WO2019078205A1 - Substrate equipped with multi-layer reflection film, reflection-type mask blank, reflection-type mask, and semiconductor device manufacturing process - Google Patents
Substrate equipped with multi-layer reflection film, reflection-type mask blank, reflection-type mask, and semiconductor device manufacturing process Download PDFInfo
- Publication number
- WO2019078205A1 WO2019078205A1 PCT/JP2018/038499 JP2018038499W WO2019078205A1 WO 2019078205 A1 WO2019078205 A1 WO 2019078205A1 JP 2018038499 W JP2018038499 W JP 2018038499W WO 2019078205 A1 WO2019078205 A1 WO 2019078205A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- multilayer reflective
- reflective film
- reference mark
- substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 181
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 230000001681 protective effect Effects 0.000 claims abstract description 79
- 239000006096 absorbing agent Substances 0.000 claims description 101
- 239000002344 surface layer Substances 0.000 claims description 42
- 239000010410 layer Substances 0.000 claims description 41
- 238000012546 transfer Methods 0.000 claims description 30
- 229910019895 RuSi Inorganic materials 0.000 claims description 6
- 238000011109 contamination Methods 0.000 abstract description 2
- 229910052729 chemical element Inorganic materials 0.000 abstract 1
- 239000010408 film Substances 0.000 description 520
- 230000007547 defect Effects 0.000 description 96
- 239000007789 gas Substances 0.000 description 65
- 238000007689 inspection Methods 0.000 description 45
- 239000000463 material Substances 0.000 description 40
- 239000011521 glass Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 33
- 238000005498 polishing Methods 0.000 description 24
- 238000012545 processing Methods 0.000 description 20
- 238000010894 electron beam technology Methods 0.000 description 19
- 150000001875 compounds Chemical class 0.000 description 18
- 239000000460 chlorine Substances 0.000 description 15
- 239000011651 chromium Substances 0.000 description 15
- 238000004140 cleaning Methods 0.000 description 15
- 238000001755 magnetron sputter deposition Methods 0.000 description 14
- 229910052707 ruthenium Inorganic materials 0.000 description 13
- 229910004535 TaBN Inorganic materials 0.000 description 12
- 229910052758 niobium Inorganic materials 0.000 description 11
- 229910052715 tantalum Inorganic materials 0.000 description 11
- 229910052796 boron Inorganic materials 0.000 description 10
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 10
- 229910052731 fluorine Inorganic materials 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 9
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 9
- 229910052801 chlorine Inorganic materials 0.000 description 9
- 238000005530 etching Methods 0.000 description 9
- 239000011737 fluorine Substances 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 239000006061 abrasive grain Substances 0.000 description 8
- 238000001659 ion-beam spectroscopy Methods 0.000 description 8
- 229910052750 molybdenum Inorganic materials 0.000 description 8
- 238000005546 reactive sputtering Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 230000000737 periodic effect Effects 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910000420 cerium oxide Inorganic materials 0.000 description 4
- 239000008119 colloidal silica Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000000609 electron-beam lithography Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 4
- 229910052702 rhenium Inorganic materials 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 229910016006 MoSi Inorganic materials 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 150000001845 chromium compounds Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910000629 Rh alloy Inorganic materials 0.000 description 1
- 229910000929 Ru alloy Inorganic materials 0.000 description 1
- 229910019899 RuO Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 150000003482 tantalum compounds Chemical class 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/22—Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
- G03F1/24—Reflection masks; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/38—Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
- G03F1/44—Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/22—Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/38—Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
- G03F1/42—Alignment or registration features, e.g. alignment marks on the mask substrates
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/38—Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
- G03F1/48—Protective coatings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/54—Absorbers, e.g. of opaque materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/82—Auxiliary processes, e.g. cleaning or inspecting
- G03F1/84—Inspecting
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
Definitions
- the present invention relates to a multilayer reflective film coated substrate, a reflective mask blank, a reflective mask, and a method of manufacturing a semiconductor device.
- EUV lithography which is an exposure technique using Extreme Ultra Violet (hereinafter referred to as EUV) light
- EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, and specifically, light having a wavelength of about 0.2 to 100 nm.
- a reflective mask has been proposed as a mask used in EUV lithography. In the reflective mask, a multilayer reflective film that reflects exposure light is formed on a substrate such as glass or silicon, and an absorber film pattern that absorbs the exposure light is formed on the multilayer reflective film.
- a reflective mask mounted thereon In an exposure machine that performs pattern transfer, light incident on a reflective mask mounted thereon is absorbed at a portion having an absorber film pattern and is reflected by the multilayer reflective film at a portion having no absorber film pattern. Then, the reflected light image is transferred onto a semiconductor substrate such as a silicon wafer via a reflection optical system.
- One of the problems is a problem regarding defect information of a mask blank substrate or the like used in the lithography process.
- the position of the defect of the substrate is specified by the distance from the origin by using the substrate center as the origin (0, 0) and using the coordinates managed by the defect inspection apparatus. For this reason, the reference of the absolute value coordinate is not clear, the position accuracy is low, and the detection varies among the devices. Further, even when patterning is performed on a thin film for pattern formation avoiding a defect when drawing a pattern, it is difficult to avoid the defect in the order of ⁇ m. For this reason, the defect is avoided by changing the direction in which the pattern is transferred, or roughly shifting the transfer position in the order of mm.
- Patent Document 1 discloses a fiducial mark formed in a concave shape by removing a part of the multilayer reflective film.
- a method of removing a part of the multilayer reflective film a laser ablation method or FIB (focused ion beam method) is disclosed.
- the multilayer reflective film may be etched in the depth direction.
- the material of the multilayer reflective film for example, a Mo / Si film may be exposed on the side surface of the recess formed by the etching.
- the Mo film may be exposed to the surface.
- etching reactant may adhere to the side or bottom.
- the process of manufacturing the reflective mask blank or the reflective mask includes the process of cleaning the substrate.
- the present invention can prevent the surface of the multilayer reflective film from being contaminated even when the reference mark is formed on the multilayer reflective film, a substrate with a multilayer reflective film, a reflective mask blank, a reflective mask,
- An object of the present invention is to provide a method of manufacturing a semiconductor device.
- Another object of the present invention is to provide a substrate with a multilayer reflective film, a reflective mask blank, a reflective mask, and a method of manufacturing a semiconductor device, which can prevent deterioration in the cleaning resistance of the substrate.
- Another object of the present invention is to provide a method of manufacturing a substrate with a multilayer reflective film, a reflective mask blank, a reflective mask, and a semiconductor device capable of shortening the time required for processing a reference mark.
- the present invention has the following composition.
- (Configuration 1) A multilayer reflective film coated substrate comprising: a substrate; a multilayer reflective film for reflecting EUV light formed on the substrate; and a protective film formed on the multilayer reflective film, It has a fiducial mark formed concavely on the surface of the protective film, The surface layer of the reference mark contains an element identical to at least one of the elements contained in the protective film, A multilayer reflective film coated substrate having a shrink region in which at least a part of a plurality of films included in the multilayer reflective film is contracted at the bottom of the reference mark.
- (Configuration 7) A reflective mask blank having a multilayer reflective film coated substrate according to any one of constitutions 1 to 6 and an absorber film for absorbing EUV light formed on a protective film of the multilayer reflective film coated substrate. There, A reflective mask blank, wherein the shape of the reference mark is transferred to the absorber film.
- Configuration 9 A method of manufacturing a semiconductor device, comprising the step of forming a transfer pattern on a semiconductor substrate using the reflective mask according to Configuration 8.
- the multilayer reflective film coated substrate, the reflective mask blank, the reflective mask, and the like can prevent the surface of the multilayer reflective film from being contaminated. And a method of manufacturing a semiconductor device.
- a multilayer reflective film coated substrate, a reflective mask blank, a reflective mask, and a method of manufacturing a semiconductor device which can prevent the deterioration of the cleaning resistance of the substrate.
- FIG. 3 is a cross-sectional view of the reference mark shown in FIG. 2 along the line BB.
- FIG. 1 shows a pattern transfer device. It is a TEM image of the cross section of a fiducial mark.
- FIG. 1 is a schematic view showing a cross section of the multilayer reflective film coated substrate of this embodiment.
- the multilayer reflective film coated substrate 10 includes a substrate 12, a multilayer reflective film 14 that reflects EUV light that is exposure light, and a protective film 18 for protecting the multilayer reflective film 14.
- a multilayer reflective film 14 is formed on the substrate 12, and a protective film 18 is formed on the multilayer reflective film 14.
- the substrate or film includes not only the case of contacting the upper surface of the substrate or film, but also the case of not contacting the upper surface of the substrate or film. That is, “on” the substrate or film includes the case where a new film is formed above the substrate or film, the case where another film is interposed between the substrate or film, etc. . Moreover, “on” does not necessarily mean the upper side in the vertical direction, but merely indicates the relative positional relationship of the substrate, the film, and the like.
- the substrate 12 used for the multilayer reflective film coated substrate 10 of the present embodiment has a low thermal conductivity within the range of 0 ⁇ 5 ppb / ° C. to prevent distortion of the absorber film pattern due to heat during exposure.
- Those having an expansion coefficient are preferably used.
- As a material having a low thermal expansion coefficient in this range for example, SiO 2 —TiO 2 based glass, multicomponent glass ceramics, etc. can be used.
- the main surface on the side where the transfer pattern of the substrate 12 (the absorber film pattern described later corresponds thereto) is preferably processed to enhance the flatness.
- the flatness is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, in a 132 mm ⁇ 132 mm region of the main surface of the substrate 12 on the side where the transfer pattern is formed.
- it is 0.03 micrometer or less.
- the main surface opposite to the side on which the transfer pattern is formed is the surface fixed to the exposure apparatus by the electrostatic chuck, and the flatness is 1 ⁇ m or less, more preferably 0 in the 142 mm ⁇ 142 mm region. 0.5 ⁇ m or less, particularly preferably 0.03 ⁇ m or less.
- flatness is a value representing surface warpage (amount of deformation) indicated by TIR (Total Indicated Reading), and a plane determined by the least squares method with respect to the substrate surface is taken as a focal plane, It is the absolute value of the height difference between the highest position of the substrate surface above the plane and the lowest position of the substrate surface below the focal plane.
- the surface roughness of the main surface on the side where the transfer pattern of the substrate 12 is formed is preferably 0.1 nm or less in root mean square roughness (RMS).
- the surface roughness can be measured by an atomic force microscope.
- the substrate 12 preferably has high rigidity in order to prevent deformation due to film stress of a film (such as the multilayer reflective film 14) formed thereon.
- the substrate 12 preferably has a high Young's modulus of 65 GPa or more.
- the multilayer reflective film coated substrate 10 includes a substrate 12 and a multilayer reflective film 14 formed on the substrate 12.
- the multilayer reflective film 14 is, for example, a multilayer film in which elements having different refractive indexes are periodically stacked.
- the multilayer reflective film 14 has a function of reflecting EUV light.
- the multilayer reflective film 14 is a thin film (high refractive index layer) of a light element or its compound which is a high refractive index material, and a thin film (a low refractive index layer) of a heavy element or its compound which is a low refractive index material And the like are alternately laminated in about 40 to 60 cycles.
- a high refractive index layer and a low refractive index layer may be laminated in a plurality of cycles in this order from the substrate 12 side. In this case, the laminated structure of one (high refractive index layer / low refractive index layer) is one cycle.
- a low refractive index layer and a high refractive index layer may be laminated in a plurality of cycles in this order from the substrate 12 side.
- the laminated structure of one (low refractive index layer / high refractive index layer) is one cycle.
- the uppermost layer of the multilayer reflective film 14, that is, the surface layer of the multilayer reflective film 14 opposite to the substrate 12 is preferably a high refractive index layer.
- the uppermost layer is the low refractive index layer.
- the low refractive index layer is the surface of the multilayer reflective film 14
- the low refractive index layer is easily oxidized to reduce the reflectance of the multilayer reflective film, so that the low refractive index layer is formed on the low refractive index layer. Form a high refractive index layer.
- the uppermost layer is the high refractive index layer.
- the uppermost high refractive index layer is the surface of the multilayer reflective film 14.
- the high refractive index layer may be a layer containing Si.
- the high refractive index layer may contain Si alone or may contain a Si compound.
- the Si compound may contain Si and at least one element selected from the group consisting of B, C, N, and O.
- the low refractive index material at least one element selected from the group consisting of Mo, Ru, Rh and Pt, or at least one selected from the group consisting of Mo, Ru, Rh and Pt Alloys containing one element can be used.
- the multilayer reflective film 14 for EUV light with a wavelength of 13 to 14 nm preferably, a Mo / Si multilayer film in which Mo films and Si films are alternately stacked for about 40 to 60 cycles can be used.
- a multilayer reflective film used in the region of EUV light for example, Ru / Si periodic multilayer film, Mo / Be periodic multilayer film, Mo compound / Si compound periodic multilayer film, Si / Nb periodic multilayer film, Si / A Mo / Ru periodic multilayer film, a Si / Mo / Ru / Mo periodic multilayer film, a Si / Ru / Mo / Ru periodic multilayer film or the like can be used.
- the material of the multilayer reflective film can be selected in consideration of the exposure wavelength.
- the reflectivity of such a multilayer reflective film 14 alone is, for example, 65% or more.
- the upper limit of the reflectance of the multilayer reflective film 14 is, for example, 73%.
- the thickness and period of the layers included in the multilayer reflective film 14 can be selected so as to satisfy Bragg's law.
- the multilayer reflective film 14 can be formed by a known method.
- the multilayer reflective film 14 can be formed, for example, by ion beam sputtering.
- the multilayer reflective film 14 is a Mo / Si multilayer film
- a Mo film having a thickness of about 3 nm is formed on the substrate 12 using an Mo target by ion beam sputtering.
- a Si target is used to form a Si film having a thickness of about 4 nm.
- the surface layer opposite to the substrate 12 of the multilayer reflective film 14 is a layer containing Si (Si film).
- the thickness of one cycle of Mo / Si film is 7 nm.
- the multilayer reflective film coated substrate 10 of the present embodiment is provided with a protective film 18 formed on the multilayer reflective film 14.
- the protective film 18 has a function of protecting the multilayer reflective film 14 in patterning or pattern correction of the absorber film.
- the protective film 18 is provided between the multilayer reflective film 14 and an absorber film described later.
- the protective film 18 As a material of the protective film 18, for example, Ru, Ru- (Nb, Zr, Y, B, Ti, La, Mo, Co or Re) compound, Si- (Ru, Rh, Cr or B) compound, Si, Materials such as Zr, Nb, La, B and the like can be used. Moreover, the compound which added nitrogen, oxygen, or carbon to these can be used. Among these, when a material containing ruthenium (Ru) is applied, the reflectance characteristics of the multilayer reflective film become better. Specifically, the material of the protective film 18 is preferably Ru or Ru- (Nb, Zr, Y, B, Ti, La, Mo, Co or Re) compound. The thickness of the protective film 18 is, for example, 1 nm to 5 nm. The protective film 18 can be formed by a known method. The protective film 18 can be formed by, for example, a magnetron sputtering method or an ion beam sputtering method.
- the multilayer reflective film coated substrate 10 may further have a back surface conductive film on the main surface of the substrate 12 opposite to the side on which the multilayer reflective film 14 is formed.
- the back surface conductive film is used when adsorbing the multilayer reflective film coated substrate 10 or the reflective mask blank by an electrostatic chuck.
- the multilayer reflective film coated substrate 10 may have a base film formed between the substrate 12 and the multilayer reflective film 14.
- the underlayer is formed, for example, for the purpose of improving the smoothness of the surface of the substrate 12.
- the undercoat film is formed, for example, for the purpose of defect reduction, improvement of the reflectance of the multilayer reflective film, and stress correction of the multilayer reflective film.
- FIG. 2 is a plan view of the multilayer reflective film coated substrate 10 of the present embodiment.
- reference marks 20 which can be used as a reference of the defect position in the defect information are respectively formed.
- the number of reference marks 20 is not limited to four, and may be three or less, or five or more.
- the region inside the broken line A (a region of 132 mm ⁇ 132 mm) is a pattern formation region in which an absorber film pattern is formed when the reflective mask is manufactured.
- the area outside the broken line A is an area where the absorber film pattern is not formed when the reflective mask is manufactured.
- the reference mark 20 is preferably formed in the area where the absorber film pattern is not formed, that is, the area outside the broken line A.
- the reference mark 20 has a substantially cruciform shape.
- the width W of one line of the reference mark 20 having a substantially cruciform shape is, for example, 200 nm or more and 10 ⁇ m or less.
- the length L of one line of the reference mark 20 is, for example, not less than 100 ⁇ m and not more than 1500 ⁇ m.
- FIG. 2 shows an example of the reference mark 20 having a substantially cross shape, the shape of the reference mark 20 is not limited to this.
- the shape of the reference mark 20 may be, for example, a substantially L-shape in plan view.
- FIG. 3 is a cross-sectional view taken along the line BB of the reference mark 20 shown in FIG. 2, and schematically shows the cross-sectional structure of the reference mark 20.
- a reference mark when looking at a cross section of the multilayer reflective film coated substrate 10 (cross section perpendicular to the main surface of the multilayer reflective film coated substrate 10). 20 are formed in a concave shape on the surface of the protective film 18.
- the term "concave” as used herein means that when the cross section of the multilayer reflective film coated substrate 10 is viewed, the reference mark 20 is formed to be recessed, for example, in a step-like shape or in a curved shape downward from the protective film 18 It is a meaning.
- the surface layer 22 of the reference mark 20 contains the same element as at least one of the elements contained in the protective film 18.
- the surface layer 22 of the reference mark 20 contains at least one element selected from the group consisting of Ru, Nb, Zr, Y, B, Ti, La, Mo, Co, Re, Si, Rh, and Cr. It is done.
- the surface layer 22 of the reference mark 20 preferably contains ruthenium (Ru) which is the same element as the element contained in the protective film 18.
- the types of elements contained in the surface layer 22 of the reference mark 20 can be identified by, for example, EDX (energy dispersive X-ray analysis).
- the surface layer 22 of the reference mark 20 may contain an oxide of the same element as at least one of the elements contained in the protective film 18.
- the surface layer 22 of the reference mark 20 may be Ru, Ru- (Nb, Zr, Y, B, Ti, La, Mo, Co or Re) compound, Si- (Ru, Rh, Cr or B) compound, Si
- An oxide of at least one element or compound selected from the group consisting of Zr, Nb, La, and B may be included.
- the surface layer 22 of the reference mark 20 may contain an oxide of Ru or RuNb.
- the surface layer 22 of the reference mark 20 may include at least one of RuO and RuNbO.
- the “surface layer 22” of the reference mark 20 means, for example, a region from the surface of the reference mark 20 to a depth of 2 nm.
- the surface layer 22 contains the same element as the element contained in the protective film 18.
- the same element as the element contained in the protective film 18 may be contained in the entire surface of the surface layer 22 or may be contained in a part of the surface layer 22.
- the same element as the element contained in the protective film 18 is contained in the entire surface layer 22. In this case, the material contained in the multilayer reflective film 14 is not exposed, and the cleaning resistance of the multilayer reflective film coated substrate 10 can be prevented from being deteriorated.
- the surface layer 14 a of the multilayer reflective film 14 on the opposite side to the substrate 12 is preferably a layer containing Si (Si film). This is because Ru and Si react with each other in the surface layer 22 of the reference mark 20 to form RuSi by heat when the reference mark 20 is laser-processed, so that the cleaning resistance of the multilayer reflective film coated substrate 10 is improved.
- the surface layer 22 of the reference mark 20 contains, for example, at least one of RuSi and RuSiO. May be
- a shrink region 24 in which at least a part of the plurality of films included in the multilayer reflective film 14 is contracted is formed.
- the bottom of the reference mark 20 means an area below the concave surface layer 22 up to the top surface of the substrate 12.
- the thickness of at least a part of the plurality of films included in the multilayer reflective film 14 is shrunk.
- the multilayer reflective film 14 is a Mo / Si multilayer film in which a 3 nm thick Mo film and a 4 nm thick Si film are periodically stacked
- the thickness of one cycle Mo / Si film is 7 nm. is there.
- the thickness of one cycle of the Mo / Si film shrinks from 7 nm to 6 nm.
- the contraction ratio of the thickness of the multilayer reflective film 14 is about 86%.
- the contraction rate of the thickness of the multilayer reflective film 14 is preferably 75% to 95%, and more preferably 80% to 90%.
- the shrink region 24 at least a part of the plurality of films included in the multilayer reflective film 14 is shrunk, but the multilayer structure of the multilayer reflective film 14 is maintained. That the laminated structure of the multilayer reflective film 14 is maintained can be easily confirmed, for example, by a TEM image of a cross section of the multilayer reflective film-attached substrate 10.
- At least a part of the plurality of films included in the multilayer reflective film 14 is integrated with each other in the vicinity of the central portion of the bottom of the reference mark 20 and above the shrink region 24.
- a mixing area 26 is formed.
- a plurality of films included in the multilayer reflective film 14 react with each other by heat generated when the reference mark 20 is laser-processed and integrated.
- the multilayer reflective film 14 is a Mo / Si multilayer film
- the Mo film and the Si film react with each other in the mixing region 26 to generate MoSi.
- the mixing area 26 is likely to be formed near the central part of the bottom of the reference mark 20, but may be formed in parts other than the central part. 200 nm or less is preferable and, as for the thickness of the mixing area
- the thickness of the mixing area 26 mentioned here means the maximum value of the thickness in the vertical direction of the mixing area 26.
- FIG. 3 shows an example in which the mixing area 26 is formed, the mixing area 26 may not be formed depending on the conditions of the laser processing and the like.
- the multilayer structure of the multilayer reflective film 14 is not maintained.
- the integration of the plurality of films included in the multilayer reflective film 14 can be easily confirmed by, for example, a TEM image of a cross section of the multilayer reflective film-coated substrate 10.
- the depth D of the concave reference mark 20 is preferably 30 nm or more and 50 nm.
- the depth D means the vertical distance from the surface of the protective film 18 to the deepest position at the bottom of the reference mark 20.
- the inclination angle ⁇ of the concave reference mark 20 is preferably less than 25 degrees, and more preferably 3 degrees or more and 10 degrees or less.
- the inclination angle ⁇ means the angle between the extension line 22 a of the surface layer 22 of the reference mark 20 and the surface 18 a of the protective film 18 when the cross section of the reference mark 20 is viewed.
- the method of forming the reference mark 20 is not particularly limited.
- the reference mark 20 can be formed, for example, by laser processing on the surface of the protective film 18.
- the conditions for laser processing are, for example, as follows.
- Laser power 1 to 120 mW Scanning speed: 0.1 to 20 mm / s
- Pulse frequency 1 to 100 MHz
- Pulse width 3ns to 1000s
- the laser used for laser processing the reference mark 20 may be a continuous wave or a pulse wave.
- the width W of the reference mark 20 can be made smaller than that of the continuous wave, even if the depth D of the reference mark 20 is approximately the same.
- the inclination angle ⁇ of the reference mark 20 can be made larger than that of a continuous wave. Therefore, when the pulse wave is used, it is possible to form the reference mark 20 which has a larger contrast than the continuous wave and is easy to detect by the defect inspection apparatus or the electron beam drawing apparatus.
- the fiducial mark 20 can be used, for example, as an FM (fiducial mark).
- the FM is a mark used as a reference of defect coordinates when drawing a pattern by the electron beam drawing apparatus.
- the FM is usually in the shape of a cross as shown in FIG.
- the reference mark 20 is formed on the multilayer reflective film coated substrate 10
- the coordinates of the reference mark 20 and the coordinates of the defect are acquired with high accuracy by the defect inspection apparatus.
- an absorber film is formed on the protective film 18 of the multilayer reflective film coated substrate 10.
- a resist film is formed on the absorber film.
- a hard mask film (or an etching mask film) may be formed between the absorber film and the resist film.
- the concave reference mark 20 formed on the protective film 18 of the multilayer reflective film coated substrate 10 is transferred to an absorber film and a resist film, or transferred to an absorber film, a hard mask film and a resist film. Ru.
- the reference mark 20 transferred to the resist film is used as the FM which is the reference of the defect position.
- the reference marks 20 formed on the multilayer reflective film coated substrate 10 need to have high contrast that is detectable by the defect inspection apparatus.
- a defect inspection apparatus for example, a mask substrate / blank defect inspection apparatus “MAGICSM 7360” for EUV exposure manufactured by Lasertec having an inspection light source wavelength of 266 nm, an EUV manufactured by KLA-Tencor having an inspection light source wavelength of 193 nm
- Mask / blank defect inspection apparatus “Teron 600 series, for example, Teron 610” there is an ABI (Actinic Blank Inspection) apparatus whose inspection light source wavelength is the same as 13.5 nm of exposure light source wavelength.
- the reference mark 20 transferred to the absorber film and the resist film thereon needs to have a contrast high enough to be detected by the electron beam drawing apparatus. Furthermore, it is preferable that the reference mark 20 have a contrast high enough to be detected by the coordinate measuring device.
- the coordinate measuring device can convert the coordinates of the defect acquired by the defect inspection device into reference coordinates of the electron beam drawing device. Therefore, the user provided with the multilayer reflective film coated substrate 10 can easily and precisely match the defect position identified by the defect inspection apparatus with the drawing data based on the reference mark 20.
- defect coordinates can be managed with high accuracy.
- the defect coordinates can be converted to the coordinate system of the electron beam drawing apparatus by detecting the FM by the electron beam drawing apparatus. Then, for example, the drawing data of the pattern drawn by the electron beam drawing apparatus can be corrected such that the defect is disposed below the absorber film pattern. This can reduce the influence of defects on the reflective mask finally manufactured (this method is called a defect mitigation process).
- the fiducial mark 20 can also be used as an AM (alignment mark).
- AM is a mark that can be used as a reference of the defect coordinates when the defect inspection apparatus inspects a defect on the multilayer reflective film 14.
- AM is not directly used when drawing a pattern by an electron beam drawing apparatus.
- AM can be in the shape of a circle, a square, a cross, or the like.
- AM When AM is formed on the multilayer reflective film 14, it is preferable to form FM on the absorber film on the multilayer reflective film 14 and to partially remove the absorber film on the AM.
- AM can be detected by a defect inspection apparatus and a coordinate measuring instrument.
- the FM can be detected by a coordinate measuring instrument and an electron beam drawing apparatus.
- FIG. 4 is a schematic view showing a cross section of the reflective mask blank 30 of the present embodiment.
- the reflective mask blank 30 of this embodiment can be manufactured by forming the absorber film 28 that absorbs EUV light on the protective film 18 of the multilayer reflective film coated substrate 10 described above.
- the absorber film 28 has a function of absorbing EUV light which is exposure light. That is, the difference between the reflectance of the multilayer reflective film 14 to EUV light and the reflectance of the absorber film 28 to EUV light is equal to or greater than a predetermined value. For example, the reflectance of the absorber film 28 to EUV light is 0.1% or more and 40% or less. There may be a predetermined phase difference between the light reflected by the multilayer reflective film 14 and the light reflected by the absorber film 28. In this case, the absorber film 28 in the reflective mask blank 30 may be called a phase shift film.
- the absorber film 28 preferably has a function of absorbing EUV light and can be removed by etching or the like.
- the absorber film 28 is preferably etchable by dry etching using a chlorine (Cl) -based gas or a fluorine (F) -based gas.
- the material of the absorber film 28 is not particularly limited as long as the absorber film 28 has such a function.
- the absorber film 28 may be a single layer or may have a laminated structure.
- a plurality of films made of the same material may be laminated, or a plurality of films made of different materials may be laminated.
- the material and the composition may change stepwise and / or continuously in the thickness direction of the film.
- the material of the absorber film 28 is preferably, for example, tantalum (Ta) alone or a material containing Ta.
- the material containing Ta is, for example, a material containing Ta and B, a material containing Ta and N, a material containing Ta and B, and at least one of O and N, a material containing Ta and Si, Ta and Si A material containing N, a material containing Ta and Ge, a material containing Ta, Ge and N, a material containing Ta and Pd, a material containing Ta and Ru, a material containing Ta and Ti, etc.
- the absorber film 28 includes, for example, a single Ni, a material containing Ni, a single Cr, a material containing Cr, a single Ru, a material containing Ru, a single Pd, a material containing Pd, a single Mo, and a material containing Mo. And at least one selected from the group consisting of
- the thickness of the absorber film 28 is preferably 30 nm to 100 nm.
- the absorber film 28 can be formed by a known method, for example, a magnetron sputtering method, an ion beam sputtering method, or the like.
- the resist film 32 may be formed on the absorber film 28. This aspect is shown in FIG. After a pattern is drawn and exposed on the resist film 32 by an electron beam drawing apparatus, a resist pattern can be formed through a development process. By performing dry etching on the absorber film 28 using this resist pattern as a mask, a pattern can be formed on the absorber film 28.
- the resist film 32 above the reference mark 20 may be locally removed so that the concave reference mark 20 formed on the protective film 18 can be easily detected by the electron beam lithography system.
- the mode of removal is not particularly limited. Also, for example, the resist film 32 and the absorber film 28 above the reference mark 20 may be removed.
- a hard mask film may be formed between the absorber film 28 and the resist film 32.
- the hard mask film is used as a mask when patterning the absorber film 28.
- the hard mask film and the absorber film 28 are formed of materials having different etching selectivity.
- the material of the absorber film 28 contains tantalum or a tantalum compound
- the material of the hard mask film preferably contains chromium or a chromium compound.
- the chromium compound preferably contains at least one selected from the group consisting of Cr and N, O, C, and H.
- the reflective mask blank 30 of the present embodiment can be used to manufacture the reflective mask 40 of the present embodiment.
- a method of manufacturing the reflective mask 40 will be described.
- FIG. 5 is a schematic view showing a method of manufacturing the reflective mask 40.
- the substrate 12, the multilayer reflective film 14 formed on the substrate 12, the protective film 18 formed on the multilayer reflective film 14, and the protective film 18 are formed.
- a reflective mask blank 30 having the absorber film 28 is prepared (FIG. 5A).
- a resist film 32 is formed on the absorber film 28 (FIG. 5B).
- a pattern is drawn on the resist film 32 by an electron beam drawing apparatus, and a resist pattern 32a is formed by passing through a developing and rinsing process (FIG. 5C).
- the absorber film 28 is dry etched using the resist pattern 32a as a mask. As a result, the portion of the absorber film 28 not covered by the resist pattern 32a is etched to form the absorber film pattern 28a (FIG. 5 (d)).
- etching gas for example, chlorine based gases such as Cl 2 , SiCl 4 , CHCl 3 and CCl 4 , mixed gas containing these chlorine based gases and O 2 in a predetermined ratio, chlorine based gases and He as predetermined.
- chlorine based gases such as Cl 2 , SiCl 4 , CHCl 3 and CCl 4
- mixed gas containing these chlorine based gases and O 2 in a predetermined ratio chlorine based gases and He as predetermined.
- the resist pattern 32a is removed by, for example, a resist remover.
- the reflective mask 40 of the present embodiment is obtained by passing through a wet cleaning process using an acidic or alkaline aqueous solution (FIG. 5E).
- a transfer pattern can be formed on a semiconductor substrate by lithography using the reflective mask 40 of the present embodiment.
- the transfer pattern has a shape in which the absorber film pattern 28 a of the reflective mask 40 is transferred.
- a semiconductor device can be manufactured by forming a transfer pattern on the semiconductor substrate using the reflective mask 40.
- FIG. 6 shows a pattern transfer device 50.
- the pattern transfer apparatus 50 includes a laser plasma X-ray source 52, a reflective mask 40, a reduction optical system 54, and the like.
- As the reduction optical system 54 an X-ray reflection mirror is used.
- the pattern reflected by the reflective mask 40 is usually reduced to about 1 ⁇ 4 by the reduction optical system 54.
- a wavelength band of 13 to 14 nm is used as an exposure wavelength, and the light path is set in advance so as to be in vacuum.
- EUV light generated by the laser plasma X-ray source 52 is made incident on the reflective mask 40.
- the light reflected by the reflective mask 40 is transferred onto the resisted semiconductor substrate 56 via the reduction optical system 54.
- the light incident on the reflective mask 40 is absorbed by the absorber film and not reflected at a portion where the absorber film pattern 28 a is present. On the other hand, the light incident on the portion without the absorber film pattern 28 a is reflected by the multilayer reflective film 14.
- the light reflected by the reflective mask 40 enters the reduction optical system 54.
- the light incident on the reduction optical system 54 forms a transfer pattern on the resist layer on the semiconductor substrate with resist 56.
- a resist pattern can be formed on the resist-coated semiconductor substrate 56.
- etching the semiconductor substrate 56 using the resist pattern as a mask for example, a predetermined wiring pattern can be formed on the semiconductor substrate.
- a semiconductor device is manufactured through such steps and other necessary steps.
- the reference mark 20 is formed in a concave shape on the surface of the protective film 18.
- the surface layer of the reference mark 20 contains an element identical to at least one element among the elements contained in the protective film 18.
- a shrink region 24 is formed in which at least a part of the plurality of films included in the multilayer reflective film 14 is contracted.
- the multilayer reflective film coated substrate 10 of the present embodiment it is possible to prevent the surface of the multilayer reflective film 14 from being contaminated by dust generated during laser processing of the reference mark 20. It is considered that at least a part of the protective film 18 remains on the surface layer 22 of the reference mark 20.
- the multilayer reflective film coated substrate 10 of the present embodiment it is possible to prevent the material of the multilayer reflective film 14 from being exposed on the surface of the reference mark 20. Therefore, the multilayer reflective film coated substrate 10, the reflective mask blank 30, and the reflective mask 40 having excellent cleaning resistance can be manufactured.
- the multilayer reflective film coated substrate 10 of the present embodiment it is possible to shorten the time required to process the reference mark as compared to the case of using the FIB method.
- Example 1 A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment.
- the surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS).
- the flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm ⁇ 132 mm.
- a multilayer reflective film was formed by periodically laminating an Mo film / Si film on the main surface of the glass substrate opposite to the side on which the back surface conductive film was formed.
- an Mo target and a Si target were used, and an Mo film and a Si film were alternately stacked on the substrate by ion beam sputtering (using Ar).
- the thickness of the Mo film is 2.8 nm.
- the thickness of the Si film is 4.2 nm.
- the thickness of one cycle of Mo / Si film is 7.0 nm.
- Such a Mo / Si film was laminated 40 cycles, and finally, a Si film was formed to a thickness of 4.0 nm to form a multilayer reflective film.
- a protective film containing a Ru compound was formed on the multilayer reflective film. Specifically, a RuNb target (Ru: 80 at%, Nb: 20 at%) is used, and a protective film made of RuNb is formed on the multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere. did. The thickness of the protective film was 2.5 nm.
- a reference mark was formed on the protective film by laser processing.
- the conditions for laser processing were as follows.
- Laser type Semiconductor laser with a wavelength of 405 nm
- Laser output 20 mW (continuous wave)
- Spot size 430 nm ⁇
- the shape and dimensions of the fiducial marks were as follows. Shape: approximately cruciform depth D: 40 nm Width W: 2 ⁇ m Length L: 1 mm Inclination angle ⁇ : 5.7 degrees
- FIG. 7 An image obtained by photographing is shown in FIG.
- a shrink region in which at least a part of the plurality of films included in the multilayer reflective film is shrunk is formed.
- a mixing region in which at least a part of the plurality of films included in the multilayer reflective film are integrated.
- the thickness of one cycle of Mo / Si film included in the multilayer reflective film decreased from 7.0 nm to 6.0 nm.
- the thickness of the mixing area was 120 nm.
- the surface of the fiducial marks was analyzed by EDX (energy dispersive x-ray analysis).
- the surface layer of the shrink region of the reference mark contained Ru and Nb which are the same elements as the elements contained in the protective film.
- oxygen (O) was also detected, it is considered that RuNbO is contained in the surface layer of the reference mark.
- Ru, Nb, Si, Mo and O were contained in the surface layer of the mixing area of the reference mark, it is considered that RuNbO, RuSi, MoSi or the like is contained.
- Defect inspection of the multilayer reflective film coated substrate was performed using a defect inspection apparatus (ABI manufactured by Lasertec Corporation).
- defect inspection the position of a defect was specified on the basis of a fiducial mark formed concavely on the protective film. As a result, the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
- An absorber film was formed on the protective film of the multilayer reflective film coated substrate to manufacture a reflective mask blank. Specifically, an absorber film made of a laminated film of TaBN (56 nm in thickness) and TaBO (14 nm in thickness) was formed by DC magnetron sputtering.
- the TaBN film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a TaB target.
- the TaBO film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a TaB target.
- the concave reference mark transferred to the absorber film was detected by an electron beam writing apparatus. As a result, it was possible to detect that the reference mark was detectable, and it was possible to confirm that the reference mark transferred to the absorber film had a contrast sufficient to be detectable by the electron beam lithography system.
- Defect inspection on the absorber film was performed using a defect inspection apparatus (M8350 manufactured by Lasertec Corporation).
- the position of the defect was specified on the basis of the fiducial mark transferred concavely on the absorber film.
- the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
- a resist film was formed on the absorber film of the reflective mask blank manufactured above.
- a pattern was drawn on a resist film based on defect information obtained by defect inspection using an electron beam drawing apparatus. After drawing the pattern, predetermined development processing was performed to form a resist pattern on the absorber film.
- the resist pattern as a mask, a pattern was formed on the absorber film. Specifically, the upper TaBO film was dry etched with a fluorine-based gas (CF 4 gas), and then the lower TaBN film was dry etched with a chlorine-based gas (Cl 2 gas).
- CF 4 gas fluorine-based gas
- Cl 2 gas chlorine-based gas
- the reflective mask according to Example 1 was obtained by removing the resist pattern remaining on the absorber film pattern with hot sulfuric acid.
- good pattern transfer can be performed without defects in the transfer pattern caused by the reflective mask. it can.
- Example 2 A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm ⁇ 132 mm.
- RMS root mean square roughness
- a multilayer reflective film was formed by periodically laminating an Mo film / Si film on the main surface of the glass substrate opposite to the side on which the back surface conductive film was formed.
- an Mo target and a Si target were used, and an Mo film and a Si film were alternately stacked on the substrate by ion beam sputtering (using Ar).
- the thickness of the Mo film is 2.8 nm.
- the thickness of the Si film is 4.2 nm.
- the thickness of one cycle of Mo / Si film is 7.0 nm.
- Such a Mo / Si film was laminated 40 cycles, and finally, a Si film was formed to a thickness of 4.0 nm to form a multilayer reflective film.
- a protective film containing Ru was formed on the multilayer reflective film. Specifically, a Ru target was used, and a protective film made of a Ru film was formed on the multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere. The thickness of the protective film was 2.5 nm.
- a reference mark was formed on the protective film by laser processing.
- the conditions for laser processing were as follows.
- Laser type Semiconductor laser with a wavelength of 405 nm
- Laser output 20 mW (continuous wave)
- Spot size 430 nm ⁇
- the shape and dimensions of the fiducial marks were as follows. Shape: approximately cruciform depth D: 40 nm Width W: 2 ⁇ m Length L: 1 mm Inclination angle ⁇ : 5.7 degrees
- the surface of the fiducial marks was analyzed by EDX (energy dispersive x-ray analysis).
- EDX energy dispersive x-ray analysis
- the surface layer of the shrink region of the reference mark contained Ru, which is the same element as the element contained in the protective film.
- oxygen (O) was also detected, it is considered that RuO is contained in the surface layer of the reference mark.
- Ru, Si, Mo, and O were contained in the surface layer of the mixing area
- Defect inspection of the multilayer reflective film coated substrate was performed using a defect inspection apparatus (ABI manufactured by Lasertec Corporation).
- defect inspection the position of a defect was specified on the basis of a fiducial mark formed concavely on the protective film. As a result, the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
- An absorber film was formed on the protective film of the multilayer reflective film coated substrate to manufacture a reflective mask blank. Specifically, an absorber film made of a laminated film of TaBN (56 nm in thickness) and TaBO (14 nm in thickness) was formed by DC magnetron sputtering.
- the TaBN film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a TaB target.
- the TaBO film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a TaB target.
- the concave reference mark transferred to the absorber film was detected by an electron beam writing apparatus. As a result, it was possible to detect that the reference mark was detectable, and it was possible to confirm that the reference mark transferred to the absorber film had a contrast sufficient to be detectable by the electron beam lithography system.
- Defect inspection on the absorber film was performed using a defect inspection apparatus (M8350 manufactured by Lasertec Corporation).
- the position of the defect was specified on the basis of the fiducial mark transferred concavely on the absorber film.
- the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB.
- a resist film was formed on the absorber film of the reflective mask blank manufactured above.
- a pattern was drawn on a resist film based on defect information obtained by defect inspection using an electron beam drawing apparatus. After drawing the pattern, predetermined development processing was performed to form a resist pattern on the absorber film.
- the resist pattern as a mask, a pattern was formed on the absorber film. Specifically, the upper TaBO film was dry etched with a fluorine-based gas (CF 4 gas), and then the lower TaBN film was dry etched with a chlorine-based gas (Cl 2 gas).
- CF 4 gas fluorine-based gas
- Cl 2 gas chlorine-based gas
- the resist pattern remaining on the absorber film pattern was removed with hot sulfuric acid to obtain a reflective mask according to Example 2.
- a reflective mask according to Example 2.
- Example 3 A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm ⁇ 132 mm.
- RMS root mean square roughness
- a multilayer reflective film was formed by periodically laminating an Mo film / Si film on the main surface of the glass substrate opposite to the side on which the back surface conductive film was formed.
- an Mo target and a Si target were used, and an Mo film and a Si film were alternately stacked on the substrate by ion beam sputtering (using Ar).
- the thickness of the Mo film is 2.8 nm.
- the thickness of the Si film is 4.2 nm.
- the thickness of one cycle of Mo / Si film is 7.0 nm.
- Such a Mo / Si film was laminated 40 cycles, and finally, a Si film was formed to a thickness of 4.0 nm to form a multilayer reflective film.
- a protective film containing a Ru compound was formed on the multilayer reflective film. Specifically, a RuNb target (Ru: 80 at%, Nb: 20 at%) is used, and a protective film made of RuNb is formed on the multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere. did. The thickness of the protective film was 2.5 nm.
- a reference mark was formed on the protective film by laser processing.
- the conditions for laser processing were as follows.
- Laser type Semiconductor laser with a wavelength of 405 nm
- Laser output 10 mW (continuous wave)
- Spot size 430 nm ⁇
- the shape and dimensions of the fiducial marks were as follows. Shape: approximately cruciform depth D: 38 nm Width W: 2 ⁇ m Length L: 1 mm Inclination angle ⁇ : 3.6 degrees
- the surface of the fiducial marks was analyzed by EDX (energy dispersive x-ray analysis).
- EDX energy dispersive x-ray analysis
- the surface layer of the reference mark contained Ru and Nb, which are the same elements as the elements contained in the protective film.
- Defect inspection of the multilayer reflective film coated substrate was performed using a defect inspection apparatus (ABI manufactured by Lasertec Corporation).
- defect inspection the position of a defect was specified on the basis of a fiducial mark formed concavely on the protective film. As a result, the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
- An absorber film was formed on the protective film of the multilayer reflective film coated substrate to manufacture a reflective mask blank. Specifically, an absorber film made of a laminated film of TaBN (56 nm in thickness) and TaBO (14 nm in thickness) was formed by DC magnetron sputtering.
- the TaBN film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a TaB target.
- the TaBO film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a TaB target.
- the concave reference mark transferred to the absorber film was detected by an electron beam writing apparatus. As a result, it was possible to detect that the reference mark was detectable, and it was possible to confirm that the reference mark transferred to the absorber film had a contrast sufficient to be detectable by the electron beam lithography system.
- Defect inspection on the absorber film was performed using a defect inspection apparatus (M8350 manufactured by Lasertec Corporation).
- the position of the defect was specified on the basis of the fiducial mark transferred concavely on the absorber film.
- the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
- a resist film was formed on the absorber film of the reflective mask blank manufactured above.
- a pattern was drawn on a resist film based on defect information obtained by defect inspection using an electron beam drawing apparatus. After drawing the pattern, predetermined development processing was performed to form a resist pattern on the absorber film.
- the resist pattern as a mask, a pattern was formed on the absorber film. Specifically, the upper TaBO film was dry etched with a fluorine-based gas (CF 4 gas), and then the lower TaBN film was dry etched with a chlorine-based gas (Cl 2 gas).
- CF 4 gas fluorine-based gas
- Cl 2 gas chlorine-based gas
- the resist pattern remaining on the absorber film pattern was removed with hot sulfuric acid to obtain a reflective mask according to Example 3.
- a reflective mask according to Example 3.
- a SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains.
- the glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment.
- the surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS).
- the flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm ⁇ 132 mm.
- a multilayer reflective film was formed by periodically laminating an Mo film / Si film on the main surface of the glass substrate opposite to the side on which the back surface conductive film was formed.
- an Mo target and a Si target were used, and an Mo film and a Si film were alternately stacked on the substrate by ion beam sputtering (using Ar).
- the thickness of the Mo film is 2.8 nm.
- the thickness of the Si film is 4.2 nm.
- the thickness of one cycle of Mo / Si film is 7.0 nm.
- Such a Mo / Si film was laminated 40 cycles, and finally, a Si film was formed to a thickness of 4.0 nm to form a multilayer reflective film.
- a protective film containing a Ru compound was formed on the multilayer reflective film. Specifically, a RuNb target (Ru: 80 at%, Nb: 20 at%) is used, and a protective film made of RuNb is formed on the multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere. did. The thickness of the protective film was 2.5 nm.
- a fiducial mark was formed on the protective film by FIB.
- the conditions of FIB were as follows. Acceleration voltage: 50kV Beam current value: 20 pA
- the shape and dimensions of the fiducial marks were as follows. Shape: approximately cruciform depth D: 40 nm Width W: 2 ⁇ m Length L: 1 mm Inclination angle ⁇ : 86 degrees
- the surface of the fiducial marks was analyzed by EDX (energy dispersive x-ray analysis).
- EDX energy dispersive x-ray analysis
- the surface layer of the reference mark did not contain Ru and Nb, which are the same elements as the elements contained in the protective film, and Mo and Si were detected. Since no protective film remains on the surface layer of the reference mark, it is considered that the material of the multilayer reflective film was exposed.
- Defect inspection of the multilayer reflective film coated substrate was performed using a defect inspection apparatus (ABI manufactured by Lasertec Corporation).
- defect inspection the position of a defect was specified on the basis of a fiducial mark formed concavely on the protective film.
- the number of defects was significantly increased as compared with Examples 1 to 3. It is presumed that the surface of the multilayer reflective film is contaminated by dust generated when the fiducial mark is processed by FIB.
- the time to process the fiducial marks was significantly increased as compared with Examples 1 to 3.
- An absorber film was formed on the protective film of the multilayer reflective film coated substrate to manufacture a reflective mask blank. Specifically, an absorber film made of a laminated film of TaBN (56 nm in thickness) and TaBO (14 nm in thickness) was formed by DC magnetron sputtering.
- the TaBN film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a TaB target.
- the TaBO film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a TaB target.
- Defect inspection on the absorber film was performed using a defect inspection apparatus (M8350 manufactured by Lasertec Corporation).
- the position of the defect was specified on the basis of the fiducial mark transferred concavely on the absorber film.
- the number of defects was significantly increased as compared with Examples 1 to 3.
- a resist film was formed on the absorber film of the reflective mask blank manufactured above.
- a pattern was drawn on a resist film based on defect information obtained by defect inspection using an electron beam drawing apparatus. After drawing the pattern, predetermined development processing was performed to form a resist pattern on the absorber film.
- the resist pattern as a mask, a pattern was formed on the absorber film. Specifically, the upper TaBO film was dry etched with a fluorine-based gas (CF 4 gas), and then the lower TaBN film was dry etched with a chlorine-based gas (Cl 2 gas).
- CF 4 gas fluorine-based gas
- Cl 2 gas chlorine-based gas
- a reflective mask according to Comparative Example 1 was obtained.
- the number of defects in the transfer pattern caused by the reflective mask is greater than in the first to third embodiments. It is difficult to perform good pattern transfer.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Engineering & Computer Science (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
Provided are: a multi-layer reflection film-equipped substrate that is capable of preventing contamination of the surface of the multi-layer reflection film even when a reference mark is formed on the multi-layer reflection film; a reflection-type mask blank; a reflection-type mask; and a semiconductor device manufacturing process. This multi-layer reflection film-equipped substrate 10 comprises: a substrate 12; a multi-layer reflection film 14 which is formed on the substrate 12 so as to be capable of reflecting EUV light; and a protective film 18 formed on the multi-layer reflection film 14. The protective film 18 has an indented reference mark 20 formed in the surface thereof. At least one of the chemical elements contained in the protective film 18 is identical to an element contained in a superficial layer 22 of the reference mark 20. The reference mark 20 has, at a bottom section thereof, a shrink region 24 that is formed as a result of the shrinking of at least one of the multiple films included in the multi-layer reflection film 14.
Description
本発明は、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法に関する。
The present invention relates to a multilayer reflective film coated substrate, a reflective mask blank, a reflective mask, and a method of manufacturing a semiconductor device.
近年における超LSIデバイスの高密度化、高精度化の更なる要求に伴い、極紫外(Extreme Ultra Violet、以下、EUVと称す)光を用いた露光技術であるEUVリソグラフィーが有望視されている。ここで、EUV光とは、軟X線領域又は真空紫外線領域の波長帯の光を指し、具体的には波長が0.2~100nm程度の光のことである。EUVリソグラフィーにおいて用いられるマスクとして、反射型マスクが提案されている。反射型マスクは、ガラスやシリコンなどの基板上に、露光光を反射する多層反射膜が形成され、その多層反射膜の上に露光光を吸収する吸収体膜パターンが形成されたものである。パターン転写を行う露光機において、それに搭載された反射型マスクに入射した光は、吸収体膜パターンのある部分では吸収され、吸収体膜パターンのない部分では多層反射膜により反射される。そして反射された光像が、反射光学系を介してシリコンウエハ等の半導体基板上に転写される。
With the further demand for higher density and higher accuracy of ultra LSI devices in recent years, EUV lithography, which is an exposure technique using Extreme Ultra Violet (hereinafter referred to as EUV) light, is considered promising. Here, EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, and specifically, light having a wavelength of about 0.2 to 100 nm. A reflective mask has been proposed as a mask used in EUV lithography. In the reflective mask, a multilayer reflective film that reflects exposure light is formed on a substrate such as glass or silicon, and an absorber film pattern that absorbs the exposure light is formed on the multilayer reflective film. In an exposure machine that performs pattern transfer, light incident on a reflective mask mounted thereon is absorbed at a portion having an absorber film pattern and is reflected by the multilayer reflective film at a portion having no absorber film pattern. Then, the reflected light image is transferred onto a semiconductor substrate such as a silicon wafer via a reflection optical system.
リソグラフィー工程での微細化に対する要求が高まることにより、リソグラフィー工程における課題が顕著になりつつある。その課題の1つが、リソグラフィー工程で用いられるマスクブランク用基板等の欠陥情報に関する問題である。
With the increasing demand for miniaturization in the lithography process, the problems in the lithography process are becoming more pronounced. One of the problems is a problem regarding defect information of a mask blank substrate or the like used in the lithography process.
従来は、ブランクス検査等において、基板の欠陥の存在位置を、基板センターを原点(0,0)とし、欠陥検査装置が管理する座標を用いて、その原点からの距離で特定していた。このため、絶対値座標の基準が明確でなく、位置精度が低く、装置間でも検出のばらつきがあった。また、パターン描画時に、欠陥を避けてパターン形成用薄膜にパターニングする場合でも、μmオーダーでの欠陥の回避は困難であった。このため、パターンを転写する方向を変えたり、転写する位置をmmオーダーでラフにずらしたりして、欠陥を回避していた。
Conventionally, in a blank inspection or the like, the position of the defect of the substrate is specified by the distance from the origin by using the substrate center as the origin (0, 0) and using the coordinates managed by the defect inspection apparatus. For this reason, the reference of the absolute value coordinate is not clear, the position accuracy is low, and the detection varies among the devices. Further, even when patterning is performed on a thin film for pattern formation avoiding a defect when drawing a pattern, it is difficult to avoid the defect in the order of μm. For this reason, the defect is avoided by changing the direction in which the pattern is transferred, or roughly shifting the transfer position in the order of mm.
このような状況下、例えばマスクブランク用基板に基準マークを形成し、基準マークを基準として欠陥の位置を特定することが提案されている。マスクブランク用基板に基準マークを形成することにより、装置毎に欠陥の位置を特定するための基準がずれることが防止される。
Under such circumstances, for example, it has been proposed to form a reference mark on a mask blank substrate and to specify the position of a defect with reference to the reference mark. By forming the reference marks on the mask blank substrate, it is possible to prevent deviation of the reference for specifying the position of the defect for each device.
露光光としてEUV光を使用する反射型マスクにおいては、多層反射膜上の欠陥の位置を正確に特定することが特に重要である。なぜなら、多層反射膜に存在する欠陥は、修正がほとんど不可能である上に、転写パターン上で重大な位相欠陥となり得るためである。
In a reflective mask that uses EUV light as exposure light, it is particularly important to pinpoint the location of defects on the multilayer reflective film. The reason is that the defects present in the multilayer reflective film are almost impossible to correct and may become serious phase defects on the transfer pattern.
多層反射膜上の欠陥の位置を正確に特定するためには、多層反射膜を形成した後に欠陥検査を行うことで、欠陥の位置情報を取得することが好ましい。そのためには、基板に形成された多層反射膜に、基準マークを形成することが好ましい。
In order to pinpoint the position of the defect on a multilayer reflective film correctly, it is preferable to acquire the positional information on a defect by performing defect inspection after forming a multilayer reflective film. For that purpose, it is preferable to form a reference mark on the multilayer reflective film formed on the substrate.
特許文献1には、多層反射膜の一部を除去することで凹状に形成された基準マークが開示されている。多層反射膜の一部を除去する方法としては、レーザアブレーション法やFIB(集束イオンビーム法)が開示されている。
Patent Document 1 discloses a fiducial mark formed in a concave shape by removing a part of the multilayer reflective film. As a method of removing a part of the multilayer reflective film, a laser ablation method or FIB (focused ion beam method) is disclosed.
しかしながら、多層反射膜の表面にレーザアブレーション法によって凹状の基準マークを形成した場合、レーザ加工時に発生した塵によって、多層反射膜の表面が汚染されることがある。多層反射膜の表面が汚染された場合、新たな異物欠陥が生じることがある。新たな異物欠陥が生じた場合、それが露光欠陥となる欠陥であれば、反射型マスクを作製したときに重大な問題が生じることがある。
However, when a concave reference mark is formed on the surface of the multilayer reflective film by laser ablation, dust generated during laser processing may contaminate the surface of the multilayer reflective film. If the surface of the multilayer reflective film is contaminated, new foreign matter defects may occur. When a new foreign matter defect occurs, if it is a defect that becomes an exposure defect, serious problems may occur when producing a reflective mask.
多層反射膜に凹状の基準マークを形成するために、多層反射膜を深さ方向にエッチングすることがある。多層反射膜を深さ方向にエッチングした場合、エッチングによって生じた凹部の側面では、多層反射膜の材料である、例えばMo/Si膜が露出する場合がある。エッチングによって生じた凹部の底部では、Mo膜が表面に露出する場合がある。また、エッチング反応物が側面や底部に付着することもある。多層反射膜に含まれる材料が露出した場合、基板の洗浄耐性が悪化する。反射型マスクブランクあるいは反射型マスクの製造工程には、基板の洗浄工程が含まれている。基板の洗浄耐性が悪化した場合、基板の洗浄工程において、基準マークの側面及び/又は底部の材料が溶出し、マーク形状の変動、エッジラフネスの増加などの位置精度の悪化、エッチング面からの膜剥がれ等の問題が生じることがある。また、付着物は、洗浄工程により、剥がれ、再付着の汚染リスクがある。
In order to form a concave reference mark in the multilayer reflective film, the multilayer reflective film may be etched in the depth direction. When the multilayer reflective film is etched in the depth direction, the material of the multilayer reflective film, for example, a Mo / Si film may be exposed on the side surface of the recess formed by the etching. At the bottom of the recess formed by etching, the Mo film may be exposed to the surface. In addition, etching reactant may adhere to the side or bottom. When the material contained in the multilayer reflective film is exposed, the cleaning resistance of the substrate is deteriorated. The process of manufacturing the reflective mask blank or the reflective mask includes the process of cleaning the substrate. When the cleaning resistance of the substrate is deteriorated, the material of the side and / or bottom of the reference mark is eluted in the cleaning step of the substrate, the mark shape fluctuates, the positional accuracy is deteriorated such as an increase in edge roughness, and the film from the etching surface Problems such as peeling may occur. In addition, there is a risk of contamination due to peeling off and re-deposition due to the cleaning process.
多層反射膜の表面にFIB法によって凹状の基準マークを形成する場合には、FIB法の加工速度は遅いために、加工に要する時間が長くなる。このため、要求される長さ(例えば550μm)の基準マークを作製することが困難となる。
In the case of forming a concave reference mark on the surface of the multilayer reflective film by the FIB method, the processing speed of the FIB method is slow, so the time required for processing becomes long. This makes it difficult to produce a reference mark of the required length (for example, 550 μm).
そこで、本発明は、多層反射膜に基準マークを形成した場合でも、多層反射膜の表面が汚染されることを防止することのできる、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供することを目的とする。また、基板の洗浄耐性が悪化することを防止することのできる、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供することを目的とする。さらに、基準マークの加工に要する時間を短くすることのできる、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供することを目的とする。
Therefore, the present invention can prevent the surface of the multilayer reflective film from being contaminated even when the reference mark is formed on the multilayer reflective film, a substrate with a multilayer reflective film, a reflective mask blank, a reflective mask, An object of the present invention is to provide a method of manufacturing a semiconductor device. Another object of the present invention is to provide a substrate with a multilayer reflective film, a reflective mask blank, a reflective mask, and a method of manufacturing a semiconductor device, which can prevent deterioration in the cleaning resistance of the substrate. Another object of the present invention is to provide a method of manufacturing a substrate with a multilayer reflective film, a reflective mask blank, a reflective mask, and a semiconductor device capable of shortening the time required for processing a reference mark.
上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
基板と、前記基板上に形成されたEUV光を反射する多層反射膜と、前記多層反射膜上に形成された保護膜とを含む多層反射膜付き基板であって、
前記保護膜の表面に凹状に形成された基準マークを備え、
前記基準マークの表層は、前記保護膜に含まれる元素のうち少なくとも1つの元素と同一の元素を含み、
前記基準マークの底部において、前記多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が収縮したシュリンク領域を有することを特徴とする、多層反射膜付き基板。 In order to solve the above-mentioned subject, the present invention has the following composition.
(Configuration 1)
A multilayer reflective film coated substrate comprising: a substrate; a multilayer reflective film for reflecting EUV light formed on the substrate; and a protective film formed on the multilayer reflective film,
It has a fiducial mark formed concavely on the surface of the protective film,
The surface layer of the reference mark contains an element identical to at least one of the elements contained in the protective film,
A multilayer reflective film coated substrate having a shrink region in which at least a part of a plurality of films included in the multilayer reflective film is contracted at the bottom of the reference mark.
(構成1)
基板と、前記基板上に形成されたEUV光を反射する多層反射膜と、前記多層反射膜上に形成された保護膜とを含む多層反射膜付き基板であって、
前記保護膜の表面に凹状に形成された基準マークを備え、
前記基準マークの表層は、前記保護膜に含まれる元素のうち少なくとも1つの元素と同一の元素を含み、
前記基準マークの底部において、前記多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が収縮したシュリンク領域を有することを特徴とする、多層反射膜付き基板。 In order to solve the above-mentioned subject, the present invention has the following composition.
(Configuration 1)
A multilayer reflective film coated substrate comprising: a substrate; a multilayer reflective film for reflecting EUV light formed on the substrate; and a protective film formed on the multilayer reflective film,
It has a fiducial mark formed concavely on the surface of the protective film,
The surface layer of the reference mark contains an element identical to at least one of the elements contained in the protective film,
A multilayer reflective film coated substrate having a shrink region in which at least a part of a plurality of films included in the multilayer reflective film is contracted at the bottom of the reference mark.
(構成2)
前記基準マークの表層は、Ruを含む、構成1に記載の多層反射膜付き基板。 (Configuration 2)
The surface with the multilayer reflective film according to Configuration 1, wherein the surface layer of the reference mark includes Ru.
前記基準マークの表層は、Ruを含む、構成1に記載の多層反射膜付き基板。 (Configuration 2)
The surface with the multilayer reflective film according to Configuration 1, wherein the surface layer of the reference mark includes Ru.
(構成3)
前記基準マークの表層は、RuO、RuNbO、RuSi、及びRuSiO からなる群から選ばれる少なくとも1つを含む、構成2に記載の多層反射膜付き基板。 (Configuration 3)
The multilayer reflective film coated substrate according to Configuration 2, wherein the surface layer of the reference mark includes at least one selected from the group consisting of RuO, RuNbO, RuSi, and RuSiO 2.
前記基準マークの表層は、RuO、RuNbO、RuSi、及びRuSiO からなる群から選ばれる少なくとも1つを含む、構成2に記載の多層反射膜付き基板。 (Configuration 3)
The multilayer reflective film coated substrate according to Configuration 2, wherein the surface layer of the reference mark includes at least one selected from the group consisting of RuO, RuNbO, RuSi, and RuSiO 2.
(構成4)
前記基準マークの底部において、前記多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が互いに一体化したミキシング領域を有する、構成1から構成3のうちいずれかに記載の多層反射膜付き基板。 (Configuration 4)
At the bottom of the reference mark, the multilayer reflective film according to any one of Configurations 1 to 3, having a mixing area in which at least a part of the plurality of films included in the multilayer reflective film is integrated with each other substrate.
前記基準マークの底部において、前記多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が互いに一体化したミキシング領域を有する、構成1から構成3のうちいずれかに記載の多層反射膜付き基板。 (Configuration 4)
At the bottom of the reference mark, the multilayer reflective film according to any one of Configurations 1 to 3, having a mixing area in which at least a part of the plurality of films included in the multilayer reflective film is integrated with each other substrate.
(構成5)
前記基準マークの深さが30nm以上50nm以下である、構成1から構成4のうちいずれかに記載の多層反射膜付き基板。 (Configuration 5)
The multilayer reflective film coated substrate according to any one of Configurations 1 to 4, wherein the depth of the reference mark is 30 nm or more and 50 nm or less.
前記基準マークの深さが30nm以上50nm以下である、構成1から構成4のうちいずれかに記載の多層反射膜付き基板。 (Configuration 5)
The multilayer reflective film coated substrate according to any one of Configurations 1 to 4, wherein the depth of the reference mark is 30 nm or more and 50 nm or less.
(構成6)
前記多層反射膜の前記基板と反対側の表面層はSiを含む層である、構成1から構成5のうちいずれかに記載の多層反射膜付き基板。 (Configuration 6)
The substrate with a multilayer reflective film according to any one of Configurations 1 to 5, wherein the surface layer opposite to the substrate of the multilayer reflective film is a layer containing Si.
前記多層反射膜の前記基板と反対側の表面層はSiを含む層である、構成1から構成5のうちいずれかに記載の多層反射膜付き基板。 (Configuration 6)
The substrate with a multilayer reflective film according to any one of Configurations 1 to 5, wherein the surface layer opposite to the substrate of the multilayer reflective film is a layer containing Si.
(構成7)
構成1から構成6のうちいずれかに記載の多層反射膜付き基板と、当該多層反射膜付き基板の保護膜上に形成された、EUV光を吸収する吸収体膜とを有する反射型マスクブランクであって、
前記吸収体膜に前記基準マークの形状が転写されている、反射型マスクブランク。 (Configuration 7)
A reflective mask blank having a multilayer reflective film coated substrate according to any one of constitutions 1 to 6 and an absorber film for absorbing EUV light formed on a protective film of the multilayer reflective film coated substrate. There,
A reflective mask blank, wherein the shape of the reference mark is transferred to the absorber film.
構成1から構成6のうちいずれかに記載の多層反射膜付き基板と、当該多層反射膜付き基板の保護膜上に形成された、EUV光を吸収する吸収体膜とを有する反射型マスクブランクであって、
前記吸収体膜に前記基準マークの形状が転写されている、反射型マスクブランク。 (Configuration 7)
A reflective mask blank having a multilayer reflective film coated substrate according to any one of constitutions 1 to 6 and an absorber film for absorbing EUV light formed on a protective film of the multilayer reflective film coated substrate. There,
A reflective mask blank, wherein the shape of the reference mark is transferred to the absorber film.
(構成8)
構成1から構成6のうちいずれかに記載の多層反射膜付き基板と、当該多層反射膜付き基板の保護膜上に形成された、EUV光を吸収する吸収体膜パターンとを有する反射型マスクであって、
前記吸収体膜パターンに前記基準マークの形状が転写されている、反射型マスク。 (Configuration 8)
A reflective mask having a multilayer reflective film coated substrate according to any one of constitutions 1 to 6 and an absorber film pattern formed on a protective film of the multilayer reflective film coated substrate and absorbing EUV light. There,
A reflective mask, wherein the shape of the reference mark is transferred to the absorber film pattern.
構成1から構成6のうちいずれかに記載の多層反射膜付き基板と、当該多層反射膜付き基板の保護膜上に形成された、EUV光を吸収する吸収体膜パターンとを有する反射型マスクであって、
前記吸収体膜パターンに前記基準マークの形状が転写されている、反射型マスク。 (Configuration 8)
A reflective mask having a multilayer reflective film coated substrate according to any one of constitutions 1 to 6 and an absorber film pattern formed on a protective film of the multilayer reflective film coated substrate and absorbing EUV light. There,
A reflective mask, wherein the shape of the reference mark is transferred to the absorber film pattern.
(構成9)
構成8に記載の反射型マスクを使用して、半導体基板上に転写パターンを形成する工程を有する、半導体装置の製造方法。 (Configuration 9)
A method of manufacturing a semiconductor device, comprising the step of forming a transfer pattern on a semiconductor substrate using the reflective mask according to Configuration 8.
構成8に記載の反射型マスクを使用して、半導体基板上に転写パターンを形成する工程を有する、半導体装置の製造方法。 (Configuration 9)
A method of manufacturing a semiconductor device, comprising the step of forming a transfer pattern on a semiconductor substrate using the reflective mask according to Configuration 8.
本発明によれば、多層反射膜に基準マークを形成した場合でも、多層反射膜の表面が汚染されることを防止することのできる、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供できる。また、基板の洗浄耐性が悪化することを防止することのできる、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供できる。さらに、基準マークの加工に要する時間を短くすることのできる、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供できる。
According to the present invention, even when the reference mark is formed on the multilayer reflective film, the multilayer reflective film coated substrate, the reflective mask blank, the reflective mask, and the like can prevent the surface of the multilayer reflective film from being contaminated. And a method of manufacturing a semiconductor device. In addition, it is possible to provide a multilayer reflective film coated substrate, a reflective mask blank, a reflective mask, and a method of manufacturing a semiconductor device, which can prevent the deterioration of the cleaning resistance of the substrate. Further, it is possible to provide a multilayer reflective film coated substrate, a reflective mask blank, a reflective mask, and a method of manufacturing a semiconductor device, which can shorten the time required for processing a reference mark.
以下、本発明の実施形態について詳細に説明する。
[多層反射膜付き基板]
図1は、本実施形態の多層反射膜付き基板の断面を示す模式図である。
図1に示すように、多層反射膜付き基板10は、基板12と、露光光であるEUV光を反射する多層反射膜14と、多層反射膜14を保護するための保護膜18とを備えている。基板12の上に多層反射膜14が形成され、多層反射膜14の上に保護膜18が形成されている。 Hereinafter, embodiments of the present invention will be described in detail.
[Multilayer reflective film coated substrate]
FIG. 1 is a schematic view showing a cross section of the multilayer reflective film coated substrate of this embodiment.
As shown in FIG. 1, the multilayer reflective film coatedsubstrate 10 includes a substrate 12, a multilayer reflective film 14 that reflects EUV light that is exposure light, and a protective film 18 for protecting the multilayer reflective film 14. There is. A multilayer reflective film 14 is formed on the substrate 12, and a protective film 18 is formed on the multilayer reflective film 14.
[多層反射膜付き基板]
図1は、本実施形態の多層反射膜付き基板の断面を示す模式図である。
図1に示すように、多層反射膜付き基板10は、基板12と、露光光であるEUV光を反射する多層反射膜14と、多層反射膜14を保護するための保護膜18とを備えている。基板12の上に多層反射膜14が形成され、多層反射膜14の上に保護膜18が形成されている。 Hereinafter, embodiments of the present invention will be described in detail.
[Multilayer reflective film coated substrate]
FIG. 1 is a schematic view showing a cross section of the multilayer reflective film coated substrate of this embodiment.
As shown in FIG. 1, the multilayer reflective film coated
なお、本明細書において、基板や膜の「上に」とは、その基板や膜の上面に接触する場合だけでなく、その基板や膜の上面に接触しない場合も含む。すなわち、基板や膜の「上に」とは、その基板や膜の上方に新たな膜が形成される場合や、その基板や膜との間に他の膜が介在している場合等を含む。また、「上に」とは、必ずしも鉛直方向における上側を意味するものではなく、基板や膜などの相対的な位置関係を示しているに過ぎない。
In the present specification, "on" the substrate or film includes not only the case of contacting the upper surface of the substrate or film, but also the case of not contacting the upper surface of the substrate or film. That is, "on" the substrate or film includes the case where a new film is formed above the substrate or film, the case where another film is interposed between the substrate or film, etc. . Moreover, "on" does not necessarily mean the upper side in the vertical direction, but merely indicates the relative positional relationship of the substrate, the film, and the like.
<基板>
本実施形態の多層反射膜付き基板10に使用される基板12としては、EUV露光の場合、露光時の熱による吸収体膜パターンの歪みを防止するため、0±5ppb/℃の範囲内の低熱膨張係数を有するものが好ましく用いられる。この範囲の低熱膨張係数を有する素材としては、例えば、SiO2-TiO2系ガラス、多成分系ガラスセラミックス等を用いることができる。 <Board>
In the case of EUV exposure, thesubstrate 12 used for the multilayer reflective film coated substrate 10 of the present embodiment has a low thermal conductivity within the range of 0 ± 5 ppb / ° C. to prevent distortion of the absorber film pattern due to heat during exposure. Those having an expansion coefficient are preferably used. As a material having a low thermal expansion coefficient in this range, for example, SiO 2 —TiO 2 based glass, multicomponent glass ceramics, etc. can be used.
本実施形態の多層反射膜付き基板10に使用される基板12としては、EUV露光の場合、露光時の熱による吸収体膜パターンの歪みを防止するため、0±5ppb/℃の範囲内の低熱膨張係数を有するものが好ましく用いられる。この範囲の低熱膨張係数を有する素材としては、例えば、SiO2-TiO2系ガラス、多成分系ガラスセラミックス等を用いることができる。 <Board>
In the case of EUV exposure, the
基板12の転写パターン(後述の吸収体膜パターンがこれに対応する)が形成される側の主表面は、平坦度を高めるために加工されることが好ましい。基板12の主表面の平坦度を高めることによって、パターンの位置精度や転写精度を高めることができる。例えば、EUV露光の場合、基板12の転写パターンが形成される側の主表面の132mm×132mmの領域において、平坦度が0.1μm以下であることが好ましく、更に好ましくは0.05μm以下、特に好ましくは0.03μm以下である。また、転写パターンが形成される側と反対側の主表面は、露光装置に静電チャックによって固定される面であって、その142mm×142mmの領域において、平坦度が1μm以下、更に好ましくは0.5μm以下、特に好ましくは0.03μm以下である。なお、本明細書において平坦度は、TIR(Total Indicated Reading)で示される表面の反り(変形量)を表す値で、基板表面を基準として最小二乗法で定められる平面を焦平面とし、この焦平面より上にある基板表面の最も高い位置と、焦平面より下にある基板表面の最も低い位置との高低差の絶対値である。
The main surface on the side where the transfer pattern of the substrate 12 (the absorber film pattern described later corresponds thereto) is preferably processed to enhance the flatness. By enhancing the flatness of the main surface of the substrate 12, it is possible to enhance the positional accuracy and transfer accuracy of the pattern. For example, in the case of EUV exposure, the flatness is preferably 0.1 μm or less, more preferably 0.05 μm or less, in a 132 mm × 132 mm region of the main surface of the substrate 12 on the side where the transfer pattern is formed. Preferably it is 0.03 micrometer or less. Further, the main surface opposite to the side on which the transfer pattern is formed is the surface fixed to the exposure apparatus by the electrostatic chuck, and the flatness is 1 μm or less, more preferably 0 in the 142 mm × 142 mm region. 0.5 μm or less, particularly preferably 0.03 μm or less. In the present specification, flatness is a value representing surface warpage (amount of deformation) indicated by TIR (Total Indicated Reading), and a plane determined by the least squares method with respect to the substrate surface is taken as a focal plane, It is the absolute value of the height difference between the highest position of the substrate surface above the plane and the lowest position of the substrate surface below the focal plane.
EUV露光の場合、基板12の転写パターンが形成される側の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で0.1nm以下であることが好ましい。なお表面粗さは、原子間力顕微鏡で測定することができる。
In the case of EUV exposure, the surface roughness of the main surface on the side where the transfer pattern of the substrate 12 is formed is preferably 0.1 nm or less in root mean square roughness (RMS). The surface roughness can be measured by an atomic force microscope.
基板12は、その上に形成される膜(多層反射膜14など)の膜応力による変形を防止するために、高い剛性を有していることが好ましい。特に、基板12は、65GPa以上の高いヤング率を有していることが好ましい。
The substrate 12 preferably has high rigidity in order to prevent deformation due to film stress of a film (such as the multilayer reflective film 14) formed thereon. In particular, the substrate 12 preferably has a high Young's modulus of 65 GPa or more.
<多層反射膜>
多層反射膜付き基板10は、基板12と、基板12の上に形成された多層反射膜14とを備えている。多層反射膜14は、例えば、屈折率の異なる元素が周期的に積層された多層膜からなる。多層反射膜14は、EUV光を反射する機能を有している。 <Multilayer reflective film>
The multilayer reflective film coatedsubstrate 10 includes a substrate 12 and a multilayer reflective film 14 formed on the substrate 12. The multilayer reflective film 14 is, for example, a multilayer film in which elements having different refractive indexes are periodically stacked. The multilayer reflective film 14 has a function of reflecting EUV light.
多層反射膜付き基板10は、基板12と、基板12の上に形成された多層反射膜14とを備えている。多層反射膜14は、例えば、屈折率の異なる元素が周期的に積層された多層膜からなる。多層反射膜14は、EUV光を反射する機能を有している。 <Multilayer reflective film>
The multilayer reflective film coated
一般的には、多層反射膜14は、高屈折率材料である軽元素又はその化合物の薄膜(高屈折率層)と、低屈折率材料である重元素又はその化合物の薄膜(低屈折率層)とが交互に40~60周期程度積層された多層膜からなる。
多層反射膜14を形成するために、基板12側から高屈折率層と低屈折率層をこの順に複数周期積層してもよい。この場合、1つの(高屈折率層/低屈折率層)の積層構造が、1周期となる。
多層反射膜14を形成するために、基板12側から低屈折率層と高屈折率層をこの順に複数周期積層してもよい。この場合、1つの(低屈折率層/高屈折率層)の積層構造が、1周期となる。 Generally, the multilayerreflective film 14 is a thin film (high refractive index layer) of a light element or its compound which is a high refractive index material, and a thin film (a low refractive index layer) of a heavy element or its compound which is a low refractive index material And the like are alternately laminated in about 40 to 60 cycles.
In order to form the multilayerreflective film 14, a high refractive index layer and a low refractive index layer may be laminated in a plurality of cycles in this order from the substrate 12 side. In this case, the laminated structure of one (high refractive index layer / low refractive index layer) is one cycle.
In order to form the multilayerreflective film 14, a low refractive index layer and a high refractive index layer may be laminated in a plurality of cycles in this order from the substrate 12 side. In this case, the laminated structure of one (low refractive index layer / high refractive index layer) is one cycle.
多層反射膜14を形成するために、基板12側から高屈折率層と低屈折率層をこの順に複数周期積層してもよい。この場合、1つの(高屈折率層/低屈折率層)の積層構造が、1周期となる。
多層反射膜14を形成するために、基板12側から低屈折率層と高屈折率層をこの順に複数周期積層してもよい。この場合、1つの(低屈折率層/高屈折率層)の積層構造が、1周期となる。 Generally, the multilayer
In order to form the multilayer
In order to form the multilayer
なお、多層反射膜14の最上層、すなわち多層反射膜14の基板12と反対側の表面層は、高屈折率層であることが好ましい。基板12側から高屈折率層と低屈折率層をこの順に積層する場合は、最上層が低屈折率層となる。しかし、低屈折率層が多層反射膜14の表面である場合、低屈折率層が容易に酸化されることで多層反射膜の反射率が減少してしまうので、その低屈折率層の上に高屈折率層を形成する。一方、基板12側から低屈折率層と高屈折率層をこの順に積層する場合は、最上層が高屈折率層となる。その場合は、最上層の高屈折率層が、多層反射膜14の表面となる。
The uppermost layer of the multilayer reflective film 14, that is, the surface layer of the multilayer reflective film 14 opposite to the substrate 12 is preferably a high refractive index layer. When the high refractive index layer and the low refractive index layer are stacked in this order from the substrate 12 side, the uppermost layer is the low refractive index layer. However, when the low refractive index layer is the surface of the multilayer reflective film 14, the low refractive index layer is easily oxidized to reduce the reflectance of the multilayer reflective film, so that the low refractive index layer is formed on the low refractive index layer. Form a high refractive index layer. On the other hand, when the low refractive index layer and the high refractive index layer are laminated in this order from the substrate 12 side, the uppermost layer is the high refractive index layer. In that case, the uppermost high refractive index layer is the surface of the multilayer reflective film 14.
本実施形態において、高屈折率層は、Siを含む層であってもよい。高屈折率層は、Si単体を含んでもよく、Si化合物を含んでもよい。Si化合物は、Siと、B、C、N、及びOからなる群から選択される少なくとも1つの元素を含んでもよい。Siを含む層を高屈折率層として使用することによって、EUV光の反射率に優れた多層反射膜が得られる。
In the present embodiment, the high refractive index layer may be a layer containing Si. The high refractive index layer may contain Si alone or may contain a Si compound. The Si compound may contain Si and at least one element selected from the group consisting of B, C, N, and O. By using a layer containing Si as a high refractive index layer, a multilayer reflective film excellent in the reflectivity of EUV light can be obtained.
本実施形態において、低屈折率材料としては、Mo、Ru、Rh、及びPtからなる群から選択される少なくとも1つの元素、あるいは、Mo、Ru、Rh、及びPtからなる群から選択される少なくとも1つの元素を含む合金を使用することができる。
In the present embodiment, as the low refractive index material, at least one element selected from the group consisting of Mo, Ru, Rh and Pt, or at least one selected from the group consisting of Mo, Ru, Rh and Pt Alloys containing one element can be used.
例えば、波長13~14nmのEUV光のための多層反射膜14としては、好ましくは、Mo膜とSi膜を交互に40~60周期程度積層したMo/Si多層膜を用いることができる。その他に、EUV光の領域で使用される多層反射膜として、例えば、Ru/Si周期多層膜、Mo/Be周期多層膜、Mo化合物/Si化合物周期多層膜、Si/Nb周期多層膜、Si/Mo/Ru周期多層膜、Si/Mo/Ru/Mo周期多層膜、Si/Ru/Mo/Ru周期多層膜などを用いることができる。露光波長を考慮して、多層反射膜の材料を選択することができる。
For example, as the multilayer reflective film 14 for EUV light with a wavelength of 13 to 14 nm, preferably, a Mo / Si multilayer film in which Mo films and Si films are alternately stacked for about 40 to 60 cycles can be used. Besides, as a multilayer reflective film used in the region of EUV light, for example, Ru / Si periodic multilayer film, Mo / Be periodic multilayer film, Mo compound / Si compound periodic multilayer film, Si / Nb periodic multilayer film, Si / A Mo / Ru periodic multilayer film, a Si / Mo / Ru / Mo periodic multilayer film, a Si / Ru / Mo / Ru periodic multilayer film or the like can be used. The material of the multilayer reflective film can be selected in consideration of the exposure wavelength.
このような多層反射膜14の単独での反射率は、例えば65%以上である。多層反射膜14の反射率の上限は、例えば73%である。なお、多層反射膜14に含まれる層の厚み及び周期は、ブラッグの法則を満たすように選択することができる。
The reflectivity of such a multilayer reflective film 14 alone is, for example, 65% or more. The upper limit of the reflectance of the multilayer reflective film 14 is, for example, 73%. The thickness and period of the layers included in the multilayer reflective film 14 can be selected so as to satisfy Bragg's law.
多層反射膜14は、公知の方法によって形成できる。多層反射膜14は、例えば、イオンビームスパッタ法により形成できる。
The multilayer reflective film 14 can be formed by a known method. The multilayer reflective film 14 can be formed, for example, by ion beam sputtering.
例えば、多層反射膜14がMo/Si多層膜である場合、イオンビームスパッタ法により、Moターゲットを用いて、厚さ3nm程度のMo膜を基板12の上に形成する。次に、Siターゲットを用いて、厚さ4nm程度のSi膜を形成する。このような操作を繰り返すことによって、Mo/Si膜が40~60周期積層した多層反射膜14を形成することができる。このとき、多層反射膜14の基板12と反対側の表面層は、Siを含む層(Si膜)である。1周期のMo/Si膜の厚みは、7nmとなる。
For example, when the multilayer reflective film 14 is a Mo / Si multilayer film, a Mo film having a thickness of about 3 nm is formed on the substrate 12 using an Mo target by ion beam sputtering. Next, a Si target is used to form a Si film having a thickness of about 4 nm. By repeating such an operation, it is possible to form a multilayer reflective film 14 in which Mo / Si films are laminated 40 to 60 cycles. At this time, the surface layer opposite to the substrate 12 of the multilayer reflective film 14 is a layer containing Si (Si film). The thickness of one cycle of Mo / Si film is 7 nm.
<保護膜>
本実施形態の多層反射膜付き基板10は、多層反射膜14の上に形成された保護膜18を備えている。保護膜18は、吸収体膜のパターニングあるいはパターン修正の際に、多層反射膜14を保護する機能を有している。保護膜18は、多層反射膜14と後述の吸収体膜との間に設けられる。 <Protective film>
The multilayer reflective film coatedsubstrate 10 of the present embodiment is provided with a protective film 18 formed on the multilayer reflective film 14. The protective film 18 has a function of protecting the multilayer reflective film 14 in patterning or pattern correction of the absorber film. The protective film 18 is provided between the multilayer reflective film 14 and an absorber film described later.
本実施形態の多層反射膜付き基板10は、多層反射膜14の上に形成された保護膜18を備えている。保護膜18は、吸収体膜のパターニングあるいはパターン修正の際に、多層反射膜14を保護する機能を有している。保護膜18は、多層反射膜14と後述の吸収体膜との間に設けられる。 <Protective film>
The multilayer reflective film coated
保護膜18の材料としては、例えば、Ru、Ru-(Nb、Zr、Y、B、Ti、La、Mo、Co又はRe)化合物、Si-(Ru、Rh、Cr又はB)化合物、Si、Zr、Nb、La、B等の材料を使用することができる。また、これらに窒素、酸素又は炭素を添加した化合物を用いることができる。これらのうち、ルテニウム(Ru)を含む材料を適用すると、多層反射膜の反射率特性がより良好となる。具体的には、保護膜18の材料は、Ru、又は、Ru-(Nb、Zr、Y、B、Ti、La、Mo、Co又はRe)化合物であることが好ましい。保護膜18の厚みは、例えば、1nm~5nmである。保護膜18は、公知の方法によって形成できる。保護膜18は、例えば、マグネトロンスパッタリング法やイオンビームスパッタ法によって形成できる。
As a material of the protective film 18, for example, Ru, Ru- (Nb, Zr, Y, B, Ti, La, Mo, Co or Re) compound, Si- (Ru, Rh, Cr or B) compound, Si, Materials such as Zr, Nb, La, B and the like can be used. Moreover, the compound which added nitrogen, oxygen, or carbon to these can be used. Among these, when a material containing ruthenium (Ru) is applied, the reflectance characteristics of the multilayer reflective film become better. Specifically, the material of the protective film 18 is preferably Ru or Ru- (Nb, Zr, Y, B, Ti, La, Mo, Co or Re) compound. The thickness of the protective film 18 is, for example, 1 nm to 5 nm. The protective film 18 can be formed by a known method. The protective film 18 can be formed by, for example, a magnetron sputtering method or an ion beam sputtering method.
多層反射膜付き基板10は、さらに、基板12の多層反射膜14が形成されている側とは反対側の主表面上に、裏面導電膜を有してもよい。裏面導電膜は、静電チャックによって多層反射膜付き基板10あるいは反射型マスクブランクを吸着する際に使用される。
The multilayer reflective film coated substrate 10 may further have a back surface conductive film on the main surface of the substrate 12 opposite to the side on which the multilayer reflective film 14 is formed. The back surface conductive film is used when adsorbing the multilayer reflective film coated substrate 10 or the reflective mask blank by an electrostatic chuck.
多層反射膜付き基板10は、基板12と多層反射膜14との間に形成された下地膜を有してもよい。下地膜は、例えば、基板12の表面の平滑性向上の目的で形成される。下地膜は、例えば、欠陥低減、多層反射膜の反射率向上、多層反射膜の応力補正等の目的で形成される。
The multilayer reflective film coated substrate 10 may have a base film formed between the substrate 12 and the multilayer reflective film 14. The underlayer is formed, for example, for the purpose of improving the smoothness of the surface of the substrate 12. The undercoat film is formed, for example, for the purpose of defect reduction, improvement of the reflectance of the multilayer reflective film, and stress correction of the multilayer reflective film.
<基準マーク>
図2は、本実施形態の多層反射膜付き基板10の平面図である。
図2に示すように、略矩形状の多層反射膜付き基板10の4つの角部の近傍には、欠陥情報における欠陥位置の基準として使用できる基準マーク20がそれぞれ形成されている。なお、基準マーク20が4つ形成されている例を示しているが、基準マーク20の数は4つに限らず、3つ以下でもよいし、5つ以上でもよい。 <Reference mark>
FIG. 2 is a plan view of the multilayer reflective film coatedsubstrate 10 of the present embodiment.
As shown in FIG. 2, in the vicinity of four corners of the substantially rectangular multilayer reflective film coatedsubstrate 10, reference marks 20 which can be used as a reference of the defect position in the defect information are respectively formed. Although the example in which four reference marks 20 are formed is shown, the number of reference marks 20 is not limited to four, and may be three or less, or five or more.
図2は、本実施形態の多層反射膜付き基板10の平面図である。
図2に示すように、略矩形状の多層反射膜付き基板10の4つの角部の近傍には、欠陥情報における欠陥位置の基準として使用できる基準マーク20がそれぞれ形成されている。なお、基準マーク20が4つ形成されている例を示しているが、基準マーク20の数は4つに限らず、3つ以下でもよいし、5つ以上でもよい。 <Reference mark>
FIG. 2 is a plan view of the multilayer reflective film coated
As shown in FIG. 2, in the vicinity of four corners of the substantially rectangular multilayer reflective film coated
図2に示す多層反射膜付き基板10において、破線Aの内側の領域(132mm×132mmの領域)は、反射型マスクを製造するときに吸収体膜パターンが形成されるパターン形成領域である。破線Aの外側の領域は、反射型マスクを製造するときに吸収体膜パターンが形成されない領域である。基準マーク20は、好ましくは、吸収体膜パターンが形成されない領域、すなわち、破線Aの外側の領域に形成される。
In the multilayer reflective film coated substrate 10 shown in FIG. 2, the region inside the broken line A (a region of 132 mm × 132 mm) is a pattern formation region in which an absorber film pattern is formed when the reflective mask is manufactured. The area outside the broken line A is an area where the absorber film pattern is not formed when the reflective mask is manufactured. The reference mark 20 is preferably formed in the area where the absorber film pattern is not formed, that is, the area outside the broken line A.
図2に示すように、基準マーク20は、略十字型形状を有している。略十字型形状を有する基準マーク20の一本の線の幅Wは、例えば、200nm以上10μm以下である。基準マーク20の一本の線の長さLは、例えば、100μm以上1500μm以下である。図2では、略十字型形状を有する基準マーク20の例を示しているが、基準マーク20の形状はこれに限定されない。基準マーク20の形状は、例えば、平面視略L字型であってもよい。
As shown in FIG. 2, the reference mark 20 has a substantially cruciform shape. The width W of one line of the reference mark 20 having a substantially cruciform shape is, for example, 200 nm or more and 10 μm or less. The length L of one line of the reference mark 20 is, for example, not less than 100 μm and not more than 1500 μm. Although FIG. 2 shows an example of the reference mark 20 having a substantially cross shape, the shape of the reference mark 20 is not limited to this. The shape of the reference mark 20 may be, for example, a substantially L-shape in plan view.
図3は、図2に示す基準マーク20のB-B線断面図であり、基準マーク20の断面構造を模式的に示している。
図3に示すように、本実施形態の多層反射膜付き基板10では、多層反射膜付き基板10の断面(多層反射膜付き基板10の主表面に垂直な断面)を見たときに、基準マーク20が保護膜18の表面に凹状に形成されている。ここでいう「凹状」とは、多層反射膜付き基板10の断面を見たときに、基準マーク20が保護膜18よりも下方に向けて例えば段差状あるいは湾曲状に凹むようにして形成されているという意味である。 FIG. 3 is a cross-sectional view taken along the line BB of thereference mark 20 shown in FIG. 2, and schematically shows the cross-sectional structure of the reference mark 20. As shown in FIG.
As shown in FIG. 3, in the multilayer reflective film coatedsubstrate 10 of the present embodiment, a reference mark when looking at a cross section of the multilayer reflective film coated substrate 10 (cross section perpendicular to the main surface of the multilayer reflective film coated substrate 10). 20 are formed in a concave shape on the surface of the protective film 18. The term "concave" as used herein means that when the cross section of the multilayer reflective film coated substrate 10 is viewed, the reference mark 20 is formed to be recessed, for example, in a step-like shape or in a curved shape downward from the protective film 18 It is a meaning.
図3に示すように、本実施形態の多層反射膜付き基板10では、多層反射膜付き基板10の断面(多層反射膜付き基板10の主表面に垂直な断面)を見たときに、基準マーク20が保護膜18の表面に凹状に形成されている。ここでいう「凹状」とは、多層反射膜付き基板10の断面を見たときに、基準マーク20が保護膜18よりも下方に向けて例えば段差状あるいは湾曲状に凹むようにして形成されているという意味である。 FIG. 3 is a cross-sectional view taken along the line BB of the
As shown in FIG. 3, in the multilayer reflective film coated
基準マーク20の表層22には、保護膜18に含まれる元素のうち少なくとも1つの元素と同一の元素が含まれている。例えば、基準マーク20の表層22には、Ru、Nb、Zr、Y、B、Ti、La、Mo、Co、Re、Si、Rh、及びCrからなる群から選択される少なくとも1つの元素が含まれている。基準マーク20の表層22には、好ましくは、保護膜18に含まれる元素と同一の元素であるルテニウム(Ru)が含まれている。基準マーク20の表層22に含まれている元素の種類は、例えば、EDX(エネルギー分散型X線分析)によって特定することができる。
The surface layer 22 of the reference mark 20 contains the same element as at least one of the elements contained in the protective film 18. For example, the surface layer 22 of the reference mark 20 contains at least one element selected from the group consisting of Ru, Nb, Zr, Y, B, Ti, La, Mo, Co, Re, Si, Rh, and Cr. It is done. The surface layer 22 of the reference mark 20 preferably contains ruthenium (Ru) which is the same element as the element contained in the protective film 18. The types of elements contained in the surface layer 22 of the reference mark 20 can be identified by, for example, EDX (energy dispersive X-ray analysis).
基準マーク20の表層22には、保護膜18に含まれる元素のうち少なくとも1つの元素と同一の元素の酸化物が含まれていてもよい。例えば、基準マーク20の表層22には、Ru、Ru-(Nb、Zr、Y、B、Ti、La、Mo、Co又はRe)化合物、Si-(Ru、Rh、Cr又はB)化合物、Si、Zr、Nb、La、及びBからなる群から選択される少なくとも1つの元素又は化合物の酸化物が含まれていてもよい。
The surface layer 22 of the reference mark 20 may contain an oxide of the same element as at least one of the elements contained in the protective film 18. For example, the surface layer 22 of the reference mark 20 may be Ru, Ru- (Nb, Zr, Y, B, Ti, La, Mo, Co or Re) compound, Si- (Ru, Rh, Cr or B) compound, Si An oxide of at least one element or compound selected from the group consisting of Zr, Nb, La, and B may be included.
保護膜18にRu又はRuNbが含まれている場合、基準マーク20の表層22には、Ru又はRuNbの酸化物が含まれてもよい。例えば、基準マーク20の表層22には、RuO及びRuNbOのうち少なくとも1つが含まれていてもよい。
When the protective film 18 contains Ru or RuNb, the surface layer 22 of the reference mark 20 may contain an oxide of Ru or RuNb. For example, the surface layer 22 of the reference mark 20 may include at least one of RuO and RuNbO.
なお、基準マーク20の「表層22」とは、例えば、基準マーク20の表面から深さ2nmまでの領域のことを意味する。
表層22には、保護膜18に含まれる元素と同一の元素が含まれる。保護膜18に含まれる元素と同一の元素は、表層22の全面に含まれてもよく、表層22の一部に含まれてもよい。好ましくは、保護膜18に含まれる元素と同一の元素は、表層22の全面に含まれる。この場合、多層反射膜14に含まれる材料が露出することがなく、多層反射膜付き基板10の洗浄耐性が悪化するのを防止することができる。 The “surface layer 22” of the reference mark 20 means, for example, a region from the surface of the reference mark 20 to a depth of 2 nm.
Thesurface layer 22 contains the same element as the element contained in the protective film 18. The same element as the element contained in the protective film 18 may be contained in the entire surface of the surface layer 22 or may be contained in a part of the surface layer 22. Preferably, the same element as the element contained in the protective film 18 is contained in the entire surface layer 22. In this case, the material contained in the multilayer reflective film 14 is not exposed, and the cleaning resistance of the multilayer reflective film coated substrate 10 can be prevented from being deteriorated.
表層22には、保護膜18に含まれる元素と同一の元素が含まれる。保護膜18に含まれる元素と同一の元素は、表層22の全面に含まれてもよく、表層22の一部に含まれてもよい。好ましくは、保護膜18に含まれる元素と同一の元素は、表層22の全面に含まれる。この場合、多層反射膜14に含まれる材料が露出することがなく、多層反射膜付き基板10の洗浄耐性が悪化するのを防止することができる。 The “
The
保護膜18にRu又はRu化合物が含まれている場合には、多層反射膜14の基板12と反対側の表面層14aは、Siを含む層(Si膜)であることが好ましい。基準マーク20をレーザ加工する際の熱によって、基準マーク20の表層22においてRuとSiが反応してRuSiが形成されるため、多層反射膜付き基板10の洗浄耐性が向上するためである。
In the case where the protective film 18 contains Ru or a Ru compound, the surface layer 14 a of the multilayer reflective film 14 on the opposite side to the substrate 12 is preferably a layer containing Si (Si film). This is because Ru and Si react with each other in the surface layer 22 of the reference mark 20 to form RuSi by heat when the reference mark 20 is laser-processed, so that the cleaning resistance of the multilayer reflective film coated substrate 10 is improved.
保護膜18にRu又はRu化合物が含まれ、多層反射膜14の表面層14aがSiを含む層の場合、基準マーク20の表層22には、例えば、RuSi及びRuSiOのうち少なくとも1つが含まれていてもよい。
In the case where the protective film 18 contains Ru or a Ru compound, and the surface layer 14a of the multilayer reflective film 14 is a layer containing Si, the surface layer 22 of the reference mark 20 contains, for example, at least one of RuSi and RuSiO. May be
図3に示すように、基準マーク20の底部には、多層反射膜14に含まれる複数の膜のうち少なくとも一部の膜が収縮したシュリンク領域24が形成されている。基準マーク20の底部とは、凹状の表層22よりも下方であって、基板12の上面までの領域を意味する。
As shown in FIG. 3, at the bottom of the reference mark 20, a shrink region 24 in which at least a part of the plurality of films included in the multilayer reflective film 14 is contracted is formed. The bottom of the reference mark 20 means an area below the concave surface layer 22 up to the top surface of the substrate 12.
シュリンク領域24では、多層反射膜14に含まれる複数の膜のうち、少なくとも一部の膜の厚みが収縮している。例えば、多層反射膜14が、厚さ3nmのMo膜と、厚さ4nmのSi膜を周期的に積層したMo/Si多層膜である場合、1周期のMo/Si膜の厚みは、7nmである。シュリンク領域24では、例えば、1周期のMo/Si膜の厚みが、7nmから6nmに収縮している。この場合、収縮前の厚みは7nmであり、収縮後の厚みは6nmであるから、多層反射膜14の厚みの収縮率は約86%である。シュリンク領域24において、多層反射膜14の厚みの収縮率は、好ましくは75%以上95%以下であり、より好ましくは、80%以上90%以下である。
In the shrink region 24, the thickness of at least a part of the plurality of films included in the multilayer reflective film 14 is shrunk. For example, in the case where the multilayer reflective film 14 is a Mo / Si multilayer film in which a 3 nm thick Mo film and a 4 nm thick Si film are periodically stacked, the thickness of one cycle Mo / Si film is 7 nm. is there. In the shrink region 24, for example, the thickness of one cycle of the Mo / Si film shrinks from 7 nm to 6 nm. In this case, since the thickness before contraction is 7 nm and the thickness after contraction is 6 nm, the contraction ratio of the thickness of the multilayer reflective film 14 is about 86%. In the shrink region 24, the contraction rate of the thickness of the multilayer reflective film 14 is preferably 75% to 95%, and more preferably 80% to 90%.
シュリンク領域24では、多層反射膜14に含まれる複数の膜のうち少なくとも一部の膜が収縮しているが、多層反射膜14の積層構造は維持されている。多層反射膜14の積層構造が維持されていることは、例えば、多層反射膜付き基板10の断面のTEM画像によって容易に確認できる。
In the shrink region 24, at least a part of the plurality of films included in the multilayer reflective film 14 is shrunk, but the multilayer structure of the multilayer reflective film 14 is maintained. That the laminated structure of the multilayer reflective film 14 is maintained can be easily confirmed, for example, by a TEM image of a cross section of the multilayer reflective film-attached substrate 10.
図3に示すように、基準マーク20の底部の中央部付近であって、シュリンク領域24の上方には、多層反射膜14に含まれる複数の膜のうち少なくとも一部の膜が互いに一体化したミキシング領域26が形成されている。ミキシング領域26では、多層反射膜14に含まれる複数の膜が、基準マーク20をレーザ加工した際の熱によって互いに反応して一体化している。例えば、多層反射膜14がMo/Si多層膜である場合、ミキシング領域26では、Mo膜とSi膜が反応してMoSiが生成されている。
As shown in FIG. 3, at least a part of the plurality of films included in the multilayer reflective film 14 is integrated with each other in the vicinity of the central portion of the bottom of the reference mark 20 and above the shrink region 24. A mixing area 26 is formed. In the mixing area 26, a plurality of films included in the multilayer reflective film 14 react with each other by heat generated when the reference mark 20 is laser-processed and integrated. For example, when the multilayer reflective film 14 is a Mo / Si multilayer film, the Mo film and the Si film react with each other in the mixing region 26 to generate MoSi.
ミキシング領域26は、基準マーク20の底部の中央部付近に形成されやすいが、中央部以外の部分に形成されることもある。ミキシング領域26の厚さは、200nm以下が好ましく、150nm以下がより好ましい。この場合、基準マーク20の表層22に保護膜18が残存し、表層22中に保護膜18の元素が含まれやすくなる。ここでいうミキシング領域26の厚さとは、ミキシング領域26の垂直方向の厚さの最大値を意味する。また、図3ではミキシング領域26が形成されている例を示しているが、レーザ加工の条件等によっては、ミキシング領域26が形成されないこともある。
The mixing area 26 is likely to be formed near the central part of the bottom of the reference mark 20, but may be formed in parts other than the central part. 200 nm or less is preferable and, as for the thickness of the mixing area | region 26, 150 nm or less is more preferable. In this case, the protective film 18 remains on the surface layer 22 of the reference mark 20, and the element of the protective film 18 is easily included in the surface layer 22. The thickness of the mixing area 26 mentioned here means the maximum value of the thickness in the vertical direction of the mixing area 26. Although FIG. 3 shows an example in which the mixing area 26 is formed, the mixing area 26 may not be formed depending on the conditions of the laser processing and the like.
ミキシング領域26では、多層反射膜14に含まれる複数の膜が一体化しているため、多層反射膜14の積層構造は維持されていない。多層反射膜14に含まれる複数の膜が一体化していることは、例えば、多層反射膜付き基板10の断面のTEM画像によって容易に確認できる。
In the mixing area 26, since the plurality of films included in the multilayer reflective film 14 are integrated, the multilayer structure of the multilayer reflective film 14 is not maintained. The integration of the plurality of films included in the multilayer reflective film 14 can be easily confirmed by, for example, a TEM image of a cross section of the multilayer reflective film-coated substrate 10.
図3に示すように、凹状に形成された基準マーク20の深さDは、好ましくは、30nm以上50nmである。深さDとは、保護膜18の表面から、基準マーク20の底部の最も深い位置までの垂直方向の距離のことを意味する。
As shown in FIG. 3, the depth D of the concave reference mark 20 is preferably 30 nm or more and 50 nm. The depth D means the vertical distance from the surface of the protective film 18 to the deepest position at the bottom of the reference mark 20.
図3に示すように、凹状に形成された基準マーク20の傾斜角θは、好ましくは25度未満であり、より好ましくは3度以上10度以下である。傾斜角θとは、基準マーク20の断面を見たときに、基準マーク20の表層22の延長線22aと、保護膜18の表面18aとがなす角度を意味する。
As shown in FIG. 3, the inclination angle θ of the concave reference mark 20 is preferably less than 25 degrees, and more preferably 3 degrees or more and 10 degrees or less. The inclination angle θ means the angle between the extension line 22 a of the surface layer 22 of the reference mark 20 and the surface 18 a of the protective film 18 when the cross section of the reference mark 20 is viewed.
基準マーク20の形成方法は、特に制限されない。基準マーク20は、例えば、保護膜18の表面にレーザ加工によって形成することができる。レーザ加工の条件は、例えば、以下の通りである。
レーザの種類(波長):紫外線~可視光領域。例えば、波長405nmの半導体レーザ。
レーザ出力:1~120 mW
スキャン速度:0.1~20 mm/s
パルス周波数:1~100 MHz
パルス幅:3ns~1000s The method of forming thereference mark 20 is not particularly limited. The reference mark 20 can be formed, for example, by laser processing on the surface of the protective film 18. The conditions for laser processing are, for example, as follows.
Laser type (wavelength): Ultraviolet to visible light region. For example, a semiconductor laser with a wavelength of 405 nm.
Laser power: 1 to 120 mW
Scanning speed: 0.1 to 20 mm / s
Pulse frequency: 1 to 100 MHz
Pulse width: 3ns to 1000s
レーザの種類(波長):紫外線~可視光領域。例えば、波長405nmの半導体レーザ。
レーザ出力:1~120 mW
スキャン速度:0.1~20 mm/s
パルス周波数:1~100 MHz
パルス幅:3ns~1000s The method of forming the
Laser type (wavelength): Ultraviolet to visible light region. For example, a semiconductor laser with a wavelength of 405 nm.
Laser power: 1 to 120 mW
Scanning speed: 0.1 to 20 mm / s
Pulse frequency: 1 to 100 MHz
Pulse width: 3ns to 1000s
基準マーク20をレーザ加工する際に使用するレーザは、連続波でもよく、パルス波でもよい。パルス波を用いた場合、連続波と比較して、基準マーク20の深さDが同程度であっても、基準マーク20の幅Wをより小さくすることが可能である。また、パルス波を用いた場合、連続波と比較して、基準マーク20の傾斜角θを大きくすることが可能である。このため、パルス波を用いた場合、連続波と比較して、よりコントラストが大きく、欠陥検査装置や電子線描画装置によって検出し易い基準マーク20を形成することができる。
The laser used for laser processing the reference mark 20 may be a continuous wave or a pulse wave. When a pulse wave is used, the width W of the reference mark 20 can be made smaller than that of the continuous wave, even if the depth D of the reference mark 20 is approximately the same. When a pulse wave is used, the inclination angle θ of the reference mark 20 can be made larger than that of a continuous wave. Therefore, when the pulse wave is used, it is possible to form the reference mark 20 which has a larger contrast than the continuous wave and is easy to detect by the defect inspection apparatus or the electron beam drawing apparatus.
基準マーク20は、例えば、FM(フィデュシャルマーク)として使用できる。FMとは、電子線描画装置によってパターンを描画する際に、欠陥座標の基準として使用されるマークである。FMは、通常、図2に示すような十字型形状である。
The fiducial mark 20 can be used, for example, as an FM (fiducial mark). The FM is a mark used as a reference of defect coordinates when drawing a pattern by the electron beam drawing apparatus. The FM is usually in the shape of a cross as shown in FIG.
例えば、多層反射膜付き基板10に基準マーク20を形成した場合には、欠陥検査装置によって、基準マーク20の座標及び欠陥の座標を高精度に取得する。次に、多層反射膜付き基板10の保護膜18の上に、吸収体膜を形成する。次に、吸収体膜の上に、レジスト膜を形成する。吸収体膜とレジスト膜との間には、ハードマスク膜(あるいはエッチングマスク膜)が形成されてもよい。多層反射膜付き基板10の保護膜18の上に形成された凹状の基準マーク20は、吸収体膜及びレジスト膜に転写されるか、又は、吸収体膜、ハードマスク膜及びレジスト膜に転写される。そして、電子線描画装置によってレジスト膜にパターンを描画する際に、レジスト膜に転写された基準マーク20が、欠陥位置の基準であるFMとして使用される。
For example, when the reference mark 20 is formed on the multilayer reflective film coated substrate 10, the coordinates of the reference mark 20 and the coordinates of the defect are acquired with high accuracy by the defect inspection apparatus. Next, an absorber film is formed on the protective film 18 of the multilayer reflective film coated substrate 10. Next, a resist film is formed on the absorber film. A hard mask film (or an etching mask film) may be formed between the absorber film and the resist film. The concave reference mark 20 formed on the protective film 18 of the multilayer reflective film coated substrate 10 is transferred to an absorber film and a resist film, or transferred to an absorber film, a hard mask film and a resist film. Ru. Then, when a pattern is drawn on the resist film by the electron beam drawing apparatus, the reference mark 20 transferred to the resist film is used as the FM which is the reference of the defect position.
したがって、多層反射膜付き基板10に形成された基準マーク20は、欠陥検査装置によって検出可能な程度に高いコントラストを有している必要がある。欠陥検査装置としては、例えば、検査光源波長が266nmであるレーザーテック社製のEUV露光用のマスク・サブストレート/ブランク欠陥検査装置「MAGICSM7360」、検査光源波長が193nmであるKLA-Tencor社製のEUV・マスク/ブランク欠陥検査装置「Teron600シリーズ、例えばTeron610」、検査光源波長が露光光源波長の13.5nmと同じであるABI(Actinic Blank Inspection)装置がある。また、吸収体膜及びその上のレジスト膜に転写された基準マーク20は、電子線描画装置によって検出可能な程度に高いコントラストを有している必要がある。さらに、基準マーク20は、座標計測器によって検出可能な程度に高いコントラストを有していることが好ましい。座標計測器は、欠陥検査装置によって取得された欠陥の座標を、電子線描画装置の基準座標に変換することができる。したがって、多層反射膜付き基板10を提供されたユーザーは、基準マーク20に基づき、欠陥検査装置により特定した欠陥位置と、描画データとを容易かつ高精度に照合することが可能となる。
Therefore, the reference marks 20 formed on the multilayer reflective film coated substrate 10 need to have high contrast that is detectable by the defect inspection apparatus. As a defect inspection apparatus, for example, a mask substrate / blank defect inspection apparatus “MAGICSM 7360” for EUV exposure manufactured by Lasertec having an inspection light source wavelength of 266 nm, an EUV manufactured by KLA-Tencor having an inspection light source wavelength of 193 nm Mask / blank defect inspection apparatus “Teron 600 series, for example, Teron 610”, there is an ABI (Actinic Blank Inspection) apparatus whose inspection light source wavelength is the same as 13.5 nm of exposure light source wavelength. In addition, the reference mark 20 transferred to the absorber film and the resist film thereon needs to have a contrast high enough to be detected by the electron beam drawing apparatus. Furthermore, it is preferable that the reference mark 20 have a contrast high enough to be detected by the coordinate measuring device. The coordinate measuring device can convert the coordinates of the defect acquired by the defect inspection device into reference coordinates of the electron beam drawing device. Therefore, the user provided with the multilayer reflective film coated substrate 10 can easily and precisely match the defect position identified by the defect inspection apparatus with the drawing data based on the reference mark 20.
基準マーク20をFMとして使用することにより、欠陥座標を高精度に管理することができる。例えば、電子線描画装置によってFMを検出することにより、欠陥座標を電子線描画装置の座標系に変換することができる。そして、例えば、欠陥が吸収体膜パターンの下に配置するように、電子線描画装置によって描画されるパターンの描画データを補正することができる。これにより、最終的に製造される反射型マスクへの欠陥による影響を低減することができる(この手法は、欠陥緩和(defect mitigation)プロセスと呼ばれる)。
By using the fiducial mark 20 as an FM, defect coordinates can be managed with high accuracy. For example, the defect coordinates can be converted to the coordinate system of the electron beam drawing apparatus by detecting the FM by the electron beam drawing apparatus. Then, for example, the drawing data of the pattern drawn by the electron beam drawing apparatus can be corrected such that the defect is disposed below the absorber film pattern. This can reduce the influence of defects on the reflective mask finally manufactured (this method is called a defect mitigation process).
基準マーク20は、AM(アライメントマーク)としても使用できる。AMは、欠陥検査装置で多層反射膜14上の欠陥を検査した際に欠陥座標の基準として使用できるマークである。しかし、AMは、電子線描画装置によってパターンを描画する際には直接使用されない。AMは、円形、四角形、又は十字型等の形状とすることができる。
The fiducial mark 20 can also be used as an AM (alignment mark). AM is a mark that can be used as a reference of the defect coordinates when the defect inspection apparatus inspects a defect on the multilayer reflective film 14. However, AM is not directly used when drawing a pattern by an electron beam drawing apparatus. AM can be in the shape of a circle, a square, a cross, or the like.
多層反射膜14上にAMを形成した場合には、多層反射膜14上の吸収体膜にFMを形成するとともに、AM上の吸収体膜を一部除去することが好ましい。AMは、欠陥検査装置及び座標計測器で検出可能である。FMは、座標計測器及び電子線描画装置で検出可能である。AMとFMの間で相対的に座標を管理することによって、欠陥座標を高精度に管理することができる。
When AM is formed on the multilayer reflective film 14, it is preferable to form FM on the absorber film on the multilayer reflective film 14 and to partially remove the absorber film on the AM. AM can be detected by a defect inspection apparatus and a coordinate measuring instrument. The FM can be detected by a coordinate measuring instrument and an electron beam drawing apparatus. By managing coordinates relatively between AM and FM, defect coordinates can be managed with high accuracy.
[反射型マスクブランク]
図4は、本実施形態の反射型マスクブランク30の断面を示す模式図である。上述の多層反射膜付き基板10の保護膜18上にEUV光を吸収する吸収体膜28を形成することによって、本実施形態の反射型マスクブランク30を製造できる。 [Reflective mask blank]
FIG. 4 is a schematic view showing a cross section of the reflective mask blank 30 of the present embodiment. The reflective mask blank 30 of this embodiment can be manufactured by forming theabsorber film 28 that absorbs EUV light on the protective film 18 of the multilayer reflective film coated substrate 10 described above.
図4は、本実施形態の反射型マスクブランク30の断面を示す模式図である。上述の多層反射膜付き基板10の保護膜18上にEUV光を吸収する吸収体膜28を形成することによって、本実施形態の反射型マスクブランク30を製造できる。 [Reflective mask blank]
FIG. 4 is a schematic view showing a cross section of the reflective mask blank 30 of the present embodiment. The reflective mask blank 30 of this embodiment can be manufactured by forming the
吸収体膜28は、露光光であるEUV光を吸収する機能を有する。すなわち、多層反射膜14のEUV光に対する反射率と、吸収体膜28のEUV光に対する反射率との差は、所定値以上となっている。例えば、吸収体膜28のEUV光に対する反射率は、0.1%以上40%以下である。多層反射膜14で反射された光と、吸収体膜28で反射された光との間には、所定の位相差があってもよい。なお、この場合、反射型マスクブランク30における吸収体膜28は、位相シフト膜と呼ばれることがある。
The absorber film 28 has a function of absorbing EUV light which is exposure light. That is, the difference between the reflectance of the multilayer reflective film 14 to EUV light and the reflectance of the absorber film 28 to EUV light is equal to or greater than a predetermined value. For example, the reflectance of the absorber film 28 to EUV light is 0.1% or more and 40% or less. There may be a predetermined phase difference between the light reflected by the multilayer reflective film 14 and the light reflected by the absorber film 28. In this case, the absorber film 28 in the reflective mask blank 30 may be called a phase shift film.
吸収体膜28は、EUV光を吸収する機能を有し、かつ、エッチング等により除去可能であることが好ましい。吸収体膜28は、塩素(Cl)系ガスやフッ素(F)系ガスによるドライエッチングでエッチング可能であることが好ましい。このような機能を吸収体膜28が有する限り、吸収体膜28の材料は、特に制限されない。
The absorber film 28 preferably has a function of absorbing EUV light and can be removed by etching or the like. The absorber film 28 is preferably etchable by dry etching using a chlorine (Cl) -based gas or a fluorine (F) -based gas. The material of the absorber film 28 is not particularly limited as long as the absorber film 28 has such a function.
吸収体膜28は、単層でもよく、積層構造を有してもよい。吸収体膜28が積層構造を有する場合、同一材料からなる複数の膜が積層されてもよく、異なる材料からなる複数の膜が積層されてもよい。吸収体膜28が積層構造を有する場合、材料や組成が膜の厚み方向に段階的及び/又は連続的に変化してもよい。
The absorber film 28 may be a single layer or may have a laminated structure. When the absorber film 28 has a laminated structure, a plurality of films made of the same material may be laminated, or a plurality of films made of different materials may be laminated. When the absorber film 28 has a laminated structure, the material and the composition may change stepwise and / or continuously in the thickness direction of the film.
吸収体膜28の材料は、例えば、タンタル(Ta)単体、又は、Taを含む材料が好ましい。Taを含む材料は、例えば、TaとBを含む材料、TaとNを含む材料、TaとBと、O及びNのうち少なくとも1つとを含む材料、TaとSiを含む材料、TaとSiとNを含む材料、TaとGeを含む材料、TaとGeとNを含む材料、TaとPdを含む材料、TaとRuを含む材料、TaとTiを含む材料等である。
The material of the absorber film 28 is preferably, for example, tantalum (Ta) alone or a material containing Ta. The material containing Ta is, for example, a material containing Ta and B, a material containing Ta and N, a material containing Ta and B, and at least one of O and N, a material containing Ta and Si, Ta and Si A material containing N, a material containing Ta and Ge, a material containing Ta, Ge and N, a material containing Ta and Pd, a material containing Ta and Ru, a material containing Ta and Ti, etc.
吸収体膜28は、例えば、Ni単体、Niを含む材料、Cr単体、Crを含む材料、Ru単体、Ruを含む材料、Pd単体、Pdを含む材料、Mo単体、及び、Moを含有する材料からなる群から選択される少なくとも1つを含んでもよい。
The absorber film 28 includes, for example, a single Ni, a material containing Ni, a single Cr, a material containing Cr, a single Ru, a material containing Ru, a single Pd, a material containing Pd, a single Mo, and a material containing Mo. And at least one selected from the group consisting of
吸収体膜28の厚みは、好ましくは、30nm~100nmである。
吸収体膜28は、公知の方法、例えば、マグネトロンスパッタリング法や、イオンビームスパッタリング法などによって形成することができる。 The thickness of theabsorber film 28 is preferably 30 nm to 100 nm.
Theabsorber film 28 can be formed by a known method, for example, a magnetron sputtering method, an ion beam sputtering method, or the like.
吸収体膜28は、公知の方法、例えば、マグネトロンスパッタリング法や、イオンビームスパッタリング法などによって形成することができる。 The thickness of the
The
本実施形態の反射型マスクブランク30において、吸収体膜28の上に、レジスト膜32が形成されてもよい。図4にはこの態様が示されている。レジスト膜32に電子線描画装置によってパターンを描画及び露光した後、現像工程を経ることによって、レジストパターンを形成することができる。このレジストパターンをマスクとして吸収体膜28にドライエッチングを行うことによって、吸収体膜28にパターンを形成することができる。
In the reflective mask blank 30 of the present embodiment, the resist film 32 may be formed on the absorber film 28. This aspect is shown in FIG. After a pattern is drawn and exposed on the resist film 32 by an electron beam drawing apparatus, a resist pattern can be formed through a development process. By performing dry etching on the absorber film 28 using this resist pattern as a mask, a pattern can be formed on the absorber film 28.
保護膜18上に形成された凹状の基準マーク20を電子線描画装置によって容易に検出できるように、基準マーク20の上方のレジスト膜32を局所的に除去してもよい。除去の態様は、特に制限されない。また、例えば、基準マーク20の上方のレジスト膜32及び吸収体膜28を除去してもよい。
The resist film 32 above the reference mark 20 may be locally removed so that the concave reference mark 20 formed on the protective film 18 can be easily detected by the electron beam lithography system. The mode of removal is not particularly limited. Also, for example, the resist film 32 and the absorber film 28 above the reference mark 20 may be removed.
本実施形態の反射型マスクブランク30において、吸収体膜28とレジスト膜32との間に、ハードマスク膜が形成されてもよい。ハードマスク膜は、吸収体膜28をパターニングする際のマスクとして使用される。ハードマスク膜と吸収体膜28は、エッチング選択性が互いに異なる材料によって形成される。吸収体膜28の材料がタンタルあるいはタンタル化合物を含む場合、ハードマスク膜の材料は、クロム又はクロム化合物を含むことが好ましい。クロム化合物は、好ましくは、Crと、N、O、C、及びHからなる群から選択される少なくとも一つを含む。
In the reflective mask blank 30 of the present embodiment, a hard mask film may be formed between the absorber film 28 and the resist film 32. The hard mask film is used as a mask when patterning the absorber film 28. The hard mask film and the absorber film 28 are formed of materials having different etching selectivity. When the material of the absorber film 28 contains tantalum or a tantalum compound, the material of the hard mask film preferably contains chromium or a chromium compound. The chromium compound preferably contains at least one selected from the group consisting of Cr and N, O, C, and H.
[反射型マスク]
本実施形態の反射型マスクブランク30を使用して、本実施形態の反射型マスク40を製造することができる。以下、反射型マスク40の製造方法について説明する。 [Reflective mask]
The reflective mask blank 30 of the present embodiment can be used to manufacture thereflective mask 40 of the present embodiment. Hereinafter, a method of manufacturing the reflective mask 40 will be described.
本実施形態の反射型マスクブランク30を使用して、本実施形態の反射型マスク40を製造することができる。以下、反射型マスク40の製造方法について説明する。 [Reflective mask]
The reflective mask blank 30 of the present embodiment can be used to manufacture the
図5は、反射型マスク40の製造方法を示す模式図である。
図5に示すように、まず、基板12と、基板12の上に形成された多層反射膜14と、多層反射膜14の上に形成された保護膜18と、保護膜18の上に形成された吸収体膜28とを有する反射型マスクブランク30を準備する(図5(a))。つぎに、吸収体膜28の上に、レジスト膜32を形成する(図5(b))。レジスト膜32に、電子線描画装置によってパターンを描画し、さらに現像・リンス工程を経ることによって、レジストパターン32aを形成する(図5(c))。 FIG. 5 is a schematic view showing a method of manufacturing thereflective mask 40. As shown in FIG.
As shown in FIG. 5, first, thesubstrate 12, the multilayer reflective film 14 formed on the substrate 12, the protective film 18 formed on the multilayer reflective film 14, and the protective film 18 are formed. A reflective mask blank 30 having the absorber film 28 is prepared (FIG. 5A). Next, a resist film 32 is formed on the absorber film 28 (FIG. 5B). A pattern is drawn on the resist film 32 by an electron beam drawing apparatus, and a resist pattern 32a is formed by passing through a developing and rinsing process (FIG. 5C).
図5に示すように、まず、基板12と、基板12の上に形成された多層反射膜14と、多層反射膜14の上に形成された保護膜18と、保護膜18の上に形成された吸収体膜28とを有する反射型マスクブランク30を準備する(図5(a))。つぎに、吸収体膜28の上に、レジスト膜32を形成する(図5(b))。レジスト膜32に、電子線描画装置によってパターンを描画し、さらに現像・リンス工程を経ることによって、レジストパターン32aを形成する(図5(c))。 FIG. 5 is a schematic view showing a method of manufacturing the
As shown in FIG. 5, first, the
レジストパターン32aをマスクとして、吸収体膜28をドライエッチングする。これにより、吸収体膜28のレジストパターン32aによって被覆されていない部分がエッチングされ、吸収体膜パターン28aが形成される(図5(d))。
The absorber film 28 is dry etched using the resist pattern 32a as a mask. As a result, the portion of the absorber film 28 not covered by the resist pattern 32a is etched to form the absorber film pattern 28a (FIG. 5 (d)).
なお、エッチングガスとしては、例えば、Cl2,SiCl4,CHCl3,CCl4等の塩素系ガス、これら塩素系ガス及びO2を所定の割合で含む混合ガス、塩素系ガス及びHeを所定の割合で含む混合ガス、塩素系ガス及びArを所定の割合で含む混合ガス、CF4,CHF3,C2F6,C3F6,C4F6,C4F8,CH2F2,CH3F,C3F8,SF6,F等のフッ素系ガス、これらフッ素系ガス及びO2を所定の割合で含む混合ガス、フッ素系ガス及びHeを所定の割合で含む混合ガス、フッ素系ガス及びArを所定の割合で含む混合ガス等を使用することができる。
In addition, as an etching gas, for example, chlorine based gases such as Cl 2 , SiCl 4 , CHCl 3 and CCl 4 , mixed gas containing these chlorine based gases and O 2 in a predetermined ratio, chlorine based gases and He as predetermined. A mixed gas containing a ratio, a chlorine-based gas and a mixed gas containing Ar at a predetermined ratio, CF 4 , CHF 3 , C 2 F 6 , C 3 F 6 , C 4 F 6 , C 4 F 8 , CH 2 F 2 Or a fluorine-based gas such as CH 3 F, C 3 F 8 , SF 6 or F, a mixed gas containing these fluorine-based gas and O 2 in a predetermined ratio, a mixed gas containing a fluorine-based gas and He in a predetermined ratio, A mixed gas containing fluorine-based gas and Ar at a predetermined ratio can be used.
吸収体膜パターン28aが形成された後、例えば、レジスト剥離液によりレジストパターン32aを除去する。レジストパターン32aを除去した後、酸性やアルカリ性の水溶液を用いたウェット洗浄工程を経ることによって、本実施形態の反射型マスク40が得られる(図5(e))。
After the absorber film pattern 28a is formed, the resist pattern 32a is removed by, for example, a resist remover. After removing the resist pattern 32a, the reflective mask 40 of the present embodiment is obtained by passing through a wet cleaning process using an acidic or alkaline aqueous solution (FIG. 5E).
[半導体装置の製造方法]
本実施形態の反射型マスク40を使用したリソグラフィーにより、半導体基板上に転写パターンを形成することができる。この転写パターンは、反射型マスク40の吸収体膜パターン28aが転写された形状を有している。半導体基板上に反射型マスク40によって転写パターンを形成することによって、半導体装置を製造することができる。 [Method of Manufacturing Semiconductor Device]
A transfer pattern can be formed on a semiconductor substrate by lithography using thereflective mask 40 of the present embodiment. The transfer pattern has a shape in which the absorber film pattern 28 a of the reflective mask 40 is transferred. A semiconductor device can be manufactured by forming a transfer pattern on the semiconductor substrate using the reflective mask 40.
本実施形態の反射型マスク40を使用したリソグラフィーにより、半導体基板上に転写パターンを形成することができる。この転写パターンは、反射型マスク40の吸収体膜パターン28aが転写された形状を有している。半導体基板上に反射型マスク40によって転写パターンを形成することによって、半導体装置を製造することができる。 [Method of Manufacturing Semiconductor Device]
A transfer pattern can be formed on a semiconductor substrate by lithography using the
図6を用いて、レジスト付き半導体基板56にEUV光によってパターンを転写する方法について説明する。
A method of transferring a pattern to the resist-coated semiconductor substrate 56 by EUV light will be described with reference to FIG.
図6は、パターン転写装置50を示している。パターン転写装置50は、レーザープラズマX線源52、反射型マスク40、及び、縮小光学系54等を備えている。縮小光学系54としては、X線反射ミラーが用いられている。
FIG. 6 shows a pattern transfer device 50. The pattern transfer apparatus 50 includes a laser plasma X-ray source 52, a reflective mask 40, a reduction optical system 54, and the like. As the reduction optical system 54, an X-ray reflection mirror is used.
反射型マスク40で反射されたパターンは、縮小光学系54により、通常1/4程度に縮小される。例えば、露光波長として13~14nmの波長帯を使用し、光路が真空中になるように予め設定する。このような条件で、レーザープラズマX線源52で発生したEUV光を、反射型マスク40に入射させる。反射型マスク40によって反射された光を、縮小光学系54を介して、レジスト付き半導体基板56上に転写する。
The pattern reflected by the reflective mask 40 is usually reduced to about 1⁄4 by the reduction optical system 54. For example, a wavelength band of 13 to 14 nm is used as an exposure wavelength, and the light path is set in advance so as to be in vacuum. Under such conditions, EUV light generated by the laser plasma X-ray source 52 is made incident on the reflective mask 40. The light reflected by the reflective mask 40 is transferred onto the resisted semiconductor substrate 56 via the reduction optical system 54.
反射型マスク40に入射した光は、吸収体膜パターン28aのある部分では、吸収体膜に吸収されて反射されない。一方、吸収体膜パターン28aのない部分に入射した光は、多層反射膜14により反射される。
The light incident on the reflective mask 40 is absorbed by the absorber film and not reflected at a portion where the absorber film pattern 28 a is present. On the other hand, the light incident on the portion without the absorber film pattern 28 a is reflected by the multilayer reflective film 14.
反射型マスク40によって反射された光は、縮小光学系54に入射する。縮小光学系54に入射した光は、レジスト付き半導体基板56上のレジスト層に転写パターンを形成する。露光されたレジスト層を現像することによって、レジスト付き半導体基板56上にレジストパターンを形成することができる。レジストパターンをマスクとして半導体基板56をエッチングすることにより、半導体基板上に例えば所定の配線パターンを形成することができる。このような工程及びその他の必要な工程を経ることで、半導体装置が製造される。
The light reflected by the reflective mask 40 enters the reduction optical system 54. The light incident on the reduction optical system 54 forms a transfer pattern on the resist layer on the semiconductor substrate with resist 56. By developing the exposed resist layer, a resist pattern can be formed on the resist-coated semiconductor substrate 56. By etching the semiconductor substrate 56 using the resist pattern as a mask, for example, a predetermined wiring pattern can be formed on the semiconductor substrate. A semiconductor device is manufactured through such steps and other necessary steps.
本実施形態の多層反射膜付き基板10によれば、保護膜18の表面に基準マーク20が凹状に形成される。基準マーク20の表層は、保護膜18に含まれる元素のうち少なくとも1つの元素と同一の元素を含む。また、基準マーク20の底部において、多層反射膜14に含まれる複数の膜のうち少なくとも一部の膜が収縮したシュリンク領域24が形成される。
According to the multilayer reflective film coated substrate 10 of the present embodiment, the reference mark 20 is formed in a concave shape on the surface of the protective film 18. The surface layer of the reference mark 20 contains an element identical to at least one element among the elements contained in the protective film 18. In addition, at the bottom of the reference mark 20, a shrink region 24 is formed in which at least a part of the plurality of films included in the multilayer reflective film 14 is contracted.
本実施形態の多層反射膜付き基板10によれば、基準マーク20をレーザ加工する際に発生した塵によって、多層反射膜14の表面が汚染されることを防止することができる。基準マーク20の表層22に、保護膜18の少なくとも一部が残存しているためであると考えられる。
According to the multilayer reflective film coated substrate 10 of the present embodiment, it is possible to prevent the surface of the multilayer reflective film 14 from being contaminated by dust generated during laser processing of the reference mark 20. It is considered that at least a part of the protective film 18 remains on the surface layer 22 of the reference mark 20.
本実施形態の多層反射膜付き基板10によれば、基準マーク20の表面に、多層反射膜14の材料が露出することを防止することができる。したがって、洗浄耐性に優れた多層反射膜付き基板10、反射型マスクブランク30、及び反射型マスク40を製造することができる。
According to the multilayer reflective film coated substrate 10 of the present embodiment, it is possible to prevent the material of the multilayer reflective film 14 from being exposed on the surface of the reference mark 20. Therefore, the multilayer reflective film coated substrate 10, the reflective mask blank 30, and the reflective mask 40 having excellent cleaning resistance can be manufactured.
本実施形態の多層反射膜付き基板10によれば、FIB法を用いた場合よりも基準マークの加工に要する時間を短くすることが可能である。
According to the multilayer reflective film coated substrate 10 of the present embodiment, it is possible to shorten the time required to process the reference mark as compared to the case of using the FIB method.
以下、本発明のさらに具体的な実施例について説明する。
(実施例1)
SiO2-TiO2系のガラス基板(6インチ角、厚さが6.35mm)を準備した。このガラス基板の端面を面取り加工、及び研削加工し、更に酸化セリウム砥粒を含む研磨液で粗研磨処理した。これらの処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.10nm以下であった。得られたガラス基板の主表面の平坦度は、測定領域132mm×132mmにおいて、30nm以下であった。 Hereinafter, more specific examples of the present invention will be described.
Example 1
A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm × 132 mm.
(実施例1)
SiO2-TiO2系のガラス基板(6インチ角、厚さが6.35mm)を準備した。このガラス基板の端面を面取り加工、及び研削加工し、更に酸化セリウム砥粒を含む研磨液で粗研磨処理した。これらの処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.10nm以下であった。得られたガラス基板の主表面の平坦度は、測定領域132mm×132mmにおいて、30nm以下であった。 Hereinafter, more specific examples of the present invention will be described.
Example 1
A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm × 132 mm.
上記のガラス基板の裏面に、以下の条件で、CrNからなる裏面導電膜をマグネトロンスパッタリング法により形成した。
(条件):Crターゲット、Ar+N2ガス雰囲気(Ar:N2=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm On the back surface of the above glass substrate, a back surface conductive film made of CrN was formed by magnetron sputtering under the following conditions.
(Conditions): Cr target, Ar + N 2 gas atmosphere (Ar: N 2 = 90%: 10%), film composition (Cr: 90 atomic%, N: 10 atomic%),film thickness 20 nm
(条件):Crターゲット、Ar+N2ガス雰囲気(Ar:N2=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm On the back surface of the above glass substrate, a back surface conductive film made of CrN was formed by magnetron sputtering under the following conditions.
(Conditions): Cr target, Ar + N 2 gas atmosphere (Ar: N 2 = 90%: 10%), film composition (Cr: 90 atomic%, N: 10 atomic%),
ガラス基板の裏面導電膜が形成された側と反対側の主表面上に、Mo膜/Si膜を周期的に積層することで多層反射膜を形成した。
A multilayer reflective film was formed by periodically laminating an Mo film / Si film on the main surface of the glass substrate opposite to the side on which the back surface conductive film was formed.
具体的には、MoターゲットとSiターゲットを使用し、イオンビームスパッタリング(Arを使用)により、基板上に、Mo膜及びSi膜を交互に積層した。Mo膜の厚みは、2.8nmである。Si膜の厚みは、4.2nmである。1周期のMo/Si膜の厚みは、7.0nmである。このようなMo/Si膜を、40周期積層し、最後にSi膜を4.0nmの膜厚で成膜し、多層反射膜を形成した。
Specifically, an Mo target and a Si target were used, and an Mo film and a Si film were alternately stacked on the substrate by ion beam sputtering (using Ar). The thickness of the Mo film is 2.8 nm. The thickness of the Si film is 4.2 nm. The thickness of one cycle of Mo / Si film is 7.0 nm. Such a Mo / Si film was laminated 40 cycles, and finally, a Si film was formed to a thickness of 4.0 nm to form a multilayer reflective film.
多層反射膜の上に、Ru化合物を含む保護膜を形成した。具体的には、RuNbターゲット(Ru:80原子%、Nb:20原子%)を使用し、Arガス雰囲気にて、DCマグネトロンスパッタリングにより、多層反射膜の上に、RuNb膜からなる保護膜を形成した。保護膜の厚みは、2.5nmであった。
A protective film containing a Ru compound was formed on the multilayer reflective film. Specifically, a RuNb target (Ru: 80 at%, Nb: 20 at%) is used, and a protective film made of RuNb is formed on the multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere. did. The thickness of the protective film was 2.5 nm.
保護膜の上に、レーザ加工によって、基準マークを形成した。
レーザ加工の条件は、以下の通りであった。
レーザの種類:波長405nmの半導体レーザ
レーザの出力:20mW(連続波)
スポットサイズ:430nmφ A reference mark was formed on the protective film by laser processing.
The conditions for laser processing were as follows.
Laser type: Semiconductor laser with a wavelength of 405 nm Laser output: 20 mW (continuous wave)
Spot size: 430 nmφ
レーザ加工の条件は、以下の通りであった。
レーザの種類:波長405nmの半導体レーザ
レーザの出力:20mW(連続波)
スポットサイズ:430nmφ A reference mark was formed on the protective film by laser processing.
The conditions for laser processing were as follows.
Laser type: Semiconductor laser with a wavelength of 405 nm Laser output: 20 mW (continuous wave)
Spot size: 430 nmφ
基準マークの形状及び寸法は、以下の通りであった。
形状:略十字型
深さD:40nm
幅W:2μm
長さL:1mm
傾斜角θ:5.7度 The shape and dimensions of the fiducial marks were as follows.
Shape: approximately cruciform depth D: 40 nm
Width W: 2 μm
Length L: 1 mm
Inclination angle θ: 5.7 degrees
形状:略十字型
深さD:40nm
幅W:2μm
長さL:1mm
傾斜角θ:5.7度 The shape and dimensions of the fiducial marks were as follows.
Shape: approximately cruciform depth D: 40 nm
Width W: 2 μm
Length L: 1 mm
Inclination angle θ: 5.7 degrees
基準マークの断面を、透過型電子顕微鏡(TEM)によって撮影した。撮影によって得られた画像を、図7に示す。図7を見れば分かる通り、凹状の基準マークの底部には、多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が収縮したシュリンク領域が形成されていた。また、基準マークの底部の中央部付近であって、シュリンク領域の上方には、多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が互いに一体化したミキシング領域が形成されていた。シュリンク領域では、多層反射膜に含まれる1周期のMo/Si膜の厚みが、7.0nmから6.0nmに減少していた。ミキシング領域の厚さは、120nmであった。
Cross sections of the fiducial marks were taken by transmission electron microscopy (TEM). An image obtained by photographing is shown in FIG. As can be seen from FIG. 7, at the bottom of the concave reference mark, a shrink region in which at least a part of the plurality of films included in the multilayer reflective film is shrunk is formed. Further, in the vicinity of the central portion of the bottom portion of the reference mark and above the shrink region, there is formed a mixing region in which at least a part of the plurality of films included in the multilayer reflective film are integrated. In the shrink region, the thickness of one cycle of Mo / Si film included in the multilayer reflective film decreased from 7.0 nm to 6.0 nm. The thickness of the mixing area was 120 nm.
基準マークの表層を、EDX(エネルギー分散型X線分析)によって分析した。その結果、基準マークのシュリンク領域の表層には、保護膜に含まれている元素と同一の元素である、Ru及びNbが含まれていた。また、酸素(O)も検出されたため、基準マークの表層には、RuNbOが含まれていると考えられる。また、基準マークのミキシング領域の表層には、Ru、Nb、Si、Mo、及びOが含まれていたため、RuNbO、RuSi又はMoSi等が含まれていると考えられる。
The surface of the fiducial marks was analyzed by EDX (energy dispersive x-ray analysis). As a result, the surface layer of the shrink region of the reference mark contained Ru and Nb which are the same elements as the elements contained in the protective film. In addition, since oxygen (O) was also detected, it is considered that RuNbO is contained in the surface layer of the reference mark. Moreover, since Ru, Nb, Si, Mo and O were contained in the surface layer of the mixing area of the reference mark, it is considered that RuNbO, RuSi, MoSi or the like is contained.
欠陥検査装置(レーザーテック株式会社製、ABI)を用いて、多層反射膜付き基板の欠陥検査を行った。欠陥検査では、保護膜の上に凹状に形成された基準マークを基準として、欠陥の位置を特定した。その結果、欠陥の個数は、従来のFIB法によって基準マークを形成した場合よりも、減少していた。
Defect inspection of the multilayer reflective film coated substrate was performed using a defect inspection apparatus (ABI manufactured by Lasertec Corporation). In defect inspection, the position of a defect was specified on the basis of a fiducial mark formed concavely on the protective film. As a result, the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
多層反射膜付き基板の保護膜の上に吸収体膜を形成し、反射型マスクブランクを製造した。具体的には、TaBN(厚み56nm)とTaBO(厚み14nm)の積層膜からなる吸収体膜を、DCマグネトロンスパッタリングにより形成した。TaBN膜は、TaBターゲットを使用し、ArガスとN2ガスの混合ガス雰囲気における反応性スパッタリングにより形成した。TaBO膜は、TaBターゲットを使用し、ArガスとO2ガスの混合ガス雰囲気における反応性スパッタリングにより形成した。
An absorber film was formed on the protective film of the multilayer reflective film coated substrate to manufacture a reflective mask blank. Specifically, an absorber film made of a laminated film of TaBN (56 nm in thickness) and TaBO (14 nm in thickness) was formed by DC magnetron sputtering. The TaBN film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a TaB target. The TaBO film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a TaB target.
吸収体膜に転写された凹状の基準マークを、電子線描画装置によって検出した。その結果、基準マークを検出可能であり、吸収体膜に転写された基準マークが、電子線描画装置によって検出可能な程度に十分なコントラストを有していることを確認することができた。
The concave reference mark transferred to the absorber film was detected by an electron beam writing apparatus. As a result, it was possible to detect that the reference mark was detectable, and it was possible to confirm that the reference mark transferred to the absorber film had a contrast sufficient to be detectable by the electron beam lithography system.
欠陥検査装置(レーザーテック株式会社製、M8350)を用いて、吸収体膜上の欠陥検査を行った。欠陥検査では、吸収体膜の上に凹状に転写された基準マークを基準として、欠陥の位置を特定した。その結果、欠陥の個数は、従来のFIB法によって基準マークを形成した場合よりも、減少していた。
Defect inspection on the absorber film was performed using a defect inspection apparatus (M8350 manufactured by Lasertec Corporation). In the defect inspection, the position of the defect was specified on the basis of the fiducial mark transferred concavely on the absorber film. As a result, the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
上記で製造した反射型マスクブランクの吸収体膜上に、レジスト膜を形成した。電子線描画装置を用いて、欠陥検査によって得られた欠陥情報に基づいてレジスト膜にパターンを描画した。パターンを描画した後、所定の現像処理を行い、吸収体膜上にレジストパターンを形成した。
A resist film was formed on the absorber film of the reflective mask blank manufactured above. A pattern was drawn on a resist film based on defect information obtained by defect inspection using an electron beam drawing apparatus. After drawing the pattern, predetermined development processing was performed to form a resist pattern on the absorber film.
レジストパターンをマスクとして、吸収体膜にパターンを形成した。具体的には、フッ素系ガス(CF4ガス)により、上層のTaBO膜をドライエッチングした後、塩素系ガス(Cl2ガス)により、下層のTaBN膜をドライエッチングした。
Using the resist pattern as a mask, a pattern was formed on the absorber film. Specifically, the upper TaBO film was dry etched with a fluorine-based gas (CF 4 gas), and then the lower TaBN film was dry etched with a chlorine-based gas (Cl 2 gas).
吸収体膜パターン上に残ったレジストパターンを、熱硫酸で除去することで、実施例1に係る反射型マスクが得られた。こうして得られた反射型マスクを露光装置にセットし、レジスト膜を形成した半導体基板上へのパターン転写を行う場合、反射型マスク起因の転写パターンの欠陥も無く、良好なパターン転写を行うことができる。
The reflective mask according to Example 1 was obtained by removing the resist pattern remaining on the absorber film pattern with hot sulfuric acid. When the thus obtained reflective mask is set in an exposure apparatus and pattern transfer is performed on a semiconductor substrate on which a resist film is formed, good pattern transfer can be performed without defects in the transfer pattern caused by the reflective mask. it can.
(実施例2)
SiO2-TiO2系のガラス基板(6インチ角、厚さが6.35mm)を準備した。このガラス基板の端面を面取り加工、及び研削加工し、更に酸化セリウム砥粒を含む研磨液で粗研磨処理した。これらの処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.10nm以下であった。得られたガラス基板の主表面の平坦度は、測定領域132mm×132mmにおいて、30nm以下であった。 (Example 2)
A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm × 132 mm.
SiO2-TiO2系のガラス基板(6インチ角、厚さが6.35mm)を準備した。このガラス基板の端面を面取り加工、及び研削加工し、更に酸化セリウム砥粒を含む研磨液で粗研磨処理した。これらの処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.10nm以下であった。得られたガラス基板の主表面の平坦度は、測定領域132mm×132mmにおいて、30nm以下であった。 (Example 2)
A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm × 132 mm.
上記のガラス基板の裏面に、以下の条件で、CrNからなる裏面導電膜をマグネトロンスパッタリング法により形成した。
(条件):Crターゲット、Ar+N2ガス雰囲気(Ar:N2=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm On the back surface of the above glass substrate, a back surface conductive film made of CrN was formed by magnetron sputtering under the following conditions.
(Conditions): Cr target, Ar + N 2 gas atmosphere (Ar: N 2 = 90%: 10%), film composition (Cr: 90 atomic%, N: 10 atomic%),film thickness 20 nm
(条件):Crターゲット、Ar+N2ガス雰囲気(Ar:N2=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm On the back surface of the above glass substrate, a back surface conductive film made of CrN was formed by magnetron sputtering under the following conditions.
(Conditions): Cr target, Ar + N 2 gas atmosphere (Ar: N 2 = 90%: 10%), film composition (Cr: 90 atomic%, N: 10 atomic%),
ガラス基板の裏面導電膜が形成された側と反対側の主表面上に、Mo膜/Si膜を周期的に積層することで多層反射膜を形成した。
A multilayer reflective film was formed by periodically laminating an Mo film / Si film on the main surface of the glass substrate opposite to the side on which the back surface conductive film was formed.
具体的には、MoターゲットとSiターゲットを使用し、イオンビームスパッタリング(Arを使用)により、基板上に、Mo膜及びSi膜を交互に積層した。Mo膜の厚みは、2.8nmである。Si膜の厚みは、4.2nmである。1周期のMo/Si膜の厚みは、7.0nmである。このようなMo/Si膜を、40周期積層し、最後にSi膜を4.0nmの膜厚で成膜し、多層反射膜を形成した。
Specifically, an Mo target and a Si target were used, and an Mo film and a Si film were alternately stacked on the substrate by ion beam sputtering (using Ar). The thickness of the Mo film is 2.8 nm. The thickness of the Si film is 4.2 nm. The thickness of one cycle of Mo / Si film is 7.0 nm. Such a Mo / Si film was laminated 40 cycles, and finally, a Si film was formed to a thickness of 4.0 nm to form a multilayer reflective film.
多層反射膜の上に、Ruを含む保護膜を形成した。具体的には、Ruターゲットを使用し、Arガス雰囲気にて、DCマグネトロンスパッタリングにより、多層反射膜の上に、Ru膜からなる保護膜を形成した。保護膜の厚みは、2.5nmであった。
A protective film containing Ru was formed on the multilayer reflective film. Specifically, a Ru target was used, and a protective film made of a Ru film was formed on the multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere. The thickness of the protective film was 2.5 nm.
保護膜の上に、レーザ加工によって、基準マークを形成した。
レーザ加工の条件は、以下の通りであった。
レーザの種類:波長405nmの半導体レーザ
レーザの出力:20mW(連続波)
スポットサイズ:430nmφ A reference mark was formed on the protective film by laser processing.
The conditions for laser processing were as follows.
Laser type: Semiconductor laser with a wavelength of 405 nm Laser output: 20 mW (continuous wave)
Spot size: 430 nmφ
レーザ加工の条件は、以下の通りであった。
レーザの種類:波長405nmの半導体レーザ
レーザの出力:20mW(連続波)
スポットサイズ:430nmφ A reference mark was formed on the protective film by laser processing.
The conditions for laser processing were as follows.
Laser type: Semiconductor laser with a wavelength of 405 nm Laser output: 20 mW (continuous wave)
Spot size: 430 nmφ
基準マークの形状及び寸法は、以下の通りであった。
形状:略十字型
深さD:40nm
幅W:2μm
長さL:1mm
傾斜角θ:5.7度 The shape and dimensions of the fiducial marks were as follows.
Shape: approximately cruciform depth D: 40 nm
Width W: 2 μm
Length L: 1 mm
Inclination angle θ: 5.7 degrees
形状:略十字型
深さD:40nm
幅W:2μm
長さL:1mm
傾斜角θ:5.7度 The shape and dimensions of the fiducial marks were as follows.
Shape: approximately cruciform depth D: 40 nm
Width W: 2 μm
Length L: 1 mm
Inclination angle θ: 5.7 degrees
基準マークの断面を、透過型電子顕微鏡(TEM)によって撮影した。その結果、凹状の基準マークの底部には、多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が収縮したシュリンク領域が形成されていた。また、基準マークの底部の中央部付近であって、シュリンク領域の上方には、多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が互いに一体化したミキシング領域が形成されていた。シュリンク領域では、多層反射膜に含まれる1周期のMo/Si膜の厚みが、7.0nmから6.0nmに減少していた。ミキシング領域の厚さは、120nmであった。
Cross sections of the fiducial marks were taken by transmission electron microscopy (TEM). As a result, at the bottom of the concave reference mark, a shrink region in which at least a part of the plurality of films included in the multilayer reflective film is shrunk is formed. Further, in the vicinity of the central portion of the bottom portion of the reference mark and above the shrink region, there is formed a mixing region in which at least a part of the plurality of films included in the multilayer reflective film are integrated. In the shrink region, the thickness of one cycle of Mo / Si film included in the multilayer reflective film decreased from 7.0 nm to 6.0 nm. The thickness of the mixing area was 120 nm.
基準マークの表層を、EDX(エネルギー分散型X線分析)によって分析した。その結果、基準マークのシュリンク領域の表層には、保護膜に含まれている元素と同一の元素である、Ruが含まれていた。また、酸素(O)も検出されたため、基準マークの表層にはRuOが含まれていると考えられる。また、基準マークのミキシング領域の表層には、Ru、Si、Mo、及びOが含まれていたため、RuO、RuSi又はMoSi等が含まれていると考えられる。
The surface of the fiducial marks was analyzed by EDX (energy dispersive x-ray analysis). As a result, the surface layer of the shrink region of the reference mark contained Ru, which is the same element as the element contained in the protective film. In addition, since oxygen (O) was also detected, it is considered that RuO is contained in the surface layer of the reference mark. Moreover, since Ru, Si, Mo, and O were contained in the surface layer of the mixing area | region of a reference mark, it is thought that RuO, RuSi, MoSi, etc. are contained.
欠陥検査装置(レーザーテック株式会社製、ABI)を用いて、多層反射膜付き基板の欠陥検査を行った。欠陥検査では、保護膜の上に凹状に形成された基準マークを基準として、欠陥の位置を特定した。その結果、欠陥の個数は、従来のFIB法によって基準マークを形成した場合よりも、減少していた。
Defect inspection of the multilayer reflective film coated substrate was performed using a defect inspection apparatus (ABI manufactured by Lasertec Corporation). In defect inspection, the position of a defect was specified on the basis of a fiducial mark formed concavely on the protective film. As a result, the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
多層反射膜付き基板の保護膜の上に吸収体膜を形成し、反射型マスクブランクを製造した。具体的には、TaBN(厚み56nm)とTaBO(厚み14nm)の積層膜からなる吸収体膜を、DCマグネトロンスパッタリングにより形成した。TaBN膜は、TaBターゲットを使用し、ArガスとN2ガスの混合ガス雰囲気における反応性スパッタリングにより形成した。TaBO膜は、TaBターゲットを使用し、ArガスとO2ガスの混合ガス雰囲気における反応性スパッタリングにより形成した。
An absorber film was formed on the protective film of the multilayer reflective film coated substrate to manufacture a reflective mask blank. Specifically, an absorber film made of a laminated film of TaBN (56 nm in thickness) and TaBO (14 nm in thickness) was formed by DC magnetron sputtering. The TaBN film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a TaB target. The TaBO film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a TaB target.
吸収体膜に転写された凹状の基準マークを、電子線描画装置によって検出した。その結果、基準マークを検出可能であり、吸収体膜に転写された基準マークが、電子線描画装置によって検出可能な程度に十分なコントラストを有していることを確認することができた。
The concave reference mark transferred to the absorber film was detected by an electron beam writing apparatus. As a result, it was possible to detect that the reference mark was detectable, and it was possible to confirm that the reference mark transferred to the absorber film had a contrast sufficient to be detectable by the electron beam lithography system.
欠陥検査装置(レーザーテック株式会社製、M8350)を用いて、吸収体膜上の欠陥検査を行った。欠陥検査では、吸収体膜の上に凹状に転写された基準マークを基準として、欠陥の位置を特定した。その結果、欠陥の個数は、従来のFIBによって基準マークを形成した場合よりも、減少していた。
Defect inspection on the absorber film was performed using a defect inspection apparatus (M8350 manufactured by Lasertec Corporation). In the defect inspection, the position of the defect was specified on the basis of the fiducial mark transferred concavely on the absorber film. As a result, the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB.
上記で製造した反射型マスクブランクの吸収体膜上に、レジスト膜を形成した。電子線描画装置を用いて、欠陥検査によって得られた欠陥情報に基づいてレジスト膜にパターンを描画した。パターンを描画した後、所定の現像処理を行い、吸収体膜上にレジストパターンを形成した。
A resist film was formed on the absorber film of the reflective mask blank manufactured above. A pattern was drawn on a resist film based on defect information obtained by defect inspection using an electron beam drawing apparatus. After drawing the pattern, predetermined development processing was performed to form a resist pattern on the absorber film.
レジストパターンをマスクとして、吸収体膜にパターンを形成した。具体的には、フッ素系ガス(CF4ガス)により、上層のTaBO膜をドライエッチングした後、塩素系ガス(Cl2ガス)により、下層のTaBN膜をドライエッチングした。
Using the resist pattern as a mask, a pattern was formed on the absorber film. Specifically, the upper TaBO film was dry etched with a fluorine-based gas (CF 4 gas), and then the lower TaBN film was dry etched with a chlorine-based gas (Cl 2 gas).
吸収体膜パターン上に残ったレジストパターンを、熱硫酸で除去することで、実施例2に係る反射型マスクが得られた。こうして得られた反射型マスクを露光装置にセットし、レジスト膜を形成した半導体基板上へのパターン転写を行う場合、反射型マスク起因の転写パターンの欠陥も無く、良好なパターン転写を行うことができる。
The resist pattern remaining on the absorber film pattern was removed with hot sulfuric acid to obtain a reflective mask according to Example 2. When the thus obtained reflective mask is set in an exposure apparatus and pattern transfer is performed on a semiconductor substrate on which a resist film is formed, good pattern transfer can be performed without defects in the transfer pattern caused by the reflective mask. it can.
(実施例3)
SiO2-TiO2系のガラス基板(6インチ角、厚さが6.35mm)を準備した。このガラス基板の端面を面取り加工、及び研削加工し、更に酸化セリウム砥粒を含む研磨液で粗研磨処理した。これらの処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.10nm以下であった。得られたガラス基板の主表面の平坦度は、測定領域132mm×132mmにおいて、30nm以下であった。 (Example 3)
A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm × 132 mm.
SiO2-TiO2系のガラス基板(6インチ角、厚さが6.35mm)を準備した。このガラス基板の端面を面取り加工、及び研削加工し、更に酸化セリウム砥粒を含む研磨液で粗研磨処理した。これらの処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.10nm以下であった。得られたガラス基板の主表面の平坦度は、測定領域132mm×132mmにおいて、30nm以下であった。 (Example 3)
A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm × 132 mm.
上記のガラス基板の裏面に、以下の条件で、CrNからなる裏面導電膜をマグネトロンスパッタリング法により形成した。
(条件):Crターゲット、Ar+N2ガス雰囲気(Ar:N2=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm On the back surface of the above glass substrate, a back surface conductive film made of CrN was formed by magnetron sputtering under the following conditions.
(Conditions): Cr target, Ar + N 2 gas atmosphere (Ar: N 2 = 90%: 10%), film composition (Cr: 90 atomic%, N: 10 atomic%),film thickness 20 nm
(条件):Crターゲット、Ar+N2ガス雰囲気(Ar:N2=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm On the back surface of the above glass substrate, a back surface conductive film made of CrN was formed by magnetron sputtering under the following conditions.
(Conditions): Cr target, Ar + N 2 gas atmosphere (Ar: N 2 = 90%: 10%), film composition (Cr: 90 atomic%, N: 10 atomic%),
ガラス基板の裏面導電膜が形成された側と反対側の主表面上に、Mo膜/Si膜を周期的に積層することで多層反射膜を形成した。
A multilayer reflective film was formed by periodically laminating an Mo film / Si film on the main surface of the glass substrate opposite to the side on which the back surface conductive film was formed.
具体的には、MoターゲットとSiターゲットを使用し、イオンビームスパッタリング(Arを使用)により、基板上に、Mo膜及びSi膜を交互に積層した。Mo膜の厚みは、2.8nmである。Si膜の厚みは、4.2nmである。1周期のMo/Si膜の厚みは、7.0nmである。このようなMo/Si膜を、40周期積層し、最後にSi膜を4.0nmの膜厚で成膜し、多層反射膜を形成した。
Specifically, an Mo target and a Si target were used, and an Mo film and a Si film were alternately stacked on the substrate by ion beam sputtering (using Ar). The thickness of the Mo film is 2.8 nm. The thickness of the Si film is 4.2 nm. The thickness of one cycle of Mo / Si film is 7.0 nm. Such a Mo / Si film was laminated 40 cycles, and finally, a Si film was formed to a thickness of 4.0 nm to form a multilayer reflective film.
多層反射膜の上に、Ru化合物を含む保護膜を形成した。具体的には、RuNbターゲット(Ru:80原子%、Nb:20原子%)を使用し、Arガス雰囲気にて、DCマグネトロンスパッタリングにより、多層反射膜の上に、RuNb膜からなる保護膜を形成した。保護膜の厚みは、2.5nmであった。
A protective film containing a Ru compound was formed on the multilayer reflective film. Specifically, a RuNb target (Ru: 80 at%, Nb: 20 at%) is used, and a protective film made of RuNb is formed on the multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere. did. The thickness of the protective film was 2.5 nm.
保護膜の上に、レーザ加工によって、基準マークを形成した。
レーザ加工の条件は、以下の通りであった。
レーザの種類:波長405nmの半導体レーザ
レーザの出力:10mW(連続波)
スポットサイズ:430nmφ A reference mark was formed on the protective film by laser processing.
The conditions for laser processing were as follows.
Laser type: Semiconductor laser with a wavelength of 405 nm Laser output: 10 mW (continuous wave)
Spot size: 430 nmφ
レーザ加工の条件は、以下の通りであった。
レーザの種類:波長405nmの半導体レーザ
レーザの出力:10mW(連続波)
スポットサイズ:430nmφ A reference mark was formed on the protective film by laser processing.
The conditions for laser processing were as follows.
Laser type: Semiconductor laser with a wavelength of 405 nm Laser output: 10 mW (continuous wave)
Spot size: 430 nmφ
基準マークの形状及び寸法は、以下の通りであった。
形状:略十字型
深さD:38nm
幅W:2μm
長さL:1mm
傾斜角θ:3.6度 The shape and dimensions of the fiducial marks were as follows.
Shape: approximately cruciform depth D: 38 nm
Width W: 2 μm
Length L: 1 mm
Inclination angle θ: 3.6 degrees
形状:略十字型
深さD:38nm
幅W:2μm
長さL:1mm
傾斜角θ:3.6度 The shape and dimensions of the fiducial marks were as follows.
Shape: approximately cruciform depth D: 38 nm
Width W: 2 μm
Length L: 1 mm
Inclination angle θ: 3.6 degrees
基準マークの表層を、EDX(エネルギー分散型X線分析)によって分析した。その結果、基準マークの表層には、保護膜に含まれている元素と同一の元素である、Ru及びNbが含まれていた。
The surface of the fiducial marks was analyzed by EDX (energy dispersive x-ray analysis). As a result, the surface layer of the reference mark contained Ru and Nb, which are the same elements as the elements contained in the protective film.
基準マークの断面を、透過型電子顕微鏡(TEM)によって撮影した。その結果、凹状の基準マークの底部には、多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が収縮したシュリンク領域が形成されていた。しかし、実施例1及び実施例2とは異なり、シュリンク領域の上方には、ミキシング領域が形成されていなかった。シュリンク領域では、多層反射膜に含まれる1周期のMo/Si膜の厚みが、7.0nmから6.2nmに減少していた。
Cross sections of the fiducial marks were taken by transmission electron microscopy (TEM). As a result, at the bottom of the concave reference mark, a shrink region in which at least a part of the plurality of films included in the multilayer reflective film is shrunk is formed. However, unlike Example 1 and Example 2, the mixing area was not formed above the shrink area. In the shrink region, the thickness of one cycle of Mo / Si film included in the multilayer reflective film decreased from 7.0 nm to 6.2 nm.
欠陥検査装置(レーザーテック株式会社製、ABI)を用いて、多層反射膜付き基板の欠陥検査を行った。欠陥検査では、保護膜の上に凹状に形成された基準マークを基準として、欠陥の位置を特定した。その結果、欠陥の個数は、従来のFIB法によって基準マークを形成した場合よりも、減少していた。
Defect inspection of the multilayer reflective film coated substrate was performed using a defect inspection apparatus (ABI manufactured by Lasertec Corporation). In defect inspection, the position of a defect was specified on the basis of a fiducial mark formed concavely on the protective film. As a result, the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
多層反射膜付き基板の保護膜の上に吸収体膜を形成し、反射型マスクブランクを製造した。具体的には、TaBN(厚み56nm)とTaBO(厚み14nm)の積層膜からなる吸収体膜を、DCマグネトロンスパッタリングにより形成した。TaBN膜は、TaBターゲットを使用し、ArガスとN2ガスの混合ガス雰囲気における反応性スパッタリングにより形成した。TaBO膜は、TaBターゲットを使用し、ArガスとO2ガスの混合ガス雰囲気における反応性スパッタリングにより形成した。
An absorber film was formed on the protective film of the multilayer reflective film coated substrate to manufacture a reflective mask blank. Specifically, an absorber film made of a laminated film of TaBN (56 nm in thickness) and TaBO (14 nm in thickness) was formed by DC magnetron sputtering. The TaBN film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a TaB target. The TaBO film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a TaB target.
吸収体膜に転写された凹状の基準マークを、電子線描画装置によって検出した。その結果、基準マークを検出可能であり、吸収体膜に転写された基準マークが、電子線描画装置によって検出可能な程度に十分なコントラストを有していることを確認することができた。
The concave reference mark transferred to the absorber film was detected by an electron beam writing apparatus. As a result, it was possible to detect that the reference mark was detectable, and it was possible to confirm that the reference mark transferred to the absorber film had a contrast sufficient to be detectable by the electron beam lithography system.
欠陥検査装置(レーザーテック株式会社製、M8350)を用いて、吸収体膜上の欠陥検査を行った。欠陥検査では、吸収体膜の上に凹状に転写された基準マークを基準として、欠陥の位置を特定した。その結果、欠陥の個数は、従来のFIB法によって基準マークを形成した場合よりも、減少していた。
Defect inspection on the absorber film was performed using a defect inspection apparatus (M8350 manufactured by Lasertec Corporation). In the defect inspection, the position of the defect was specified on the basis of the fiducial mark transferred concavely on the absorber film. As a result, the number of defects was reduced compared to the case where the fiducial marks were formed by the conventional FIB method.
上記で製造した反射型マスクブランクの吸収体膜上に、レジスト膜を形成した。電子線描画装置を用いて、欠陥検査によって得られた欠陥情報に基づいてレジスト膜にパターンを描画した。パターンを描画した後、所定の現像処理を行い、吸収体膜上にレジストパターンを形成した。
A resist film was formed on the absorber film of the reflective mask blank manufactured above. A pattern was drawn on a resist film based on defect information obtained by defect inspection using an electron beam drawing apparatus. After drawing the pattern, predetermined development processing was performed to form a resist pattern on the absorber film.
レジストパターンをマスクとして、吸収体膜にパターンを形成した。具体的には、フッ素系ガス(CF4ガス)により、上層のTaBO膜をドライエッチングした後、塩素系ガス(Cl2ガス)により、下層のTaBN膜をドライエッチングした。
Using the resist pattern as a mask, a pattern was formed on the absorber film. Specifically, the upper TaBO film was dry etched with a fluorine-based gas (CF 4 gas), and then the lower TaBN film was dry etched with a chlorine-based gas (Cl 2 gas).
吸収体膜パターン上に残ったレジストパターンを、熱硫酸で除去することで、実施例3に係る反射型マスクが得られた。こうして得られた反射型マスクを露光装置にセットし、レジスト膜を形成した半導体基板上へのパターン転写を行う場合、反射型マスク起因の転写パターンの欠陥も無く、良好なパターン転写を行うことができる。
The resist pattern remaining on the absorber film pattern was removed with hot sulfuric acid to obtain a reflective mask according to Example 3. When the thus obtained reflective mask is set in an exposure apparatus and pattern transfer is performed on a semiconductor substrate on which a resist film is formed, good pattern transfer can be performed without defects in the transfer pattern caused by the reflective mask. it can.
(比較例1)
SiO2-TiO2系のガラス基板(6インチ角、厚さが6.35mm)を準備した。このガラス基板の端面を面取り加工、及び研削加工し、更に酸化セリウム砥粒を含む研磨液で粗研磨処理した。これらの処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.10nm以下であった。得られたガラス基板の主表面の平坦度は、測定領域132mm×132mmにおいて、30nm以下であった。 (Comparative example 1)
A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm × 132 mm.
SiO2-TiO2系のガラス基板(6インチ角、厚さが6.35mm)を準備した。このガラス基板の端面を面取り加工、及び研削加工し、更に酸化セリウム砥粒を含む研磨液で粗研磨処理した。これらの処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.10nm以下であった。得られたガラス基板の主表面の平坦度は、測定領域132mm×132mmにおいて、30nm以下であった。 (Comparative example 1)
A SiO 2 -TiO 2 based glass substrate (6 inches square, 6.35 mm thick) was prepared. The end face of this glass substrate was chamfered and ground, and was roughly polished with a polishing solution containing cerium oxide abrasive grains. The glass substrate after these treatments was set on the carrier of the double-side polishing apparatus, and precision polishing was performed under predetermined polishing conditions using an alkaline aqueous solution containing colloidal silica abrasive grains as the polishing solution. After completion of the precision polishing, the glass substrate was subjected to a cleaning treatment. The surface roughness of the main surface of the obtained glass substrate was 0.10 nm or less in root mean square roughness (RMS). The flatness of the main surface of the obtained glass substrate was 30 nm or less in a measurement area of 132 mm × 132 mm.
上記のガラス基板の裏面に、以下の条件で、CrNからなる裏面導電膜をマグネトロンスパッタリング法により形成した。
(条件):Crターゲット、Ar+N2ガス雰囲気(Ar:N2=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm On the back surface of the above glass substrate, a back surface conductive film made of CrN was formed by magnetron sputtering under the following conditions.
(Conditions): Cr target, Ar + N 2 gas atmosphere (Ar: N 2 = 90%: 10%), film composition (Cr: 90 atomic%, N: 10 atomic%),film thickness 20 nm
(条件):Crターゲット、Ar+N2ガス雰囲気(Ar:N2=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm On the back surface of the above glass substrate, a back surface conductive film made of CrN was formed by magnetron sputtering under the following conditions.
(Conditions): Cr target, Ar + N 2 gas atmosphere (Ar: N 2 = 90%: 10%), film composition (Cr: 90 atomic%, N: 10 atomic%),
ガラス基板の裏面導電膜が形成された側と反対側の主表面上に、Mo膜/Si膜を周期的に積層することで多層反射膜を形成した。
A multilayer reflective film was formed by periodically laminating an Mo film / Si film on the main surface of the glass substrate opposite to the side on which the back surface conductive film was formed.
具体的には、MoターゲットとSiターゲットを使用し、イオンビームスパッタリング(Arを使用)により、基板上に、Mo膜及びSi膜を交互に積層した。Mo膜の厚みは、2.8nmである。Si膜の厚みは、4.2nmである。1周期のMo/Si膜の厚みは、7.0nmである。このようなMo/Si膜を、40周期積層し、最後にSi膜を4.0nmの膜厚で成膜し、多層反射膜を形成した。
Specifically, an Mo target and a Si target were used, and an Mo film and a Si film were alternately stacked on the substrate by ion beam sputtering (using Ar). The thickness of the Mo film is 2.8 nm. The thickness of the Si film is 4.2 nm. The thickness of one cycle of Mo / Si film is 7.0 nm. Such a Mo / Si film was laminated 40 cycles, and finally, a Si film was formed to a thickness of 4.0 nm to form a multilayer reflective film.
多層反射膜の上に、Ru化合物を含む保護膜を形成した。具体的には、RuNbターゲット(Ru:80原子%、Nb:20原子%)を使用し、Arガス雰囲気にて、DCマグネトロンスパッタリングにより、多層反射膜の上に、RuNb膜からなる保護膜を形成した。保護膜の厚みは、2.5nmであった。
A protective film containing a Ru compound was formed on the multilayer reflective film. Specifically, a RuNb target (Ru: 80 at%, Nb: 20 at%) is used, and a protective film made of RuNb is formed on the multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere. did. The thickness of the protective film was 2.5 nm.
保護膜の上に、FIB法によって、基準マークを形成した。
FIBの条件は、以下の通りであった。
加速電圧:50kV
ビーム電流値:20pA A fiducial mark was formed on the protective film by FIB.
The conditions of FIB were as follows.
Acceleration voltage: 50kV
Beam current value: 20 pA
FIBの条件は、以下の通りであった。
加速電圧:50kV
ビーム電流値:20pA A fiducial mark was formed on the protective film by FIB.
The conditions of FIB were as follows.
Acceleration voltage: 50kV
Beam current value: 20 pA
基準マークの形状及び寸法は、以下の通りであった。
形状:略十字型
深さD:40nm
幅W:2μm
長さL:1mm
傾斜角θ:86度 The shape and dimensions of the fiducial marks were as follows.
Shape: approximately cruciform depth D: 40 nm
Width W: 2 μm
Length L: 1 mm
Inclination angle θ: 86 degrees
形状:略十字型
深さD:40nm
幅W:2μm
長さL:1mm
傾斜角θ:86度 The shape and dimensions of the fiducial marks were as follows.
Shape: approximately cruciform depth D: 40 nm
Width W: 2 μm
Length L: 1 mm
Inclination angle θ: 86 degrees
基準マークの表層を、EDX(エネルギー分散型X線分析)によって分析した。その結果、基準マークの表層には、保護膜に含まれている元素と同一の元素である、Ru及びNbが含まれておらず、Mo、及びSiが検出された。基準マークの表層には、保護膜が残存していないため、多層反射膜の材料が露出していたと考えられる。
The surface of the fiducial marks was analyzed by EDX (energy dispersive x-ray analysis). As a result, the surface layer of the reference mark did not contain Ru and Nb, which are the same elements as the elements contained in the protective film, and Mo and Si were detected. Since no protective film remains on the surface layer of the reference mark, it is considered that the material of the multilayer reflective film was exposed.
欠陥検査装置(レーザーテック株式会社製、ABI)を用いて、多層反射膜付き基板の欠陥検査を行った。欠陥検査では、保護膜の上に凹状に形成された基準マークを基準として、欠陥の位置を特定した。その結果、欠陥の個数は、実施例1~3よりも大幅に増加していた。基準マークをFIBによって加工した際に発生した塵によって、多層反射膜の表面が汚染されたことが原因であると推察される。また、基準マークを加工する時間が実施例1~3よりも大幅に増加した。
Defect inspection of the multilayer reflective film coated substrate was performed using a defect inspection apparatus (ABI manufactured by Lasertec Corporation). In defect inspection, the position of a defect was specified on the basis of a fiducial mark formed concavely on the protective film. As a result, the number of defects was significantly increased as compared with Examples 1 to 3. It is presumed that the surface of the multilayer reflective film is contaminated by dust generated when the fiducial mark is processed by FIB. In addition, the time to process the fiducial marks was significantly increased as compared with Examples 1 to 3.
多層反射膜付き基板の保護膜の上に吸収体膜を形成し、反射型マスクブランクを製造した。具体的には、TaBN(厚み56nm)とTaBO(厚み14nm)の積層膜からなる吸収体膜を、DCマグネトロンスパッタリングにより形成した。TaBN膜は、TaBターゲットを使用し、ArガスとN2ガスの混合ガス雰囲気における反応性スパッタリングにより形成した。TaBO膜は、TaBターゲットを使用し、ArガスとO2ガスの混合ガス雰囲気における反応性スパッタリングにより形成した。
An absorber film was formed on the protective film of the multilayer reflective film coated substrate to manufacture a reflective mask blank. Specifically, an absorber film made of a laminated film of TaBN (56 nm in thickness) and TaBO (14 nm in thickness) was formed by DC magnetron sputtering. The TaBN film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a TaB target. The TaBO film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a TaB target.
欠陥検査装置(レーザーテック株式会社製、M8350)を用いて、吸収体膜上の欠陥検査を行った。欠陥検査では、吸収体膜の上に凹状に転写された基準マークを基準として、欠陥の位置を特定した。その結果、欠陥の個数は、実施例1~3よりも大幅に増加していた。
Defect inspection on the absorber film was performed using a defect inspection apparatus (M8350 manufactured by Lasertec Corporation). In the defect inspection, the position of the defect was specified on the basis of the fiducial mark transferred concavely on the absorber film. As a result, the number of defects was significantly increased as compared with Examples 1 to 3.
上記で製造した反射型マスクブランクの吸収体膜上に、レジスト膜を形成した。電子線描画装置を用いて、欠陥検査によって得られた欠陥情報に基づいてレジスト膜にパターンを描画した。パターンを描画した後、所定の現像処理を行い、吸収体膜上にレジストパターンを形成した。
A resist film was formed on the absorber film of the reflective mask blank manufactured above. A pattern was drawn on a resist film based on defect information obtained by defect inspection using an electron beam drawing apparatus. After drawing the pattern, predetermined development processing was performed to form a resist pattern on the absorber film.
レジストパターンをマスクとして、吸収体膜にパターンを形成した。具体的には、フッ素系ガス(CF4ガス)により、上層のTaBO膜をドライエッチングした後、塩素系ガス(Cl2ガス)により、下層のTaBN膜をドライエッチングした。
Using the resist pattern as a mask, a pattern was formed on the absorber film. Specifically, the upper TaBO film was dry etched with a fluorine-based gas (CF 4 gas), and then the lower TaBN film was dry etched with a chlorine-based gas (Cl 2 gas).
吸収体膜パターン上に残ったレジストパターンを、熱硫酸で除去することで、比較例1に係る反射型マスクが得られた。こうして得られた反射型マスクを露光装置にセットし、レジスト膜を形成した半導体基板上へのパターン転写を行う場合、反射型マスク起因の転写パターンの欠陥が実施例1~3よりも多くなるため、良好なパターン転写を行うことが困難である。
By removing the resist pattern remaining on the absorber film pattern with hot sulfuric acid, a reflective mask according to Comparative Example 1 was obtained. When the thus obtained reflective mask is set in an exposure apparatus and pattern transfer is performed on a semiconductor substrate on which a resist film is formed, the number of defects in the transfer pattern caused by the reflective mask is greater than in the first to third embodiments. It is difficult to perform good pattern transfer.
10 多層反射膜付き基板
12 基板
14 多層反射膜
18 保護膜
20 基準マーク
24 シュリンク領域
26 ミキシング領域
28 吸収体膜
30 反射型マスクブランク
32 レジスト膜
40 反射型マスク
50 パターン転写装置 DESCRIPTION OFSYMBOLS 10 multi-layer reflective film coated substrate 12 substrate 14 multi-layer reflective film 18 protective film 20 reference mark 24 shrink area 26 mixing area 28 absorber film 30 reflective mask blank 32 resist film 40 reflective mask 50 pattern transfer device
12 基板
14 多層反射膜
18 保護膜
20 基準マーク
24 シュリンク領域
26 ミキシング領域
28 吸収体膜
30 反射型マスクブランク
32 レジスト膜
40 反射型マスク
50 パターン転写装置 DESCRIPTION OF
Claims (9)
- 基板と、前記基板上に形成されたEUV光を反射する多層反射膜と、前記多層反射膜上に形成された保護膜とを含む多層反射膜付き基板であって、
前記保護膜の表面に凹状に形成された基準マークを備え、
前記基準マークの表層は、前記保護膜に含まれる元素のうち少なくとも1つの元素と同一の元素を含み、
前記基準マークの底部において、前記多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が収縮したシュリンク領域を有することを特徴とする、多層反射膜付き基板。 A multilayer reflective film coated substrate comprising: a substrate; a multilayer reflective film for reflecting EUV light formed on the substrate; and a protective film formed on the multilayer reflective film,
It has a fiducial mark formed concavely on the surface of the protective film,
The surface layer of the reference mark contains an element identical to at least one of the elements contained in the protective film,
A multilayer reflective film coated substrate having a shrink region in which at least a part of a plurality of films included in the multilayer reflective film is contracted at the bottom of the reference mark. - 前記基準マークの表層は、Ruを含む、請求項1に記載の多層反射膜付き基板。 The multilayer reflective film coated substrate according to claim 1, wherein the surface layer of the reference mark includes Ru.
- 前記基準マークの表層は、RuO、RuNbO、RuSi、及びRuSiO からなる群から選ばれる少なくとも1つを含む、請求項2に記載の多層反射膜付き基板。 The multilayer reflective film coated substrate according to claim 2, wherein the surface layer of the reference mark includes at least one selected from the group consisting of RuO, RuNbO, RuSi, and RuSiO 2.
- 前記基準マークの底部において、前記多層反射膜に含まれる複数の膜のうち少なくとも一部の膜が互いに一体化したミキシング領域を有する、請求項1から請求項3のうちいずれか1項に記載の多層反射膜付き基板。 The mixing region according to any one of claims 1 to 3, wherein at the bottom of the reference mark, at least a part of the plurality of films included in the multilayer reflective film has a mixing area integrated with each other. Multilayer reflective film coated substrate.
- 前記基準マークの深さが30nm以上50nm以下である、請求項1から請求項4のうちいずれか1項に記載の多層反射膜付き基板。 The multilayer reflective film coated substrate according to any one of claims 1 to 4, wherein the depth of the reference mark is 30 nm or more and 50 nm or less.
- 前記多層反射膜の前記基板と反対側の表面層はSiを含む層である、請求項1から請求項5のうちいずれか1項に記載の多層反射膜付き基板。 The multilayer reflective film coated substrate according to any one of claims 1 to 5, wherein the surface layer opposite to the substrate of the multilayer reflective film is a layer containing Si.
- 請求項1から請求項6のうちいずれか1項に記載の多層反射膜付き基板と、当該多層反射膜付き基板の保護膜上に形成された、EUV光を吸収する吸収体膜とを有する反射型マスクブランクであって、
前記吸収体膜に前記基準マークの形状が転写されている、反射型マスクブランク。 A reflection having a multilayer reflective film coated substrate according to any one of claims 1 to 6 and an absorber film which is formed on a protective film of the multilayer reflective film coated substrate and which absorbs EUV light. Type mask blank,
A reflective mask blank, wherein the shape of the reference mark is transferred to the absorber film. - 請求項1から請求項6のうちいずれか1項に記載の多層反射膜付き基板と、当該多層反射膜付き基板の保護膜上に形成された、EUV光を吸収する吸収体膜パターンとを有する反射型マスクであって、
前記吸収体膜パターンに前記基準マークの形状が転写されている、反射型マスク。 A multilayer reflective film coated substrate according to any one of claims 1 to 6, and an absorber film pattern formed on the protective film of the multilayer reflective film coated substrate for absorbing EUV light. A reflective mask,
A reflective mask, wherein the shape of the reference mark is transferred to the absorber film pattern. - 請求項8に記載の反射型マスクを使用して、半導体基板上に転写パターンを形成する工程を有する、半導体装置の製造方法。 A method of manufacturing a semiconductor device, comprising the step of forming a transfer pattern on a semiconductor substrate using the reflective mask according to claim 8.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11202002424RA SG11202002424RA (en) | 2017-10-17 | 2018-10-16 | Substrate with a multilayer reflective film, reflective mask blank, reflective mask and method of manufacturing semiconductor device |
US16/754,306 US11281090B2 (en) | 2017-10-17 | 2018-10-16 | Substrate with a multilayer reflective film, reflective mask blank, reflective mask, and method of manufacturing semiconductor device |
KR1020207006753A KR102724034B1 (en) | 2017-10-17 | 2018-10-16 | Multilayer reflective film attachment substrate, reflective mask blank, reflective mask, and method for manufacturing semiconductor device |
JP2019549294A JP7168573B2 (en) | 2017-10-17 | 2018-10-16 | Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-201188 | 2017-10-17 | ||
JP2017201188 | 2017-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019078205A1 true WO2019078205A1 (en) | 2019-04-25 |
Family
ID=66174039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038499 WO2019078205A1 (en) | 2017-10-17 | 2018-10-16 | Substrate equipped with multi-layer reflection film, reflection-type mask blank, reflection-type mask, and semiconductor device manufacturing process |
Country Status (5)
Country | Link |
---|---|
US (1) | US11281090B2 (en) |
JP (1) | JP7168573B2 (en) |
SG (1) | SG11202002424RA (en) |
TW (1) | TWI808103B (en) |
WO (1) | WO2019078205A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220308438A1 (en) * | 2021-03-24 | 2022-09-29 | Hoya Corporation | Method for manufacturing multilayered-reflective-film-provided substrate, reflective mask blank and method for manufacturing the same, and method for manufacturing reflective mask |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010219445A (en) * | 2009-03-18 | 2010-09-30 | Nuflare Technology Inc | Charged particle beam drawing method, position detecting method for reference mark for charged particle beam drawing, and charged particle beam drawing device |
WO2013031863A1 (en) * | 2011-09-01 | 2013-03-07 | 旭硝子株式会社 | Reflective mask blank, method for manufacturing reflective mask blank and method for quality control for reflective mask blank |
JP2017058666A (en) * | 2015-09-17 | 2017-03-23 | 旭硝子株式会社 | Reflective mask blank, and method for manufacturing reflective mask blank |
JP2017075997A (en) * | 2015-10-13 | 2017-04-20 | 旭硝子株式会社 | Reflection type mask blank, and manufacturing method of reflection type mask blank |
WO2017169973A1 (en) * | 2016-03-31 | 2017-10-05 | Hoya株式会社 | Method for manufacturing reflective mask blank, reflective mask blank, method for manufacturing reflective mask, reflective mask, and method for manufacturing semiconductor device |
-
2018
- 2018-10-16 SG SG11202002424RA patent/SG11202002424RA/en unknown
- 2018-10-16 JP JP2019549294A patent/JP7168573B2/en active Active
- 2018-10-16 WO PCT/JP2018/038499 patent/WO2019078205A1/en active Application Filing
- 2018-10-16 US US16/754,306 patent/US11281090B2/en active Active
- 2018-10-17 TW TW107136500A patent/TWI808103B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010219445A (en) * | 2009-03-18 | 2010-09-30 | Nuflare Technology Inc | Charged particle beam drawing method, position detecting method for reference mark for charged particle beam drawing, and charged particle beam drawing device |
WO2013031863A1 (en) * | 2011-09-01 | 2013-03-07 | 旭硝子株式会社 | Reflective mask blank, method for manufacturing reflective mask blank and method for quality control for reflective mask blank |
JP2017058666A (en) * | 2015-09-17 | 2017-03-23 | 旭硝子株式会社 | Reflective mask blank, and method for manufacturing reflective mask blank |
JP2017075997A (en) * | 2015-10-13 | 2017-04-20 | 旭硝子株式会社 | Reflection type mask blank, and manufacturing method of reflection type mask blank |
WO2017169973A1 (en) * | 2016-03-31 | 2017-10-05 | Hoya株式会社 | Method for manufacturing reflective mask blank, reflective mask blank, method for manufacturing reflective mask, reflective mask, and method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
SG11202002424RA (en) | 2020-05-28 |
TWI808103B (en) | 2023-07-11 |
US11281090B2 (en) | 2022-03-22 |
JP7168573B2 (en) | 2022-11-09 |
JPWO2019078205A1 (en) | 2020-11-05 |
KR20200058390A (en) | 2020-05-27 |
US20200310239A1 (en) | 2020-10-01 |
TW201926412A (en) | 2019-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11131921B2 (en) | Method for manufacturing reflective mask blank, and method for manufacturing reflective mask | |
JP7500828B2 (en) | Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device | |
JP6509987B2 (en) | Reflective mask blank and method of manufacturing the same, and reflective mask and method of manufacturing the same | |
US11914281B2 (en) | Reflective mask blank, reflective mask, and method for manufacturing semiconductor device | |
JP6460617B2 (en) | Reflective mask blank, reflective mask manufacturing method, and reflective mask blank manufacturing method | |
JP5874407B2 (en) | Method of manufacturing a reflective mask for EUV exposure that reduces the influence of phase defects | |
JP7492456B2 (en) | Substrate with multilayer reflective film, reflective mask blank, method for manufacturing reflective mask, and method for manufacturing semiconductor device | |
JP7168573B2 (en) | Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device | |
KR102724034B1 (en) | Multilayer reflective film attachment substrate, reflective mask blank, reflective mask, and method for manufacturing semiconductor device | |
JP6561099B2 (en) | MANUFACTURING METHOD FOR SUBSTRATE WITH MULTILAYER REFLECTIVE FILM, MANUFACTURING METHOD FOR REFLECTIVE MASK BLANK | |
TWI851543B (en) | Substrate with multi-layer reflective film, reflective mask base, reflective mask, and method for manufacturing semiconductor device | |
US20220308438A1 (en) | Method for manufacturing multilayered-reflective-film-provided substrate, reflective mask blank and method for manufacturing the same, and method for manufacturing reflective mask | |
JP2022151654A (en) | Production method of substrate with multilayer reflection film, reflective mask blank and production method thereof and production method of reflective mask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18868741 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019549294 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18868741 Country of ref document: EP Kind code of ref document: A1 |