WO2019077976A1 - Rotating electric machine, rotating electric machine drive system provided therewith, and railroad car - Google Patents

Rotating electric machine, rotating electric machine drive system provided therewith, and railroad car Download PDF

Info

Publication number
WO2019077976A1
WO2019077976A1 PCT/JP2018/036553 JP2018036553W WO2019077976A1 WO 2019077976 A1 WO2019077976 A1 WO 2019077976A1 JP 2018036553 W JP2018036553 W JP 2018036553W WO 2019077976 A1 WO2019077976 A1 WO 2019077976A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling fan
rotating electrical
electrical machine
support member
magnetic force
Prior art date
Application number
PCT/JP2018/036553
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 誠
暁史 高橋
愼治 杉本
達拡 田村
侑来 芝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019077976A1 publication Critical patent/WO2019077976A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/26Structural association of machines with devices for cleaning or drying cooling medium, e.g. with filters

Definitions

  • the present invention relates to a rotating electrical machine, a rotating electrical machine drive system including the same, and a railway vehicle.
  • a rotating electric machine that is not sufficiently cooled only by natural heat radiation to the surrounding medium is provided with a cooling fan.
  • the cooling fan is rigidly coupled on the shaft of the rotating electrical machine, and the rotating electrical machine and the fan rotate synchronously.
  • the cooling fan generates forced convection and cools the rotating electrical machine.
  • the air volume of the cooling fan rotating in synchronization with such a rotating electrical machine increases in proportion to the rotational speed of the rotating electrical machine.
  • a cooling fan In the case of a rotating electrical machine operating at variable speeds, such as a railway main motor, a cooling fan is designed so that a sufficient air volume can be obtained even with a small number of rotations, in order to ensure cooling performance at medium and low speeds.
  • patent document 1 As a prior art which solves this problem, patent document 1 is proposed, for example.
  • a cooling fan is installed on a shaft of a rotating electrical machine via a bearing, a cooling fan is provided with a permanent magnet, a rotor is provided with a magnetic body, and a technique in which the permanent magnet and the magnetic body are opposed It is disclosed.
  • Patent Document 1 by connecting a cooling fan and a shaft of a rotating electrical machine with a bearing, the cooling fan is asynchronously rotated with respect to the rotating electrical machine, and noise at the time of high speed rotation of the rotating electrical machine is reduced.
  • the magnetic force is generated at a position radially separated from the support position of the cooling fan, that is, the bearing position, so an excitation force vector due to imbalance of the magnetic force and an excitation force from the bearing A rotational moment corresponding to the outer product of the position vector up to the action point is generated in the cooling fan. Therefore, in the technique described in Patent Document 1, the cooling fan vibrates due to the rotational moment.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a rotating electrical machine that reduces noise of a cooling fan due to unbalance in magnetic force.
  • the present invention is characterized in that, in a rotating electrical machine including a stator, a rotor, and a shaft fixed to the rotor, a plurality of bearings attached to the shaft A cooling fan rotatably supported by the plurality of bearings, a magnetic force generation device disposed between the plurality of bearings, and a plurality of the plurality of bearings disposed between each of the plurality of bearings and the cooling fan A support member, and one of the plurality of support members and a part of the cooling fan are provided with a movement restricting portion for restricting movement of the bearing in the axial direction and the radial direction; An air gap or an elastic body is provided between the other support member and a part of the cooling fan among the support members, and the one support member and the other support member are axially separated via a spacer. Fixed at a predetermined interval In the Rukoto.
  • FIG. 1 is a cross-sectional view showing a rotating electrical machine according to a first embodiment of the present invention. It is a fragmentary sectional view in FIG. FIG. 1 is a cross-sectional view showing a rotating electrical machine provided with an auxiliary fan according to a first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a rotating electrical machine provided with an outer fan according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is a modification of AA sectional drawing in FIG. It is a modification of AA sectional drawing in FIG.
  • FIG. 1 is a cross-sectional view of a rotary electric machine according to a first embodiment of the present invention.
  • FIG. 2 is a partially enlarged view of FIG.
  • the rotary electric machine 100 includes a stator 101, a rotor 102 rotatably supported radially inward of the stator 101, a shaft 103 fixed to the rotor 102, and a frame covering the stator 101 and the rotor 102. And 104 are provided.
  • the stator 101 is wound around a stator core 105 configured by laminating a plurality of electromagnetic steel sheets, a plurality of stator slots 106 provided in the circumferential direction of the inner peripheral portion of the stator core 105, and the stator slots 106. It comprises a mounted stator winding 107.
  • the stator core 105 may be configured by an integrally molded solid member.
  • the winding method of the stator winding 107 may be any winding method capable of generating concentrated winding, distributed winding or a rotating magnetic field, and in the case of distributed winding, this embodiment can be applied to either short joint winding or full pitch winding. You can get the effect of In the present embodiment, stator core pressers 108 are provided on both end surfaces of the stator core 105.
  • the rotor 102 is fixed to the shaft 103 and rotates with the shaft 103.
  • the stator 101 and the rotor 102 have the same central axis.
  • An air gap 109 is provided between the stator 101 and the rotor 102 so as not to contact each other.
  • the rotor 102 includes a rotor core 110 configured by laminating a plurality of electromagnetic steel sheets, and a magnetic pole portion (not shown).
  • the magnetic pole portions are provided with a plurality of rotor slots 111 provided in the circumferential direction of the outer peripheral portion of the rotor core 110, a plurality of rotor bars 112 inserted in the rotor slots 111 and extending in the axial direction, and a plurality of rotor bars It is comprised from the end ring 113 which fixes both ends of 112.
  • the rotor core 110 may be composed of an integrally molded solid member.
  • the rotor bar 112 and the end ring 113 are made of an electrical conductor, and for example, copper, aluminum or the like is used.
  • the end ring 113 may be any connection method as long as the plurality of rotor bars 112 are electrically connected.
  • the rotor bar 112 and the end ring 113 may be integrally formed, or may be formed of separate members and connected by means such as brazing.
  • FIG. 1 illustrates the rotor structure of a squirrel cage induction motor as the structure of the magnetic pole portion (not shown), a structure using saliency of the rotor core 110, for example, a switched reluctance motor or a synchronous reluctance motor
  • the magnetic pole portion may be used.
  • any configuration of the magnetic pole of a surface magnet type motor or an embedded magnet type motor in which at least one or more permanent magnets are disposed in the magnetic pole portion, or any other magnetic pole portion of a winding field synchronous motor good.
  • the shaft 103 is rotatably supported by bearings 116 and 117 at both ends of the frame 104.
  • the bearing 116 on the side to which the load is connected is defined as the load side bearing
  • the bearing 117 on the side to which the other load is not connected is defined as the non-load side bearing.
  • a cooling fan 200 is disposed in addition to the above components.
  • the cooling fan 200 is rotatably supported by a plurality of bearings 210 (210a, 210b) attached to the shaft 103 together with the plurality of support members 300 (300a, 300b).
  • the cooling fan 200 of the first embodiment has a function of flowing the cooling air inside the rotary electric machine 100.
  • the rotor 102 is provided with a vent 118 penetrating in the axial direction.
  • the cooling fan 200 rotates, the fluid drawn by the cooling fan 200 passes through the vent 118 and circulates inside the frame 104 as indicated by the arrow. Fluid circulates the inside of the frame 104 to cool the stator 101 and the rotor 102. An uneven gap is formed between the frame 104 and the cooling fan 200 to constitute a labyrinth seal 120.
  • the configuration of the cooling fan 200 may include the auxiliary fan 201 (201a, 201b) as shown in FIG. 3, for example.
  • FIG. 3 is a cross-sectional view showing a rotary electric machine provided with an auxiliary fan according to the first embodiment of the present invention.
  • an auxiliary fan 201 a is attached to the cooling fan 200.
  • An intake port 125 a and an exhaust port 126 a are formed in the frame 104.
  • a gap 127 is formed between the auxiliary fan 201 a and the frame 104.
  • an auxiliary fan support portion 202 is attached to the shaft 103.
  • the auxiliary fan support 202 rotates in synchronization with the rotation of the shaft 103.
  • An auxiliary fan 201 b is attached to the auxiliary fan support portion 202.
  • An intake port 125 b and an exhaust port 126 b are formed in the frame 104.
  • the auxiliary fan support portion 202 is rotated, the auxiliary fan 201b is also rotated, and external air is sucked into the housing space of the auxiliary fan 201b through the air inlet 125b.
  • the sucked air cools the bearing 116 and is then exhausted from the exhaust port 126 b to the outside.
  • a gap of asperity is formed between the frame 104 and the auxiliary fan support portion 202, and a labyrinth seal 120b is configured.
  • the flow of air sucked by the cooling fan 200 is the same as that in FIG.
  • FIG. 4 is a cross-sectional view showing a rotating electrical machine provided with an outer fan according to the first embodiment of the present invention.
  • a cooling fan 200 is attached to the shaft 103.
  • the cooling fan 200 rotates in synchronization with the shaft 103.
  • An air inlet 125 a and an air outlet 126 a are formed in an inner frame 104 b of the frame 104.
  • the auxiliary fan 201a is also rotated, and external air is sucked into the storage space of the auxiliary fan 201a through the air inlet 125a.
  • the sucked air cools the bearing 117 and is then exhausted from the exhaust port 126a to the outside.
  • a gap of asperity is formed between the inner frame 104b and the cooling fan 200, and constitutes a labyrinth seal 120a.
  • an auxiliary fan support 202 is attached to the shaft 103 via a bearing 210.
  • the auxiliary fan 201 b is attached to the auxiliary fan support portion 202.
  • the auxiliary fan support portion 202 is formed along the inner frame 104 b. Then, a gap of asperity is formed between the inner frame 104 b and the auxiliary fan support portion 202 to constitute a labyrinth seal 120 b.
  • a gap 127 is formed between the auxiliary fan 201b and the outer frame 104a.
  • An intake port 125 b is formed in the outer frame 104 a.
  • an exhaust port 126 b and a ventilation path 128 are formed between the outer frame 104 a and the inner frame 104 b.
  • a plurality of bearings 210 are disposed between the shaft 103 and the cooling fan 200 (the auxiliary fan support 202 in FIG. 4), and the cooling fan 200 (the auxiliary fan support 202). ) Is rotatably supported on the shaft 103.
  • the bearing 210 between the shaft 103 and the cooling fan 200 (auxiliary fan support 202) is illustrated as a load-side bearing 210a and a non-load-side bearing 210b. It may be three or more, and is not limited to two.
  • a magnetic force generator 220 is installed between the plurality of bearings 210 (between the bearings 210 a and 210 b).
  • the magnetic force generator 220 has a function to couple the outer peripheral side of the shaft 103 and the inner peripheral side of the cooling fan 200 by magnetic force.
  • the outer peripheral side of the shaft 103 is defined as a magnetic force generating unit 221
  • the inner peripheral side of the cooling fan 200 is defined as a magnetic force generating unit 222.
  • An air gap 223 is provided between the magnetic force generating portion 221 and the magnetic force generating portion 222, and is disposed so as not to be in direct contact with each other.
  • the magnetic force generation unit 221 and the magnetic force generation unit 222 face each other.
  • FIGS. 5 to 7 sectional view taken along the line AA in FIG. 1).
  • 5a to 5c are cross-sectional views taken along line AA in FIG. 6 and 7 are modifications of the AA cross section in FIG. The same applies to the configuration of the magnetic force generator 220 of FIGS. 3 and 4.
  • FIG. 5a shows an example in which the magnetic force generating portion 221 is configured by four-pole annular permanent magnets 221a, 221b, 221c, 221d and the magnetic force generating portion 222 by an annular conductor 222f.
  • FIG. 5a when the shaft 103 rotates, an induced current is generated in the conductor 222f, and a magnetic pole is generated in the conductor 222f.
  • magnetic attraction and repulsion are generated between the permanent magnets 221a, 221b, 221c, 221d and the conductor 222f, and the cooling fan 200 is driven. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG.
  • the number of permanent magnets 221a, 221b, 221c and 221d is four as an example, but not limited to this, it may be two or six or more magnetic poles. Further, although the permanent magnets 221a, 221b, 221c, and 221d are shown as one annular permanent magnet in FIG. 5a, each pole may be configured by a separate permanent magnet, and one pole is a plurality of permanent magnets.
  • the permanent magnets 221a, 221b, 221c, and 221d are formed of a plurality of permanent magnets, it is preferable to hold the outer peripheral portion of the permanent magnets 221a, 221b, 221c, and 221d by a retaining ring 225 as illustrated in FIG.
  • the permanent magnet holding member 227 having the slots 226a, 226b, 226c, and 226d is fixed to the shaft 103, and the permanent magnets 221a, 221b, and 226d are respectively fixed to the slots 226a, 226b, 226c, and 226d.
  • the components 221 c and 221 d may be inserted and held.
  • the permanent magnets 221a, 221b, 221c, and 221d may be bonded to the shaft 103 using an adhesive or the like. It is necessary to prevent the permanent magnets 221a, 221b, 221c, and 221d from being scattered when the shaft 103 is rotated using any means.
  • the conductor 222f any material may be used as long as it is a material with high electrical conductivity, and when the component of the cooling fan 200 is a conductor, the cooling fan 200 and the conductor 222f are necessarily separate members. It is not necessary and may be integrally formed.
  • the magnetic force generating portion 222 may be a magnetic material having hysteresis characteristics instead of the conductor 222f. In this case, a suction force and a repulsive force are generated by the magnetic interaction between the residual magnetic flux of the permanent magnets 221a, 221b, 221c, and 221d and the residual magnetic flux of the magnetic material, and the cooling fan 200 can be driven.
  • FIG. 6 shows an example in which the magnetic force generating portion 221 is configured by four permanent magnets 221a, 221b, 221c and 221d having four poles and the magnetic force generating portion 222 is formed by annular permanent magnets 222a, 222b, 222c and 222d.
  • torque is generated by the magnetic attraction and repulsion between the permanent magnets 221 a, 221 b, 221 c, 221 d and the permanent magnets 222 a, 222 b, 222 c, 222 d to drive the cooling fan 200. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG.
  • the number of poles of the permanent magnets 221a, 221b, 221c, 221d and the permanent magnets 222a, 222b, 222c, 222d is four by way of example, but the number is not limited to this.
  • the magnetic pole configuration of Also, the permanent magnets may have different numbers of poles.
  • the permanent magnets 221a, 221b, 221c, 221d and the permanent magnets 222a, 222b, 222c, 222d are shown as one annular permanent magnet in FIG. 6, each pole is constituted by a separate permanent magnet. Also, one pole may be constituted by a plurality of permanent magnets. The fixing of the separated permanent magnet is the same as the method shown in the description of FIG.
  • FIG. 7 shows an example in which two-pole annular permanent magnets 221 a and 221 b are formed as the magnetic force generating portion 221 and a magnetic body 222 h having saliency as the magnetic force generating portion 222.
  • a torque is generated by the attraction between the permanent magnets 221a and 221b and the magnetic body 222h, and the cooling fan 200 is driven. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG. 7, when the shaft 103 is stationary, the cooling fan 200 is balanced with a stable force in which the magnetic pole centers of the permanent magnets 221 a and 221 b and the projections of the magnetic body 222 h face each other. Stand still.
  • the number of poles of the permanent magnets 221a and 221b is two as an example, but not limited to this, it may be a magnetic pole configuration having four or more poles. Further, although the permanent magnets 221a and 221b are shown as one annular permanent magnet in FIG. 7, each pole may be constituted by a separate permanent magnet, and one pole is constituted by a plurality of permanent magnets. It is good. The fixing of the separated permanent magnets 221a and 221b is the same as the method shown in the description of FIG.
  • a support member 300 is provided between the cooling fan 200 and the plurality of bearings 210 (210 a, 210 b), and the support member 300 is in contact with at least the bearings 210.
  • the cooling fan 200 and the support member 300 are fixed by means such as welding, bonding, shrink fitting, press fitting, bolting and the like.
  • the support member 300 is formed in a ring shape, and a bearing 210 is installed inside the ring shape. By forming the support member 300 in a ring shape, radial movement of the support member 300 relative to the bearing 210 is restricted.
  • the support members 300a and 300b are connected by a spacer 140 described later.
  • the flange part 301 protruded to the inner peripheral side is formed in the supporting member 300b (in FIG. 4, the supporting member 300a). Details of the support member 300 will be described later.
  • the support member 300a is installed to be in contact with the bearing 210a and the support member 300b is installed to be in contact with the bearing 210b, a plurality of support members 300 are brought into contact with one bearing 210.
  • one support member 300 may be in contact with the plurality of bearings 210.
  • One cooling fan end 205 on the load side or the reverse load side of the rotary electric machine 100 and the support member 300 are supported so as not to move in the axial direction and the radial direction with respect to the bearing 210.
  • one of the plurality of support members 300a and 300b and one portion (the cooling fan end 205) of the cooling fan 200 have an axial and radial direction with respect to the bearing 210b.
  • a movement restriction unit is provided to restrict movement.
  • the cooling fan end 205 on the non-load side and the support member 300 b are supported by the bearing 210 b so as not to move in the axial direction
  • the cooling fan end on either the load side or the reverse load side and the support Any member may be used as long as the member 300 is supported by the bearing 210.
  • the cooling fan end defined in the present embodiment means the end of the surface facing the support member 300, and means the blade tip of the cooling fan 200 or the tip of the labyrinth seal 120. is not.
  • the method of supporting the cooling fan end 205 and the supporting member 300 is, for example, as shown in FIG. 2, sandwiching the bearing 210 b by the flange portion 206 provided on the cooling fan end 205 and the flange portion 301 provided on the supporting member 300 b.
  • the two members of the cooling fan 200 and the support member 300b are fixed to the bearing 210b by means such as welding, bonding, shrink fitting, press fitting, bolt fastening and the like.
  • the flange portion 206 and the flange portion 301 have a function as a movement restricting portion which restricts the movement in the axial direction and the radial direction.
  • the effect of the present embodiment can be obtained by using any other supporting method which does not move in the axial and radial directions.
  • a gap 130 is provided at least in the axial direction between the cooling fan end 207 not supported in the axial direction in the bearing 210 and the support member 300.
  • an air gap 130 is provided between another of the plurality of support members 300 a and 300 b and another part (cooling fan end portion 207) of the cooling fan 200.
  • the air gap 130 is not limited to the axial direction, and the air gap 131 may be provided also in the radial direction of the support member 300 between the cooling fan end 207 and the support member 300.
  • FIG. 2 shows a structure in which an axial gap 130 and a radial gap 131 are provided between the driving-side cooling fan end 207 and the support member 300a, the radial gap 131 is an example.
  • the effect of this embodiment can be obtained even if the cooling fan end portion 207 and the support member 300a are in radial contact with each other.
  • FIG. 8 is a partial cross-sectional view showing a configuration in which an elastic body is disposed in an axial gap.
  • FIG. 9 is a partial cross-sectional view showing a configuration in which an elastic body is disposed in a gap in the radial direction.
  • an elastic body 150 is disposed in a portion of an axial gap 130 (FIG. 2) formed between the cooling fan end portion 207 and the support member 300a. That is, an elastic body 150 is provided between another support member 300 a of the plurality of support members 300 a and 300 b and a part of the cooling fan 200 (the cooling fan end 207). An air gap 131 is formed between the cooling fan 200 and the support member 300a.
  • the elastic body 150 is adjusted in thickness so as to contact the cooling fan end 207 and the support member 300 a.
  • the elastic body 150 is fixed to the cooling fan end portion 207 and the support member 300 a by an adhesive or the like.
  • an elastic body 151 is disposed in the portion of the radial gap 131 (FIG. 2) formed between the cooling fan 200 and the support member 300a.
  • An air gap 130 is formed between the cooling fan end 207 and the support member 300a.
  • the elastic body 151 is adjusted in thickness so as to be in contact with the cooling fan 200 and the support member 300 a.
  • the elastic body 151 is fixed to the cooling fan 200 and the support member 300 a by an adhesive or the like.
  • the elastic body 150 may be provided in the axial direction and the elastic body 151 may be provided in the radial direction. Furthermore, the elastic body 150 may be provided in the axial direction, and the cooling fan end 207 and the support member 300a may be in contact in the radial direction. Furthermore, the elastic members 150 and 151 do not have to be filled in the entire region, and the effect of the present embodiment can be obtained even if part of the elastic members 150 and 151 is the air gaps 130 and 131.
  • FIG. 10 is a perspective view showing the connection relationship between the support member and the spacer.
  • the support member 300 is formed in a ring shape as shown in FIG. 10, and a bearing 210 is installed inside the ring shape. By forming the support member 300 in a ring shape, radial movement of the support member 300 relative to the bearing 210 is restricted.
  • the support members 300a and 300b are connected by a spacer 140 described later. Moreover, the flange part 301 protruded to the inner peripheral side is formed in the supporting member 300b.
  • the load side and non-load side support members 300 a and 300 b are fixed at predetermined intervals in the axial direction via the spacer 140.
  • the predetermined distance described herein means a distance obtained by adding the axial length of the air gap 130 or the elastic body 150 to the axial length between the cooling fan ends 205 and 207, and the distance can not always be uniquely defined.
  • the representative length is defined as the effect of this embodiment similar to this.
  • the support members 300 are fixed in the axial direction, their radial degrees of freedom do not necessarily have to be constrained.
  • the spacer 140 is formed of a plurality of columnar members, and connects the support member 300a and the support member 300b.
  • the spacer 140 penetrates a through hole formed in the cooling fan 200 to connect the support member 300 a and the support member 300 b.
  • a cylindrical member, a plurality of conical members, or the like can be used as the structure of the spacer 140.
  • the cooling fan 200 is provided with a through hole through which the spacer 140 passes so as not to interfere with the spacer 140.
  • the cooling fan 200 and the spacer 140 be provided with an air gap so as not to contact each other, but the effect of this embodiment can be obtained even if the cooling fan 200 and the spacer 140 are in contact with each other. It is desirable that the support member 300 and the spacer 140 be coupled to each other by means of welding, bonding, shrink fitting, press fitting, bolt fastening, etc. However, if the support members 300 can be fixed in the axial direction, the radial freedom is not limited. There is no need to adopt a bonding method that constrains the degree.
  • bearings 210 exist on both the rotary electric machine load side and the reverse load side of the magnetic force generator 220.
  • Support members 300a and 300b are disposed in contact with the load-side and anti-load-side bearings 210 (210a and 210b), respectively. Therefore, the support members 300a and 300b are fixed in the radial direction with respect to the bearing 210. Further, the load side and the non-load side support members 300 a and 300 b are axially fixed to each other via the spacer 140. Further, one of the load side or anti-load side support members 300a and 300b is axially fixed to the bearings 210a and 210b. Thus, the support member 300 is fixedly supported in the axial direction and the radial direction with respect to the bearings 210 (210a, 210b).
  • one cooling fan end 205 on the load side or the non-load side of the cooling fan 200 is fixed to the bearing 210 in the axial direction and the radial direction together with the support member 300. Therefore, in the structure of the first embodiment, the rotational freedom of the cooling fan 200 is limited only to the rotational direction of the shaft 103, and other rotations, for example, clockwise / counterclockwise, are restricted by the plurality of bearings 210. There is. In particular, with respect to the magnetic force generator 220, both ends on the load side and the opposite side of the load side have a support structure supported by bearings 210.
  • FIG. 11 is a partial enlarged view showing the relationship of vectors.
  • the cooling fan 200 has a both-ends support structure in which both ends on the load side and the opposite side of the magnetic force generator 220 are restrained by bearings 210. Therefore, even if the imbalance of the magnetic force occurs in the magnetic force generator 220, the position vector r1 from the load side bearing 210a and the non-load side with respect to the point of application of the excitation force vector F generated by this imbalance.
  • the position vector r2 from the bearing 210b is substantially opposite to each other, and the rotational moment about the load side bearing 210a represented by the outer product of the excitation force vector F and the position vector r1 and the excitation force
  • the rotational moments trying to rotate around the center of the bearing 210b on the non-load side represented by the outer product of the vector F and the position vector r2 cancel each other. Thereby, even if the imbalance of the magnetic force occurs in the magnetic force generator 220, the vibration of the cooling fan 200 can be suppressed.
  • the cooling fan 200 vibrates relative to the other members of the rotary electric machine 100 even when the bearing 210 with the same clearance is used compared to the one-end support structure. Can be suppressed. This can suppress not only the imbalance of the magnetic force, but also the vibration from the other external environment and the like.
  • the cooling fan 200 has a structure that is difficult to vibrate, so for example, the gap of the labyrinth seal 120 shown in FIGS. 1 to 4 or the auxiliary fan 201b and the frame 104 shown in FIG. Can be kept constant, and the flow of the cooling air can be made steady. If the flow of the cooling air is steady, it is difficult to generate a vortex around the blades of the cooling fan 200, and noise associated with the generation of the vortex can be reduced.
  • the cooling fan 200 rotates asynchronously, and a noise reduction effect can be obtained as much as the rotation speed is reduced. Furthermore, since it is not necessary to supply vibrational energy to generate noise, mechanical loss corresponding to this vibrational energy can be reduced.
  • the rotational speed upper limit value of the cooling fan 200 can be designed by unbalancing the cooling fan 200 shaft power, which is a function of the rotational speed, and the magnetic torque of the magnetic force generator 220.
  • the rotation speed design can be facilitated.
  • the designer underestimates the unsteadiness of the shaft power of the cooling fan 200, the number of rotations of the cooling fan 200 becomes smaller than the design, and a sufficient cooling effect can not be obtained. To reduce the range of risks involved.
  • the magnetic force generation unit 221 is configured of a permanent magnet
  • the magnetic force generation unit 222 is configured of a conductor or a magnetic material having a hysteresis characteristic.
  • the magnetic force generation device 220 of the first embodiment has a rotational speed at which the axial power T1 of the cooling fan 200 and the torque T2 due to the magnetic force are balanced under any conditions when the cooling fan 200 and the shaft 103 rotate asynchronously.
  • the rotation of the cooling fan 200 can be continued. Therefore, according to the first embodiment, the fan characteristics of the cooling fan 200 can be stabilized, and the mechanical loss caused by the cooling fan 200 can be reduced and the noise can be reduced while obtaining a sufficient cooling effect.
  • the induced current I flowing inside the conductor is in proportion to the magnetic flux ⁇ of the permanent magnet and in inverse proportion to the electric resistance R of the conductor. Since the torque T2 generated by the magnetic force generator 220 is generally proportional to the product of the induced current I and the magnetic flux ⁇ , the torque T2 is proportional to the square of the magnetic flux ⁇ and inversely proportional to the electrical resistance R. Since such a simple relationship is established, the rotation number of the cooling fan 200 can be designed more easily by using a conductor, in particular, as the magnetic force generator 222.
  • the electric resistance R of the conductor can be reduced, so that the magnetic flux ⁇ necessary for producing the same torque T2 as the conductor having a small electric conductivity is reduced. it can. Therefore, the amount of permanent magnet used can be reduced, the fan can be miniaturized, and the cost of magnet material can be reduced.
  • the structure of the first embodiment includes a magnetic force generator 220, and magnetic force lines pass through the inside of the magnetic force generator 220.
  • the cooling fan 200 and the shaft 103 rotate asynchronously, the magnitudes and directions of the lines of magnetic force passing through the inside of the magnetic force generator 222 or the lines of magnetic force passing through both the magnetic force generator 221 and the magnetic force generator 222 pulsate. Due to the change in the lines of magnetic force, hysteresis loss or eddy current loss occurs when the magnetic force generation unit 222 is a magnetic body, and eddy current loss mainly occurs when the magnetic force generation unit 222 is a conductor, and the magnetic force generation occurs due to each loss.
  • the portion 222 locally generates heat and raises its temperature.
  • the generated heat is transmitted to the cooling fan 200 and the spacer 140 around it, and the temperature also rises around the local heat generation part of the magnetic force generation part 222. As a result of this temperature rise, each material undergoes thermal expansion in accordance with the linear expansion coefficient of each material.
  • the thermal expansion of the cooling fan 200 An axial force may be applied to the bearing 210a on the load side and the bearing 210b on the non-load side via the support member 300a to damage the bearings 210a and 210b.
  • the air gap 130 or the elastic body 150 is provided, so that even if the cooling fan 200 is thermally expanded, the displacement due to the thermal expansion is released by the air space 130 or the elastic body 150 Can be converted to a weak spring force.
  • the spacer 140 joined to the support member 300 also thermally expands, but the cross-sectional area of the thermally expanded portion of the spacer 140 is smaller than the sum of the cross-sectional areas of the spacer 140 and the thermally expanded portion of the cooling fan 200. Can be reduced as compared with the case where the air gap 130 or the elastic body 150 is not provided. As a result, the axial force received by the bearing 210 can be reduced, so the risk of breakage of the bearing 210 can be reduced.
  • the mechanical strength of the spacer 140 can be improved. Furthermore, in the configuration of the first embodiment, since the linear expansion coefficient of steel is small, the thermal elongation due to heat generation is small, and the axial force received by the bearing 210 can be reduced. This further reduces the risk of damage to the bearing 210.
  • the axial force received by the bearing 210a can be further reduced. That is, when the supporting member 300a facing the cooling fan end portion 207 in the radial direction is in contact with the cooling fan end portion 207, the cooling fan 200 thermally expands even if the air gap 130 or the elastic body 151 is provided in the axial direction. In this case, mechanical friction generated on the contact surface of the two acts on the bearing 210a as an axial force.
  • the radial gap 131 has the effect of eliminating the mechanical friction, or the elastic body 151 has the effect of converting the mechanical friction into the weak spring force of the elastic body and reducing it.
  • a lightweight aluminum or aluminum alloy having a relatively large linear expansion coefficient is used as a member of the cooling fan 200.
  • the weight of the cooling fan 200 can be reduced, and the weight of the rotary electric machine 100 can be reduced.
  • aluminum or an aluminum alloy has a large electric conductivity, when a conductor is used as the magnetic force generator 222, the cooling fan 200 and the conductor can be integrally molded. Thereby, the number of parts and the number of manufacturing steps can be reduced, and the manufacturing cost can be reduced.
  • the temperature conductivity of the bearing 210 due to heat conduction through the spacer 140 and the support member 300 can be reduced because the thermal conductivity of the steel is relatively small. Thereby, the thermal deterioration of the bearing 210 can be prevented.
  • the support member 300 of steel is less in thermal expansion in the radial direction, the support member 300 is thermally expanded to be separated from the bearing 210 and the connection between the both is separated, thereby suppressing the loss of the effect by the both end support. can do.
  • the support for preventing the cooling fan end 205 and the support member 300 from moving in the axial and radial directions with respect to the bearing 210 is a flange 206 provided on the cooling fan end 205 and a flange provided on the support member 300
  • a flange 206 provided on the cooling fan end 205
  • a flange provided on the support member 300
  • the axial fixing of the driving side and the non-driving side supporting members 300 via the spacer 140 can be carried out by rigidly supporting the spacer 140 and the supporting member 300 by bolting. From the viewpoint of manufacture, it is only necessary to provide threaded holes or through holes in the support member 300 and the spacer 140, and low-cost manufacture is possible.
  • a bolt as the spacer 140.
  • a through hole is formed in one of the drive members or the opposite drive side support member 300
  • a threaded hole is formed in the other support member 300
  • a bolt is inserted from the through hole
  • the other threaded hole is formed in the support member 300.
  • the bolt may be tightened, and the support member 300 having a through hole may be fixed to the bolt by welding, bonding or the like. In this case, a fastening part between the spacer 140 and the support member 300 is unnecessary, and the number of parts can be reduced.
  • the configuration and effects of the first embodiment are the same as those of the auxiliary fan support portion 202 shown in FIG.
  • FIG. 12 is a block diagram of a rotary electric machine drive system according to a second embodiment of the present invention. Descriptions of matters overlapping with the first embodiment will be omitted.
  • power for driving the rotary electric machine 100 is supplied from a power supply 400 via a power conversion device 410 that converts power composed of an inverter, a converter, and the like.
  • output control according to the load 420 driven by the rotary electric machine 100 is possible.
  • the rotary electric machine 100 of the first embodiment is applied to a rotary electric machine drive system.
  • the cooling fan 200 rotates asynchronously with respect to the shaft 103, fan noise and mechanical loss due to fan action can be reduced particularly in a high speed rotation range, while cooling performance is reduced It will decrease. Therefore, by applying the rotary electric machine 100 of the first embodiment to a system in which the output is small in the high speed rotation range, the fan noise and mechanical loss in the high speed range are reduced while sufficiently suppressing the temperature rise of the rotary electric machine 100. can do.
  • FIG. 12 an example of the output with respect to a suitable rotational speed is shown in a graph.
  • the graph of FIG. 12 shows an operation pattern in which the output is large in the low speed rotation range and gradually decreases in the high speed rotation range.
  • the power supply 400 shown in this embodiment is not limited to a commercial three-phase AC power supply, and may be a single-phase AC power supply or a DC power supply.
  • the second embodiment by applying the second embodiment to a rotating electrical machine drive system having a region in which the internal loss of the rotating electrical machine 100 becomes smaller than the low speed rotation range in the high speed rotation range, the temperature rise of the rotating electrical machine 100 is sufficiently suppressed. At the same time, mechanical loss and noise in the high speed range can be reduced.
  • FIG. 13 is a schematic configuration view showing a part of a railway vehicle equipped with a rotating electrical machine according to a third embodiment of the present invention. Descriptions of matters overlapping with the first embodiment and the second embodiment will be omitted.
  • a railcar 500 has a truck 540 provided with gears 510, wheels 520, axles 530, and a rotating electrical machine 100.
  • the rotary electric machine 100 drives wheels 520 connected to an axle 530 via a gear 510.
  • two rotary electric machines 100 are mounted, one or three or more may be provided.
  • the rotating electrical machine 100 of the first embodiment By applying the rotating electrical machine 100 of the first embodiment to the railcar 500, it is possible to reduce the noise caused by the fan action of the rotating electrical machine 100 among the noises generated in the railcar 500. Generally, in addition to the noise emitted from the rails and wheels, the electromagnetic noise of the inverter, and the fan noise of the rotating electrical machine, a large percentage of the noise generated by the railway vehicle.
  • the rotating electrical machine 100 of the first embodiment to the railcar 500, the noise of the railcar 500 can be reduced.
  • the rotary electric machine 100 of 1st Example can reduce the mechanical loss of a high speed rotation area, it can reduce the power consumption of the rail vehicle 500 accompanying this.
  • the present embodiment is not limited to a railway vehicle, but may be applied to other systems as long as the system includes a rotating electrical machine drive system operating at variable speeds.
  • the system includes a rotating electrical machine drive system operating at variable speeds.
  • a larger efficiency improvement effect and noise reduction effect can be obtained.
  • Reference Signs List 100 rotating electric machine, 101 stator, 102 rotor, 103 shaft, 104 frame, 104a outer frame, 104b inner frame, 105 stator core, 106 stator slot, 107 stator winding, 108 stator core retainer, 109 air gap , 110 rotor core, 111 rotor slot, 112 rotor bar, 113 end ring, 114 retaining ring, 115 rotor core retainer, 116 bearing, 117 bearing, 118 vent, 120 labyrinth seal, 120a labyrinth seal, 120b Labyrinth seal, 125 intake port, 125a intake port, 125b intake port, 126 exhaust port, 126a exhaust port, 126b exhaust port, 127 gap, 128 air passage, 130 air gap, 131 air gap, 14 Spacer, 150 elastic body, 151 elastic body, 200 cooling fan, 201 auxiliary fan, 201 a auxiliary fan, 201 b auxiliary fan, 202 auxiliary fan support portion, 205 cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

The purpose of the present invention is to provide a rotating electric machine which decreases the noise of a cooling fan resulting from a magnetic force imbalance. To this end, this rotating electric machine is provided with multiple bearings 210a, 210b which are attached to a shaft 103, a cooling fan 200 which is rotatably supported by the multiple bearings 210a, 210b, a magnetic force generating device 220 which is arranged between the multiple bearings 210a, 210b, and multiple support members 300a, 300b which are arranged between each of the multiple bearings 210a, 210b and the cooling fan 200. The support member 300b of the multiple support members 300a, 300b and a part of the cooling fan 200 are provided with a movement restricting part which restricts axial and radial movement with respect to the bearing 210b, and a gap 130 or an elastic body 150 is provided between the support member 300a of the multiple support members 300a, 300b and part of the cooling fan 200, and the support member 300a and the support member 300b are fixed with a spacer 140.

Description

回転電機及びこれを備えた回転電機駆動システム並びに鉄道車両Rotating electric machine, rotating electric machine drive system having the same, and railway vehicle
 本発明は回転電機及びこれを備えた回転電機駆動システム並びに鉄道車両に関する。 The present invention relates to a rotating electrical machine, a rotating electrical machine drive system including the same, and a railway vehicle.
 通常、周辺媒体への自然放熱だけでは冷却が不十分な回転電機には、冷却ファンが備えられている。冷却ファンは回転電機のシャフト上に強固に結合され、回転電機とファンは同期回転する。冷却ファンは強制対流を生みだし、回転電機を冷却する。このような回転電機と同期回転する冷却ファンの風量は、回転電機の回転数に比例して増大する。 In general, a rotating electric machine that is not sufficiently cooled only by natural heat radiation to the surrounding medium is provided with a cooling fan. The cooling fan is rigidly coupled on the shaft of the rotating electrical machine, and the rotating electrical machine and the fan rotate synchronously. The cooling fan generates forced convection and cools the rotating electrical machine. The air volume of the cooling fan rotating in synchronization with such a rotating electrical machine increases in proportion to the rotational speed of the rotating electrical machine.
 鉄道用主電動機のように可変速運転する回転電機の場合、中低速回転時の冷却性能を確保するために、少ない回転数でも十分な風量が得られるように冷却ファンは設計されている。 In the case of a rotating electrical machine operating at variable speeds, such as a railway main motor, a cooling fan is designed so that a sufficient air volume can be obtained even with a small number of rotations, in order to ensure cooling performance at medium and low speeds.
 回転電機が高速回転する場合は、例え回転電機の発熱が少ない状況であっても、冷却ファンの回転数は回転電機と同期回転するため、高速回転した冷却ファンからはファンの送風音に起因した大きな騒音が発生する問題があった。 When the rotating electrical machine rotates at high speed, even if there is little heat generation of the rotating electrical machine, the rotational speed of the cooling fan rotates in synchronization with the rotating electrical machine, so the cooling fan rotating at high speed caused the blowing noise of the fan There was a problem that a loud noise was generated.
 この問題を解決する従来技術として、例えば特許文献1が提案されている。特許文献1には、回転電機のシャフトに軸受を介して冷却ファンを設置し、冷却ファンには永久磁石を備え、回転子には磁性体を備え、永久磁石と磁性体を対向させた技術が開示されている。特許文献1では、冷却ファンと回転電機のシャフトを軸受で接続することにより、冷却ファンを回転電機に対して非同期で回転させ、回転電機の高速回転時の騒音を低減している。 As a prior art which solves this problem, patent document 1 is proposed, for example. In patent document 1, a cooling fan is installed on a shaft of a rotating electrical machine via a bearing, a cooling fan is provided with a permanent magnet, a rotor is provided with a magnetic body, and a technique in which the permanent magnet and the magnetic body are opposed It is disclosed. In Patent Document 1, by connecting a cooling fan and a shaft of a rotating electrical machine with a bearing, the cooling fan is asynchronously rotated with respect to the rotating electrical machine, and noise at the time of high speed rotation of the rotating electrical machine is reduced.
特開昭57-75545号公報Japanese Patent Application Laid-Open No. 57-75545
 しかしながら、特許文献1に記載の技術においては、磁力のアンバランスによる加振力については考慮されておらず、この加振力により冷却ファンが振動するといった課題があった。 However, in the technology described in Patent Document 1, the excitation force due to the imbalance of the magnetic force is not considered, and there is a problem that the cooling fan vibrates due to this excitation force.
 特許文献1に記載の技術では、冷却ファンの支持位置、すなわち軸受位置に対し、磁力は径方向に離れた位置で発生するため、磁力のアンバランスによる加振力ベクトルと、軸受から加振力作用点までの位置ベクトルとの外積に相当する回転モーメントが冷却ファンに発生する。このため、特許文献1に記載の技術は、回転モーメントにより冷却ファンが振動するものであった。 In the technology described in Patent Document 1, the magnetic force is generated at a position radially separated from the support position of the cooling fan, that is, the bearing position, so an excitation force vector due to imbalance of the magnetic force and an excitation force from the bearing A rotational moment corresponding to the outer product of the position vector up to the action point is generated in the cooling fan. Therefore, in the technique described in Patent Document 1, the cooling fan vibrates due to the rotational moment.
 特許文献1に記載の技術のように、磁力のアンバランスによって振動しやすい構造では、冷却ファンを通る冷却風の流れが非定常となり、これにより騒音が発生する問題があった。 As in the technique described in Patent Document 1, in the structure that is easily vibrated by the imbalance of the magnetic force, the flow of the cooling air passing through the cooling fan becomes unsteady, which causes a problem of noise generation.
 本発明の目的は前記課題を解決し、磁力アンバランスによる冷却ファンの騒音を低減する回転電機を提供することにある。 An object of the present invention is to solve the above-mentioned problems, and to provide a rotating electrical machine that reduces noise of a cooling fan due to unbalance in magnetic force.
 前記目的を達成するために本発明の特徴とするところは、固定子と、回転子と、前記回転子に固定されたシャフトとを備えた回転電機において、前記シャフトに取り付けられた複数の軸受と、前記複数の軸受によって回転可能に支持された冷却ファンと、前記複数の軸受の間に配置された磁力発生装置と、前記複数の軸受のそれぞれと前記冷却ファンとの間に配置された複数の支持部材とを備え、前記複数の支持部材のうち一の支持部材と前記冷却ファンの一部とは、前記軸受に対して軸方向及び径方向の移動を規制する移動規制部を備え、前記複数の支持部材のうち他の支持部材と前記冷却ファンの一部との間には、空隙又は弾性体が設けられ、前記一の支持部材と他の支持部材とは、スペーサを介して軸方向に所定の間隔で固定されていることにある。 In order to achieve the above object, the present invention is characterized in that, in a rotating electrical machine including a stator, a rotor, and a shaft fixed to the rotor, a plurality of bearings attached to the shaft A cooling fan rotatably supported by the plurality of bearings, a magnetic force generation device disposed between the plurality of bearings, and a plurality of the plurality of bearings disposed between each of the plurality of bearings and the cooling fan A support member, and one of the plurality of support members and a part of the cooling fan are provided with a movement restricting portion for restricting movement of the bearing in the axial direction and the radial direction; An air gap or an elastic body is provided between the other support member and a part of the cooling fan among the support members, and the one support member and the other support member are axially separated via a spacer. Fixed at a predetermined interval In the Rukoto.
 本発明によれば、磁力アンバランスによる冷却ファンの騒音を低減する回転電機を提供することができる。 According to the present invention, it is possible to provide a rotating electrical machine that reduces the noise of a cooling fan due to unbalance in magnetic force.
本発明の第1実施例に係る回転電機を示す断面図である。FIG. 1 is a cross-sectional view showing a rotating electrical machine according to a first embodiment of the present invention. 図1における部分断面図である。It is a fragmentary sectional view in FIG. 本発明の第1実施例に係る補助ファンを設けた回転電機を示す断面図である。FIG. 1 is a cross-sectional view showing a rotating electrical machine provided with an auxiliary fan according to a first embodiment of the present invention. 本発明の第1実施例に係る外扇ファンを設けた回転電機を示す断面図である。FIG. 1 is a cross-sectional view showing a rotating electrical machine provided with an outer fan according to a first embodiment of the present invention. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるA-A断面図の変形例である。It is a modification of AA sectional drawing in FIG. 図1におけるA-A断面図の変形例である。It is a modification of AA sectional drawing in FIG. 本発明の第1実施例に係る軸方向の空隙に弾性体を配置した構成を示す部分断面図である。It is a fragmentary sectional view showing the composition which arranged the elastic body in the gap of the direction of an axis concerning the 1st example of the present invention. 本発明の第1実施例に係る径方向の空隙に弾性体を配置した構成を示す部分断面図である。It is a fragmentary sectional view showing the composition which arranged an elastic body in the gap of the diameter direction concerning the 1st example of the present invention. 本発明の第1実施例に係る支持部材とスペーサの接続関係を示す斜視図である。It is a perspective view which shows the connection relation of the supporting member and spacer which concern on 1st Example of this invention. 本発明の第1実施例に係るベクトルの関係を示す部分拡大図である。It is the elements on larger scale which show the relationship of the vector which concerns on 1st Example of this invention. 本発明の第2実施例に係る回転電機駆動システムの構成図である。It is a block diagram of the rotary electric machine drive system which concerns on 2nd Example of this invention. 本発明の第3実施例に係る回転電機を搭載した鉄道車両の一部を示す概略構成図である。It is a schematic block diagram which shows a part of rail vehicle carrying the rotary electric machine which concerns on 3rd Example of this invention.
 以下、本発明の実施例を図面に従い詳細に説明する。本発明においては複数の実施例を提案しているが、下記はあくまでも実施例に過ぎず、本発明の実施態様が下記具体的態様に限定されることを意図する趣旨ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Although several examples are proposed in the present invention, the following is only an example to the last, and it is not the meaning intended that the embodiment of the present invention is limited to the following concrete aspects.
 図1は本発明の第1実施例に係る回転電機の断面図である。図2は図1における部分拡大図である。 FIG. 1 is a cross-sectional view of a rotary electric machine according to a first embodiment of the present invention. FIG. 2 is a partially enlarged view of FIG.
 回転電機100は、固定子101と、固定子101の径方向内側に回転可能に支持された回転子102と、回転子102に固定されたシャフト103と、固定子101及び回転子102を覆うフレーム104とを備えている。 The rotary electric machine 100 includes a stator 101, a rotor 102 rotatably supported radially inward of the stator 101, a shaft 103 fixed to the rotor 102, and a frame covering the stator 101 and the rotor 102. And 104 are provided.
 固定子101は、電磁鋼板を複数枚積層して構成された固定子鉄心105と、固定子鉄心105の内周部の周方向に複数設けられた固定子スロット106と、固定子スロット106に巻装された固定子巻線107から構成されている。固定子鉄心105は、一体成形されたソリッド部材で構成しても良い。また、固定子巻線107の巻装方式は、集中巻、分布巻または回転磁界を発生できる何れの巻装方式でも良く、分布巻においては短節巻または全節巻の何れにおいても本実施例の効果を得ることができる。本実施例では、固定子鉄心105の両端面に固定子鉄心押さえ108を設けている。 The stator 101 is wound around a stator core 105 configured by laminating a plurality of electromagnetic steel sheets, a plurality of stator slots 106 provided in the circumferential direction of the inner peripheral portion of the stator core 105, and the stator slots 106. It comprises a mounted stator winding 107. The stator core 105 may be configured by an integrally molded solid member. In addition, the winding method of the stator winding 107 may be any winding method capable of generating concentrated winding, distributed winding or a rotating magnetic field, and in the case of distributed winding, this embodiment can be applied to either short joint winding or full pitch winding. You can get the effect of In the present embodiment, stator core pressers 108 are provided on both end surfaces of the stator core 105.
 回転子102はシャフト103に固定され、シャフト103とともに回転する。固定子101及び回転子102は同一の中心軸を有する。固定子101と回転子102との間には空隙109が設けられ、互いに接触しないように配置されている。 The rotor 102 is fixed to the shaft 103 and rotates with the shaft 103. The stator 101 and the rotor 102 have the same central axis. An air gap 109 is provided between the stator 101 and the rotor 102 so as not to contact each other.
 回転子102は、電磁鋼板を複数枚積層して構成された回転子鉄心110と、磁極部(図示せず)とを備えている。磁極部は、回転子鉄心110の外周部の周方向に複数設けられた回転子スロット111と、回転子スロット111に挿入され、軸方向に伸びる複数の回転子バー112と、複数の回転子バー112の両端を固定するエンドリング113より構成される。回転子鉄心110は、一体成形されたソリッド部材で構成してもよい。 The rotor 102 includes a rotor core 110 configured by laminating a plurality of electromagnetic steel sheets, and a magnetic pole portion (not shown). The magnetic pole portions are provided with a plurality of rotor slots 111 provided in the circumferential direction of the outer peripheral portion of the rotor core 110, a plurality of rotor bars 112 inserted in the rotor slots 111 and extending in the axial direction, and a plurality of rotor bars It is comprised from the end ring 113 which fixes both ends of 112. The rotor core 110 may be composed of an integrally molded solid member.
 回転子バー112及びエンドリング113は電気伝導体から成り、例えば銅やアルミなどが用いられる。エンドリング113は複数の回転子バー112を電気的に接続してあれば、いかなる接続方法であっても良い。例えば、回転子バー112及びエンドリング113は一体成形しても良く、またそれぞれを別部材で構成し、ロウ付け等の手段により接続しても良い。 The rotor bar 112 and the end ring 113 are made of an electrical conductor, and for example, copper, aluminum or the like is used. The end ring 113 may be any connection method as long as the plurality of rotor bars 112 are electrically connected. For example, the rotor bar 112 and the end ring 113 may be integrally formed, or may be formed of separate members and connected by means such as brazing.
 その他の部材構成として、エンドリング113はリテイニングリング114により保持されている構成でも良く、回転子鉄心110の両端面に回転子鉄心押さえ115を設けるようにしても良い。なお図1では、磁極部(図示せず)の構造としてかご形誘導電動機の回転子構造を例示したが、回転子鉄心110の突極性を利用した構造、例えばスイッチトリラクタンスモータやシンクロナスリラクタンスモータの磁極部であっても良い。また、磁極部に少なくとも1つ以上の永久磁石を配置した、例えば表面磁石型モータや埋込磁石型モータの磁極部、その他、巻線界磁同期モータの磁極部の何れの構成であっても良い。 As another member configuration, the end ring 113 may be held by the retaining ring 114, and the rotor core pressers 115 may be provided on both end surfaces of the rotor core 110. Although FIG. 1 illustrates the rotor structure of a squirrel cage induction motor as the structure of the magnetic pole portion (not shown), a structure using saliency of the rotor core 110, for example, a switched reluctance motor or a synchronous reluctance motor The magnetic pole portion may be used. In addition, any configuration of the magnetic pole of a surface magnet type motor or an embedded magnet type motor in which at least one or more permanent magnets are disposed in the magnetic pole portion, or any other magnetic pole portion of a winding field synchronous motor good.
 シャフト103は、フレーム104の両端部で軸受116、117により支持され回転摺動する。フレーム104の両端部の軸受116、117のうち、図1では負荷が接続される側の軸受116を負荷側軸受、他方の負荷が接続されない側の軸受117を反負荷側軸受と定めている。 The shaft 103 is rotatably supported by bearings 116 and 117 at both ends of the frame 104. Among the bearings 116 and 117 at both ends of the frame 104, in FIG. 1, the bearing 116 on the side to which the load is connected is defined as the load side bearing, and the bearing 117 on the side to which the other load is not connected is defined as the non-load side bearing.
 回転電機100には、以上の構成要素の他に冷却ファン200が配置されている。冷却ファン200は、複数の支持部材300(300a、300b)とともに、シャフト103に取り付けられた複数の軸受210(210a、210b)により、回転可能に支持されている。第1実施例の冷却ファン200は、回転電機100の内部で冷却風を流す機能を有する。回転子102には、軸方向に貫通した通風口118が設けられている。 In the rotary electric machine 100, a cooling fan 200 is disposed in addition to the above components. The cooling fan 200 is rotatably supported by a plurality of bearings 210 (210a, 210b) attached to the shaft 103 together with the plurality of support members 300 (300a, 300b). The cooling fan 200 of the first embodiment has a function of flowing the cooling air inside the rotary electric machine 100. The rotor 102 is provided with a vent 118 penetrating in the axial direction.
 冷却ファン200が回転すると、冷却ファン200によって吸引された流体は、通風口118内を通過し、矢印に示すようにフレーム104の内部を循環する。流体がフレーム104の内部を循環することにより、固定子101、回転子102を冷却する。フレーム104と冷却ファン200との間には、凹凸の隙間が形成され、ラビリンスシール120を構成している。 As the cooling fan 200 rotates, the fluid drawn by the cooling fan 200 passes through the vent 118 and circulates inside the frame 104 as indicated by the arrow. Fluid circulates the inside of the frame 104 to cool the stator 101 and the rotor 102. An uneven gap is formed between the frame 104 and the cooling fan 200 to constitute a labyrinth seal 120.
 冷却ファン200の構成は、例えば図3のように補助ファン201(201a、201b)を備えるようにしても良い。図3は、本発明の第1実施例に係る補助ファンを設けた回転電機を示す断面図である。 The configuration of the cooling fan 200 may include the auxiliary fan 201 (201a, 201b) as shown in FIG. 3, for example. FIG. 3 is a cross-sectional view showing a rotary electric machine provided with an auxiliary fan according to the first embodiment of the present invention.
 図3において、冷却ファン200には補助ファン201aが取り付けられている。フレーム104には吸気口125aと、排気口126aが形成されている。補助ファン201aとフレーム104との間には、隙間127が形成されている。冷却ファン200が回転すると、補助ファン201aも回転し、吸気口125aを介して外部の空気が補助ファン201aの収容空間に吸引される。吸引された空気は軸受117及び210(210b)を冷却した後、排気口126aから外部へ排気される。そして、フレーム104と冷却ファン200との間には、凹凸の隙間が形成され、ラビリンスシール120aを構成している。 In FIG. 3, an auxiliary fan 201 a is attached to the cooling fan 200. An intake port 125 a and an exhaust port 126 a are formed in the frame 104. A gap 127 is formed between the auxiliary fan 201 a and the frame 104. When the cooling fan 200 is rotated, the auxiliary fan 201a is also rotated, and external air is sucked into the storage space of the auxiliary fan 201a through the air inlet 125a. The sucked air cools the bearings 117 and 210 (210b) and then is exhausted to the outside from the exhaust port 126a. Then, a gap of asperity is formed between the frame 104 and the cooling fan 200, and constitutes a labyrinth seal 120a.
 また、シャフト103には補助ファン支持部202が取り付けられている。補助ファン支持部202は、シャフト103の回転に同期して回転する。この補助ファン支持部202には補助ファン201bが取り付けられている。フレーム104には、吸気口125bと排気口126bが形成されている。補助ファン支持部202が回転すると、補助ファン201bも回転し、吸気口125bを介して外部の空気が補助ファン201bの収容空間に吸引される。吸引された空気は軸受116を冷却した後、排気口126bから外部へ排気される。そして、フレーム104と補助ファン支持部202との間には、凹凸の隙間が形成され、ラビリンスシール120bを構成している。なお、冷却ファン200によって吸引された空気の流れについては、図1と同様である。 In addition, an auxiliary fan support portion 202 is attached to the shaft 103. The auxiliary fan support 202 rotates in synchronization with the rotation of the shaft 103. An auxiliary fan 201 b is attached to the auxiliary fan support portion 202. An intake port 125 b and an exhaust port 126 b are formed in the frame 104. When the auxiliary fan support portion 202 is rotated, the auxiliary fan 201b is also rotated, and external air is sucked into the housing space of the auxiliary fan 201b through the air inlet 125b. The sucked air cools the bearing 116 and is then exhausted from the exhaust port 126 b to the outside. Then, a gap of asperity is formed between the frame 104 and the auxiliary fan support portion 202, and a labyrinth seal 120b is configured. The flow of air sucked by the cooling fan 200 is the same as that in FIG.
 冷却ファン200の他の構成例について図4を用いて説明する。図4は、本発明の第1実施例に係る外扇ファンを設けた回転電機を示す断面図である。 Another configuration example of the cooling fan 200 will be described with reference to FIG. FIG. 4 is a cross-sectional view showing a rotating electrical machine provided with an outer fan according to the first embodiment of the present invention.
 図4において、シャフト103には冷却ファン200が取り付けられている。冷却ファン200はシャフト103と同期して回転する。フレーム104の内フレーム104bには、吸気口125aと排気口126aが形成されている。冷却ファン200が回転すると、補助ファン201aも回転し、吸気口125aを介して外部の空気が補助ファン201aの収容空間に吸引される。吸引された空気は軸受117を冷却した後、排気口126aから外部へ排気される。そして、内フレーム104bと冷却ファン200との間には、凹凸の隙間が形成され、ラビリンスシール120aを構成している。 In FIG. 4, a cooling fan 200 is attached to the shaft 103. The cooling fan 200 rotates in synchronization with the shaft 103. An air inlet 125 a and an air outlet 126 a are formed in an inner frame 104 b of the frame 104. When the cooling fan 200 is rotated, the auxiliary fan 201a is also rotated, and external air is sucked into the storage space of the auxiliary fan 201a through the air inlet 125a. The sucked air cools the bearing 117 and is then exhausted from the exhaust port 126a to the outside. Further, a gap of asperity is formed between the inner frame 104b and the cooling fan 200, and constitutes a labyrinth seal 120a.
 また、シャフト103には軸受210を介して補助ファン支持部202が取り付けられている。補助ファン支持部202には補助ファン201bが取り付けられている。この補助ファン支持部202は内フレーム104bに沿うように形成されている。そして、内フレーム104bと補助ファン支持部202との間には、凹凸の隙間が形成され、ラビリンスシール120bを構成している。 In addition, an auxiliary fan support 202 is attached to the shaft 103 via a bearing 210. The auxiliary fan 201 b is attached to the auxiliary fan support portion 202. The auxiliary fan support portion 202 is formed along the inner frame 104 b. Then, a gap of asperity is formed between the inner frame 104 b and the auxiliary fan support portion 202 to constitute a labyrinth seal 120 b.
 補助ファン201bと外フレーム104aとの間には、隙間127が形成されている。
外フレーム104aには、吸気口125bが形成されている。また、外フレーム104aと内フレーム104bとの間には排気口126b及び通風路128が形成されている。補助ファン支持部202が回転すると、補助ファン201bも回転し、吸気口125bを介して外部の空気が補助ファン201bの収容空間に吸引される。吸引された空気は軸受116、軸受210(210a)及び通風路128に面した内フレーム104bを冷却した後、通風路128を流れ、排気口126bから外部へ排気される。なお、冷却ファン200によって吸引された空気の流れについては、図1と同様である。
A gap 127 is formed between the auxiliary fan 201b and the outer frame 104a.
An intake port 125 b is formed in the outer frame 104 a. Further, an exhaust port 126 b and a ventilation path 128 are formed between the outer frame 104 a and the inner frame 104 b. When the auxiliary fan support portion 202 is rotated, the auxiliary fan 201b is also rotated, and external air is sucked into the housing space of the auxiliary fan 201b through the air inlet 125b. The sucked air cools the bearing 116, the bearing 210 (210a) and the inner frame 104b facing the air passage 128, and then flows through the air passage 128 and is exhausted to the outside from the exhaust port 126b. The flow of air sucked by the cooling fan 200 is the same as that in FIG.
 第1実施例において、シャフト103と冷却ファン200(図4においては補助ファン支持部202)との間には複数の軸受210(210a、210b)が配置され、冷却ファン200(補助ファン支持部202)はシャフト103に対して回転可能に支持されている。図1~図4では、シャフト103と冷却ファン200(補助ファン支持部202)との間の軸受210は負荷側の軸受210aと反負荷側の軸受210bとして図示されているが、軸受の個数は3個以上でもよく、2個に限定されるものではない。 In the first embodiment, a plurality of bearings 210 (210a and 210b) are disposed between the shaft 103 and the cooling fan 200 (the auxiliary fan support 202 in FIG. 4), and the cooling fan 200 (the auxiliary fan support 202). ) Is rotatably supported on the shaft 103. In FIG. 1 to FIG. 4, the bearing 210 between the shaft 103 and the cooling fan 200 (auxiliary fan support 202) is illustrated as a load-side bearing 210a and a non-load-side bearing 210b. It may be three or more, and is not limited to two.
 複数の軸受210の間(軸受210a、210bの間)には、磁力発生装置220が設置されている。磁力発生装置220はシャフト103の主に外周側と冷却ファン200の主に内周側とを磁気的な力によって結合する機能を有している。第1実施例では、シャフト103の外周側を磁力発生部221、冷却ファン200の内周側を磁力発生部222と定義する。磁力発生部221と磁力発生部222の間には空隙223が設けられ、互いに直接接触しないように配置されている。磁力発生部221と磁力発生部222とは、互いに対向している。 A magnetic force generator 220 is installed between the plurality of bearings 210 (between the bearings 210 a and 210 b). The magnetic force generator 220 has a function to couple the outer peripheral side of the shaft 103 and the inner peripheral side of the cooling fan 200 by magnetic force. In the first embodiment, the outer peripheral side of the shaft 103 is defined as a magnetic force generating unit 221, and the inner peripheral side of the cooling fan 200 is defined as a magnetic force generating unit 222. An air gap 223 is provided between the magnetic force generating portion 221 and the magnetic force generating portion 222, and is disposed so as not to be in direct contact with each other. The magnetic force generation unit 221 and the magnetic force generation unit 222 face each other.
 次に図5~7(図1におけるA-A断面図)を用いて、磁力発生装置220の構成について説明する。図5a~図5cは図1におけるA-A断面図である。図6及び図7は図1におけるA-A断面図の変形例である。なお、図3及び図4の磁力発生装置220の構成についても同様である。 Next, the configuration of the magnetic force generator 220 will be described with reference to FIGS. 5 to 7 (sectional view taken along the line AA in FIG. 1). 5a to 5c are cross-sectional views taken along line AA in FIG. 6 and 7 are modifications of the AA cross section in FIG. The same applies to the configuration of the magnetic force generator 220 of FIGS. 3 and 4.
 図5aは磁力発生部221を4極の円環状の永久磁石221a、221b、221c、221d、磁力発生部222を円環状の導電体222fで構成した例を示している。図5aの構成では、シャフト103が回転すると導電体222fに誘導電流が生じ、導電体222f内に磁極が発生する。これにより永久磁石221a、221b、221c、221dと導電体222f間に磁気的な吸引力及び反発力が発生し、冷却ファン200を駆動する。すなわち、図5aに例示した磁力発生装置220の構成では、シャフト103と冷却ファン200との間に回転数差が生じたときのみ、永久磁石221a、221b、221c、221dと導電体222fとの間に磁力が発生する。冷却ファン200の軸動力をT1、図5aの磁力発生装置220で発生した磁力によるトルクをT2とすると、T1<T2となる場合では、磁力発生装置220の生むトルクにより冷却ファン200の回転が加速される。一方、T1>T2となる場合では、冷却ファン200の回転数が減速される。
したがって、シャフト103の回転数に対して、冷却ファン200の回転数は、T1=T2が成立する回転数で回転する。
FIG. 5a shows an example in which the magnetic force generating portion 221 is configured by four-pole annular permanent magnets 221a, 221b, 221c, 221d and the magnetic force generating portion 222 by an annular conductor 222f. In the configuration of FIG. 5a, when the shaft 103 rotates, an induced current is generated in the conductor 222f, and a magnetic pole is generated in the conductor 222f. As a result, magnetic attraction and repulsion are generated between the permanent magnets 221a, 221b, 221c, 221d and the conductor 222f, and the cooling fan 200 is driven. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG. 5a, between the permanent magnets 221a, 221b, 221c, 221d and the conductor 222f only when the rotational speed difference occurs between the shaft 103 and the cooling fan 200. Magnetic force is generated on the Assuming that the axial power of the cooling fan 200 is T1, and the torque due to the magnetic force generated by the magnetic force generator 220 of FIG. 5a is T2, if T1 <T2, the torque generated by the magnetic force generator 220 accelerates the rotation of the cooling fan 200 Be done. On the other hand, when T1> T2, the rotational speed of the cooling fan 200 is reduced.
Therefore, with respect to the rotational speed of the shaft 103, the rotational speed of the cooling fan 200 rotates at a rotational speed at which T1 = T2 holds.
 なお、図5aでは、永久磁石221a、221b、221c、221dの極数を一例として4極としたが、この限りでなく、2極でも、6極以上の磁極構成でも良い。また、図5aでは永久磁石221a、221b、221c、221dを1つの円環状の永久磁石として示したが、各極はそれぞれ分離した永久磁石で構成しても良く、1つの極が複数の永久磁石によって構成されていても良い。永久磁石221a、221b、221c、221dを複数の永久磁石で構成する場合は、図5bに例示するように永久磁石221a、221b、221c、221dの外周部をリテイニングリング225で保持すると良い。 In FIG. 5a, the number of permanent magnets 221a, 221b, 221c and 221d is four as an example, but not limited to this, it may be two or six or more magnetic poles. Further, although the permanent magnets 221a, 221b, 221c, and 221d are shown as one annular permanent magnet in FIG. 5a, each pole may be configured by a separate permanent magnet, and one pole is a plurality of permanent magnets. It may be configured by When the permanent magnets 221a, 221b, 221c, and 221d are formed of a plurality of permanent magnets, it is preferable to hold the outer peripheral portion of the permanent magnets 221a, 221b, 221c, and 221d by a retaining ring 225 as illustrated in FIG.
 また、図5cに例示するように、スロット226a、226b、226c、226dを有する永久磁石保持部材227をシャフト103に固定し、スロット226a、226b、226c、226dのそれぞれに、永久磁石221a、221b、221c、221dを挿入して保持するようにしても良い。 Further, as illustrated in FIG. 5c, the permanent magnet holding member 227 having the slots 226a, 226b, 226c, and 226d is fixed to the shaft 103, and the permanent magnets 221a, 221b, and 226d are respectively fixed to the slots 226a, 226b, 226c, and 226d. The components 221 c and 221 d may be inserted and held.
 または、永久磁石221a、221b、221c、221dをシャフト103に接着剤等を利用して接合するようにしても良い。何れかの手段を用いて、シャフト103が回転した際に永久磁石221a、221b、221c、221dが飛散しないようにする必要がある。 Alternatively, the permanent magnets 221a, 221b, 221c, and 221d may be bonded to the shaft 103 using an adhesive or the like. It is necessary to prevent the permanent magnets 221a, 221b, 221c, and 221d from being scattered when the shaft 103 is rotated using any means.
 導電体222fとしては、電気伝導率の高い材料であれば、いかなる材料を用いても良く、冷却ファン200の構成部材が導電体である場合、必ずしも冷却ファン200と導電体222fは別部材とする必要はなく、一体成形しても良い。さらに磁力発生部222は導電体222fの代わりに、ヒステリシス特性をもつ磁性材としても良い。この場合、永久磁石221a、221b、221c、221dの残留磁束と、磁性材の残留磁束との磁気的相互作用により吸引力及び反発力が発生し、冷却ファン200を駆動することができる。 As the conductor 222f, any material may be used as long as it is a material with high electrical conductivity, and when the component of the cooling fan 200 is a conductor, the cooling fan 200 and the conductor 222f are necessarily separate members. It is not necessary and may be integrally formed. Furthermore, the magnetic force generating portion 222 may be a magnetic material having hysteresis characteristics instead of the conductor 222f. In this case, a suction force and a repulsive force are generated by the magnetic interaction between the residual magnetic flux of the permanent magnets 221a, 221b, 221c, and 221d and the residual magnetic flux of the magnetic material, and the cooling fan 200 can be driven.
 次に図6及び図7を用いて変形例を説明する。図6は磁力発生部221を4極の円環状の永久磁石221a、221b、221c、221d、磁力発生部222を円環状の永久磁石222a、222b、222c、222dで構成した例を示している。図6の構成では、永久磁石221a、221b、221c、221dと永久磁石222a、222b、222c、222d間の磁気的な吸引力及び反発力によってトルクが発生し、冷却ファン200を駆動する。すなわち図6に例示した磁力発生装置220の構成では、シャフト103が静止した状態では永久磁石221a、221cのN極と永久磁石222a、222cのS極(もしくは永久磁石221b、221dのS極と永久磁石222b、222dのN極)が向かい合った安定な力の釣合い状態で冷却ファン200は静止する。シャフト103が回転すると、冷却ファン200に磁力によるトルクが発生する。磁力によるトルクの最大値をTmとすると、冷却ファン200の軸動力T1に対して、T1<Tmとなる場合では、磁力発生装置220が発生するトルクにより冷却ファン200はシャフト103と同期回転する。一方で、T1>Tmとなる場合では、冷却ファン200はシャフト103と同期回転することができず、冷却ファン200はシャフト103に対して脱調する。 Next, a modified example will be described using FIGS. 6 and 7. FIG. 6 shows an example in which the magnetic force generating portion 221 is configured by four permanent magnets 221a, 221b, 221c and 221d having four poles and the magnetic force generating portion 222 is formed by annular permanent magnets 222a, 222b, 222c and 222d. In the configuration of FIG. 6, torque is generated by the magnetic attraction and repulsion between the permanent magnets 221 a, 221 b, 221 c, 221 d and the permanent magnets 222 a, 222 b, 222 c, 222 d to drive the cooling fan 200. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG. 6, when the shaft 103 is stationary, the N pole of the permanent magnets 221a and 221c and the S pole of the permanent magnets 222a and 222c (or the S pole of the permanent magnets 221b and 221d and the permanent magnet The cooling fan 200 comes to a standstill in a balanced state of stable forces in which the N poles of the magnets 222b and 222d face each other. When the shaft 103 rotates, torque due to the magnetic force is generated in the cooling fan 200. Assuming that the maximum value of torque by magnetic force is Tm, in the case of T1 <Tm with respect to shaft power T1 of cooling fan 200, cooling fan 200 rotates in synchronization with shaft 103 by torque generated by magnetic force generator 220. On the other hand, in the case of T1> Tm, the cooling fan 200 can not rotate in synchronization with the shaft 103, and the cooling fan 200 is out of step with the shaft 103.
 なお、図6では、永久磁石221a、221b、221c、221d、及び永久磁石222a、222b、222c、222dの極数を一例として4極としたが、この限りでなく、2極でも、6極以上の磁極構成でも良い。また、互いの永久磁石は極数が異なっていても良い。また、図6では永久磁石221a、221b、221c、221d、及び永久磁石222a、222b、222c、222dを1つの円環状の永久磁石として示したが、各極はそれぞれ分離した永久磁石で構成しても良く、1つの極が複数の永久磁石によって構成されていても良い。分離した永久磁石の固定については図5の説明で示した方法と同様である。 In FIG. 6, the number of poles of the permanent magnets 221a, 221b, 221c, 221d and the permanent magnets 222a, 222b, 222c, 222d is four by way of example, but the number is not limited to this. The magnetic pole configuration of Also, the permanent magnets may have different numbers of poles. Further, although the permanent magnets 221a, 221b, 221c, 221d and the permanent magnets 222a, 222b, 222c, 222d are shown as one annular permanent magnet in FIG. 6, each pole is constituted by a separate permanent magnet. Also, one pole may be constituted by a plurality of permanent magnets. The fixing of the separated permanent magnet is the same as the method shown in the description of FIG.
 図7は磁力発生部221として2極の円環状の永久磁石221a、221b、磁力発生部222として突極性を有した磁性体222hで構成した例を示している。図7の構成では、永久磁石221a、221bと磁性体222h間の吸引力によってトルクが発生し、冷却ファン200を駆動する。すなわち図7に例示した磁力発生装置220の構成では、シャフト103が静止した状態では永久磁石221a、221bの磁極中心と磁性体222hの凸部が向かい合った安定な力の釣合い状態で冷却ファン200は静止する。シャフト103が回転すると、冷却ファン200に磁力によるトルクが発生する。磁力によるトルクの最大値をTm’とすると、冷却ファン200の軸動力T1に対して、T1<Tm’となる場合では、磁力発生装置220の生むトルクにより冷却ファン200はシャフト103と同期回転する。一方で、T1>Tm’となる場合では、冷却ファン200はシャフト103と同期回転することができず、冷却ファン200はシャフト103に対して脱調する。 FIG. 7 shows an example in which two-pole annular permanent magnets 221 a and 221 b are formed as the magnetic force generating portion 221 and a magnetic body 222 h having saliency as the magnetic force generating portion 222. In the configuration of FIG. 7, a torque is generated by the attraction between the permanent magnets 221a and 221b and the magnetic body 222h, and the cooling fan 200 is driven. That is, in the configuration of the magnetic force generation device 220 illustrated in FIG. 7, when the shaft 103 is stationary, the cooling fan 200 is balanced with a stable force in which the magnetic pole centers of the permanent magnets 221 a and 221 b and the projections of the magnetic body 222 h face each other. Stand still. When the shaft 103 rotates, torque due to the magnetic force is generated in the cooling fan 200. Assuming that the maximum value of torque due to magnetic force is Tm ′, when T1 <Tm ′ with respect to shaft power T1 of cooling fan 200, cooling fan 200 rotates in synchronization with shaft 103 by torque generated by magnetic force generator 220 . On the other hand, when T1> Tm ', the cooling fan 200 can not rotate in synchronization with the shaft 103, and the cooling fan 200 is out of step with the shaft 103.
 なお、図7では、永久磁石221a、221bの極数を一例として2極としたが、この限りでなく、4極以上の磁極構成でも良い。また、図7では永久磁石221a、221bを1つの円環状の永久磁石として示したが、各極はそれぞれ分離した永久磁石で構成しても良く、1つの極が複数の永久磁石によって構成されていても良い。分離した永久磁石221a、221bの固定については図5の説明で示した方法と同様である。 In FIG. 7, the number of poles of the permanent magnets 221a and 221b is two as an example, but not limited to this, it may be a magnetic pole configuration having four or more poles. Further, although the permanent magnets 221a and 221b are shown as one annular permanent magnet in FIG. 7, each pole may be constituted by a separate permanent magnet, and one pole is constituted by a plurality of permanent magnets. It is good. The fixing of the separated permanent magnets 221a and 221b is the same as the method shown in the description of FIG.
 次に、冷却ファン200の支持構造について説明する。以下の説明では、冷却ファン200の支持構造の例で説明するが、図4における補助ファン支持部202でも同様である。 Next, the support structure of the cooling fan 200 will be described. In the following description, although the example of the support structure of the cooling fan 200 is demonstrated, the same may be said of the auxiliary fan support part 202 in FIG.
 図1及び図2において、冷却ファン200と複数の軸受210(210a、210b)との間には、支持部材300が設けられており、支持部材300は少なくとも軸受210と接触している。冷却ファン200と支持部材300とは、溶接、接着、焼嵌め、圧入、ボルト締め等の手段で固定されている。 In FIGS. 1 and 2, a support member 300 is provided between the cooling fan 200 and the plurality of bearings 210 (210 a, 210 b), and the support member 300 is in contact with at least the bearings 210. The cooling fan 200 and the support member 300 are fixed by means such as welding, bonding, shrink fitting, press fitting, bolting and the like.
 支持部材300はリング状に形成されており、リング状の内側には軸受210が設置される。支持部材300をリング状に形成することにより、支持部材300は軸受210に対し、径方向の移動が規制される。支持部材300a、300b同士は、後述するスペーサ140で接続されている。また、支持部材300b(図4では支持部材300a)には、内周側に突出したフランジ部301が形成されている。支持部材300の詳細については後述する。 The support member 300 is formed in a ring shape, and a bearing 210 is installed inside the ring shape. By forming the support member 300 in a ring shape, radial movement of the support member 300 relative to the bearing 210 is restricted. The support members 300a and 300b are connected by a spacer 140 described later. Moreover, the flange part 301 protruded to the inner peripheral side is formed in the supporting member 300b (in FIG. 4, the supporting member 300a). Details of the support member 300 will be described later.
 図1では支持部材300aが軸受210aと接触するように設置され、支持部材300bが軸受210bと接触するように設置されているが、1つの軸受210に対して複数の支持部材300を接触させても良く、また、例えば冷却ファン200とシャフト103の間の軸受210が3つ以上である場合には、複数の軸受210に対して1つの支持部材300が接触していても良い。 Although in FIG. 1 the support member 300a is installed to be in contact with the bearing 210a and the support member 300b is installed to be in contact with the bearing 210b, a plurality of support members 300 are brought into contact with one bearing 210. For example, when there are three or more bearings 210 between the cooling fan 200 and the shaft 103, one support member 300 may be in contact with the plurality of bearings 210.
 回転電機100の負荷側または反負荷側の一方の冷却ファン端部205と支持部材300は、軸受210に対して軸方向及び径方向に移動しないように支持されている。 One cooling fan end 205 on the load side or the reverse load side of the rotary electric machine 100 and the support member 300 are supported so as not to move in the axial direction and the radial direction with respect to the bearing 210.
 すなわち、第1実施例では、複数の支持部材300a、300bのうち一の支持部材300bと冷却ファン200の一部(冷却ファン端部205)には、軸受210bに対して軸方向及び径方向の移動を規制する移動規制部が備えられている。 That is, in the first embodiment, one of the plurality of support members 300a and 300b and one portion (the cooling fan end 205) of the cooling fan 200 have an axial and radial direction with respect to the bearing 210b. A movement restriction unit is provided to restrict movement.
 図2では反負荷側の冷却ファン端部205と支持部材300bが軸受210bに軸方向に移動しないように支持されているが、負荷側または反負荷側の何れか一方の冷却ファン端部と支持部材300が軸受210に支持されていればどちらでも良い。本実施例で定義する冷却ファン端部とは、支持部材300と対面している面の端部を意味しており、冷却ファン200の翼先端やラビリンスシール120の先端部を意味しているわけではない。 Although in FIG. 2 the cooling fan end 205 on the non-load side and the support member 300 b are supported by the bearing 210 b so as not to move in the axial direction, the cooling fan end on either the load side or the reverse load side and the support Any member may be used as long as the member 300 is supported by the bearing 210. The cooling fan end defined in the present embodiment means the end of the surface facing the support member 300, and means the blade tip of the cooling fan 200 or the tip of the labyrinth seal 120. is not.
 冷却ファン端部205と支持部材300の支持方法は、例えば、図2に示すように、冷却ファン端部205に設けたフランジ部206と、支持部材300bに設けたフランジ部301により軸受210bを挟み、冷却ファン200と支持部材300bの両部材を、溶接、接着、焼嵌め、圧入、ボルト締結等の手段により軸受210bに固定する。フランジ部206及びフランジ部301は軸方向及び径方向の移動を規制する移動規制部としての機能を有する。またこれ以外の軸方向及び径方向に移動させないあらゆる支持方法を用いても、本実施例の効果を得ることができる。 The method of supporting the cooling fan end 205 and the supporting member 300 is, for example, as shown in FIG. 2, sandwiching the bearing 210 b by the flange portion 206 provided on the cooling fan end 205 and the flange portion 301 provided on the supporting member 300 b. The two members of the cooling fan 200 and the support member 300b are fixed to the bearing 210b by means such as welding, bonding, shrink fitting, press fitting, bolt fastening and the like. The flange portion 206 and the flange portion 301 have a function as a movement restricting portion which restricts the movement in the axial direction and the radial direction. The effect of the present embodiment can be obtained by using any other supporting method which does not move in the axial and radial directions.
 一方で、軸受210において軸方向に支持されてない冷却ファン端部207と支持部材300との間には、少なくとも軸方向に空隙130が設けられている。 On the other hand, a gap 130 is provided at least in the axial direction between the cooling fan end 207 not supported in the axial direction in the bearing 210 and the support member 300.
 すなわち、第1実施例では、複数の支持部材300a、300bのうち他の支持部材300aと冷却ファン200の一部(冷却ファン端部207)との間には、空隙130が設けられている。空隙130は軸方向に限られるわけではなく、冷却ファン端部207と支持部材300との間において、支持部材300の径方向にも空隙131を設けるようにしても良い。図2では、一例として、駆動側の冷却ファン端部207と支持部材300aとの間に軸方向の空隙130と径方向の空隙131を設けた構造を示しているが、径方向の空隙131がなく、冷却ファン端部207と支持部材300aとが径方向に接触していても本実施例の効果を得ることができる。 That is, in the first embodiment, an air gap 130 is provided between another of the plurality of support members 300 a and 300 b and another part (cooling fan end portion 207) of the cooling fan 200. The air gap 130 is not limited to the axial direction, and the air gap 131 may be provided also in the radial direction of the support member 300 between the cooling fan end 207 and the support member 300. Although FIG. 2 shows a structure in which an axial gap 130 and a radial gap 131 are provided between the driving-side cooling fan end 207 and the support member 300a, the radial gap 131 is an example. However, the effect of this embodiment can be obtained even if the cooling fan end portion 207 and the support member 300a are in radial contact with each other.
 軸方向の空隙130と径方向の空隙131には、弾性体を設けるようにしても良い。図8は軸方向の空隙に弾性体を配置した構成を示す部分断面図である。図9は径方向の空隙に弾性体を配置した構成を示す部分断面図である。 An elastic body may be provided in the axial gap 130 and the radial gap 131. FIG. 8 is a partial cross-sectional view showing a configuration in which an elastic body is disposed in an axial gap. FIG. 9 is a partial cross-sectional view showing a configuration in which an elastic body is disposed in a gap in the radial direction.
 図8において、冷却ファン端部207と支持部材300aとの間に形成される軸方向の空隙130(図2)の部分には、弾性体150が配置されている。すなわち、複数の支持部材300a、300bのうち他の支持部材300aと冷却ファン200の一部(冷却ファン端部207)との間には、弾性体150が設けられている。冷却ファン200と支持部材300aとの間には、空隙131が形成されている。弾性体150は、冷却ファン端部207と支持部材300aとに接触するよう厚みが調整されている。弾性体150は、接着剤等により、冷却ファン端部207と支持部材300aに固定されている。 In FIG. 8, an elastic body 150 is disposed in a portion of an axial gap 130 (FIG. 2) formed between the cooling fan end portion 207 and the support member 300a. That is, an elastic body 150 is provided between another support member 300 a of the plurality of support members 300 a and 300 b and a part of the cooling fan 200 (the cooling fan end 207). An air gap 131 is formed between the cooling fan 200 and the support member 300a. The elastic body 150 is adjusted in thickness so as to contact the cooling fan end 207 and the support member 300 a. The elastic body 150 is fixed to the cooling fan end portion 207 and the support member 300 a by an adhesive or the like.
 また、図9において、冷却ファン200と支持部材300aとの間に形成される径方向の空隙131(図2)の部分には、弾性体151が配置されている。冷却ファン端部207と支持部材300aとの間には、空隙130が形成されている。弾性体151は、冷却ファン200と支持部材300aとに接触するよう厚みが調整されている。弾性体151は、接着剤等により、冷却ファン200と支持部材300aに固定されている。 Further, in FIG. 9, an elastic body 151 is disposed in the portion of the radial gap 131 (FIG. 2) formed between the cooling fan 200 and the support member 300a. An air gap 130 is formed between the cooling fan end 207 and the support member 300a. The elastic body 151 is adjusted in thickness so as to be in contact with the cooling fan 200 and the support member 300 a. The elastic body 151 is fixed to the cooling fan 200 and the support member 300 a by an adhesive or the like.
 これらの弾性体150、151としては、例えばゴムやスポンジ等を用いると良い。 As these elastic bodies 150 and 151, it is good to use rubber, a sponge, etc., for example.
 また、図示していないが、軸方向に弾性体150、径方向に弾性体151を設けるようにしても良い。さらに、軸方向に弾性体150を設け、径方向は冷却ファン端部207と支持部材300aとが接触するような構成でもよい。さらにまた、弾性体150、151は全領域に充填されている必要はなく、一部が空隙130、131になっていても、本実施例の効果を得ることができる。 Further, although not shown, the elastic body 150 may be provided in the axial direction and the elastic body 151 may be provided in the radial direction. Furthermore, the elastic body 150 may be provided in the axial direction, and the cooling fan end 207 and the support member 300a may be in contact in the radial direction. Furthermore, the elastic members 150 and 151 do not have to be filled in the entire region, and the effect of the present embodiment can be obtained even if part of the elastic members 150 and 151 is the air gaps 130 and 131.
 次に支持部材300a、300bの固定方法について図10を用いて説明する。図10は支持部材とスペーサの接続関係を示す斜視図である。 Next, a method of fixing the support members 300a and 300b will be described with reference to FIG. FIG. 10 is a perspective view showing the connection relationship between the support member and the spacer.
 支持部材300は図10に示すように、リング状に形成されており、リング状の内側には軸受210が設置される。支持部材300をリング状に形成することにより、支持部材300は軸受210に対し、径方向の移動が規制される。支持部材300a、300b同士は、後述するスペーサ140で接続されている。また、支持部材300bには、内周側に突出したフランジ部301が形成されている。 The support member 300 is formed in a ring shape as shown in FIG. 10, and a bearing 210 is installed inside the ring shape. By forming the support member 300 in a ring shape, radial movement of the support member 300 relative to the bearing 210 is restricted. The support members 300a and 300b are connected by a spacer 140 described later. Moreover, the flange part 301 protruded to the inner peripheral side is formed in the supporting member 300b.
 負荷側及び反負荷側の支持部材300a、300bはスペーサ140を介して軸方向に所定の間隔で固定されている。ここで述べる所定の間隔とは、冷却ファン端部205、207間の軸方向長さに、空隙130または弾性体150の軸方向長さを加えた距離を意味し、必ずしも一意に距離が定義できない場合は、これに類する本実施例の効果が得られる代表長さと定義する。支持部材300同士は軸方向に固定されていれば、各々の径方向の自由度を必ずしも拘束される必要はない。 The load side and non-load side support members 300 a and 300 b are fixed at predetermined intervals in the axial direction via the spacer 140. The predetermined distance described herein means a distance obtained by adding the axial length of the air gap 130 or the elastic body 150 to the axial length between the cooling fan ends 205 and 207, and the distance can not always be uniquely defined. In this case, the representative length is defined as the effect of this embodiment similar to this. As long as the support members 300 are fixed in the axial direction, their radial degrees of freedom do not necessarily have to be constrained.
 スペーサ140は、例えば図10に示すように、複数本の柱状部材で構成され、支持部材300aと支持部材300bとを接続している。スペーサ140は、冷却ファン200に形成された貫通孔を貫通して支持部材300aと支持部材300bとを接続している。
スペーサ140の構造としては、他にも円筒状部材、複数の錐状部材などを用いることができる。いずれのスペーサ140の場合でも、冷却ファン200にはスペーサ140と干渉しないように、スペーサ140を通す貫通孔が設けられている。冷却ファン200とスペーサ140は互いに接触しないように空隙が設けられていることが望ましいが、互いに接触していても、本実施例の効果を得ることができる。支持部材300とスペーサ140は互いに溶接、接着、焼嵌め、圧入、ボルト締結等の手段により結合されていることが望ましいが、支持部材300同士を軸方向に固定できれば、必ずしも各々の径方向の自由度を拘束する接合方法を採用する必要はない。
For example, as shown in FIG. 10, the spacer 140 is formed of a plurality of columnar members, and connects the support member 300a and the support member 300b. The spacer 140 penetrates a through hole formed in the cooling fan 200 to connect the support member 300 a and the support member 300 b.
As the structure of the spacer 140, other than that, a cylindrical member, a plurality of conical members, or the like can be used. In any of the spacers 140, the cooling fan 200 is provided with a through hole through which the spacer 140 passes so as not to interfere with the spacer 140. It is desirable that the cooling fan 200 and the spacer 140 be provided with an air gap so as not to contact each other, but the effect of this embodiment can be obtained even if the cooling fan 200 and the spacer 140 are in contact with each other. It is desirable that the support member 300 and the spacer 140 be coupled to each other by means of welding, bonding, shrink fitting, press fitting, bolt fastening, etc. However, if the support members 300 can be fixed in the axial direction, the radial freedom is not limited. There is no need to adopt a bonding method that constrains the degree.
 第1実施例では、磁力発生装置220の回転電機負荷側と反負荷側の両方に軸受210(210a、210b)が存在する。負荷側及び反負荷側の軸受210(210a、210b)には、それぞれ支持部材300a、300bが接触するように設置されている。このため、軸受210に対して、それぞれの支持部材300a、300bは径方向に固定されている。さらに、負荷側及び反負荷側の支持部材300a、300bは、互いにスペーサ140を介して軸方向に固定されている。また、負荷側または反負荷側の支持部材300a、300bの何れか一方は、軸受210a、210bに対して軸方向に固定されている。このように支持部材300は軸受210(210a、210b)に対して、軸方向及び径方向に固定支持されている。 In the first embodiment, bearings 210 (210a, 210b) exist on both the rotary electric machine load side and the reverse load side of the magnetic force generator 220. Support members 300a and 300b are disposed in contact with the load-side and anti-load-side bearings 210 (210a and 210b), respectively. Therefore, the support members 300a and 300b are fixed in the radial direction with respect to the bearing 210. Further, the load side and the non-load side support members 300 a and 300 b are axially fixed to each other via the spacer 140. Further, one of the load side or anti-load side support members 300a and 300b is axially fixed to the bearings 210a and 210b. Thus, the support member 300 is fixedly supported in the axial direction and the radial direction with respect to the bearings 210 (210a, 210b).
 加えて、冷却ファン200も負荷側または反負荷側の一方の冷却ファン端部205が支持部材300とともに、軸受210に軸方向及び径方向に固定されている。したがって第1実施例の構造は、冷却ファン200の回転自由度をシャフト103の回転方向の自由度のみとし、それ以外の例えば紙面時計回り/反時計回りの回転を複数の軸受210で拘束している。特に磁力発生装置220を中心として、その負荷側及び反負荷側の両端は軸受210で拘束した両端支持構造となっている。 In addition, one cooling fan end 205 on the load side or the non-load side of the cooling fan 200 is fixed to the bearing 210 in the axial direction and the radial direction together with the support member 300. Therefore, in the structure of the first embodiment, the rotational freedom of the cooling fan 200 is limited only to the rotational direction of the shaft 103, and other rotations, for example, clockwise / counterclockwise, are restricted by the plurality of bearings 210. There is. In particular, with respect to the magnetic force generator 220, both ends on the load side and the opposite side of the load side have a support structure supported by bearings 210.
 次に第1実施例の作用について図11を用いて説明する。図11はベクトルの関係を示す部分拡大図である。 Next, the operation of the first embodiment will be described with reference to FIG. FIG. 11 is a partial enlarged view showing the relationship of vectors.
 第1実施例では、冷却ファン200は、磁力発生装置220を中心として、その負荷側及び反負荷側の両端を軸受210で拘束した両端支持構造となっている。このため磁力発生装置220内で磁力のアンバランスが生じても、このアンバランスにより生じる加振力ベクトルFの作用点に対して、負荷側の軸受210aからの位置ベクトルr1と、反負荷側の軸受210bからの位置ベクトルr2は互いに略逆方向を向いており、加振力ベクトルFと位置ベクトルr1の外積であらわされる負荷側の軸受210aを中心に回そうとする回転モーメントと、加振力ベクトルFと位置ベクトルr2の外積であらわされる反負荷側の軸受210b中心に回そうとする回転モーメントは互いに打ち消しあう。これにより、磁力発生装置220内で磁力のアンバランスが生じても冷却ファン200の振動を抑制することができる。 In the first embodiment, the cooling fan 200 has a both-ends support structure in which both ends on the load side and the opposite side of the magnetic force generator 220 are restrained by bearings 210. Therefore, even if the imbalance of the magnetic force occurs in the magnetic force generator 220, the position vector r1 from the load side bearing 210a and the non-load side with respect to the point of application of the excitation force vector F generated by this imbalance. The position vector r2 from the bearing 210b is substantially opposite to each other, and the rotational moment about the load side bearing 210a represented by the outer product of the excitation force vector F and the position vector r1 and the excitation force The rotational moments trying to rotate around the center of the bearing 210b on the non-load side represented by the outer product of the vector F and the position vector r2 cancel each other. Thereby, even if the imbalance of the magnetic force occurs in the magnetic force generator 220, the vibration of the cooling fan 200 can be suppressed.
 また両端支持構造は、拘束点を2点有するため、片端支持構造に比べて、同じクリアランスの軸受210を使用した場合であっても、冷却ファン200が回転電機100の他部材に対して振動することを抑制することができる。これは、磁力のアンバランスに限らず、その他の外界からの振動等に対しても、同様に振動することを抑制することができる。 Further, since the both-ends support structure has two restraint points, the cooling fan 200 vibrates relative to the other members of the rotary electric machine 100 even when the bearing 210 with the same clearance is used compared to the one-end support structure. Can be suppressed. This can suppress not only the imbalance of the magnetic force, but also the vibration from the other external environment and the like.
 第1実施例の冷却ファン200は、振動し難い構造のため、例えば図1~4に示すラビリンスシール120の隙間の間隔や、図3や図4に示す補助ファン201bとフレーム104(外フレーム104a)との隙間127の間隔を一定に保つことができ、冷却風の流れを定常にすることができる。冷却風の流れが定常であれば、冷却ファン200の翼周りの渦流が発生しにくくなり、渦流の発生に伴う騒音を低減させることができる。 The cooling fan 200 according to the first embodiment has a structure that is difficult to vibrate, so for example, the gap of the labyrinth seal 120 shown in FIGS. 1 to 4 or the auxiliary fan 201b and the frame 104 shown in FIG. Can be kept constant, and the flow of the cooling air can be made steady. If the flow of the cooling air is steady, it is difficult to generate a vortex around the blades of the cooling fan 200, and noise associated with the generation of the vortex can be reduced.
 また、回転電機100が高速回転する際に、冷却ファン200が非同期回転し、回転数を減少させた分の騒音低減効果を得ることができる。さらに、騒音を発生させるための振動エネルギーを供給する必要がなくなるため、この振動エネルギーに相当する機械損を低減することができる。 In addition, when the rotary electric machine 100 rotates at high speed, the cooling fan 200 rotates asynchronously, and a noise reduction effect can be obtained as much as the rotation speed is reduced. Furthermore, since it is not necessary to supply vibrational energy to generate noise, mechanical loss corresponding to this vibrational energy can be reduced.
 また、冷却風の流れを定常にできるため、冷却ファン200の回転数に対して、冷却ファン200の受ける軸動力を回転数の関数として一意に定めることができる。したがって、冷却ファン200の回転数上限値は、回転数の関数である冷却ファン200軸動力と、磁力発生装置220の磁気的トルクとの釣合いを解くことで設計することができ、冷却ファン200の回転数設計を容易にすることができる。ひいては、設計者が冷却ファン200の軸動力の非定常性を過小評価してしまい、冷却ファン200の回転数が設計よりも少なくなり、十分な冷却効果が得られず、回転電機100がヒートアップする一連のリスクを抑制することができる。 Further, since the flow of the cooling air can be made steady, the axial power received by the cooling fan 200 can be uniquely determined as a function of the rotational speed with respect to the rotational speed of the cooling fan 200. Therefore, the rotational speed upper limit value of the cooling fan 200 can be designed by unbalancing the cooling fan 200 shaft power, which is a function of the rotational speed, and the magnetic torque of the magnetic force generator 220. The rotation speed design can be facilitated. As a result, the designer underestimates the unsteadiness of the shaft power of the cooling fan 200, the number of rotations of the cooling fan 200 becomes smaller than the design, and a sufficient cooling effect can not be obtained. To reduce the range of risks involved.
 第1実施例の磁力発生装置220は、磁力発生部221を永久磁石、磁力発生部222を導電体もしくはヒステリシス特性をもつ磁性材で構成している。この構成により、第1実施例の磁力発生装置220は、冷却ファン200とシャフト103が非同期回転する場合のいかなる条件においても、冷却ファン200の軸動力T1と磁力によるトルクT2が釣合う回転数で冷却ファン200の回転を継続させることができる。よって、第1実施例によれば、冷却ファン200のファン特性を安定させることができ、十分な冷却効果を得つつ、冷却ファン200起因の機械損を低減し、騒音を低減することができる。 In the magnetic force generation device 220 of the first embodiment, the magnetic force generation unit 221 is configured of a permanent magnet, and the magnetic force generation unit 222 is configured of a conductor or a magnetic material having a hysteresis characteristic. With this configuration, the magnetic force generation device 220 of the first embodiment has a rotational speed at which the axial power T1 of the cooling fan 200 and the torque T2 due to the magnetic force are balanced under any conditions when the cooling fan 200 and the shaft 103 rotate asynchronously. The rotation of the cooling fan 200 can be continued. Therefore, according to the first embodiment, the fan characteristics of the cooling fan 200 can be stabilized, and the mechanical loss caused by the cooling fan 200 can be reduced and the noise can be reduced while obtaining a sufficient cooling effect.
 特に磁力発生部222として導電体を用いた場合、導電体内部を流れる誘導電流Iは、概ね永久磁石の磁束Φに比例し、導電体の電気抵抗Rに反比例する関係にある。磁力発生装置220の生むトルクT2は概ね、誘導電流Iと磁束Φの積に比例するため、トルクT2は磁束Φの2乗に比例し、電気抵抗Rに反比例する。このような単純な関係が成立するため、磁力発生部222として、特に導電体を用いることにより、冷却ファン200の回転数設計をより容易にすることができる。 In particular, when a conductor is used as the magnetic force generator 222, the induced current I flowing inside the conductor is in proportion to the magnetic flux Φ of the permanent magnet and in inverse proportion to the electric resistance R of the conductor. Since the torque T2 generated by the magnetic force generator 220 is generally proportional to the product of the induced current I and the magnetic flux Φ, the torque T2 is proportional to the square of the magnetic flux 、 and inversely proportional to the electrical resistance R. Since such a simple relationship is established, the rotation number of the cooling fan 200 can be designed more easily by using a conductor, in particular, as the magnetic force generator 222.
 また磁力発生部222として電気伝導率の大きな導電体を用いることにより、導電体の電気抵抗Rを低減できるため、電気伝導率の小さな導電体と同じトルクT2を出す際に必要な磁束Φを小さくできる。このため、永久磁石の使用量を減らすことができ、ファンを小型にすることができ、かつ磁石材料コストを低減することができる。 Further, by using a conductor having a large electric conductivity as the magnetic force generating portion 222, the electric resistance R of the conductor can be reduced, so that the magnetic flux 必要 necessary for producing the same torque T2 as the conductor having a small electric conductivity is reduced. it can. Therefore, the amount of permanent magnet used can be reduced, the fan can be miniaturized, and the cost of magnet material can be reduced.
 第1実施例の構造では、磁力発生装置220を有しており、磁力発生装置220内部には磁力線が通る。特に冷却ファン200とシャフト103が非同期で回転する際は、磁力発生部222内部を通る磁力線もしくは、磁力発生部221と磁力発生部222の両方の内部を通る磁力線の大きさと向きが脈動する。この磁力線の変化により、磁力発生部222が磁性体の場合にはヒステリシス損失や渦電流損失、また磁力発生部222が導電体の場合には主に渦電流損失が発生し、各損失により磁力発生部222は局所的に発熱し、温度上昇をする。発生する熱はその周囲の冷却ファン200やスペーサ140へと伝わり、磁力発生部222の局所的な発熱部を中心に、その周囲も温度上昇する。この温度上昇の結果、各材料は、ぞれぞれの材料の線膨張係数に応じた熱膨張をする。第1実施例の構造とは異なり、冷却ファン端部207側と、対面する支持部材300aとの間に、空隙130または弾性体150を有しない構造の場合は、冷却ファン200の熱膨張により、支持部材300aを介して、負荷側の軸受210aと反負荷側の軸受210bに対して軸方向の力を加え、軸受210a、210bを破損する恐れがあった。 The structure of the first embodiment includes a magnetic force generator 220, and magnetic force lines pass through the inside of the magnetic force generator 220. In particular, when the cooling fan 200 and the shaft 103 rotate asynchronously, the magnitudes and directions of the lines of magnetic force passing through the inside of the magnetic force generator 222 or the lines of magnetic force passing through both the magnetic force generator 221 and the magnetic force generator 222 pulsate. Due to the change in the lines of magnetic force, hysteresis loss or eddy current loss occurs when the magnetic force generation unit 222 is a magnetic body, and eddy current loss mainly occurs when the magnetic force generation unit 222 is a conductor, and the magnetic force generation occurs due to each loss. The portion 222 locally generates heat and raises its temperature. The generated heat is transmitted to the cooling fan 200 and the spacer 140 around it, and the temperature also rises around the local heat generation part of the magnetic force generation part 222. As a result of this temperature rise, each material undergoes thermal expansion in accordance with the linear expansion coefficient of each material. Unlike the structure of the first embodiment, in the case of the structure without the air gap 130 or the elastic body 150 between the cooling fan end 207 side and the facing support member 300a, the thermal expansion of the cooling fan 200 An axial force may be applied to the bearing 210a on the load side and the bearing 210b on the non-load side via the support member 300a to damage the bearings 210a and 210b.
 一方、第1実施例の構造は、空隙130または弾性体150が設けられていることで、冷却ファン200が熱膨張しても、その熱膨張による変位を空隙130によって逃がすか、もしくは弾性体150に吸収させることで弱いバネ力に変換することができる。支持部材300と接合したスペーサ140も熱膨張をするが、スペーサ140の熱膨張部分の断面積は、スペーサ140と冷却ファン200の熱膨張部分の断面積の和より小さいので、熱膨張による軸方向の力を、空隙130または弾性体150を有しない場合と比べて小さくすることができる。これにより、軸受210が受ける軸方向の力を小さくできるので、軸受210が破損するリスクを低減することができる。 On the other hand, in the structure of the first embodiment, the air gap 130 or the elastic body 150 is provided, so that even if the cooling fan 200 is thermally expanded, the displacement due to the thermal expansion is released by the air space 130 or the elastic body 150 Can be converted to a weak spring force. The spacer 140 joined to the support member 300 also thermally expands, but the cross-sectional area of the thermally expanded portion of the spacer 140 is smaller than the sum of the cross-sectional areas of the spacer 140 and the thermally expanded portion of the cooling fan 200. Can be reduced as compared with the case where the air gap 130 or the elastic body 150 is not provided. As a result, the axial force received by the bearing 210 can be reduced, so the risk of breakage of the bearing 210 can be reduced.
 特に、第1実施例ではスペーサ140の部材として、鋼鉄を使用することにより、スペーサ140の機械的強度を向上することができる。さらに、第1実施例の構成では、鋼鉄の線膨張係数が小さいため、発熱による熱伸びが小さく、軸受210が受ける軸方向の力を小さくすることができる。これにより軸受210が破損するリスクをさらに低減することができる。 In particular, by using steel as a member of the spacer 140 in the first embodiment, the mechanical strength of the spacer 140 can be improved. Furthermore, in the configuration of the first embodiment, since the linear expansion coefficient of steel is small, the thermal elongation due to heat generation is small, and the axial force received by the bearing 210 can be reduced. This further reduces the risk of damage to the bearing 210.
 加えて、冷却ファン端部207側と、対面する支持部材300aとの間に、径方向の空隙131または弾性体151を設けることにより、軸受210aが受ける軸方向の力をさらに低減することができる。すなわち、径方向の面で冷却ファン端部207側と、対面する支持部材300aが接触している場合、軸方向に空隙130または弾性体151を設けていたとしても、冷却ファン200が熱膨張した場合、両者の接触面に発生する機械的摩擦力が軸方向の力として軸受210aに働く。径方向の空隙131はこの機械的摩擦力をなくす効果があり、または弾性体151はこの機械的摩擦力を弾性体の弱いバネ力に変換し、軽減する効果がある。 In addition, by providing the radial gap 131 or the elastic body 151 between the cooling fan end portion 207 side and the facing support member 300a, the axial force received by the bearing 210a can be further reduced. . That is, when the supporting member 300a facing the cooling fan end portion 207 in the radial direction is in contact with the cooling fan end portion 207, the cooling fan 200 thermally expands even if the air gap 130 or the elastic body 151 is provided in the axial direction. In this case, mechanical friction generated on the contact surface of the two acts on the bearing 210a as an axial force. The radial gap 131 has the effect of eliminating the mechanical friction, or the elastic body 151 has the effect of converting the mechanical friction into the weak spring force of the elastic body and reducing it.
 第1実施例の構造では、冷却ファン200の部材の熱膨張は軸受210の破損に寄与しないため、冷却ファン200の部材として、線膨張係数が比較的大きい軽量なアルミまたはアルミ合金を使用することができる。冷却ファン200をアルミまたはアルミ合金で製作することにより、冷却ファン200を軽量化でき、回転電機100を軽量にすることができる。さらにアルミまたはアルミ合金は電気伝導率が大きいため、磁力発生部222として導電体を利用する場合、冷却ファン200と導電体を一体成型することができる。これにより、部品点数及び製作工程を削減でき、製作コストを低減することができる。 In the structure of the first embodiment, since the thermal expansion of the members of the cooling fan 200 does not contribute to the breakage of the bearing 210, a lightweight aluminum or aluminum alloy having a relatively large linear expansion coefficient is used as a member of the cooling fan 200. Can. By producing the cooling fan 200 with aluminum or an aluminum alloy, the weight of the cooling fan 200 can be reduced, and the weight of the rotary electric machine 100 can be reduced. Furthermore, since aluminum or an aluminum alloy has a large electric conductivity, when a conductor is used as the magnetic force generator 222, the cooling fan 200 and the conductor can be integrally molded. Thereby, the number of parts and the number of manufacturing steps can be reduced, and the manufacturing cost can be reduced.
 支持部材300を鋼鉄で製作すると、鋼鉄の熱伝導率が比較的小さいため、スペーサ140、支持部材300を介した熱伝導による軸受210の温度上昇を軽減することができる。これにより軸受210の熱劣化を防ぐことができる。 When the support member 300 is made of steel, the temperature conductivity of the bearing 210 due to heat conduction through the spacer 140 and the support member 300 can be reduced because the thermal conductivity of the steel is relatively small. Thereby, the thermal deterioration of the bearing 210 can be prevented.
 また、鋼鉄の支持部材300は径方向の熱膨張も少ないため、支持部材300が熱膨張することにより、軸受210と離間し、両者の接合が外れ、上記の両端支持による効果がなくなることを抑制することができる。 Further, since the support member 300 of steel is less in thermal expansion in the radial direction, the support member 300 is thermally expanded to be separated from the bearing 210 and the connection between the both is separated, thereby suppressing the loss of the effect by the both end support. can do.
 なお、冷却ファン端部205と支持部材300を軸受210に対して軸方向及び径方向に移動させないための支持は、冷却ファン端部205に設けたフランジ部206と、支持部材300に設けたフランジ部301により軸受210を挟み、冷却ファン200と支持部材300をボルト締結することで、堅牢な支持をすることができる。製作上は、冷却ファン200と支持部材300にフランジとねじ切り穴、または通し穴を設けるだけであり、低製作コストでの製作が可能である。 Note that the support for preventing the cooling fan end 205 and the support member 300 from moving in the axial and radial directions with respect to the bearing 210 is a flange 206 provided on the cooling fan end 205 and a flange provided on the support member 300 By holding the bearing 210 by the portion 301 and bolting the cooling fan 200 and the support member 300, robust support can be provided. From the manufacturing point of view, the flanges and threaded holes or through holes are simply provided in the cooling fan 200 and the support member 300, and it is possible to manufacture at low manufacturing cost.
 同様に、駆動側及び反駆動側の支持部材300同士のスペーサ140を介した軸方向固定は、スペーサ140と支持部材300をボルト締結することで、堅牢な支持をすることができる。製作上は支持部材300とスペーサ140にねじ切り穴、または通し穴を設けるだけであり、低コストでの製作が可能である。 Similarly, the axial fixing of the driving side and the non-driving side supporting members 300 via the spacer 140 can be carried out by rigidly supporting the spacer 140 and the supporting member 300 by bolting. From the viewpoint of manufacture, it is only necessary to provide threaded holes or through holes in the support member 300 and the spacer 140, and low-cost manufacture is possible.
 さらに、スペーサ140としてボルトを使用することも可能である。この場合、例えば、駆動側または反駆動側の一方の支持部材300に通し穴、他方の支持部材300にねじ切り穴を開け、通し穴からボルトを通し、他方のねじ切り穴を開けた支持部材300にボルトを締め、通し穴を開けた支持部材300とボルトを、溶接、接着等の方法で固定すれば良い。この場合、スペーサ140と支持部材300との締結部品が不要となり、部品点数を削減することができる。 Furthermore, it is also possible to use a bolt as the spacer 140. In this case, for example, a through hole is formed in one of the drive members or the opposite drive side support member 300, a threaded hole is formed in the other support member 300, a bolt is inserted from the through hole, and the other threaded hole is formed in the support member 300. The bolt may be tightened, and the support member 300 having a through hole may be fixed to the bolt by welding, bonding or the like. In this case, a fastening part between the spacer 140 and the support member 300 is unnecessary, and the number of parts can be reduced.
 以上より、第1実施例における両端支持構造と熱伸び対策構造により、磁力アンバランスが生じても特性が安定するファンを構成できる。これによりファン騒音を低減し、冷却ファンの回転数設計を容易にする回転電機を提供することができる。 From the above, it is possible to configure the fan having stable characteristics even if the magnetic force imbalance occurs, by the both-ends support structure and the thermal elongation countermeasure structure in the first embodiment. As a result, it is possible to provide a rotating electrical machine that reduces fan noise and facilitates design of the number of rotations of a cooling fan.
 なお、第1実施例の構成及び効果は、図4に示す補助ファン支持部202でも同様である。 The configuration and effects of the first embodiment are the same as those of the auxiliary fan support portion 202 shown in FIG.
 次に図12を用いて第2実施例について説明する。図12は本発明の第2実施例に係る回転電機駆動システムの構成図である。第1実施例と重複する事項については説明を省略する。 Next, a second embodiment will be described with reference to FIG. FIG. 12 is a block diagram of a rotary electric machine drive system according to a second embodiment of the present invention. Descriptions of matters overlapping with the first embodiment will be omitted.
 図12において、回転電機100を駆動するための電力は、電源400からインバータ、またはコンバータ等から構成された電力を変換する電力変換装置410を介して供給されている。この場合、回転電機100で駆動される負荷420に応じた出力制御が可能である。一般に出力が大きくなると回転電機100内部に発生する損失が増え、これに対応して回転電機100が発熱する。そこで、第2実施例では、第1実施例の回転電機100を回転電機駆動システムに適用している。 In FIG. 12, power for driving the rotary electric machine 100 is supplied from a power supply 400 via a power conversion device 410 that converts power composed of an inverter, a converter, and the like. In this case, output control according to the load 420 driven by the rotary electric machine 100 is possible. Generally, as the output increases, the loss generated inside the rotary electric machine 100 increases, and the rotary electric machine 100 generates heat in response to this. Therefore, in the second embodiment, the rotary electric machine 100 of the first embodiment is applied to a rotary electric machine drive system.
 第1実施例の回転電機100は、冷却ファン200がシャフト103に対して非同期回転するため、特に高速回転域において、ファン騒音とファンアクションによる機械損を低減できる一方、風量の低下により冷却性能は低下することとなる。したがって、第1実施例の回転電機100を高速回転域で出力が小さくなるようなシステムに適用することにより、回転電機100の温度上昇を十分に抑えつつ、高速域のファン騒音や機械損を低減することができる。 In the rotary electric machine 100 according to the first embodiment, since the cooling fan 200 rotates asynchronously with respect to the shaft 103, fan noise and mechanical loss due to fan action can be reduced particularly in a high speed rotation range, while cooling performance is reduced It will decrease. Therefore, by applying the rotary electric machine 100 of the first embodiment to a system in which the output is small in the high speed rotation range, the fan noise and mechanical loss in the high speed range are reduced while sufficiently suppressing the temperature rise of the rotary electric machine 100. can do.
 図12中に、好適な回転速度に対する出力の一例をグラフで示している。図12のグラフは、低速回転域で出力が大きく、高速回転域で出力が漸減する運転パターンを示している。 In FIG. 12, an example of the output with respect to a suitable rotational speed is shown in a graph. The graph of FIG. 12 shows an operation pattern in which the output is large in the low speed rotation range and gradually decreases in the high speed rotation range.
 なお、本実施例で示す電源400は商用三相交流電源に限らず、単相交流電源や直流電源の場合でもよい。 The power supply 400 shown in this embodiment is not limited to a commercial three-phase AC power supply, and may be a single-phase AC power supply or a DC power supply.
 以上より、第2実施例を回転電機100内部の損失が高速回転域において低速回転域よりも小さくなる領域を有する回転電機駆動システムに適用することにより、回転電機100の温度上昇を十分に抑制しつつ、高速回転域の機械損や騒音を低減することができる。 As described above, by applying the second embodiment to a rotating electrical machine drive system having a region in which the internal loss of the rotating electrical machine 100 becomes smaller than the low speed rotation range in the high speed rotation range, the temperature rise of the rotating electrical machine 100 is sufficiently suppressed. At the same time, mechanical loss and noise in the high speed range can be reduced.
 次に図13を用いて第3実施例について説明する。図13は本発明の第3実施例に係る回転電機を搭載した鉄道車両の一部を示す概略構成図である。第1実施例及び第2実施例と重複する事項については説明を省略する。 Next, a third embodiment will be described with reference to FIG. FIG. 13 is a schematic configuration view showing a part of a railway vehicle equipped with a rotating electrical machine according to a third embodiment of the present invention. Descriptions of matters overlapping with the first embodiment and the second embodiment will be omitted.
 第3実施例において、鉄道車両500は、ギア510、車輪520、車軸530及び回転電機100を備えた台車540を有する。回転電機100はギア510を介して車軸530に接続された車輪520を駆動する。なお、第3実施例では、回転電機100を2基搭載した例であるが、1基または3基以上の複数であっても良い。 In the third embodiment, a railcar 500 has a truck 540 provided with gears 510, wheels 520, axles 530, and a rotating electrical machine 100. The rotary electric machine 100 drives wheels 520 connected to an axle 530 via a gear 510. In the third embodiment, although two rotary electric machines 100 are mounted, one or three or more may be provided.
 第1実施例の回転電機100を鉄道車両500に適用することにより、鉄道車両500で生じる騒音のうち、回転電機100のファンアクションに起因する騒音を低減することができる。一般に、鉄道車両で生じる騒音には、レールと車輪から生じる放射音、インバータの電磁騒音に加えて、回転電機のファン騒音が大きな割合を占めている。第3実施例では、第1実施例の回転電機100を鉄道車両500に適用することにより、鉄道車両500の騒音を低減させることができる。また、第1実施例の回転電機100は高速回転域の機械損を低減できるため、これに伴う鉄道車両500の消費電力量を低減することができる。 By applying the rotating electrical machine 100 of the first embodiment to the railcar 500, it is possible to reduce the noise caused by the fan action of the rotating electrical machine 100 among the noises generated in the railcar 500. Generally, in addition to the noise emitted from the rails and wheels, the electromagnetic noise of the inverter, and the fan noise of the rotating electrical machine, a large percentage of the noise generated by the railway vehicle. In the third embodiment, by applying the rotating electrical machine 100 of the first embodiment to the railcar 500, the noise of the railcar 500 can be reduced. Moreover, since the rotary electric machine 100 of 1st Example can reduce the mechanical loss of a high speed rotation area, it can reduce the power consumption of the rail vehicle 500 accompanying this.
 本実施例は、鉄道車両に限らず、可変速運転する回転電機駆動システムを含むシステムであれば、他のシステムにも適用可能である。特に、高速回転域において機械損が支配的であり、ファン騒音が問題になるシステムに適用することで、より大きな効率向上効果と騒音低減効果を得ることができる。 The present embodiment is not limited to a railway vehicle, but may be applied to other systems as long as the system includes a rotating electrical machine drive system operating at variable speeds. In particular, by applying to a system in which mechanical loss is dominant in a high speed rotation range and fan noise becomes a problem, a larger efficiency improvement effect and noise reduction effect can be obtained.
 なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。
上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。
The present invention is not limited to the embodiments described above, and includes various modifications.
The above-described embodiments are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
100 回転電機、101 固定子、102 回転子、103 シャフト、104 フレーム、104a 外フレーム、104b 内フレーム、105 固定子鉄心、106 固定子スロット、107 固定子巻線、108 固定子鉄心押さえ、109 空隙、110 回転子鉄心、111 回転子スロット、112 回転子バー、113 エンドリング、114 リテイニングリング、115 回転子鉄心押さえ、116 軸受、117 軸受、118 通風口、120 ラビリンスシール、120a ラビリンスシール、120b ラビリンスシール、125 吸気口、125a 吸気口、125b 吸気口、126 排気口、126a 排気口、126b 排気口、127 隙間、128 通風路、130 空隙、131 空隙、140 スペーサ、150 弾性体、151 弾性体、200 冷却ファン、201 補助ファン、201a 補助ファン、201b 補助ファン、202 補助ファン支持部、205 冷却ファン端部、206 フランジ部、207 冷却ファン端部、210 軸受、210a 軸受、210b 軸受、220 磁力発生装置、221 磁力発生部、221a 永久磁石、221b 永久磁石、221c 永久磁石、221d 永久磁石、222 磁力発生部、222a 永久磁石、222b 永久磁石、222c 永久磁石、222d 永久磁石、222f 導電体、222h 磁性体、223 空隙、225 リテイニングリング、226a スロット、226b スロット、226c スロット、226d スロット、227 永久磁石保持部材、300 支持部材、300a 支持部材、300b 支持部材、301 フランジ部、400 電源、410 電力変換装置、420 負荷、500 鉄道車両、510 ギア、520 車輪、530 車軸、540 台車 Reference Signs List 100 rotating electric machine, 101 stator, 102 rotor, 103 shaft, 104 frame, 104a outer frame, 104b inner frame, 105 stator core, 106 stator slot, 107 stator winding, 108 stator core retainer, 109 air gap , 110 rotor core, 111 rotor slot, 112 rotor bar, 113 end ring, 114 retaining ring, 115 rotor core retainer, 116 bearing, 117 bearing, 118 vent, 120 labyrinth seal, 120a labyrinth seal, 120b Labyrinth seal, 125 intake port, 125a intake port, 125b intake port, 126 exhaust port, 126a exhaust port, 126b exhaust port, 127 gap, 128 air passage, 130 air gap, 131 air gap, 14 Spacer, 150 elastic body, 151 elastic body, 200 cooling fan, 201 auxiliary fan, 201 a auxiliary fan, 201 b auxiliary fan, 202 auxiliary fan support portion, 205 cooling fan end portion, 206 flange portion, 207 cooling fan end portion, 210 bearing , 210a bearings, 210b bearings, 220 magnetic force generating devices, 221 magnetic force generating units, 221a permanent magnets, 221b permanent magnets, 221c permanent magnets, 221d permanent magnets, 222 magnetic force generating units, 222a permanent magnets, 222b permanent magnets, 222c permanent magnets, 222d permanent magnet, 222f conductor, 222h magnetic body, 223 air gap, 225 retaining ring, 226a slot, 226b slot, 226c slot, 226d slot, 227 permanent magnet Support member 300 supporting members, 300a support member 300b supporting member, 301 flange portion, 400 power supply, 410 power converter 420 load, 500 railcar 510 gear, 520 wheels, 530 axle 540 dolly

Claims (15)

  1.  固定子と、回転子と、前記回転子に固定されたシャフトとを備えた回転電機において、 前記シャフトに取り付けられた複数の軸受と、
     前記複数の軸受によって回転可能に支持された冷却ファンと、
     前記複数の軸受の間に配置された磁力発生装置と、
     前記複数の軸受のそれぞれと前記冷却ファンとの間に配置された複数の支持部材とを備え、
     前記複数の支持部材のうち一の支持部材と前記冷却ファンの一部とは、前記軸受に対して軸方向及び径方向の移動を規制する移動規制部を備え、
     前記複数の支持部材のうち他の支持部材と、前記冷却ファンの一部との間には、空隙又は弾性体が設けられ、
     前記一の支持部材と他の支持部材とは、スペーサを介して軸方向に所定の間隔で固定されていることを特徴とする回転電機。
    A rotating electrical machine comprising a stator, a rotor, and a shaft fixed to the rotor, a plurality of bearings mounted on the shaft,
    A cooling fan rotatably supported by the plurality of bearings;
    A magnetic force generator disposed between the plurality of bearings;
    A plurality of support members disposed between each of the plurality of bearings and the cooling fan;
    One of the plurality of support members and a part of the cooling fan include a movement restricting portion that restricts the axial and radial movement of the bearing,
    An air gap or an elastic body is provided between another of the plurality of support members and a part of the cooling fan.
    A rotating electrical machine, wherein the one support member and the other support member are fixed at predetermined intervals in the axial direction via a spacer.
  2.  請求項1において、
     前記磁力発生装置は、前記シャフトに設けられた永久磁石と、前記冷却ファンに設けられた導電体または磁性体とで構成されていることを特徴とする回転電機。
    In claim 1,
    The rotating electrical machine according to claim 1, wherein the magnetic force generating device comprises a permanent magnet provided on the shaft and a conductor or a magnetic body provided on the cooling fan.
  3.  請求項1において、
     前記磁力発生装置は、前記シャフト及び前記冷却ファンのそれぞれに設けられた永久磁石により構成されていることを特徴とする回転電機。
    In claim 1,
    The rotating electrical machine according to claim 1, wherein the magnetic force generator is configured by permanent magnets provided on the shaft and the cooling fan.
  4.  請求項1乃至3の何れか1項において、
     前記冷却ファンをアルミまたはアルミ合金で構成していることを特徴とする回転電機。
    In any one of claims 1 to 3,
    A rotating electrical machine characterized in that the cooling fan is made of aluminum or an aluminum alloy.
  5.  請求項1乃至3の何れか1項において、
     前記スペーサは鋼鉄で構成していることを特徴とする回転電機。
    In any one of claims 1 to 3,
    The rotating electrical machine characterized in that the spacer is made of steel.
  6.  請求項1乃至3の何れか1項において、
     前記支持部材は鋼鉄で構成していることを特徴とする回転電機。
    In any one of claims 1 to 3,
    The rotating electrical machine, wherein the support member is made of steel.
  7.  請求項1乃至3の何れか1項において、
     前記支持部材の径方向と前記冷却ファンとの間に空隙又は弾性体を設けたことを特徴とする回転電機。
    In any one of claims 1 to 3,
    A rotating electrical machine, wherein an air gap or an elastic body is provided between the radial direction of the support member and the cooling fan.
  8.  請求項1乃至3の何れか1項において、
     前記移動規制部は、前記一の支持部材及び前記冷却ファンの一部にそれぞれ形成したフランジであって、
     前記フランジによって前記軸受を挟むようにしたことを特徴とする回転電機。
    In any one of claims 1 to 3,
    The movement restricting portion is a flange formed on each of the one supporting member and a part of the cooling fan,
    A rotary electric machine characterized in that the bearing is sandwiched by the flange.
  9.  請求項1乃至3の何れか1項において、
     前記一の支持部材及び前記冷却ファンの一部は、前記軸受に対してボルト締結したことを特徴とする回転電機。
    In any one of claims 1 to 3,
    A rotating electrical machine, wherein a part of the one support member and the cooling fan is bolted to the bearing.
  10.  請求項1乃至3の何れか1項において、
     前記支持部材と前記スペーサとはボルト締結したことを特徴とする回転電機。
    In any one of claims 1 to 3,
    The rotary electric machine characterized in that the support member and the spacer are bolted.
  11.  請求項1乃至3の何れか1項において、
     前記冷却ファンは補助ファンを備えたことを特徴とする回転電機。
    In any one of claims 1 to 3,
    The rotary electric machine characterized in that the cooling fan includes an auxiliary fan.
  12.  固定子と、回転子と、前記回転子に固定されたシャフトとを備えた回転電機において、 前記シャフトに取り付けられた複数の軸受と、
     前記複数の軸受によって回転可能に支持された補助ファン支持部と、
    前記補助ファン支持部に設けられた補助ファンと、
     前記複数の軸受の間に配置された磁力発生装置と、
     前記複数の軸受のそれぞれと前記補助ファン支持部との間に配置された複数の支持部材とを備え、
     前記複数の支持部材のうち一の支持部材と前記補助ファン支持部の一部とは、前記軸受に対して軸方向及び径方向の移動を規制する移動規制部を備え、
     前記複数の支持部材のうち他の支持部材と、前記補助ファン支持部の一部との間には、空隙又は弾性体が設けられ、
     前記一の支持部材と他の支持部材とは、スペーサを介して軸方向に所定の間隔で固定されていることを特徴とする回転電機。
    A rotating electrical machine comprising a stator, a rotor, and a shaft fixed to the rotor, a plurality of bearings mounted on the shaft,
    An auxiliary fan support rotatably supported by the plurality of bearings;
    An auxiliary fan provided to the auxiliary fan support portion;
    A magnetic force generator disposed between the plurality of bearings;
    A plurality of support members disposed between each of the plurality of bearings and the auxiliary fan support;
    One of the plurality of support members and a portion of the auxiliary fan support portion include a movement restricting portion that restricts the axial and radial movements of the bearing,
    An air gap or an elastic body is provided between another of the plurality of support members and a portion of the auxiliary fan support portion.
    A rotating electrical machine, wherein the one support member and the other support member are fixed at predetermined intervals in the axial direction via a spacer.
  13.  回転電機と、前記回転電機に供給する電力を変換する電力変換装置と、前記回転電機により駆動させる負荷とを備えた回転電機駆動システムにおいて、
     前記回転電機は、請求項1~12の何れか1項を備えたことを特徴とする回転電機駆動システム。
    In a rotating electrical machine drive system comprising: a rotating electrical machine; a power conversion device for converting power supplied to the rotating electrical machine; and a load driven by the rotating electrical machine
    A rotary electric machine drive system according to any one of claims 1 to 12, wherein the rotary electric machine comprises any one of claims 1 to 12.
  14.  請求項13において、
     前記電力変換装置は、インバータまたはコンバータであることを特徴とする回転電機駆動システム。
    In claim 13,
    The said rotating electric machine is an inverter or a converter, The rotary electric machine drive system characterized by the above-mentioned.
  15.  回転電機と、車輪と、ギアと、台車を備え、前記回転電機は前記ギアを介して前記車輪を駆動する鉄道車両において、
    前記回転電機は、請求項1~12の何れか1項を備えたことを特徴とする鉄道車両。
    A railway vehicle comprising: a rotating electrical machine, a wheel, a gear, and a truck, wherein the rotating electrical machine drives the wheel via the gear.
    The railway vehicle according to any one of claims 1 to 12, wherein the rotating electrical machine comprises any one of claims 1 to 12.
PCT/JP2018/036553 2017-10-18 2018-09-28 Rotating electric machine, rotating electric machine drive system provided therewith, and railroad car WO2019077976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-201632 2017-10-18
JP2017201632A JP6931587B2 (en) 2017-10-18 2017-10-18 Rotating electric machine, rotating electric machine drive system equipped with it, and railroad vehicle

Publications (1)

Publication Number Publication Date
WO2019077976A1 true WO2019077976A1 (en) 2019-04-25

Family

ID=66174459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036553 WO2019077976A1 (en) 2017-10-18 2018-09-28 Rotating electric machine, rotating electric machine drive system provided therewith, and railroad car

Country Status (2)

Country Link
JP (1) JP6931587B2 (en)
WO (1) WO2019077976A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1138460B (en) * 1960-07-27 1962-10-25 Siemens Ag Electric fan drive through a frequency changeable, brushless induction machine
EP1109297A2 (en) * 1999-12-16 2001-06-20 Siemens Aktiengesellschaft Fan cooled electric motor drive
JP2008306922A (en) * 2008-07-07 2008-12-18 Hitachi Ltd Motor for driving vehicle
JP4731792B2 (en) * 2000-09-26 2011-07-27 トランスパシフィック・アクティヴァ,リミテッド・ライアビリティ・カンパニー Ventilator device with electromagnetic coupling means
JP2013211949A (en) * 2012-03-30 2013-10-10 Hitachi Industrial Equipment Systems Co Ltd Electric motor
JP2016201902A (en) * 2015-04-10 2016-12-01 株式会社日立製作所 Induction machine, and induction machine drive system and railway vehicle that use the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1138460B (en) * 1960-07-27 1962-10-25 Siemens Ag Electric fan drive through a frequency changeable, brushless induction machine
EP1109297A2 (en) * 1999-12-16 2001-06-20 Siemens Aktiengesellschaft Fan cooled electric motor drive
JP4731792B2 (en) * 2000-09-26 2011-07-27 トランスパシフィック・アクティヴァ,リミテッド・ライアビリティ・カンパニー Ventilator device with electromagnetic coupling means
JP2008306922A (en) * 2008-07-07 2008-12-18 Hitachi Ltd Motor for driving vehicle
JP2013211949A (en) * 2012-03-30 2013-10-10 Hitachi Industrial Equipment Systems Co Ltd Electric motor
JP2016201902A (en) * 2015-04-10 2016-12-01 株式会社日立製作所 Induction machine, and induction machine drive system and railway vehicle that use the same

Also Published As

Publication number Publication date
JP2019075921A (en) 2019-05-16
JP6931587B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
Chen et al. Review of bearingless motor technology for significant power applications
EP1333561A2 (en) Rotor cooling apparatus
JP6253520B2 (en) Rotating electric machine
JP2006513687A (en) Energy storage flywheel with minimum power magnetic bearing and motor / generator
JP2003102145A (en) Magnetically levitated motor and magnet bearing device
WO2002095904A1 (en) Magnetic levitation motor
WO2012080566A1 (en) An electrical machine
Sugimoto et al. A novel stator structure for active axial force improvement in a one-axis actively positioned single-drive bearingless motor
Hemenway et al. New three-pole combined radial–axial magnetic bearing for industrial bearingless motor systems
Sugimoto et al. Axial vibration suppression by field flux regulation in two-axis actively positioned permanent magnet bearingless motors with axial position estimation
KR102318963B1 (en) Multiple in wheel motor for Electric Vehicles with auxiliary driving motors which can drive at emergency
Asama et al. Simple driving method for a 2-DOF controlled bearingless motor using one three-phase inverter
WO2021210118A1 (en) Rotating electric machine
Srichiangsa et al. Design, development, and experimental results of a 30 000-r/min one-axis actively positioned single-drive bearingless motor
JP6383458B1 (en) Rotating electric machine
Kumashiro et al. Proposal of magnetic geared motor with bearingless high-speed rotor
Asama et al. Voltage characteristics of a consequent-pole bearingless PM motor with concentrated windings
Sugimoto et al. A vibration reduction method of one-axis actively position regulated single-drive bearingless motor with repulsive passive magnetic bearings
US6426579B1 (en) Permanent magnet type rotary electric machine and electrically driven vehicle using the same
Kumashiro et al. Investigation of a combined electro magnetic structure of bearingless motor and magnetic gear
WO2019077976A1 (en) Rotating electric machine, rotating electric machine drive system provided therewith, and railroad car
JP6869856B2 (en) Electric motor for driving railway vehicles and railway vehicles using it
Asama et al. Development of a homo-polar bearingless motor with concentrated winding for high speed applications
JP7042054B2 (en) Rotating electric machine, rotating electric machine drive system equipped with it, and railroad vehicle
JP3719281B2 (en) Frameless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869342

Country of ref document: EP

Kind code of ref document: A1