部5411、状態検出部5419及び制御部5421に供給され、これらの駆動に用いられ得る。 The power supply unit 5417 is formed of a secondary battery, and stores the power generated by the power supply unit 5415. In FIG. 51, an arrow or the like indicating the supply destination of the power from the power supply unit 5417 is omitted to avoid the drawing being complicated, but the power stored in the power supply unit 5417 is the light source unit 5405. The image pickup unit 5407, the image processing unit 5409, the wireless communication unit 5411, the state detection unit 5419, and the control unit 5421 can be used to drive them.
 状態検出部5419は、加速度センサ及び/又はジャイロセンサ等の、カプセル型内視鏡5401の状態を検出するためのセンサから構成される。状態検出部5419は、当該センサによる検出結果から、カプセル型内視鏡5401の状態についての情報を取得することができる。状態検出部5419は、取得したカプセル型内視鏡5401の状態についての情報を、画像処理部5409に提供する。画像処理部5409では、上述したように、当該カプセル型内視鏡5401の状態についての情報が、画像信号と紐付けられ得る。 The state detection unit 5419 includes a sensor for detecting the state of the capsule endoscope 5401 such as an acceleration sensor and / or a gyro sensor. The state detection unit 5419 can obtain information on the state of the capsule endoscope 5401 from the detection result of the sensor. The state detection unit 5419 provides the image processing unit 5409 with information on the acquired state of the capsule endoscope 5401. In the image processing unit 5409, as described above, information on the state of the capsule endoscope 5401 may be associated with the image signal.
 制御部5421は、CPU等のプロセッサによって構成され、所定のプログラムに従って動作することによりカプセル型内視鏡5401の動作を統括的に制御する。制御部5421は、光源部5405、撮像部5407、画像処理部5409、無線通信部5411、給電部5415、電源部5417及び状態検出部5419の駆動を、外部制御装置5423から送信される制御信号に従って適宜制御することにより、以上説明したような各部における機能を実現させる。 The control unit 5421 is configured by a processor such as a CPU, and centrally controls the operation of the capsule endoscope 5401 by operating according to a predetermined program. Control unit 5421 drives light source unit 5405, imaging unit 5407, image processing unit 5409, wireless communication unit 5411, power supply unit 5415, power supply unit 5417, and state detection unit 5419 according to a control signal transmitted from external control device 5423. By appropriately controlling, the functions of the respective units as described above are realized.
 外部制御装置5423は、CPU、GPU等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイコン若しくは制御基板等であり得る。外部制御装置5423は、アンテナ5425を有し、当該アンテナ5425を介して、カプセル型内視鏡5401との間で各種の情報を送受信可能に構成される。具体的には、外部制御装置5423は、カプセル型内視鏡5401の制御部5421に対して制御信号を送信することにより、カプセル型内視鏡5401の動作を制御する。例えば、外部制御装置5423からの制御信号により、光源部5405における観察対象に対する光の照射条件が変更され得る。また、外部制御装置5423からの制御信号により、撮像条件(例えば、撮像部5407におけるフレームレート、露出値等)が変更され得る。また、外部制御装置5423からの制御信号により、画像処理部5409における処理の内容や、無線通信部5411が画像信号を送信する条件(例えば、送信間隔、送信画像数等)が変更されてもよい。 The external control device 5423 can be a processor such as a CPU or a GPU, or a microcomputer or a control board on which memory elements such as a processor and a memory are mixed. The external control device 5423 has an antenna 5425, and can transmit and receive various types of information to and from the capsule endoscope 5401 via the antenna 5425. Specifically, the external control device 5423 controls the operation of the capsule endoscope 5401 by transmitting a control signal to the control unit 5421 of the capsule endoscope 5401. For example, with the control signal from the external control device 5423, the irradiation condition of light to the observation target in the light source unit 5405 can be changed. In addition, an imaging condition (for example, a frame rate in the imaging unit 5407, an exposure value, and the like) can be changed by a control signal from the external control device 5423. Further, the contents of processing in the image processing unit 5409 and conditions (for example, transmission interval, number of transmission images, etc.) under which the wireless communication unit 5411 transmits an image signal may be changed by a control signal from the external control device 5423. .
 また、外部制御装置5423は、カプセル型内視鏡5401から送信される画像信号に対して、各種の画像処理を施し、撮像された体内画像を表示装置に表示するための画像データを生成する。当該画像処理としては、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が行われてよい。外部制御装置5423は、表示装置(図示せず)の駆動を制御して、生成した画像データに基づいて撮像された体内画像を表示させる。あるいは、外部制御装置5423は、生成した画像データを記録装置(図示せず)に記録させたり、印刷装置(図示せず)に印刷出力させてもよい。 Further, the external control device 5423 performs various types of image processing on the image signal transmitted from the capsule endoscope 5401 and generates image data for displaying the captured in-vivo image on the display device. As the image processing, for example, development processing (demosaicing processing), high image quality processing (band emphasis processing, super-resolution processing, NR (noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various known signal processing may be performed, such as electronic zoom processing). The external control device 5423 controls the drive of the display device (not shown) to display the in-vivo image captured based on the generated image data. Alternatively, the external control device 5423 may cause the recording device (not shown) to record the generated image data, or may cause the printing device (not shown) to print out.
 以上、本開示に係る技術が適用され得る体内情報取得システム5400の一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部5407に好適に適用され得る。撮像部5407に本開示に係る技術を適用することにより、カプセル型内視鏡5401をより小型化できるため、患者の負担を更に軽減することができる。 Heretofore, an example of the in-vivo information acquiring system 5400 to which the technology according to the present disclosure can be applied has been described. Among the configurations described above, the technology according to the present disclosure can be suitably applied to the imaging unit 5407. By applying the technology according to the present disclosure to the imaging unit 5407, the capsule endoscope 5401 can be further miniaturized, and thus the burden on the patient can be further reduced.
 <<7.その他>>
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータ(例えば、制御部123等)などが含まれる。
<< 7. Other >>
The series of processes described above can be performed by hardware or software. When the series of processes are performed by software, a program that configures the software is installed on a computer. Here, the computer includes a computer (for example, the control unit 123 or the like) incorporated in dedicated hardware.
 コンピュータが実行するプログラムは、例えば、パッケージメディア等としての記録媒体(例えば、記録媒体130等)に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。 The program executed by the computer can be provided by being recorded in, for example, a recording medium (eg, the recording medium 130 or the like) as a package medium or the like. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 Note that the program executed by the computer may be a program that performs processing in chronological order according to the order described in this specification, in parallel, or when necessary, such as when a call is made. It may be a program to be processed.
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 Further, in the present specification, a system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same case. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
 さらに、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Furthermore, the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present technology.
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, the present technology can have a cloud computing configuration in which one function is shared and processed by a plurality of devices via a network.
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, each step described in the above-described flowchart can be executed by one device or in a shared manner by a plurality of devices.
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Furthermore, in the case where a plurality of processes are included in one step, the plurality of processes included in one step can be executed by being shared by a plurality of devices in addition to being executed by one device.
 尚、本開示は、以下のような構成も取ることができる。 The present disclosure can also have the following configurations.
(1) 
 ユーザが装着又は使用する電子機器において、
 前記電子機器を装着又は使用しているユーザの周囲が写る位置に配置されている撮像部であって、撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を1つ出力する画素出力単位を複数備える撮像部を
 備える電子機器。
(2)
 各前記画素出力単位は、前記電子機器が前記ユーザに装着されている状態において、前記電子機器の外側に露出する面に配置されている
 前記(1)に記載の電子機器。
(3) 
 前記電子機器は、前記ユーザの頭部に装着される
 前記(2)に記載の電子機器。
(4)
 前記電子機器は、メガネ型又はゴーグル型である
 前記(3)に記載の電子機器。
(5)
 前記電子機器は、ヘッドフォンである
 前記(3)に記載の電子機器。
(6)
 前記電子機器は、カメラである
 前記(1)に記載の電子機器。
(7)
 各前記画素出力単位からの複数の前記検出信号を用いて復元画像を復元する復元部を
 さらに備える前記(1)乃至(6)のいずれかに記載の電子機器。
(8)
 前記復元部は、各前記画素出力単位の前記入射角指向性を示す複数の係数を用いて、前記復元画像を復元する
 前記(7)に記載の電子機器。
(9)
 少なくとも一部の前記画素出力単位が、前記電子機器の変形可能な部分に配置されており、
 前記復元部は、前記変形可能な部分の変形具合に基づいて、前記復元画像の復元に用いる前記係数を選択する
 前記(8)に記載の電子機器。
(10)
 前記復元画像に基づいて、所定の処理を実行する制御部を
 さらに備える前記(7)又は(8)に記載の電子機器。
(11)
 前記制御部は、前記復元画像に基づいて、前記ユーザの周囲の認識処理を行う
 前記(10)に記載の電子機器。
(12)
 前記復元画像の記録を制御する記録部を
 さらに備える前記(11)に記載の電子機器。
(13)
 複数の前記検出信号を含む前記検出信号セットと、前記検出信号セットを用いて復元画像を復元する場合に用いられるメタデータとを関連付ける関連付け部を
 さらに備える前記(1)乃至(11)のいずれかに記載の電子機器。
(14)
 前記撮像部は、1以上の撮像素子を備え、
 複数の前記画素出力単位は、前記撮像素子に設けられている
 前記(1)乃至(13)のいずれかに記載の電子機器。
(15)
 各前記画素出力単位は、2以上の離れた領域に配置されている
 前記(1)乃至(14)のいずれかに記載の電子機器。
(16) 
 前記複数の画素出力単位は、前記入射角指向性を独立に設定可能な構成を有する
 前記(1)乃至(15)のいずれかに記載の電子機器。
(17) 
 前記複数の画素出力単位は、
  1つのフォトダイオードと、
  前記入射光の一部の前記フォトダイオードへの入射を遮る遮光膜と
 をそれぞれ備える前記(16)に記載の電子機器。
(18) 
 前記複数の画素出力単位のうち少なくも2つの画素出力単位は、複数のフォトダイオードを備え、出力に寄与するフォトダイオードを互いに異ならせることで、前記入射角指向性が互いに異なる
 前記(16)に記載の電子機器。
(19)
 前記撮像部は、前記複数の画素出力単位のうちの少なくとも2つの画素出力単位の出力画素値の、前記入射光に対する入射角指向性が、互いに異なる特性となるようにするための構成を有する
 前記(1)乃至(18)のいずれかに記載の電子機器。
(1)
In the electronic device worn or used by the user,
The imaging unit is disposed at a position where the surroundings of a user wearing or using the electronic device are captured, and receives incident light from an object that is incident without passing through either the imaging lens or the pinhole, An electronic apparatus comprising: an imaging unit including a plurality of pixel output units for outputting one detection signal indicating an output pixel value modulated by an incident angle of incident light.
(2)
The electronic device according to (1), wherein each of the pixel output units is disposed on a surface exposed to the outside of the electronic device when the electronic device is attached to the user.
(3)
The electronic device according to (2), wherein the electronic device is mounted on a head of the user.
(4)
The electronic device is a glasses type or a goggle type. The electronic device according to (3).
(5)
The electronic device is a headphone The electronic device according to (3).
(6)
The electronic device is a camera. The electronic device according to (1).
(7)
The electronic device according to any one of (1) to (6), further including a restoration unit that restores a restored image using a plurality of the detection signals from each of the pixel output units.
(8)
The electronic device according to (7), wherein the restoration unit restores the restored image using a plurality of coefficients indicating the incident angle directivity of each pixel output unit.
(9)
At least a part of the pixel output units are arranged in the deformable part of the electronic device;
The electronic device according to (8), wherein the restoration unit selects the coefficient used for restoration of the restored image based on a degree of deformation of the deformable portion.
(10)
The electronic device according to (7) or (8), further including: a control unit that executes a predetermined process based on the restored image.
(11)
The electronic device according to (10), wherein the control unit performs recognition processing of the surroundings of the user based on the restored image.
(12)
The electronic device according to (11), further including: a recording unit configured to control recording of the restored image.
(13)
Any one of the above (1) to (11), further comprising: an association unit that associates the detection signal set including a plurality of detection signals with metadata used when recovering a restored image using the detection signal set. Electronic device described in.
(14)
The imaging unit includes one or more imaging devices.
The electronic device according to any one of (1) to (13), wherein the plurality of pixel output units are provided in the imaging device.
(15)
The electronic apparatus according to any one of (1) to (14), wherein each of the pixel output units is disposed in two or more distant regions.
(16)
The electronic apparatus according to any one of (1) to (15), wherein the plurality of pixel output units have a configuration capable of independently setting the incident angle directivity.
(17)
The plurality of pixel output units are
With one photodiode,
An electronic device according to (16), further comprising: a light shielding film configured to block incidence of a part of the incident light to the photodiode.
(18)
Among the plurality of pixel output units, at least two pixel output units include a plurality of photodiodes, and the photodiodes contributing to the output are different from each other, so that the incident angle directivity differs from each other (16) Electronic device described.
(19)
The imaging unit has a configuration for causing the incident angle directivity to the incident light of output pixel values of at least two pixel output units among the plurality of pixel output units to be different from each other. The electronic device according to any one of (1) to (18).
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, is not limited, and may have other effects.
 101 撮像装置, 111 信号処理制御部, 121 撮像素子, 121a,121a’ 画素, 121A 受光面, 121b 遮光膜, 121c オンチップレンズ, 121e,121f フォトダイオード, 122 復元部, 123 制御部, 125 検出部, 126 関連付け部, 301 電子機器, 311 撮像部, 312 信号処理制御部, 321 復元部, 322 制御部, 325 関連付け部, 326 出力部, 328 記録再生部, 401 ウエアラブルデバイス, 411L,411R レンズ, 412 フレーム, 431 カメラ, 441 ファインダ, 461 ヘッドマウントディスプレイ, 471L,471R レンズ, 491 PC, 501 ディスプレイ, 502 ベゼル, 601 ウエアラブルデバイス, 611L,611R レンズ, 612 フレーム, 631 カメラ, 641 マウント, 642 フラッシュ内蔵部, 643 レンズ, 661 ヘッドマウントディスプレイ, 671 本体部, 672 ヘッドパッド, 691 ヘッドフォン, 701L,701R ハウジング, 702 ヘッドセット, 721 ヘッドフォン, 731L,731R ハウジング, 732 ネックバンド, 751 曲げセンサ, 801 情報処理システム, 811 電子機器, 812 信号処理装置, 901b,901s 画素出力単位 DESCRIPTION OF SYMBOLS 101 imaging apparatus, 111 signal processing control part, 121 imaging element, 121a, 121a 'pixel, 121A light receiving surface, 121b light shielding film, 121c on-chip lens, 121e, 121f photodiode, 122 restoration part, 123 control part, 125 detection part , 126 association unit, 301 electronic device, 311 imaging unit, 312 signal processing control unit, 321 restoration unit, 322 control unit, 325 association unit, 326 output unit, 328 recording and reproduction unit, 401 wearable device, 411L, 411R lens, 412 Frame, 431 camera, 441 finder, 461 head mounted display, 471L, 471R lens, 491 PC, 501 display Ray, 502 bezel, 601 wearable device, 611L, 611R lens, 612 frame, 631 camera, 641 mount, 642 flash unit, 643 lens, 661 head mounted display, 671 main unit, 672 head pad, 691 headphones, 701L, 701R Housing, 702 Headset, 721 Headphones, 731L, 731R Housing, 732 Neckband, 751 Bending Sensor, 801 Information Processing System, 811 Electronics, 812 Signal Processor, 901b, 901s Pixel Output Unit

Claims (19)

  1.  ユーザが装着又は使用する電子機器において、
     前記電子機器を装着又は使用しているユーザの周囲が写る位置に配置されている撮像部であって、撮像レンズ及びピンホールのいずれも介さず入射する被写体からの入射光を受光し、前記入射光の入射角によって変調された出力画素値を示す検出信号を1つ出力する画素出力単位を複数備える撮像部を
     備える電子機器。
    In the electronic device worn or used by the user,
    The imaging unit is disposed at a position where the surroundings of a user wearing or using the electronic device are captured, and receives incident light from an object that is incident without passing through either the imaging lens or the pinhole, An electronic apparatus comprising: an imaging unit including a plurality of pixel output units for outputting one detection signal indicating an output pixel value modulated by an incident angle of incident light.
  2.  各前記画素出力単位は、前記電子機器が前記ユーザに装着されている状態において、前記電子機器の外側に露出する面に配置されている
     請求項1に記載の電子機器。
    The electronic device according to claim 1, wherein each of the pixel output units is disposed on a surface exposed to the outside of the electronic device when the electronic device is attached to the user.
  3.  前記電子機器は、前記ユーザの頭部に装着される
     請求項2に記載の電子機器。
    The electronic device according to claim 2, wherein the electronic device is attached to a head of the user.
  4.  前記電子機器は、メガネ型又はゴーグル型である
     請求項3に記載の電子機器。
    The electronic device according to claim 3, wherein the electronic device is a glasses type or a goggle type.
  5.  前記電子機器は、ヘッドフォンである
     請求項3に記載の電子機器。
    The electronic device according to claim 3, wherein the electronic device is a headphone.
  6.  前記電子機器は、カメラである
     請求項1に記載の電子機器。
    The electronic device according to claim 1, wherein the electronic device is a camera.
  7.  各前記画素出力単位からの複数の前記検出信号を用いて復元画像を復元する復元部を
     さらに備える請求項1に記載の電子機器。
    The electronic device according to claim 1, further comprising a restoration unit that restores a restored image using a plurality of the detection signals from each of the pixel output units.
  8.  前記復元部は、各前記画素出力単位の前記入射角指向性を示す複数の係数を用いて、前記復元画像を復元する
     請求項7に記載の電子機器。
    The electronic device according to claim 7, wherein the restoration unit restores the restored image using a plurality of coefficients indicating the incident angle directivity of each pixel output unit.
  9.  少なくとも一部の前記画素出力単位が、前記電子機器の変形可能な部分に配置されており、
     前記復元部は、前記変形可能な部分の変形具合に基づいて、前記復元画像の復元に用いる前記係数を選択する
     請求項8に記載の電子機器。
    At least a part of the pixel output units are arranged in the deformable part of the electronic device;
    The electronic device according to claim 8, wherein the restoration unit selects the coefficient used for restoration of the restored image based on a degree of deformation of the deformable portion.
  10.  前記復元画像に基づいて、所定の処理を実行する制御部を
     さらに備える請求項7に記載の電子機器。
    The electronic device according to claim 7, further comprising: a control unit that executes a predetermined process based on the restored image.
  11.  前記制御部は、前記復元画像に基づいて、前記ユーザの周囲の認識処理を行う
     請求項10に記載の電子機器。
    The electronic device according to claim 10, wherein the control unit performs recognition processing of the surroundings of the user based on the restored image.
  12.  前記復元画像の記録を制御する記録部を
     さらに備える請求項11に記載の電子機器。
    The electronic device according to claim 11, further comprising: a recording unit that controls recording of the restored image.
  13.  複数の前記検出信号を含む前記検出信号セットと、前記検出信号セットを用いて復元画像を復元する場合に用いられるメタデータとを関連付ける関連付け部を
     さらに備える請求項1に記載の電子機器。
    The electronic device according to claim 1, further comprising: an association unit that associates the detection signal set including a plurality of the detection signals with metadata used in restoring a restored image using the detection signal set.
  14.  前記撮像部は、1以上の撮像素子を備え、
     複数の前記画素出力単位は、前記撮像素子に設けられている
     請求項1に記載の電子機器。
    The imaging unit includes one or more imaging devices.
    The electronic device according to claim 1, wherein a plurality of the pixel output units are provided in the imaging device.
  15.  各前記画素出力単位は、2以上の離れた領域に配置されている
     請求項1に記載の電子機器。
    The electronic device according to claim 1, wherein each of the pixel output units is disposed in two or more distant regions.
  16.  前記複数の画素出力単位は、前記入射角指向性を独立に設定可能な構成を有する
     請求項1に記載の電子機器。
    The electronic device according to claim 1, wherein the plurality of pixel output units have a configuration capable of independently setting the incident angle directivity.
  17.  前記複数の画素出力単位は、
      1つのフォトダイオードと、
      前記入射光の一部の前記フォトダイオードへの入射を遮る遮光膜と
     をそれぞれ備える請求項16に記載の電子機器。
    The plurality of pixel output units are
    With one photodiode,
    The electronic device according to claim 16, further comprising: a light shielding film configured to block incidence of a part of the incident light to the photodiode.
  18.  前記複数の画素出力単位のうち少なくも2つの画素出力単位は、複数のフォトダイオードを備え、出力に寄与するフォトダイオードを互いに異ならせることで、前記入射角指向性が互いに異なる
     請求項16に記載の電子機器。
    The incident angle directivity is different from each other by providing at least two pixel output units among the plurality of pixel output units with a plurality of photodiodes and making the photodiodes contributing to the output different from each other. Electronic devices.
  19.  前記撮像部は、前記複数の画素出力単位のうちの少なくとも2つの画素出力単位の出力画素値の、前記入射光に対する入射角指向性が、互いに異なる特性となるようにするための構成を有する
     請求項1に記載の電子機器。
    The imaging unit has a configuration for causing the incident angle directivity to the incident light of output pixel values of at least two pixel output units among the plurality of pixel output units to be different from each other. Item 1. The electronic device according to item 1.
PCT/JP2018/038947 2017-10-19 2018-10-19 Electronic apparatus WO2019078339A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/754,398 US11368609B2 (en) 2017-10-19 2018-10-19 Electronic apparatus
CN201880066131.6A CN111201771B (en) 2017-10-19 2018-10-19 Electronic instrument
EP18868174.6A EP3700182A4 (en) 2017-10-19 2018-10-19 Electronic apparatus
JP2019548814A JP7247890B2 (en) 2017-10-19 2018-10-19 Electronic equipment and signal processing equipment
KR1020207009788A KR20200062220A (en) 2017-10-19 2018-10-19 Electronics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017202863 2017-10-19
JP2017-202863 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019078339A1 true WO2019078339A1 (en) 2019-04-25

Family

ID=66173720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038947 WO2019078339A1 (en) 2017-10-19 2018-10-19 Electronic apparatus

Country Status (6)

Country Link
US (1) US11368609B2 (en)
EP (1) EP3700182A4 (en)
JP (1) JP7247890B2 (en)
KR (1) KR20200062220A (en)
CN (1) CN111201771B (en)
WO (1) WO2019078339A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11470247B2 (en) 2018-03-29 2022-10-11 Sony Corporation Information processing device, information processing method, program, and information processing system
US20220276702A1 (en) * 2021-03-01 2022-09-01 Qualcomm Incorporated Movement detection of a head mounted device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029209A (en) * 2010-07-27 2012-02-09 Hitachi Ltd Audio processing system
JP2016510910A (en) 2013-03-05 2016-04-11 ラムバス・インコーポレーテッド Phase grating with odd symmetry for high resolution lensless optical sensing
JP2016092413A (en) * 2014-10-29 2016-05-23 株式会社半導体エネルギー研究所 Imaging apparatus and electronic apparatus
WO2016123529A1 (en) 2015-01-29 2016-08-04 William Marsh Rice University Lensless imaging system using an image sensor with one or more attenuating layers
WO2017056865A1 (en) * 2015-09-29 2017-04-06 大日本印刷株式会社 Lens sheet, lens sheet unit, imaging module, imaging device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060125945A1 (en) * 2001-08-07 2006-06-15 Satoshi Suzuki Solid-state imaging device and electronic camera and shading compensaton method
US7236285B2 (en) * 2004-02-12 2007-06-26 Seiko Epson Corporation Light modulation device and optical display device, and light modulation method and image display method
US9658473B2 (en) * 2005-10-07 2017-05-23 Percept Technologies Inc Enhanced optical and perceptual digital eyewear
US11428937B2 (en) * 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
JP4661912B2 (en) * 2008-07-18 2011-03-30 ソニー株式会社 Solid-state imaging device and camera system
EP3836215A1 (en) 2008-07-25 2021-06-16 Cornell University Light field image sensor, method and applications
US20150309316A1 (en) * 2011-04-06 2015-10-29 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US8466530B2 (en) * 2011-06-30 2013-06-18 Taiwan Semiconductor Manufacturing Company, Ltd. Co-implant for backside illumination sensor
JP6120508B2 (en) * 2011-10-03 2017-04-26 キヤノン株式会社 Imaging device and imaging apparatus
US9389420B2 (en) * 2012-06-14 2016-07-12 Qualcomm Incorporated User interface interaction for transparent head-mounted displays
US8958005B1 (en) * 2012-08-30 2015-02-17 Google Inc. Single pixel camera
US10430985B2 (en) * 2014-03-14 2019-10-01 Magic Leap, Inc. Augmented reality systems and methods utilizing reflections
US9465991B2 (en) * 2014-08-11 2016-10-11 Microsoft Technology Licensing, Llc Determining lens characteristics
JP2016123529A (en) 2014-12-26 2016-07-11 株式会社大都技研 Game machine
US9728010B2 (en) * 2014-12-30 2017-08-08 Microsoft Technology Licensing, Llc Virtual representations of real-world objects
US9779512B2 (en) * 2015-01-29 2017-10-03 Microsoft Technology Licensing, Llc Automatic generation of virtual materials from real-world materials
US9558760B2 (en) * 2015-03-06 2017-01-31 Microsoft Technology Licensing, Llc Real-time remodeling of user voice in an immersive visualization system
DE102016110902A1 (en) * 2015-06-14 2016-12-15 Facense Ltd. Head-mounted devices for recording thermal readings
US10261584B2 (en) * 2015-08-24 2019-04-16 Rambus Inc. Touchless user interface for handheld and wearable computers
JP2017063393A (en) * 2015-09-25 2017-03-30 日本電産コパル株式会社 Imaging device and camera
EP3700187B1 (en) * 2017-10-19 2023-04-12 Sony Group Corporation Signal processing device and imaging device
US11483481B2 (en) * 2017-10-19 2022-10-25 Sony Corporation Electronic instrument
EP3700186B1 (en) * 2017-10-19 2023-08-16 Sony Group Corporation Imaging device and method
WO2019078319A1 (en) * 2017-10-19 2019-04-25 ソニー株式会社 Information processing device, information processing method, imaging device, and program
WO2019078335A1 (en) * 2017-10-19 2019-04-25 ソニー株式会社 Imaging device and method, and image processing device and method
EP3700194A1 (en) * 2017-10-19 2020-08-26 Sony Corporation Imaging device and method, and image processing device and method
EP3700192B1 (en) * 2017-10-19 2023-08-30 Sony Group Corporation Imaging device and signal processing device
WO2019078320A1 (en) * 2017-10-19 2019-04-25 ソニー株式会社 Information processing device, information processing method, imaging device and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029209A (en) * 2010-07-27 2012-02-09 Hitachi Ltd Audio processing system
JP2016510910A (en) 2013-03-05 2016-04-11 ラムバス・インコーポレーテッド Phase grating with odd symmetry for high resolution lensless optical sensing
JP2016092413A (en) * 2014-10-29 2016-05-23 株式会社半導体エネルギー研究所 Imaging apparatus and electronic apparatus
WO2016123529A1 (en) 2015-01-29 2016-08-04 William Marsh Rice University Lensless imaging system using an image sensor with one or more attenuating layers
WO2017056865A1 (en) * 2015-09-29 2017-04-06 大日本印刷株式会社 Lens sheet, lens sheet unit, imaging module, imaging device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. SALMAN ASIF: "Flatcam: Replacing lenses with masks and computation", 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW, 2015, pages 663 - 666, XP032865019, DOI: 10.1109/ICCVW.2015.89
See also references of EP3700182A4

Also Published As

Publication number Publication date
JPWO2019078339A1 (en) 2020-11-19
US11368609B2 (en) 2022-06-21
US20200314306A1 (en) 2020-10-01
EP3700182A1 (en) 2020-08-26
KR20200062220A (en) 2020-06-03
CN111201771A (en) 2020-05-26
JP7247890B2 (en) 2023-03-29
EP3700182A4 (en) 2020-12-30
CN111201771B (en) 2022-08-30

Similar Documents

Publication Publication Date Title
JP7322708B2 (en) image sensor
JP7160044B2 (en) Electronics
CN106796344B (en) System, arrangement and the method for the enlarged drawing being locked on object of interest
JP7238887B2 (en) Information processing device, program, and information processing system
JP6996518B2 (en) Branch optical system, imaging device, and imaging system
JPWO2019035374A1 (en) Image sensor and image sensor
WO2017212909A1 (en) Imaging element, imaging device and electronic device
WO2018221041A1 (en) Medical observation system and medical observation device
CN110945399B (en) Signal processing apparatus, imaging apparatus, signal processing method, and memory
JP7247890B2 (en) Electronic equipment and signal processing equipment
CN115136593A (en) Imaging apparatus, imaging method, and electronic apparatus
JP2009223526A (en) Image input device and personal identification device
US20240073564A1 (en) Region of interest sampling and retrieval for artificial reality systems
US20240094390A1 (en) Indirect time of flight sensor with parallel pixel architecture
JP2010092148A (en) Image input device and personal authentication device
JP2014016687A (en) Image processing apparatus, image processing method, and program
JP2021006070A (en) Endoscope system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018868174

Country of ref document: EP

Effective date: 20200519