WO2019078138A1 - Refrigeration cycle control device, heat source device, and control method therefor - Google Patents

Refrigeration cycle control device, heat source device, and control method therefor Download PDF

Info

Publication number
WO2019078138A1
WO2019078138A1 PCT/JP2018/038256 JP2018038256W WO2019078138A1 WO 2019078138 A1 WO2019078138 A1 WO 2019078138A1 JP 2018038256 W JP2018038256 W JP 2018038256W WO 2019078138 A1 WO2019078138 A1 WO 2019078138A1
Authority
WO
WIPO (PCT)
Prior art keywords
air volume
compressor
expansion valve
command value
refrigerant
Prior art date
Application number
PCT/JP2018/038256
Other languages
French (fr)
Japanese (ja)
Inventor
明正 横山
剛洋 河野
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to US16/614,525 priority Critical patent/US20200173693A1/en
Priority to CN201880032929.9A priority patent/CN110637202B/en
Publication of WO2019078138A1 publication Critical patent/WO2019078138A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • the present invention relates to a control device for a refrigeration cycle, a heat source device, and a control method thereof.
  • the refrigerant gas is bypassed from the compressor discharge part or condenser to the compressor suction part or evaporator using a hot gas bypass pipe, and the compressor
  • a method of realizing stable operation at low load while securing the minimum air volume necessary for the air conditioner for example, Patent Document 1 etc.
  • the present invention has been made in view of such circumstances, and a control device for a refrigeration cycle, a heat source device, and a control thereof that can realize stable low load operation without using a hot gas bypass pipe. Intended to provide a method.
  • a compressor for compressing a refrigerant a condenser for condensing the refrigerant compressed by the compressor, an expansion valve for expanding a liquid refrigerant introduced from the condenser, and the expansion valve Controller for a refrigeration cycle including an evaporator for evaporating the refrigerant expanded by the flow rate calculation unit, which calculates a current air volume using the current actual refrigeration capacity, and parameters related to the operating state of the compressor Controlling the minimum air volume calculation unit for calculating the required minimum air volume of the compressor using the above, and controlling the opening degree of the expansion valve to increase when the current air volume is less than the required minimum air volume of the compressor It is a control device of a refrigeration cycle.
  • the opening degree of the expansion valve is controlled to increase.
  • the required refrigeration capacity can be satisfied, and stable operation of the compressor at low load can be realized.
  • the control device of the refrigeration cycle calculates a reference command calculation unit that calculates a reference opening command value according to the required refrigeration capacity, and a correction opening command according to the difference between the current air volume and the required minimum air volume of the compressor.
  • the system further comprises a correction command calculation unit that calculates a value, and an opening degree command value calculation unit that calculates the opening degree command value of the expansion valve by adding the reference opening degree command value and the correction opening degree command value.
  • the correction command calculation unit calculates the corrected opening command value according to the difference between the current air volume and the required minimum air volume
  • the opening command value calculator calculates the reference opening command value and the corrected opening.
  • An opening command value obtained by adding the command value is calculated.
  • the opening degree of the expansion valve is controlled based on the opening degree command value.
  • the control device of the refrigeration cycle corresponds to the opening degree command value obtained by adding the correction opening degree command value to the required minimum air volume of the compressor to the reference opening degree command value corresponding to the required refrigeration capacity, and the required refrigeration capacity It is good also as having the opening degree command information attached and determining the opening degree command value corresponding to the present demand refrigeration capacity from the opening degree command information.
  • the refrigeration cycle includes an intercooler provided between the condenser and the evaporator, and the expansion valve is a first expansion valve provided between the condenser and the intercooler.
  • a second expansion valve may be provided between the intercooler and the evaporator.
  • the control device of the refrigeration cycle may open the first expansion valve and open the second expansion valve when the current air volume is less than the required minimum air volume of the compressor. It is good also as each controlling in the direction which makes degree increase.
  • the first expansion valve and the second expansion valve can be controlled by the opening degree command value that satisfies both the required refrigeration capacity and the required minimum air volume also for the two-stage compression type compressor. It becomes possible. As a result, stable operation of the compressor at low load can be realized.
  • a second aspect of the present invention is a heat source device provided with the control device of the above-mentioned refrigeration cycle.
  • a third aspect of the present invention relates to a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed by the compressor, an expansion valve for expanding a liquid refrigerant introduced from the condenser, and the expansion valve
  • a control method of a refrigeration cycle including an evaporator for evaporating the refrigerant expanded by the control unit, calculating a current air volume using the current actual refrigeration capacity, and using the parameter related to the operating state of the compressor. It is a control method of a refrigeration cycle which calculates the required minimum air volume of a compressor, and when the current air volume is less than the required minimum air volume of the compressor, increases the opening degree of the expansion valve.
  • FIG. 1 is a schematic configuration view showing a turbo refrigerator according to an embodiment of the present invention. It is a figure showing the functional block diagram of the control device concerning one embodiment of the present invention. It is the figure which showed the relationship between the air volume ( ⁇ refrigeration capacity) and opening degree command value (CV value) which concern on one Embodiment of this invention. It is a figure explaining the opening degree control of the expansion valve concerning one embodiment of the present invention using the Mollier chart of a refrigerant. It is a schematic block diagram showing a turbo refrigerator concerning other embodiments of the present invention. It is the figure which demonstrated opening degree control of the expansion valve which concerns on other embodiment of this invention using the Mollier diagram of a refrigerant
  • a control device for a refrigeration cycle, a heat source device, and a control method therefor according to an embodiment of the present invention will be described with reference to the drawings.
  • a turbo refrigerator is illustrated and explained as a heat source apparatus provided with a refrigerating cycle
  • the present invention is not limited to this example, and a heat source apparatus is an air conditioner, a water heater, etc. It is also good.
  • the refrigerant applied to the refrigeration cycle is not particularly limited and may be appropriately selected according to the purpose and the like.
  • FIG. 1 is a schematic configuration view showing a turbo refrigerator 1 according to an embodiment of the present invention.
  • the turbo refrigerator 1 includes a compressor 3 for compressing a refrigerant, a condenser 5 for condensing a high temperature and high pressure refrigerant compressed by the compressor 3, and a refrigerant led from the condenser 5. And an evaporator 9 for evaporating the refrigerant expanded by the expansion valve 7, and a control device 10 for controlling the turbo refrigerator 1.
  • the compressor 3 is, for example, a turbo compressor, and a centrifugal compressor is used as an example.
  • the compressor 3 is driven by a motor 12 whose rotational speed is controlled by an inverter 11.
  • the output of inverter 11 is controlled by controller 10.
  • a variable speed compressor is illustrated in this embodiment, a fixed speed compressor may be used.
  • an inlet guide vane (hereinafter referred to as “IGV”) 13 for controlling the flow rate of the suctioned refrigerant is provided, and capacity control of the turbo refrigerator 1 is enabled.
  • the control of the opening degree of the IGV 13 is performed by the control device 10.
  • the compressor 3 includes an impeller that rotates around the rotation axis.
  • the rotational power is transmitted from the motor 12 to the rotational shaft via the speed-increasing gear.
  • the rotating shaft is supported by a bearing.
  • the condenser 5 is a heat exchanger such as a shell and tube type or a plate type.
  • the condenser 5 is supplied with cooling water for cooling the refrigerant.
  • the cooling water led to the condenser 5 is led to the condenser 5 again after being exhausted to the outside in a cooling tower or an air heat exchanger (not shown).
  • the expansion valve 7 is electrically operated.
  • the low-temperature and high-pressure refrigerant introduced from the condenser 5 is isenthalpically expanded by the expansion valve 7.
  • the opening degree of the expansion valve 7 is controlled by the control device 10 so as to obtain a desired head difference (high and low pressure difference of the refrigerant in the refrigeration cycle).
  • the evaporator 9 is a heat exchanger such as a shell and tube type or a plate type. Cold water supplied to an external load (not shown) is led to the evaporator 9. The cold water is cooled to a rated temperature (e.g. 7 [deg.] C.) by heat exchange with the refrigerant in the evaporator 9 and sent to an external load (not shown).
  • a rated temperature e.g. 7 [deg.] C.
  • the control device 10 is configured to include, for example, a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a computer readable storage medium, and the like.
  • CPU central processing unit
  • RAM random access memory
  • ROM read only memory
  • a series of processes for the control device 10 to realize various functions are, for example, stored in a storage medium or the like in the form of a program (for example, a control program), and the CPU reads this program into a RAM or the like to obtain information.
  • Various functions are realized by executing the processing and arithmetic processing of the above.
  • the program may be installed in advance in a ROM or other storage medium, may be provided as stored in a computer-readable storage medium, may be distributed via a wired or wireless communication means, etc. It may be applied.
  • the computer readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory or the like.
  • FIG. 2 is a diagram showing a functional block diagram of the control device 10.
  • the control device 10 includes, as an expansion valve control unit 20 that controls the expansion valve 7, a reference command calculation unit 21, an air volume calculation unit 22, a minimum air volume calculation unit 23, and a correction command calculation unit 24. And an opening command calculator 25.
  • the reference command calculation unit 21 calculates a reference opening degree command value corresponding to the required refrigeration capacity.
  • the reference command calculation unit 21 calculates a reference opening degree command value (reference CV value) of the expansion valve 7 from, for example, the target refrigerant circulation amount calculated from the required refrigeration capacity and the differential pressure across the expansion valve 7. For example, based on the required heat exchange amount in the evaporator 9 required to match the temperature measurement value of the cold water supplied from the evaporator 9 to the external load to the set temperature (for example, 7 ° C.) Calculate the circulation amount. Then, the reference opening degree command value of the expansion valve 7 is calculated from the differential pressure of the expansion valve 7 so as to obtain the target refrigerant circulation amount.
  • the air volume calculator 22 calculates the current air volume using the current actual refrigeration capacity.
  • the minimum air volume calculation unit 23 calculates the necessary minimum air volume of the compressor 3 using parameters relating to the operating state of the compressor 3. More specifically, the minimum air volume calculation unit 23 is calculated using a flow rate variable (refrigerating capacity) representing the operating state of the compressor 3 and a pressure variable (lift head). Well-known techniques may be employed for current wind power calculation and minimum air flow calculation.
  • the correction command calculation unit 24 calculates a correction opening degree command value (corrected CV value) based on the current air volume calculated by the air volume calculation unit 22 and the necessary minimum air volume calculated by the minimum air volume calculation unit 23. Specifically, the correction command calculation unit 24 sets the correction opening command value to zero when the current air volume is equal to or more than the required minimum air volume, and when the current air volume is less than the required minimum air volume, A corrected opening degree command value is calculated according to the difference between the current air volume and the required minimum air volume. The correction command computation unit 24 calculates, for example, the difference between the current air volume and the required minimum air volume as a corrected opening degree command value.
  • the opening command calculator 25 adds the reference opening command value (reference CV value) calculated by the reference command calculator 21 and the corrected opening command value (corrected CV value) calculated by the correction command calculator 24.
  • the calculated value is calculated as an opening degree command value (CV value).
  • CV value opening degree command value
  • FIG. 3 is a diagram showing the relationship between the air flow rate ( ⁇ refrigeration capacity) and the opening degree command value (CV value).
  • an opening degree command value corresponding to the air volume is set in the region where the air volume is equal to or more than the necessary minimum air volume. That is, the opening degree command value is also set to a larger value as the air volume is larger.
  • the opening degree command value is set to a larger value as the air volume decreases. This is because, in this region, as the air volume decreases, the difference from the required minimum air volume increases, and the correction opening degree command value takes a large value.
  • the expansion valve 7 decompresses the refrigerant in the gas-liquid two-phase region as shown in FIG. 4 in the region where the current air volume is less than the required minimum air volume. .
  • the gas refrigerant required to secure the required minimum air volume is led from the expansion valve 7 to the evaporator 9 together with the liquid refrigerant.
  • the required refrigeration capacity can be satisfied, and at least the required minimum air volume can be secured, and stable operation of the compressor at low load can be realized.
  • opening degree command value obtained by adding a corrected opening degree command value according to the difference between the current air volume and the required minimum air volume to the reference opening degree command value
  • the opening degree of the expansion valve 7 is controlled. That is, when the current air volume is less than the required minimum air volume, the opening degree of the expansion valve 7 is controlled to increase (see FIG. 3).
  • the gas refrigerant necessary for securing the necessary minimum air flow rate is led from the expansion valve 7 to the evaporator 9 together with the liquid refrigerant.
  • the required refrigeration capacity can be satisfied, and stable operation of the compressor at low load can be realized.
  • the present invention is not limited to this example, and for example, opening degree instruction information in which the air volume (the freezing capacity) and the opening degree command value (CV value) as shown in FIG. 3 are associated is prepared in advance. An opening degree command value corresponding to the current required refrigeration capacity (air volume) may be determined from the information.
  • the opening degree command value is an opening degree command value obtained by adding a correction opening degree command value for the required minimum air flow of the compressor 3 to a reference opening degree command value corresponding to the required refrigeration capacity.
  • the turbo refrigerator 1 ′ is a two-stage compression type compressor 3 ′. It may be further provided with an intercooler 15 provided between the condenser 5 and the evaporator 9.
  • the other configuration is the same as that of the turbo refrigerator 1 shown in FIG.
  • a turbo refrigerator 1 ' according to another embodiment, a first expansion valve 7a is provided between the condenser 5 and the intercooler 15, and a second expansion valve is provided between the intercooler 15 and the evaporator 9. 7b is provided.
  • the gas refrigerant in the intercooler 15 is supplied to the inlet side of the second stage compressor.
  • the opening degree of the first expansion valve 7a and the second expansion valve 7b is controlled by the control device 10 '.
  • the control of the expansion valve in the present invention is also applicable to a heat source apparatus using a two-stage compression type compressor 3 ', and the refrigerant state in the Mollier diagram of the refrigerant at that time is shown in FIG. It becomes like a track.
  • FIG. 1st expansion valve 7a and the 2nd expansion valve 7b since it is the same as that of the above-mentioned embodiment, it omits explanation.
  • the control of the expansion valve in the present invention is also applicable to a heat source apparatus using a two-stage compression type compressor 3 ', and the refrigerant state in the Mollier diagram of the refrigerant at that time is shown in FIG. It becomes like a track.
  • both the first expansion valve 7a and the second expansion valve 7b correspond to the gas-liquid two-phase region, that is, the intersection of the isobar of the first stage outlet pressure of the compressor 3 'and the saturated liquid line.
  • the valve opening degree is controlled by the control device 10 '.
  • the gas refrigerant required to secure the necessary minimum air volume is introduced to the evaporator 9, so that the required refrigeration capacity can be satisfied, and stable operation of the compressor at low load can be realized. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided are a refrigeration cycle control device, a heat source device, and a control method therefor, with which a stable low-load operation can be achieved without using a hot gas bypass pipe. In the present invention a turbo refrigerator comprises a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed by the compressor, an expansion valve for expanding the liquid refrigerant derived from the condenser, an evaporator for evaporating the refrigerant that has been expanded by the expansion valve, and a control device (10). The control device (10) comprises an air volume calculation unit (22) that uses the current actual refrigeration capacity to calculate a current air volume, and a minimum air volume calculation unit (23) that uses a parameter related to the operating capacity of the compressor to calculate a required minimum air volume for the compressor, and when the current air volume is less than the required minimum air volume for the compressor the control device controls the degree of opening of the expansion valve in the direction of increase.

Description

冷凍サイクルの制御装置、熱源装置、及びその制御方法Control device of refrigeration cycle, heat source device, and control method thereof
 本発明は、冷凍サイクルの制御装置、熱源装置、及びその制御方法に関するものである。 The present invention relates to a control device for a refrigeration cycle, a heat source device, and a control method thereof.
 例えば、ターボ冷凍機や空気調和機等の冷凍サイクルを有する熱源装置では、ホットガスバイパス管を用いて圧縮機吐出部または凝縮器から圧縮機吸込部または蒸発器へ冷媒ガスをバイパスさせ、圧縮機に必要な最小風量を確保しながら低負荷における安定した運転を実現する方法が提案されている(例えば、特許文献1等)。 For example, in a heat source apparatus having a refrigeration cycle such as a turbo refrigerator or an air conditioner, the refrigerant gas is bypassed from the compressor discharge part or condenser to the compressor suction part or evaporator using a hot gas bypass pipe, and the compressor There has been proposed a method of realizing stable operation at low load while securing the minimum air volume necessary for the air conditioner (for example, Patent Document 1 etc.).
特開2010-236833号公報JP, 2010-236833, A
 しかしながら、ホットガスバイパス管やバルブを設ける必要があるため、装置の大型化やコストの増大を招く。 However, since it is necessary to provide a hot gas bypass pipe and a valve, the size of the apparatus is increased and the cost is increased.
 本発明は、このような事情に鑑みてなされたものであって、ホットガスバイパス管を用いることなく、安定した低負荷運転を実現することのできる冷凍サイクルの制御装置、熱源装置、及びその制御方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a control device for a refrigeration cycle, a heat source device, and a control thereof that can realize stable low load operation without using a hot gas bypass pipe. Intended to provide a method.
 本発明の第一態様は、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、前記膨張弁によって膨張された冷媒を蒸発させる蒸発器とを備えた冷凍サイクルの制御装置であって、現在の実冷凍能力を用いて現在の風量を演算する風量演算部と、前記圧縮機の運転状態に関するパラメータを用いて前記圧縮機の必要最小風量を演算する最小風量演算部と、前記現在の風量が前記圧縮機の必要最小風量未満である場合に、前記膨張弁の開度を増加させる方向に制御する冷凍サイクルの制御装置である。 According to a first aspect of the present invention, a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed by the compressor, an expansion valve for expanding a liquid refrigerant introduced from the condenser, and the expansion valve Controller for a refrigeration cycle including an evaporator for evaporating the refrigerant expanded by the flow rate calculation unit, which calculates a current air volume using the current actual refrigeration capacity, and parameters related to the operating state of the compressor Controlling the minimum air volume calculation unit for calculating the required minimum air volume of the compressor using the above, and controlling the opening degree of the expansion valve to increase when the current air volume is less than the required minimum air volume of the compressor It is a control device of a refrigeration cycle.
 上記構成によれば、現在の風量が必要最小風量未満である場合には、膨張弁の開度が増加する方向に制御される。これにより、冷凍能力を満足する冷媒よりも多めのガス冷媒を蒸発器に導くことが可能となる。この結果、要求冷凍能力を満足することができるとともに、低負荷における圧縮機の安定運転を実現することが可能となる。 According to the above configuration, when the current air volume is less than the required minimum air volume, the opening degree of the expansion valve is controlled to increase. As a result, it is possible to lead a larger amount of gas refrigerant to the evaporator than the refrigerant satisfying the refrigeration capacity. As a result, the required refrigeration capacity can be satisfied, and stable operation of the compressor at low load can be realized.
 上記冷凍サイクルの制御装置は、要求冷凍能力に応じた基準開度指令値を演算する基準指令演算部と、前記現在の風量と前記圧縮機の必要最小風量との差分に応じた補正開度指令値を演算する補正指令演算部と、前記基準開度指令値と前記補正開度指令値とを加算し、前記膨張弁の開度指令値を演算する開度指令値演算部とを更に備えていてもよい。 The control device of the refrigeration cycle calculates a reference command calculation unit that calculates a reference opening command value according to the required refrigeration capacity, and a correction opening command according to the difference between the current air volume and the required minimum air volume of the compressor. The system further comprises a correction command calculation unit that calculates a value, and an opening degree command value calculation unit that calculates the opening degree command value of the expansion valve by adding the reference opening degree command value and the correction opening degree command value. May be
 上記構成によれば、現在の風量と必要最小風量との差分に応じた補正開度指令値が補正指令演算部によって演算され、開度指令値演算部によって、基準開度指令値と補正開度指令値とが加算された開度指令値が演算される。そして、この開度指令値に基づいて膨張弁の開度が制御される。これにより、現在の風量が必要最小風量未満である場合には、必要最小風量を確保するために必要となるガス冷媒が液冷媒とともに膨張弁から蒸発器に導かれることとなる。この結果、要求冷凍能力を満足することができるとともに、低負荷における圧縮機の安定運転を実現させることが可能となる。 According to the above configuration, the correction command calculation unit calculates the corrected opening command value according to the difference between the current air volume and the required minimum air volume, and the opening command value calculator calculates the reference opening command value and the corrected opening. An opening command value obtained by adding the command value is calculated. Then, the opening degree of the expansion valve is controlled based on the opening degree command value. As a result, when the current air volume is less than the required minimum air volume, the gas refrigerant required to secure the required minimum air volume is led from the expansion valve to the evaporator together with the liquid refrigerant. As a result, the required refrigeration capacity can be satisfied, and stable operation of the compressor at low load can be realized.
 上記冷凍サイクルの制御装置は、要求冷凍能力に応じた基準開度指令値に前記圧縮機の必要最小風量に対する補正開度指令値が加算された開度指令値と、前記要求冷凍能力とが対応付けられた開度指令情報を有し、前記開度指令情報から現在の要求冷凍能力に対応する開度指令値を決定することとしてもよい。 The control device of the refrigeration cycle corresponds to the opening degree command value obtained by adding the correction opening degree command value to the required minimum air volume of the compressor to the reference opening degree command value corresponding to the required refrigeration capacity, and the required refrigeration capacity It is good also as having the opening degree command information attached and determining the opening degree command value corresponding to the present demand refrigeration capacity from the opening degree command information.
 上記構成によれば、開度指令情報を用いることにより、要求冷凍能力及び必要最小風量の両方を満足する開度指令値を容易に取得することが可能となる。 According to the above configuration, by using the opening degree command information, it becomes possible to easily obtain an opening degree command value that satisfies both the required refrigeration capacity and the required minimum air volume.
 上記冷凍サイクルは、前記凝縮器と前記蒸発器との間に設けられた中間冷却器を備え、前記膨張弁は、前記凝縮器と中間冷却器との間に設けられた第1膨張弁と、前記中間冷却器と前記蒸発器との間に設けられた第2膨張弁とを備えていてもよい。更に、このような構成において、上記冷凍サイクルの制御装置は、前記現在の風量が前記圧縮機の必要最小風量未満である場合に、前記第1膨張弁の開度及び前記第2膨張弁の開度を増加させる方向にそれぞれ制御することとしてもよい。 The refrigeration cycle includes an intercooler provided between the condenser and the evaporator, and the expansion valve is a first expansion valve provided between the condenser and the intercooler. A second expansion valve may be provided between the intercooler and the evaporator. Furthermore, in such a configuration, the control device of the refrigeration cycle may open the first expansion valve and open the second expansion valve when the current air volume is less than the required minimum air volume of the compressor. It is good also as each controlling in the direction which makes degree increase.
 このような構成によれば、2段圧縮型の圧縮機に対しても要求冷凍能力及び必要最小風量の両方を満足する開度指令値によって第1膨張弁及び第2膨張弁を制御することが可能となる。これにより、低負荷における圧縮機の安定運転を実現させることが可能となる。 According to such a configuration, the first expansion valve and the second expansion valve can be controlled by the opening degree command value that satisfies both the required refrigeration capacity and the required minimum air volume also for the two-stage compression type compressor. It becomes possible. As a result, stable operation of the compressor at low load can be realized.
 本発明の第二態様は、上記の前記冷凍サイクルの制御装置を備える熱源装置である。 A second aspect of the present invention is a heat source device provided with the control device of the above-mentioned refrigeration cycle.
 本発明の第三態様は、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、前記膨張弁によって膨張された冷媒を蒸発させる蒸発器とを備えた冷凍サイクルの制御方法であって、現在の実冷凍能力を用いて現在の風量を演算し、前記圧縮機の運転状態に関するパラメータを用いて前記圧縮機の必要最小風量を演算し、前記現在の風量が前記圧縮機の必要最小風量未満である場合に、前記膨張弁の開度を増加させる方向に制御する冷凍サイクルの制御方法である。 A third aspect of the present invention relates to a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed by the compressor, an expansion valve for expanding a liquid refrigerant introduced from the condenser, and the expansion valve A control method of a refrigeration cycle including an evaporator for evaporating the refrigerant expanded by the control unit, calculating a current air volume using the current actual refrigeration capacity, and using the parameter related to the operating state of the compressor. It is a control method of a refrigeration cycle which calculates the required minimum air volume of a compressor, and when the current air volume is less than the required minimum air volume of the compressor, increases the opening degree of the expansion valve.
 本発明によれば、ホットガスバイパス管を用いることなく、安定した低負荷運転を実現することができるという効果を奏する。 According to the present invention, there is an effect that stable low load operation can be realized without using a hot gas bypass pipe.
本発明の一実施形態に係るターボ冷凍機を示した概略構成図である。FIG. 1 is a schematic configuration view showing a turbo refrigerator according to an embodiment of the present invention. 本発明の一実施形態に係る制御装置の機能ブロック図を示した図である。It is a figure showing the functional block diagram of the control device concerning one embodiment of the present invention. 本発明の一実施形態に係る風量(∝冷凍能力)と開度指令値(CV値)との関係を示した図である。It is the figure which showed the relationship between the air volume (∝ refrigeration capacity) and opening degree command value (CV value) which concern on one Embodiment of this invention. 本発明の一実施形態に係る膨張弁の開度制御について、冷媒のモリエル線図を用いて説明した図である。It is a figure explaining the opening degree control of the expansion valve concerning one embodiment of the present invention using the Mollier chart of a refrigerant. 本発明の他の実施形態に係るターボ冷凍機を示した概略構成図である。It is a schematic block diagram showing a turbo refrigerator concerning other embodiments of the present invention. 本発明の他の実施形態に係る膨張弁の開度制御について、冷媒のモリエル線図を用いて説明した図である。It is the figure which demonstrated opening degree control of the expansion valve which concerns on other embodiment of this invention using the Mollier diagram of a refrigerant | coolant.
 以下、本発明の一実施形態に係る冷凍サイクルの制御装置、熱源装置、及びその制御方法について図面を参照して説明する。以下の説明では、冷凍サイクルを備える熱源装置としてターボ冷凍機を例示して説明するが、本発明はこの一例に限定されるものではなく、熱源装置は、空気調和機、給湯器等であってもよい。冷凍サイクルに適用される冷媒は特に限定されることなく、目的等に応じて適宜選択すればよい。 Hereinafter, a control device for a refrigeration cycle, a heat source device, and a control method therefor according to an embodiment of the present invention will be described with reference to the drawings. In the following description, although a turbo refrigerator is illustrated and explained as a heat source apparatus provided with a refrigerating cycle, the present invention is not limited to this example, and a heat source apparatus is an air conditioner, a water heater, etc. It is also good. The refrigerant applied to the refrigeration cycle is not particularly limited and may be appropriately selected according to the purpose and the like.
 図1は、本発明の一実施形態に係るターボ冷凍機1を示した概略構成図である。
 図1に示されるように、ターボ冷凍機1は、冷媒を圧縮する圧縮機3と、圧縮機3によって圧縮された高温高圧の冷媒を凝縮する凝縮器5と、凝縮器5から導かれた冷媒を膨張させる膨張弁7と、膨張弁7によって膨張された冷媒を蒸発させる蒸発器9と、ターボ冷凍機1を制御する制御装置10とを備えている。
FIG. 1 is a schematic configuration view showing a turbo refrigerator 1 according to an embodiment of the present invention.
As shown in FIG. 1, the turbo refrigerator 1 includes a compressor 3 for compressing a refrigerant, a condenser 5 for condensing a high temperature and high pressure refrigerant compressed by the compressor 3, and a refrigerant led from the condenser 5. And an evaporator 9 for evaporating the refrigerant expanded by the expansion valve 7, and a control device 10 for controlling the turbo refrigerator 1.
 圧縮機3は、例えば、ターボ圧縮機であり、一例として遠心式圧縮機が用いられる。圧縮機3は、インバータ11によって回転数制御された電動機12によって駆動される。インバータ11は、制御装置10によってその出力が制御される。本実施形態では可変速の圧縮機を例示しているが、固定速の圧縮機を用いてもよい。
 圧縮機3の冷媒吸入口には、吸入冷媒流量を制御するインレットガイドベーン(以下「IGV」という。)13が設けられており、ターボ冷凍機1の容量制御が可能とされている。IGV13の開度制御は、制御装置10によって行われる。
The compressor 3 is, for example, a turbo compressor, and a centrifugal compressor is used as an example. The compressor 3 is driven by a motor 12 whose rotational speed is controlled by an inverter 11. The output of inverter 11 is controlled by controller 10. Although a variable speed compressor is illustrated in this embodiment, a fixed speed compressor may be used.
At a refrigerant suction port of the compressor 3, an inlet guide vane (hereinafter referred to as “IGV”) 13 for controlling the flow rate of the suctioned refrigerant is provided, and capacity control of the turbo refrigerator 1 is enabled. The control of the opening degree of the IGV 13 is performed by the control device 10.
 圧縮機3は、回転軸周りに回転する羽根車を備えている。回転軸には、増速歯車を介して電動機12から回転動力が伝達される。回転軸は、軸受によって支持されている。 The compressor 3 includes an impeller that rotates around the rotation axis. The rotational power is transmitted from the motor 12 to the rotational shaft via the speed-increasing gear. The rotating shaft is supported by a bearing.
 凝縮器5は、シェルアンドチューブ型やプレート型等の熱交換器である。凝縮器5には、冷媒を冷却するための冷却水が供給される。凝縮器5に導かれる冷却水は、図示しない冷却塔や空気熱交換器において外部へと排熱された後に、再び凝縮器5へと導かれる。 The condenser 5 is a heat exchanger such as a shell and tube type or a plate type. The condenser 5 is supplied with cooling water for cooling the refrigerant. The cooling water led to the condenser 5 is led to the condenser 5 again after being exhausted to the outside in a cooling tower or an air heat exchanger (not shown).
 膨張弁7は、電動式とされている。凝縮器5から導かれた低温高圧の冷媒は、膨張弁7によって等エンタルピ的に膨張させられる。膨張弁7の開度は、所望のヘッド差(冷凍サイクルにおける冷媒の高低圧差)が得られるように制御装置10によって制御される。 The expansion valve 7 is electrically operated. The low-temperature and high-pressure refrigerant introduced from the condenser 5 is isenthalpically expanded by the expansion valve 7. The opening degree of the expansion valve 7 is controlled by the control device 10 so as to obtain a desired head difference (high and low pressure difference of the refrigerant in the refrigeration cycle).
 蒸発器9は、シェルアンドチューブ型やプレート型等の熱交換器である。蒸発器9には、図示しない外部負荷へ供給される冷水が導かれる。冷水は、蒸発器9にて冷媒と熱交換することによって、定格温度(例えば7℃)まで冷却され、外部負荷(図示略)へと送られる。 The evaporator 9 is a heat exchanger such as a shell and tube type or a plate type. Cold water supplied to an external load (not shown) is led to the evaporator 9. The cold water is cooled to a rated temperature (e.g. 7 [deg.] C.) by heat exchange with the refrigerant in the evaporator 9 and sent to an external load (not shown).
 制御装置10は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等を備えて構成されている。制御装置10が各種機能を実現するための一連の処理は、一例として、プログラム(例えば、制御プログラム)の形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The control device 10 is configured to include, for example, a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a computer readable storage medium, and the like. A series of processes for the control device 10 to realize various functions are, for example, stored in a storage medium or the like in the form of a program (for example, a control program), and the CPU reads this program into a RAM or the like to obtain information. Various functions are realized by executing the processing and arithmetic processing of the above. The program may be installed in advance in a ROM or other storage medium, may be provided as stored in a computer-readable storage medium, may be distributed via a wired or wireless communication means, etc. It may be applied. The computer readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory or the like.
 図2は、制御装置10の機能ブロック図を示した図である。図2に示すように、制御装置10は、膨張弁7を制御する膨張弁制御部20として、基準指令演算部21と、風量演算部22と、最小風量演算部23と、補正指令演算部24と、開度指令演算部25とを主に備えている。 FIG. 2 is a diagram showing a functional block diagram of the control device 10. As shown in FIG. As shown in FIG. 2, the control device 10 includes, as an expansion valve control unit 20 that controls the expansion valve 7, a reference command calculation unit 21, an air volume calculation unit 22, a minimum air volume calculation unit 23, and a correction command calculation unit 24. And an opening command calculator 25.
 基準指令演算部21は、要求冷凍能力に応じた基準開度指令値を演算する。基準指令演算部21は、例えば、要求冷凍能力から算出される目標冷媒循環量と、膨張弁7の前後差圧とから膨張弁7の基準開度指令値(基準CV値)を演算する。例えば、蒸発器9から外部負荷へと供給される冷水の温度測定値を設定温度(例えば、7℃)に一致させるために必要とされる蒸発器9における必要熱交換量に基づいて、目標冷媒循環量を算出する。そして、目標冷媒循環量が得られるように、膨張弁7の前後差圧から膨張弁7の基準開度指令値を演算する。 The reference command calculation unit 21 calculates a reference opening degree command value corresponding to the required refrigeration capacity. The reference command calculation unit 21 calculates a reference opening degree command value (reference CV value) of the expansion valve 7 from, for example, the target refrigerant circulation amount calculated from the required refrigeration capacity and the differential pressure across the expansion valve 7. For example, based on the required heat exchange amount in the evaporator 9 required to match the temperature measurement value of the cold water supplied from the evaporator 9 to the external load to the set temperature (for example, 7 ° C.) Calculate the circulation amount. Then, the reference opening degree command value of the expansion valve 7 is calculated from the differential pressure of the expansion valve 7 so as to obtain the target refrigerant circulation amount.
 風量演算部22は、現在の実冷凍能力を用いて現在の風量を演算する。
 最小風量演算部23は、圧縮機3の運転状態に関するパラメータを用いて圧縮機3の必要最小風量を演算する。より具体的には、最小風量演算部23は、圧縮機3の運転状態を表す流量変数(冷凍能力)と、圧力変数(揚程)とを用いて算出される。
 現在の風力演算、最小風量演算に関しては公知の技術を採用すればよい。
The air volume calculator 22 calculates the current air volume using the current actual refrigeration capacity.
The minimum air volume calculation unit 23 calculates the necessary minimum air volume of the compressor 3 using parameters relating to the operating state of the compressor 3. More specifically, the minimum air volume calculation unit 23 is calculated using a flow rate variable (refrigerating capacity) representing the operating state of the compressor 3 and a pressure variable (lift head).
Well-known techniques may be employed for current wind power calculation and minimum air flow calculation.
 補正指令演算部24は、風量演算部22によって演算した現在の風量と、最小風量演算部23によって演算された必要最小風量とに基づいて補正開度指令値(補正CV値)を演算する。具体的には、補正指令演算部24は、現在の風量が必要最小風量以上である場合には、補正開度指令値をゼロに設定し、現在の風量が必要最小風量未満の場合には、現在の風量と必要最低風量との差分に応じた補正開度指令値を演算する。補正指令演算部24は、例えば、現在の風量と必要最低風量との差分を補正開度指令値として算出する。 The correction command calculation unit 24 calculates a correction opening degree command value (corrected CV value) based on the current air volume calculated by the air volume calculation unit 22 and the necessary minimum air volume calculated by the minimum air volume calculation unit 23. Specifically, the correction command calculation unit 24 sets the correction opening command value to zero when the current air volume is equal to or more than the required minimum air volume, and when the current air volume is less than the required minimum air volume, A corrected opening degree command value is calculated according to the difference between the current air volume and the required minimum air volume. The correction command computation unit 24 calculates, for example, the difference between the current air volume and the required minimum air volume as a corrected opening degree command value.
 開度指令演算部25は、基準指令演算部21によって算出された基準開度指令値(基準CV値)と補正指令演算部24によって算出された補正開度指令値(補正CV値)とを加算した値を開度指令値(CV値)として算出する。これにより、膨張弁7の開度が開度指令値に基づいて制御される。 The opening command calculator 25 adds the reference opening command value (reference CV value) calculated by the reference command calculator 21 and the corrected opening command value (corrected CV value) calculated by the correction command calculator 24. The calculated value is calculated as an opening degree command value (CV value). Thus, the opening degree of the expansion valve 7 is controlled based on the opening degree command value.
 図3は、風量(∝冷凍能力)と開度指令値(CV値)との関係を示した図である。図3に示すように、風量が必要最小風量以上の領域では、風量に応じた開度指令値が設定される。すなわち、風量が大きいほど、開度指令値も大きな値に設定される。これに対し、風量が必要最小風量未満の領域では、風量が小さくなるほど、開度指令値は大きな値に設定される。これは、この領域では、風量が小さくなるほど必要最小風量との差分が大きくなり、補正開度指令値が大きな値をとるためである。 FIG. 3 is a diagram showing the relationship between the air flow rate (∝ refrigeration capacity) and the opening degree command value (CV value). As shown in FIG. 3, in the region where the air volume is equal to or more than the necessary minimum air volume, an opening degree command value corresponding to the air volume is set. That is, the opening degree command value is also set to a larger value as the air volume is larger. On the other hand, in the region where the air volume is less than the required minimum air volume, the opening degree command value is set to a larger value as the air volume decreases. This is because, in this region, as the air volume decreases, the difference from the required minimum air volume increases, and the correction opening degree command value takes a large value.
 このような膨張弁7の制御が行われることにより、現在の風量が必要最小風量未満の領域では、図4に示すように、気液二相の領域において膨張弁7による冷媒の減圧が行われる。具体的には、図4に示した冷媒のモリエル線図において、圧縮機3の出口圧力の等圧線と飽和液線との交点に対応する比エンタルピーの点Aよりも高い比エンタルピーを持つ冷媒の状態で冷媒が減圧させられる。 By controlling the expansion valve 7 as described above, the expansion valve 7 decompresses the refrigerant in the gas-liquid two-phase region as shown in FIG. 4 in the region where the current air volume is less than the required minimum air volume. . Specifically, in the Mollier diagram of the refrigerant shown in FIG. 4, the state of the refrigerant having a specific enthalpy higher than the point A of the specific enthalpy corresponding to the intersection of the pressure line of the outlet pressure of the compressor 3 and the saturated liquid line. The refrigerant is depressurized in
 これにより、現在の風量が必要最小風量未満の領域では、必要最小風量を確保するために必要となるガス冷媒が液冷媒とともに膨張弁7から蒸発器9に導かれることとなる。この結果、要求冷凍能力を満足することができるとともに、必要最小風量以上を確保することができ、低負荷における圧縮機の安定運転を実現させることが可能となる。 As a result, in the region where the current air volume is less than the required minimum air volume, the gas refrigerant required to secure the required minimum air volume is led from the expansion valve 7 to the evaporator 9 together with the liquid refrigerant. As a result, the required refrigeration capacity can be satisfied, and at least the required minimum air volume can be secured, and stable operation of the compressor at low load can be realized.
 以上説明したように、本実施形態に係る冷凍サイクルの制御装置、熱源装置、及びその制御方法によれば、現在の風量が必要最小風量以上である場合には、補正開度指令値はゼロに設定されるため、膨張弁7の開度は、基準開度指令値(=開度指令値)に基づいて制御される。一方、現在の風量が必要最小風量未満である場合には、基準開度指令値に対して現在の風量と必要最小風量との差分に応じた補正開度指令値が加算された開度指令値によって膨張弁7の開度が制御される。すなわち、現在の風量が必要最小風量未満である場合には、膨張弁7の開度が増加する方向に制御される(図3参照)。これにより、必要最小風量を確保するために必要となるガス冷媒が液冷媒とともに膨張弁7から蒸発器9に導かれることとなる。この結果、要求冷凍能力を満足することができるとともに、低負荷における圧縮機の安定運転を実現させることができる。 As described above, according to the control device, the heat source device, and the control method of the refrigeration cycle according to the present embodiment, when the current air volume is equal to or more than the required minimum air volume, the correction opening command value is set to zero. Since it is set, the opening degree of the expansion valve 7 is controlled based on the reference opening degree command value (= opening degree command value). On the other hand, when the current air volume is less than the required minimum air volume, an opening degree command value obtained by adding a corrected opening degree command value according to the difference between the current air volume and the required minimum air volume to the reference opening degree command value Thus, the opening degree of the expansion valve 7 is controlled. That is, when the current air volume is less than the required minimum air volume, the opening degree of the expansion valve 7 is controlled to increase (see FIG. 3). As a result, the gas refrigerant necessary for securing the necessary minimum air flow rate is led from the expansion valve 7 to the evaporator 9 together with the liquid refrigerant. As a result, the required refrigeration capacity can be satisfied, and stable operation of the compressor at low load can be realized.
 本実施形態においては、基準指令演算部21及び補正指令演算部24がその時々の要求冷凍負荷や圧縮機の運転状態等に応じて開度指令値を演算する場合を例示して説明したが、この例に限られず、例えば、図3に示したような風量(∝冷凍能力)と開度指令値(CV値)とが関連付けられた開度指令情報を予め用意しておき、この開度指令情報から現在の要求冷凍能力(風量)に対応する開度指令値を決定することとしてもよい。図3において、開度指令値は、要求冷凍能力に応じた基準開度指令値に圧縮機3の必要最小風量に対する補正開度指令値が加算された開度指令値とされている。 In the present embodiment, the case where the reference command calculation unit 21 and the correction command calculation unit 24 calculate the opening degree command value according to the required refrigeration load at that time, the operating state of the compressor, etc. The present invention is not limited to this example, and for example, opening degree instruction information in which the air volume (the freezing capacity) and the opening degree command value (CV value) as shown in FIG. 3 are associated is prepared in advance. An opening degree command value corresponding to the current required refrigeration capacity (air volume) may be determined from the information. In FIG. 3, the opening degree command value is an opening degree command value obtained by adding a correction opening degree command value for the required minimum air flow of the compressor 3 to a reference opening degree command value corresponding to the required refrigeration capacity.
〔他の実施形態〕
 本実施形態においては、1段圧縮の圧縮機3を用いる場合を例示して説明したが、例えば、図5に示すように、ターボ冷凍機1’は、2段圧縮型の圧縮機3’を採用し、更に、凝縮器5と蒸発器9との間に設けられた中間冷却器15を備えていてもよい。他の構成については、図1に示したターボ冷凍機1と同様であるので、共通の符号を付し説明を省略する。
 他の実施形態に係るターボ冷凍機1’では、凝縮器5と中間冷却器15との間に第1膨張弁7aが設けられ、中間冷却器15と蒸発器9との間に第2膨張弁7bが設けられる。中間冷却器15におけるガス冷媒は、2段目の圧縮機の入口側に供給される構成とされている。第1膨張弁7a及び第2膨張弁7bの弁開度は制御装置10’によって制御される。第1膨張弁7a及び第2膨張弁7bの具体的な制御方法については、上述の実施形態と同様であるので、説明を省略する。このように、本発明における膨張弁の制御は、2段圧縮型の圧縮機3’を用いる熱源装置に対しても適用可能であり、その時の冷媒のモリエル線図における冷媒状態は図6に示すような軌跡となる。図6は、2段圧縮型の圧縮機3’を採用する場合の冷媒のモリエル線図において、現在の風量が必要最低風量未満の場合における冷媒特性を示している。図6に示すように、第1膨張弁7aも第2膨張弁7bも気液二相の領域、すなわち、圧縮機3’の1段目の出口圧力の等圧線と飽和液線との交点に対応する比エンタルピーの点B、圧縮機3’の2段目の出口圧力の等圧線と飽和液線との交点に対応する比エンタルピーの点Cよりもそれぞれ高い比エンタルピーを持つ冷媒の状態で冷媒の減圧を行うように、制御装置10’によって弁開度が制御される。
 これにより、必要最小風量を確保するために必要となるガス冷媒が蒸発器9に導かれることとなり、要求冷凍能力を満足することができるとともに、低負荷における圧縮機の安定運転を実現させることができる。
Other Embodiments
In the present embodiment, the case where the compressor 3 of one-stage compression is used is described as an example, but as shown in FIG. 5, for example, the turbo refrigerator 1 ′ is a two-stage compression type compressor 3 ′. It may be further provided with an intercooler 15 provided between the condenser 5 and the evaporator 9. The other configuration is the same as that of the turbo refrigerator 1 shown in FIG.
In a turbo refrigerator 1 'according to another embodiment, a first expansion valve 7a is provided between the condenser 5 and the intercooler 15, and a second expansion valve is provided between the intercooler 15 and the evaporator 9. 7b is provided. The gas refrigerant in the intercooler 15 is supplied to the inlet side of the second stage compressor. The opening degree of the first expansion valve 7a and the second expansion valve 7b is controlled by the control device 10 '. About the concrete control method of the 1st expansion valve 7a and the 2nd expansion valve 7b, since it is the same as that of the above-mentioned embodiment, it omits explanation. Thus, the control of the expansion valve in the present invention is also applicable to a heat source apparatus using a two-stage compression type compressor 3 ', and the refrigerant state in the Mollier diagram of the refrigerant at that time is shown in FIG. It becomes like a track. FIG. 6 shows a refrigerant characteristic in the case where the current air volume is less than the required minimum air volume in the Mollier chart of the refrigerant in the case of employing the two-stage compression type compressor 3 '. As shown in FIG. 6, both the first expansion valve 7a and the second expansion valve 7b correspond to the gas-liquid two-phase region, that is, the intersection of the isobar of the first stage outlet pressure of the compressor 3 'and the saturated liquid line. Depressurization of the refrigerant in the state of a refrigerant having a specific enthalpy higher than that of the specific enthalpy corresponding to the point of specific enthalpy B and the point of intersection of the pressure line of the outlet of the second stage of the compressor 3 'and the saturated liquid line Thus, the valve opening degree is controlled by the control device 10 '.
As a result, the gas refrigerant required to secure the necessary minimum air volume is introduced to the evaporator 9, so that the required refrigeration capacity can be satisfied, and stable operation of the compressor at low load can be realized. it can.
1、1’ ターボ冷凍機
3、3’ 圧縮機
5 凝縮器
7 膨張弁
7a 第1膨張弁
7b 第2膨張弁
9 蒸発器
10、10’ 制御装置
15 中間冷却器
DESCRIPTION OF SYMBOLS 1, 1 'Turbo refrigerator 3, 3' Compressor 5 Condenser 7 Expansion valve 7a 1st expansion valve 7b 2nd expansion valve 9 Evaporator 10, 10 'Control apparatus 15 Intercooler

Claims (6)

  1.  冷媒を圧縮する圧縮機と、
     前記圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
     前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、
     前記膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
    を備えた冷凍サイクルの制御装置であって、
     現在の実冷凍能力を用いて現在の風量を演算する風量演算部と、
     前記圧縮機の運転状態に関するパラメータを用いて前記圧縮機の必要最小風量を演算する最小風量演算部と、
     前記現在の風量が前記圧縮機の必要最小風量未満である場合に、前記膨張弁の開度を増加させる方向に制御する冷凍サイクルの制御装置。
    A compressor for compressing a refrigerant,
    A condenser for condensing the refrigerant compressed by the compressor;
    An expansion valve that expands liquid refrigerant introduced from the condenser;
    An evaporator for evaporating the refrigerant expanded by the expansion valve;
    Control device of a refrigeration cycle provided with
    An air volume calculator that calculates the current air volume using the current actual refrigeration capacity;
    A minimum air volume calculation unit that calculates a required minimum air volume of the compressor using a parameter related to the operating state of the compressor;
    A control device of a refrigeration cycle which performs control to increase the opening degree of the expansion valve when the current air volume is less than a required minimum air volume of the compressor.
  2.  要求冷凍能力に応じた基準開度指令値を演算する基準指令演算部と、
     前記現在の風量と前記圧縮機の必要最小風量との差分に応じた補正開度指令値を演算する補正指令演算部と、
     前記基準開度指令値と前記補正開度指令値とを加算し、前記膨張弁の開度指令値を演算する開度指令値演算部と、
    を備える請求項1に記載の冷凍サイクルの制御装置。
    A reference command calculation unit that calculates a reference opening command value according to the required refrigeration capacity;
    A correction command calculation unit that calculates a correction opening degree command value according to a difference between the current air volume and the required minimum air volume of the compressor;
    An opening command value calculation unit that calculates the opening command value of the expansion valve by adding the reference opening command value and the correction opening command value;
    The control device of the refrigeration cycle according to claim 1, comprising:
  3.  要求冷凍能力に応じた基準開度指令値に前記圧縮機の必要最小風量に対する補正開度指令値が加算された開度指令値と、前記要求冷凍能力とが対応付けられた開度指令情報を有し、
     前記開度指令情報から現在の要求冷凍能力に対応する開度指令値を決定する請求項1に記載の冷凍サイクルの制御装置。
    Opening command information in which the opening command value obtained by adding the correction opening command value for the required minimum air flow of the compressor to the reference opening command value corresponding to the required refrigeration capacity, and the required refrigeration capacity are associated Have
    The control device for a refrigeration cycle according to claim 1, wherein an opening degree command value corresponding to a current required refrigeration capacity is determined from the opening degree command information.
  4.  前記冷凍サイクルは、前記凝縮器と前記蒸発器との間に設けられた中間冷却器を備え、前記膨張弁は、前記凝縮器と中間冷却器との間に設けられた第1膨張弁と、前記中間冷却器と前記蒸発器との間に設けられた第2膨張弁とを備え、
     前記現在の風量が前記圧縮機の必要最小風量未満である場合に、前記第1膨張弁の開度及び前記第2膨張弁の開度を増加させる方向にそれぞれ制御する請求項1に記載の冷凍サイクルの制御装置。
    The refrigeration cycle includes an intercooler provided between the condenser and the evaporator, and the expansion valve is a first expansion valve provided between the condenser and the intercooler. A second expansion valve provided between the intercooler and the evaporator;
    The refrigeration according to claim 1, wherein the opening degree of the first expansion valve and the opening degree of the second expansion valve are respectively controlled to be increased when the current air volume is less than the required minimum air volume of the compressor. Controller of cycle.
  5.  請求項1から4のいずれかに記載の冷凍サイクルの制御装置を備える熱源装置。 The heat-source apparatus provided with the control apparatus of the refrigerating cycle in any one of Claims 1-4.
  6.  冷媒を圧縮する圧縮機と、
     前記圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
     前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、
     前記膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
    を備えた冷凍サイクルの制御方法であって、
     現在の実冷凍能力を用いて現在の風量を演算し、
     前記圧縮機の運転状態に関するパラメータを用いて前記圧縮機の必要最小風量を演算し、
     前記現在の風量が前記圧縮機の必要最小風量未満である場合に、前記膨張弁の開度を増加させる方向に制御する冷凍サイクルの制御方法。
    A compressor for compressing a refrigerant,
    A condenser for condensing the refrigerant compressed by the compressor;
    An expansion valve that expands liquid refrigerant introduced from the condenser;
    An evaporator for evaporating the refrigerant expanded by the expansion valve;
    A control method of a refrigeration cycle provided with
    Calculate the current air volume using the current actual refrigeration capacity,
    The required minimum air volume of the compressor is calculated using parameters related to the operating state of the compressor,
    The control method of the refrigerating cycle controlled to the direction to which the opening degree of the said expansion valve is made to be increased, when the present air volume is less than the required minimum air volume of the said compressor.
PCT/JP2018/038256 2017-10-20 2018-10-15 Refrigeration cycle control device, heat source device, and control method therefor WO2019078138A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/614,525 US20200173693A1 (en) 2017-10-20 2018-10-15 Control device of refrigerating cycle, heat source device, and control method therefor
CN201880032929.9A CN110637202B (en) 2017-10-20 2018-10-15 Control device for refrigeration cycle, heat source device, and control method for heat source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-203806 2017-10-20
JP2017203806A JP6987598B2 (en) 2017-10-20 2017-10-20 Refrigeration cycle control device, heat source device, and its control method

Publications (1)

Publication Number Publication Date
WO2019078138A1 true WO2019078138A1 (en) 2019-04-25

Family

ID=66174051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038256 WO2019078138A1 (en) 2017-10-20 2018-10-15 Refrigeration cycle control device, heat source device, and control method therefor

Country Status (4)

Country Link
US (1) US20200173693A1 (en)
JP (1) JP6987598B2 (en)
CN (1) CN110637202B (en)
WO (1) WO2019078138A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022032788A (en) 2020-08-14 2022-02-25 日本電気株式会社 Cooling device, cooling system, and cooling method
CN112097424B (en) * 2020-09-17 2024-03-19 珠海格力电器股份有限公司 Refrigerating system, air supplementing control method and device and air conditioning equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201189A (en) * 2000-01-20 2001-07-27 Toho Gas Co Ltd Control device for circulating refrigerant amount of heat pump
JP2015111020A (en) * 2013-12-06 2015-06-18 シャープ株式会社 Air conditioner
JP2016080329A (en) * 2014-10-22 2016-05-16 ダイキン工業株式会社 Air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266635A (en) * 2005-03-25 2006-10-05 Saginomiya Seisakusho Inc Control device for cooling system
JP5244420B2 (en) * 2008-02-28 2013-07-24 三菱重工業株式会社 Turbo refrigerator, heat source system, and control method thereof
JP2012202672A (en) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd Expansion valve control device, heat source machine, and expansion valve control method
JP5981180B2 (en) * 2012-03-21 2016-08-31 荏原冷熱システム株式会社 Turbo refrigerator and control method thereof
CN105571181B (en) * 2016-01-12 2017-11-28 珠海格力电器股份有限公司 Variable-frequency centrifugal water chilling unit and control and adjustment method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201189A (en) * 2000-01-20 2001-07-27 Toho Gas Co Ltd Control device for circulating refrigerant amount of heat pump
JP2015111020A (en) * 2013-12-06 2015-06-18 シャープ株式会社 Air conditioner
JP2016080329A (en) * 2014-10-22 2016-05-16 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
CN110637202B (en) 2021-08-03
JP6987598B2 (en) 2022-01-05
JP2019078429A (en) 2019-05-23
US20200173693A1 (en) 2020-06-04
CN110637202A (en) 2019-12-31

Similar Documents

Publication Publication Date Title
JP5984703B2 (en) Control device and control method for heat source system and cooling water supply device
JP5244420B2 (en) Turbo refrigerator, heat source system, and control method thereof
JP5558400B2 (en) Heat source system and number control method for heat source system
WO2013129464A1 (en) Number-of-machines control device for heat source system, method therefor, and heat source system
US8336324B2 (en) Turbo chiller and control method therefor
JP5495499B2 (en) Turbo refrigerator, refrigeration system, and control method thereof
JP5554277B2 (en) Heat medium flow rate estimation device, heat source machine, and heat medium flow rate estimation method
WO2010024178A1 (en) Heat source system and control method therefor
JP2007298235A (en) Heat source system and its control method
WO2012090579A1 (en) Heat source system and control method therefor
JP4167190B2 (en) Refrigeration system and operation method thereof
WO2019078138A1 (en) Refrigeration cycle control device, heat source device, and control method therefor
JP6656801B2 (en) Two-stage compression refrigeration cycle device, control device thereof, and control method
JP2016090143A (en) Two-stage compression type refrigeration cycle, and its control device and control method
JP2012202581A (en) Refrigeration cycle device and control method thereof
JP6548890B2 (en) Control device of refrigeration cycle, refrigeration cycle, and control method of refrigeration cycle
JP5227919B2 (en) Turbo refrigerator
JP2006284034A (en) Air conditioner and its expansion valve control method
JP2006284057A (en) Air conditioner and its operating method
JP2008096072A (en) Refrigerating cycle device
JP2017122556A (en) Two-stage compression type refrigeration cycle device, control device/method thereof, and control program
JP6219160B2 (en) Turbo chiller maximum load factor calculation device and method, heat source system and number control method thereof
JP2011169532A (en) Refrigerator unit and method of controlling the same
JP6415019B2 (en) Air conditioner
JP2009115385A (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867726

Country of ref document: EP

Kind code of ref document: A1