WO2019077797A1 - Projection device and three-dimensional measurement device - Google Patents

Projection device and three-dimensional measurement device Download PDF

Info

Publication number
WO2019077797A1
WO2019077797A1 PCT/JP2018/022042 JP2018022042W WO2019077797A1 WO 2019077797 A1 WO2019077797 A1 WO 2019077797A1 JP 2018022042 W JP2018022042 W JP 2018022042W WO 2019077797 A1 WO2019077797 A1 WO 2019077797A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern
transmitting member
projection
incident
Prior art date
Application number
PCT/JP2018/022042
Other languages
French (fr)
Japanese (ja)
Inventor
二村 伊久雄
大山 剛
憲彦 坂井田
Original Assignee
Ckd株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd株式会社 filed Critical Ckd株式会社
Publication of WO2019077797A1 publication Critical patent/WO2019077797A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Definitions

  • the present invention relates to a projection apparatus for projecting a predetermined pattern light and a three-dimensional measurement apparatus equipped with the projection apparatus, when performing three-dimensional measurement using a pattern projection method such as a phase shift method.
  • cream solder is first printed on a predetermined electrode pattern disposed on the printed circuit board.
  • the electronic component is temporarily fixed on the printed circuit board based on the viscosity of the cream solder.
  • the printed circuit board is introduced into a reflow furnace, and soldering is performed through a predetermined reflow process.
  • a three-dimensional measuring device may be used for such inspection.
  • a three-dimensional measurement apparatus using a phase shift method is a projection apparatus that projects pattern light having a stripe-like light intensity distribution (hereinafter, referred to as “stripe pattern”) obliquely upward onto an object to be measured such as a printed circuit board And an imaging device for imaging an object to be measured on which the fringe pattern is projected.
  • stripe pattern pattern light having a stripe-like light intensity distribution
  • the projection apparatus includes a light source that emits predetermined light, and a pattern generation unit that converts light from the light source into a fringe pattern, and the fringe pattern generated here is a subject to be exposed via a projection optical system including a projection lens or the like. It is projected on the measurement object.
  • the phase of the fringe pattern projected onto the object to be measured is shifted in a plurality of ways (for example, 4 ways), and imaging is performed under each fringe pattern different in phase, Acquire image data. Then, three-dimensional measurement of the object to be measured is performed based on these image data.
  • the grating plate is used as the pattern generation unit as in Patent Document 1 and the grating plate is arranged to be inclined with respect to the optical axis of the projection optical system, as shown in FIG.
  • the light Ka emitted from the light source obliquely enters the incident surface 100a of the grating plate 100 along the optical axis direction of the projection optical system.
  • the light Kb which injected will be disperse
  • the light Kb transmitted through the inside of the lattice plate 100 is converted into a stripe pattern at the light emission surface (lattice surface) 100b, and is obliquely emitted from the light emission surface 100b.
  • the emitted light Kc is dispersed due to the difference in refractive index of a plurality of wavelength components.
  • the fringe pattern projected onto the object to be measured is blurred or the like, and the estimated fringe pattern may not be assumed, and the measurement accuracy of the three-dimensional measurement may be lowered.
  • a pattern generation unit is an optical control element in which a plurality of pixels are two-dimensionally arranged in a matrix, such as a digital micro mirror device (DMD), a reflective liquid crystal panel, and a transmissive liquid crystal panel.
  • DMD digital micro mirror device
  • a reflective liquid crystal panel a reflective liquid crystal panel
  • a transmissive liquid crystal panel a transmissive liquid crystal panel
  • the optical control element such as the DMD has a dark portion between pixels
  • the stripe pattern generated is microscopically discontinuous.
  • the fringe pattern projected onto the object to be measured does not become the assumed fringe pattern, and the measurement accuracy of the three-dimensional measurement may be reduced.
  • optical control element such as the DMD complicates the control of the projection apparatus and is expensive, which may increase the manufacturing cost of the projection apparatus.
  • the above problem is not necessarily limited to three-dimensional measurement of cream solder or the like printed on a printed circuit board, but is inherent in the field of other three-dimensional measurement.
  • the problem is not limited to the phase shift method.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a projection apparatus and a three-dimensional measurement apparatus capable of improving measurement accuracy etc. when performing three-dimensional measurement using a pattern projection method. It is to do.
  • a projection apparatus for projecting a predetermined pattern of light onto an object to be measured when performing three-dimensional measurement on the object to be measured (for example, a printed circuit board), A light source that emits a predetermined light; A pattern generation unit that converts light incident from the light source into the pattern light and emits the light; A projection optical system for forming an image of the pattern light emitted from the pattern generation unit on the object to be measured;
  • the pattern generation unit A first light transmitting member (grating plate) made of an optical material (for example, glass or acrylic resin) having a predetermined refractive index and provided with a predetermined grating (grating plane) for converting incident light into the pattern light When, It is made of a material having the same refractive index as the first light transmitting member, and is disposed on the light incident surface side of the first light transmitting member so that the incident angle of light incident on the pattern generating unit is 0 °.
  • grating plate made of an optical material (for example, glass or acrylic resin) having a predetermined
  • a second light transmitting member (incident angle adjusting plate), It is made of a material having the same refractive index as the first light transmitting member, and is disposed on the light emitting surface side of the first light transmitting member so that the refraction angle of light emitted from the pattern generation unit is 0 °.
  • Composed of a third light transmitting member (refractive angle adjusting plate), 1.
  • the projection apparatus is set such that the grating of the first light transmitting member and the main surface of the projection optical system satisfy the condition of the shine proof for the object to be measured. That is, on the same straight line, the plane including the grating of the first light transmitting member, the plane including the main surface of the projection optical system, and the plane including the object to be measured (pattern projection plane) satisfy the condition of shine proof. Are set to cross each other. Thus, the pattern light can be projected in focus on the entire projection range on the object to be measured. As a result, the measurement accuracy of three-dimensional measurement can be improved.
  • the pattern generation unit is configured such that the first light transmitting member provided with a predetermined grating for converting incident light into pattern light, and the first light transmitting member have an incident angle of 0.degree.
  • each light transmission member is formed with the optical raw material (for example, glass, an acrylic resin, etc.) which has the same refractive index.
  • the pattern generation unit using an inexpensive light transmitting member such as, for example, an existing grid plate in which a grid is printed (deposited) on a glass plate. Therefore, the manufacturing cost of the projection apparatus can be suppressed as compared to the case where an expensive optical control element such as a DMD is used as the pattern generation unit.
  • an inexpensive light transmitting member such as, for example, an existing grid plate in which a grid is printed (deposited) on a glass plate. Therefore, the manufacturing cost of the projection apparatus can be suppressed as compared to the case where an expensive optical control element such as a DMD is used as the pattern generation unit.
  • the pattern light to be generated depends on the pixel pitch of the optical control element, the degree of freedom is reduced, and it may be difficult to project the pattern light suitable for the object to be measured.
  • the present means it is possible to project pattern light more suitable for the object to be measured.
  • the first light transmitting member (grid plate) is sandwiched between the second light transmitting member and the third light transmitting member, the deflection of the first light transmitting member is suppressed to improve the projection accuracy, and It can protect the face.
  • the condition of the shine proof is that the difference in the optical path length from the grating of the first light transmitting member to the light emitting surface of the third light transmitting member in the traveling direction of light transmitted through the pattern generation unit is taken into consideration.
  • the projection device according to the means 1 characterized by the above.
  • the optical path length from the grating of the first light transmitting member to the exit surface of the third light transmitting member in the traveling direction of light transmitted through the pattern generation unit is the grating of the first light transmitting member relative to the exit surface of the third light transmitting member It depends on which position on the grating in the tilt direction of the grating plane) the light passes through.
  • An optical material such as glass constituting each of the above-mentioned light transmitting members usually has a predetermined refractive index higher than the refractive index of air. Therefore, the optical path length of the light traveling in the light transmitting member is optically longer than the optical path length of the light traveling in the air. Therefore, when the physical length (optical path length) from the grating of the first light transmitting member to the light emitting surface of the third light transmitting member is different, the optical length from the grating of the first light transmitting member to the object to be measured is Different optical path lengths. In the case where the grating of the first light transmitting member and the main surface of the projection optical system are disposed so as to satisfy the condition of the shine proof without taking this into consideration, slight errors may occur.
  • the grid of the first light transmitting member and the main surface of the projection optical system are arranged so as to satisfy the condition of the shine proof in a state where such an error is corrected.
  • the pattern light can be well focused.
  • Means 3 The projector according to the means 1 or 2, characterized in that pattern light having a stripe-like (for example, sinusoidal wave) light intensity distribution can be generated as the pattern light.
  • pattern light having a stripe-like (for example, sinusoidal wave) light intensity distribution can be generated as the pattern light.
  • three-dimensional measurement by the phase shift method can be performed by projecting the pattern light having the stripe-like light intensity distribution. As a result, it is possible to improve the measurement accuracy of the three-dimensional measurement.
  • Means 4 The projection apparatus according to any one of the means 1 to 3; An imaging unit capable of imaging a predetermined range of the object to be measured on which the pattern light is projected; A three-dimensional measuring apparatus comprising: image processing means capable of executing three-dimensional measurement relating to the object based on image data captured and acquired by the imaging means.
  • the three-dimensional measurement can be performed using the pattern light projected from the projection device according to any one of the means 1 to 3.
  • the three-dimensional measurement can be performed using the pattern light projected from the projection device according to any one of the means 1 to 3.
  • light emitted from a predetermined light source is converted to predetermined pattern light in a pattern generation unit, and projected onto a measurement object via a projection optical system. Do. Then, the object to be measured on which the pattern light is projected is imaged by the imaging means, and three-dimensional measurement of the object to be measured is performed based on the acquired image data.
  • a three-dimensional measurement apparatus for performing three-dimensional measurement by a phase shift method using pattern light projected from the projection apparatus described in the above means 3, “The projection device according to the means 3; An imaging unit capable of imaging a predetermined range of the object to be measured on which the pattern light is projected; Displacement means for displacing relative positional relation (phase) between the pattern light projected by the projection device and the object to be measured; The object is measured by the phase shift method based on a plurality of image data of the object to be measured which is captured and acquired by the imaging unit in a state in which the relative positional relationship between the pattern light and the object to be measured is different.
  • a three-dimensional measuring apparatus comprising: image processing means capable of performing three-dimensional measurement. "Is mentioned as an example.
  • substrate with which solder bump was formed, etc. are mentioned, for example. That is, three-dimensional measurement of cream solder printed on a printed circuit board and solder bumps formed on a wafer substrate can be performed by using the projection device described in each of the above-described means. As a result, in the inspection of the cream solder and the solder bumps, it is possible to determine the quality of the cream solder and the solder bumps based on the measured values. Therefore, in the inspection, the operation and effect of each of the above-described means are exhibited, and the quality determination can be performed with high accuracy. As a result, it is possible to improve the inspection accuracy in the solder printing inspection apparatus and the solder bump inspection apparatus.
  • inspection apparatus It is a cross-sectional schematic diagram of a printed circuit board. It is a schematic diagram which shows schematic structure of a projection apparatus. It is a schematic diagram which shows schematic structure of a pattern production
  • FIG. 2 is a schematic cross-sectional view of the printed circuit board 1.
  • the printed board 1 has a flat plate shape, and an electrode pattern 3 made of copper foil is provided on a base board 2 made of glass epoxy resin or the like. Furthermore, cream solder 4 is printed on a predetermined electrode pattern 3.
  • the area where the cream solder 4 is printed is referred to as a "solder print area”. Parts other than the solder print area are generically referred to as "background area". In this background area, an area where the electrode pattern 3 is exposed (symbol E1), an area where the base substrate 2 is exposed (symbol E2), and A region (symbol E3) coated with the resist film 5 and a region (symbol E4) coated with the resist film 5 on the electrode pattern 3 are included.
  • the resist film 5 is coated on the surface of the printed circuit board 1 so that the cream solder 4 does not rest on other than the predetermined wiring portion.
  • FIG. 1 is a schematic view showing a schematic configuration of a substrate inspection apparatus 10.
  • X direction the left and right direction in the drawing of FIG. 1
  • Y direction the front and back direction in the drawing
  • Z direction the up and down direction (vertical direction) in the drawing
  • the board inspection apparatus 10 is a solder printing inspection apparatus that inspects the printing state of the cream solder 4 printed on the printed board 1.
  • the substrate inspection apparatus 10 includes a conveyor 13 as a conveying means (displacement means) for conveying the printed circuit board 1, a projection device 14 for projecting a stripe pattern from above obliquely onto the surface of the printed substrate 1, and projection of the stripe pattern.
  • the camera 15 as an imaging unit for imaging the printed circuit board 1 from directly above, and various controls, image processing, and arithmetic processing in the substrate inspection apparatus 10 such as drive control of the conveyor 13, the projection device 14 and the camera 15. And a controller 16 (see FIG. 5).
  • the conveyor 13 is provided with driving means such as a motor (not shown), and the motor is driven and controlled by the control device 16 so that the printed circuit board 1 mounted on the upper surface (mounting surface) of the conveyor 13 is The sheet is continuously conveyed at a constant speed in a predetermined direction (right direction in FIG. 1). As a result, the imaging range (imaging area) W of the camera 15 moves relative to the printed circuit board 1 in the reverse direction (left direction in FIG. 1).
  • the projection device 14 includes a light source 17 that emits predetermined light, a pattern generation unit 18 that converts light from the light source 17 into a stripe pattern, and a stripe pattern generated by the pattern generation unit 18. And a projection lens unit 19 as a projection optical system for forming an image on the printed circuit board 1.
  • the projection device 14 is disposed such that the optical axis J1 is parallel to the XZ plane and inclined at a predetermined angle ⁇ (for example, 30 °) with respect to the Z direction.
  • the light source 17 is configured of a halogen lamp that emits white light.
  • the light emitted from the light source 17 enters the pattern generation unit 18 along the optical axis J1 in a collimated state through a pretreatment lens group (not shown) and the like.
  • the pattern generation unit 18 is configured as one optical member in which three light transmitting members are bonded and integrated (see FIG. 4).
  • FIG. 4 is a schematic view showing a schematic configuration of the pattern generation unit 18.
  • the pattern generation unit 18 includes a grating plate 21 as a first light transmitting member that converts incident light into a stripe pattern and emits the stripe pattern, and a grating member 21 disposed on the incident side of the grating plate 21.
  • 2 includes an incident angle adjusting plate 22 as a light transmitting member, and a refraction angle adjusting plate 23 as a third light transmitting member disposed on the exit side of the grating plate 21.
  • All of the grating plate 21, the incident angle adjusting plate 22 and the refraction angle adjusting plate 23 are formed of the same optical material (for example, glass, acrylic resin, etc.) having the same refractive index.
  • the lattice plate 21 is a flat light transmitting member having a rectangular cross section in the XZ plane and having four rectangular planes along the Y direction.
  • the entrance surface 21a and the exit surface 21b are constituted by two rectangular planes parallel to each other, which are arranged to intersect the optical axis J1 among the four rectangular planes constituting the grating plate 21.
  • the grating plate 21 is arranged such that the perpendiculars of the incident surface 21a and the exit surface 21b are inclined at a predetermined angle ⁇ (for example, about 20 °) with respect to the optical axis J1.
  • a grating 25 is formed by printing (vapor deposition) on the exit surface 21 b of the grating plate 21. That is, the emitting surface 21 b of the grating plate 21 constitutes the grating surface in the present embodiment.
  • the grating 25 is configured such that the light transmitting portions 25 a and the light shielding portions 25 b linearly formed along the Y direction are alternately arranged in the XZ plane.
  • the incident angle adjusting plate 22 is a light transmitting member having a triangular cross section in the XZ plane and having three rectangular planes along the Y direction.
  • the incident plane 22a and the exit plane 22b are constituted by two rectangular planes arranged to intersect the optical axis J1.
  • the incident surface 22a of the incident angle adjustment plate 22 is disposed to be orthogonal to the optical axis J1.
  • the exit surface 22b is joined to the entrance surface 21a of the lattice plate 21 and is disposed so that the perpendicular thereof is inclined at the angle ⁇ with respect to the optical axis J1. That is, in the incident angle adjusting plate 22, the internal angle between the incident surface 22a and the outgoing surface 22b is the angle ⁇ .
  • generation part 18 (incident surface 22a of the incident angle adjustment board 22) from the light source 17 will be 0 degree.
  • the light emitted from the emission surface 22b of the incident angle adjustment plate 22 and incident on the incident surface 21a of the lattice plate 21 travels straight along the optical axis J1 without refraction of all wavelength components.
  • the refraction angle adjusting plate 23 is a light transmitting member having a triangular cross section in the XZ plane and having three rectangular planes along the Y direction.
  • the entrance plane 23a and the exit plane 23b are constituted by two rectangular planes arranged to intersect the optical axis J1.
  • the entrance surface 23a of the refraction angle adjustment plate 23 is joined to the exit surface 21b of the grating plate 21 and is disposed so that the perpendicular thereof is inclined at the angle ⁇ with respect to the optical axis J1.
  • the exit surface 23b is disposed to be orthogonal to the optical axis J1. That is, in the refraction angle adjustment plate 23, the internal angle between the incident surface 23a and the emission surface 23b is the angle ⁇ .
  • the light (stripe pattern) emitted from the emission surface 21b of the grating plate 21 and incident on the incident surface 23a of the refraction angle adjustment plate 23 goes straight along the optical axis J1 without refraction of all wavelength components. It will be done. Further, the refraction angle of the light emitted to the outside from the pattern generation unit 18 (the emission surface 23 b of the refraction angle adjustment plate 23) is 0 °. Therefore, light emitted to the outside from the pattern generation unit 18 travels straight toward the projection lens unit 19 along the optical axis J1 without refraction of all wavelength components.
  • the projection lens unit 19 is configured by a both-side telecentric lens (both-side telecentric optical system) integrally including an incident side lens 31, an aperture stop 32, an exit side lens 33, and the like.
  • the incident side lens 31 condenses the light (stripe pattern) emitted from the pattern generation unit 18 (the emission surface 23b of the refraction angle adjustment plate 23), and the optical axis J1 and the chief ray are parallel on the incident side. Has a telecentric structure.
  • the exit side lens 33 is for forming an image of light (stripe pattern) transmitted from the entrance side lens 31 through the aperture stop 32 on the printed circuit board 1, and the light axis J1 and the chief ray are on the exit side. It has a telecentric structure that is parallel.
  • the aperture stop 32 is disposed at the position of the rear focal point of the incident side lens 31 and at the position of the front focal point of the output side lens 33.
  • the pattern generation unit 18 and the projection are arranged such that the fringe pattern projected on the printed circuit board 1 is in focus over the entire projection range (the same range as the imaging range W in this embodiment).
  • the tilt of the lens unit 19 is adjusted.
  • the exit surface (grid surface) 21b of the grid plate 21 and the main surface of the projection lens unit 19 are set to satisfy the condition of the shine proof.
  • the principle of shine proofing is that the plane S1 including the exit surface 21b of the lattice plate 21 and the plane S2 including the main surface of the projection lens unit 19 are the same straight line C (a straight line perpendicular to the paper at point C in FIG. 3) In the case of intersection at the top, the object surface S3 on which the fringe pattern is projected in the in-focus state also intersects on the same straight line C.
  • the conditions based on the principle of such a shine proof are the plane S1 including the exit surface 21b of the grating plate 21, the plane S2 including the main surface of the projection lens unit 19, and the surface (projection plane) of the printed board 1
  • the included planes S3 cross each other on the same straight line C.
  • the light emitted from the light source 17 is vertically incident on the pattern generation unit 18 (incident surface 22 a of the incident angle adjustment plate 22) at an incident angle of 0 °. Then, it travels straight in the incident angle adjustment plate 22 along the optical axis J1.
  • the light transmitted through the inside of the incident angle adjustment plate 22 is emitted from the exit surface 22 b of the incident angle adjustment plate 22 and is obliquely incident on the incident surface 21 a of the grating plate 21 at the incident angle ⁇ . Then, it goes straight along the optical axis J1 in the lattice plate 21.
  • the light transmitted through the inside of the grating plate 21 is emitted as a stripe pattern from the exit surface (grating surface) 21 b of the grating plate 21 and obliquely enters the incident surface 23 a of the refraction angle adjusting plate 23 at the incident angle ⁇ . Then, it travels straight along the optical axis J1 in the refraction angle adjustment plate 23.
  • the light (stripe pattern) transmitted through the inside of the refraction angle adjustment plate 23 is vertically emitted from the emission surface 23 b of the refraction angle adjustment plate 23 at a refraction angle of 0 °. Then, it is projected onto the printed circuit board 1 through the projection lens unit 19.
  • a stripe pattern parallel to the Y direction orthogonal to the transport direction (X direction) is projected onto the printed circuit board 1 to be transported.
  • the stripe pattern projected onto the printed circuit board 1 is pattern light having a light intensity distribution of a sine wave along the transport direction (X direction) of the printed circuit board 1.
  • the middle gradation region is omitted for simplification, and the stripe pattern is illustrated by a stripe pattern of light and dark binary.
  • the camera 15 picks up an image of the image pickup area W of the printed circuit board 1 on which the stripe pattern is projected on the image pickup element 15a having a light receiving surface in which a plurality of light receiving elements are two-dimensionally arrayed.
  • the imaging lens unit 15 b as an optical system is provided, and the optical axis J 2 thereof is set along the vertical direction (Z direction) perpendicular to the upper surface of the conveyor 13.
  • a CCD area sensor is employed as the imaging element 15a.
  • the imaging lens unit 15b is configured by a both-side telecentric lens (both-side telecentric optical system) integrally including an object-side lens, an aperture stop, an image-side lens, and the like. However, in FIG. 1, the imaging lens unit 15b is illustrated as a single lens for the sake of simplicity.
  • the object side lens is for condensing the reflected light from the printed circuit board 1 and has a telecentric structure in which the optical axis J2 and the chief ray are parallel on the object side.
  • the image side lens is for focusing the light transmitted through the aperture stop from the object side lens on the light receiving surface of the image pickup device 15a, and has a telecentric structure in which the optical axis J2 and the chief ray are parallel on the image side.
  • the image data captured and acquired by the camera 15 is converted into a digital signal in the camera 15 and then input to the control device 16 in the form of a digital signal and stored in an image data storage device 44 described later. Then, based on the image data, the control device 16 performs image processing, arithmetic processing, and the like as described later.
  • the control device 16 constitutes an image processing means in the present embodiment.
  • FIG. 5 is a block diagram showing the electrical configuration of the substrate inspection apparatus 10. As shown in FIG.
  • the control device 16 includes a CPU and an input / output interface 41 that controls the entire substrate inspection apparatus 10, an input device 42 as an “input unit” configured of a keyboard, a mouse, a touch panel, etc.
  • a display device 43 as "display means” having a display screen such as liquid crystal, an image data storage device 44 for storing image data etc. captured and acquired by the camera 15, three-dimensional obtained based on the image data
  • An operation result storage device 45 for storing various operation results such as measurement results, and a setting data storage device 46 for previously storing various information such as design data are provided.
  • the devices 42 to 46 are electrically connected to the CPU and the input / output interface 41.
  • the control device 16 drives and controls the conveyor 13 to continuously transport the printed circuit board 1 at a constant speed. Then, the control device 16 drives and controls the projection device 14 and the camera 15 based on a signal from an encoder (not shown) provided on the conveyor 13.
  • the printed board 1 on which the stripe pattern is projected is imaged by the camera 15. Every time the predetermined time ⁇ t elapses, the image data captured and acquired by the camera 15 is transferred to the control device 16 as needed, and stored in the image data storage device 44.
  • the predetermined amount ⁇ x is set to a distance corresponding to a phase of 90 ° of the fringe pattern projected from the projection device 14. Further, the imaging range W of the camera 15 in the transport direction (X direction) of the printed circuit board 1 is set to a length corresponding to one cycle (phase 360 °) of the stripe pattern.
  • the predetermined amount ⁇ x and the imaging range W of the camera 15 are not limited to this, and may be longer or shorter.
  • FIG. 7 is a schematic view for explaining the relationship between the coordinate position on the printed circuit board 1 which moves relative to the passage of time and the imaging range W of the camera 15.
  • FIG. 8 is a table for explaining the relationship between the coordinate position on the printed circuit board 1 which moves relative to the passage of time and the phase of the fringe pattern.
  • the entire range in the Y direction of the printed circuit board 1 is included in the imaging range W of the camera 15 with respect to the direction (Y direction) orthogonal to the transport direction (X direction) on the printed circuit board 1. Therefore, there is no difference in the phase of the fringe pattern at each coordinate position in the Y direction at the same coordinate position in the X direction. Further, since the positional relationship between the camera 15 and the projection device 14 is fixed, the phase of the fringe pattern projected from the projection device 14 is fixed with respect to each coordinate position on the light receiving surface of the imaging device 15a.
  • the range corresponding to the coordinates P2 to P17 in the transport direction (X direction) of the printed board 1 is located. Do. That is, at the imaging timing t1, image data in the range of the coordinates P2 to P17 on the printed circuit board 1 on which the fringe pattern is projected is acquired.
  • the phase of the fringe pattern projected onto the printed circuit board 1 is “0 °” at coordinate P17, “22.5 °” at coordinate P16, “45 °” at coordinate P15,.
  • Image data is acquired in which the phase of the fringe pattern is shifted by 22.5 ° for each of the coordinates P2 to P17, such as "360 ° (0 °)" at the coordinate P1.
  • the phase of the fringe pattern shown in FIGS. 7 and 8 is assumed to be projected on a reference position (for example, a background area of the printed circuit board 1) having a height position “0” and a plane.
  • a range corresponding to the coordinates P6 to P21 on the printed circuit board 1 is located within the imaging range W of the camera 15, and image data of the range is acquired.
  • a range corresponding to coordinates P10 to P25 on the printed circuit board 1 is located within the imaging range W of the camera 15, and image data of the range is acquired Ru.
  • a range corresponding to coordinates P14 to P29 on the printed circuit board 1 is located within the imaging range W of the camera 15, and image data of the range is acquired.
  • FIG. 9 is a table schematically showing a state in which coordinate positions of a plurality of image data acquired at imaging timings t1 to t4 are aligned.
  • FIG. 10 is a table schematically showing a state in which data relating to each coordinate position on the printed circuit board 1 is organized. However, in FIG. 10, only the part related to the coordinate P17 on the printed circuit board 1 is illustrated.
  • control device 16 measures the height of each coordinate by the phase shift method based on the four types of image data (four luminance values of each coordinate) acquired as described above.
  • the control device 16 calculates height data at each coordinate of the entire printed circuit board 1 by repeating the process for each coordinate, and stores this in the calculation result storage unit 45 as a three-dimensional measurement result of the printed circuit board 1. .
  • the light intensities (brightness) I0, I1, I2 and I3 at predetermined coordinate positions on the printed board 1 in the above four types of image data are respectively expressed by the following formulas (1), (2), (3) and (4) be able to.
  • I0 ⁇ sin ⁇ + ⁇ (1)
  • gain, ⁇ : offset, ⁇ : phase of fringe pattern.
  • the control device 16 determines the quality of the printed state of the cream solder 4 based on the three-dimensional measurement result (height data at each coordinate) obtained as described above. Specifically, the control device 16 detects a solder print area that is higher than a height reference surface by a predetermined length or more, and integrates the height of each portion in this area to print the printed cream solder 4 Calculate the amount of
  • control device 16 sets the data such as the position, area, height or amount of the cream solder 4 thus obtained as reference data (gerber data etc.) stored in advance in the setting data storage device 46.
  • the comparison determination is made, and the quality of the printed state of the cream solder 4 is determined depending on whether the comparison result is within the allowable range.
  • a stripe pattern is projected onto the print substrate 1 which is continuously transported, and the printed substrate 1 onto which the stripe pattern is projected is a predetermined amount (90 degrees of the stripe pattern). Every time it is transported).
  • four types of image data are acquired in which the phases of the projected fringe patterns differ by a predetermined amount (90 ° each).
  • three-dimensional measurement of the printed circuit board 1 by the phase shift method is performed based on these image data. As a result, it is possible to perform three-dimensional measurement while continuously moving the printed circuit board 1 without stopping the printed circuit board 1. Therefore, it is possible to improve the measurement efficiency, and hence the production efficiency.
  • the projection device 14 is set such that the exit surface (grating surface) 21 b of the grid plate 21 and the main surface of the projection lens unit 19 satisfy the condition of shine proof with respect to the printed board 1.
  • the plane S1 including the emission surface 21b of the lattice plate 21, the plane S2 including the main surface of the projection lens unit 19, and the plane S3 including the surface (projection plane) of the printed board 1 intersect on the same straight line C It is set to.
  • the fringe pattern can be projected in focus on the entire projection range on the printed circuit board 1.
  • the measurement accuracy of three-dimensional measurement can be improved.
  • the pattern generation unit 18 is made of an optical material having a predetermined refractive index, and is provided with a grating plate 21 provided with a grating 25 for converting incident light into a fringe pattern;
  • the incident angle adjusting plate 22 disposed on the incident surface 21a side of the grating plate 21 and the same refraction as the grating plate 21 are made of the same material having the same refractive index and the incident angle of incident light is 0 °.
  • the refracting angle adjusting plate 23 is disposed on the side of the exit surface 21b of the grating plate 21 so that the refracting angle of the emitted light is 0 °.
  • the pattern generation unit 18 can be manufactured using an inexpensive light transmitting member such as the existing grid plate 21 in which the grid 25 is printed on a glass plate, for example. Therefore, the manufacturing cost of the projection device 14 can be suppressed as compared with the case where an expensive optical control element such as a DMD is used as the pattern generation unit.
  • the generated fringe pattern does not depend on the pixel pitch of the optical control element, and a fringe pattern more suitable for the printed circuit board 1 can be projected.
  • the height position may be slightly changed.
  • the projection lens unit 19 is configured by the both-side telecentric lens (both-side telecentric optical system), the fringe pattern is accurately projected without being affected by the height change of the printed circuit board 1 can do.
  • the projection device and the three-dimensional measurement device according to the present invention are embodied in the substrate inspection device 10 for inspecting the printing state of the cream solder 4 printed on the printed substrate 1.
  • the present invention may be embodied in an apparatus for inspecting other objects such as solder bumps formed on a wafer substrate, an adhesive applied on a print substrate, electronic components mounted on a print substrate, and the like.
  • three-dimensional measurement may be performed with an object different from the substrate as an object to be measured.
  • phase shift method when performing three-dimensional measurement by the phase shift method, four types of image data in which the phase of the fringe pattern differs by 90 ° are acquired, but the number of phase shifts and the phase shift The amount is not limited to these. Another phase shift number and phase shift amount that can be three-dimensionally measured by the phase shift method may be adopted. For example, three-dimensional measurement may be performed by acquiring three kinds of image data whose phases are different by 120 ° or 90 °.
  • pattern light having a sinusoidal light intensity distribution is projected as a stripe pattern, but the present invention is not limited to this.
  • pattern light having a non-sinusoidal light intensity distribution such as a rectangular wave shape or a triangular wave shape may be projected as the pattern.
  • the fringe pattern is projected onto the printed circuit board 1 and three-dimensional measurement is performed by the phase shift method.
  • the present invention is not limited to this.
  • the three-dimensional measurement may be performed using the pattern projection method of
  • the measuring head including the projection device 14 and the camera 15 may be movable, the positional relationship between the printed circuit board 1 fixed at the predetermined position and the stripe pattern to be projected may be relatively moved.
  • the measurement head comprising the projection device 14 and the camera 15 and the printed circuit board 1 are fixed at a predetermined position in a stopped state without relative movement.
  • the positional relationship between the printed circuit board 1 and the stripe pattern to be projected may be relatively moved.
  • the light source 17 is configured of a halogen lamp that emits white light. Not limited to this, another light source such as a white LED may be used.
  • the configuration of the pattern generation unit 18 is not limited to the above embodiment.
  • the grating plate 21 according to the above embodiment has the configuration in which the grating 25 is provided on the emission surface 21b, the present invention is not limited thereto.
  • the grating 25 may be provided on the incidence surface 21a.
  • the grid 25 is provided by printing (vapor deposition).
  • the present invention is not limited to this.
  • the grid 25 may be provided by another method such as laser processing.
  • lattice 25 which concerns on the said embodiment becomes a binary structure which the light transmission part 25a and the light-shielding part 25b are located in a line by turns, it does not restrict to this, for example, many transmissivitys differ in three or more steps. It may be configured to be provided with a value grid pattern.
  • the grating plate 21, the incident angle adjustment plate 22 and the refraction angle adjustment plate 23 are formed of the same optical material having the same refractive index, the present invention is not limited to this. 21, at least one of the incident angle adjusting plate 22 and the refractive angle adjusting plate 23 may be formed of different optical materials having the same refractive index.
  • the first light transmitting member provided with a predetermined grid may be formed of a thin film member or the like. Since the first light transmitting member is configured to be sandwiched by the incident angle adjusting plate 22 and the refraction angle adjusting plate 23, it is possible to suppress the bending of the first light transmitting member.
  • the projection optical system is not limited to the projection lens unit 19 of the above embodiment.
  • the projection lens unit 19 is configured by a both-side telecentric lens (both-side telecentric optical system).
  • an object-side telecentric lens object-side telecentric optical system
  • it is good also as a structure which does not have a telecentric structure.
  • the imaging means is not limited to the camera 15 of the above embodiment.
  • a CCD area sensor is adopted as the image pickup device 15a, but not limited to this, for example, a CMOS area sensor or the like may be adopted.
  • the imaging lens unit 15 b is configured by a both-side telecentric lens (both-side telecentric optical system).
  • a both-side telecentric lens both-side telecentric optical system
  • an object-side telecentric lens object-side telecentric optical system
  • the condition of the above-mentioned shine proof is the exit surface 21b (grating 25) of the grating plate 21 in the traveling direction (the direction of the optical axis J1) of the light passing through the pattern generating unit 18.
  • the exit surface 23b of the refraction angle adjustment plate 23 are preferably added.
  • the optical path length from the exit surface 21 b of the grating plate 21 to the exit surface 23 b of the refraction angle adjustment plate 23 in the traveling direction of light transmitted through the pattern generation unit 18 is the exit of the grating plate 21 with respect to the exit surface 23 b of the refraction angle adjustment plate 23 It depends on which position on the exit surface 21b in the inclination direction of the surface 21b the light passes.
  • An optical material such as glass constituting the pattern generation unit 18 usually has a predetermined refractive index higher than the refractive index of air. Therefore, the optical path length of the light traveling in the pattern generation unit 18 is optically longer than the optical path length of the light traveling in the air. Therefore, when the physical length (optical path length) from the exit surface 21b of the grating plate 21 to the exit surface 23b of the refraction angle adjustment plate 23 is different, the optics from the exit surface 21b of the grating plate 21 to the printed board 1 Light path length will be different. In the case where the exit surface 21b of the grating plate 21 and the main surface of the projection lens unit 19 are arranged so as to satisfy the condition of the shine proof without taking this into consideration, slight errors may occur.
  • the stripe pattern is combined more accurately. You can burn it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Provided are a projection device and a three-dimensional measurement device that are able to achieve measurement accuracy improvement and the like when three-dimensional measurement using a pattern projection method is performed. In the present invention, a board inspection apparatus is provided with a projection device 14 that projects a stripe pattern onto a printed board, and a camera that captures an image of the printed board. The projection device 14 has a pattern generation unit 18 that converts light from a light source 17 to a stripe pattern, and a projection lens unit 19 that forms an image of the generated stripe pattern on the printed board. The pattern generation unit 18 comprises: a lattice plate 21 that converts incident light to a stripe pattern; an incident angle adjustment plate 22 that is disposed on the incident surface side of the lattice plate 21 such that an incident angle of the incident light is 0°; and a refraction angle adjustment plate 23 that is disposed on the emission surface side of the lattice plate 21 such that a refraction angle of emitted light is 0°, wherein these are composed of the same optical material having the same refractive index.

Description

投影装置及び三次元計測装置Projection apparatus and three-dimensional measurement apparatus
 本発明は、位相シフト法などのパターン投影法を利用した三次元計測を行うにあたり、所定のパターン光を投影する投影装置及びこれを備えた三次元計測装置に関するものである。 The present invention relates to a projection apparatus for projecting a predetermined pattern light and a three-dimensional measurement apparatus equipped with the projection apparatus, when performing three-dimensional measurement using a pattern projection method such as a phase shift method.
 一般に、プリント基板上に電子部品を実装する場合、まずプリント基板上に配設された所定の電極パターン上にクリーム半田が印刷される。次に、該クリーム半田の粘性に基づいてプリント基板上に電子部品が仮止めされる。その後、前記プリント基板がリフロー炉へ導かれ、所定のリフロー工程を経ることで半田付けが行われる。昨今では、リフロー炉に導かれる前段階においてクリーム半田の印刷状態を検査する必要があり、かかる検査に際して三次元計測装置が用いられることがある。 Generally, when mounting an electronic component on a printed circuit board, cream solder is first printed on a predetermined electrode pattern disposed on the printed circuit board. Next, the electronic component is temporarily fixed on the printed circuit board based on the viscosity of the cream solder. Thereafter, the printed circuit board is introduced into a reflow furnace, and soldering is performed through a predetermined reflow process. Nowadays, it is necessary to inspect the printing condition of the cream solder before being introduced to the reflow furnace, and a three-dimensional measuring device may be used for such inspection.
 従来、所定のパターン光を投影して三次元計測を行う三次元計測装置が種々提案されている。中でも、位相シフト法を利用した三次元計測装置がよく知られている。 Conventionally, various three-dimensional measurement devices have been proposed which perform three-dimensional measurement by projecting predetermined pattern light. Among them, a three-dimensional measurement apparatus using a phase shift method is well known.
 位相シフト法を利用した三次元計測装置は、プリント基板等の被計測物に対し、縞状の光強度分布を有するパターン光(以下、「縞パターン」という)を斜め上方より投影する投影装置と、該縞パターンの投影された被計測物を撮像する撮像装置とを備えている。 A three-dimensional measurement apparatus using a phase shift method is a projection apparatus that projects pattern light having a stripe-like light intensity distribution (hereinafter, referred to as “stripe pattern”) obliquely upward onto an object to be measured such as a printed circuit board And an imaging device for imaging an object to be measured on which the fringe pattern is projected.
 投影装置は、所定の光を発する光源と、該光源からの光を縞パターンに変換するパターン生成部とを備え、ここで生成された縞パターンが投影レンズ等からなる投影光学系を介して被計測物に対し投影される。 The projection apparatus includes a light source that emits predetermined light, and a pattern generation unit that converts light from the light source into a fringe pattern, and the fringe pattern generated here is a subject to be exposed via a projection optical system including a projection lens or the like. It is projected on the measurement object.
 かかる構成の下、被計測物に投影される縞パターンの位相を複数通り(例えば4通り)にシフトさせると共に、位相の異なる各縞パターンの下で撮像を行い、被計測物に係る複数通りの画像データを取得する。そして、これらの画像データを基に被計測物の三次元計測を行う。 Under this configuration, the phase of the fringe pattern projected onto the object to be measured is shifted in a plurality of ways (for example, 4 ways), and imaging is performed under each fringe pattern different in phase, Acquire image data. Then, three-dimensional measurement of the object to be measured is performed based on these image data.
 近年では、シャインプルーフの原理に従い、パターン生成部を投影光学系の光軸に対し傾くように配置し、投影範囲全域において縞パターンが合焦するように構成された三次元計測装置も見受けられる(例えば、特許文献1、2参照)。 In recent years, a three-dimensional measurement apparatus has also been observed in which the pattern generation unit is disposed to be inclined with respect to the optical axis of the projection optical system according to the principle of shine proof, and a fringe pattern is focused over the entire projection range See, for example, Patent Documents 1 and 2).
特表2003-527582号公報Japanese Patent Publication No. 2003-527582 特開2014-106094号公報JP, 2014-106094, A
 しかしながら、特許文献1のように、パターン生成部として格子板を用いると共に、該格子板を投影光学系の光軸に対し傾くように配置した構成においては、図11に示すように、所定の光源から出射された光Kaが投影光学系の光軸方向に沿って格子板100の入射面100aに対し斜めに入射することとなる。この際、入射した光Kbは、単波長の光でない限り、複数の波長成分の屈折率の違いにより分光してしまう。 However, in the configuration in which the grating plate is used as the pattern generation unit as in Patent Document 1 and the grating plate is arranged to be inclined with respect to the optical axis of the projection optical system, as shown in FIG. The light Ka emitted from the light source obliquely enters the incident surface 100a of the grating plate 100 along the optical axis direction of the projection optical system. Under the present circumstances, unless it is the light of a single wavelength, the light Kb which injected will be disperse | distributed by the difference in the refractive index of a several wavelength component.
 さらに、格子板100内を透過した光Kbは、出射面(格子面)100bにて縞パターンに変換され、該出射面100bから斜めに出射されることとなる。この際、入射時と同様、出射された光Kcは、複数の波長成分の屈折率の違いにより分光してしまう。 Furthermore, the light Kb transmitted through the inside of the lattice plate 100 is converted into a stripe pattern at the light emission surface (lattice surface) 100b, and is obliquely emitted from the light emission surface 100b. At this time, as in the case of incidence, the emitted light Kc is dispersed due to the difference in refractive index of a plurality of wavelength components.
 その結果、被計測物に投影される縞パターンがぼやける等して、想定した縞パターンとならず、三次元計測の計測精度が低下するおそれがある。 As a result, the fringe pattern projected onto the object to be measured is blurred or the like, and the estimated fringe pattern may not be assumed, and the measurement accuracy of the three-dimensional measurement may be lowered.
 一方、特許文献2では、デジタル・マイクロミラー・デバイス(DMD)をはじめ、反射型液晶パネルや透過型液晶パネルなど、複数の画素がマトリクス状に二次元配列されてなる光学制御素子をパターン生成部として用いる構成が記載されている。 On the other hand, in Patent Document 2, a pattern generation unit is an optical control element in which a plurality of pixels are two-dimensionally arranged in a matrix, such as a digital micro mirror device (DMD), a reflective liquid crystal panel, and a transmissive liquid crystal panel. The configuration used as is described.
 しかしながら、DMD等の光学制御素子は画素と画素の間が暗部となることから、生成される縞パターンが微視的には不連続なものとなる。結果として、被計測物に投影される縞パターンが、想定した縞パターンとならず、三次元計測の計測精度が低下するおそれがある。 However, since the optical control element such as the DMD has a dark portion between pixels, the stripe pattern generated is microscopically discontinuous. As a result, the fringe pattern projected onto the object to be measured does not become the assumed fringe pattern, and the measurement accuracy of the three-dimensional measurement may be reduced.
 また、DMD等の光学制御素子は、投影装置の制御を複雑化すると共に、高価であるため、投影装置の製造コストを増大させるおそれがある。 Further, the optical control element such as the DMD complicates the control of the projection apparatus and is expensive, which may increase the manufacturing cost of the projection apparatus.
 尚、上記課題は、必ずしもプリント基板上に印刷されたクリーム半田等の三次元計測に限らず、他の三次元計測の分野においても内在するものである。勿論、位相シフト法に限られる問題ではない。 The above problem is not necessarily limited to three-dimensional measurement of cream solder or the like printed on a printed circuit board, but is inherent in the field of other three-dimensional measurement. Of course, the problem is not limited to the phase shift method.
 本発明は、上記事情に鑑みてなされたものであり、その目的は、パターン投影法を利用した三次元計測を行うにあたり計測精度の向上等を図ることのできる投影装置及び三次元計測装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a projection apparatus and a three-dimensional measurement apparatus capable of improving measurement accuracy etc. when performing three-dimensional measurement using a pattern projection method. It is to do.
 以下、上記課題を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。 Hereinafter, each means suitable for solving the above-mentioned subject will be described by item. In addition, the operation and effect specific to the corresponding means will be added as needed.
 手段1.所定の被計測物(例えばプリント基板)に係る三次元計測を行うにあたり、前記被計測物に対し所定のパターン光を投影する投影装置であって、
 所定の光を発する光源と、
 前記光源から入射する光を前記パターン光に変換して出射するパターン生成部と、
 前記パターン生成部から出射された前記パターン光を前記被計測物に対し結像させる投影光学系とを備え、
 前記パターン生成部は、
 所定の屈折率を有する光学素材(例えばガラスやアクリル樹脂等)からなり、入射する光を前記パターン光に変換する所定の格子(格子面)が設けられてなる第1透光部材(格子板)と、
 前記第1透光部材と同一屈折率を有する素材からなり、該パターン生成部へ入射する光の入射角が0°となるように、前記第1透光部材の入射面側に配設された第2透光部材(入射角調整板)と、
 前記第1透光部材と同一屈折率を有する素材からなり、該パターン生成部から出射する光の屈折角が0°となるように、前記第1透光部材の出射面側に配設された第3透光部材(屈折角調整板)とにより構成され、
 前記被計測物に対して、前記第1透光部材の格子及び前記投影光学系の主面がシャインプルーフの条件を満たすように配置されることを特徴とする投影装置。
Means 1. A projection apparatus for projecting a predetermined pattern of light onto an object to be measured when performing three-dimensional measurement on the object to be measured (for example, a printed circuit board),
A light source that emits a predetermined light;
A pattern generation unit that converts light incident from the light source into the pattern light and emits the light;
A projection optical system for forming an image of the pattern light emitted from the pattern generation unit on the object to be measured;
The pattern generation unit
A first light transmitting member (grating plate) made of an optical material (for example, glass or acrylic resin) having a predetermined refractive index and provided with a predetermined grating (grating plane) for converting incident light into the pattern light When,
It is made of a material having the same refractive index as the first light transmitting member, and is disposed on the light incident surface side of the first light transmitting member so that the incident angle of light incident on the pattern generating unit is 0 °. A second light transmitting member (incident angle adjusting plate),
It is made of a material having the same refractive index as the first light transmitting member, and is disposed on the light emitting surface side of the first light transmitting member so that the refraction angle of light emitted from the pattern generation unit is 0 °. Composed of a third light transmitting member (refractive angle adjusting plate),
1. A projector according to claim 1, wherein the grating of the first light transmitting member and the main surface of the projection optical system are arranged with respect to the object to be measured such that the conditions of the shine proof are satisfied.
 上記手段1によれば、パターン投影法を利用した三次元計測を行うにあたり、計測精度の良いパターン光を投影することができる。 According to the above-mentioned means 1, in performing three-dimensional measurement using a pattern projection method, it is possible to project pattern light with high measurement accuracy.
 本手段に係る投影装置は、被計測物に対して、第1透光部材の格子及び投影光学系の主面がシャインプルーフの条件を満たすように設定されている。つまり、第1透光部材の格子を含む平面と、投影光学系の主面を含む平面と、被計測物(パターン投影面)を含む平面とがシャインプルーフの条件を満たすように、同一直線上で互いに交わるように設定されている。これにより、被計測物上の投影範囲全域に対しパターン光を合焦状態で投影することができる。結果として、三次元計測の計測精度の向上を図ることができる。 The projection apparatus according to this means is set such that the grating of the first light transmitting member and the main surface of the projection optical system satisfy the condition of the shine proof for the object to be measured. That is, on the same straight line, the plane including the grating of the first light transmitting member, the plane including the main surface of the projection optical system, and the plane including the object to be measured (pattern projection plane) satisfy the condition of shine proof. Are set to cross each other. Thus, the pattern light can be projected in focus on the entire projection range on the object to be measured. As a result, the measurement accuracy of three-dimensional measurement can be improved.
 さらに、本手段に係るパターン生成部は、入射する光をパターン光に変換する所定の格子が設けられてなる第1透光部材と、入射する光の入射角が0°となるように、第1透光部材の入射面側に配設された第2透光部材と、出射する光の屈折角が0°となるように、第1透光部材の出射面側に配設された第3透光部材とによって構成されると共に、各透光部材が同一の屈折率を有する光学素材(例えばガラスやアクリル樹脂等)により形成されている。 Furthermore, the pattern generation unit according to the present invention is configured such that the first light transmitting member provided with a predetermined grating for converting incident light into pattern light, and the first light transmitting member have an incident angle of 0.degree. (1) A second light transmitting member disposed on the light incident surface side of the light transmitting member, and a third light transmitting member disposed on the light exit surface side of the first light transmitting member so that the refraction angle of emitted light is 0 °. While being comprised by a light transmission member, each light transmission member is formed with the optical raw material (for example, glass, an acrylic resin, etc.) which has the same refractive index.
 これにより、パターン生成部を透過する光の分散等を抑制し、投影されるパターン光のぼけ等を抑制することができる。結果として、パターン投影法を利用した三次元計測の計測精度の向上等を図ることができる。 As a result, it is possible to suppress the dispersion and the like of the light transmitted through the pattern generation unit, and to suppress the blurring and the like of the projected pattern light. As a result, it is possible to improve the measurement accuracy of three-dimensional measurement using the pattern projection method.
 加えて、本手段によれば、例えばガラス板に格子が印刷(蒸着)された既存の格子板など、安価な透光部材を用いてパターン生成部を製造することができる。このため、高価なDMD等の光学制御素子をパターン生成部として用いた場合に比べ、投影装置の製造コストを抑制することができる。 In addition, according to the present means, it is possible to manufacture the pattern generation unit using an inexpensive light transmitting member such as, for example, an existing grid plate in which a grid is printed (deposited) on a glass plate. Therefore, the manufacturing cost of the projection apparatus can be suppressed as compared to the case where an expensive optical control element such as a DMD is used as the pattern generation unit.
 また、DMD等の光学制御素子を用いた場合のように、画素の制御を行う必要もなく、制御の簡素化を図ることができると共に、生成されるパターン光が微視的に不連続となることもないため、より理想的なパターン光を被計測物に対し投影することが可能となる。 Further, as in the case of using an optical control element such as DMD, there is no need to control the pixel, and the control can be simplified, and the pattern light generated becomes microscopically discontinuous. Because there is no problem, it becomes possible to project more ideal pattern light onto the object to be measured.
 尚、DMD等の光学制御素子をパターン生成部として利用する場合には、通常、市販のものを用いることとなる。このため、生成されるパターン光が光学制御素子の画素ピッチに依存することとなり、自由度が低下し、被計測物に適したパターン光を投影することが困難となる場合もある。この点、本手段によれば、被計測物により適したパターン光を投影することができる。 When an optical control element such as DMD is used as a pattern generation unit, a commercially available one is usually used. For this reason, the pattern light to be generated depends on the pixel pitch of the optical control element, the degree of freedom is reduced, and it may be difficult to project the pattern light suitable for the object to be measured. In this respect, according to the present means, it is possible to project pattern light more suitable for the object to be measured.
 また、第2透光部材及び第3透光部材により第1透光部材(格子板)を挟持した構造となるため、第1透光部材の撓みを抑制し投影精度の向上を図ると共に、格子面を保護することができる。 In addition, since the first light transmitting member (grid plate) is sandwiched between the second light transmitting member and the third light transmitting member, the deflection of the first light transmitting member is suppressed to improve the projection accuracy, and It can protect the face.
 手段2.前記シャインプルーフの条件は、前記パターン生成部を透過する光の進行方向における前記第1透光部材の格子から前記第3透光部材の出射面までの光路長の違いを加味したものであることを特徴とする手段1に記載の投影装置。 Means 2. The condition of the shine proof is that the difference in the optical path length from the grating of the first light transmitting member to the light emitting surface of the third light transmitting member in the traveling direction of light transmitted through the pattern generation unit is taken into consideration. The projection device according to the means 1 characterized by the above.
 パターン生成部を透過する光の進行方向における第1透光部材の格子から第3透光部材の出射面までの光路長は、第3透光部材の出射面に対する第1透光部材の格子(格子面)の傾斜方向における格子上のどの位置を光が通過するかによって異なる。 The optical path length from the grating of the first light transmitting member to the exit surface of the third light transmitting member in the traveling direction of light transmitted through the pattern generation unit is the grating of the first light transmitting member relative to the exit surface of the third light transmitting member It depends on which position on the grating in the tilt direction of the grating plane) the light passes through.
 上記各透光部材を構成するガラス等の光学素材は、通常、空気の屈折率よりも高い所定の屈折率を有する。このため、透光部材内を進む光の光路長は、空気中を進む光の光路長よりも光学的に長くなる。従って、第1透光部材の格子から第3透光部材の出射面までの物理的な長さ(光路長)が異なる場合には、第1透光部材の格子から被計測物までの光学的な光路長が異なることとなる。これを考慮することなく、第1透光部材の格子及び投影光学系の主面がシャインプルーフの条件を満たすように配置された場合には、僅かながらも誤差が生じ得る。 An optical material such as glass constituting each of the above-mentioned light transmitting members usually has a predetermined refractive index higher than the refractive index of air. Therefore, the optical path length of the light traveling in the light transmitting member is optically longer than the optical path length of the light traveling in the air. Therefore, when the physical length (optical path length) from the grating of the first light transmitting member to the light emitting surface of the third light transmitting member is different, the optical length from the grating of the first light transmitting member to the object to be measured is Different optical path lengths. In the case where the grating of the first light transmitting member and the main surface of the projection optical system are disposed so as to satisfy the condition of the shine proof without taking this into consideration, slight errors may occur.
 これに対し、本手段によれば、このような誤差を補正した状態で、第1透光部材の格子及び投影光学系の主面がシャインプルーフの条件を満たすように配置されるため、より精度よくパターン光を合焦させることができる。 On the other hand, according to the present means, the grid of the first light transmitting member and the main surface of the projection optical system are arranged so as to satisfy the condition of the shine proof in a state where such an error is corrected. The pattern light can be well focused.
 手段3.前記パターン光として、縞状(例えば正弦波状)の光強度分布を有するパターン光を生成可能に構成されていることを特徴とする手段1又は2に記載の投影装置。 Means 3. The projector according to the means 1 or 2, characterized in that pattern light having a stripe-like (for example, sinusoidal wave) light intensity distribution can be generated as the pattern light.
 上記手段3によれば、縞状の光強度分布を有するパターン光を投影することにより、位相シフト法による三次元計測を行うことができる。結果として、三次元計測の計測精度の向上等を図ることができる。 According to the above-mentioned means 3, three-dimensional measurement by the phase shift method can be performed by projecting the pattern light having the stripe-like light intensity distribution. As a result, it is possible to improve the measurement accuracy of the three-dimensional measurement.
 位相シフト法のように、位相の異なるパターン光の下で撮像し取得した複数の画像データの輝度値の違いを基に三次元計測を行う構成においては、輝度値の誤差が僅かであっても、計測精度に多大な影響を与えるおそれがある。従って、本手段に係る構成の下において上記各手段の作用効果がより奏功することとなる。特に正弦波状の光強度分布を有するパターン光は、光強度分布(波形)が崩れやすいため、高い投影精度が要求される。 In a configuration that performs three-dimensional measurement based on differences in luminance values of a plurality of image data captured and acquired under pattern light with different phases, as in the phase shift method, even if the error in luminance values is slight There is a possibility that the measurement accuracy may be greatly affected. Therefore, under the configuration according to the present means, the action and effect of each means is more successful. In particular, pattern light having a sinusoidal light intensity distribution is likely to break the light intensity distribution (waveform), so high projection accuracy is required.
 手段4.手段1乃至3のいずれかに記載の投影装置と、
 前記パターン光の投影された前記被計測物の所定範囲を撮像可能な撮像手段と、
 前記撮像手段により撮像され取得された画像データを基に前記被計測物に係る三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
Means 4. The projection apparatus according to any one of the means 1 to 3;
An imaging unit capable of imaging a predetermined range of the object to be measured on which the pattern light is projected;
A three-dimensional measuring apparatus comprising: image processing means capable of executing three-dimensional measurement relating to the object based on image data captured and acquired by the imaging means.
 上記手段4によれば、手段1乃至3のいずれかに記載の投影装置から投影されるパターン光を利用して三次元計測を行うことができる。通常、パターン投影法を利用した三次元計測を行う際には、所定の光源から出射された光をパターン生成部において所定のパターン光に変換し、投影光学系を介して被計測物に対し投影する。そして、パターン光の投影された被計測物を撮像手段により撮像し、取得した画像データを基に被計測物の三次元計測を行う。 According to the means 4, the three-dimensional measurement can be performed using the pattern light projected from the projection device according to any one of the means 1 to 3. In general, when performing three-dimensional measurement using a pattern projection method, light emitted from a predetermined light source is converted to predetermined pattern light in a pattern generation unit, and projected onto a measurement object via a projection optical system. Do. Then, the object to be measured on which the pattern light is projected is imaged by the imaging means, and three-dimensional measurement of the object to be measured is performed based on the acquired image data.
 より具体的に、上記手段3に記載の投影装置から投影されるパターン光を利用して位相シフト法による三次元計測を行う三次元計測装置としては、
「手段3に記載の投影装置と、
 前記パターン光の投影された前記被計測物の所定範囲を撮像可能な撮像手段と、
 前記投影装置によって投影されるパターン光と、前記被計測物との相対位置関係(位相)を変位させる変位手段と、
 前記パターン光と前記被計測物との相対位置関係が異なる状態で、前記撮像手段により撮像され取得された前記被計測物に係る複数の画像データを基に位相シフト法により前記被計測物に係る三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。」が一例に挙げられる。
More specifically, as a three-dimensional measurement apparatus for performing three-dimensional measurement by a phase shift method using pattern light projected from the projection apparatus described in the above means 3,
“The projection device according to the means 3;
An imaging unit capable of imaging a predetermined range of the object to be measured on which the pattern light is projected;
Displacement means for displacing relative positional relation (phase) between the pattern light projected by the projection device and the object to be measured;
The object is measured by the phase shift method based on a plurality of image data of the object to be measured which is captured and acquired by the imaging unit in a state in which the relative positional relationship between the pattern light and the object to be measured is different. What is claimed is: 1. A three-dimensional measuring apparatus comprising: image processing means capable of performing three-dimensional measurement. "Is mentioned as an example.
 尚、上記「被計測物」としては、例えばクリーム半田が印刷されたプリント基板や、半田バンプが形成されたウエハ基板などが挙げられる。つまり、上記各手段に記載の投影装置を用いることにより、プリント基板に印刷されたクリーム半田や、ウエハ基板に形成された半田バンプの三次元計測を行うことができる。ひいては、クリーム半田や半田バンプの検査において、その計測値に基づいてクリーム半田や半田バンプの良否判定を行うことができる。従って、かかる検査において、上記各手段の作用効果が奏されることとなり、精度よく良否判定を行うことができる。結果として、半田印刷検査装置や半田バンプ検査装置における検査精度の向上を図ることができる。 In addition, as said "object to be measured", the printed circuit board in which cream solder was printed, the wafer board | substrate with which solder bump was formed, etc. are mentioned, for example. That is, three-dimensional measurement of cream solder printed on a printed circuit board and solder bumps formed on a wafer substrate can be performed by using the projection device described in each of the above-described means. As a result, in the inspection of the cream solder and the solder bumps, it is possible to determine the quality of the cream solder and the solder bumps based on the measured values. Therefore, in the inspection, the operation and effect of each of the above-described means are exhibited, and the quality determination can be performed with high accuracy. As a result, it is possible to improve the inspection accuracy in the solder printing inspection apparatus and the solder bump inspection apparatus.
基板検査装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a board | substrate test | inspection apparatus. プリント基板の断面模式図である。It is a cross-sectional schematic diagram of a printed circuit board. 投影装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a projection apparatus. パターン生成部の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a pattern production | generation part. 基板検査装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of a board | substrate test | inspection apparatus. プリント基板上に投影された縞パターンの態様を示す模式図である。It is a schematic diagram which shows the aspect of the fringe pattern projected on the printed circuit board. 時間経過と共に変化するプリント基板上の座標位置と、カメラの撮像範囲との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the coordinate position on the printed circuit board which changes with progress of time, and the imaging range of a camera. 時間経過と共に変化するプリント基板上の座標位置と、縞パターンの位相との関係を説明するための表である。It is a table | surface for demonstrating the relationship between the coordinate position on the printed circuit board which changes with progress of time, and the phase of a fringe pattern. 複数の画像データの座標位置を位置合せした状態を模式的に示した表である。It is the table | surface which showed typically the state which aligned the coordinate position of several image data. プリント基板の各座標位置に係るデータを整理した状態を模式的に示した表である。It is the table | surface which showed typically the state which arranged the data which concern on each coordinate position of a printed circuit board. 従来の格子板の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the conventional lattice plate.
 以下、一実施形態について図面を参照しつつ説明する。まず本実施形態において被計測物となるプリント基板1の構成について詳しく説明する(図2参照)。図2は、プリント基板1の断面模式図である。 Hereinafter, an embodiment will be described with reference to the drawings. First, the configuration of the printed circuit board 1 to be an object to be measured in the present embodiment will be described in detail (see FIG. 2). FIG. 2 is a schematic cross-sectional view of the printed circuit board 1.
 図2に示すように、プリント基板1は、平板状をなし、ガラスエポキシ樹脂等からなるベース基板2に、銅箔からなる電極パターン3が設けられている。さらに、所定の電極パターン3上には、クリーム半田4が印刷形成されている。このクリーム半田4が印刷された領域を「半田印刷領域」ということにする。半田印刷領域以外の部分を「背景領域」と総称するが、この背景領域には、電極パターン3が露出した領域(記号E1)、ベース基板2が露出した領域(記号E2)、ベース基板2上にレジスト膜5がコーティングされた領域(記号E3)、及び、電極パターン3上にレジスト膜5がコーティングされた領域(記号E4)が含まれる。尚、レジスト膜5は、所定配線部分以外にクリーム半田4がのらないように、プリント基板1の表面にコーティングされるものである。 As shown in FIG. 2, the printed board 1 has a flat plate shape, and an electrode pattern 3 made of copper foil is provided on a base board 2 made of glass epoxy resin or the like. Furthermore, cream solder 4 is printed on a predetermined electrode pattern 3. The area where the cream solder 4 is printed is referred to as a "solder print area". Parts other than the solder print area are generically referred to as "background area". In this background area, an area where the electrode pattern 3 is exposed (symbol E1), an area where the base substrate 2 is exposed (symbol E2), and A region (symbol E3) coated with the resist film 5 and a region (symbol E4) coated with the resist film 5 on the electrode pattern 3 are included. The resist film 5 is coated on the surface of the printed circuit board 1 so that the cream solder 4 does not rest on other than the predetermined wiring portion.
 次に、本実施形態における三次元計測装置を構成する基板検査装置10について詳しく説明する(図1参照)。図1は、基板検査装置10の概略構成を示す模式図である。以下、図1の紙面左右方向を「X方向」とし、紙面前後方向を「Y方向」とし、紙面上下方向(鉛直方向)を「Z方向」として説明する。 Next, the substrate inspection apparatus 10 constituting the three-dimensional measurement apparatus in the present embodiment will be described in detail (see FIG. 1). FIG. 1 is a schematic view showing a schematic configuration of a substrate inspection apparatus 10. As shown in FIG. Hereinafter, the left and right direction in the drawing of FIG. 1 will be referred to as “X direction”, the front and back direction in the drawing will be referred to as “Y direction”, and the up and down direction (vertical direction) in the drawing will be described as “Z direction”.
 基板検査装置10は、プリント基板1に印刷されたクリーム半田4の印刷状態を検査する半田印刷検査装置である。基板検査装置10は、プリント基板1を搬送する搬送手段(変位手段)としてのコンベア13と、プリント基板1の表面に対し斜め上方から縞パターンを投影する投影装置14と、該縞パターンの投影されたプリント基板1を真上から撮像する撮像手段としてのカメラ15と、コンベア13や投影装置14、カメラ15の駆動制御など基板検査装置10内における各種制御や画像処理、演算処理を実施するための制御装置16(図5参照)とを備えている。 The board inspection apparatus 10 is a solder printing inspection apparatus that inspects the printing state of the cream solder 4 printed on the printed board 1. The substrate inspection apparatus 10 includes a conveyor 13 as a conveying means (displacement means) for conveying the printed circuit board 1, a projection device 14 for projecting a stripe pattern from above obliquely onto the surface of the printed substrate 1, and projection of the stripe pattern. The camera 15 as an imaging unit for imaging the printed circuit board 1 from directly above, and various controls, image processing, and arithmetic processing in the substrate inspection apparatus 10 such as drive control of the conveyor 13, the projection device 14 and the camera 15. And a controller 16 (see FIG. 5).
 コンベア13には、図示しないモータ等の駆動手段が設けられており、該モータが制御装置16により駆動制御されることによって、コンベア13の上面(載置面)に載置されたプリント基板1が所定方向(図1右方向)へ定速で連続搬送される。これにより、カメラ15の撮像範囲(撮像エリア)Wは、プリント基板1に対し逆方向(図1左方向)へ相対移動していくこととなる。 The conveyor 13 is provided with driving means such as a motor (not shown), and the motor is driven and controlled by the control device 16 so that the printed circuit board 1 mounted on the upper surface (mounting surface) of the conveyor 13 is The sheet is continuously conveyed at a constant speed in a predetermined direction (right direction in FIG. 1). As a result, the imaging range (imaging area) W of the camera 15 moves relative to the printed circuit board 1 in the reverse direction (left direction in FIG. 1).
 投影装置14は、図3に示すように、所定の光を発する光源17と、該光源17からの光を縞パターンに変換するパターン生成部18と、該パターン生成部18により生成された縞パターンをプリント基板1上に結像する投影光学系としての投影レンズユニット19とを有している。 As shown in FIG. 3, the projection device 14 includes a light source 17 that emits predetermined light, a pattern generation unit 18 that converts light from the light source 17 into a stripe pattern, and a stripe pattern generated by the pattern generation unit 18. And a projection lens unit 19 as a projection optical system for forming an image on the printed circuit board 1.
 投影装置14は、その光軸J1がX-Z平面に平行し、かつ、Z方向に対し所定角度α(例えば30°)傾斜するように配置されている。 The projection device 14 is disposed such that the optical axis J1 is parallel to the XZ plane and inclined at a predetermined angle α (for example, 30 °) with respect to the Z direction.
 光源17は、白色光を出射するハロゲンランプにより構成されている。光源17から出射された光は、図示しない前処理レンズ群等を介して平行光化された状態で光軸J1に沿ってパターン生成部18に入射する。 The light source 17 is configured of a halogen lamp that emits white light. The light emitted from the light source 17 enters the pattern generation unit 18 along the optical axis J1 in a collimated state through a pretreatment lens group (not shown) and the like.
 パターン生成部18は、3つの透光部材を貼り合せて一体とした1つの光学部材として構成されている(図4参照)。図4は、パターン生成部18の概略構成を示す模式図である。 The pattern generation unit 18 is configured as one optical member in which three light transmitting members are bonded and integrated (see FIG. 4). FIG. 4 is a schematic view showing a schematic configuration of the pattern generation unit 18.
 図4に示すように、パターン生成部18は、入射した光を縞パターンに変換して出射する第1透光部材としての格子板21と、該格子板21の入射側に配設された第2透光部材としての入射角調整板22と、格子板21の出射側に配設された第3透光部材としての屈折角調整板23とからなる。 As shown in FIG. 4, the pattern generation unit 18 includes a grating plate 21 as a first light transmitting member that converts incident light into a stripe pattern and emits the stripe pattern, and a grating member 21 disposed on the incident side of the grating plate 21. 2 includes an incident angle adjusting plate 22 as a light transmitting member, and a refraction angle adjusting plate 23 as a third light transmitting member disposed on the exit side of the grating plate 21.
 格子板21、入射角調整板22及び屈折角調整板23の三者は、同一の屈折率を有する同一の光学素材(例えばガラスやアクリル樹脂等)により形成されている。 All of the grating plate 21, the incident angle adjusting plate 22 and the refraction angle adjusting plate 23 are formed of the same optical material (for example, glass, acrylic resin, etc.) having the same refractive index.
 格子板21は、X-Z平面における断面が長方形状をなし、Y方向に沿った4つの矩形平面を有する平板状の透光部材である。格子板21を構成する4つの矩形平面のうち、光軸J1と交差するように配置された互いに平行な2つの矩形平面により入射面21a及び出射面21bが構成される。 The lattice plate 21 is a flat light transmitting member having a rectangular cross section in the XZ plane and having four rectangular planes along the Y direction. The entrance surface 21a and the exit surface 21b are constituted by two rectangular planes parallel to each other, which are arranged to intersect the optical axis J1 among the four rectangular planes constituting the grating plate 21.
 格子板21は、入射面21a及び出射面21bの垂線が光軸J1に対し所定角度β(例えば約20°)傾斜するように配置されている。 The grating plate 21 is arranged such that the perpendiculars of the incident surface 21a and the exit surface 21b are inclined at a predetermined angle β (for example, about 20 °) with respect to the optical axis J1.
 格子板21の出射面21bには格子25が印刷(蒸着)形成されている。つまり、格子板21の出射面21bにより、本実施形態における格子面が構成される。格子25は、Y方向に沿って直線状に形成された透光部25a及び遮光部25bがX-Z平面において交互に並ぶように構成されている。 A grating 25 is formed by printing (vapor deposition) on the exit surface 21 b of the grating plate 21. That is, the emitting surface 21 b of the grating plate 21 constitutes the grating surface in the present embodiment. The grating 25 is configured such that the light transmitting portions 25 a and the light shielding portions 25 b linearly formed along the Y direction are alternately arranged in the XZ plane.
 入射角調整板22は、X-Z平面における断面が三角形状をなし、Y方向に沿った3つの矩形平面を有する透光部材である。入射角調整板22を構成する3つの矩形平面のうち、光軸J1と交差するように配置された2つの矩形平面により入射面22a及び出射面22bが構成される。 The incident angle adjusting plate 22 is a light transmitting member having a triangular cross section in the XZ plane and having three rectangular planes along the Y direction. Of the three rectangular planes constituting the incident angle adjusting plate 22, the incident plane 22a and the exit plane 22b are constituted by two rectangular planes arranged to intersect the optical axis J1.
 入射角調整板22の入射面22aは、光軸J1と直交するように配置されている。一方、出射面22bは、格子板21の入射面21aに接合され、その垂線が光軸J1に対し前記角度β傾斜するように配置されている。つまり、入射角調整板22は、入射面22aと出射面22bとの内角が前記角度βとなっている。 The incident surface 22a of the incident angle adjustment plate 22 is disposed to be orthogonal to the optical axis J1. On the other hand, the exit surface 22b is joined to the entrance surface 21a of the lattice plate 21 and is disposed so that the perpendicular thereof is inclined at the angle β with respect to the optical axis J1. That is, in the incident angle adjusting plate 22, the internal angle between the incident surface 22a and the outgoing surface 22b is the angle β.
 これにより、光源17からパターン生成部18(入射角調整板22の入射面22a)に入射する光の入射角は0°となる。一方、入射角調整板22の出射面22bから出射され、格子板21の入射面21aに入射する光は、すべての波長成分が屈折することなく、光軸J1に沿って直進することとなる。 Thereby, the incident angle of the light which injects into the pattern production | generation part 18 (incident surface 22a of the incident angle adjustment board 22) from the light source 17 will be 0 degree. On the other hand, the light emitted from the emission surface 22b of the incident angle adjustment plate 22 and incident on the incident surface 21a of the lattice plate 21 travels straight along the optical axis J1 without refraction of all wavelength components.
 屈折角調整板23は、X-Z平面における断面が三角形状をなし、Y方向に沿った3つの矩形平面を有する透光部材である。屈折角調整板23を構成する3つの矩形平面のうち、光軸J1と交差するように配置された2つの矩形平面により入射面23a及び出射面23bが構成される。 The refraction angle adjusting plate 23 is a light transmitting member having a triangular cross section in the XZ plane and having three rectangular planes along the Y direction. Of the three rectangular planes constituting the refraction angle adjusting plate 23, the entrance plane 23a and the exit plane 23b are constituted by two rectangular planes arranged to intersect the optical axis J1.
 屈折角調整板23の入射面23aは、格子板21の出射面21bに接合され、その垂線が光軸J1に対し前記角度β傾斜するように配置されている。一方、出射面23bは、光軸J1と直交するように配置されている。つまり、屈折角調整板23は、入射面23aと出射面23bとの内角が前記角度βとなっている。 The entrance surface 23a of the refraction angle adjustment plate 23 is joined to the exit surface 21b of the grating plate 21 and is disposed so that the perpendicular thereof is inclined at the angle β with respect to the optical axis J1. On the other hand, the exit surface 23b is disposed to be orthogonal to the optical axis J1. That is, in the refraction angle adjustment plate 23, the internal angle between the incident surface 23a and the emission surface 23b is the angle β.
 これにより、格子板21の出射面21bから出射され、屈折角調整板23の入射面23aに入射する光(縞パターン)は、すべての波長成分が屈折することなく、光軸J1に沿って直進することとなる。また、パターン生成部18(屈折角調整板23の出射面23b)から外部へ出射する光の屈折角は0°となる。従って、パターン生成部18から外部へ出射される光は、すべての波長成分が屈折することなく、光軸J1に沿って投影レンズユニット19に向け直進することとなる。 Thereby, the light (stripe pattern) emitted from the emission surface 21b of the grating plate 21 and incident on the incident surface 23a of the refraction angle adjustment plate 23 goes straight along the optical axis J1 without refraction of all wavelength components. It will be done. Further, the refraction angle of the light emitted to the outside from the pattern generation unit 18 (the emission surface 23 b of the refraction angle adjustment plate 23) is 0 °. Therefore, light emitted to the outside from the pattern generation unit 18 travels straight toward the projection lens unit 19 along the optical axis J1 without refraction of all wavelength components.
 投影レンズユニット19は、入射側レンズ31、開口絞り32、出射側レンズ33等を一体に備えた両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。 The projection lens unit 19 is configured by a both-side telecentric lens (both-side telecentric optical system) integrally including an incident side lens 31, an aperture stop 32, an exit side lens 33, and the like.
 入射側レンズ31は、パターン生成部18(屈折角調整板23の出射面23b)から出射された光(縞パターン)を集光するものであり、入射側で光軸J1と主光線とが平行となるテレセントリック構造を有する。 The incident side lens 31 condenses the light (stripe pattern) emitted from the pattern generation unit 18 (the emission surface 23b of the refraction angle adjustment plate 23), and the optical axis J1 and the chief ray are parallel on the incident side. Has a telecentric structure.
 出射側レンズ33は、入射側レンズ31から開口絞り32を透過した光(縞パターン)の像をプリント基板1上に結像させるためのものであり、出射側で光軸J1と主光線とが平行となるテレセントリック構造を有する。 The exit side lens 33 is for forming an image of light (stripe pattern) transmitted from the entrance side lens 31 through the aperture stop 32 on the printed circuit board 1, and the light axis J1 and the chief ray are on the exit side. It has a telecentric structure that is parallel.
 開口絞り32は、入射側レンズ31の後側焦点の位置かつ出射側レンズ33の前側焦点の位置に配置されている。 The aperture stop 32 is disposed at the position of the rear focal point of the incident side lens 31 and at the position of the front focal point of the output side lens 33.
 かかる構成の下、投影装置14においては、プリント基板1上に投影される縞パターンが投影範囲(本実施形態では撮像範囲Wと同一範囲)全域において合焦するように、パターン生成部18及び投影レンズユニット19の傾きが調整されている。 Under this configuration, in the projection device 14, the pattern generation unit 18 and the projection are arranged such that the fringe pattern projected on the printed circuit board 1 is in focus over the entire projection range (the same range as the imaging range W in this embodiment). The tilt of the lens unit 19 is adjusted.
 具体的には、コンベア13上のプリント基板1に対して、格子板21の出射面(格子面)21b及び投影レンズユニット19の主面がシャインプルーフの条件を満たすように設定されている。 Specifically, with respect to the printed circuit board 1 on the conveyor 13, the exit surface (grid surface) 21b of the grid plate 21 and the main surface of the projection lens unit 19 are set to satisfy the condition of the shine proof.
 ここで、シャインプルーフの原理について図3を参照して説明する。シャインプルーフの原理とは、格子板21の出射面21bを含む平面S1と、投影レンズユニット19の主面を含む平面S2とが同一直線C(図3上の点Cにおける紙面に垂直な直線)上で交わる場合、縞パターンが合焦状態で投影される物体面S3も同一直線C上で交わるというものである。従って、このようなシャインプルーフの原理に基づく条件は、格子板21の出射面21bを含む平面S1と、投影レンズユニット19の主面を含む平面S2と、プリント基板1の表面(投影面)を含む平面S3が同一直線C上で互いに交わることである。 Here, the principle of shine proof will be described with reference to FIG. The principle of shine proofing is that the plane S1 including the exit surface 21b of the lattice plate 21 and the plane S2 including the main surface of the projection lens unit 19 are the same straight line C (a straight line perpendicular to the paper at point C in FIG. 3) In the case of intersection at the top, the object surface S3 on which the fringe pattern is projected in the in-focus state also intersects on the same straight line C. Therefore, the conditions based on the principle of such a shine proof are the plane S1 including the exit surface 21b of the grating plate 21, the plane S2 including the main surface of the projection lens unit 19, and the surface (projection plane) of the printed board 1 The included planes S3 cross each other on the same straight line C.
 上記構成の下、光源17から出射された光は、パターン生成部18(入射角調整板22の入射面22a)に対し入射角0°で垂直に入射する。そして、入射角調整板22内を光軸J1に沿って直進する。入射角調整板22内を透過した光は、入射角調整板22の出射面22bから出射されると共に、入射角βで格子板21の入射面21aに対し斜めに入射する。そして、格子板21内を光軸J1に沿って直進する。 Under the above configuration, the light emitted from the light source 17 is vertically incident on the pattern generation unit 18 (incident surface 22 a of the incident angle adjustment plate 22) at an incident angle of 0 °. Then, it travels straight in the incident angle adjustment plate 22 along the optical axis J1. The light transmitted through the inside of the incident angle adjustment plate 22 is emitted from the exit surface 22 b of the incident angle adjustment plate 22 and is obliquely incident on the incident surface 21 a of the grating plate 21 at the incident angle β. Then, it goes straight along the optical axis J1 in the lattice plate 21.
 格子板21内を透過した光は、格子板21の出射面(格子面)21bから縞パターンとして出射されると共に、入射角βで屈折角調整板23の入射面23aに対し斜めに入射する。そして、屈折角調整板23内を光軸J1に沿って直進する。 The light transmitted through the inside of the grating plate 21 is emitted as a stripe pattern from the exit surface (grating surface) 21 b of the grating plate 21 and obliquely enters the incident surface 23 a of the refraction angle adjusting plate 23 at the incident angle β. Then, it travels straight along the optical axis J1 in the refraction angle adjustment plate 23.
 屈折角調整板23内を透過した光(縞パターン)は、屈折角調整板23の出射面23bから屈折角0°で垂直に出射する。そして、投影レンズユニット19を介してプリント基板1上に投影される。 The light (stripe pattern) transmitted through the inside of the refraction angle adjustment plate 23 is vertically emitted from the emission surface 23 b of the refraction angle adjustment plate 23 at a refraction angle of 0 °. Then, it is projected onto the printed circuit board 1 through the projection lens unit 19.
 これにより、本実施形態では、図6に示すように、搬送されるプリント基板1上に、搬送方向(X方向)と直交するY方向に平行な縞パターンが投影されることとなる。 Thus, in the present embodiment, as shown in FIG. 6, a stripe pattern parallel to the Y direction orthogonal to the transport direction (X direction) is projected onto the printed circuit board 1 to be transported.
 尚、通常、格子25を通過する光は完全な平行光でなく、透光部25a及び遮光部25bの境界部における回折作用等に起因して、縞パターンの「明部」及び「暗部」の境界部に中間階調域が生じることとなる。そのため、プリント基板1に対し投影される縞パターンは、プリント基板1の搬送方向(X方向)に沿って正弦波状の光強度分布を有するパターン光となる。但し、図6では、簡略化のため、中間階調域を省略し、明暗2値の縞模様で縞パターンを図示している。 In general, the light passing through the grating 25 is not a perfect parallel light, but the “light part” and “dark part” of the stripe pattern due to the diffraction action at the boundary between the light transmitting part 25 a and the light shielding part 25 b. An intermediate tone range will occur at the boundary. Therefore, the stripe pattern projected onto the printed circuit board 1 is pattern light having a light intensity distribution of a sine wave along the transport direction (X direction) of the printed circuit board 1. However, in FIG. 6, the middle gradation region is omitted for simplification, and the stripe pattern is illustrated by a stripe pattern of light and dark binary.
 カメラ15は、複数の受光素子が二次元配列された受光面を有する撮像素子15aと、該撮像素子15aに対し、縞パターンが投影されたプリント基板1の撮像範囲Wの像を結像させる撮像光学系としての撮像レンズユニット15bとを有し、その光軸J2がコンベア13の上面に垂直な鉛直方向(Z方向)に沿って設定されている。本実施形態では、撮像素子15aとしてCCDエリアセンサを採用している。 The camera 15 picks up an image of the image pickup area W of the printed circuit board 1 on which the stripe pattern is projected on the image pickup element 15a having a light receiving surface in which a plurality of light receiving elements are two-dimensionally arrayed. The imaging lens unit 15 b as an optical system is provided, and the optical axis J 2 thereof is set along the vertical direction (Z direction) perpendicular to the upper surface of the conveyor 13. In the present embodiment, a CCD area sensor is employed as the imaging element 15a.
 撮像レンズユニット15bは、物体側レンズ、開口絞り、像側レンズ等を一体に備えた両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。但し、図1においては、簡素化のため、撮像レンズユニット15bを1つのレンズとして図示している。 The imaging lens unit 15b is configured by a both-side telecentric lens (both-side telecentric optical system) integrally including an object-side lens, an aperture stop, an image-side lens, and the like. However, in FIG. 1, the imaging lens unit 15b is illustrated as a single lens for the sake of simplicity.
 ここで、物体側レンズは、プリント基板1からの反射光を集光するものであり、物体側で光軸J2と主光線とが平行となるテレセントリック構造を有する。また、像側レンズは、物体側レンズから開口絞りを透過した光を撮像素子15aの受光面に結像させるためのものであり、像側で光軸J2と主光線とが平行となるテレセントリック構造を有する。 Here, the object side lens is for condensing the reflected light from the printed circuit board 1 and has a telecentric structure in which the optical axis J2 and the chief ray are parallel on the object side. The image side lens is for focusing the light transmitted through the aperture stop from the object side lens on the light receiving surface of the image pickup device 15a, and has a telecentric structure in which the optical axis J2 and the chief ray are parallel on the image side. Have.
 カメラ15によって撮像され取得された画像データは、該カメラ15内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置16に入力され、後述する画像データ記憶装置44に記憶される。そして、制御装置16は、該画像データを基に、後述するような画像処理や演算処理等を実施する。制御装置16が本実施形態における画像処理手段を構成する。 The image data captured and acquired by the camera 15 is converted into a digital signal in the camera 15 and then input to the control device 16 in the form of a digital signal and stored in an image data storage device 44 described later. Then, based on the image data, the control device 16 performs image processing, arithmetic processing, and the like as described later. The control device 16 constitutes an image processing means in the present embodiment.
 次に制御装置16の電気的構成について図5を参照して説明する。図5は、基板検査装置10の電気的構成を示すブロック図である。 Next, the electrical configuration of the control device 16 will be described with reference to FIG. FIG. 5 is a block diagram showing the electrical configuration of the substrate inspection apparatus 10. As shown in FIG.
 図5に示すように、制御装置16は、基板検査装置10全体の制御を司るCPU及び入出力インターフェース41、キーボードやマウス、タッチパネル等で構成される「入力手段」としての入力装置42、CRTや液晶などの表示画面を有する「表示手段」としての表示装置43、カメラ15により撮像され取得された画像データなどを記憶するための画像データ記憶装置44、該画像データに基づいて得られた三次元計測結果など、各種演算結果を記憶するための演算結果記憶装置45、設計データなどの各種情報を予め記憶しておくための設定データ記憶装置46などを備えている。尚、これら各装置42~46は、CPU及び入出力インターフェース41に対し電気的に接続されている。 As shown in FIG. 5, the control device 16 includes a CPU and an input / output interface 41 that controls the entire substrate inspection apparatus 10, an input device 42 as an “input unit” configured of a keyboard, a mouse, a touch panel, etc. A display device 43 as "display means" having a display screen such as liquid crystal, an image data storage device 44 for storing image data etc. captured and acquired by the camera 15, three-dimensional obtained based on the image data An operation result storage device 45 for storing various operation results such as measurement results, and a setting data storage device 46 for previously storing various information such as design data are provided. The devices 42 to 46 are electrically connected to the CPU and the input / output interface 41.
 次に、基板検査装置10にて実行される三次元計測処理等の各種処理について詳しく説明する。 Next, various processing such as three-dimensional measurement processing executed by the substrate inspection apparatus 10 will be described in detail.
 制御装置16は、コンベア13を駆動制御してプリント基板1を定速で連続搬送する。そして、制御装置16は、コンベア13に設けられた図示しないエンコーダからの信号に基づいて、投影装置14及びカメラ15を駆動制御する。 The control device 16 drives and controls the conveyor 13 to continuously transport the printed circuit board 1 at a constant speed. Then, the control device 16 drives and controls the projection device 14 and the camera 15 based on a signal from an encoder (not shown) provided on the conveyor 13.
 より詳しくは、プリント基板1が所定量Δx搬送される毎、つまり所定時間Δtが経過する毎に、縞パターンの投影されたプリント基板1をカメラ15により撮像する。所定時間Δtが経過する毎に、カメラ15により撮像され取得された画像データは、随時、制御装置16へ転送され、画像データ記憶装置44に記憶される。 More specifically, every time the printed board 1 is transported by a predetermined amount Δx, that is, each time a predetermined time Δt elapses, the printed board 1 on which the stripe pattern is projected is imaged by the camera 15. Every time the predetermined time Δt elapses, the image data captured and acquired by the camera 15 is transferred to the control device 16 as needed, and stored in the image data storage device 44.
 本実施形態では、所定量Δxが、投影装置14から投影される縞パターンの位相90°分に相当する距離に設定されている。また、プリント基板1の搬送方向(X方向)におけるカメラ15の撮像範囲Wが縞パターンの1周期(位相360°)分に相当する長さに設定されている。勿論、所定量Δxやカメラ15の撮像範囲Wは、これに限定されるものではなく、これより長くてもよいし、短くてもよい。 In the present embodiment, the predetermined amount Δx is set to a distance corresponding to a phase of 90 ° of the fringe pattern projected from the projection device 14. Further, the imaging range W of the camera 15 in the transport direction (X direction) of the printed circuit board 1 is set to a length corresponding to one cycle (phase 360 °) of the stripe pattern. Of course, the predetermined amount Δx and the imaging range W of the camera 15 are not limited to this, and may be longer or shorter.
 ここで、投影装置14から投影される縞パターンと、カメラ15により撮像されるプリント基板1との関係について具体例を挙げ詳しく説明する。図7は、時間経過と共に相対移動するプリント基板1上の座標位置とカメラ15の撮像範囲Wとの関係を説明するための模式図である。図8は、時間経過と共に相対移動するプリント基板1上の座標位置と縞パターンの位相との関係を説明するための表である。 Here, the relationship between the fringe pattern projected from the projection device 14 and the printed circuit board 1 imaged by the camera 15 will be described in detail by giving a specific example. FIG. 7 is a schematic view for explaining the relationship between the coordinate position on the printed circuit board 1 which moves relative to the passage of time and the imaging range W of the camera 15. As shown in FIG. FIG. 8 is a table for explaining the relationship between the coordinate position on the printed circuit board 1 which moves relative to the passage of time and the phase of the fringe pattern.
 尚、本実施形態においては、プリント基板1上における搬送方向(X方向)と直交する方向(Y方向)に関して、プリント基板1のY方向全範囲がカメラ15の撮像範囲W内に含まれる。従って、X方向の同一座標位置におけるY方向の各座標位置については縞パターンの位相に違いはない。また、カメラ15と投影装置14の位置関係は固定されているため、投影装置14から投影される縞パターンの位相は、撮像素子15aの受光面における各座標位置に対し固定されている。 In the present embodiment, the entire range in the Y direction of the printed circuit board 1 is included in the imaging range W of the camera 15 with respect to the direction (Y direction) orthogonal to the transport direction (X direction) on the printed circuit board 1. Therefore, there is no difference in the phase of the fringe pattern at each coordinate position in the Y direction at the same coordinate position in the X direction. Further, since the positional relationship between the camera 15 and the projection device 14 is fixed, the phase of the fringe pattern projected from the projection device 14 is fixed with respect to each coordinate position on the light receiving surface of the imaging device 15a.
 図7,8に示すように、所定の撮像タイミングt1において、カメラ15の撮像範囲W内には、プリント基板1のうち、その搬送方向(X方向)における座標P2~P17に相当する範囲が位置する。つまり、撮像タイミングt1においては、縞パターンが投影されたプリント基板1上の座標P2~P17の範囲の画像データが取得される。 As shown in FIGS. 7 and 8, at a predetermined imaging timing t1, in the imaging range W of the camera 15, the range corresponding to the coordinates P2 to P17 in the transport direction (X direction) of the printed board 1 is located. Do. That is, at the imaging timing t1, image data in the range of the coordinates P2 to P17 on the printed circuit board 1 on which the fringe pattern is projected is acquired.
 具体的に、撮像タイミングt1においては、プリント基板1に投影された縞パターンの位相が座標P17で「0°」、座標P16で「22.5°」、座標P15で「45°」、・・・、座標P1で「360°(0°)」といったように、縞パターンの位相が各座標P2~P17ごとに「22.5°」ずつずれた画像データが取得される。但し、図7,8で示される縞パターンの位相は、高さ位置「0」かつ平面をなす基準面(例えばプリント基板1の背景領域)に投影された場合を想定したものである。 Specifically, at the imaging timing t1, the phase of the fringe pattern projected onto the printed circuit board 1 is “0 °” at coordinate P17, “22.5 °” at coordinate P16, “45 °” at coordinate P15,. Image data is acquired in which the phase of the fringe pattern is shifted by 22.5 ° for each of the coordinates P2 to P17, such as "360 ° (0 °)" at the coordinate P1. However, the phase of the fringe pattern shown in FIGS. 7 and 8 is assumed to be projected on a reference position (for example, a background area of the printed circuit board 1) having a height position “0” and a plane.
 撮像タイミングt1より所定時間Δtが経過した撮像タイミングt2において、カメラ15の撮像範囲W内には、プリント基板1上の座標P6~P21に相当する範囲が位置し、該範囲の画像データが取得される。 At an imaging timing t2 at which a predetermined time Δt has elapsed from the imaging timing t1, a range corresponding to the coordinates P6 to P21 on the printed circuit board 1 is located within the imaging range W of the camera 15, and image data of the range is acquired. Ru.
 撮像タイミングt2より所定時間Δtが経過した撮像タイミングt3において、カメラ15の撮像範囲W内には、プリント基板1上の座標P10~P25に相当する範囲が位置し、該範囲の画像データが取得される。 At an imaging timing t3 at which a predetermined time Δt has elapsed from an imaging timing t2, a range corresponding to coordinates P10 to P25 on the printed circuit board 1 is located within the imaging range W of the camera 15, and image data of the range is acquired Ru.
 撮像タイミングt3より所定時間Δtが経過した撮像タイミングt4において、カメラ15の撮像範囲W内には、プリント基板1上の座標P14~P29に相当する範囲が位置し、該範囲の画像データが取得される。 At an imaging timing t4 at which a predetermined time Δt has elapsed from an imaging timing t3, a range corresponding to coordinates P14 to P29 on the printed circuit board 1 is located within the imaging range W of the camera 15, and image data of the range is acquired. Ru.
 以後、所定時間Δtが経過する毎に、上記撮像タイミングt1~t4の処理と同様の処理が繰り返し行われる。 Thereafter, every time the predetermined time Δt elapses, the same process as the process of the imaging timings t1 to t4 is repeatedly performed.
 このようにして、プリント基板1上の所定の座標位置(例えば座標P17)に係る全てのデータが取得されると、上記各画像データの座標位置を位置合せする(各画像データの相互間の座標系を合せる)位置合せ処理を実行する(図9参照)。図9は、撮像タイミングt1~t4において取得した複数の画像データの座標位置を位置合せした状態を模式的に示した表である。 In this manner, when all data related to a predetermined coordinate position (for example, coordinate P17) on the printed circuit board 1 is acquired, the coordinate positions of the respective image data are aligned (coordinates between the respective image data) System alignment is performed (see FIG. 9). FIG. 9 is a table schematically showing a state in which coordinate positions of a plurality of image data acquired at imaging timings t1 to t4 are aligned.
 続いて、複数の画像データの同一座標位置に係るデータを各座標位置ごとにまとめた上で演算結果記憶装置45に記憶する(図10参照)。図10は、プリント基板1上の各座標位置に係るデータを整理した状態を模式的に示した表である。但し、図10では、プリント基板1上の座標P17に係る部分のみを例示している。 Subsequently, data relating to the same coordinate position of a plurality of image data is put together for each coordinate position and stored in the calculation result storage device 45 (see FIG. 10). FIG. 10 is a table schematically showing a state in which data relating to each coordinate position on the printed circuit board 1 is organized. However, in FIG. 10, only the part related to the coordinate P17 on the printed circuit board 1 is illustrated.
 これにより、本実施形態では、プリント基板1上の各座標位置につき、縞パターンの位相が90°ずつずれた4通り(θ+0、θ+90°、θ+180°、θ+270°)の輝度値が取得されることとなる。 Thus, in the present embodiment, at each coordinate position on the printed circuit board 1, four different (θ + 0, θ + 90 °, θ + 180 °, θ + 270 °) luminance values are obtained in which the phase of the stripe pattern is shifted by 90 °. It becomes.
 次に、制御装置16は、上記のように取得した4通りの画像データ(各座標の4通りの輝度値)を基に位相シフト法により各座標毎の高さ計測を行う。制御装置16は、該処理を各座標毎に繰り返すことで、プリント基板1全体の各座標における高さデータを算出し、これをプリント基板1の三次元計測結果として演算結果記憶装置45に記憶する。 Next, the control device 16 measures the height of each coordinate by the phase shift method based on the four types of image data (four luminance values of each coordinate) acquired as described above. The control device 16 calculates height data at each coordinate of the entire printed circuit board 1 by repeating the process for each coordinate, and stores this in the calculation result storage unit 45 as a three-dimensional measurement result of the printed circuit board 1. .
 ここで、公知の位相シフト法について説明する。上記4通りの画像データにおけるプリント基板1上の所定座標位置の光強度(輝度)I0,I1,I2,I3は、それぞれ下記式(1)、(2)、(3)、(4)により表すことができる。 Here, a known phase shift method will be described. The light intensities (brightness) I0, I1, I2 and I3 at predetermined coordinate positions on the printed board 1 in the above four types of image data are respectively expressed by the following formulas (1), (2), (3) and (4) be able to.
 I0=αsinθ+β               ・・・(1)
 I1=αsin(θ+90°)+β =αcosθ+β  ・・・(2)
 I2=αsin(θ+180°)+β=-αsinθ+β ・・・(3)
 I3=αsin(θ+270°)+β=-αcosθ+β ・・・(4)
 但し、α:ゲイン、β:オフセット、θ:縞パターンの位相。
I0 = α sin θ + β (1)
I1 = α sin (θ + 90 °) + β = α cos θ + β (2)
I2 = α sin (θ + 180 °) + β = −α sin θ + β (3)
I3 = α sin (θ + 270 °) + β = −α cos θ + β (4)
However, α: gain, β: offset, θ: phase of fringe pattern.
 そして、上記式(1)、(2)、(3)、(4)を位相θについて解くと、下記式(5)を導き出すことができる。 And if the said Formula (1), (2), (3), (4) is solved about phase (theta), a following formula (5) can be derived.
 θ=tan-1{(I0-I2)/(I1-I3)} ・・(5)
 このように算出された位相θを用いることにより、三角測量の原理に基づき、プリント基板1上の各座標(X,Y)における高さ(Z)を求めることができる。
θ = tan -1 {(I0-I2) / (I1-I3)} · · · (5)
By using the phase θ thus calculated, the height (Z) at each coordinate (X, Y) on the printed circuit board 1 can be obtained based on the principle of triangulation.
 制御装置16は、上記のようにして得られた三次元計測結果(各座標における高さデータ)を基にクリーム半田4の印刷状態の良否判定を行う。具体的に、制御装置16は、高さ基準面より所定長以上、高くなった半田印刷領域を検出し、この領域内での各部位の高さを積分することにより、印刷されたクリーム半田4の量を算出する。 The control device 16 determines the quality of the printed state of the cream solder 4 based on the three-dimensional measurement result (height data at each coordinate) obtained as described above. Specifically, the control device 16 detects a solder print area that is higher than a height reference surface by a predetermined length or more, and integrates the height of each portion in this area to print the printed cream solder 4 Calculate the amount of
 続いて、制御装置16は、このようにして求めたクリーム半田4の位置、面積、高さ又は量等のデータを、予め設定データ記憶装置46に記憶されている基準データ(ガーバデータなど)と比較判定し、この比較結果が許容範囲内にあるか否かによって、クリーム半田4の印刷状態の良否を判定する。 Subsequently, the control device 16 sets the data such as the position, area, height or amount of the cream solder 4 thus obtained as reference data (gerber data etc.) stored in advance in the setting data storage device 46. The comparison determination is made, and the quality of the printed state of the cream solder 4 is determined depending on whether the comparison result is within the allowable range.
 以上詳述したように、本実施形態によれば、連続搬送されるプリント基板1に対し縞パターンが投影され、該縞パターンの投影されたプリント基板1が所定量(縞パターンの位相90°分に相当する距離)搬送される毎にカメラ15により撮像される。これにより、投影された縞パターンの位相が所定量ずつ(位相90°ずつ)異なる4通りの画像データが取得される。そして、これらの画像データを基に位相シフト法によるプリント基板1の三次元計測が行われる。結果として、プリント基板1を停止させることなく連続移動させつつ三次元計測を行うことができるため、計測効率の向上、ひいては生産効率の向上等を図ることができる。 As described above in detail, according to the present embodiment, a stripe pattern is projected onto the print substrate 1 which is continuously transported, and the printed substrate 1 onto which the stripe pattern is projected is a predetermined amount (90 degrees of the stripe pattern). Every time it is transported). As a result, four types of image data are acquired in which the phases of the projected fringe patterns differ by a predetermined amount (90 ° each). And three-dimensional measurement of the printed circuit board 1 by the phase shift method is performed based on these image data. As a result, it is possible to perform three-dimensional measurement while continuously moving the printed circuit board 1 without stopping the printed circuit board 1. Therefore, it is possible to improve the measurement efficiency, and hence the production efficiency.
 また、本実施形態に係る投影装置14は、プリント基板1に対して、格子板21の出射面(格子面)21b及び投影レンズユニット19の主面がシャインプルーフの条件を満たすように設定されている。つまり、格子板21の出射面21bを含む平面S1と、投影レンズユニット19の主面を含む平面S2と、プリント基板1の表面(投影面)を含む平面S3が同一直線C上で互いに交わるように設定されている。これにより、プリント基板1上の投影範囲全域に対し縞パターンを合焦状態で投影することができる。結果として、三次元計測の計測精度の向上を図ることができる。 Further, the projection device 14 according to the present embodiment is set such that the exit surface (grating surface) 21 b of the grid plate 21 and the main surface of the projection lens unit 19 satisfy the condition of shine proof with respect to the printed board 1. There is. That is, the plane S1 including the emission surface 21b of the lattice plate 21, the plane S2 including the main surface of the projection lens unit 19, and the plane S3 including the surface (projection plane) of the printed board 1 intersect on the same straight line C It is set to. As a result, the fringe pattern can be projected in focus on the entire projection range on the printed circuit board 1. As a result, the measurement accuracy of three-dimensional measurement can be improved.
 さらに、本実施形態に係るパターン生成部18は、所定の屈折率を有する光学素材からなり、入射する光を縞パターンに変換する格子25が設けられてなる格子板21と、該格子板21と同一屈折率を有する同一素材からなり、入射する光の入射角が0°となるように、格子板21の入射面21a側に配設された入射角調整板22と、格子板21と同一屈折率を有する同一素材からなり、出射する光の屈折角が0°となるように、格子板21の出射面21b側に配設された屈折角調整板23とにより構成されている。 Furthermore, the pattern generation unit 18 according to the present embodiment is made of an optical material having a predetermined refractive index, and is provided with a grating plate 21 provided with a grating 25 for converting incident light into a fringe pattern; The incident angle adjusting plate 22 disposed on the incident surface 21a side of the grating plate 21 and the same refraction as the grating plate 21 are made of the same material having the same refractive index and the incident angle of incident light is 0 °. The refracting angle adjusting plate 23 is disposed on the side of the exit surface 21b of the grating plate 21 so that the refracting angle of the emitted light is 0 °.
 これにより、パターン生成部18を透過する光の分散等を抑制し、縞パターンのぼけ等を抑制することができる。結果として、位相シフト法を利用した三次元計測の計測精度の向上等を図ることができる。 As a result, it is possible to suppress the dispersion or the like of light transmitted through the pattern generation unit 18 and to suppress the blurring or the like of the fringe pattern. As a result, it is possible to improve the measurement accuracy of three-dimensional measurement using the phase shift method.
 加えて、本実施形態によれば、例えばガラス板に格子25が印刷された既存の格子板21など、安価な透光部材を用いてパターン生成部18を製造することができる。このため、高価なDMD等の光学制御素子をパターン生成部として用いた場合に比べ、投影装置14の製造コストを抑制することができる。 In addition, according to the present embodiment, the pattern generation unit 18 can be manufactured using an inexpensive light transmitting member such as the existing grid plate 21 in which the grid 25 is printed on a glass plate, for example. Therefore, the manufacturing cost of the projection device 14 can be suppressed as compared with the case where an expensive optical control element such as a DMD is used as the pattern generation unit.
 また、DMD等の光学制御素子を用いた場合のように、画素の制御を行う必要もなく、制御の簡素化を図ることができると共に、生成されるパターン光が微視的に不連続となることもないため、より理想的な縞パターンをプリント基板1に対し投影することが可能となる。 Further, as in the case of using an optical control element such as DMD, there is no need to control the pixel, and the control can be simplified, and the pattern light generated becomes microscopically discontinuous. Since it does not happen, it is possible to project a more ideal fringe pattern on the printed circuit board 1.
 さらに、DMD等の光学制御素子を用いた場合のように、生成される縞パターンが光学制御素子の画素ピッチに依存することもなく、プリント基板1により適した縞パターンを投影することができる。 Furthermore, as in the case of using an optical control element such as DMD, the generated fringe pattern does not depend on the pixel pitch of the optical control element, and a fringe pattern more suitable for the printed circuit board 1 can be projected.
 尚、プリント基板1は、コンベア13により搬送される際に高さ位置が微妙に変化してしまうおそれがある。これに対し、本実施形態では、投影レンズユニット19が両側テレセントリックレンズ(両側テレセントリック光学系)により構成されているため、プリント基板1の高さ変化に影響を受けることなく、縞パターンを精度良く投影することができる。 When the printed circuit board 1 is conveyed by the conveyor 13, the height position may be slightly changed. On the other hand, in the present embodiment, since the projection lens unit 19 is configured by the both-side telecentric lens (both-side telecentric optical system), the fringe pattern is accurately projected without being affected by the height change of the printed circuit board 1 can do.
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。 In addition, it is not limited to the description content of the said embodiment, For example, you may implement as follows. Of course, other applications and modifications not illustrated below are naturally possible.
 (a)上記実施形態では、本願発明である投影装置及び三次元計測装置を、プリント基板1に印刷されたクリーム半田4の印刷状態を検査する基板検査装置10に具体化したが、これに限らず、例えばウエハ基板に形成された半田バンプや、プリント基板上に塗布された接着剤、プリント基板上に実装された電子部品など、他の対象を検査する装置に具体化してもよい。勿論、基板とは異なる対象物を被計測物として三次元計測を行う構成としてもよい。 (A) In the above embodiment, the projection device and the three-dimensional measurement device according to the present invention are embodied in the substrate inspection device 10 for inspecting the printing state of the cream solder 4 printed on the printed substrate 1. For example, the present invention may be embodied in an apparatus for inspecting other objects such as solder bumps formed on a wafer substrate, an adhesive applied on a print substrate, electronic components mounted on a print substrate, and the like. Of course, three-dimensional measurement may be performed with an object different from the substrate as an object to be measured.
 (b)上記実施形態では、位相シフト法による三次元計測を行う上で、縞パターンの位相が90°ずつ異なる4通りの画像データを取得する構成となっているが、位相シフト回数及び位相シフト量は、これらに限定されるものではない。位相シフト法により三次元計測可能な他の位相シフト回数及び位相シフト量を採用してもよい。例えば位相が120°又は90°ずつ異なる3通りの画像データを取得して三次元計測を行う構成としてもよい。 (B) In the above embodiment, when performing three-dimensional measurement by the phase shift method, four types of image data in which the phase of the fringe pattern differs by 90 ° are acquired, but the number of phase shifts and the phase shift The amount is not limited to these. Another phase shift number and phase shift amount that can be three-dimensionally measured by the phase shift method may be adopted. For example, three-dimensional measurement may be performed by acquiring three kinds of image data whose phases are different by 120 ° or 90 °.
 (c)上記実施形態では、位相シフト法による三次元計測を行う上で、縞パターンとして、正弦波状の光強度分布を有するパターン光を投影する構成となっているが、これに限らず、縞パターンとして、例えば矩形波状や三角波状など非正弦波状の光強度分布を有するパターン光を投影する構成としてもよい。 (C) In the above embodiment, when performing three-dimensional measurement by the phase shift method, pattern light having a sinusoidal light intensity distribution is projected as a stripe pattern, but the present invention is not limited to this. For example, pattern light having a non-sinusoidal light intensity distribution such as a rectangular wave shape or a triangular wave shape may be projected as the pattern.
 但し、非正弦波状の光強度分布を有するパターン光を投影し三次元計測を行うよりも、正弦波状の光強度分布を有するパターン光を投影し三次元計測を行う方が計測精度が良い。そのため、計測精度の向上を図る点においては、正弦波状の光強度分布を有するパターン光を投影し三次元計測を行う構成とすることが好ましい。 However, it is better to project pattern light having a sinusoidal light intensity distribution to perform three-dimensional measurement than to project pattern light having a non-sinusoidal light intensity distribution to perform three-dimensional measurement. Therefore, in order to improve the measurement accuracy, it is preferable to project three-dimensional measurement by projecting pattern light having a sinusoidal light intensity distribution.
 (d)上記実施形態では、プリント基板1に対し縞パターンを投影し、位相シフト法により三次元計測を行う構成となっているが、これに限らず、例えば空間コード法やモアレ法など、他のパターン投影法を利用して三次元計測を行う構成としてもよい。但し、クリーム半田4など小さな計測対象を計測する場合には、位相シフト法など、計測精度の高い計測方法を採用することがより好ましい。 (D) In the above embodiment, the fringe pattern is projected onto the printed circuit board 1 and three-dimensional measurement is performed by the phase shift method. However, the present invention is not limited to this. The three-dimensional measurement may be performed using the pattern projection method of However, when measuring a small measurement object such as the cream solder 4, it is more preferable to adopt a measurement method with high measurement accuracy such as a phase shift method.
 (e)上記実施形態では、コンベア13によりプリント基板1を連続移動することにより、投影される縞パターンとプリント基板1との位置関係を相対移動させる構成となっているが、縞パターンとプリント基板1とを相対移動させる構成(変位手段)は、上記実施形態に限定されるものではない。 (E) In the above embodiment, the positional relationship between the stripe pattern to be projected and the printed substrate 1 is relatively moved by continuously moving the printed substrate 1 by the conveyor 13. However, the stripe pattern and the printed substrate The configuration (displacement means) to move 1 relative to each other is not limited to the above embodiment.
 例えば投影装置14及びカメラ15からなる計測ヘッドを移動可能に構成することにより、所定位置に固定されたプリント基板1と、投影される縞パターンとの位置関係を相対移動させる構成としてもよい。 For example, by configuring the measuring head including the projection device 14 and the camera 15 to be movable, the positional relationship between the printed circuit board 1 fixed at the predetermined position and the stripe pattern to be projected may be relatively moved.
 また、投影装置14内においてパターン生成部18を変位可能に設けることにより、投影装置14及びカメラ15からなる計測ヘッドとプリント基板1とを相対移動させることなく停止させた状態で、所定位置に固定されたプリント基板1と、投影される縞パターンとの位置関係を相対移動させる構成としてもよい。 Further, by providing the pattern generation unit 18 in the projection device 14 so as to be displaceable, the measurement head comprising the projection device 14 and the camera 15 and the printed circuit board 1 are fixed at a predetermined position in a stopped state without relative movement. The positional relationship between the printed circuit board 1 and the stripe pattern to be projected may be relatively moved.
 (f)上記実施形態では、光源17が白色光を出射するハロゲンランプにより構成されている。これに限らず、白色LEDなど他の光源を用いる構成としてもよい。 (F) In the above embodiment, the light source 17 is configured of a halogen lamp that emits white light. Not limited to this, another light source such as a white LED may be used.
 (g)パターン生成部18の構成は上記実施形態に限定されるものではない。例えば上記実施形態に係る格子板21は、その出射面21bに格子25が設けられた構成となっているが、これに限らず、例えば入射面21aに格子25が設けられた構成としてもよい。 (G) The configuration of the pattern generation unit 18 is not limited to the above embodiment. For example, although the grating plate 21 according to the above embodiment has the configuration in which the grating 25 is provided on the emission surface 21b, the present invention is not limited thereto. For example, the grating 25 may be provided on the incidence surface 21a.
 また、上記実施形態では、格子25が印刷(蒸着)により設けられた構成となっているが、これに限らず、例えばレーザー加工など他の方法により設けられた構成としてもよい。 In the above embodiment, the grid 25 is provided by printing (vapor deposition). However, the present invention is not limited to this. For example, the grid 25 may be provided by another method such as laser processing.
 また、上記実施形態に係る格子25は、透光部25aと遮光部25bとが交互に並ぶ2値的な構成となっているが、これに限らず、例えば3段階以上に透過率が異なる多値的な格子パターンが設けられた構成としてもよい。 Moreover, although the grating | lattice 25 which concerns on the said embodiment becomes a binary structure which the light transmission part 25a and the light-shielding part 25b are located in a line by turns, it does not restrict to this, for example, many transmissivitys differ in three or more steps. It may be configured to be provided with a value grid pattern.
 また、上記実施形態では、格子板21、入射角調整板22及び屈折角調整板23の三者が同一の屈折率を有する同一の光学素材により形成されているが、これに限らず、格子板21、入射角調整板22及び屈折角調整板23のうちの少なくとも1つが、同一の屈折率を有する異なる光学素材により形成された構成としてもよい。 In the above embodiment, although the grating plate 21, the incident angle adjustment plate 22 and the refraction angle adjustment plate 23 are formed of the same optical material having the same refractive index, the present invention is not limited to this. 21, at least one of the incident angle adjusting plate 22 and the refractive angle adjusting plate 23 may be formed of different optical materials having the same refractive index.
 例えば所定の格子が設けられてなる第1透光部材を薄肉のフィルム部材等により形成した構成としてもよい。かかる第1透光部材は入射角調整板22と屈折角調整板23とにより挟持された構造となるため、第1透光部材の撓みを抑制することができる。 For example, the first light transmitting member provided with a predetermined grid may be formed of a thin film member or the like. Since the first light transmitting member is configured to be sandwiched by the incident angle adjusting plate 22 and the refraction angle adjusting plate 23, it is possible to suppress the bending of the first light transmitting member.
 (h)投影光学系は、上記実施形態の投影レンズユニット19に限定されるものではない。例えば上記実施形態では、投影レンズユニット19が両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。これに限らず、投影レンズユニット19として、物体側テレセントリックレンズ(物体側テレセントリック光学系)を採用してもよい。また、テレセントリック構造を有しない構成としてもよい。 (H) The projection optical system is not limited to the projection lens unit 19 of the above embodiment. For example, in the above embodiment, the projection lens unit 19 is configured by a both-side telecentric lens (both-side telecentric optical system). Not limited to this, an object-side telecentric lens (object-side telecentric optical system) may be adopted as the projection lens unit 19. Moreover, it is good also as a structure which does not have a telecentric structure.
 (i)撮像手段は、上記実施形態のカメラ15に限定されるものではない。例えば上記実施形態では、撮像素子15aとしてCCDエリアセンサを採用しているが、これに限らず、例えばCMOSエリアセンサ等を採用してもよい。 (I) The imaging means is not limited to the camera 15 of the above embodiment. For example, in the above embodiment, a CCD area sensor is adopted as the image pickup device 15a, but not limited to this, for example, a CMOS area sensor or the like may be adopted.
 また、撮像レンズユニット15bが両側テレセントリックレンズ(両側テレセントリック光学系)により構成されている。これに限らず、撮像レンズユニット15bとして、物体側テレセントリックレンズ(物体側テレセントリック光学系)を採用してもよい。また、テレセントリック構造を有しない構成としてもよい。 Further, the imaging lens unit 15 b is configured by a both-side telecentric lens (both-side telecentric optical system). Not limited to this, an object-side telecentric lens (object-side telecentric optical system) may be adopted as the imaging lens unit 15b. Moreover, it is good also as a structure which does not have a telecentric structure.
 (j)上記実施形態では、特に言及していないが、上記シャインプルーフの条件は、パターン生成部18を透過する光の進行方向(光軸J1方向)における格子板21の出射面21b(格子25)から屈折角調整板23の出射面23bまでの光路長の違いを加味したものであることが好ましい。 (J) Although not particularly mentioned in the above embodiment, the condition of the above-mentioned shine proof is the exit surface 21b (grating 25) of the grating plate 21 in the traveling direction (the direction of the optical axis J1) of the light passing through the pattern generating unit 18. And the exit surface 23b of the refraction angle adjustment plate 23 are preferably added.
 パターン生成部18を透過する光の進行方向における格子板21の出射面21bから屈折角調整板23の出射面23bまでの光路長は、屈折角調整板23の出射面23bに対する格子板21の出射面21bの傾斜方向における出射面21b上のどの位置を光が通過するかによって異なる。 The optical path length from the exit surface 21 b of the grating plate 21 to the exit surface 23 b of the refraction angle adjustment plate 23 in the traveling direction of light transmitted through the pattern generation unit 18 is the exit of the grating plate 21 with respect to the exit surface 23 b of the refraction angle adjustment plate 23 It depends on which position on the exit surface 21b in the inclination direction of the surface 21b the light passes.
 パターン生成部18を構成するガラス等の光学素材は、通常、空気の屈折率よりも高い所定の屈折率を有する。このため、パターン生成部18内を進む光の光路長は、空気中を進む光の光路長よりも光学的に長くなる。従って、格子板21の出射面21bから屈折角調整板23の出射面23bまでの物理的な長さ(光路長)が異なる場合には、格子板21の出射面21bからプリント基板1までの光学的な光路長が異なることとなる。これを考慮することなく、格子板21の出射面21b及び投影レンズユニット19の主面がシャインプルーフの条件を満たすように配置された場合には、僅かながらも誤差が生じ得る。 An optical material such as glass constituting the pattern generation unit 18 usually has a predetermined refractive index higher than the refractive index of air. Therefore, the optical path length of the light traveling in the pattern generation unit 18 is optically longer than the optical path length of the light traveling in the air. Therefore, when the physical length (optical path length) from the exit surface 21b of the grating plate 21 to the exit surface 23b of the refraction angle adjustment plate 23 is different, the optics from the exit surface 21b of the grating plate 21 to the printed board 1 Light path length will be different. In the case where the exit surface 21b of the grating plate 21 and the main surface of the projection lens unit 19 are arranged so as to satisfy the condition of the shine proof without taking this into consideration, slight errors may occur.
 これに対し、上記のような誤差を補正した状態で、格子板21の出射面21b及び投影レンズユニット19の主面がシャインプルーフの条件を満たすように配置すれば、より精度よく縞パターンを合焦させることができる。 On the other hand, if the light emitting surface 21b of the grating plate 21 and the main surface of the projection lens unit 19 are arranged so as to satisfy the condition of the shine proof in a state where the above errors are corrected, the stripe pattern is combined more accurately. You can burn it.
 1…プリント基板、4…クリーム半田、10…基板検査装置、13…コンベア、14…投影装置、15…カメラ、16…制御装置、17…光源、18…パターン生成部、19…投影レンズユニット、21…格子板、22…入射角調整板、23…屈折角調整板、25…格子、25a…透光部、25b…遮光部、31…入射側レンズ、32…開口絞り、33…出射側レンズ、J1…光軸。 DESCRIPTION OF SYMBOLS 1 ... Printed circuit board, 4 ... Cream solder, 10 ... Board | substrate inspection apparatus, 13 ... Conveyor, 14 ... Projection apparatus, 15 ... Camera, 16 ... Control apparatus, 17 ... Light source, 18 ... Pattern generation part, 19 ... Projection lens unit, Reference Signs List 21 lattice plate 22 incident angle adjusting plate 23 refraction angle adjusting plate 25 lattice 25 a light transmitting portion 25 b light shielding portion 31 incident side lens 32 aperture stop 33 emission side lens , J1 ... light axis.

Claims (4)

  1.  所定の被計測物に係る三次元計測を行うにあたり、前記被計測物に対し所定のパターン光を投影する投影装置であって、
     所定の光を発する光源と、
     前記光源から入射する光を前記パターン光に変換して出射するパターン生成部と、
     前記パターン生成部から出射された前記パターン光を前記被計測物に対し結像させる投影光学系とを備え、
     前記パターン生成部は、
     所定の屈折率を有する光学素材からなり、入射する光を前記パターン光に変換する所定の格子が設けられてなる第1透光部材と、
     前記第1透光部材と同一屈折率を有する素材からなり、該パターン生成部へ入射する光の入射角が0°となるように、前記第1透光部材の入射面側に配設された第2透光部材と、
     前記第1透光部材と同一屈折率を有する素材からなり、該パターン生成部から出射する光の屈折角が0°となるように、前記第1透光部材の出射面側に配設された第3透光部材とにより構成され、
     前記被計測物に対して、前記第1透光部材の格子及び前記投影光学系の主面がシャインプルーフの条件を満たすように配置されることを特徴とする投影装置。
    It is a projection device which projects predetermined pattern light onto the object to be measured when performing three-dimensional measurement related to the predetermined object to be measured,
    A light source that emits a predetermined light;
    A pattern generation unit that converts light incident from the light source into the pattern light and emits the light;
    A projection optical system for forming an image of the pattern light emitted from the pattern generation unit on the object to be measured;
    The pattern generation unit
    A first light transmitting member made of an optical material having a predetermined refractive index and provided with a predetermined grating for converting incident light into the pattern light;
    It is made of a material having the same refractive index as the first light transmitting member, and is disposed on the light incident surface side of the first light transmitting member so that the incident angle of light incident on the pattern generating unit is 0 °. A second light transmitting member,
    It is made of a material having the same refractive index as the first light transmitting member, and is disposed on the light emitting surface side of the first light transmitting member so that the refraction angle of light emitted from the pattern generation unit is 0 °. Composed of a third light transmitting member,
    1. A projector according to claim 1, wherein the grating of the first light transmitting member and the main surface of the projection optical system are arranged with respect to the object to be measured such that the conditions of the shine proof are satisfied.
  2.  前記シャインプルーフの条件は、前記パターン生成部を透過する光の進行方向における前記第1透光部材の格子から前記第3透光部材の出射面までの光路長の違いを加味したものであることを特徴とする請求項1に記載の投影装置。 The condition of the shine proof is that the difference in the optical path length from the grating of the first light transmitting member to the light emitting surface of the third light transmitting member in the traveling direction of light transmitted through the pattern generation unit is taken into consideration. The projection device according to claim 1, characterized in that
  3.  前記パターン光として、縞状の光強度分布を有するパターン光を生成可能に構成されていることを特徴とする請求項1又は2に記載の投影装置。 The projection apparatus according to claim 1, wherein the projection apparatus is configured to be capable of generating pattern light having a stripe-like light intensity distribution as the pattern light.
  4.  請求項1乃至3のいずれかに記載の投影装置と、
     前記パターン光の投影された前記被計測物の所定範囲を撮像可能な撮像手段と、
     前記撮像手段により撮像され取得された画像データを基に前記被計測物に係る三次元計測を実行可能な画像処理手段とを備えたことを特徴とする三次元計測装置。
    A projection apparatus according to any one of claims 1 to 3.
    An imaging unit capable of imaging a predetermined range of the object to be measured on which the pattern light is projected;
    A three-dimensional measuring apparatus comprising: image processing means capable of executing three-dimensional measurement relating to the object based on image data captured and acquired by the imaging means.
PCT/JP2018/022042 2017-10-17 2018-06-08 Projection device and three-dimensional measurement device WO2019077797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017201220A JP2019074426A (en) 2017-10-17 2017-10-17 Projector and three-dimensional measuring device
JP2017-201220 2017-10-17

Publications (1)

Publication Number Publication Date
WO2019077797A1 true WO2019077797A1 (en) 2019-04-25

Family

ID=66173248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022042 WO2019077797A1 (en) 2017-10-17 2018-06-08 Projection device and three-dimensional measurement device

Country Status (2)

Country Link
JP (1) JP2019074426A (en)
WO (1) WO2019077797A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697045A (en) * 1992-09-17 1994-04-08 Nikon Corp Detector for surface position
JP2009038359A (en) * 2007-07-06 2009-02-19 Canon Inc Exposure apparatus and method for manufacturing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697045A (en) * 1992-09-17 1994-04-08 Nikon Corp Detector for surface position
JP2009038359A (en) * 2007-07-06 2009-02-19 Canon Inc Exposure apparatus and method for manufacturing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIZAWA, TORU ET AL.: "Compact camera system for 3D profile measurement", PROCEEDINGS SPIE 7513, 2009 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY, vol. 7513, 2009, pages 751304-1 - 751304-8, XP055598202 *

Also Published As

Publication number Publication date
JP2019074426A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
US10563977B2 (en) Three-dimensional measuring device
TWI460394B (en) Three-dimensional image measuring apparatus
KR101121691B1 (en) Three-dimensional measurement device
JP4701948B2 (en) Pattern light irradiation device, three-dimensional shape measurement device, and pattern light irradiation method
CN1677240A (en) Exposing device
US9420235B2 (en) Measuring system for a 3D object
JP3878165B2 (en) 3D measuring device
CN1564929A (en) Three-dimensional measuring apparatus, filter lattice moire plate and illuminating means
JP5582267B1 (en) Continuous scanning type measuring device
US9435982B2 (en) Focus position changing apparatus and confocal optical apparatus using the same
JP2006227652A (en) Filter lattice fringe plate, three-dimensional measuring device and illumination means
WO2019077797A1 (en) Projection device and three-dimensional measurement device
JP2007155600A (en) Projector for measuring three-dimensional shape, and instrument for measuring three-dimensional shape
KR101074101B1 (en) Image formation optical system
JP5708501B2 (en) Detection method and detection apparatus
JP6847088B2 (en) Projection device and 3D measuring device
JP5261665B2 (en) Proximity exposure equipment
WO2020116052A1 (en) Projecting device and three-dimensional measuring device
WO2012073981A1 (en) Visual inspection device and printed solder inspection device
TW202117282A (en) Measurement method for measureing combintion of two-dimensional and hight information of an object and the measurement device of the same
JP2013172353A (en) Imaging device and mounting board manufacturing apparatus
JP2022034109A (en) Recognition camera calibration plate and recognition camera calibration method
WO2012150659A1 (en) Shape recognition method, shape recognition apparatus, and apparatus for manufacturing mount board
KR20120112396A (en) Exposure device
TWI510754B (en) Detection method and detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867639

Country of ref document: EP

Kind code of ref document: A1