WO2019077977A1 - Rotary electric machine, rotary electric machine drive system provided therewith, and railroad car - Google Patents

Rotary electric machine, rotary electric machine drive system provided therewith, and railroad car Download PDF

Info

Publication number
WO2019077977A1
WO2019077977A1 PCT/JP2018/036564 JP2018036564W WO2019077977A1 WO 2019077977 A1 WO2019077977 A1 WO 2019077977A1 JP 2018036564 W JP2018036564 W JP 2018036564W WO 2019077977 A1 WO2019077977 A1 WO 2019077977A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling fan
rotating electrical
electrical machine
magnetic force
shaft
Prior art date
Application number
PCT/JP2018/036564
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 誠
暁史 高橋
愼治 杉本
達拡 田村
侑来 芝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019077977A1 publication Critical patent/WO2019077977A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/26Structural association of machines with devices for cleaning or drying cooling medium, e.g. with filters

Definitions

  • the present invention relates to a rotating electrical machine, a rotating electrical machine drive system including the same, and a railway vehicle.
  • a rotating electric machine that is not sufficiently cooled only by natural heat radiation to the surrounding medium is provided with a cooling fan.
  • the cooling fan is rigidly coupled on the shaft of the rotating electrical machine, and the rotating electrical machine and the fan rotate synchronously.
  • the cooling fan generates forced convection and cools the rotating electrical machine.
  • the air volume of the cooling fan rotating in synchronization with such a rotating electrical machine increases in proportion to the rotational speed of the rotating electrical machine.
  • a cooling fan In the case of a rotating electrical machine operating at variable speeds, such as a railway main motor, a cooling fan is designed so that a sufficient air volume can be obtained even with a small number of rotations, in order to ensure cooling performance at medium and low speeds.
  • Patent Document 1 discloses a technology in which a cooling fan is installed on a shaft of a rotating electrical machine via a bearing, and a permanent magnet provided on the cooling fan and a magnetic body provided on a rotor face each other.
  • Patent Document 1 by connecting a cooling fan and a shaft of a rotating electrical machine with a bearing, the cooling fan is asynchronously rotated with respect to the rotating electrical machine, and noise at the time of high speed rotation of the rotating electrical machine is reduced.
  • the magnetic force is generated at a position radially separated from the support position of the cooling fan, that is, the bearing position, so an excitation force vector due to imbalance of the magnetic force and an excitation force from the bearing A rotational moment corresponding to the outer product of the position vector up to the action point is generated in the cooling fan.
  • the cooling fan vibrates due to the rotational moment.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a rotating electrical machine in which noise of a cooling fan due to unbalance in magnetic force is reduced and wear of a bearing is suppressed.
  • the present invention is characterized in that, in a rotating electrical machine including a stator, a rotor, and a shaft fixed to the rotor, a plurality of bearings attached to the shaft A cooling fan rotatably supported by the plurality of bearings; and a magnetic force generator for synchronously or asynchronously rotating the shaft and the cooling fan, wherein the magnetic force generator includes a space between the plurality of bearings. It is to have arranged.
  • FIG. 1 is a cross-sectional view showing a rotating electrical machine according to a first embodiment of the present invention. It is a fragmentary sectional view in FIG. FIG. 1 is a cross-sectional view showing a rotating electrical machine provided with an auxiliary fan according to a first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a rotating electrical machine provided with an outer fan according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is a modification of AA sectional drawing in FIG. It is a modification of AA sectional drawing in FIG.
  • FIG. 1 is a cross-sectional view of a rotary electric machine according to a first embodiment of the present invention.
  • FIG. 2 is a partially enlarged view of FIG.
  • the rotary electric machine 100 includes a stator 101, a rotor 102 rotatably supported radially inward of the stator 101, a shaft 103 fixed to the rotor 102, and a frame covering the stator 101 and the rotor 102. And 104 are provided.
  • the stator 101 is wound around a stator core 105 configured by laminating a plurality of electromagnetic steel sheets, a plurality of stator slots 106 provided in the circumferential direction of the inner peripheral portion of the stator core 105, and the stator slots 106. It comprises a mounted stator winding 107.
  • the stator core 105 may be configured by an integrally molded solid member.
  • the winding method of the stator winding 107 may be any winding method capable of generating concentrated winding, distributed winding or a rotating magnetic field, and in the case of distributed winding, this embodiment can be applied to either short joint winding or full pitch winding. You can get the effect of In the present embodiment, stator core pressers 108 are provided on both end surfaces of the stator core 105.
  • the rotor 102 is fixed to the shaft 103 and rotates with the shaft 103.
  • the stator 101 and the rotor 102 have the same central axis.
  • An air gap 109 is provided between the stator 101 and the rotor 102 so as not to contact each other.
  • the rotor 102 includes a rotor core 110 configured by laminating a plurality of electromagnetic steel sheets, and a magnetic pole portion (not shown).
  • the magnetic pole portions are provided with a plurality of rotor slots 111 provided in the circumferential direction of the outer peripheral portion of the rotor core 110, a plurality of rotor bars 112 inserted in the rotor slots 111 and extending in the axial direction, and a plurality of rotor bars It is comprised from the end ring 113 which fixes both ends of 112.
  • the rotor core 110 may be composed of an integrally molded solid member.
  • the rotor bar 112 and the end ring 113 are made of an electrical conductor, and for example, copper, aluminum or the like is used.
  • the end ring 113 may be any connection method as long as the plurality of rotor bars 112 are electrically connected.
  • the rotor bar 112 and the end ring 113 may be integrally formed, or may be formed of separate members and connected by means such as brazing.
  • FIG. 1 illustrates the rotor structure of a squirrel cage induction motor as the structure of the magnetic pole portion (not shown), a structure using saliency of the rotor core 110, for example, a switched reluctance motor or a synchronous reluctance motor
  • the magnetic pole portion may be used.
  • any configuration of the magnetic pole of a surface magnet type motor or an embedded magnet type motor in which at least one or more permanent magnets are disposed in the magnetic pole portion, or any other magnetic pole portion of a winding field synchronous motor good.
  • the shaft 103 is rotatably supported by bearings 116 and 117 at both ends of the frame 104.
  • the bearing 116 on the side to which the load is connected is defined as the load side bearing
  • the bearing 117 on the side to which the other load is not connected is defined as the non-load side bearing.
  • a cooling fan 200 is disposed in addition to the above components.
  • the cooling fan 200 has a function of flowing cooling air outside or inside the rotary electric machine 100.
  • Cooling fan 200 shown in FIG. 1 has a function of flowing cooling air inside rotary electric machine 100.
  • the rotor 102 is provided with a vent 118 penetrating in the axial direction.
  • the cooling fan 200 rotates, the fluid drawn by the cooling fan 200 passes through the vent 118 and circulates inside the frame 104 as indicated by the arrow. Fluid circulates the inside of the frame 104 to cool the stator 101 and the rotor 102. An uneven gap is formed between the frame 104 and the cooling fan 200 to constitute a labyrinth seal 120.
  • the configuration of the cooling fan 200 may include the auxiliary fan 201 (201a, 201b) as shown in FIG. 3, for example.
  • FIG. 3 is a cross-sectional view showing a rotary electric machine provided with an auxiliary fan according to the first embodiment of the present invention.
  • an auxiliary fan 201 a is attached to the cooling fan 200.
  • An intake port 125 a and an exhaust port 126 a are formed in the frame 104.
  • a gap 127 is formed between the auxiliary fan 201 a and the frame 104.
  • an auxiliary fan support portion 202 is attached to the shaft 103.
  • the auxiliary fan support 202 rotates in synchronization with the rotation of the shaft 103.
  • An auxiliary fan 201 b is attached to the auxiliary fan support portion 202.
  • An intake port 125 b and an exhaust port 126 b are formed in the frame 104.
  • the auxiliary fan support portion 202 is rotated, the auxiliary fan 201b is also rotated, and external air is sucked into the housing space of the auxiliary fan 201b through the air inlet 125b.
  • the sucked air cools the bearing 116 and is then exhausted from the exhaust port 126 b to the outside.
  • a gap of asperity is formed between the frame 104 and the auxiliary fan support portion 202, and a labyrinth seal 120b is configured.
  • the flow of air sucked by the cooling fan 200 is the same as that in FIG.
  • FIG. 4 is a cross-sectional view showing a rotating electrical machine provided with an outer fan according to the first embodiment of the present invention.
  • a cooling fan 200 is attached to the shaft 103.
  • the cooling fan 200 rotates in synchronization with the shaft 103.
  • An air inlet 125 a and an air outlet 126 a are formed in an inner frame 104 b of the frame 104.
  • the auxiliary fan 201a is also rotated, and external air is sucked into the storage space of the auxiliary fan 201a through the air inlet 125a.
  • the sucked air cools the bearing 117 and is then exhausted from the exhaust port 126a to the outside.
  • a gap of asperity is formed between the inner frame 104b and the cooling fan 200, and constitutes a labyrinth seal 120a.
  • an auxiliary fan support 202 is attached to the shaft 103 via a bearing 210.
  • the auxiliary fan 201 b is attached to the auxiliary fan support portion 202.
  • the auxiliary fan support portion 202 is formed along the inner frame 104 b. Then, a gap of asperity is formed between the inner frame 104 b and the auxiliary fan support portion 202 to constitute a labyrinth seal 120 b.
  • a gap 127 is formed between the auxiliary fan 201b and the outer frame 104a.
  • An intake port 125 b is formed in the outer frame 104 a.
  • an exhaust port 126 b and a ventilation path 128 are formed between the outer frame 104 a and the inner frame 104 b.
  • a plurality of bearings 210 are disposed between the shaft 103 and the cooling fan 200 (the auxiliary fan support 202 in FIG. 4), and the cooling fan 200 (the auxiliary fan support 202). ) Is rotatably supported on the shaft 103.
  • the bearing 210 between the shaft 103 and the cooling fan 200 (auxiliary fan support 202) is illustrated as a load-side bearing 210a and a non-load-side bearing 210b. It may be three or more, and is not limited to two.
  • a magnetic force generator 220 is installed between the plurality of bearings 210 (between the bearings 210 a and 210 b).
  • the magnetic force generator 220 has a function to couple the outer peripheral side of the shaft 103 and the inner peripheral side of the cooling fan 200 by magnetic force.
  • the outer peripheral side of the shaft 103 is defined as a magnetic force generating unit 221
  • the inner peripheral side of the cooling fan 200 is defined as a magnetic force generating unit 222.
  • An air gap 223 is provided between the magnetic force generating portion 221 and the magnetic force generating portion 222, and is disposed so as not to be in direct contact with each other.
  • the magnetic force generation unit 221 and the magnetic force generation unit 222 face each other.
  • FIGS. 5 to 7 sectional view taken along the line AA in FIG. 1).
  • 5a to 5c are cross-sectional views taken along line AA in FIG. 6 and 7 are modifications of the AA cross section in FIG. The same applies to the configuration of the magnetic force generator 220 of FIGS. 3 and 4.
  • FIG. 5a shows an example in which the magnetic force generating portion 221 is configured by four-pole annular permanent magnets 221a, 221b, 221c, 221d and the magnetic force generating portion 222 by an annular conductor 222f.
  • FIG. 5a when the shaft 103 rotates, an induced current is generated in the conductor 222f, and a magnetic pole is generated in the conductor 222f.
  • magnetic attraction and repulsion are generated between the permanent magnets 221a, 221b, 221c, 221d and the conductor 222f, and the cooling fan 200 is driven. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG.
  • the number of permanent magnets 221a, 221b, 221c and 221d is four as an example, but not limited to this, it may be two or six or more magnetic poles. Further, although the permanent magnets 221a, 221b, 221c, and 221d are shown as one annular permanent magnet in FIG. 5a, each pole may be configured by a separate permanent magnet, and one pole is a plurality of permanent magnets.
  • the permanent magnets 221a, 221b, 221c, and 221d are formed of a plurality of permanent magnets, it is preferable to hold the outer peripheral portion of the permanent magnets 221a, 221b, 221c, and 221d by a retaining ring 225 as illustrated in FIG.
  • the permanent magnet holding member 227 having the slots 226a, 226b, 226c, and 226d is fixed to the shaft 103, and the permanent magnets 221a, 221b, and 226d are respectively fixed to the slots 226a, 226b, 226c, and 226d.
  • the components 221 c and 221 d may be inserted and held.
  • the permanent magnets 221a, 221b, 221c, and 221d may be bonded to the shaft 103 using an adhesive or the like. It is necessary to prevent the permanent magnets 221a, 221b, 221c, and 221d from being scattered when the shaft 103 is rotated using any means.
  • the conductor 222f any material may be used as long as it is a material with high electrical conductivity, and when the component of the cooling fan 200 is a conductor, the cooling fan 200 and the conductor 222f are necessarily separate members. It is not necessary and may be integrally formed.
  • the magnetic force generating portion 222 may be a magnetic material having hysteresis characteristics instead of the conductor 222f. In this case, a suction force and a repulsive force are generated by the magnetic interaction between the residual magnetic flux of the permanent magnets 221a, 221b, 221c, and 221d and the residual magnetic flux of the magnetic material, and the cooling fan 200 can be driven.
  • FIG. 6 shows an example in which the magnetic force generating portion 221 is configured by four permanent magnets 221a, 221b, 221c and 221d having four poles and the magnetic force generating portion 222 is formed by annular permanent magnets 222a, 222b, 222c and 222d.
  • torque is generated by the magnetic attraction and repulsion between the permanent magnets 221 a, 221 b, 221 c, 221 d and the permanent magnets 222 a, 222 b, 222 c, 222 d to drive the cooling fan 200. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG.
  • the number of poles of the permanent magnets 221a, 221b, 221c, 221d and the permanent magnets 222a, 222b, 222c, 222d is four by way of example, but the number is not limited to this.
  • the magnetic pole configuration of Also, the permanent magnets may have different numbers of poles.
  • the permanent magnets 221a, 221b, 221c, 221d and the permanent magnets 222a, 222b, 222c, 222d are shown as one annular permanent magnet in FIG. 6, each pole is constituted by a separate permanent magnet. Also, one pole may be constituted by a plurality of permanent magnets. The fixing of the separated permanent magnet is the same as the method shown in the description of FIG.
  • FIG. 7 shows an example in which two-pole annular permanent magnets 221 a and 221 b are formed as the magnetic force generating portion 221 and a magnetic body 222 h having saliency as the magnetic force generating portion 222.
  • a torque is generated by the attraction between the permanent magnets 221a and 221b and the magnetic body 222h, and the cooling fan 200 is driven. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG. 7, when the shaft 103 is stationary, the cooling fan 200 is balanced with a stable force in which the magnetic pole centers of the permanent magnets 221 a and 221 b and the projections of the magnetic body 222 h face each other. Stand still.
  • the number of poles of the permanent magnets 221a and 221b is two as an example, but not limited to this, it may be a magnetic pole configuration having four or more poles. Further, although the permanent magnets 221a and 221b are shown as one annular permanent magnet in FIG. 7, each pole may be constituted by a separate permanent magnet, and one pole is constituted by a plurality of permanent magnets. It is good. The fixing of the separated permanent magnets 221a and 221b is the same as the method shown in the description of FIG.
  • FIG. 8 is a partially enlarged view showing the relationship of vectors according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing the relationship of vectors of the one-end support structure.
  • the cooling fan 200 has a both-ends support structure in which both ends on the load side and the non-load side are restrained by the bearings 210 with the magnetic force generator 220 as a center, and the vibration of the cooling fan 200 is suppressed. It has a mechanism.
  • the position vectors r2 of are directed in substantially opposite directions to each other. Therefore, the rotational moment about the load-side bearing 210a represented by the outer product of the excitation force vector F and the position vector r1 and the anti-load side represented by the outer product of the excitation force vector F and the position vector r2
  • the rotational moments trying to rotate around the bearing 210b of the two cancel each other. Thereby, even if the imbalance of the magnetic force occurs in the magnetic force generator 220, the vibration of the cooling fan 200 can be suppressed.
  • the cooling fan 200 vibrates relative to the other members of the rotary electric machine 100 even when the bearing 210 with the same clearance is used compared to the one-end support structure. Can be suppressed. This can suppress not only the imbalance of the magnetic force, but also the vibration from the other external environment and the like.
  • the cooling fan 200 has a structure that hardly vibrates, so for example, the gap of the labyrinth seal 120 shown in FIGS. 1 to 4 or the auxiliary fan 201 and the frame 104 shown in FIG. Can be kept constant, and the flow of the cooling air can be made steady. If the flow of the cooling air is steady, it is difficult to generate a vortex around the blades of the cooling fan 200, and noise associated with the generation of the vortex can be reduced.
  • the cooling fan 200 rotates asynchronously, and a noise reduction effect can be obtained as much as the rotation speed is reduced. Furthermore, since it is not necessary to supply vibrational energy to generate noise, mechanical loss corresponding to this vibrational energy can be reduced.
  • the rotational speed upper limit value of the cooling fan 200 can be designed by unbalancing the shaft power of the cooling fan 200, which is a function of the rotational speed, and the magnetic torque of the magnetic force generator 220. It is possible to facilitate the design of the number of revolutions. As a result, the designer underestimates the unsteadiness of the shaft power of the cooling fan 200, the number of rotations of the cooling fan 200 becomes smaller than the design, and a sufficient cooling effect can not be obtained. To reduce the range of risks involved.
  • the cooling fan 200 is less likely to vibrate, it is possible to reduce the bearing wear due to the vibration force acting on the bearing 210 that supports the cooling fan 200.
  • the bearing life can be predicted from the load.
  • the excitation force applied to the bearing is large as in the conventional fan, it is difficult in design to consider the influence of the non-stationary excitation force. For this reason, since there is a possibility that the life of the bearing may be shortened, periodic maintenance of the bearing or replacement of the bearing is required.
  • the cooling fan 200 of this embodiment since the excitation force acting on the cooling fan 200 is small, the influence of the unsteady excitation force can be ignored compared to the load due to the fan mass acting on the bearing 210.
  • the lifetime can be designed as usual. For this reason, an appropriate bearing 210 can be selected, and maintenance for inspecting bearing wear and bearing replacement caused by bearing wear become unnecessary.
  • the magnetic force generation unit 221 is configured of a permanent magnet
  • the magnetic force generation unit 222 is configured of a conductor or a magnetic material having a hysteresis characteristic.
  • the magnetic force generation device 220 of the first embodiment has a rotational speed at which the axial power T1 of the cooling fan 200 and the torque T2 due to the magnetic force are balanced under any conditions when the cooling fan 200 and the shaft 103 rotate asynchronously.
  • the rotation of the cooling fan 200 can be continued. Therefore, according to the first embodiment, the fan characteristics of the cooling fan 200 can be stabilized, and the mechanical loss caused by the cooling fan 200 can be reduced and the noise can be reduced while obtaining a sufficient cooling effect.
  • Eddy current flows and heat is generated when the magnetic flux passing through the inside of the material changes in either the conductor or the magnetic material having hysteresis characteristics, but in the structure shown in this embodiment, the magnetic material having the conductor or hysteresis characteristics is cooled Being in contact with the fan 200, the heat generated by the eddy current can be released into the air via the cooling fan 200. Therefore, it is possible to prevent thermal degradation of the peripheral material due to heat generation and thermal demagnetization of the permanent magnets 221a, 221b, 221c, 221d facing the conductor or the magnetic material through the air gap 223.
  • the induced current I flowing inside the conductor is in proportion to the magnetic flux ⁇ of the permanent magnet and in inverse proportion to the electric resistance R of the conductor. Since the torque T2 generated by the magnetic force generator 220 is generally proportional to the product of the induced current I and the magnetic flux ⁇ , the torque T2 is proportional to the square of the magnetic flux ⁇ and inversely proportional to the electrical resistance R. Since such a simple relationship is established, the rotation number of the cooling fan 200 can be designed more easily by using a conductor, in particular, as the magnetic force generator 222.
  • the electric resistance R of the conductor can be reduced, so that the magnetic flux ⁇ necessary for producing the same torque T2 as the conductor having a small electric conductivity is reduced. it can. For this reason, the amount of permanent magnets can be reduced, the fan can be miniaturized, and the cost of magnet material can be reduced.
  • lightweight aluminum or aluminum alloy is used as the cooling fan 200 member.
  • the cooling fan 200 of aluminum or an aluminum alloy, the weight of the cooling fan 200 can be reduced, and the weight of the rotary electric machine 100 can be reduced.
  • the cooling fan 200 and the conductor can be integrally molded. Thereby, the number of parts and the number of manufacturing steps can be reduced, and the manufacturing cost can be reduced.
  • the magnetic force generator 220 has the inside air 160 heat-exchanged directly with the stator 101 and the rotor 102 by the plurality of bearings 210 (210a and 210b) and the outside of the frame 104. It is shielded from the outside air 170 which flows in from the inside.
  • the inside air 160 is generally at a high temperature due to heat exchange with heat generation of the stator 101, the rotor 102, and the like. In the conventional structure, since the permanent magnet is exposed directly to high temperature inner air, there is a risk that the permanent magnet may be thermally demagnetized.
  • the permanent magnet since the permanent magnet is not directly exposed to the internal air 160 and the air 180 around the permanent magnet is cooled by the cooling fan 200, the risk of heat demagnetization of the permanent magnet can be reduced.
  • the outside air 170 contains dust
  • magnetic dust such as iron powder adheres to the permanent magnet
  • the permanent magnet is not directly exposed to the outside air 170, there is no risk of magnetic dust adhering to the permanent magnet.
  • periodic maintenance and calibration such as cleaning and rotation tests should be performed to compensate for the rotational speed of the cooling fan. I need.
  • the cooling fan 200 can be used maintenance-free.
  • the fan characteristics are stabilized even if the magnetic force imbalance occurs.
  • the cooling fan 200 can be used free of maintenance.
  • FIG. 10 is a partial cross-sectional view showing a cooling fan of a rotary electric machine according to a second embodiment of the present invention and the periphery thereof. Descriptions of matters overlapping with the first embodiment will be omitted.
  • At least one annular groove 190 is provided on the inner diameter side of the cooling fan 200 located between the magnetic force generator 222 and the bearing 210.
  • annular groove 190a is provided between the load-side bearing 210a and the magnetic force generator 222
  • annular groove 190b is provided between the non-load-side bearing 210b and the magnetic force generator 222.
  • either one of the annular grooves may be provided, and a plurality of annular grooves 190 may be provided on one side.
  • the structure of the second embodiment includes a magnetic force generator 220, and magnetic force lines pass through the inside of the magnetic force generator 220.
  • the cooling fan 200 and the shaft 103 rotate asynchronously, the magnitudes and directions of the lines of magnetic force passing through the inside of the magnetic force generator 222 or the lines of magnetic force passing through both the magnetic force generator 221 and the magnetic force generator 222 pulsate. Due to the change in the lines of magnetic force, hysteresis loss or eddy current loss occurs when the magnetic force generation unit 222 is a magnetic body, and eddy current loss mainly occurs when the magnetic force generation unit 222 is a conductor, and the magnetic force generation occurs due to each loss.
  • the portion 222 locally generates heat and raises its temperature.
  • the heat is transmitted to the cooling fan 200 and the bearing 210 around it, and the temperature rises around the local heat generation part of the magnetic force generation part 222 as well. As a result of this temperature rise, each material undergoes thermal expansion in accordance with the linear expansion coefficient of each material.
  • the thermal expansion of the cooling fan 200 generates an axial force on the load-side bearing 210a and the non-load-side bearing 210b, causing the bearing 210 to There was a risk of damage.
  • the annular groove 190 is provided, even if the cooling fan 200 thermally expands, the displacement due to the thermal expansion can be released by the annular groove 190.
  • the members on the outer periphery of the annular groove 190 also thermally expand, but the cross-sectional area of the thermally expanded portion of the cooling fan 200 is smaller than in the case without the annular groove 190, thereby reducing the axial force due to thermal expansion. be able to.
  • the axial force received by the bearing 210 can be reduced, so the risk of breakage of the bearing 210 can be reduced.
  • FIG. 11 is a partial cross-sectional view showing a cooling fan of a rotary electric machine according to a third embodiment of the present invention and the periphery thereof. Descriptions of matters overlapping with the first embodiment and the second embodiment will be omitted.
  • Connecting members 300 (300a, 300b) made of steel are provided between the cooling fan 200 and the plurality of bearings 210 (210a, 210b), and the connecting members 300 (300a, 300b) are at least bearings 210 (210a). , 210b).
  • connection member 300a is installed in contact with the load-side bearing 210a
  • connecting member 300b is installed in contact with the anti-load-side bearing 210b.
  • the installation method of the connection member 300 and the bearing 210 is not limited to the above.
  • a plurality of connection members 300 may be brought into contact with one bearing 210, and the bearing between the cooling fan 200 and the shaft 103
  • one connection member 350 may be in contact with the plurality of bearings 210.
  • the connecting member 300 of steel Since the connecting member 300 of steel has a relatively low thermal conductivity, the temperature rise of the bearing 210 due to the heat conduction through the connecting member 300 can be reduced with respect to the heat generation of the magnetic force generating portion 222. Thereby, the thermal deterioration of the bearing 210 can be prevented. Further, since the connecting member 300 of steel has little thermal expansion in the radial direction, the thermal expansion separates the cooling fan 200 and the bearing 210 from each other, and the connection between the both is separated, thereby suppressing the reduction of the effect by the both end support. be able to.
  • FIG. 12 is a block diagram of a rotary electric machine drive system according to a fourth embodiment of the present invention. Descriptions of matters overlapping with the first to third embodiments will be omitted.
  • power for driving the rotary electric machine 100 is supplied from a power supply 400 via a power conversion device 410 that converts power composed of an inverter, a converter, and the like.
  • a power conversion device 410 that converts power composed of an inverter, a converter, and the like.
  • output control according to the load 420 driven by the rotary electric machine 100 is possible.
  • the loss generated inside the rotary electric machine 100 increases, and the rotary electric machine 100 generates heat in response to this.
  • the rotary electric machine 100 of the first embodiment is applied to a rotary electric machine drive system.
  • the cooling fan 200 rotates asynchronously with respect to the shaft 103, fan noise and mechanical loss due to fan action can be reduced particularly in a high speed rotation range, while cooling performance is reduced It will decrease. Therefore, by applying the rotary electric machine 100 of the first embodiment to a system in which the output is small in the high speed rotation range, the fan noise and mechanical loss in the high speed range are reduced while sufficiently suppressing the temperature rise of the rotary electric machine 100. can do.
  • FIG. 12 an example of the output with respect to a suitable rotational speed is shown in a graph.
  • the graph of FIG. 12 shows an operation pattern in which the output is large in the low speed rotation range and gradually decreases in the high speed rotation range.
  • the power supply 400 shown in this embodiment is not limited to a commercial three-phase AC power supply, and may be a single-phase AC power supply or a DC power supply.
  • the rotating electric machine 100 of the first embodiment by applying the rotating electric machine 100 of the first embodiment to the rotating electric machine drive system having a region in which the loss inside the rotating electric machine is smaller than the low speed rotation range in the high speed rotation range, Mechanical loss and noise in the high speed rotation range can be reduced while sufficiently suppressing the temperature rise.
  • FIG. 13 is a schematic view showing a part of a railway vehicle equipped with a rotating electrical machine according to a fifth embodiment of the present invention. Descriptions of matters overlapping with the first to fourth examples will be omitted.
  • a railcar 500 has a truck 540 provided with gears 510, wheels 520, an axle 530, and a rotating electrical machine 100.
  • the rotary electric machine 100 drives wheels 520 connected to an axle 530 via a gear 510.
  • two rotary electric machines 100 are mounted, one or three or more may be provided.
  • the rotating electrical machine 100 of the first embodiment By applying the rotating electrical machine 100 of the first embodiment to the railcar 500, it is possible to reduce the noise caused by the fan action of the rotating electrical machine 100 among the noises generated in the railcar 500.
  • the noise emitted from the rails and wheels, the electromagnetic noise of the inverter, and the fan noise of the rotating electrical machine a large percentage of the noise generated by the railway vehicle.
  • the rotating electrical machine 100 of the first embodiment by applying the rotating electrical machine 100 of the first embodiment to the railcar 500, the noise of the railcar 500 can be reduced. Moreover, since the rotary electric machine 100 of 1st Example can reduce the mechanical loss of a high speed rotation area, it can reduce the power consumption of the rail vehicle 500 accompanying this.
  • the present embodiment is not limited to a railway vehicle, but may be applied to other systems as long as the system includes a rotating electrical machine drive system operating at variable speeds.
  • the system includes a rotating electrical machine drive system operating at variable speeds.
  • a larger efficiency improvement effect and noise reduction effect can be obtained.
  • Reference Signs List 100 rotating electric machine, 101 stator, 102 rotor, 103 shaft, 104 frame, 104a outer frame, 104b inner frame, 105 stator core, 106 stator slot, 107 stator winding, 108 stator core retainer, 109 air gap , 110 rotor core, 111 rotor slot, 112 rotor bar, 113 end ring, 114 retaining ring, 115 rotor core retainer, 116 bearing, 117 bearing, 118 vent, 120 labyrinth seal, 120a labyrinth seal, 120b Labyrinth seal, 125 intake port, 125a intake port, 125b intake port, 126 exhaust port, 126a exhaust port, 126b exhaust port, 127 gap, 128 ventilation path, 160 inside air, 170 outside air, 18 Air, 190 groove, 190a groove, 190b groove, 200 cooling fan, 201 auxiliary fan, 201a auxiliary fan, 201b auxiliary fan, 202 auxiliary fan support, 210

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

The purpose of the present invention is to provide a rotary electric machine in which the wear of bearings is reduced and the noise from a cooling fan due to an imbalance of magnetic forces is reduced. To that end, this rotary electric machine is provided with a stator 101, a rotor 102, and a shaft 103 fixed to the rotor 102, and is further provided with multiple bearings 210a, 210b which are attached to the shaft 103, a cooling fan 200 which is rotatably supported by the multiple bearings 210a, 210b, and a magnetic force generating device 220 which synchronously or asynchronously rotates the shaft 103 and the cooling fan 200. The magnetic force generating device 220 is arranged between the multiple bearings 210a, 210b.

Description

回転電機及びこれを備えた回転電機駆動システム並びに鉄道車両Rotating electric machine, rotating electric machine drive system having the same, and railway vehicle
 本発明は回転電機及びこれを備えた回転電機駆動システム並びに鉄道車両に関する。 The present invention relates to a rotating electrical machine, a rotating electrical machine drive system including the same, and a railway vehicle.
 通常、周辺媒体への自然放熱だけでは冷却が不十分な回転電機には、冷却ファンが備えられている。冷却ファンは回転電機のシャフト上に強固に結合され、回転電機とファンは同期回転する。冷却ファンが強制対流を生みだし、回転電機を冷却する。このような回転電機と同期回転する冷却ファンの風量は、回転電機の回転数に比例して増大する。 In general, a rotating electric machine that is not sufficiently cooled only by natural heat radiation to the surrounding medium is provided with a cooling fan. The cooling fan is rigidly coupled on the shaft of the rotating electrical machine, and the rotating electrical machine and the fan rotate synchronously. The cooling fan generates forced convection and cools the rotating electrical machine. The air volume of the cooling fan rotating in synchronization with such a rotating electrical machine increases in proportion to the rotational speed of the rotating electrical machine.
 鉄道用主電動機のように可変速運転する回転電機の場合、中低速回転時の冷却性能を確保するために、少ない回転数でも十分な風量が得られるように冷却ファンは設計されている。 In the case of a rotating electrical machine operating at variable speeds, such as a railway main motor, a cooling fan is designed so that a sufficient air volume can be obtained even with a small number of rotations, in order to ensure cooling performance at medium and low speeds.
 回転電機が高速回転する場合は、例え回転電機の発熱が少ない状況であっても、冷却ファンの回転数は回転電機と同期回転するため、高速回転した冷却ファンからはファンの送風音に起因した大きな騒音が発生する問題があった。 When the rotating electrical machine rotates at high speed, even if there is little heat generation of the rotating electrical machine, the rotational speed of the cooling fan rotates in synchronization with the rotating electrical machine, so the cooling fan rotating at high speed caused the blowing noise of the fan There was a problem that a loud noise was generated.
 この問題を解決する従来技術として、例えば特許文献1が提案されている。特許文献1には、回転電機のシャフトに軸受を介して冷却ファンを設置し、冷却ファンに設けた永久磁石と、回転子に設けた磁性体とを対向させた技術が開示されている。特許文献1では、冷却ファンと回転電機のシャフトを軸受で接続することにより、冷却ファンを回転電機に対して非同期で回転させ、回転電機の高速回転時の騒音を低減している。 As a prior art which solves this problem, patent document 1 is proposed, for example. Patent Document 1 discloses a technology in which a cooling fan is installed on a shaft of a rotating electrical machine via a bearing, and a permanent magnet provided on the cooling fan and a magnetic body provided on a rotor face each other. In Patent Document 1, by connecting a cooling fan and a shaft of a rotating electrical machine with a bearing, the cooling fan is asynchronously rotated with respect to the rotating electrical machine, and noise at the time of high speed rotation of the rotating electrical machine is reduced.
特開昭57-75545号公報Japanese Patent Application Laid-Open No. 57-75545
 しかしながら、特許文献1に記載の技術においては、磁力のアンバランスによる加振力については考慮されておらず、この加振力により冷却ファンが振動するといった課題があった。 However, in the technology described in Patent Document 1, the excitation force due to the imbalance of the magnetic force is not considered, and there is a problem that the cooling fan vibrates due to this excitation force.
 特許文献1に記載の技術では、冷却ファンの支持位置、すなわち軸受位置に対し、磁力は径方向に離れた位置で発生するため、磁力のアンバランスによる加振力ベクトルと、軸受から加振力作用点までの位置ベクトルとの外積に相当する回転モーメントが冷却ファンに発生する。特許文献1に記載のような片端支持構造は、回転モーメントにより冷却ファンが振動するものである。 In the technology described in Patent Document 1, the magnetic force is generated at a position radially separated from the support position of the cooling fan, that is, the bearing position, so an excitation force vector due to imbalance of the magnetic force and an excitation force from the bearing A rotational moment corresponding to the outer product of the position vector up to the action point is generated in the cooling fan. In the one-end support structure as described in Patent Document 1, the cooling fan vibrates due to the rotational moment.
 特許文献1に記載の技術のように、磁力のアンバランスによって振動しやすい構造では、冷却ファンを通る冷却風の流れが非定常となり、これにより騒音が発生する問題があった。 As in the technique described in Patent Document 1, in the structure that is easily vibrated by the imbalance of the magnetic force, the flow of the cooling air passing through the cooling fan becomes unsteady, which causes a problem of noise generation.
 また、冷却ファンを回転自在に支持する軸受に磁力のアンバランスによる加振力が作用すると、軸受の摩耗を促進し、ひいては当該軸受の寿命短縮の恐れがあり、定期的なメンテナンスを必要とする課題があった。 In addition, if the exciting force due to the imbalance of the magnetic force acts on the bearing that rotatably supports the cooling fan, the wear of the bearing is promoted, which may shorten the life of the bearing, requiring regular maintenance. There was a problem.
 本発明の目的は前記課題を解決し、磁力アンバランスによる冷却ファンの騒音を低減すると共に、軸受の磨耗を抑制した回転電機を提供することにある。 An object of the present invention is to solve the above-mentioned problems, and to provide a rotating electrical machine in which noise of a cooling fan due to unbalance in magnetic force is reduced and wear of a bearing is suppressed.
 前記目的を達成するために本発明の特徴とするところは、固定子と、回転子と、前記回転子に固定されたシャフトとを備えた回転電機において、前記シャフトに取り付けられた複数の軸受と、前記複数の軸受によって回転可能に支持された冷却ファンと、前記シャフトと前記冷却ファンとを同期回転または非同期回転させる磁力発生装置とを備え、前記磁力発生装置は、前記複数の軸受の間に配置したことにある。 In order to achieve the above object, the present invention is characterized in that, in a rotating electrical machine including a stator, a rotor, and a shaft fixed to the rotor, a plurality of bearings attached to the shaft A cooling fan rotatably supported by the plurality of bearings; and a magnetic force generator for synchronously or asynchronously rotating the shaft and the cooling fan, wherein the magnetic force generator includes a space between the plurality of bearings. It is to have arranged.
本発明によれば、磁力アンバランスによる冷却ファンの騒音を低減すると共に、軸受の磨耗を抑制した回転電機を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, while reducing the noise of the cooling fan by magnetic unbalance, the rotary electric machine which suppressed wear of a bearing can be provided.
本発明の第1実施例に係る回転電機を示す断面図である。FIG. 1 is a cross-sectional view showing a rotating electrical machine according to a first embodiment of the present invention. 図1における部分断面図である。It is a fragmentary sectional view in FIG. 本発明の第1実施例に係る補助ファンを設けた回転電機を示す断面図である。FIG. 1 is a cross-sectional view showing a rotating electrical machine provided with an auxiliary fan according to a first embodiment of the present invention. 本発明の第1実施例に係る外扇ファンを設けた回転電機を示す断面図である。FIG. 1 is a cross-sectional view showing a rotating electrical machine provided with an outer fan according to a first embodiment of the present invention. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるA-A断面図の変形例である。It is a modification of AA sectional drawing in FIG. 図1におけるA-A断面図の変形例である。It is a modification of AA sectional drawing in FIG. 本発明の第1実施例に係るベクトルの関係を示す部分拡大図である。It is the elements on larger scale which show the relationship of the vector which concerns on 1st Example of this invention. 片端支持構造のベクトルの関係を示す図である。It is a figure which shows the relationship of the vector of single end support structure. 本発明の第2実施例に係る回転電機の冷却ファンとその周辺を示す部分断面図である。It is a fragmentary sectional view which shows the cooling fan of the rotary electric machine which concerns on 2nd Example of this invention, and its periphery. 本発明の第3実施例に係る回転電機の冷却ファンとその周辺を示す部分断面図である。It is a fragmentary sectional view which shows the cooling fan of the rotary electric machine which concerns on 3rd Example of this invention, and its periphery. 本発明の第4実施例に係る回転電機駆動システムの構成図である。It is a block diagram of the rotary electric machine drive system which concerns on 4th Example of this invention. 本発明の第5実施例に係る回転電機を搭載した鉄道車両の一部を示す概略構成図である。It is a schematic block diagram which shows a part of rail vehicle carrying the rotary electric machine which concerns on 5th Example of this invention.
 以下、本発明の実施例を図面に従い詳細に説明する。本発明においては複数の実施例を提案しているが、下記はあくまでも実施例に過ぎず、本発明の実施態様が下記具体的態様に限定されることを意図する趣旨ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Although several examples are proposed in the present invention, the following is only an example to the last, and it is not the meaning intended that the embodiment of the present invention is limited to the following concrete aspects.
 図1は本発明の第1実施例に係る回転電機の断面図である。図2は図1における部分拡大図である。 FIG. 1 is a cross-sectional view of a rotary electric machine according to a first embodiment of the present invention. FIG. 2 is a partially enlarged view of FIG.
 回転電機100は、固定子101と、固定子101の径方向内側に回転可能に支持された回転子102と、回転子102に固定されたシャフト103と、固定子101及び回転子102を覆うフレーム104とを備えている。 The rotary electric machine 100 includes a stator 101, a rotor 102 rotatably supported radially inward of the stator 101, a shaft 103 fixed to the rotor 102, and a frame covering the stator 101 and the rotor 102. And 104 are provided.
 固定子101は、電磁鋼板を複数枚積層して構成された固定子鉄心105と、固定子鉄心105の内周部の周方向に複数設けられた固定子スロット106と、固定子スロット106に巻装された固定子巻線107から構成されている。固定子鉄心105は、一体成形されたソリッド部材で構成しても良い。また、固定子巻線107の巻装方式は、集中巻、分布巻または回転磁界を発生できる何れの巻装方式でも良く、分布巻においては短節巻または全節巻の何れにおいても本実施例の効果を得ることができる。本実施例では、固定子鉄心105の両端面に固定子鉄心押さえ108を設けている。 The stator 101 is wound around a stator core 105 configured by laminating a plurality of electromagnetic steel sheets, a plurality of stator slots 106 provided in the circumferential direction of the inner peripheral portion of the stator core 105, and the stator slots 106. It comprises a mounted stator winding 107. The stator core 105 may be configured by an integrally molded solid member. In addition, the winding method of the stator winding 107 may be any winding method capable of generating concentrated winding, distributed winding or a rotating magnetic field, and in the case of distributed winding, this embodiment can be applied to either short joint winding or full pitch winding. You can get the effect of In the present embodiment, stator core pressers 108 are provided on both end surfaces of the stator core 105.
 回転子102はシャフト103に固定され、シャフト103とともに回転する。固定子101及び回転子102は同一の中心軸を有する。固定子101と回転子102との間には空隙109が設けられ、互いに接触しないように配置されている。 The rotor 102 is fixed to the shaft 103 and rotates with the shaft 103. The stator 101 and the rotor 102 have the same central axis. An air gap 109 is provided between the stator 101 and the rotor 102 so as not to contact each other.
 回転子102は、電磁鋼板を複数枚積層して構成された回転子鉄心110と、磁極部(図示せず)とを備えている。磁極部は、回転子鉄心110の外周部の周方向に複数設けられた回転子スロット111と、回転子スロット111に挿入され、軸方向に伸びる複数の回転子バー112と、複数の回転子バー112の両端を固定するエンドリング113より構成される。回転子鉄心110は、一体成形されたソリッド部材で構成しても良い。 The rotor 102 includes a rotor core 110 configured by laminating a plurality of electromagnetic steel sheets, and a magnetic pole portion (not shown). The magnetic pole portions are provided with a plurality of rotor slots 111 provided in the circumferential direction of the outer peripheral portion of the rotor core 110, a plurality of rotor bars 112 inserted in the rotor slots 111 and extending in the axial direction, and a plurality of rotor bars It is comprised from the end ring 113 which fixes both ends of 112. The rotor core 110 may be composed of an integrally molded solid member.
 回転子バー112及びエンドリング113は電気伝導体から成り、例えば銅やアルミなどが用いられる。エンドリング113は複数の回転子バー112を電気的に接続してあれば、いかなる接続方法であっても良い。例えば、回転子バー112及びエンドリング113は一体成形しても良く、またそれぞれを別部材で構成し、ロウ付け等の手段により接続しても良い。 The rotor bar 112 and the end ring 113 are made of an electrical conductor, and for example, copper, aluminum or the like is used. The end ring 113 may be any connection method as long as the plurality of rotor bars 112 are electrically connected. For example, the rotor bar 112 and the end ring 113 may be integrally formed, or may be formed of separate members and connected by means such as brazing.
 その他の部材構成として、エンドリング113はリテイニングリング114により保持されている構成でも良く、回転子鉄心110の両端面に回転子鉄心押さえ115を設けるようにしても良い。なお図1では、磁極部(図示せず)の構造としてかご形誘導電動機の回転子構造を例示したが、回転子鉄心110の突極性を利用した構造、例えばスイッチトリラクタンスモータやシンクロナスリラクタンスモータの磁極部であっても良い。また、磁極部に少なくとも1つ以上の永久磁石を配置した、例えば表面磁石型モータや埋込磁石型モータの磁極部、その他、巻線界磁同期モータの磁極部の何れの構成であっても良い。 As another member configuration, the end ring 113 may be held by the retaining ring 114, and the rotor core pressers 115 may be provided on both end surfaces of the rotor core 110. Although FIG. 1 illustrates the rotor structure of a squirrel cage induction motor as the structure of the magnetic pole portion (not shown), a structure using saliency of the rotor core 110, for example, a switched reluctance motor or a synchronous reluctance motor The magnetic pole portion may be used. In addition, any configuration of the magnetic pole of a surface magnet type motor or an embedded magnet type motor in which at least one or more permanent magnets are disposed in the magnetic pole portion, or any other magnetic pole portion of a winding field synchronous motor good.
 シャフト103は、フレーム104の両端部で軸受116、117により支持され回転摺動する。フレーム104の両端部の軸受116、117のうち、図1では負荷が接続される側の軸受116を負荷側軸受、他方の負荷が接続されない側の軸受117を反負荷側軸受と定めている。 The shaft 103 is rotatably supported by bearings 116 and 117 at both ends of the frame 104. Among the bearings 116 and 117 at both ends of the frame 104, in FIG. 1, the bearing 116 on the side to which the load is connected is defined as the load side bearing, and the bearing 117 on the side to which the other load is not connected is defined as the non-load side bearing.
 回転電機100には、以上の構成要素の他に冷却ファン200が配置されている。冷却ファン200は回転電機100の外部または内部で冷却風を流す機能を有する。図1に示す冷却ファン200は、回転電機100の内部で冷却風を流す機能を有する。回転子102には、軸方向に貫通した通風口118が設けられている。 In the rotary electric machine 100, a cooling fan 200 is disposed in addition to the above components. The cooling fan 200 has a function of flowing cooling air outside or inside the rotary electric machine 100. Cooling fan 200 shown in FIG. 1 has a function of flowing cooling air inside rotary electric machine 100. The rotor 102 is provided with a vent 118 penetrating in the axial direction.
 冷却ファン200が回転すると、冷却ファン200によって吸引された流体は、通風口118内を通過し、矢印に示すようにフレーム104の内部を循環する。流体がフレーム104の内部を循環することにより、固定子101、回転子102を冷却する。フレーム104と冷却ファン200との間には、凹凸の隙間が形成され、ラビリンスシール120を構成している。 As the cooling fan 200 rotates, the fluid drawn by the cooling fan 200 passes through the vent 118 and circulates inside the frame 104 as indicated by the arrow. Fluid circulates the inside of the frame 104 to cool the stator 101 and the rotor 102. An uneven gap is formed between the frame 104 and the cooling fan 200 to constitute a labyrinth seal 120.
 冷却ファン200の構成は、例えば図3のように補助ファン201(201a、201b)を備えるようにしても良い。図3は、本発明の第1実施例に係る補助ファンを設けた回転電機を示す断面図である。 The configuration of the cooling fan 200 may include the auxiliary fan 201 (201a, 201b) as shown in FIG. 3, for example. FIG. 3 is a cross-sectional view showing a rotary electric machine provided with an auxiliary fan according to the first embodiment of the present invention.
 図3において、冷却ファン200には補助ファン201aが取り付けられている。フレーム104には吸気口125aと、排気口126aが形成されている。補助ファン201aとフレーム104との間には、隙間127が形成されている。冷却ファン200が回転すると、補助ファン201aも回転し、吸気口125aを介して外部の空気が補助ファン201aの収容空間に吸引される。吸引された空気は軸受117及び210(210b)を冷却した後、排気口126aから外部へ排気される。そして、フレーム104と冷却ファン200との間には、凹凸の隙間が形成され、ラビリンスシール120aを構成している。 In FIG. 3, an auxiliary fan 201 a is attached to the cooling fan 200. An intake port 125 a and an exhaust port 126 a are formed in the frame 104. A gap 127 is formed between the auxiliary fan 201 a and the frame 104. When the cooling fan 200 is rotated, the auxiliary fan 201a is also rotated, and external air is sucked into the storage space of the auxiliary fan 201a through the air inlet 125a. The sucked air cools the bearings 117 and 210 (210b) and then is exhausted to the outside from the exhaust port 126a. Then, a gap of asperity is formed between the frame 104 and the cooling fan 200, and constitutes a labyrinth seal 120a.
 また、シャフト103には補助ファン支持部202が取り付けられている。補助ファン支持部202は、シャフト103の回転に同期して回転する。この補助ファン支持部202には補助ファン201bが取り付けられている。フレーム104には、吸気口125bと排気口126bが形成されている。補助ファン支持部202が回転すると、補助ファン201bも回転し、吸気口125bを介して外部の空気が補助ファン201bの収容空間に吸引される。吸引された空気は軸受116を冷却した後、排気口126bから外部へ排気される。そして、フレーム104と補助ファン支持部202との間には、凹凸の隙間が形成され、ラビリンスシール120bを構成している。なお、冷却ファン200によって吸引された空気の流れについては、図1と同様である。 In addition, an auxiliary fan support portion 202 is attached to the shaft 103. The auxiliary fan support 202 rotates in synchronization with the rotation of the shaft 103. An auxiliary fan 201 b is attached to the auxiliary fan support portion 202. An intake port 125 b and an exhaust port 126 b are formed in the frame 104. When the auxiliary fan support portion 202 is rotated, the auxiliary fan 201b is also rotated, and external air is sucked into the housing space of the auxiliary fan 201b through the air inlet 125b. The sucked air cools the bearing 116 and is then exhausted from the exhaust port 126 b to the outside. Then, a gap of asperity is formed between the frame 104 and the auxiliary fan support portion 202, and a labyrinth seal 120b is configured. The flow of air sucked by the cooling fan 200 is the same as that in FIG.
 冷却ファン200の他の構成例について図4を用いて説明する。図4は、本発明の第1実施例に係る外扇ファンを設けた回転電機を示す断面図である。 Another configuration example of the cooling fan 200 will be described with reference to FIG. FIG. 4 is a cross-sectional view showing a rotating electrical machine provided with an outer fan according to the first embodiment of the present invention.
 図4において、シャフト103には冷却ファン200が取り付けられている。冷却ファン200はシャフト103と同期して回転する。フレーム104の内フレーム104bには、吸気口125aと排気口126aが形成されている。冷却ファン200が回転すると、補助ファン201aも回転し、吸気口125aを介して外部の空気が補助ファン201aの収容空間に吸引される。吸引された空気は軸受117を冷却した後、排気口126aから外部へ排気される。そして、内フレーム104bと冷却ファン200との間には、凹凸の隙間が形成され、ラビリンスシール120aを構成している。 In FIG. 4, a cooling fan 200 is attached to the shaft 103. The cooling fan 200 rotates in synchronization with the shaft 103. An air inlet 125 a and an air outlet 126 a are formed in an inner frame 104 b of the frame 104. When the cooling fan 200 is rotated, the auxiliary fan 201a is also rotated, and external air is sucked into the storage space of the auxiliary fan 201a through the air inlet 125a. The sucked air cools the bearing 117 and is then exhausted from the exhaust port 126a to the outside. Further, a gap of asperity is formed between the inner frame 104b and the cooling fan 200, and constitutes a labyrinth seal 120a.
 また、シャフト103には軸受210を介して補助ファン支持部202が取り付けられている。補助ファン支持部202には補助ファン201bが取り付けられている。この補助ファン支持部202は内フレーム104bに沿うように形成されている。そして、内フレーム104bと補助ファン支持部202との間には、凹凸の隙間が形成され、ラビリンスシール120bを構成している。 In addition, an auxiliary fan support 202 is attached to the shaft 103 via a bearing 210. The auxiliary fan 201 b is attached to the auxiliary fan support portion 202. The auxiliary fan support portion 202 is formed along the inner frame 104 b. Then, a gap of asperity is formed between the inner frame 104 b and the auxiliary fan support portion 202 to constitute a labyrinth seal 120 b.
 補助ファン201bと外フレーム104aとの間には、隙間127が形成されている。
外フレーム104aには、吸気口125bが形成されている。また、外フレーム104aと内フレーム104bとの間には排気口126b及び通風路128が形成されている。補助ファン支持部202が回転すると、補助ファン201bも回転し、吸気口125bを介して外部の空気が補助ファン201bの収容空間に吸引される。吸引された空気は軸受116、軸受210(210a)及び通風路128に面した内フレーム104bを冷却した後、通風路128を流れ、排気口126bから外部へ排気される。なお、冷却ファン200によって吸引された空気の流れについては、図1と同様である。
A gap 127 is formed between the auxiliary fan 201b and the outer frame 104a.
An intake port 125 b is formed in the outer frame 104 a. Further, an exhaust port 126 b and a ventilation path 128 are formed between the outer frame 104 a and the inner frame 104 b. When the auxiliary fan support portion 202 is rotated, the auxiliary fan 201b is also rotated, and external air is sucked into the housing space of the auxiliary fan 201b through the air inlet 125b. The sucked air cools the bearing 116, the bearing 210 (210a) and the inner frame 104b facing the air passage 128, and then flows through the air passage 128 and is exhausted to the outside from the exhaust port 126b. The flow of air sucked by the cooling fan 200 is the same as that in FIG.
 第1実施例において、シャフト103と冷却ファン200(図4においては補助ファン支持部202)との間には複数の軸受210(210a、210b)が配置され、冷却ファン200(補助ファン支持部202)はシャフト103に対して回転可能に支持されている。図1~図4では、シャフト103と冷却ファン200(補助ファン支持部202)との間の軸受210は負荷側の軸受210aと反負荷側の軸受210bとして図示されているが、軸受の個数は3個以上でもよく、2個に限定されるものではない。 In the first embodiment, a plurality of bearings 210 (210a and 210b) are disposed between the shaft 103 and the cooling fan 200 (the auxiliary fan support 202 in FIG. 4), and the cooling fan 200 (the auxiliary fan support 202). ) Is rotatably supported on the shaft 103. In FIG. 1 to FIG. 4, the bearing 210 between the shaft 103 and the cooling fan 200 (auxiliary fan support 202) is illustrated as a load-side bearing 210a and a non-load-side bearing 210b. It may be three or more, and is not limited to two.
 複数の軸受210の間(軸受210a、210bの間)には、磁力発生装置220が設置されている。磁力発生装置220はシャフト103の主に外周側と冷却ファン200の主に内周側とを磁気的な力によって結合する機能を有している。第1実施例では、シャフト103の外周側を磁力発生部221、冷却ファン200の内周側を磁力発生部222と定義する。磁力発生部221と磁力発生部222の間には空隙223が設けられ、互いに直接接触しないように配置されている。磁力発生部221と磁力発生部222とは、互いに対向している。 A magnetic force generator 220 is installed between the plurality of bearings 210 (between the bearings 210 a and 210 b). The magnetic force generator 220 has a function to couple the outer peripheral side of the shaft 103 and the inner peripheral side of the cooling fan 200 by magnetic force. In the first embodiment, the outer peripheral side of the shaft 103 is defined as a magnetic force generating unit 221, and the inner peripheral side of the cooling fan 200 is defined as a magnetic force generating unit 222. An air gap 223 is provided between the magnetic force generating portion 221 and the magnetic force generating portion 222, and is disposed so as not to be in direct contact with each other. The magnetic force generation unit 221 and the magnetic force generation unit 222 face each other.
 次に図5~7(図1におけるA-A断面図)を用いて、磁力発生装置220の構成について説明する。図5a~図5cは図1におけるA-A断面図である。図6及び図7は図1におけるA-A断面図の変形例である。なお、図3及び図4の磁力発生装置220の構成についても同様である。 Next, the configuration of the magnetic force generator 220 will be described with reference to FIGS. 5 to 7 (sectional view taken along the line AA in FIG. 1). 5a to 5c are cross-sectional views taken along line AA in FIG. 6 and 7 are modifications of the AA cross section in FIG. The same applies to the configuration of the magnetic force generator 220 of FIGS. 3 and 4.
 図5aは磁力発生部221を4極の円環状の永久磁石221a、221b、221c、221d、磁力発生部222を円環状の導電体222fで構成した例を示している。図5aの構成では、シャフト103が回転すると導電体222fに誘導電流が生じ、導電体222f内に磁極が発生する。これにより永久磁石221a、221b、221c、221dと導電体222f間に磁気的な吸引力及び反発力が発生し、冷却ファン200を駆動する。すなわち、図5aに例示した磁力発生装置220の構成では、シャフト103と冷却ファン200との間に回転数差が生じたときのみ、永久磁石221a、221b、221c、221dと導電体222fとの間に磁力が発生する。冷却ファン200の軸動力をT1、図5aの磁力発生装置220で発生した磁力によるトルクをT2とすると、T1<T2となる場合では、磁力発生装置220の生むトルクにより冷却ファン200の回転が加速される。一方、T1>T2となる場合では、冷却ファン200の回転数が減速される。
したがって、シャフト103の回転数に対して、冷却ファン200の回転数は、T1=T2が成立する回転数で回転する。
FIG. 5a shows an example in which the magnetic force generating portion 221 is configured by four-pole annular permanent magnets 221a, 221b, 221c, 221d and the magnetic force generating portion 222 by an annular conductor 222f. In the configuration of FIG. 5a, when the shaft 103 rotates, an induced current is generated in the conductor 222f, and a magnetic pole is generated in the conductor 222f. As a result, magnetic attraction and repulsion are generated between the permanent magnets 221a, 221b, 221c, 221d and the conductor 222f, and the cooling fan 200 is driven. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG. 5a, between the permanent magnets 221a, 221b, 221c, 221d and the conductor 222f only when the rotational speed difference occurs between the shaft 103 and the cooling fan 200. Magnetic force is generated on the Assuming that the axial power of the cooling fan 200 is T1, and the torque due to the magnetic force generated by the magnetic force generator 220 of FIG. 5a is T2, if T1 <T2, the torque generated by the magnetic force generator 220 accelerates the rotation of the cooling fan 200 Be done. On the other hand, when T1> T2, the rotational speed of the cooling fan 200 is reduced.
Therefore, with respect to the rotational speed of the shaft 103, the rotational speed of the cooling fan 200 rotates at a rotational speed at which T1 = T2 holds.
 なお、図5aでは、永久磁石221a、221b、221c、221dの極数を一例として4極としたが、この限りでなく、2極でも、6極以上の磁極構成でも良い。また、図5aでは永久磁石221a、221b、221c、221dを1つの円環状の永久磁石として示したが、各極はそれぞれ分離した永久磁石で構成しても良く、1つの極が複数の永久磁石によって構成されていても良い。永久磁石221a、221b、221c、221dを複数の永久磁石で構成する場合は、図5bに例示するように永久磁石221a、221b、221c、221dの外周部をリテイニングリング225で保持すると良い。 In FIG. 5a, the number of permanent magnets 221a, 221b, 221c and 221d is four as an example, but not limited to this, it may be two or six or more magnetic poles. Further, although the permanent magnets 221a, 221b, 221c, and 221d are shown as one annular permanent magnet in FIG. 5a, each pole may be configured by a separate permanent magnet, and one pole is a plurality of permanent magnets. It may be configured by When the permanent magnets 221a, 221b, 221c, and 221d are formed of a plurality of permanent magnets, it is preferable to hold the outer peripheral portion of the permanent magnets 221a, 221b, 221c, and 221d by a retaining ring 225 as illustrated in FIG.
 また、図5cに例示するように、スロット226a、226b、226c、226dを有する永久磁石保持部材227をシャフト103に固定し、スロット226a、226b、226c、226dのそれぞれに、永久磁石221a、221b、221c、221dを挿入して保持するようにしても良い。 Further, as illustrated in FIG. 5c, the permanent magnet holding member 227 having the slots 226a, 226b, 226c, and 226d is fixed to the shaft 103, and the permanent magnets 221a, 221b, and 226d are respectively fixed to the slots 226a, 226b, 226c, and 226d. The components 221 c and 221 d may be inserted and held.
 または、永久磁石221a、221b、221c、221dをシャフト103に接着剤等を利用して接合するようにしても良い。何れかの手段を用いて、シャフト103が回転した際に永久磁石221a、221b、221c、221dが飛散しないようにする必要がある。 Alternatively, the permanent magnets 221a, 221b, 221c, and 221d may be bonded to the shaft 103 using an adhesive or the like. It is necessary to prevent the permanent magnets 221a, 221b, 221c, and 221d from being scattered when the shaft 103 is rotated using any means.
 導電体222fとしては、電気伝導率の高い材料であれば、いかなる材料を用いても良く、冷却ファン200の構成部材が導電体である場合、必ずしも冷却ファン200と導電体222fは別部材とする必要はなく、一体成形しても良い。さらに磁力発生部222は導電体222fの代わりに、ヒステリシス特性をもつ磁性材としても良い。この場合、永久磁石221a、221b、221c、221dの残留磁束と、磁性材の残留磁束との磁気的相互作用により吸引力及び反発力が発生し、冷却ファン200を駆動することができる。 As the conductor 222f, any material may be used as long as it is a material with high electrical conductivity, and when the component of the cooling fan 200 is a conductor, the cooling fan 200 and the conductor 222f are necessarily separate members. It is not necessary and may be integrally formed. Furthermore, the magnetic force generating portion 222 may be a magnetic material having hysteresis characteristics instead of the conductor 222f. In this case, a suction force and a repulsive force are generated by the magnetic interaction between the residual magnetic flux of the permanent magnets 221a, 221b, 221c, and 221d and the residual magnetic flux of the magnetic material, and the cooling fan 200 can be driven.
 次に図6及び図7を用いて変形例を説明する。図6は磁力発生部221を4極の円環状の永久磁石221a、221b、221c、221d、磁力発生部222を円環状の永久磁石222a、222b、222c、222dで構成した例を示している。図6の構成では、永久磁石221a、221b、221c、221dと永久磁石222a、222b、222c、222d間の磁気的な吸引力及び反発力によってトルクが発生し、冷却ファン200を駆動する。すなわち図6に例示した磁力発生装置220の構成では、シャフト103が静止した状態では永久磁石221a、221cのN極と永久磁石222a、222cのS極(もしくは永久磁石221b、221dのS極と永久磁石222b、222dのN極)が向かい合った安定な力の釣合い状態で冷却ファン200は静止する。シャフト103が回転すると、冷却ファン200に磁力によるトルクが発生する。磁力によるトルクの最大値をTmとすると、冷却ファン200の軸動力T1に対して、T1<Tmとなる場合では、磁力発生装置220が発生するトルクにより冷却ファン200はシャフト103と同期回転する。一方で、T1>Tmとなる場合では、冷却ファン200はシャフト103と同期回転することができず、冷却ファン200はシャフト103に対して脱調する。 Next, a modified example will be described using FIGS. 6 and 7. FIG. 6 shows an example in which the magnetic force generating portion 221 is configured by four permanent magnets 221a, 221b, 221c and 221d having four poles and the magnetic force generating portion 222 is formed by annular permanent magnets 222a, 222b, 222c and 222d. In the configuration of FIG. 6, torque is generated by the magnetic attraction and repulsion between the permanent magnets 221 a, 221 b, 221 c, 221 d and the permanent magnets 222 a, 222 b, 222 c, 222 d to drive the cooling fan 200. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG. 6, when the shaft 103 is stationary, the N pole of the permanent magnets 221a and 221c and the S pole of the permanent magnets 222a and 222c (or the S pole of the permanent magnets 221b and 221d and the permanent magnet The cooling fan 200 comes to a standstill in a balanced state of stable forces in which the N poles of the magnets 222b and 222d face each other. When the shaft 103 rotates, torque due to the magnetic force is generated in the cooling fan 200. Assuming that the maximum value of torque by magnetic force is Tm, in the case of T1 <Tm with respect to shaft power T1 of cooling fan 200, cooling fan 200 rotates in synchronization with shaft 103 by torque generated by magnetic force generator 220. On the other hand, in the case of T1> Tm, the cooling fan 200 can not rotate in synchronization with the shaft 103, and the cooling fan 200 is out of step with the shaft 103.
 なお、図6では、永久磁石221a、221b、221c、221d、及び永久磁石222a、222b、222c、222dの極数を一例として4極としたが、この限りでなく、2極でも、6極以上の磁極構成でも良い。また、互いの永久磁石は極数が異なっていても良い。また、図6では永久磁石221a、221b、221c、221d、及び永久磁石222a、222b、222c、222dを1つの円環状の永久磁石として示したが、各極はそれぞれ分離した永久磁石で構成しても良く、1つの極が複数の永久磁石によって構成されていても良い。分離した永久磁石の固定については図5の説明で示した方法と同様である。 In FIG. 6, the number of poles of the permanent magnets 221a, 221b, 221c, 221d and the permanent magnets 222a, 222b, 222c, 222d is four by way of example, but the number is not limited to this. The magnetic pole configuration of Also, the permanent magnets may have different numbers of poles. Further, although the permanent magnets 221a, 221b, 221c, 221d and the permanent magnets 222a, 222b, 222c, 222d are shown as one annular permanent magnet in FIG. 6, each pole is constituted by a separate permanent magnet. Also, one pole may be constituted by a plurality of permanent magnets. The fixing of the separated permanent magnet is the same as the method shown in the description of FIG.
 図7は磁力発生部221として2極の円環状の永久磁石221a、221b、磁力発生部222として突極性を有した磁性体222hで構成した例を示している。図7の構成では、永久磁石221a、221bと磁性体222h間の吸引力によってトルクが発生し、冷却ファン200を駆動する。すなわち図7に例示した磁力発生装置220の構成では、シャフト103が静止した状態では永久磁石221a、221bの磁極中心と磁性体222hの凸部が向かい合った安定な力の釣合い状態で冷却ファン200は静止する。シャフト103が回転すると、冷却ファン200に磁力によるトルクが発生する。磁力によるトルクの最大値をTm’とすると、冷却ファン200の軸動力T1に対して、T1<Tm’となる場合では、磁力発生装置220の生むトルクにより冷却ファン200はシャフト103と同期回転する。一方で、T1>Tm’となる場合では、冷却ファン200はシャフト103と同期回転することができず、冷却ファン200はシャフト103に対して脱調する。 FIG. 7 shows an example in which two-pole annular permanent magnets 221 a and 221 b are formed as the magnetic force generating portion 221 and a magnetic body 222 h having saliency as the magnetic force generating portion 222. In the configuration of FIG. 7, a torque is generated by the attraction between the permanent magnets 221a and 221b and the magnetic body 222h, and the cooling fan 200 is driven. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG. 7, when the shaft 103 is stationary, the cooling fan 200 is balanced with a stable force in which the magnetic pole centers of the permanent magnets 221 a and 221 b and the projections of the magnetic body 222 h face each other. Stand still. When the shaft 103 rotates, torque due to the magnetic force is generated in the cooling fan 200. Assuming that the maximum value of torque due to magnetic force is Tm ′, when T1 <Tm ′ with respect to shaft power T1 of cooling fan 200, cooling fan 200 rotates in synchronization with shaft 103 by torque generated by magnetic force generator 220 . On the other hand, when T1> Tm ', the cooling fan 200 can not rotate in synchronization with the shaft 103, and the cooling fan 200 is out of step with the shaft 103.
 なお、図7では、永久磁石221a、221bの極数を一例として2極としたが、この限りでなく、4極以上の磁極構成でも良い。また、図7では永久磁石221a、221bを1つの円環状の永久磁石として示したが、各極はそれぞれ分離した永久磁石で構成しても良く、1つの極が複数の永久磁石によって構成されていても良い。分離した永久磁石221a、221bの固定については図5の説明で示した方法と同様である。 In FIG. 7, the number of poles of the permanent magnets 221a and 221b is two as an example, but not limited to this, it may be a magnetic pole configuration having four or more poles. Further, although the permanent magnets 221a and 221b are shown as one annular permanent magnet in FIG. 7, each pole may be constituted by a separate permanent magnet, and one pole is constituted by a plurality of permanent magnets. It is good. The fixing of the separated permanent magnets 221a and 221b is the same as the method shown in the description of FIG.
 次に第1実施例の作用について図8を用いて説明する。図8は本発明の第1実施例に係るベクトルの関係を示す部分拡大図である。第1実施例の作用を明確化するために、比較例を図9に示す。図9は片端支持構造のベクトルの関係を示す図である。 Next, the operation of the first embodiment will be described with reference to FIG. FIG. 8 is a partially enlarged view showing the relationship of vectors according to the first embodiment of the present invention. In order to clarify the operation of the first embodiment, a comparative example is shown in FIG. FIG. 9 is a diagram showing the relationship of vectors of the one-end support structure.
 第1実施例では、冷却ファン200は、磁力発生装置220を中心として、その負荷側及び反負荷側の両端を軸受210で拘束した両端支持構造となっており、冷却ファン200の振動を抑制する機構を有している。 In the first embodiment, the cooling fan 200 has a both-ends support structure in which both ends on the load side and the non-load side are restrained by the bearings 210 with the magnetic force generator 220 as a center, and the vibration of the cooling fan 200 is suppressed. It has a mechanism.
 例えば、磁力発生装置220内で磁力のアンバランスが生じたとする。図9に示す冷却ファン200では、磁力のアンバランスにより生じる加振力ベクトルFと、ベクトルFの作用点に対する軸受210からの位置ベクトルrの外積に相当する回転モーメントMが発生する。図9で示す片端支持構造の冷却ファンでは、回転モーメントMによる振動が発生しやすい構造となっていた。 For example, it is assumed that an imbalance of the magnetic force occurs in the magnetic force generator 220. In the cooling fan 200 shown in FIG. 9, a rotational moment M corresponding to an outer product of an excitation force vector F generated by an imbalance of magnetic force and a position vector r from the bearing 210 with respect to the point of application of the vector F is generated. In the cooling fan of the one-end support structure shown in FIG. 9, the vibration due to the rotational moment M is easily generated.
 一方、図8に示す本実施例の構造では、磁力のアンバランスにより生じる加振力ベクトルFの作用点に対して、負荷側の軸受210aからの位置ベクトルr1と、反負荷側の軸受210bからの位置ベクトルr2は互いに略逆方向を向いている。このため、加振力ベクトルFと位置ベクトルr1の外積であらわされる負荷側の軸受210aを中心に回そうとする回転モーメントと、加振力ベクトルFと位置ベクトルr2の外積であらわされる反負荷側の軸受210bを中心に回そうとする回転モーメントは互いに打ち消しあう。これにより、磁力発生装置220内で磁力のアンバランスが生じても冷却ファン200の振動を抑制することができる。 On the other hand, in the structure of this embodiment shown in FIG. 8, the position vector r1 from the bearing 210a on the load side and the bearing 210b on the non-load side with respect to the point of application of the excitation force vector F generated by the imbalance of magnetic force. The position vectors r2 of are directed in substantially opposite directions to each other. Therefore, the rotational moment about the load-side bearing 210a represented by the outer product of the excitation force vector F and the position vector r1 and the anti-load side represented by the outer product of the excitation force vector F and the position vector r2 The rotational moments trying to rotate around the bearing 210b of the two cancel each other. Thereby, even if the imbalance of the magnetic force occurs in the magnetic force generator 220, the vibration of the cooling fan 200 can be suppressed.
 また両端支持構造は、拘束点を2点有するため、片端支持構造に比べて、同じクリアランスの軸受210を使用した場合であっても、冷却ファン200が回転電機100の他部材に対して振動することを抑制することができる。これは、磁力のアンバランスに限らず、その他の外界からの振動等に対しても、同様に振動することを抑制することができる。 Further, since the both-ends support structure has two restraint points, the cooling fan 200 vibrates relative to the other members of the rotary electric machine 100 even when the bearing 210 with the same clearance is used compared to the one-end support structure. Can be suppressed. This can suppress not only the imbalance of the magnetic force, but also the vibration from the other external environment and the like.
 第1実施例の冷却ファン200は、振動し難い構造のため、例えば図1~4に示すラビリンスシール120の隙間の間隔や、図3や図4に示す補助ファン201とフレーム104(外フレーム104a)との隙間127の間隔を一定に保つことができ、冷却風の流れを定常にすることができる。冷却風の流れが定常であれば、冷却ファン200の翼周りの渦流が発生しにくくなり、渦流の発生に伴う騒音を低減させることができる。 The cooling fan 200 according to the first embodiment has a structure that hardly vibrates, so for example, the gap of the labyrinth seal 120 shown in FIGS. 1 to 4 or the auxiliary fan 201 and the frame 104 shown in FIG. Can be kept constant, and the flow of the cooling air can be made steady. If the flow of the cooling air is steady, it is difficult to generate a vortex around the blades of the cooling fan 200, and noise associated with the generation of the vortex can be reduced.
 また、回転電機100が高速回転する際に、冷却ファン200が非同期回転し、回転数を減少させた分の騒音低減効果を得ることができる。さらに、騒音を発生させるための振動エネルギーを供給する必要がなくなるため、この振動エネルギーに相当する機械損を低減することができる。 In addition, when the rotary electric machine 100 rotates at high speed, the cooling fan 200 rotates asynchronously, and a noise reduction effect can be obtained as much as the rotation speed is reduced. Furthermore, since it is not necessary to supply vibrational energy to generate noise, mechanical loss corresponding to this vibrational energy can be reduced.
 また、冷却風の流れを定常にできるため、冷却ファン200の回転数に対して、冷却ファン200の受ける軸動力を回転数の関数として一意に定めることができる。したがって、冷却ファン200の回転数上限値は、回転数の関数である冷却ファン200の軸動力と、磁力発生装置220の磁気的トルクとの釣合いを解くことで設計することができ、冷却ファン200の回転数設計を容易にすることができる。ひいては、設計者が冷却ファン200の軸動力の非定常性を過小評価してしまい、冷却ファン200の回転数が設計よりも少なくなり、十分な冷却効果が得られず、回転電機100がヒートアップする一連のリスクを抑制することができる。 Further, since the flow of the cooling air can be made steady, the axial power received by the cooling fan 200 can be uniquely determined as a function of the rotational speed with respect to the rotational speed of the cooling fan 200. Therefore, the rotational speed upper limit value of the cooling fan 200 can be designed by unbalancing the shaft power of the cooling fan 200, which is a function of the rotational speed, and the magnetic torque of the magnetic force generator 220. It is possible to facilitate the design of the number of revolutions. As a result, the designer underestimates the unsteadiness of the shaft power of the cooling fan 200, the number of rotations of the cooling fan 200 becomes smaller than the design, and a sufficient cooling effect can not be obtained. To reduce the range of risks involved.
 さらに、冷却ファン200が振動しにくくなることから、冷却ファン200を支持する軸受210に作用する加振力起因の軸受磨耗を低減することができる。通常、軸受に加わる荷重が明らかな場合、荷重から軸受の寿命を予測することができる。しかし、従来ファンのように軸受に加わる加振力が大きい場合、非定常な加振力の影響を考慮することが設計上困難である。このため、軸受の寿命が短縮する恐れがあることから、軸受の定期的なメンテナンス、または軸受の交換が必要であった。 Furthermore, since the cooling fan 200 is less likely to vibrate, it is possible to reduce the bearing wear due to the vibration force acting on the bearing 210 that supports the cooling fan 200. In general, when the load applied to the bearing is clear, the bearing life can be predicted from the load. However, when the excitation force applied to the bearing is large as in the conventional fan, it is difficult in design to consider the influence of the non-stationary excitation force. For this reason, since there is a possibility that the life of the bearing may be shortened, periodic maintenance of the bearing or replacement of the bearing is required.
 一方、本実施例の冷却ファン200では、冷却ファン200に作用する加振力が小さいため、非定常な加振力の影響は軸受210に作用するファン質量による荷重に比べて無視でき、軸受の寿命を通常通り設計することができる。このため、適切な軸受210を選定することができ、軸受磨耗を検査するためのメンテナンスや、軸受磨耗が原因となる軸受交換は不要となる。 On the other hand, in the cooling fan 200 of this embodiment, since the excitation force acting on the cooling fan 200 is small, the influence of the unsteady excitation force can be ignored compared to the load due to the fan mass acting on the bearing 210. The lifetime can be designed as usual. For this reason, an appropriate bearing 210 can be selected, and maintenance for inspecting bearing wear and bearing replacement caused by bearing wear become unnecessary.
 特に、軸受210としてグリスや潤滑油の流出を防ぐシールド構造を有したシールドベアリングを使用することで、軸受の給油作業を不要とすることができる。このため、回転電機100の寿命以上の寿命の軸受を選定することが可能となり、この場合、回転電機100の使用期間内での軸受のメンテナンスを不要とすることができる。 In particular, by using a shield bearing having a shield structure that prevents the outflow of grease and lubricating oil as the bearing 210, it is possible to eliminate the need for a bearing lubrication operation. For this reason, it becomes possible to select the bearing of the life more than the life of rotary electric machine 100, and in this case, maintenance of the bearing within the use period of rotary electric machine 100 can be made unnecessary.
 第1実施例の磁力発生装置220は、磁力発生部221を永久磁石、磁力発生部222を導電体もしくはヒステリシス特性をもつ磁性材で構成している。この構成により、第1実施例の磁力発生装置220は、冷却ファン200とシャフト103が非同期回転する場合のいかなる条件においても、冷却ファン200の軸動力T1と磁力によるトルクT2が釣合う回転数で冷却ファン200の回転を継続させることができる。よって、第1実施例によれば、冷却ファン200のファン特性を安定させることができ、十分な冷却効果を得つつ、冷却ファン200起因の機械損を低減し、騒音を低減することができる。 In the magnetic force generation device 220 of the first embodiment, the magnetic force generation unit 221 is configured of a permanent magnet, and the magnetic force generation unit 222 is configured of a conductor or a magnetic material having a hysteresis characteristic. With this configuration, the magnetic force generation device 220 of the first embodiment has a rotational speed at which the axial power T1 of the cooling fan 200 and the torque T2 due to the magnetic force are balanced under any conditions when the cooling fan 200 and the shaft 103 rotate asynchronously. The rotation of the cooling fan 200 can be continued. Therefore, according to the first embodiment, the fan characteristics of the cooling fan 200 can be stabilized, and the mechanical loss caused by the cooling fan 200 can be reduced and the noise can be reduced while obtaining a sufficient cooling effect.
 導電体もしくはヒステリシス特性をもつ磁性材は、何れも材料内部を通る磁束が変化することで渦電流が流れ発熱するが、本実施例に示す構造では、導電体もしくはヒステリシス特性をもつ磁性材は冷却ファン200と接しているため、渦電流により発生した熱は冷却ファン200を介して空気中へと放出することができる。このため、発熱による周辺材料の熱劣化や、空隙223を介して導電体や磁性材と面した永久磁石221a、221b、221c、221dの熱減磁を防ぐことができる。 Eddy current flows and heat is generated when the magnetic flux passing through the inside of the material changes in either the conductor or the magnetic material having hysteresis characteristics, but in the structure shown in this embodiment, the magnetic material having the conductor or hysteresis characteristics is cooled Being in contact with the fan 200, the heat generated by the eddy current can be released into the air via the cooling fan 200. Therefore, it is possible to prevent thermal degradation of the peripheral material due to heat generation and thermal demagnetization of the permanent magnets 221a, 221b, 221c, 221d facing the conductor or the magnetic material through the air gap 223.
 特に磁力発生部222として導電体を用いた場合、導電体内部を流れる誘導電流Iは、概ね永久磁石の磁束Φに比例し、導電体の電気抵抗Rに反比例する関係にある。磁力発生装置220の生むトルクT2は概ね、誘導電流Iと磁束Φの積に比例するため、トルクT2は磁束Φの2乗に比例し、電気抵抗Rに反比例する。このような単純な関係が成立するため、磁力発生部222として、特に導電体を用いることで、冷却ファン200の回転数設計をより容易にすることができる。 In particular, when a conductor is used as the magnetic force generator 222, the induced current I flowing inside the conductor is in proportion to the magnetic flux Φ of the permanent magnet and in inverse proportion to the electric resistance R of the conductor. Since the torque T2 generated by the magnetic force generator 220 is generally proportional to the product of the induced current I and the magnetic flux Φ, the torque T2 is proportional to the square of the magnetic flux 、 and inversely proportional to the electrical resistance R. Since such a simple relationship is established, the rotation number of the cooling fan 200 can be designed more easily by using a conductor, in particular, as the magnetic force generator 222.
 また磁力発生部222として電気伝導率の大きな導電体を用いることにより、導電体の電気抵抗Rを低減できるため、電気伝導率の小さな導電体と同じトルクT2を出す際に必要な磁束Φを小さくできる。このため、永久磁石の量を減らすことができ、ファンを小型にすることができ、かつ磁石材料コストを低減することができる。 Further, by using a conductor having a large electric conductivity as the magnetic force generating portion 222, the electric resistance R of the conductor can be reduced, so that the magnetic flux 必要 necessary for producing the same torque T2 as the conductor having a small electric conductivity is reduced. it can. For this reason, the amount of permanent magnets can be reduced, the fan can be miniaturized, and the cost of magnet material can be reduced.
 第1実施例では、冷却ファン200部材として、軽量なアルミまたはアルミ合金を使用している。冷却ファン200をアルミまたはアルミ合金で製作することにより冷却ファン200を軽量化でき、回転電機100を軽量にすることができる。 In the first embodiment, lightweight aluminum or aluminum alloy is used as the cooling fan 200 member. By making the cooling fan 200 of aluminum or an aluminum alloy, the weight of the cooling fan 200 can be reduced, and the weight of the rotary electric machine 100 can be reduced.
 さらにアルミまたはアルミ合金は電気伝導率が大きいため、磁力発生部222として導電体を利用する場合、冷却ファン200と導電体を一体成型できる。これにより、部品点数及び製作工程を削減でき、製作コストを低減することができる。 Furthermore, since aluminum or an aluminum alloy has a large electric conductivity, when a conductor is used as the magnetic force generating portion 222, the cooling fan 200 and the conductor can be integrally molded. Thereby, the number of parts and the number of manufacturing steps can be reduced, and the manufacturing cost can be reduced.
 第1実施例の磁力発生装置220は、図3、図4に示すように、複数の軸受210(210a、210b)により固定子101や回転子102と直接熱交換した内気160、及びフレーム104外から流入する外気170から遮蔽されている。内気160は固定子101や回転子102などの発熱との熱交換により一般的に高温である。従来構造では、高温の内気に直接永久磁石が晒されていたため、永久磁石が熱減磁するリスクがあった。 As shown in FIGS. 3 and 4, the magnetic force generator 220 according to the first embodiment has the inside air 160 heat-exchanged directly with the stator 101 and the rotor 102 by the plurality of bearings 210 (210a and 210b) and the outside of the frame 104. It is shielded from the outside air 170 which flows in from the inside. The inside air 160 is generally at a high temperature due to heat exchange with heat generation of the stator 101, the rotor 102, and the like. In the conventional structure, since the permanent magnet is exposed directly to high temperature inner air, there is a risk that the permanent magnet may be thermally demagnetized.
 一方、第1実施例の構造では、永久磁石は直接内気160に晒されず、永久磁石周囲の空気180は冷却ファン200により冷却されているため、永久磁石が熱減磁するリスクを低減できる。 On the other hand, in the structure of the first embodiment, since the permanent magnet is not directly exposed to the internal air 160 and the air 180 around the permanent magnet is cooled by the cooling fan 200, the risk of heat demagnetization of the permanent magnet can be reduced.
 また、外気170は塵埃を含んでいるため、外気170に磁力発生装置220が晒される場合、永久磁石に鉄粉等の磁性塵埃が付着堆積するリスクがあるが、第1実施例の構造では、永久磁石は直接外気170に晒されていないため、永久磁石に磁性塵埃が付着堆積するリスクがない。従来構造のように、永久磁石に熱減磁のリスクや、磁性塵埃が付着堆積するリスクがある場合、冷却ファンの回転数を補償するためにクリーニングや回転試験などの定期的なメンテナンスや校正を必要とする。 Further, since the outside air 170 contains dust, when the magnetic force generator 220 is exposed to the outside air 170, there is a risk that magnetic dust such as iron powder adheres to the permanent magnet, but in the structure of the first embodiment, Since the permanent magnet is not directly exposed to the outside air 170, there is no risk of magnetic dust adhering to the permanent magnet. As in the conventional structure, if there is a risk of thermal demagnetization or permanent adhesion of magnetic dust to permanent magnets, periodic maintenance and calibration such as cleaning and rotation tests should be performed to compensate for the rotational speed of the cooling fan. I need.
 一方、第1実施例の構造では、磁力発生装置220が内気160及び外気170から遮蔽されているため、これらのリスクが発生せず、冷却ファン200をメンテナンスフリーで使用することができる。 On the other hand, in the structure of the first embodiment, since the magnetic force generator 220 is shielded from the inside air 160 and the outside air 170, these risks do not occur, and the cooling fan 200 can be used maintenance-free.
 以上より、第1実施例における両端支持構造では、磁力アンバランスが生じてもファン特性が安定する。これによりファン騒音が低減し、冷却ファンの回転数設計を容易にする回転電機を提供することができる。 As described above, in the both end support structure in the first embodiment, the fan characteristics are stabilized even if the magnetic force imbalance occurs. Thus, it is possible to provide a rotating electrical machine in which fan noise is reduced and design of the number of rotations of the cooling fan is facilitated.
 また、第1実施例では、軸受210の磨耗を検査するためのメンテナンスや、軸受210の磨耗が原因となる軸受交換は不要となる上に、磁力発生装置220の熱減磁、磁性塵埃堆積のリスクを抑制することができる。第1実施例の構造では、冷却ファン200をメンテナンスフリーで使用することができる。 Further, in the first embodiment, maintenance for inspecting the wear of the bearing 210 and replacement of the bearing caused by wear of the bearing 210 become unnecessary. You can control the risk. In the structure of the first embodiment, the cooling fan 200 can be used free of maintenance.
 次に本発明に係る第2実施例について図10を用いて説明する。図10は本発明の第2実施例に係る回転電機の冷却ファンとその周辺を示す部分断面図である。第1実施例と重複する事項については説明を省略する。 Next, a second embodiment according to the present invention will be described with reference to FIG. FIG. 10 is a partial cross-sectional view showing a cooling fan of a rotary electric machine according to a second embodiment of the present invention and the periphery thereof. Descriptions of matters overlapping with the first embodiment will be omitted.
 第2実施例では、磁力発生部222と軸受210との間に位置する冷却ファン200の内径側に少なくとも1つの円環状の溝190が設けられている。 In the second embodiment, at least one annular groove 190 is provided on the inner diameter side of the cooling fan 200 located between the magnetic force generator 222 and the bearing 210.
 図10では負荷側の軸受210aと磁力発生部222との間に円環状の溝190aが設けられ、反負荷側の軸受210bと磁力発生部222との間に円環状の溝190bが設けられているが、円環状の溝はどちらか一方でも良く、また片側に複数の円環状の溝190が設けられていても良い。 In FIG. 10, an annular groove 190a is provided between the load-side bearing 210a and the magnetic force generator 222, and an annular groove 190b is provided between the non-load-side bearing 210b and the magnetic force generator 222. However, either one of the annular grooves may be provided, and a plurality of annular grooves 190 may be provided on one side.
 第2実施例の構造では、磁力発生装置220を有しており、磁力発生装置220内部には磁力線が通る。特に冷却ファン200とシャフト103が非同期で回転する際は、磁力発生部222内部を通る磁力線もしくは、磁力発生部221と磁力発生部222の両方の内部を通る磁力線の大きさと向きが脈動する。この磁力線の変化により、磁力発生部222が磁性体の場合にはヒステリシス損失や渦電流損失、また磁力発生部222が導電体の場合には主に渦電流損失が発生し、各損失により磁力発生部222は局所的に発熱し、温度上昇をする。熱はその周囲の冷却ファン200や軸受210へと伝わり、磁力発生部222の局所的な発熱部を中心に、その周囲も温度上昇する。この温度上昇の結果、各材料は、ぞれぞれの材料の線膨張係数に応じた熱膨張をする。 The structure of the second embodiment includes a magnetic force generator 220, and magnetic force lines pass through the inside of the magnetic force generator 220. In particular, when the cooling fan 200 and the shaft 103 rotate asynchronously, the magnitudes and directions of the lines of magnetic force passing through the inside of the magnetic force generator 222 or the lines of magnetic force passing through both the magnetic force generator 221 and the magnetic force generator 222 pulsate. Due to the change in the lines of magnetic force, hysteresis loss or eddy current loss occurs when the magnetic force generation unit 222 is a magnetic body, and eddy current loss mainly occurs when the magnetic force generation unit 222 is a conductor, and the magnetic force generation occurs due to each loss. The portion 222 locally generates heat and raises its temperature. The heat is transmitted to the cooling fan 200 and the bearing 210 around it, and the temperature rises around the local heat generation part of the magnetic force generation part 222 as well. As a result of this temperature rise, each material undergoes thermal expansion in accordance with the linear expansion coefficient of each material.
 このため、円環状の溝190が設けられていない構造では、冷却ファン200の熱膨張により、負荷側の軸受210aと反負荷側の軸受210bに対して軸方向の力が発生し、軸受210を破損する恐れがあった。 Therefore, in the structure in which the annular groove 190 is not provided, the thermal expansion of the cooling fan 200 generates an axial force on the load-side bearing 210a and the non-load-side bearing 210b, causing the bearing 210 to There was a risk of damage.
 一方、第2実施例の構造は、円環状の溝190が設けられているので、冷却ファン200が熱膨張しても、その熱膨張による変位を円環状の溝190によって逃がすことができる。円環状の溝190より外周にある部材も熱膨張をするが、冷却ファン200の熱膨張部分の断面積は円環状の溝190がない場合より小さいので、熱膨張による軸方向の力を小さくすることができる。これにより、軸受210が受ける軸方向の力を小さくできるので、軸受210が破損するリスクを低減することができる。 On the other hand, in the structure of the second embodiment, since the annular groove 190 is provided, even if the cooling fan 200 thermally expands, the displacement due to the thermal expansion can be released by the annular groove 190. The members on the outer periphery of the annular groove 190 also thermally expand, but the cross-sectional area of the thermally expanded portion of the cooling fan 200 is smaller than in the case without the annular groove 190, thereby reducing the axial force due to thermal expansion. be able to. As a result, the axial force received by the bearing 210 can be reduced, so the risk of breakage of the bearing 210 can be reduced.
 次に本発明に係る第3実施例について図11を用いて説明する。図11は本発明の第3実施例に係る回転電機の冷却ファンとその周辺を示す部分断面図である。第1実施例及び第2実施例と重複する事項については説明を省略する。 Next, a third embodiment according to the present invention will be described with reference to FIG. FIG. 11 is a partial cross-sectional view showing a cooling fan of a rotary electric machine according to a third embodiment of the present invention and the periphery thereof. Descriptions of matters overlapping with the first embodiment and the second embodiment will be omitted.
 冷却ファン200と複数の軸受210(210a、210b)との間には、鋼鉄製の接続部材300(300a、300b)が設けられており、接続部材300(300a、300b)は少なくとも軸受210(210a、210b)と接触している。 Connecting members 300 (300a, 300b) made of steel are provided between the cooling fan 200 and the plurality of bearings 210 (210a, 210b), and the connecting members 300 (300a, 300b) are at least bearings 210 (210a). , 210b).
 図11では接続部材300aが負荷側の軸受210aと接触するように設置され、接続部材300bが反負荷側の軸受210bと接触するように設置されている。接続部材300と軸受210との設置方法は、上記に限らず、例えば、1つの軸受210に対して複数の接続部材300を接触させても良く、また、冷却ファン200とシャフト103の間の軸受210が3つ以上である場合には、複数の軸受210に対して1つの接続部材350が接触していても良い。 In FIG. 11, the connecting member 300a is installed in contact with the load-side bearing 210a, and the connecting member 300b is installed in contact with the anti-load-side bearing 210b. The installation method of the connection member 300 and the bearing 210 is not limited to the above. For example, a plurality of connection members 300 may be brought into contact with one bearing 210, and the bearing between the cooling fan 200 and the shaft 103 When three or more 210 are provided, one connection member 350 may be in contact with the plurality of bearings 210.
 鋼鉄の接続部材300は熱伝導率が比較的小さいため、磁力発生部222の発熱に対して、接続部材300を介した熱伝導による軸受210の温度上昇を軽減することができる。これにより軸受210の熱劣化を防ぐことができる。また、鋼鉄の接続部材300は径方向の熱膨張も少ないため、熱膨張により冷却ファン200と軸受210とが離間し、両者の接合が外れ、上記の両端支持による効果が低下することを抑制することができる。 Since the connecting member 300 of steel has a relatively low thermal conductivity, the temperature rise of the bearing 210 due to the heat conduction through the connecting member 300 can be reduced with respect to the heat generation of the magnetic force generating portion 222. Thereby, the thermal deterioration of the bearing 210 can be prevented. Further, since the connecting member 300 of steel has little thermal expansion in the radial direction, the thermal expansion separates the cooling fan 200 and the bearing 210 from each other, and the connection between the both is separated, thereby suppressing the reduction of the effect by the both end support. be able to.
 次に図12を用いて第4実施例について説明する。図12は本発明の第4実施例に係る回転電機駆動システムの構成図である。第1実施例~第3実施例と重複する事項については説明を省略する。 A fourth embodiment will now be described with reference to FIG. FIG. 12 is a block diagram of a rotary electric machine drive system according to a fourth embodiment of the present invention. Descriptions of matters overlapping with the first to third embodiments will be omitted.
 図12において、回転電機100を駆動するための電力は、電源400からインバータ、またはコンバータ等から構成された電力を変換する電力変換装置410を介して供給されている。この場合、回転電機100で駆動される負荷420に応じた出力制御が可能である。一般に出力が大きくなると回転電機100内部に発生する損失が増え、これに対応して回転電機100が発熱する。 In FIG. 12, power for driving the rotary electric machine 100 is supplied from a power supply 400 via a power conversion device 410 that converts power composed of an inverter, a converter, and the like. In this case, output control according to the load 420 driven by the rotary electric machine 100 is possible. Generally, as the output increases, the loss generated inside the rotary electric machine 100 increases, and the rotary electric machine 100 generates heat in response to this.
 第4実施例では、第1実施例の回転電機100を回転電機駆動システムに適用している。第1実施例の回転電機100は、冷却ファン200がシャフト103に対して非同期回転するため、特に高速回転域において、ファン騒音とファンアクションによる機械損を低減できる一方、風量の低下により冷却性能は低下することとなる。したがって、第1実施例の回転電機100を高速回転域で出力が小さくなるようなシステムに適用することにより、回転電機100の温度上昇を十分に抑えつつ、高速域のファン騒音や機械損を低減することができる。 In the fourth embodiment, the rotary electric machine 100 of the first embodiment is applied to a rotary electric machine drive system. In the rotary electric machine 100 according to the first embodiment, since the cooling fan 200 rotates asynchronously with respect to the shaft 103, fan noise and mechanical loss due to fan action can be reduced particularly in a high speed rotation range, while cooling performance is reduced It will decrease. Therefore, by applying the rotary electric machine 100 of the first embodiment to a system in which the output is small in the high speed rotation range, the fan noise and mechanical loss in the high speed range are reduced while sufficiently suppressing the temperature rise of the rotary electric machine 100. can do.
 図12中に、好適な回転速度に対する出力の一例をグラフで示している。図12のグラフは、低速回転域で出力が大きく、高速回転域で出力が漸減する運転パターンを示している。 In FIG. 12, an example of the output with respect to a suitable rotational speed is shown in a graph. The graph of FIG. 12 shows an operation pattern in which the output is large in the low speed rotation range and gradually decreases in the high speed rotation range.
 なお、本実施例で示す電源400は商用三相交流電源に限らず、単相交流電源や直流電源の場合でもよい。 The power supply 400 shown in this embodiment is not limited to a commercial three-phase AC power supply, and may be a single-phase AC power supply or a DC power supply.
 以上説明したように、回転電機内部の損失が高速回転域において低速回転域よりも小さくなる領域を有する回転電機駆動システムにおいて、第1実施例の回転電機100を適用することにより、回転電機100の温度上昇を十分に抑制しつつ、高速回転域の機械損や騒音を低減することができる。 As described above, by applying the rotating electric machine 100 of the first embodiment to the rotating electric machine drive system having a region in which the loss inside the rotating electric machine is smaller than the low speed rotation range in the high speed rotation range, Mechanical loss and noise in the high speed rotation range can be reduced while sufficiently suppressing the temperature rise.
 次に図13を用いて第5実施例について説明する。図13は本発明の第5実施例に係る回転電機を搭載した鉄道車両の一部を示す概略構成図である。第1実施例~第4実施例と重複する事項については説明を省略する。 Next, a fifth embodiment will be described with reference to FIG. FIG. 13 is a schematic view showing a part of a railway vehicle equipped with a rotating electrical machine according to a fifth embodiment of the present invention. Descriptions of matters overlapping with the first to fourth examples will be omitted.
 第5実施例において、鉄道車両500は、ギア510、車輪520、車軸530及び回転電機100を備えた台車540を有する。回転電機100はギア510を介して車軸530に接続された車輪520を駆動する。なお、第5実施例では、回転電機100を2基搭載した例であるが、1基または3基以上の複数であっても良い。 In the fifth embodiment, a railcar 500 has a truck 540 provided with gears 510, wheels 520, an axle 530, and a rotating electrical machine 100. The rotary electric machine 100 drives wheels 520 connected to an axle 530 via a gear 510. In the fifth embodiment, although two rotary electric machines 100 are mounted, one or three or more may be provided.
 第1実施例の回転電機100を鉄道車両500に適用することにより、鉄道車両500で生じる騒音のうち、回転電機100のファンアクションに起因する騒音を低減することができる。一般に、鉄道車両で生じる騒音には、レールと車輪から生じる放射音、インバータの電磁騒音に加えて、回転電機のファン騒音が大きな割合を占めている。 By applying the rotating electrical machine 100 of the first embodiment to the railcar 500, it is possible to reduce the noise caused by the fan action of the rotating electrical machine 100 among the noises generated in the railcar 500. Generally, in addition to the noise emitted from the rails and wheels, the electromagnetic noise of the inverter, and the fan noise of the rotating electrical machine, a large percentage of the noise generated by the railway vehicle.
 第5実施例では、第1実施例の回転電機100を鉄道車両500に適用することにより、鉄道車両500の騒音を低減させることができる。また、第1実施例の回転電機100は高速回転域の機械損を低減できるため、これに伴う鉄道車両500の消費電力量を低減することができる。 In the fifth embodiment, by applying the rotating electrical machine 100 of the first embodiment to the railcar 500, the noise of the railcar 500 can be reduced. Moreover, since the rotary electric machine 100 of 1st Example can reduce the mechanical loss of a high speed rotation area, it can reduce the power consumption of the rail vehicle 500 accompanying this.
 本実施例は、鉄道車両に限らず、可変速運転する回転電機駆動システムを含むシステムであれば、他のシステムにも適用可能である。特に、高速回転域において機械損が支配的であり、ファン騒音が問題になるシステムに適用することで、より大きな効率向上効果と騒音低減効果を得ることができる。 The present embodiment is not limited to a railway vehicle, but may be applied to other systems as long as the system includes a rotating electrical machine drive system operating at variable speeds. In particular, by applying to a system in which mechanical loss is dominant in a high speed rotation range and fan noise becomes a problem, a larger efficiency improvement effect and noise reduction effect can be obtained.
 なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。
上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。
The present invention is not limited to the embodiments described above, and includes various modifications.
The above-described embodiments are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
100 回転電機、101 固定子、102 回転子、103 シャフト、104 フレーム、104a 外フレーム、104b 内フレーム、105 固定子鉄心、106 固定子スロット、107 固定子巻線、108 固定子鉄心押さえ、109 空隙、110 回転子鉄心、111 回転子スロット、112 回転子バー、113 エンドリング、114 リテイニングリング、115 回転子鉄心押さえ、116 軸受、117 軸受、118 通風口、120 ラビリンスシール、120a ラビリンスシール、120b ラビリンスシール、125 吸気口、125a 吸気口、125b 吸気口、126 排気口、126a 排気口、126b 排気口、127 隙間、128 通風路、160 内気、170 外気、180 空気、190 溝、190a 溝、190b 溝、200 冷却ファン、201 補助ファン、201a 補助ファン、201b 補助ファン、202 補助ファン支持部、210 軸受、210a 軸受、210b 軸受、220 磁力発生装置、221 磁力発生部、221a 永久磁石、221b 永久磁石、221c 永久磁石、221d 永久磁石、222 磁力発生部、222a 永久磁石、222b 永久磁石、222c 永久磁石、222d 永久磁石、222f 導電体、222h 磁性体、223 空隙、225 リテイニングリング、226a スロット、226b スロット、226c スロット、226d スロット、227 永久磁石保持部材、300 接続部材、300a 接続部材、300b 接続部材、400 電源、410 電力変換装置、420 負荷、500 鉄道車両、510 ギア、520 車輪、530 車軸、540 台車、 Reference Signs List 100 rotating electric machine, 101 stator, 102 rotor, 103 shaft, 104 frame, 104a outer frame, 104b inner frame, 105 stator core, 106 stator slot, 107 stator winding, 108 stator core retainer, 109 air gap , 110 rotor core, 111 rotor slot, 112 rotor bar, 113 end ring, 114 retaining ring, 115 rotor core retainer, 116 bearing, 117 bearing, 118 vent, 120 labyrinth seal, 120a labyrinth seal, 120b Labyrinth seal, 125 intake port, 125a intake port, 125b intake port, 126 exhaust port, 126a exhaust port, 126b exhaust port, 127 gap, 128 ventilation path, 160 inside air, 170 outside air, 18 Air, 190 groove, 190a groove, 190b groove, 200 cooling fan, 201 auxiliary fan, 201a auxiliary fan, 201b auxiliary fan, 202 auxiliary fan support, 210 bearing, 210a bearing, 210b bearing, 220 magnetic force generator, 221 magnetic force generation Part, 221a permanent magnet, 221b permanent magnet, 221c permanent magnet, 221d permanent magnet, 222 magnetic force generating part, 222a permanent magnet, 222b permanent magnet, 222c permanent magnet, 222d permanent magnet, 222f conductor, 222h magnetic body, 223 air gap, 225 Retaining ring, 226a slot, 226b slot, 226c slot, 226d slot, 227 permanent magnet holding member, 300 connection member, 300a connection member, 300b connection portion , 400 power supply, 410 power converter 420 load, 500 railcar 510 gear, 520 wheels, 530 axle 540 bogie,

Claims (11)

  1.  固定子と、回転子と、前記回転子に固定されたシャフトとを備えた回転電機において、 前記シャフトに取り付けられた複数の軸受と、
     前記複数の軸受によって回転可能に支持された冷却ファンと、
     前記シャフトと前記冷却ファンとを同期回転または非同期回転させる磁力発生装置とを備え、
     前記磁力発生装置は、前記複数の軸受の間に配置したことを特徴とする回転電機。
    A rotating electrical machine comprising a stator, a rotor, and a shaft fixed to the rotor, a plurality of bearings mounted on the shaft,
    A cooling fan rotatably supported by the plurality of bearings;
    And a magnetic force generator for synchronously or asynchronously rotating the shaft and the cooling fan,
    The rotating electrical machine, wherein the magnetic force generator is disposed between the plurality of bearings.
  2.  請求項1に記載の回転電機において、
     前記複数の軸受はシールドベアリングであることを特徴とする回転電機。
    In the rotating electrical machine according to claim 1,
    The rotating electrical machine, wherein the plurality of bearings are shield bearings.
  3.  請求項1又は2において、
     前記磁力発生装置は、前記シャフトに設けられた永久磁石と、前記冷却ファンに設けられた導電体とで構成されていることを特徴とする回転電機。
    In claim 1 or 2,
    The rotating electrical machine according to claim 1, wherein the magnetic force generation device comprises a permanent magnet provided on the shaft and a conductor provided on the cooling fan.
  4.  請求項1乃至3の何れか1項において、
     前記冷却ファンをアルミまたはアルミ合金で構成していることを特徴とする回転電機。
    In any one of claims 1 to 3,
    A rotating electrical machine characterized in that the cooling fan is made of aluminum or an aluminum alloy.
  5.  請求項3において、
     前記導電体と前記複数の軸受との間に位置する前記冷却ファンの内径側には、少なくとも1つの円環状の溝を設けたことを特徴とする回転電機。
    In claim 3,
    At least one annular groove is provided on the inner diameter side of the cooling fan located between the conductor and the plurality of bearings.
  6.  請求項1乃至3の何れか1項において、
     前記複数の軸受と前記冷却ファンとの間のそれぞれには、接続部材を設けたことを特徴とする回転電機。
    In any one of claims 1 to 3,
    A connecting member is provided between each of the plurality of bearings and the cooling fan.
  7.  請求項6において、
     前記接続部材は鋼鉄で構成していることを特徴とする回転電機。
    In claim 6,
    The rotating electrical machine, wherein the connecting member is made of steel.
  8.  固定子と、回転子と、前記回転子に固定されたシャフトとを備えた回転電機において、 前記シャフトに取り付けられた複数の軸受と、
     前記複数の軸受によって回転可能に支持された補助ファン支持部と、
    前記補助ファン支持部に設けられた補助ファンと、
     前記シャフトと前記補助ファン支持部とを同期回転または非同期回転させる磁力発生装置とを備え、
    前記磁力発生装置は、前記複数の軸受の間に配置したことを特徴とする回転電機。
    A rotating electrical machine comprising a stator, a rotor, and a shaft fixed to the rotor, a plurality of bearings mounted on the shaft,
    An auxiliary fan support rotatably supported by the plurality of bearings;
    An auxiliary fan provided to the auxiliary fan support portion;
    And a magnetic force generator for synchronously or asynchronously rotating the shaft and the auxiliary fan support.
    The rotating electrical machine, wherein the magnetic force generator is disposed between the plurality of bearings.
  9.  回転電機と、前記回転電機に供給する電力を変換する電力変換装置と、前記回転電機により駆動させる負荷とを備えた回転電機駆動システムにおいて、
     前記回転電機は、請求項1~8の何れか1項を備えたことを特徴とする回転電機駆動システム。
    In a rotating electrical machine drive system comprising: a rotating electrical machine; a power conversion device for converting power supplied to the rotating electrical machine; and a load driven by the rotating electrical machine
    The rotary electric machine drive system according to any one of claims 1 to 8, comprising:
  10.  請求項9において、
     前記電力変換装置は、インバータまたはコンバータであることを特徴とする回転電機駆動システム。
    In claim 9,
    The said rotating electric machine is an inverter or a converter, The rotary electric machine drive system characterized by the above-mentioned.
  11.  回転電機と、車輪と、ギアと、台車を備え、前記回転電機は前記ギアを介して前記車輪を駆動する鉄道車両において、
    前記回転電機は、請求項1~8の何れか1項を備えたことを特徴とする鉄道車両。
    A railway vehicle comprising: a rotating electrical machine, a wheel, a gear, and a truck, wherein the rotating electrical machine drives the wheel via the gear.
    The railway vehicle according to any one of claims 1 to 8, wherein the rotating electrical machine comprises any one of claims 1 to 8.
PCT/JP2018/036564 2017-10-18 2018-09-28 Rotary electric machine, rotary electric machine drive system provided therewith, and railroad car WO2019077977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-201633 2017-10-18
JP2017201633A JP7042054B2 (en) 2017-10-18 2017-10-18 Rotating electric machine, rotating electric machine drive system equipped with it, and railroad vehicle

Publications (1)

Publication Number Publication Date
WO2019077977A1 true WO2019077977A1 (en) 2019-04-25

Family

ID=66174341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036564 WO2019077977A1 (en) 2017-10-18 2018-09-28 Rotary electric machine, rotary electric machine drive system provided therewith, and railroad car

Country Status (2)

Country Link
JP (1) JP7042054B2 (en)
WO (1) WO2019077977A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1138460B (en) * 1960-07-27 1962-10-25 Siemens Ag Electric fan drive through a frequency changeable, brushless induction machine
EP1109297A2 (en) * 1999-12-16 2001-06-20 Siemens Aktiengesellschaft Fan cooled electric motor drive
JP2004135398A (en) * 2002-10-09 2004-04-30 Honda Motor Co Ltd Cooling structure of motor device
JP2008306922A (en) * 2008-07-07 2008-12-18 Hitachi Ltd Motor for driving vehicle
JP4731792B2 (en) * 2000-09-26 2011-07-27 トランスパシフィック・アクティヴァ,リミテッド・ライアビリティ・カンパニー Ventilator device with electromagnetic coupling means
JP2013211949A (en) * 2012-03-30 2013-10-10 Hitachi Industrial Equipment Systems Co Ltd Electric motor
JP2016201902A (en) * 2015-04-10 2016-12-01 株式会社日立製作所 Induction machine, and induction machine drive system and railway vehicle that use the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1138460B (en) * 1960-07-27 1962-10-25 Siemens Ag Electric fan drive through a frequency changeable, brushless induction machine
EP1109297A2 (en) * 1999-12-16 2001-06-20 Siemens Aktiengesellschaft Fan cooled electric motor drive
JP4731792B2 (en) * 2000-09-26 2011-07-27 トランスパシフィック・アクティヴァ,リミテッド・ライアビリティ・カンパニー Ventilator device with electromagnetic coupling means
JP2004135398A (en) * 2002-10-09 2004-04-30 Honda Motor Co Ltd Cooling structure of motor device
JP2008306922A (en) * 2008-07-07 2008-12-18 Hitachi Ltd Motor for driving vehicle
JP2013211949A (en) * 2012-03-30 2013-10-10 Hitachi Industrial Equipment Systems Co Ltd Electric motor
JP2016201902A (en) * 2015-04-10 2016-12-01 株式会社日立製作所 Induction machine, and induction machine drive system and railway vehicle that use the same

Also Published As

Publication number Publication date
JP2019075922A (en) 2019-05-16
JP7042054B2 (en) 2022-03-25

Similar Documents

Publication Publication Date Title
EP1333561A2 (en) Rotor cooling apparatus
KR20000070440A (en) Improvements in high speed electeric motors
JP2003102145A (en) Magnetically levitated motor and magnet bearing device
CA2540228A1 (en) Rollers and roller motors
US20210265905A1 (en) Electrical Machine with Electric Motor and Magnetic Gear
WO2012080566A1 (en) An electrical machine
JP2015228730A (en) Rotary electric machine
WO2019077977A1 (en) Rotary electric machine, rotary electric machine drive system provided therewith, and railroad car
US6426579B1 (en) Permanent magnet type rotary electric machine and electrically driven vehicle using the same
JP2018191488A (en) Rotary electric machine
JP7125864B2 (en) Rotating electric machine
RU2519924C2 (en) Advanced electric energy storage unit using kinetic energy and rail vehicle with this device
US20240154511A1 (en) Magnetic geared rotating machine, power generation system, and magnetic pole piece rotor
JP6931587B2 (en) Rotating electric machine, rotating electric machine drive system equipped with it, and railroad vehicle
JP2003158839A (en) Air-cooled motor
JP2020010575A (en) Rotary electric machine and drive system of rotary electric machine and railway vehicle
JP2019083638A (en) Outer rotation type rotary electric machine and hoist for elevators
CN209823562U (en) Outer rotor magnetic suspension motor
CN111102292A (en) Magnetic suspension bearing assembly, outer rotor motor assembly and motor
JP6095389B2 (en) Rotor and elevator hoisting machine
JP5040153B2 (en) In-wheel motor
CN211737763U (en) Magnetic suspension bearing assembly, outer rotor motor assembly and motor
US20230392579A1 (en) Generator/gearbox arrangement for a wind power installation with a brake
JP2004510398A (en) Ventilator device provided with electromagnetic coupling means
JP4394505B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869076

Country of ref document: EP

Kind code of ref document: A1