WO2019077787A1 - Mobile station and remote antenna system - Google Patents

Mobile station and remote antenna system Download PDF

Info

Publication number
WO2019077787A1
WO2019077787A1 PCT/JP2018/017548 JP2018017548W WO2019077787A1 WO 2019077787 A1 WO2019077787 A1 WO 2019077787A1 JP 2018017548 W JP2018017548 W JP 2018017548W WO 2019077787 A1 WO2019077787 A1 WO 2019077787A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
mobile station
frequency signal
signal
unit
Prior art date
Application number
PCT/JP2018/017548
Other languages
French (fr)
Japanese (ja)
Inventor
勇男 桂
竜宏 志村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019077787A1 publication Critical patent/WO2019077787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to mobile stations and remote antenna systems.
  • This application claims the priority based on Japanese Patent Application No. 2017-201893, filed Oct. 18, 2017, and incorporates all the contents described in the aforementioned Japanese application.
  • the mobile station may be required to transmit and receive radio waves in a specific direction.
  • a radio wave is less likely to reach, and a beam formed by an antenna is directed in a specific direction in which a base station is present.
  • Control of beam directivity is disclosed in, for example, Patent Document 1.
  • the present disclosure relates to a mobile station mounted on a device including a movable device body and a movable part provided in the device body.
  • the mobile station is a first antenna disposed in the device main body and a second antenna disposed at a position different from the first antenna in the device main body, and is shielded by the movable portion as viewed from the first antenna.
  • a second antenna forming a beam pointing to a range that may be
  • the present disclosure relates to a remote antenna system mounted on a device including a movable device body and a movable part provided on the device body.
  • the remote antenna system comprises a master unit connected to a mobile station main body outputting a radio frequency signal, a first slave unit provided with a first antenna disposed in the device main body, the master unit and the first slave unit A first transmission path for connecting the second antenna, and a second antenna disposed at a position different from the first antenna in the apparatus main body, to a range in which the movable portion may be shielded by the first antenna. And a second transmission path connecting the master unit and the second handset to each other.
  • FIG. 1 is a plan view of a construction machine.
  • FIG. 2 is a side view of the construction machine.
  • FIG. 3 is a circuit diagram of the mobile station.
  • FIG. 4 is a circuit diagram of the transceiver.
  • FIG. 5 is an explanatory view of a beam forming range.
  • FIG. 6A is an explanatory view showing beam directivity before turning.
  • FIG. 6B is an explanatory view showing the beam directivity after turning.
  • FIG. 7 is a flow chart showing a beam directivity control procedure based on the turn data.
  • FIG. 8 is an explanatory view of a variation of the arrangement of the slaves.
  • FIG. 9 is a circuit diagram of a mobile station.
  • FIG. 10 is a circuit diagram of a transceiver.
  • fifth generation mobile networks high frequencies such as millimeter waves or quasi-millimeter waves are used.
  • the antenna directivity is narrow. Therefore, if the mobile station does not properly direct the beam to the base station with which it is communicating, communication becomes unstable. Moreover, even if the beam is properly directed to the base station, if there is a shield between the mobile station and the base station, communication will be blocked and communication will be unstable.
  • the mobile station be placed in a position where communication is not blocked by the shield.
  • the mobile station is mounted on a device having a movable part, such as a construction machine, the wider the movable range of the movable part, the wider the range in which communication is blocked. For this reason, it is not easy to stabilize communication while mounting a mobile station on a device having a movable part like a construction machine.
  • a movable unit including a boom, an arm, and a bucket is provided in an apparatus main body movable by a crawler.
  • the movable unit may be located in the direction of the base station as viewed from the mobile station, and the movable unit serves as a shield to communicate with the base station. May interfere with
  • the mobile station according to the embodiment is mounted on a device including a movable device body and a movable part provided in the device body.
  • the device on which the mobile station is mounted is, for example, a construction machine, an agricultural machine, or an industrial machine.
  • the construction machine is, for example, a bulldozer, a hydraulic shovel, a crawler loader, a wheel loader, or a wheel crane.
  • the agricultural machine is, for example, a tractor.
  • the industrial machine is, for example, a forklift.
  • the device on which the mobile station is mounted may be, for example, a large special vehicle or a small special vehicle defined in Appendix 1 of the Road Transport Vehicle Act Enforcement Regulations of Japan.
  • the movable device body includes, for example, a traveling body having a crawler or wheels.
  • the traveling body causes the device on which the mobile station is mounted to travel freely.
  • the device body may include a driver's seat.
  • the device body is also called an airframe.
  • the portion on which the first antenna and the second antenna described later are mounted may be regarded as the device body.
  • the device body may include a movable portion within the device body, such as a swing body pivotally mounted on the traveling body.
  • the movable part operates, for example, for purposes other than movement of the device.
  • the movable part is, for example, a mechanism for performing work other than movement of the apparatus.
  • Operations other than movement are, for example, construction operations, civil engineering operations, agricultural operations, cargo handling operations, or assembly operations.
  • the movable portion changes its relative position with respect to the device body by its operation.
  • the mobile station may include a first antenna disposed in the device body and a second antenna disposed in the device body at a position different from the first antenna.
  • the second antenna forms a beam directed to an area which may be shielded by the movable part as viewed from the first antenna.
  • the range which may be shielded by the movable part as viewed from the first antenna is a range which may be out of sight by the movable part as viewed from the first antenna.
  • the movable portion changes its position or posture, etc., and its relative positional relationship with the first antenna changes. For this reason, when viewed from the first antenna, the entire movable range of the movable portion is a range that can be shielded by the movable portion.
  • the second antenna forms a beam directed to an area which may be shielded by the movable part as viewed from the first antenna. Therefore, even if the movable part is positioned in the direction from the first antenna to the base station, the second antenna can form a beam directed to the base station.
  • the first antenna does not have to be capable of forming a beam directed to a range that may be shielded by the movable portion.
  • the mobile station connects the master unit connected to the mobile station main body outputting the radio frequency signal, the first slave unit provided with the first antenna, the master unit and the first slave unit 1 transmission line, a second handset including the second antenna, and a second transmission path connecting the master and the second handset Can be provided.
  • it is easy to arrange the first antenna and the second antenna apart from the mobile station body.
  • it is easy to arrange the first antenna and the second antenna apart from each other.
  • the base unit can convert the radio frequency signal received from the mobile station main body into an intermediate frequency signal, and output the intermediate frequency signal to the first transmission path or the second transmission path.
  • the first slave unit may convert the intermediate frequency signal received from the master unit via the first transmission path into a radio frequency signal, and form a beam of the radio frequency signal by the first antenna.
  • the second slave unit may convert the intermediate frequency signal received from the master unit through the second transmission path into a radio frequency signal, and form a beam of the radio frequency signal by the second antenna. . Since the signal transmitted between the master unit and the slave unit is an intermediate frequency signal, signal attenuation can be suppressed as compared with the case of transmitting a radio frequency signal.
  • the first slave unit can convert a radio frequency signal received by the first antenna into an intermediate frequency and output the intermediate frequency signal to the first transmission path.
  • the second slave unit can convert a radio frequency signal received by the second antenna into an intermediate frequency, and output the intermediate frequency signal to the second transmission path.
  • the master unit converts the intermediate frequency signal received from the first handset or the second handset via the first transmission path or the second transport path into a radio frequency signal, and the radio frequency signal It can be output to the mobile station body. Since the signal transmitted between the master unit and the slave unit is an intermediate frequency signal, signal attenuation can be suppressed as compared with the case of transmitting a radio frequency signal.
  • the first handset and the second handset may each include an amplifier for amplifying the radio frequency signal.
  • the slave equipped with the antenna can increase the signal strength in the vicinity of the antenna by providing the amplifier.
  • the master unit can include a first selector for selecting a slave unit to which a signal output from the master unit is given.
  • a first selector for selecting a slave unit to which a signal is given.
  • the first selector may select one slave unit, but may select a plurality of devices if necessary.
  • the at least one antenna of the first antenna and the second antenna may include a plurality of array antennas capable of forming beams within a plurality of different angle ranges.
  • the plurality of angle ranges may or may not partially overlap each other.
  • the cordless handset provided with the plurality of array antennas among the first cordless handset and the second cordless handset further comprises a second selector for selecting which of the plurality of array antennas to apply the radio frequency signal to. it can.
  • the second selector allows to select an array antenna to which a signal is given.
  • the plurality of array antennas can change the directivity of the beam within a plurality of different angle ranges. In this case, the directivity of the beam can be finely adjusted.
  • the device main body can include a traveling body and a revolving body that pivots on the traveling body.
  • the selection by the first selector may be made based on data indicating the pivoting of the pivoting body. In this case, the directivity of the beam can be quickly adjusted according to the turning of the turning body.
  • the device main body can include a traveling body and a revolving body that pivots on the traveling body.
  • the selection by the second selector may be made based on data indicating the pivoting of the pivoting body. In this case, the directivity of the beam can be quickly adjusted according to the turning of the turning body.
  • the device main body can include a traveling body and a revolving body that pivots on the traveling body.
  • the change in directivity of the beam may be performed based on data indicating the turning of the turning body. In this case, the directivity of the beam can be quickly adjusted according to the turning of the turning body.
  • the first antenna and the second antenna are for millimeter waves or quasi-millimeter waves.
  • millimeter waves or quasi-millimeter waves the straightness of radio waves is high, and it is required to direct the beam reliably to the other party of communication, so stable communication is possible by mutually compensating the communication range with the first antenna and the second antenna. It becomes.
  • the mobile station is preferably used to transmit image data captured by a camera included in the device.
  • the image data is used, for example, for remote control of the device. Therefore, for a mobile station transmitting such image data, maintenance of stable communication is particularly required, and it is particularly useful to mutually compensate the communication range by the first antenna and the second antenna.
  • the device main body can include a traveling body and a revolving body that pivots on the traveling body.
  • a plurality of antennas including the first antenna and the second antenna compensate each other for an angle range in which the beams can be formed so that the beam can be formed in any direction within a 360 ° range in the horizontal plane It is preferable to arrange
  • the remote antenna system is mounted on a device including a movable device body and a movable portion provided on the device body.
  • the remote antenna system comprises a master unit connected to a mobile station main body outputting a radio frequency signal, a first slave unit provided with a first antenna disposed in the device main body, the master unit and the first slave unit A first transmission path for connecting the second antenna, and a second antenna disposed at a position different from the first antenna in the apparatus main body, to a range in which the movable portion may be shielded by the first antenna. And a second transmission path connecting the master unit and the second handset to each other.
  • the illustrated construction machine 10 is a hydraulic shovel.
  • the construction machine 10 includes an apparatus main body 11 and a movable unit 16.
  • the device body 11 includes a traveling body 13 and a revolving body 14.
  • the traveling body 13 is provided with an endless track for self-propelled travel.
  • the revolving unit 14 is pivotally mounted on the traveling unit 13.
  • the pivoting body 14 can pivot horizontally 360 ° around the vertical axis.
  • the revolving unit 14 includes a driver's seat 15.
  • the construction machine 10 is operated by the driver of the driver's seat 15 for operation for movement and operation for work.
  • the illustrated movable portion 16 is a device for excavating earth and sand, and is provided on the rotating body 14 so as to be capable of raising and lowering.
  • the movable portion 16 can also pivot about the vertical axis as the pivoting body 14 pivots.
  • the illustrated movable portion 16 is a front portion of the swing body 14 and is provided with a boom 17 provided movably on the side of the driver's seat 15, an arm 18 provided at the tip of the boom 17 and a tip of the arm 18 And the bucket 19 provided in
  • the movable part 16 is operated by a hydraulic cylinder.
  • the movable portion 16 is operable in the front and upper ranges of the swing body 14 and has a wide movable range.
  • the construction machine 10 is also capable of remote control via a mobile communication network.
  • the construction machine 10 is equipped with one or more cameras 30 and can capture the surroundings of the construction machine 10 or the construction machine 10 itself.
  • the camera 30 is attached to the arm 18, for example.
  • Image data captured by the camera 30 is transmitted from the mobile station 200 mounted on the construction machine 10 to the remote control system 40 via the mobile communication network.
  • the remote control system 40 transmits a command for remote control to the construction machine 10 via the mobile communication network.
  • the remote control of the construction machine 10 may be performed automatically by a computer or manually by an operator. The operator can operate the remote control system 40 and remotely control the construction machine 10 while viewing the image transmitted from the construction machine 10.
  • the construction machine 10 is equipped with a mobile station 200 for mobile communication.
  • the mobile station 200 transmits image data captured by the camera 30 and receives an operation command of the construction machine 10.
  • the construction machine 10 travels and works according to the operation command received by the mobile station 200.
  • the mobile station 200 communicates with the base station 100 for data transmission / reception with the remote control system 40.
  • the base station 100 is installed at a relatively high location, such as the roof of a building or above a steel tower, and communicates with the mobile station 200.
  • the base station 100 is preferably installed at a relatively high place in or near the construction site for communication with the mobile station 200 mounted on the construction machine 10.
  • Mobile communication is preferably communication in which millimeter waves or quasi-millimeter waves are used in order to realize high-speed communication.
  • Mobile communication in which millimeter waves or quasi-millimeter waves are used is, for example, the fifth generation mobile network (5G). Communications in which millimeter waves or quasi-millimeter waves are used have high propagation losses due to high frequencies.
  • beamforming is performed to compensate for the propagation loss. By beamforming, the directivity of the beam can be directed in a specific direction to improve the gain. Beamforming can be performed by both the base station 100 and the mobile station 200.
  • the mobile station 200 includes a mobile station main body 201 that outputs a radio frequency signal (hereinafter referred to as an RF signal).
  • An RF signal is radiated from the antenna for signal transmission to the base station 100.
  • an RF signal is received by the antenna for signal reception from the base station 100.
  • an antenna is connected to the mobile station body 201, but in the present embodiment, a remote antenna system 300 described below is connected to the mobile station body 201.
  • the remote antenna system 300 arranges the antennas 515, 525, 615, 625 at positions away from the mobile station body 201.
  • the remote antenna system 300 includes a master unit 400 connected to the mobile station main body 201 and a plurality of slave units 500 and 600.
  • Each of the plurality of handsets 500, 600 includes an antenna 515, 525, 615, 625, respectively.
  • the number of slaves is two, but may be three or more.
  • the master unit 400 and the slave unit (first slave unit) 500 are connected by a first transmission path 700, and the master unit 400 and the slave unit (second slave unit) 600 are connected by a second transmission path 800.
  • the first transmission path 700 and the second transmission path 800 are, for example, cables for signal transmission.
  • slave units 500, 600 should be arranged separately from mobile station main body 201 to which master unit 400 is connected. Is possible. Since the separated slave units 500 and 600 can be miniaturized, the degree of freedom of the installation place is increased, and can be easily installed in the clearance space of the construction machine 10 or the like. In addition, it is easy to arrange the first handset 500 and the second handset 600 at different positions. Therefore, antennas 515, 525, 615, 625 provided in handsets 500, 600 can be arranged in construction machine 10 at a position suitable for communication with base station 100.
  • the antennas 515, 525, 615, 625 can be disposed in a distributed manner.
  • the master unit 400 receives an RF signal output from the mobile station main body 201, and transmits the received signal to any one or more of the plurality of slave units 500 and 600.
  • the signal transmitted from the master unit 400 to the slave units 500 and 600 may be an RF signal or an intermediate frequency signal (hereinafter referred to as an IF signal) as described later.
  • the IF signal is a signal having a frequency lower than that of the RF signal, and can be obtained by frequency converting (down converting) the RF signal received by the parent device 400.
  • the slave units 500 and 600 frequency convert (up convert) the received IF signal into an RF signal.
  • the slave units 500 and 600 obtain an RF signal similar to the RF signal output from the mobile station main body 201.
  • the slaves 500, 600 transmit the obtained RF signals from the antennas 515, 525, 615, 625.
  • the slaves 500 and 600 receive the RF signals transmitted from the base station via the antennas 515, 525, 615 and 625.
  • the slave units 500 and 600 frequency convert (down convert) the received RF signal into an IF signal, and transmit the IF signal to the master unit 400.
  • the master unit 400 frequency-converts (up-converts) the received IF signal into an RF signal, and supplies the RF signal to the mobile station body 201.
  • Cable connection between master unit 400 and slave units 500, 600 by performing signal transmission between master unit 400 and slave units 500, 600 at an intermediate frequency sufficiently lower than the carrier frequency of the RF signal. Even then, signal attenuation can be suppressed.
  • FIG. 3 shows the configuration of the remote antenna system 300.
  • Master unit 400 has a horizontal polarization terminal 401 for receiving an RF signal of horizontal polarization (H polarization) output from mobile station main body 201, and a vertical polarization (V polarization) output from mobile station main body 201 as well. And a vertically polarized terminal 402 for receiving the RF signal.
  • the RF signal output from the mobile station main body 201 is, for example, a signal whose carrier frequency is 28 GHz.
  • the RF signal received by base unit 400 from mobile station main body 201 is downconverted by base unit 400. For example, the RF signal of horizontal polarization is down converted by the frequency converter 404 into an IF signal.
  • the vertically polarized RF signal is down converted by the frequency converter 405 into an IF signal.
  • the IF signal is, for example, a signal of about 3 G to 5 GHz. If the signal transmitted between master unit 400 and slave units 500 and 600 is an RF signal, frequency converters 404 and 405 may be omitted.
  • the master unit 400 includes a control terminal 403 for receiving a control signal from the mobile station main body 201.
  • the control signal from the mobile station main body 201 will be described later.
  • Master device 400 includes first selectors 406 and 407 for selecting a slave device responsible for signal transmission and reception among first slave device 500 and second slave device 600.
  • the first selectors 406 and 407 select which of the plurality of slaves 500 and 600 the signal transmitted from the master 400 to the slaves 500 and 600 is to be provided. This selection is also the selection of which mobile station 500, 600 the signal received by the mobile station body 201 is to be given.
  • the signals transmitted and received between the parent device 400 and the child devices 500 and 600 are IF signals of horizontally polarized waves and IF signals of vertically polarized waves.
  • the first selector 406 selects whether to apply the horizontally polarized IF signal for transmission to the first handset 500 or to the second handset 600.
  • the first selector 407 selects whether to apply the vertically polarized IF signal for transmission to the first handset 500 or to the second handset 600. This selection is also a selection of which mobile station 500, 600 the signal received by the mobile station body 201 is to be given.
  • the horizontally polarized IF signal and the vertically polarized IF signal are transmitted to the first child device 500 via the first transmission path 700.
  • the IF signal transmitted from the first slave unit 500 is upconverted by the master unit 400 into an RF signal, and given to the mobile station main body 201.
  • the horizontally polarized IF signal and the vertically polarized IF signal are transmitted to the second child device 600 via the second transmission path 800.
  • the IF signal transmitted from second slave unit 600 is upconverted to an RF signal by master unit 400, and is provided to mobile station main body 201.
  • the selection by the first selectors 406 and 407 is controlled by the controller 408 provided in the parent device 400.
  • the control by the controller 408 will be described later.
  • the controller 408 is, for example, a computer including a CPU, a storage device, and the like.
  • the parent device 400 includes a control signal superposition and separation unit 409.
  • the superposition and separation unit 409 superimposes the control signal transmitted to the slave units 500 and 600 on the IF signal of horizontal polarization, and separates the control signal from the IF signal transmitted from the slave units 500 and 600.
  • the control signal transmitted to the slave units 500 and 600 is supplied from the controller 408, and the control signal transmitted from the slave units 500 and 600 is supplied to the controller 408.
  • the superimposition separation unit 409 may be provided in a path for vertical polarization in the parent device 400.
  • the first slave unit 500 up-converts the IF signal received from the master unit 400 via the first transmission path 700 to obtain an RF signal.
  • the horizontally polarized IF signal is upconverted by the frequency converter 501 into an RF signal.
  • the vertically polarized IF signal is upconverted by the frequency converter 502 into an RF signal.
  • the frequency converter 501 also has a function of down-converting the horizontally polarized RF signal received by the first handset 500 into an IF signal, and the frequency converter 502 receives the vertical polarization received by the first handset 500. It also has the function of down converting a wave RF signal to an IF signal.
  • the first child device 500 includes a superposition separation unit 503.
  • the superimposition / separation unit 503 separates the control signal from the IF signal transmitted from the parent device 400, and superimposes the control signal transmitted to the parent device 400 on the horizontally polarized IF signal.
  • the control signal transmitted to master device 400 is provided from controller 530, and the control signal transmitted from master device 400 is provided to controller 530.
  • superimposing / separating unit 503 may be provided in a path for vertical polarization in slave unit 500.
  • the controller 530 is, for example, a computer provided with a CPU, a storage device, and the like.
  • the first handset 500 includes first antennas 515 and 525.
  • the first handset 500 includes a plurality of units 510 and 520, and each of the plurality of units 510 and 520 includes a first antenna 515 and 525.
  • the plurality of units 510 and 520 include a first unit 510 and a second unit 520.
  • the number of units 510 and 520 may be three or more.
  • the first antenna 515 included in the first unit 510 is a shared antenna of horizontal polarization and vertical polarization.
  • the first antenna 515 comprises an array antenna (first array antenna).
  • the array antenna as the first antenna 515 includes a first receiving array antenna 517 and a first transmitting array antenna 519.
  • the first reception array antenna 517 includes a first reception antenna element 517a, a second reception antenna element 517b, a third reception antenna element 517c, and a fourth reception antenna element 517d.
  • the first transmitting array antenna 519 includes a first transmitting antenna element 519a, a second transmitting antenna element 519b, a third transmitting antenna element 519c, and a fourth transmitting antenna element 519d.
  • Each of the antenna elements 517a to 517d and 519a to 519d is a shared antenna element of horizontal polarization and vertical polarization.
  • the first unit 510 includes RF signal combining / dividing devices 511a and 511b.
  • the combiner / splitter 511a splits and combines horizontally polarized RF signals. For example, the RF signal of horizontal polarization for transmission is divided into four by the combiner / splitter 511a, and is transmitted to four transmit antenna elements 519a, 519b, 519c, 519d via four transceivers 513a, 513b, 513c, 513d. Given.
  • the vertically polarized RF signal for transmission is divided into four by the combiner / splitter 511b, and provided to the four transmit antenna elements 519a, 519b, 519c, 519d via the four transceivers 513a, 513b, 513c, 513d. .
  • the horizontally polarized RF signals received by the four receive antenna elements 517a, 517b, 517c, 517d are applied to the combiner / splitter 511a via the four transceivers 513a, 513b, 513c, 513d and combined.
  • the vertically polarized RF signals received by the four receive antenna elements 517a, 517b, 517c, 517d are applied to the combiner / splitter 511b via the four transceivers 513a, 513b, 513c, 513d and combined.
  • the transceivers 513 a, 513 b, 513 c, and 513 d include a transmission system 550 and a reception system 560.
  • the transmission system 550 and the reception system 560 are switched by the switch 540 in a time division manner.
  • the transmission system 550 includes an amplifier (power amplifier) 551 that amplifies the RF signal to be transmitted. Even if there is signal attenuation due to the transmission from the mobile station main body 201 to the child device 500, the signal attenuation can be compensated by amplifying the RF signal by the amplifier 551.
  • the transmission system 550 also includes an amplitude adjuster 553 and a phase shifter 555. The directivity of the transmission beam can be adjusted by adjusting the amplitude and phase of the RF signal in each of the transceivers 513a, 513b, 513c, and 513d.
  • the reception system 560 includes an amplifier (low noise amplifier) 556.
  • the amplifier 556 can compensate for signal attenuation due to signal transmission from the slave unit 500 to the mobile station main body 201.
  • the reception system 560 also includes an amplitude adjuster 563 and a phase shifter 565. The directivity of the receiving beam can be adjusted by adjusting the amplitude and phase of the RF signal in each of the transceivers 513a, 513b, 513c, and 513d.
  • the switch 540, the amplitude adjusters 553 and 563, and the phase shifters 555 and 565 are controlled by the controller 530 included in the slave unit 500.
  • the control by the controller 530 will be described later.
  • the second unit 520 has the same configuration as the first unit 510.
  • the first antenna 525 included in the second unit 520 is also similar to the first antenna 515 included in the first unit 510. That is, the first antenna 525 includes an array antenna.
  • the array antenna as the first antenna 525 includes a first receiving array antenna 527 and a first transmitting array antenna 529.
  • the first reception array antenna 527 includes a first reception antenna element 527a, a second reception antenna element 527b, a third reception antenna element 527c, and a fourth reception antenna element 527d.
  • the first transmitting array antenna 529 includes a first transmitting antenna element 529a, a second transmitting antenna element 529b, a third transmitting antenna element 529c, and a fourth transmitting antenna element 529d.
  • Each of the antenna elements 527a to 527d and 529a to 529d is a shared antenna element of horizontal polarization and vertical polarization.
  • the second unit 520 includes an RF signal combiner / splitter 521a, 521b.
  • the combiner / splitter 521a splits and combines horizontally polarized RF signals.
  • the RF signal of horizontal polarization for transmission is divided into four by the combiner / splitter 521a, and is transmitted to the four transmit antenna elements 529a, 529b, 529c, 529d via the four transceivers 523a, 523b, 523c, 523d.
  • the combiner / splitter 521a splits and combines horizontally polarized RF signals.
  • the RF signal of horizontal polarization for transmission is divided into four by the combiner / splitter 521a, and is transmitted to the four transmit antenna elements 529a, 529b, 529c, 529d via the four transceivers 523a, 523b, 523c, 523d.
  • the vertically polarized RF signal for transmission is divided into four by the combiner / splitter 521b, and given to the four transmit antenna elements 529a, 529b, 529c, 529d via the four transceivers 523a, 523b, 523c, 523d. .
  • the horizontally polarized RF signals received by the four receive antenna elements 527a, 527b, 527c, and 527d are supplied to the combiner / splitter 521a via the four transceivers 523a, 523b, 523c, and 523d, and then combined.
  • the vertically polarized RF signals received by the four receive antenna elements 527a, 527b, 527c, and 527d are supplied to the combiner / splitter 521b via the four transceivers 523a, 523b, 523c, and 523d, and then combined.
  • the configuration of the transceivers 523a, 523b, 523c, 523d of the second unit 520 is also as shown in FIG.
  • the first handset 500 includes second selectors 504 and 505 for selecting a unit responsible for signal transmission and reception among the first unit 510 and the second unit 520.
  • the selection by the second selectors 504 and 505 is also a selection of a unit responsible for signal transmission and reception among the plurality of antennas 515 and 525.
  • the second selector 504 selects which of the plurality of transmitting array antennas 519 and 529 to apply a horizontally polarized RF signal for transmission. This selection is also for selecting which of the plurality of receiving array antennas 517 and 527 down-converts the RF signal received by the antenna and transmits it to the parent device 400.
  • the second selector 505 selects which one of the plurality of transmitting array antennas 519 and 529 to apply the RF signal of vertical polarization for transmission. This selection is also for selecting which of the plurality of receiving array antennas 517 and 527 down-converts the RF signal received by the antenna and transmits it to the parent device 400.
  • the second antennas 504 and 505 select the array antennas 517 and 519 of the first unit 510 as an array antenna for transmitting and receiving RF signals
  • the second selectors 504 and 505 receive horizontal polarization and vertical polarization, respectively.
  • An RF signal is provided to the first unit 510.
  • the RF signal provided to the first unit 510 is transmitted by the first transmitting array antenna 519.
  • the RF signal received by the first unit 510 is down-converted to an IF signal and transmitted to the parent device 400.
  • the second selectors 504 and 505 can generate RF of horizontally polarized waves and vertically polarized waves.
  • a signal is provided to the second unit 520.
  • the RF signal provided to the second unit 520 is transmitted by the first transmission array antenna 529.
  • the RF signal received by the second unit 520 is down-converted to an IF signal and transmitted to the parent device 400.
  • the selectors by the second selectors 504 and 505 are controlled by the controller 530 included in the first handset 500.
  • the control by the controller 530 will be described later.
  • Second handset 600 has the same configuration as first handset 500. However, while the antennas 515 and 525 included in the first handset 500 are referred to as first antennas 515 and 525, the antennas 615 and 625 included in the second handset 600 are referred to as second antennas 615 and 625. Call. As described above, the antennas 515, 525, 615, 625 are array antennas, respectively, and can adjust beam directivity.
  • the four array antennas 515, 525, 615, 625 compensate for the beam forming in the 360 ° angle range in the horizontal plane.
  • the array antenna 515 is responsible for beamforming within an angular range A1 of 1/4 of the 360 angular range in the horizontal plane.
  • the array antenna 525 is responsible for beamforming within the other quarter of the angular range A2.
  • the array antenna 515 is responsible for beamforming within the other quarter angular range B1.
  • the array antenna 625 is responsible for beamforming within the other quarter angular range B2.
  • Each array antenna 515, 525, 615, 625 can change the directivity of the beam in the angular range A1, A2, B1, B2 responsible for beam forming.
  • each angle range A1, A2, B1, B2 is 90 degrees.
  • the angular ranges A1, A2, B1 and B2 do not overlap with each other, but may overlap with each other.
  • the first handset 500 equipped with the two first array antennas 515 and 525 can be responsible for beam forming in the range A, which is the range A1 plus the range A2.
  • the second handset 600 including the two second array antennas 615 and 625 can be responsible for beam forming in the range B in which the range B2 is added to the range B1. That is, the remote antenna system 300 can compensate for the beam formation in the angle range of the horizontal plane 360.degree.
  • the plurality of array antennas 515, 525, 615, 625 are arranged centrally in one place.
  • the first child device 500 and the second child device 600 are disposed in a distributed manner. For this reason, the first array antennas 515 and 525 included in the first handset 500 and the second array antennas 615 and 625 included in the second handset 600 are distributed and arranged.
  • the first slave unit 500 is disposed at the top of the driver seat 15 on the front right side of the swing body 14, and the second handset 600 is disposed at the rear left side of the swing body 14.
  • the second slave unit 600 having the second array antenna 615, 625 is disposed at a different position from the first slave unit 500 having the first array antenna 515, 525 so that the communication by the movable unit 16 is blocked. It can be avoided.
  • four array antennas 515, 525, 615, 625 are centrally arranged at one position as shown in FIG. 5 at the position of the first handset 500 in FIG. 1 (the front right side of the apparatus main body 11).
  • FIG. 5 the position of the first handset 500 in FIG. 1 (the front right side of the apparatus main body 11).
  • the movable part 16 exists in the direction from the position of the first handset 500 in FIG. Communication may be hampered.
  • communication is more likely to be hindered.
  • the antennas 515 and 525 included in the first handset 500 mainly perform beam forming in the range A on the right side of the construction machine 10, and the antennas 515 and 525 included in the second handset 600 mainly It is responsible for beamforming in the range B1 to the left of ten.
  • the antennas 615 and 625 included in the second handset 600 form a beam directed to the left front area B1 that may be shielded by the movable portion 16 as viewed from the antennas 515 and 525 included in the first handset 500. it can. Therefore, regardless of the position / posture of the movable part 16, the movable part 16 can be avoided and beam formation can be performed by either the first handset 500 or the second handset 600.
  • the plurality of antennas 515, 525, 615, 625 mutually complement the angular ranges A1, A2, B1, B2 which can form a beam, and the angular ranges A, B of 360 ° in the horizontal plane It is possible to form a beam in any of these directions. As a result, regardless of the turning state of the turning body 14, it is possible to always cover the entire horizontal surface circumference as the communicable range.
  • the first handset 500 and the second handset 600 be disposed at mutually separated positions in at least one of the lateral direction X, the longitudinal direction Y, and the height direction Z of the construction machine 10.
  • the first handset 500 and the second handset 600 are disposed apart from each other in all of the lateral direction X, the longitudinal direction Y and the height direction Z, With any of the first handset 500 and the second handset 600, it is easy to secure a view to the base station 100.
  • control of the directivity of the beam comprises selection of handsets 500, 600, selection of units 510, 520 in selected handsets 500, 600, and selected units 510, 520.
  • the adjustment of the directivity of the beam by the array antenna 515, 525, 615, 625 is performed. This control determines the directivity of the beam in the 360 ° angular range of the horizontal plane.
  • controller 408 sets direction D to a range A and a range. It is determined to which of B it belongs.
  • the controller 408 selects the first handset 500 when the direction D belongs to the range A, and selects the second handset 600 when the direction D belongs to the range B.
  • the controller 408 controls the first selectors 406 and 407 so that an IF signal is exchanged between the parent device 400 and the first child device 500 when the first child device 500 is selected.
  • the controller 408 controls the first selectors 406 and 407 so that an IF signal is exchanged between the master unit and the second slave unit 600.
  • the direction in which the beam is directed may be determined by the controller 408.
  • the control signal indicating the direction D is transmitted from the controller 408 of the parent device 400 to the controller 530 of the selected child device 500, 600 via the transmission paths 700 and 800.
  • the controller 530 of the first handset 500 determines which one of the ranges A1 and A2 the direction D belongs to.
  • the controller 530 selects the first unit 510 (first antenna 515) when the direction D belongs to the range A1, and selects the second unit 520 (first antenna 525) when the direction D belongs to the range A2.
  • Choose When the controller 530 selects the first unit 510, the controller 530 controls the second selectors 504 and 505 to transmit and receive RF signals by the first unit 510.
  • the controller 530 selects the second unit 520, the controller 530 controls the second selectors 504 and 505 so that the second unit 520 transmits and receives RF signals.
  • the controller 530 of the second handset 600 operates in the same manner as the controller 530 of the first handset 500, and the first unit 510 (second antenna 615) or the second unit 520. (2nd antenna 625) is selected.
  • the controller 530 controls the amplitude adjusters 553, 563 and the phase shifters 555, 565 of the transceivers 513a, 513b, 513c, 513d connected to the antenna elements constituting the selected antenna 515, 525, 615, 625.
  • the directivity of the beam can be set in the direction D.
  • the direction D is generally the direction in which the base station 100 exists.
  • the direction in which the base station 100 exists can be determined, for example, by scanning the strength of radio waves transmitted from the base station all around the horizontal direction in the mobile station 200, and determining the direction in which the radio waves are strongest as the direction of the base station. .
  • the process of determining the direction D is performed by, for example, a processor included in the mobile station body 201.
  • the control of the directivity of the beam may be based on data (hereinafter, referred to as turning data) indicating the turning of the turning body 14 on which the mobile station 200 is mounted.
  • the turning data indicates, for example, a turning amount (turning angle) and a turning direction.
  • FIG. 6A when the mobile station 200 is communicating with the base station 100 by the antenna 515, an operation command to transmit 90 ° clockwise has been transmitted. I assume. In this case, the mobile station 200 changes the directivity of the beam counterclockwise in synchronization with the turning of the turning body 14.
  • the antenna forming the beam is switched from the antenna 515 to the antenna 615 as shown in FIG. 6B. Thus, it is possible to keep the beam directed to the base station 100 at all times.
  • FIG. 7 shows an example of a beam directivity control procedure based on turning data.
  • the mobile station main body 201 receives an operation command from the remote control system 40. If the operation command includes turning data indicating a turning amount and a turning direction, the mobile station main body 201 transmits a control signal including the turning data to the controller 408 of the parent device 400 in step S12.
  • the controller 408 When the controller 408 receives the control signal including the turn data in step S21, the controller 408 selects the slave units 500 and 600 based on the turn data in step S21. The selection of the slaves 500 and 600 is made based on the direction in which the beam should be directed when the swing body 14 swings based on the swing data. In step S23, the controller 408 controls the selectors 406 and 407 such that signal exchange is performed between the selected slave units 500 and 600. At step S24, the controller 408 transmits a control signal including the turning data to the controller 530 of the selected slave unit 500, 600.
  • step S31 the controller 530 of the selected slave unit 500, 600 receives the control signal including the turn data.
  • step S32 the controller 530 selects the units 510 and 520 (antennas 515, 525, 615 and 625) based on the turning data.
  • the selection data of the units 510, 520 are made on the basis of the selection data on the basis of the direction in which the beam should be directed when the pivoting body pivots.
  • the controller 530 controls the selectors 504 and 505 such that signal exchange is performed in the selected units 510 and 520.
  • step S34 the controller 530 adjusts the directivity of the beam formed by the antennas 515, 525, 615, 625 of the selected unit 510, 520 based on the turn data.
  • FIG. 8 shows a variation of the arrangement of the slaves.
  • FIG. 8 shows a relatively small construction machine 10.
  • This construction machine 10 is also a hydraulic shovel.
  • the movable portion 16 is disposed substantially at the center in the left-right direction X of the front portion of the revolving unit 14 disposed on the traveling unit 13.
  • a driver's seat 15 is disposed at the rear of the revolving unit 14.
  • the first handset 500 is disposed on the front right side of the swing body 14, and the second handset 600 is disposed on the rear left side of the swing body. It is also good.
  • a second handset 900 may be disposed on the front left side.
  • the first slave unit 500 and the second slave unit 600 be disposed substantially point-symmetrically with respect to the pivot axis C1 of the pivoting body 14.
  • the first child device 500 and the second child device 900 may be disposed substantially line-symmetrically with respect to the longitudinal centerline C2 passing through the position of the pivot axis C1 of the revolving unit 14.
  • the first handset 500 and the second handsets 600 and 900 may be disposed on the left and right sides of the revolving unit 14 with the movable portion 16 interposed therebetween.
  • FIGS. 8 and 9 show another embodiment of the mobile station 200.
  • the first antennas 515 and 525 are of the transmission / reception separation type in which the reception antennas 517 and 527 and the transmission antennas 519 and 529 are separated, and the second antennas 615 and 625 are of transmission / reception separation type as well.
  • the first antennas 515 and 525 are integrated with transmission and reception, and the second antennas 615 and 625 are also integrated with transmission and reception. Descriptions of configurations of the mobile station 200 shown in FIGS. 8 and 9 that are similar to those of the mobile station 200 described above with reference to FIG. 3 and the like will be omitted.
  • the first antenna 515 included in the first unit 510 is an array antenna (first array antenna).
  • the array antenna as the first antenna 515 includes a first antenna element 515a, a second antenna element 515b, a third antenna element 515c, and a fourth antenna element 515d.
  • Each of the antenna elements 515a to 515d is a shared antenna element of horizontal polarization and vertical polarization.
  • the horizontally polarized RF signal for transmission which is divided into four by the combination distributor 511a, is transmitted to four antenna elements 515a, 515b, 515c, 515d via four transceivers 513a, 513b, 513c, 513d.
  • the vertically polarized RF signals for transmission which are divided into four by the combination distributor 511b, are supplied to four antenna elements 515a, 515b, 515c, 515d via the four transceivers 513a, 513b, 513c, 513d.
  • the horizontally polarized RF signals received by the four antenna elements 515a, 515b, 515c, 515d are supplied to the combining / distributing device 511a via the four transceivers 513a, 513b, 513c, 513d and combined.
  • the vertically polarized RF signals received by the four antenna elements 515a, 515b, 515c, 515d are provided to the combining / distributing device 511b via the four transceivers 513a, 513b, 513c, 513d and combined.
  • the transmission system 550 and the reception system 560 of the transceivers 513a, 513b, 513c, 513d are switched in time division by the switch 540a and the switch 540b.
  • the switch 540 a and the switch 540 b are controlled by the controller 530.
  • the second unit 520 has the same configuration as the first unit 510.
  • the first antenna 525 included in the second unit 520 is also similar to the first antenna 515 included in the first unit 510. That is, the first antenna 525 is an array antenna.
  • the array antenna as the first antenna 525 includes a first antenna element 525a, a second antenna element 525b, a third antenna element 525c, and a fourth antenna element 525d.
  • Each of the antenna elements 525a to 525d is a shared antenna element of horizontal polarization and vertical polarization.
  • the horizontally polarized RF signal for transmission divided by four by the combining / distributing device 521a is transmitted to four antenna elements 525a, 525b, 525c, 525d via four transceivers 523a, 523b, 523c, 523d.
  • the vertically polarized RF signals for transmission divided into four by the combining / distributing device 521b are applied to four antenna elements 525a, 525b, 525c, 525d via four transceivers 523a, 523b, 523c, 523d.
  • the horizontally polarized RF signals received by the four antenna elements 525a, 525b, 525c, 525d are applied to the combining / distributing device 521a via the four transceivers 523a, 523b, 523c, 523d and combined.
  • the vertically polarized RF signals received by the four antenna elements 525a, 525b, 525c, and 525d are provided to the combining and distributing device 521b via the four transceivers 523a, 523b, 523c, and 523d, and combined.
  • the configurations of the transceivers 523a, 523b, 523c, and 523d of the second unit 520 are also as shown in FIG.
  • the second selector 504 selects which of the plurality of array antennas 515 and 525 to apply the RF signal of horizontal polarization for transmission. This selection is also a selection of which of the plurality of array antennas 515 and 525 down-converts and transmits the RF signal received to the master unit 400.
  • the second selector 505 selects which of the plurality of array antennas 515 and 525 to apply a vertically polarized RF signal for transmission to. This selection is also a selection of which of the plurality of array antennas 515 and 525 down-converts and transmits the RF signal received to the master unit 400.
  • the second selectors 504 and 505 select the array antenna 515 of the first unit 510 as an array antenna for transmitting and receiving RF signals
  • the second selectors 504 and 505 are RF signals of horizontal polarization and vertical polarization.
  • the RF signal provided to the first unit 510 is transmitted by the first array antenna 515.
  • the RF signal received by the first unit 510 is down-converted to an IF signal and transmitted to the parent device 400.
  • the second selectors 505 and 505 select the array antenna 525 of the second unit as an array antenna for transmitting and receiving RF signals
  • the second selectors 504 and 505 generate RF signals of horizontal polarization and vertical polarization.
  • the second unit 520 is provided.
  • the RF signal provided to the second unit 520 is transmitted by the first array antenna 525.
  • the RF signal received by the second unit 520 is down-converted to an IF signal and transmitted to the parent device 400.
  • Second handset 600 has the same configuration as first handset 500.
  • the antennas 515 and 525 included in the first handset 500 are referred to as first antennas 515 and 525
  • the antennas 615 and 625 included in the second handset 600 are referred to as second antennas 615, 625.
  • the antennas 515, 525, 615, 625 are array antennas, respectively, and can adjust beam directivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This mobile station is to be mounted on a device that is provided with a mobile device main body, and a movable section that is provided to the device main body. The mobile station is provided with: a first antenna that is disposed on the device main body; and a second antenna, which is disposed, on the device main body 11, at a position different from the position at which the first antenna is disposed, and which forms a beam directed toward a range that can be blocked by the movable section when viewed from the first antenna.

Description

移動局及びリモートアンテナシステムMobile station and remote antenna system
 本発明は、移動局及びリモートアンテナシステムに関する。
 本出願は、2017年10月18日出願の日本出願第2017-201893号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to mobile stations and remote antenna systems.
This application claims the priority based on Japanese Patent Application No. 2017-201893, filed Oct. 18, 2017, and incorporates all the contents described in the aforementioned Japanese application.
 移動局は、特定の方向に向けて電波を送受信することが求められることがある。例えば、高い周波数を利用する通信方式では、低い周波数を利用する通信方式に比べて、電波が届きにくくなるため、基地局が存在する特定の方向へ、アンテナが形成するビームが向けられる。ビームの指向性の制御は、例えば、特許文献1に開示されている。 The mobile station may be required to transmit and receive radio waves in a specific direction. For example, in a communication system using a high frequency, compared to a communication system using a low frequency, a radio wave is less likely to reach, and a beam formed by an antenna is directed in a specific direction in which a base station is present. Control of beam directivity is disclosed in, for example, Patent Document 1.
特開2016-116045号公報JP, 2016-116045, A
 本開示は、移動可能な装置本体と前記装置本体に設けられた可動部とを備える装置に搭載される移動局に関する。移動局は、前記装置本体に配置される第1アンテナと、前記装置本体において前記第1アンテナとは異なる位置に配置される第2アンテナであって、前記第1アンテナからみて前記可動部によって遮蔽されることがある範囲へ向くビームを形成する第2アンテナと、を備える移動局に関する。 The present disclosure relates to a mobile station mounted on a device including a movable device body and a movable part provided in the device body. The mobile station is a first antenna disposed in the device main body and a second antenna disposed at a position different from the first antenna in the device main body, and is shielded by the movable portion as viewed from the first antenna. And a second antenna forming a beam pointing to a range that may be
 本開示は、移動可能な装置本体と前記装置本体に設けられた可動部とを備える装置に搭載されるリモートアンテナシステムに関する。リモートアンテナシステムは、無線周波数信号を出力する移動局本体に接続される親機と、前記装置本体に配置される第1アンテナを備える第1子機と、前記親機と前記第1子機とを接続する第1伝送路と、前記装置本体において前記第1アンテナとは異なる位置に配置される第2アンテナであって、前記第1アンテナからみて前記可動部によって遮蔽されることがある範囲へ向くビームを形成する第2アンテナを備える第2子機と、前記親機と前記第2子機とを接続する第2伝送路と、を備える。 The present disclosure relates to a remote antenna system mounted on a device including a movable device body and a movable part provided on the device body. The remote antenna system comprises a master unit connected to a mobile station main body outputting a radio frequency signal, a first slave unit provided with a first antenna disposed in the device main body, the master unit and the first slave unit A first transmission path for connecting the second antenna, and a second antenna disposed at a position different from the first antenna in the apparatus main body, to a range in which the movable portion may be shielded by the first antenna. And a second transmission path connecting the master unit and the second handset to each other.
図1は建設機械の平面図である。FIG. 1 is a plan view of a construction machine. 図2は建設機械の側面図である。FIG. 2 is a side view of the construction machine. 図3は移動局の回路図である。FIG. 3 is a circuit diagram of the mobile station. 図4はトランシーバの回路図である。FIG. 4 is a circuit diagram of the transceiver. 図5はビーム形成範囲の説明図である。FIG. 5 is an explanatory view of a beam forming range. 図6Aは旋回前のビーム指向性を示す説明図である。FIG. 6A is an explanatory view showing beam directivity before turning. 図6Bは旋回後のビーム指向性を示す説明図である。FIG. 6B is an explanatory view showing the beam directivity after turning. 図7は旋回データに基づくビーム指向性制御手順を示すフローチャートである。FIG. 7 is a flow chart showing a beam directivity control procedure based on the turn data. 図8は子機の配置のバリエーションの説明図である。FIG. 8 is an explanatory view of a variation of the arrangement of the slaves. 図9は移動局の回路図である。FIG. 9 is a circuit diagram of a mobile station. 図10はトランシーバの回路図である。FIG. 10 is a circuit diagram of a transceiver.
[本開示が解決しようとする課題] [Problems to be solved by the present disclosure]
 第5世代モバイルネットワーク(5G)では、ミリ波又は準ミリ波のような高い周波数が利用される。高い周波数が利用される通信では、アンテナ指向性が狭い。したがって、移動局は、通信相手である基地局に対してビームを適切に向けた状態にしないと、通信が不安定になる。しかも、基地局に対してビームが適切に向いていても、移動局と基地局との間に遮蔽物が存在すると、通信が阻害されて、通信が不安定になる。 In fifth generation mobile networks (5G), high frequencies such as millimeter waves or quasi-millimeter waves are used. In communications where high frequencies are used, the antenna directivity is narrow. Therefore, if the mobile station does not properly direct the beam to the base station with which it is communicating, communication becomes unstable. Moreover, even if the beam is properly directed to the base station, if there is a shield between the mobile station and the base station, communication will be blocked and communication will be unstable.
 したがって、移動局は、遮蔽物によって通信が阻害されない位置に配置することが望まれる。しかし、移動局が、建設機械のように可動部を備える装置に搭載される場合、可動部の可動範囲が広くなるほど、通信が阻害される範囲が広くなる。このため、建設機械のように可動部を備える装置に移動局を搭載しつつ、通信を安定にするのは容易ではない。 Therefore, it is desirable that the mobile station be placed in a position where communication is not blocked by the shield. However, when the mobile station is mounted on a device having a movable part, such as a construction machine, the wider the movable range of the movable part, the wider the range in which communication is blocked. For this reason, it is not easy to stabilize communication while mounting a mobile station on a device having a movable part like a construction machine.
 例えば、建設機械の一種である油圧ショベルは、クローラによって移動可能な装置本体に、ブーム、アーム及びバケットからなる可動部が設けられている。このような油圧ショベルの装置本体に移動局を搭載した場合、移動局からみて、基地局の方向に可動部が位置することがあり、可動部が、遮蔽物となって、基地局との通信を阻害するおそれがある。 For example, in a hydraulic shovel, which is a type of construction machine, a movable unit including a boom, an arm, and a bucket is provided in an apparatus main body movable by a crawler. When a mobile station is mounted on the main body of such a hydraulic excavator, the movable unit may be located in the direction of the base station as viewed from the mobile station, and the movable unit serves as a shield to communicate with the base station. May interfere with
 したがって、移動局が、可動部を備える装置に搭載される場合であっても、通信が阻害されるのを抑制することが求められる。 Therefore, even when the mobile station is mounted on a device provided with a movable unit, it is required to suppress the obstruction of communication.
[本開示の効果]
 本開示によれば、移動局が、可動部を備える装置に搭載される場合であっても、通信が阻害されるのを抑制することができる。
[Effect of the present disclosure]
According to the present disclosure, even when the mobile station is mounted on a device including a movable unit, it is possible to suppress that communication is blocked.
[1.実施形態の概要]
(1)実施形態に係る移動局は、移動可能な装置本体と前記装置本体に設けられた可動部とを備える装置に搭載される。移動局が搭載される装置は、例えば、建設機械、農業機械、又は産業機械である。建設機械は、例えば、ブルドーザ、油圧ショベル、クローラローダ、ホイールローダ、又はホイールクレーンである。農業機械は、例えば、トラクタである。産業機械は、例えば、フォークリフトである。移動局が搭載される装置は、例えば、日本の道路運送車両法施行規則の別表第一に規定する大型特殊自動車又は小型特殊自動車であってもよい。
[1. Outline of embodiment]
(1) The mobile station according to the embodiment is mounted on a device including a movable device body and a movable part provided in the device body. The device on which the mobile station is mounted is, for example, a construction machine, an agricultural machine, or an industrial machine. The construction machine is, for example, a bulldozer, a hydraulic shovel, a crawler loader, a wheel loader, or a wheel crane. The agricultural machine is, for example, a tractor. The industrial machine is, for example, a forklift. The device on which the mobile station is mounted may be, for example, a large special vehicle or a small special vehicle defined in Appendix 1 of the Road Transport Vehicle Act Enforcement Regulations of Japan.
 移動可能な装置本体は、例えば、クローラ又は車輪などを有する走行体を備える。走行体は、移動局が搭載される装置を自走させる。装置本体は、運転席を含んでもよい。装置本体は、機体とも呼ばれる。なお、移動局が搭載される装置において、後述の第1アンテナ及び第2アンテナが搭載される部分を、装置本体であるとみなせばよい。装置本体は、走行体上に旋回可能に搭載された旋回体のように、装置本体内において可動する部分を含んでいてもよい。 The movable device body includes, for example, a traveling body having a crawler or wheels. The traveling body causes the device on which the mobile station is mounted to travel freely. The device body may include a driver's seat. The device body is also called an airframe. In the device on which the mobile station is mounted, the portion on which the first antenna and the second antenna described later are mounted may be regarded as the device body. The device body may include a movable portion within the device body, such as a swing body pivotally mounted on the traveling body.
 可動部は、例えば、装置の移動以外の目的のために動作する。可動部は、例えば、装置の移動以外の作業をするための機構である。移動以外の作業は、例えば、建設作業、土木作業、農業作業、荷役作業、又は組立作業である。可動部は、その動作によって、装置本体に対して、相対位置が変化する。 The movable part operates, for example, for purposes other than movement of the device. The movable part is, for example, a mechanism for performing work other than movement of the apparatus. Operations other than movement are, for example, construction operations, civil engineering operations, agricultural operations, cargo handling operations, or assembly operations. The movable portion changes its relative position with respect to the device body by its operation.
 移動局は、前記装置本体に配置される第1アンテナと、前記装置本体において前記第1アンテナとは異なる位置に配置される第2アンテナを備えることができる。前記第2アンテナは、前記第1アンテナからみて前記可動部によって遮蔽されることがある範囲へ向くビームを形成する。前記第1アンテナからみて前記可動部によって遮蔽されることがある範囲とは、前記第1アンテナからみて、前記可動部によって見通し外になり得る範囲である。可動部は、その動作によって、位置又は姿勢などが変化し、第1アンテナとの相対位置関係が変化する。このため、第1アンテナからみると、前記可動部の可動範囲全体が、前記可動部によって遮蔽されることがありえる範囲となる。 The mobile station may include a first antenna disposed in the device body and a second antenna disposed in the device body at a position different from the first antenna. The second antenna forms a beam directed to an area which may be shielded by the movable part as viewed from the first antenna. The range which may be shielded by the movable part as viewed from the first antenna is a range which may be out of sight by the movable part as viewed from the first antenna. The movable portion changes its position or posture, etc., and its relative positional relationship with the first antenna changes. For this reason, when viewed from the first antenna, the entire movable range of the movable portion is a range that can be shielded by the movable portion.
 前記第2アンテナは、前記第1アンテナからみて前記可動部によって遮蔽されることがある範囲へ向くビームを形成する。このため、前記第1アンテナから基地局に向かう方向に前記可動部が位置していても、前記第2アンテナが、基地局に向くビームを形成することができる。 The second antenna forms a beam directed to an area which may be shielded by the movable part as viewed from the first antenna. Therefore, even if the movable part is positioned in the direction from the first antenna to the base station, the second antenna can form a beam directed to the base station.
 なお、前記第1アンテナは、前記可動部によって遮蔽されることがある範囲へ向くビームを形成可能である必要はない。 The first antenna does not have to be capable of forming a beam directed to a range that may be shielded by the movable portion.
(2)移動局は、無線周波数信号を出力する移動局本体に接続される親機と、前記第1アンテナを備える第1子機と、前記親機と前記第1子機とを接続する第1伝送路と、前記第2アンテナを備える第2子機と、前記親機と前記第2子機とを接続する第2伝送路と、
を備えることができる。この場合、第1アンテナ及び第2アンテナを、移動局本体から離して配置するのが容易である。また、第1アンテナ及び第2アンテナを互いに離して配置するのも容易である。
(2) The mobile station connects the master unit connected to the mobile station main body outputting the radio frequency signal, the first slave unit provided with the first antenna, the master unit and the first slave unit 1 transmission line, a second handset including the second antenna, and a second transmission path connecting the master and the second handset
Can be provided. In this case, it is easy to arrange the first antenna and the second antenna apart from the mobile station body. In addition, it is easy to arrange the first antenna and the second antenna apart from each other.
(3)前記親機は、前記移動局本体から受信した前記無線周波数信号を中間周波数信号に変換し、前記中間周波数信号を前記第1伝送路又は前記第2伝送路へ出力することができる。前記第1子機は、前記第1伝送路を介して前記親機から受信した前記中間周波数信号を無線周波数信号に変換し、前記無線周波数信号のビームを前記第1アンテナによって形成することができる。前記第2子機は、前記第2伝送路を介して前記親機から受信した前記中間周波数信号を無線周波数信号に変換し、前記無線周波数信号のビームを前記第2アンテナによって形成することができる。親機と子機との間で伝送される信号が中間周波数信号であることで、無線周波数信号を伝送する場合に比べて、信号の減衰を抑えることができる。 (3) The base unit can convert the radio frequency signal received from the mobile station main body into an intermediate frequency signal, and output the intermediate frequency signal to the first transmission path or the second transmission path. The first slave unit may convert the intermediate frequency signal received from the master unit via the first transmission path into a radio frequency signal, and form a beam of the radio frequency signal by the first antenna. . The second slave unit may convert the intermediate frequency signal received from the master unit through the second transmission path into a radio frequency signal, and form a beam of the radio frequency signal by the second antenna. . Since the signal transmitted between the master unit and the slave unit is an intermediate frequency signal, signal attenuation can be suppressed as compared with the case of transmitting a radio frequency signal.
(4)前記第1子機は、前記第1アンテナによって受信した無線周波数信号を中間周波数に変換し、前記中間周波数信号を前記第1伝送路へ出力することができる。前記第2子機は、前記第2アンテナによって受信した無線周波数信号を中間周波数に変換し、前記中間周波数信号を前記第2伝送路へ出力することができる。前記親機は、前記第1伝送路又は前記第2伝送路を介して前記第1子機又は前記第2子機から受信した前記中間周波数信号を無線周波数信号に変換し、前記無線周波数信号を前記移動局本体に出力することができる。親機と子機との間で伝送される信号が中間周波数信号であることで、無線周波数信号を伝送する場合に比べて、信号の減衰を抑えることができる。 (4) The first slave unit can convert a radio frequency signal received by the first antenna into an intermediate frequency and output the intermediate frequency signal to the first transmission path. The second slave unit can convert a radio frequency signal received by the second antenna into an intermediate frequency, and output the intermediate frequency signal to the second transmission path. The master unit converts the intermediate frequency signal received from the first handset or the second handset via the first transmission path or the second transport path into a radio frequency signal, and the radio frequency signal It can be output to the mobile station body. Since the signal transmitted between the master unit and the slave unit is an intermediate frequency signal, signal attenuation can be suppressed as compared with the case of transmitting a radio frequency signal.
(5)前記第1子機及び前記第2子機は、それぞれ、前記無線周波数信号を増幅する増幅器を備えることができる。増幅器によって、アンテナを備える子機が増幅器を備えることで、アンテナ直近において信号強度を大きくすることができる。 (5) The first handset and the second handset may each include an amplifier for amplifying the radio frequency signal. By the amplifier, the slave equipped with the antenna can increase the signal strength in the vicinity of the antenna by providing the amplifier.
(6)前記親機は、前記親機から出力される信号が与えられる子機を選択する第1選択器を備えることができる。第1選択器によって、信号が与えられる子機を選択することができる。第1選択器は、一つの子機を選択すれば足りるが、必要であれば、複数の機器を選択してもよい。 (6) The master unit can include a first selector for selecting a slave unit to which a signal output from the master unit is given. By means of the first selector, it is possible to select a slave to which a signal is given. The first selector may select one slave unit, but may select a plurality of devices if necessary.
(7)前記第1アンテナ及び前記第2アンテナの少なくとも一つのアンテナは、それぞれ異なる複数の角度範囲内でビームを形成することができる複数のアレイアンテナを含むことができる。複数の角度範囲は、互いに部分的に重複していてもよいし、重複していなくてもよい。前記第1子機及び前記第2子機のうち前記複数のアレイアンテナを備える子機は、前記無線周波数信号を複数のアレイアンテナのいずれに与えるかを選択する第2選択器を更に備えることができる。第2選択器によって、信号が与えられるアレイアンテナを選択することができる。 (7) The at least one antenna of the first antenna and the second antenna may include a plurality of array antennas capable of forming beams within a plurality of different angle ranges. The plurality of angle ranges may or may not partially overlap each other. The cordless handset provided with the plurality of array antennas among the first cordless handset and the second cordless handset further comprises a second selector for selecting which of the plurality of array antennas to apply the radio frequency signal to. it can. The second selector allows to select an array antenna to which a signal is given.
(8)前記複数のアレイアンテナは、それぞれ異なる複数の角度範囲内で、ビームの指向性を変化させることができることができる。この場合、ビームの指向性を細かく調整できる。 (8) The plurality of array antennas can change the directivity of the beam within a plurality of different angle ranges. In this case, the directivity of the beam can be finely adjusted.
(9)前記装置本体は、走行体と、前記走行体上において旋回する旋回体と、を備えることができる。第1選択器による選択は、前記旋回体の旋回を示すデータに基づいて行われてもよい。この場合、旋回体の旋回に応じて、ビームの指向性を迅速に調整することができる。 (9) The device main body can include a traveling body and a revolving body that pivots on the traveling body. The selection by the first selector may be made based on data indicating the pivoting of the pivoting body. In this case, the directivity of the beam can be quickly adjusted according to the turning of the turning body.
(10)前記装置本体は、走行体と、前記走行体上において旋回する旋回体と、を備えることができる。第2選択器による選択は、前記旋回体の旋回を示すデータに基づいて行われてもよい。この場合、旋回体の旋回に応じて、ビームの指向性を迅速に調整することができる。 (10) The device main body can include a traveling body and a revolving body that pivots on the traveling body. The selection by the second selector may be made based on data indicating the pivoting of the pivoting body. In this case, the directivity of the beam can be quickly adjusted according to the turning of the turning body.
(11)前記装置本体は、走行体と、前記走行体上において旋回する旋回体と、を備えることができる。前記ビームの指向性の変化は、前記旋回体の旋回を示すデータに基づいて行われてもよい。この場合、旋回体の旋回に応じて、ビームの指向性を迅速に調整することができる。 (11) The device main body can include a traveling body and a revolving body that pivots on the traveling body. The change in directivity of the beam may be performed based on data indicating the turning of the turning body. In this case, the directivity of the beam can be quickly adjusted according to the turning of the turning body.
(12)前記第1アンテナ及び前記第2アンテナは、ミリ波又は準ミリ波用であるのが好ましい。ミリ波又は準ミリ波では、電波の直進性が高く、ビームを通信相手に確実に向けることが求められるため、第1アンテナと第2アンテナによって通信範囲を互いに補うことで、安定した通信が可能となる。 (12) Preferably, the first antenna and the second antenna are for millimeter waves or quasi-millimeter waves. With millimeter waves or quasi-millimeter waves, the straightness of radio waves is high, and it is required to direct the beam reliably to the other party of communication, so stable communication is possible by mutually compensating the communication range with the first antenna and the second antenna. It becomes.
(13)移動局は、前記装置が備えるカメラによって撮影された画像データの送信に用いられるのが好ましい。画像データは、例えば、前記装置の遠隔操作に用いられる。したがって、そのような画像データを送信する移動局には、安定した通信の維持が特に求められるため、第1アンテナと第2アンテナによって通信範囲を互いに補うことが特に有用である。 (13) The mobile station is preferably used to transmit image data captured by a camera included in the device. The image data is used, for example, for remote control of the device. Therefore, for a mobile station transmitting such image data, maintenance of stable communication is particularly required, and it is particularly useful to mutually compensate the communication range by the first antenna and the second antenna.
(14)前記装置本体は、走行体と、前記走行体上において旋回する旋回体と、を備えることができる。前記第1アンテナ及び前記第2アンテナを含む複数のアンテナが、ビームを形成可能な角度範囲を互いに補って、水平面における360°の範囲内のいずれの方向へもビームの形成が可能であるように前記旋回体に配置されるのが好ましい。この場合、水平面における360°の範囲内のいずれの方向へもビームが形成できる。 (14) The device main body can include a traveling body and a revolving body that pivots on the traveling body. A plurality of antennas including the first antenna and the second antenna compensate each other for an angle range in which the beams can be formed so that the beam can be formed in any direction within a 360 ° range in the horizontal plane It is preferable to arrange | position to the said rotational body. In this case, the beam can be formed in any direction within the range of 360 ° in the horizontal plane.
(15)実施形態に係るリモートアンテナシステムは、移動可能な装置本体と前記装置本体に設けられた可動部とを備える装置に搭載される。リモートアンテナシステムは、無線周波数信号を出力する移動局本体に接続される親機と、前記装置本体に配置される第1アンテナを備える第1子機と、前記親機と前記第1子機とを接続する第1伝送路と、前記装置本体において前記第1アンテナとは異なる位置に配置される第2アンテナであって、前記第1アンテナからみて前記可動部によって遮蔽されることがある範囲へ向くビームを形成する第2アンテナを備える第2子機と、前記親機と前記第2子機とを接続する第2伝送路と、を備える。 (15) The remote antenna system according to the embodiment is mounted on a device including a movable device body and a movable portion provided on the device body. The remote antenna system comprises a master unit connected to a mobile station main body outputting a radio frequency signal, a first slave unit provided with a first antenna disposed in the device main body, the master unit and the first slave unit A first transmission path for connecting the second antenna, and a second antenna disposed at a position different from the first antenna in the apparatus main body, to a range in which the movable portion may be shielded by the first antenna. And a second transmission path connecting the master unit and the second handset to each other.
[2.実施形態の詳細] [2. Details of the embodiment]
[2.1 移動局が搭載された装置] [2.1 Equipment equipped with mobile station]
 図1及び図2は、移動局200が搭載される装置10の例として、建設機械を示している。図示の建設機械10は、油圧ショベルである。建設機械10は、装置本体11と可動部16とを備える。装置本体11は、走行体13と旋回体14とを備える。走行体13は、自走のため、無限軌道を備える。旋回体14は、走行体13上に旋回可能に搭載される。旋回体14は、垂直軸まわりに水平方向に360°旋回することができる。旋回体14は、運転席15を備える。建設機械10は、運転席15の運転者によって、移動のための操作及び作業のための操作が行われる。 1 and 2 show a construction machine as an example of the device 10 on which the mobile station 200 is mounted. The illustrated construction machine 10 is a hydraulic shovel. The construction machine 10 includes an apparatus main body 11 and a movable unit 16. The device body 11 includes a traveling body 13 and a revolving body 14. The traveling body 13 is provided with an endless track for self-propelled travel. The revolving unit 14 is pivotally mounted on the traveling unit 13. The pivoting body 14 can pivot horizontally 360 ° around the vertical axis. The revolving unit 14 includes a driver's seat 15. The construction machine 10 is operated by the driver of the driver's seat 15 for operation for movement and operation for work.
 図示の可動部16は、土砂の掘削作業のための装置であり、旋回体14に俯仰動可能に設けられている。可動部16は、旋回体14の旋回に伴って、垂直軸回りに旋回することもできる。図示の可動部16は、旋回体14の前部であって運転席15の側方に俯仰動可能に設けられたブーム17と、ブーム17の先端に設けられたアーム18と、アーム18の先端に設けられたバケット19と、を備える。可動部16は、油圧シリンダーによって動作する。可動部16は、旋回体14の前方及び上方の範囲において動作可能であり、広い可動範囲を有する。 The illustrated movable portion 16 is a device for excavating earth and sand, and is provided on the rotating body 14 so as to be capable of raising and lowering. The movable portion 16 can also pivot about the vertical axis as the pivoting body 14 pivots. The illustrated movable portion 16 is a front portion of the swing body 14 and is provided with a boom 17 provided movably on the side of the driver's seat 15, an arm 18 provided at the tip of the boom 17 and a tip of the arm 18 And the bucket 19 provided in The movable part 16 is operated by a hydraulic cylinder. The movable portion 16 is operable in the front and upper ranges of the swing body 14 and has a wide movable range.
 建設機械10は、モバイル通信ネットワークを介した遠隔操作も可能である。遠隔操作のため、建設機械10は、1又は複数のカメラ30を備えており、建設機械10の周囲又は建設機械10自体を撮影することができる。カメラ30は、例えば、アーム18に取り付けられる。カメラ30によって撮影された画像データは、建設機械10に搭載された移動局200からモバイル通信ネットワークを介して、リモートコントロールシステム40に送信される。リモートコントロールシステム40は、モバイル通信ネットワークを介して、建設機械10に遠隔操作のための指令を送信する。なお、建設機械10の遠隔操作は、コンピュータによって自動的に行われてもよいし、オペレータによって手動で行われてもよい。オペレータは、建設機械10から送信されてきた画像を見ながら、リモートコントロールシステム40を操作し、建設機械10を遠隔操作することができる。 The construction machine 10 is also capable of remote control via a mobile communication network. For remote control, the construction machine 10 is equipped with one or more cameras 30 and can capture the surroundings of the construction machine 10 or the construction machine 10 itself. The camera 30 is attached to the arm 18, for example. Image data captured by the camera 30 is transmitted from the mobile station 200 mounted on the construction machine 10 to the remote control system 40 via the mobile communication network. The remote control system 40 transmits a command for remote control to the construction machine 10 via the mobile communication network. The remote control of the construction machine 10 may be performed automatically by a computer or manually by an operator. The operator can operate the remote control system 40 and remotely control the construction machine 10 while viewing the image transmitted from the construction machine 10.
 建設機械10には、モバイル通信のための移動局200が搭載されている。移動局200は、カメラ30によって撮影した画像データを送信し、建設機械10の操作指令を受信する。建設機械10は、移動局200によって受信した操作指令に従って、走行及び作業を行う。 The construction machine 10 is equipped with a mobile station 200 for mobile communication. The mobile station 200 transmits image data captured by the camera 30 and receives an operation command of the construction machine 10. The construction machine 10 travels and works according to the operation command received by the mobile station 200.
 移動局200は、リモートコントロールシステム40とのデータ送受信のため、基地局100との間で通信をする。基地局100は、建物の屋上、鉄塔の上などの比較的高い場所に設置され、移動局200と通信する。基地局100は、建設機械10に搭載された移動局200との通信のため、建設現場内又は建設現場近傍における比較的高い場所に設置されるのが好ましい。モバイル通信は、高速通信の実現のため、ミリ波又は準ミリ波が利用される通信であるのが好ましい。ミリ波又は準ミリ波が利用されるモバイル通信は、例えば、第5世代モバイルネットワーク(5G)である。ミリ波又は準ミリ波が利用される通信は、高い周波数のため、伝搬損失が大きい。本実施形態では、伝搬損失の補償のため、ビームフォーミングが行われる。ビームフォーミングをすることで、特定の方向にビームの指向性を向けて、利得を向上させることができる。ビームフォーミングは、基地局100及び移動局200の両方が行うことができる。 The mobile station 200 communicates with the base station 100 for data transmission / reception with the remote control system 40. The base station 100 is installed at a relatively high location, such as the roof of a building or above a steel tower, and communicates with the mobile station 200. The base station 100 is preferably installed at a relatively high place in or near the construction site for communication with the mobile station 200 mounted on the construction machine 10. Mobile communication is preferably communication in which millimeter waves or quasi-millimeter waves are used in order to realize high-speed communication. Mobile communication in which millimeter waves or quasi-millimeter waves are used is, for example, the fifth generation mobile network (5G). Communications in which millimeter waves or quasi-millimeter waves are used have high propagation losses due to high frequencies. In the present embodiment, beamforming is performed to compensate for the propagation loss. By beamforming, the directivity of the beam can be directed in a specific direction to improve the gain. Beamforming can be performed by both the base station 100 and the mobile station 200.
 移動局200は、無線周波数信号(radio frequency signal;以下、RF信号という)を出力する移動局本体201を備える。RF信号は、基地局100への信号送信のため、アンテナから放射される。また、RF信号は、基地局100からの信号受信のため、アンテナによって受信される。一般的な移動局200においては、移動局本体201には、アンテナが接続されるが、本実施形態において、移動局本体201には、以下に説明するリモートアンテナシステム300が接続される。 The mobile station 200 includes a mobile station main body 201 that outputs a radio frequency signal (hereinafter referred to as an RF signal). An RF signal is radiated from the antenna for signal transmission to the base station 100. Also, an RF signal is received by the antenna for signal reception from the base station 100. In a general mobile station 200, an antenna is connected to the mobile station body 201, but in the present embodiment, a remote antenna system 300 described below is connected to the mobile station body 201.
 リモートアンテナシステム300は、移動局本体201から離れた位置にアンテナ515,525,615,625を配置させる。リモートアンテナシステム300は、移動局本体201に接続される親機400と、複数の子機500,600を備える。複数の子機500,600は、それぞれ、アンテナ515,525,615,625を備える。本実施形態において、子機の数は、2であるが、3以上であってもよい。親機400と子機(第1子機)500とは、第1伝送路700によって接続され、親機400と子機(第2子機)600とは、第2伝送路800によって接続される。第1伝送路700及び第2伝送路800は、例えば、信号伝送のためのケーブルである。 The remote antenna system 300 arranges the antennas 515, 525, 615, 625 at positions away from the mobile station body 201. The remote antenna system 300 includes a master unit 400 connected to the mobile station main body 201 and a plurality of slave units 500 and 600. Each of the plurality of handsets 500, 600 includes an antenna 515, 525, 615, 625, respectively. In the present embodiment, the number of slaves is two, but may be three or more. The master unit 400 and the slave unit (first slave unit) 500 are connected by a first transmission path 700, and the master unit 400 and the slave unit (second slave unit) 600 are connected by a second transmission path 800. . The first transmission path 700 and the second transmission path 800 are, for example, cables for signal transmission.
 親機400と子機500,600とは伝送路700,800を介して接続されているため、子機500,600を、親機400が接続される移動局本体201とは離して配置することが可能である。分離した子機500,600は、小型化が可能であるため、設置場所の自由度が高まり、建設機械10の隙間スペースなどに容易に設置することができる。また、第1子機500及び第2子機600を、異なる位置に配置するのも容易である。したがって、子機500,600が備えるアンテナ515,525,615,625を、建設機械10において、基地局100との通信に適した位置に配置することができる。また、それぞれがアンテナ515,525,615,625を備える複数の子機500,600を、建設機械10において分散配置することで、アンテナ515,525,615,625の分散配置が可能となる。 Since master unit 400 and slave units 500, 600 are connected via transmission lines 700, 800, slave units 500, 600 should be arranged separately from mobile station main body 201 to which master unit 400 is connected. Is possible. Since the separated slave units 500 and 600 can be miniaturized, the degree of freedom of the installation place is increased, and can be easily installed in the clearance space of the construction machine 10 or the like. In addition, it is easy to arrange the first handset 500 and the second handset 600 at different positions. Therefore, antennas 515, 525, 615, 625 provided in handsets 500, 600 can be arranged in construction machine 10 at a position suitable for communication with base station 100. Further, by disposing a plurality of handsets 500, 600 each having an antenna 515, 525, 615, 625 in a distributed manner in the construction machine 10, the antennas 515, 525, 615, 625 can be disposed in a distributed manner.
 親機400は、移動局本体201から出力されたRF信号を受信し、受信した信号を、複数の子機500,600のいずれか一つ又は複数に送信する。親機400から子機500,600へ送信される信号は、RF信号であってもよいし、後述のように中間周波数信号(Intermediate Frequency signal;以下、IF信号という)であってもよい。IF信号は、RF信号よりも低い周波数の信号であり、親機400が受信したRF信号を周波数変換(ダウンコンバート)して得られる。 The master unit 400 receives an RF signal output from the mobile station main body 201, and transmits the received signal to any one or more of the plurality of slave units 500 and 600. The signal transmitted from the master unit 400 to the slave units 500 and 600 may be an RF signal or an intermediate frequency signal (hereinafter referred to as an IF signal) as described later. The IF signal is a signal having a frequency lower than that of the RF signal, and can be obtained by frequency converting (down converting) the RF signal received by the parent device 400.
 親機400が子機500,600へIF信号を送信する場合、子機500,600は、受信したIF信号を、RF信号に周波数変換(アップコンバート)する。これにより、子機500,600は、移動局本体201から出力されたRF信号と同様のRF信号が得られる。子機500,600は、得られたRF信号を、アンテナ515,525,615,625から送信する。また、子機500,600は、基地局から送信されたRF信号をアンテナ515,525,615,625によって受信する。子機500,600は、受信したRF信号をIF信号に周波数変換(ダウンコンバート)し、IF信号を親機400へ送信する。親機400は、受信したIF信号をRF信号に周波数変換(アップコンバート)し、RF信号を、移動局本体201に与える。 When the master unit 400 transmits an IF signal to the slave units 500 and 600, the slave units 500 and 600 frequency convert (up convert) the received IF signal into an RF signal. As a result, the slave units 500 and 600 obtain an RF signal similar to the RF signal output from the mobile station main body 201. The slaves 500, 600 transmit the obtained RF signals from the antennas 515, 525, 615, 625. Also, the slaves 500 and 600 receive the RF signals transmitted from the base station via the antennas 515, 525, 615 and 625. The slave units 500 and 600 frequency convert (down convert) the received RF signal into an IF signal, and transmit the IF signal to the master unit 400. The master unit 400 frequency-converts (up-converts) the received IF signal into an RF signal, and supplies the RF signal to the mobile station body 201.
 親機400と子機500,600との間の信号伝送を、RF信号の搬送波周波数に比べて十分に低い中間周波数で行うことで、親機400と子機500,600との間をケーブル接続しても、信号減衰を抑えることができる。 Cable connection between master unit 400 and slave units 500, 600 by performing signal transmission between master unit 400 and slave units 500, 600 at an intermediate frequency sufficiently lower than the carrier frequency of the RF signal. Even then, signal attenuation can be suppressed.
 図3は、リモートアンテナシステム300の構成を示している。親機400は、移動局本体201から出力された水平偏波(H偏波)のRF信号を受信する水平偏波端子401と、同じく移動局本体201から出力された垂直偏波(V偏波)のRF信号を受信する垂直偏波端子402を備えている。移動局本体201が出力するRF信号は、例えば、搬送波周波数が28GHzである信号である。親機400が移動局本体201から受信したRF信号は、親機400によってダウンコンバートされる。例えば、水平偏波のRF信号は、周波数変換器404によって、IF信号にダウンコンバートされる。垂直偏波のRF信号は、周波数変換器405によって、IF信号にダウンコンバートされる。IF信号は、例えば、3G~5GHz程度の信号である。なお、親機400と子機500,600との間で伝送される信号が、RF信号である場合には、周波数変換器404,405は省略してもよい。 FIG. 3 shows the configuration of the remote antenna system 300. As shown in FIG. Master unit 400 has a horizontal polarization terminal 401 for receiving an RF signal of horizontal polarization (H polarization) output from mobile station main body 201, and a vertical polarization (V polarization) output from mobile station main body 201 as well. And a vertically polarized terminal 402 for receiving the RF signal. The RF signal output from the mobile station main body 201 is, for example, a signal whose carrier frequency is 28 GHz. The RF signal received by base unit 400 from mobile station main body 201 is downconverted by base unit 400. For example, the RF signal of horizontal polarization is down converted by the frequency converter 404 into an IF signal. The vertically polarized RF signal is down converted by the frequency converter 405 into an IF signal. The IF signal is, for example, a signal of about 3 G to 5 GHz. If the signal transmitted between master unit 400 and slave units 500 and 600 is an RF signal, frequency converters 404 and 405 may be omitted.
 親機400は、移動局本体201から制御信号を受信する制御端子403を備えている。移動局本体201からの制御信号については後述する。 The master unit 400 includes a control terminal 403 for receiving a control signal from the mobile station main body 201. The control signal from the mobile station main body 201 will be described later.
 親機400は、第1子機500及び第2子機600のうち、信号送受信を担う子機を選択する第1選択器406,407を備える。具体的には、第1選択器406,407は、親機400から子機500,600へ送信される信号を、複数の子機500,600のいずれに与えるかを選択する。この選択は、この選択は、いずれの子機500,600によって受信した信号を移動局本体201に与えるかの選択にもなっている。ここでは、親機400と子機500,600との間で送受信される信号は、水平偏波のIF信号と垂直偏波のIF信号である。 Master device 400 includes first selectors 406 and 407 for selecting a slave device responsible for signal transmission and reception among first slave device 500 and second slave device 600. Specifically, the first selectors 406 and 407 select which of the plurality of slaves 500 and 600 the signal transmitted from the master 400 to the slaves 500 and 600 is to be provided. This selection is also the selection of which mobile station 500, 600 the signal received by the mobile station body 201 is to be given. Here, the signals transmitted and received between the parent device 400 and the child devices 500 and 600 are IF signals of horizontally polarized waves and IF signals of vertically polarized waves.
 第1選択器406は、送信用の水平偏波のIF信号を、第1子機500に与えるか、第2子機600に与えるかを選択する。第1選択器407は、送信用の垂直偏波のIF信号を、第1子機500に与えるか、第2子機600に与えるかを選択する。この選択は、いずれの子機500,600によって受信した信号を移動局本体201に与えるかの選択にもなっている。 The first selector 406 selects whether to apply the horizontally polarized IF signal for transmission to the first handset 500 or to the second handset 600. The first selector 407 selects whether to apply the vertically polarized IF signal for transmission to the first handset 500 or to the second handset 600. This selection is also a selection of which mobile station 500, 600 the signal received by the mobile station body 201 is to be given.
 第1選択器406,407によって第1子機500が選択された場合、水平偏波のIF信号と垂直偏波のIF信号とが、第1伝送路700を介して、第1子機500に与えられる。また、第1子機500から送信されたIF信号が親機400によってRF信号にアップコンバートされ、移動局本体201に与えられる。 When the first child device 500 is selected by the first selectors 406 and 407, the horizontally polarized IF signal and the vertically polarized IF signal are transmitted to the first child device 500 via the first transmission path 700. Given. Also, the IF signal transmitted from the first slave unit 500 is upconverted by the master unit 400 into an RF signal, and given to the mobile station main body 201.
 第1選択器406,407によって第2子機600が選択された場合、水平偏波のIF信号と垂直偏波のIF信号とが、第2伝送路800を介して、第2子機600に与えられる。また、第2子機600から送信されたIF信号が親機400によってRF信号にアップコンバートされ、移動局本体201に与えられる。 When the second child device 600 is selected by the first selectors 406 and 407, the horizontally polarized IF signal and the vertically polarized IF signal are transmitted to the second child device 600 via the second transmission path 800. Given. Also, the IF signal transmitted from second slave unit 600 is upconverted to an RF signal by master unit 400, and is provided to mobile station main body 201.
 第1選択器406,407による選択は、親機400が備えるコントローラ408によって制御される。コントローラ408による制御については後述する。なお、コントローラ408は、例えば、CPUや記憶装置等を備えたコンピュータよりなる。 The selection by the first selectors 406 and 407 is controlled by the controller 408 provided in the parent device 400. The control by the controller 408 will be described later. The controller 408 is, for example, a computer including a CPU, a storage device, and the like.
 親機400は、制御信号の重畳分離部409を備える。重畳分離部409は、子機500,600へ送信される制御信号を水平偏波のIF信号に重畳し、子機500,600から送信されたIF信号から制御信号を分離する。子機500,600へ送信される制御信号は、コントローラ408から与えられ、子機500,600から送信された制御信号はコントローラ408へ与えられる。なお、重畳分離部409は、親機400における垂直偏波のための経路に設けられていてもよい。 The parent device 400 includes a control signal superposition and separation unit 409. The superposition and separation unit 409 superimposes the control signal transmitted to the slave units 500 and 600 on the IF signal of horizontal polarization, and separates the control signal from the IF signal transmitted from the slave units 500 and 600. The control signal transmitted to the slave units 500 and 600 is supplied from the controller 408, and the control signal transmitted from the slave units 500 and 600 is supplied to the controller 408. In addition, the superimposition separation unit 409 may be provided in a path for vertical polarization in the parent device 400.
 制御信号をIF信号に重畳することで、親機400と子機500,600との間における制御信号の伝送を、IF信号伝送のための伝送路700,800によって行うことができ、親機400と子機500,600との間の伝送路数を少なくすることができる。 By superimposing the control signal on the IF signal, transmission of the control signal between the master unit 400 and the slave units 500 and 600 can be performed by the transmission lines 700 and 800 for IF signal transmission, and the master unit 400 It is possible to reduce the number of transmission paths between and the slaves 500 and 600.
 第1子機500は、第1伝送路700を介して親機400から受信したIF信号をアップコンバートし、RF信号を得る。例えば、水平偏波のIF信号は、周波数変換器501によって、RF信号にアップコンバートされる。垂直偏波のIF信号は、周波数変換器502によって、RF信号にアップコンバートされる。 The first slave unit 500 up-converts the IF signal received from the master unit 400 via the first transmission path 700 to obtain an RF signal. For example, the horizontally polarized IF signal is upconverted by the frequency converter 501 into an RF signal. The vertically polarized IF signal is upconverted by the frequency converter 502 into an RF signal.
 また、周波数変換器501は、第1子機500において受信した水平偏波のRF信号をIF信号へダウンコンバートする機能も有し、周波数変換器502は、第1子機500において受信した垂直偏波のRF信号をIF信号へダウンコンバートする機能も有する。 The frequency converter 501 also has a function of down-converting the horizontally polarized RF signal received by the first handset 500 into an IF signal, and the frequency converter 502 receives the vertical polarization received by the first handset 500. It also has the function of down converting a wave RF signal to an IF signal.
 第1子機500は、重畳分離部503を備える。重畳分離部503は、親機400から送信されたIF信号から制御信号を分離し、親機400へ送信される制御信号を水平偏波のIF信号に重畳する。親機400へ送信される制御信号は、コントローラ530から与えられ、親機400から送信された制御信号は、コントローラ530へ与えられる。なお、重畳分離部503は、子機500における垂直偏波のための経路に設けられていてもよい。なお、コントローラ530は、例えば、CPUや記憶装置等を備えたコンピュータよりなる。 The first child device 500 includes a superposition separation unit 503. The superimposition / separation unit 503 separates the control signal from the IF signal transmitted from the parent device 400, and superimposes the control signal transmitted to the parent device 400 on the horizontally polarized IF signal. The control signal transmitted to master device 400 is provided from controller 530, and the control signal transmitted from master device 400 is provided to controller 530. Note that superimposing / separating unit 503 may be provided in a path for vertical polarization in slave unit 500. The controller 530 is, for example, a computer provided with a CPU, a storage device, and the like.
 第1子機500は、第1アンテナ515,525を備える。実施形態において、第1子機500は、複数のユニット510,520を備え、複数のユニット510,520それぞれが、第1アンテナ515,525を備える。実施形態において、複数のユニット510,520は、第1ユニット510及び第2ユニット520を含む。複数のユニット510,520の数は、3以上であってもよい。 The first handset 500 includes first antennas 515 and 525. In the embodiment, the first handset 500 includes a plurality of units 510 and 520, and each of the plurality of units 510 and 520 includes a first antenna 515 and 525. In the embodiment, the plurality of units 510 and 520 include a first unit 510 and a second unit 520. The number of units 510 and 520 may be three or more.
 第1ユニット510が備える第1アンテナ515は、水平偏波及び垂直偏波の共用アンテナである。実施形態において、第1アンテナ515は、アレイアンテナ(第1アレイアンテナ)を備える。第1アンテナ515としてのアレイアンテナは、第1受信アレイアンテナ517と第1送信アレイアンテナ519とを含む。第1受信アレイアンテナ517は、第1受信アンテナ素子517a、第2受信アンテナ素子517b、第3受信アンテナ素子517c、第4受信アンテナ素子517dを備える。第1送信アレイアンテナ519は、第1送信アンテナ素子519a、第2送信アンテナ素子519b、第3送信アンテナ素子519c、第4送信アンテナ素子519dを備える。各アンテナ素子517a~517d,519a~519dは、水平偏波及び垂直偏波の共用アンテナ素子である。 The first antenna 515 included in the first unit 510 is a shared antenna of horizontal polarization and vertical polarization. In an embodiment, the first antenna 515 comprises an array antenna (first array antenna). The array antenna as the first antenna 515 includes a first receiving array antenna 517 and a first transmitting array antenna 519. The first reception array antenna 517 includes a first reception antenna element 517a, a second reception antenna element 517b, a third reception antenna element 517c, and a fourth reception antenna element 517d. The first transmitting array antenna 519 includes a first transmitting antenna element 519a, a second transmitting antenna element 519b, a third transmitting antenna element 519c, and a fourth transmitting antenna element 519d. Each of the antenna elements 517a to 517d and 519a to 519d is a shared antenna element of horizontal polarization and vertical polarization.
 第1ユニット510は、RF信号の合成分配器511a,511bを備える。合成分配器511aは、水平偏波のRF信号の分配と合成をする。例えば、送信用の水平偏波のRF信号は、合成分配器511aによって、4分配され、4つのトランシーバ513a,513b,513c,513dを介して、4つの送信アンテナ素子519a,519b,519c,519dに与えられる。送信用の垂直偏波のRF信号は、合成分配器511bよって、4分配され、4つのトランシーバ513a,513b,513c,513dを介して、4つの送信アンテナ素子519a,519b,519c,519dに与えられる。 The first unit 510 includes RF signal combining / dividing devices 511a and 511b. The combiner / splitter 511a splits and combines horizontally polarized RF signals. For example, the RF signal of horizontal polarization for transmission is divided into four by the combiner / splitter 511a, and is transmitted to four transmit antenna elements 519a, 519b, 519c, 519d via four transceivers 513a, 513b, 513c, 513d. Given. The vertically polarized RF signal for transmission is divided into four by the combiner / splitter 511b, and provided to the four transmit antenna elements 519a, 519b, 519c, 519d via the four transceivers 513a, 513b, 513c, 513d. .
 4つの受信アンテナ素子517a,517b,517c,517dによって受信された水平偏波のRF信号は、4つのトランシーバ513a,513b,513c,513dを介して、合成分配器511aに与えられ、合成される。4つの受信アンテナ素子517a,517b,517c,517dによって受信された垂直偏波のRF信号は、4つのトランシーバ513a,513b,513c,513dを介して、合成分配器511bに与えられ、合成される。 The horizontally polarized RF signals received by the four receive antenna elements 517a, 517b, 517c, 517d are applied to the combiner / splitter 511a via the four transceivers 513a, 513b, 513c, 513d and combined. The vertically polarized RF signals received by the four receive antenna elements 517a, 517b, 517c, 517d are applied to the combiner / splitter 511b via the four transceivers 513a, 513b, 513c, 513d and combined.
 図4に示すように、トランシーバ513a,513b,513c,513dは、送信系550と、受信系560と、を備える。送信系550と受信系560とはスイッチ540によって時分割にて切り替えられる。 As shown in FIG. 4, the transceivers 513 a, 513 b, 513 c, and 513 d include a transmission system 550 and a reception system 560. The transmission system 550 and the reception system 560 are switched by the switch 540 in a time division manner.
 送信系550は、送信されるRF信号を増幅する増幅器(パワーアンプ)551を備える。移動局本体201から子機500までの伝送による信号減衰があっても、増幅器551によってRF信号を増幅することで、信号減衰を補うことができる。送信系550は、振幅調整器553と位相器555も備える。各トランシーバ513a,513b,513c,513dにおいて、RF信号の振幅と位相を調整することで、送信用のビームの指向性を調整することができる。 The transmission system 550 includes an amplifier (power amplifier) 551 that amplifies the RF signal to be transmitted. Even if there is signal attenuation due to the transmission from the mobile station main body 201 to the child device 500, the signal attenuation can be compensated by amplifying the RF signal by the amplifier 551. The transmission system 550 also includes an amplitude adjuster 553 and a phase shifter 555. The directivity of the transmission beam can be adjusted by adjusting the amplitude and phase of the RF signal in each of the transceivers 513a, 513b, 513c, and 513d.
 受信系560は、増幅器(ローノイズアンプ)556を備える。増幅器556によって、子機500から移動局本体201までの信号伝送による信号減衰を補うことができる。受信系560は、振幅調整器563と位相器565も備える。各トランシーバ513a,513b,513c,513dにおいて、RF信号の振幅と位相を調整することで、受信用のビームの指向性を調整することができる。 The reception system 560 includes an amplifier (low noise amplifier) 556. The amplifier 556 can compensate for signal attenuation due to signal transmission from the slave unit 500 to the mobile station main body 201. The reception system 560 also includes an amplitude adjuster 563 and a phase shifter 565. The directivity of the receiving beam can be adjusted by adjusting the amplitude and phase of the RF signal in each of the transceivers 513a, 513b, 513c, and 513d.
 スイッチ540、振幅調整器553,563、位相器555,565、は、子機500が備えるコントローラ530によって制御される。コントローラ530による制御については後述する。 The switch 540, the amplitude adjusters 553 and 563, and the phase shifters 555 and 565 are controlled by the controller 530 included in the slave unit 500. The control by the controller 530 will be described later.
 第2ユニット520は、第1ユニット510と同様の構成を備える。第2ユニット520が備える第1アンテナ525も、第1ユニット510が備える第1アンテナ515と同様である。すなわち、第1アンテナ525は、アレイアンテナを備える。第1アンテナ525としてのアレイアンテナは、第1受信アレイアンテナ527と第1送信アレイアンテナ529とを含む。第1受信アレイアンテナ527は、第1受信アンテナ素子527a、第2受信アンテナ素子527b、第3受信アンテナ素子527c、第4受信アンテナ素子527dを備える。第1送信アレイアンテナ529は、第1送信アンテナ素子529a、第2送信アンテナ素子529b、第3送信アンテナ素子529c、第4送信アンテナ素子529dを備える。各アンテナ素子527a~527d,529a~529dは、水平偏波及び垂直偏波の共用アンテナ素子である。 The second unit 520 has the same configuration as the first unit 510. The first antenna 525 included in the second unit 520 is also similar to the first antenna 515 included in the first unit 510. That is, the first antenna 525 includes an array antenna. The array antenna as the first antenna 525 includes a first receiving array antenna 527 and a first transmitting array antenna 529. The first reception array antenna 527 includes a first reception antenna element 527a, a second reception antenna element 527b, a third reception antenna element 527c, and a fourth reception antenna element 527d. The first transmitting array antenna 529 includes a first transmitting antenna element 529a, a second transmitting antenna element 529b, a third transmitting antenna element 529c, and a fourth transmitting antenna element 529d. Each of the antenna elements 527a to 527d and 529a to 529d is a shared antenna element of horizontal polarization and vertical polarization.
 第2ユニット520は、RF信号の合成分配器521a,521bを備える。合成分配器521aは、水平偏波のRF信号の分配と合成をする。例えば、送信用の水平偏波のRF信号は、合成分配器521aによって、4分配され、4つのトランシーバ523a,523b,523c,523dを介して、4つの送信アンテナ素子529a,529b,529c,529dに与えられる。送信用の垂直偏波のRF信号は、合成分配器521bよって、4分配され、4つのトランシーバ523a,523b,523c,523dを介して、4つの送信アンテナ素子529a,529b,529c,529dに与えられる。 The second unit 520 includes an RF signal combiner / splitter 521a, 521b. The combiner / splitter 521a splits and combines horizontally polarized RF signals. For example, the RF signal of horizontal polarization for transmission is divided into four by the combiner / splitter 521a, and is transmitted to the four transmit antenna elements 529a, 529b, 529c, 529d via the four transceivers 523a, 523b, 523c, 523d. Given. The vertically polarized RF signal for transmission is divided into four by the combiner / splitter 521b, and given to the four transmit antenna elements 529a, 529b, 529c, 529d via the four transceivers 523a, 523b, 523c, 523d. .
 4つの受信アンテナ素子527a,527b,527c,527dによって受信された水平偏波のRF信号は、4つのトランシーバ523a,523b,523c,523dを介して、合成分配器521aに与えられ、合成される。4つの受信アンテナ素子527a,527b,527c,527dによって受信された垂直偏波のRF信号は、4つのトランシーバ523a,523b,523c,523dを介して、合成分配器521bに与えられ、合成される。 The horizontally polarized RF signals received by the four receive antenna elements 527a, 527b, 527c, and 527d are supplied to the combiner / splitter 521a via the four transceivers 523a, 523b, 523c, and 523d, and then combined. The vertically polarized RF signals received by the four receive antenna elements 527a, 527b, 527c, and 527d are supplied to the combiner / splitter 521b via the four transceivers 523a, 523b, 523c, and 523d, and then combined.
 第2ユニット520のトランシーバ523a,523b,523c,523dの構成も、図4に示すとおりである。 The configuration of the transceivers 523a, 523b, 523c, 523d of the second unit 520 is also as shown in FIG.
 第1子機500は、第1ユニット510及び第2ユニット520のうち、信号送受信を担うユニットを選択する第2選択器504,505を備える。第2選択器504,505による選択は、複数のアンテナ515,525のうち、信号送受信を担うユニットの選択でもある。 The first handset 500 includes second selectors 504 and 505 for selecting a unit responsible for signal transmission and reception among the first unit 510 and the second unit 520. The selection by the second selectors 504 and 505 is also a selection of a unit responsible for signal transmission and reception among the plurality of antennas 515 and 525.
 例えば、第2選択器504は、送信用の水平偏波のRF信号を、複数の送信アレイアンテナ519,529のいずれかに与えるかを選択する。この選択は、複数の受信アレイアンテナ517,527のいずれによって受信したRF信号を、ダウンコンバートして親機400に送信するかの選択にもなっている。 For example, the second selector 504 selects which of the plurality of transmitting array antennas 519 and 529 to apply a horizontally polarized RF signal for transmission. This selection is also for selecting which of the plurality of receiving array antennas 517 and 527 down-converts the RF signal received by the antenna and transmits it to the parent device 400.
 第2選択器505は、送信用の垂直偏波のRF信号を複数の送信アレイアンテナ519,529のいずれに与えるかを選択する。この選択は、複数の受信アレイアンテナ517,527のいずれによって受信したRF信号を、ダウンコンバートして親機400に送信するかの選択にもなっている。 The second selector 505 selects which one of the plurality of transmitting array antennas 519 and 529 to apply the RF signal of vertical polarization for transmission. This selection is also for selecting which of the plurality of receiving array antennas 517 and 527 down-converts the RF signal received by the antenna and transmits it to the parent device 400.
 第2選択器504,505によって、RF信号を送受信するアレイアンテナとして第1ユニット510のアレイアンテナ517,519が選択された場合、第2選択器504,505は、水平偏波及び垂直偏波のRF信号を第1ユニット510に与える。第1ユニット510に与えられたRF信号は、第1送信アレイアンテナ519によって送信される。また、第1ユニット510によって受信されたRF信号が、IF信号にダウンコンバートされて、親機400に送信される。 When the second antennas 504 and 505 select the array antennas 517 and 519 of the first unit 510 as an array antenna for transmitting and receiving RF signals, the second selectors 504 and 505 receive horizontal polarization and vertical polarization, respectively. An RF signal is provided to the first unit 510. The RF signal provided to the first unit 510 is transmitted by the first transmitting array antenna 519. Also, the RF signal received by the first unit 510 is down-converted to an IF signal and transmitted to the parent device 400.
 第2選択器505,505によって、RF信号を送受信するアレイアンテナとして第2ユニットのアレイアンテナ517,519が選択された場合、第2選択器504,505は、水平偏波及び垂直偏波のRF信号を第2ユニット520に与える。第2ユニット520に与えられたRF信号は、第1送信アレイアンテナ529によって送信される。また、第2ユニット520によって受信されたRF信号が、IF信号にダウンコンバートされて、親機400に送信される。 When the second selectors 505 and 505 select the array antenna 517 and 519 of the second unit as an array antenna for transmitting and receiving RF signals, the second selectors 504 and 505 can generate RF of horizontally polarized waves and vertically polarized waves. A signal is provided to the second unit 520. The RF signal provided to the second unit 520 is transmitted by the first transmission array antenna 529. Also, the RF signal received by the second unit 520 is down-converted to an IF signal and transmitted to the parent device 400.
 第2選択器504,505による選択器は、第1子機500が備えるコントローラ530によって制御される。コントローラ530による制御については後述する。 The selectors by the second selectors 504 and 505 are controlled by the controller 530 included in the first handset 500. The control by the controller 530 will be described later.
 第2子機600は、第1子機500と同様の構成を備えている。ただし、第1子機500が備えているアンテナ515,525を第1アンテナ515,525と呼ぶのに対して、第2子機600が備えているアンテナ615,625を第2アンテナ615,625と呼ぶ。前述のように、アンテナ515,525,615,625は、それぞれ、アレイアンテナであり、ビームの指向性の調整が可能である。 Second handset 600 has the same configuration as first handset 500. However, while the antennas 515 and 525 included in the first handset 500 are referred to as first antennas 515 and 525, the antennas 615 and 625 included in the second handset 600 are referred to as second antennas 615 and 625. Call. As described above, the antennas 515, 525, 615, 625 are array antennas, respectively, and can adjust beam directivity.
 図5に示すように、4つのアレイアンテナ515,525,615,625は、水平面における360°の角度範囲におけるビーム形成を互いに補って担う。例えば、アレイアンテナ515は、水平面における360の角度範囲のうち、1/4の角度範囲A1内におけるビーム形成を担う。アレイアンテナ525は、他の1/4の角度範囲A2内におけるビーム形成を担う。アレイアンテナ515は、他の1/4の角度範囲B1内におけるビーム形成を担う。アレイアンテナ625は、他の1/4の角度範囲B2内におけるビーム形成を担う。各アレイアンテナ515,525,615,625は、ビーム形成を担う角度範囲A1,A2,B1,B2において、ビームの指向性を変化させることができる。ここでは、各角度範囲A1,A2,B1,B2は、90°である。図4においては、各角度範囲A1,A2,B1,B2は、互いに重複する部分はないが、互いに重複する部分があってもよい。 As shown in FIG. 5, the four array antennas 515, 525, 615, 625 compensate for the beam forming in the 360 ° angle range in the horizontal plane. For example, the array antenna 515 is responsible for beamforming within an angular range A1 of 1/4 of the 360 angular range in the horizontal plane. The array antenna 525 is responsible for beamforming within the other quarter of the angular range A2. The array antenna 515 is responsible for beamforming within the other quarter angular range B1. The array antenna 625 is responsible for beamforming within the other quarter angular range B2. Each array antenna 515, 525, 615, 625 can change the directivity of the beam in the angular range A1, A2, B1, B2 responsible for beam forming. Here, each angle range A1, A2, B1, B2 is 90 degrees. In FIG. 4, the angular ranges A1, A2, B1 and B2 do not overlap with each other, but may overlap with each other.
 2つの第1アレイアンテナ515,525を備える第1子機500は、範囲A1に範囲A2を加えた範囲Aにおけるビーム形成を担うことができる。また、2つの第2アレイアンテナ615,625を備える第2子機600は、範囲B1に範囲B2を加えた範囲Bにおけるビーム形成を担うことができる。すなわち、リモートアンテナシステム300は、水平面360°の角度範囲におけるビーム形成を、複数の子機500,600によって互いに補って担うことができる。 The first handset 500 equipped with the two first array antennas 515 and 525 can be responsible for beam forming in the range A, which is the range A1 plus the range A2. In addition, the second handset 600 including the two second array antennas 615 and 625 can be responsible for beam forming in the range B in which the range B2 is added to the range B1. That is, the remote antenna system 300 can compensate for the beam formation in the angle range of the horizontal plane 360.degree.
 図5においては、複数のアレイアンテナ515,525,615,625は、1か所に集中的に配置されている。しかし、図1に示すように、本実施形態では、建設機械10において、第1子機500と第2子機600とが分散して配置される。このため、第1子機500が備える第1アレイアンテナ515,525と第2子機600が備える第2アレイアンテナ615,625とは、分散して配置される。 In FIG. 5, the plurality of array antennas 515, 525, 615, 625 are arranged centrally in one place. However, as shown in FIG. 1, in this embodiment, in the construction machine 10, the first child device 500 and the second child device 600 are disposed in a distributed manner. For this reason, the first array antennas 515 and 525 included in the first handset 500 and the second array antennas 615 and 625 included in the second handset 600 are distributed and arranged.
 図1及び図2において、第1子機500は、旋回体14の前部右側の運転席15の上部に配置され、第2子機600は、旋回体14の後部左側に配置されている。第2アレイアンテナ615,625を備える第2子機600が、第1アレイアンテナ515,525を備える第1子機500とは異なる位置に配置されていることで、可動部16による通信の阻害を回避することができる。 In FIG. 1 and FIG. 2, the first slave unit 500 is disposed at the top of the driver seat 15 on the front right side of the swing body 14, and the second handset 600 is disposed at the rear left side of the swing body 14. The second slave unit 600 having the second array antenna 615, 625 is disposed at a different position from the first slave unit 500 having the first array antenna 515, 525 so that the communication by the movable unit 16 is blocked. It can be avoided.
 例えば、図1の第1子機500の位置(装置本体11の前部右側)に、4つのアレイアンテナ515,525,615,625が図5に示すように1か所に集中配置されている場合を想定する。この場合、基地局100が図1に示すように、装置本体11の左側前方にあると、図1の第1子機500の位置から基地局100に向かう方向に可動部16が存在する可能性が高く、通信が阻害されることがある。しかも、可動部16の可動範囲が広くなるほど、通信が阻害されやすくなる。 For example, four array antennas 515, 525, 615, 625 are centrally arranged at one position as shown in FIG. 5 at the position of the first handset 500 in FIG. 1 (the front right side of the apparatus main body 11). Assume the case. In this case, as shown in FIG. 1, when the base station 100 is on the left front of the apparatus main body 11, there is a possibility that the movable part 16 exists in the direction from the position of the first handset 500 in FIG. Communication may be hampered. Moreover, as the movable range of the movable portion 16 is wider, communication is more likely to be hindered.
 しかし、装置本体11の左側にある第2子機600からは、装置本体11の左側前方にある基地局100への良い見通しが確保できるため、可動部16による通信阻害を少なくすることができる。 However, since a good view from the second handset 600 on the left side of the device main body 11 to the base station 100 on the left front side of the device main body 11 can be secured, communication interference by the movable unit 16 can be reduced.
 すなわち、第1子機500が備えるアンテナ515,525は、主に、建設機械10の右側の範囲Aにおけるビーム形成を担い、第2子機600が備えるアンテナ515,525は、主に、建設機械10の左側の範囲B1におけるビーム形成を担う。第2子機600が備えるアンテナ615,625は、第1子機500が備えるアンテナ515,525からみて、可動部16によって遮蔽されることがある左前方の範囲B1へ向くビームを形成することができる。したがって、可動部16の位置・姿勢にかかわらず、第1子機500又は第2子機600のいずれかによって、可動部16を避けてビーム形成をすることができる。 That is, the antennas 515 and 525 included in the first handset 500 mainly perform beam forming in the range A on the right side of the construction machine 10, and the antennas 515 and 525 included in the second handset 600 mainly It is responsible for beamforming in the range B1 to the left of ten. The antennas 615 and 625 included in the second handset 600 form a beam directed to the left front area B1 that may be shielded by the movable portion 16 as viewed from the antennas 515 and 525 included in the first handset 500. it can. Therefore, regardless of the position / posture of the movable part 16, the movable part 16 can be avoided and beam formation can be performed by either the first handset 500 or the second handset 600.
 しかも、複数のアンテナ515,525,615,625は、図1に示すように、ビームを形成可能な角度範囲A1,A2,B1,B2を互いに補って、水平面における360°の角度範囲A,B内のいずれの方向へもビームの形成が可能である。この結果、旋回体14の旋回状態にかかわらず、通信可能範囲として水平面全周を常にカバーすることができる。 Moreover, as shown in FIG. 1, the plurality of antennas 515, 525, 615, 625 mutually complement the angular ranges A1, A2, B1, B2 which can form a beam, and the angular ranges A, B of 360 ° in the horizontal plane It is possible to form a beam in any of these directions. As a result, regardless of the turning state of the turning body 14, it is possible to always cover the entire horizontal surface circumference as the communicable range.
 第1子機500及び第2子機600は、建設機械10の左右方向X、前後方向Y、高さ方向Zの少なくとも一つの方向において互いに離れた位置に配置されているのが好ましい。これにより、第1子機500及び第2子機600のいずれかによって、基地局100への見通しが確保し易くなる。図1及び図2に示す例の場合、第1子機500及び第2子機600は、左右方向X、前後方向Y及び高さ方向Zの全てにおいて、互いに離れた位置に配置されており、第1子機500及び第2子機600のいずれかによって、基地局100への見通しが確保し易い。 It is preferable that the first handset 500 and the second handset 600 be disposed at mutually separated positions in at least one of the lateral direction X, the longitudinal direction Y, and the height direction Z of the construction machine 10. As a result, it is easy to secure the view to the base station 100 by either the first handset 500 or the second handset 600. In the case of the example shown in FIGS. 1 and 2, the first handset 500 and the second handset 600 are disposed apart from each other in all of the lateral direction X, the longitudinal direction Y and the height direction Z, With any of the first handset 500 and the second handset 600, it is easy to secure a view to the base station 100.
 リモートアンテナシステム300においては、ビームの指向性の制御は、子機500,600の選択と、選択された子機500,600におけるユニット510,520の選択と、選択されたユニット510,520が備えるアレイアンテナ515,525,615,625によるビームの指向性の調整と、によって行われる。この制御により、水平面の360°の角度範囲におけるビームの指向性が決まる。 In remote antenna system 300, control of the directivity of the beam comprises selection of handsets 500, 600, selection of units 510, 520 in selected handsets 500, 600, and selected units 510, 520. The adjustment of the directivity of the beam by the array antenna 515, 525, 615, 625 is performed. This control determines the directivity of the beam in the 360 ° angular range of the horizontal plane.
 例えば、移動局本体201から、水平面のある方向Dに、ビームの指向性を設定すべき旨の制御信号が、親機400に与えられた場合、コントローラ408は、方向Dが、範囲A及び範囲Bのいずれに属するかを判定する。コントローラ408は、方向Dが範囲Aに属する場合には、第1子機500を選択し、方向Dが範囲Bに属する場合には、第2子機600を選択する。コントローラ408は、第1子機500を選択した場合、親機400と第1子機500との間でIF信号がやりとりされるように第1選択器406,407を制御する。コントローラ408は、第2子機600を選択した場合、親機と第2子機600との間でIF信号がやりとりされるように、第1選択器406,407を制御する。なお、ビームをどの方向に向けるかはコントローラ408によって決定されてもよい。 For example, when a control signal indicating that the directivity of the beam should be set is given to master unit 400 from mobile station main body 201 in a certain direction D in the horizontal plane, controller 408 sets direction D to a range A and a range. It is determined to which of B it belongs. The controller 408 selects the first handset 500 when the direction D belongs to the range A, and selects the second handset 600 when the direction D belongs to the range B. The controller 408 controls the first selectors 406 and 407 so that an IF signal is exchanged between the parent device 400 and the first child device 500 when the first child device 500 is selected. When the second slave unit 600 is selected, the controller 408 controls the first selectors 406 and 407 so that an IF signal is exchanged between the master unit and the second slave unit 600. Note that the direction in which the beam is directed may be determined by the controller 408.
 方向Dを示す制御信号は、伝送路700,800を介して、親機400のコントローラ408から、選択された子機500,600のコントローラ530へ送信される。第1子機500が選択された場合、第1子機500のコントローラ530は、方向Dが、範囲A1,A2のいずれに属するかを判定する。コントローラ530は、方向Dが範囲A1に属する場合には、第1ユニット510(第1アンテナ515)を選択し、方向Dが範囲A2に属する場合には、第2ユニット520(第1アンテナ525)を選択する。コントローラ530は、第1ユニット510を選択した場合、第1ユニット510によってRF信号の送受信がされるように第2選択器504,505を制御する。コントローラ530は、第2ユニット520を選択した場合、第2ユニット520によってRF信号の送受信がされるように、第2選択器504,505を制御する。 The control signal indicating the direction D is transmitted from the controller 408 of the parent device 400 to the controller 530 of the selected child device 500, 600 via the transmission paths 700 and 800. When the first handset 500 is selected, the controller 530 of the first handset 500 determines which one of the ranges A1 and A2 the direction D belongs to. The controller 530 selects the first unit 510 (first antenna 515) when the direction D belongs to the range A1, and selects the second unit 520 (first antenna 525) when the direction D belongs to the range A2. Choose When the controller 530 selects the first unit 510, the controller 530 controls the second selectors 504 and 505 to transmit and receive RF signals by the first unit 510. When the controller 530 selects the second unit 520, the controller 530 controls the second selectors 504 and 505 so that the second unit 520 transmits and receives RF signals.
 第2子機600が選択された場合、第2子機600のコントローラ530は、第1子機500のコントローラ530と同様に動作し、第1ユニット510(第2アンテナ615)又は第2ユニット520(第2アンテナ625)を選択する。 When the second handset 600 is selected, the controller 530 of the second handset 600 operates in the same manner as the controller 530 of the first handset 500, and the first unit 510 (second antenna 615) or the second unit 520. (2nd antenna 625) is selected.
 コントローラ530は、選択されたアンテナ515,525,615,625を構成するアンテナ素子に接続されたトランシーバ513a,513b,513c,513dの振幅調整器553,563及び位相器555,565を制御する。RF信号の振幅と位相を調整することで、方向Dへ向けてビームの指向性を設定することができる。 The controller 530 controls the amplitude adjusters 553, 563 and the phase shifters 555, 565 of the transceivers 513a, 513b, 513c, 513d connected to the antenna elements constituting the selected antenna 515, 525, 615, 625. By adjusting the amplitude and phase of the RF signal, the directivity of the beam can be set in the direction D.
 ここで、方向Dは、一般に、基地局100が存在する方向である。基地局100が存在する方向は、例えば、移動局200において水平方向全周において、基地局からの送信される電波の強さをスキャンし、電波が最も強い方向を、基地局の方向として決定できる。方向Dの決定の処理は、例えば、移動局本体201が備えるプロセッサによって実行される。 Here, the direction D is generally the direction in which the base station 100 exists. The direction in which the base station 100 exists can be determined, for example, by scanning the strength of radio waves transmitted from the base station all around the horizontal direction in the mobile station 200, and determining the direction in which the radio waves are strongest as the direction of the base station. . The process of determining the direction D is performed by, for example, a processor included in the mobile station body 201.
 ビームの指向性の制御は、移動局200が搭載されている旋回体14の旋回を示すデータ(以下、旋回データという)に基づいてもよい。旋回データは、例えば、旋回量(旋回角度)と旋回方向とを示す。例えば、図6Aに示すように、移動局200が、アンテナ515によって基地局100との通信を行っているときに、時計回りに90°の旋回をすべき旨の操作指令が送信されてきたものとする。この場合、移動局200は、旋回体14の旋回と同期して、ビームの指向性を反時計回りに変化させる。旋回に伴って、アンテナ515では、基地局100に向くビームが形成できなくなると、図6Bに示すように、ビームを形成するアンテナが、アンテナ515からアンテナ615に切り替わる。これにより、ビームが基地局100に向いた状態を常に維持することができる。 The control of the directivity of the beam may be based on data (hereinafter, referred to as turning data) indicating the turning of the turning body 14 on which the mobile station 200 is mounted. The turning data indicates, for example, a turning amount (turning angle) and a turning direction. For example, as shown in FIG. 6A, when the mobile station 200 is communicating with the base station 100 by the antenna 515, an operation command to transmit 90 ° clockwise has been transmitted. I assume. In this case, the mobile station 200 changes the directivity of the beam counterclockwise in synchronization with the turning of the turning body 14. When the antenna 515 can not form a beam directed to the base station 100 as it turns, the antenna forming the beam is switched from the antenna 515 to the antenna 615 as shown in FIG. 6B. Thus, it is possible to keep the beam directed to the base station 100 at all times.
 図7は、旋回データに基づく、ビーム指向性の制御手順の例を示している。ステップS11において、移動局本体201は、リモートコントロールシステム40からの操作指令を受信する。その操作指令に、旋回量及び旋回方向を示す旋回データが含まれている場合、ステップS12において、移動局本体201は、その旋回データを含む制御信号を、親機400のコントローラ408へ送信する。 FIG. 7 shows an example of a beam directivity control procedure based on turning data. In step S11, the mobile station main body 201 receives an operation command from the remote control system 40. If the operation command includes turning data indicating a turning amount and a turning direction, the mobile station main body 201 transmits a control signal including the turning data to the controller 408 of the parent device 400 in step S12.
 コントローラ408は、ステップS21において、旋回データを含む制御信号を受信すると、ステップS21において、旋回データに基づいて、子機500,600を選択する。子機500,600の選択は、旋回データに基づいて旋回体14が旋回したときにビームが向くべき方向に基づいて行われる。ステップS23において、コントローラ408は、選択した子機500,600との間で信号のやりとりが行われるように、選択器406,407を制御する。コントローラ408は、ステップS24において、旋回データを含む制御信号を、選択された子機500,600のコントローラ530へ送信する。 When the controller 408 receives the control signal including the turn data in step S21, the controller 408 selects the slave units 500 and 600 based on the turn data in step S21. The selection of the slaves 500 and 600 is made based on the direction in which the beam should be directed when the swing body 14 swings based on the swing data. In step S23, the controller 408 controls the selectors 406 and 407 such that signal exchange is performed between the selected slave units 500 and 600. At step S24, the controller 408 transmits a control signal including the turning data to the controller 530 of the selected slave unit 500, 600.
 ステップS31において、選択された子機500,600のコントローラ530は、旋回データを含む制御信号を受信する。ステップS32において、コントローラ530は、旋回データに基づいて、ユニット510,520(アンテナ515,525,615,625)を選択する。ユニット510,520(アンテナ515,525,615,625)の選択データは、選択データに基づいて旋回体が旋回したときにビームが向くべき方向に基づいて行われる。ステップS33において、コントローラ530は、選択したユニット510,520において信号のやりとりが行われるように、選択器504,505を制御する。 In step S31, the controller 530 of the selected slave unit 500, 600 receives the control signal including the turn data. In step S32, the controller 530 selects the units 510 and 520 ( antennas 515, 525, 615 and 625) based on the turning data. The selection data of the units 510, 520 ( antennas 515, 525, 615, 625) are made on the basis of the selection data on the basis of the direction in which the beam should be directed when the pivoting body pivots. In step S33, the controller 530 controls the selectors 504 and 505 such that signal exchange is performed in the selected units 510 and 520.
 ステップS34において、コントローラ530は、選択したユニット510,520のアンテナ515,525,615,625によって形成されるビームの指向性を、旋回データに基づいて調整する。 In step S34, the controller 530 adjusts the directivity of the beam formed by the antennas 515, 525, 615, 625 of the selected unit 510, 520 based on the turn data.
 旋回データに基づいてビーム指向性を制御することで、旋回体14の旋回に迅速に追従して、通信を良好に維持することができる。 By controlling the beam directivity based on the turning data, it is possible to quickly follow the turning of the turning body 14 and maintain good communication.
 図8は、子機の配置のバリエーションを示している。図8は、比較的小型の建設機械10を示している。この建設機械10も油圧ショベルである。建設機械10は、走行体13上に配置された旋回体14の前部の左右方向Xのほぼ中央に可動部16が配置されている。旋回体14の後部には運転席15が配置されている。このような建設機械10においても、図1と同様に、第1子機500は、旋回体14の前部右側に配置され、第2子機600は、旋回体の後部左側に配置されていてもよい。後部左側の第2子機600に代えて、前部左側に第2子機900が配置されていてもよい。 FIG. 8 shows a variation of the arrangement of the slaves. FIG. 8 shows a relatively small construction machine 10. This construction machine 10 is also a hydraulic shovel. In the construction machine 10, the movable portion 16 is disposed substantially at the center in the left-right direction X of the front portion of the revolving unit 14 disposed on the traveling unit 13. A driver's seat 15 is disposed at the rear of the revolving unit 14. Also in this construction machine 10, as in FIG. 1, the first handset 500 is disposed on the front right side of the swing body 14, and the second handset 600 is disposed on the rear left side of the swing body. It is also good. Instead of the second handset 600 on the rear left side, a second handset 900 may be disposed on the front left side.
 図8のように、第1子機500と第2子機600とは、旋回体14の旋回軸C1を中心として、ほぼ点対称に配置されるのが好ましい。また、第1子機500と第2子機900とは、旋回体14の旋回軸C1の位置を通る前後方向中心線C2を基準として、ほぼ線対称に配置されてもよい。図示のように、第1子機500と第2子機600,900とは、可動部16を挟んで、旋回体14の左右両側それぞれに配置されていてもよい。これらの配置によって、可動部16による通信の阻害を抑えることができる。 As shown in FIG. 8, it is preferable that the first slave unit 500 and the second slave unit 600 be disposed substantially point-symmetrically with respect to the pivot axis C1 of the pivoting body 14. In addition, the first child device 500 and the second child device 900 may be disposed substantially line-symmetrically with respect to the longitudinal centerline C2 passing through the position of the pivot axis C1 of the revolving unit 14. As illustrated, the first handset 500 and the second handsets 600 and 900 may be disposed on the left and right sides of the revolving unit 14 with the movable portion 16 interposed therebetween. By these arrangements, the obstruction of communication by the movable portion 16 can be suppressed.
 図8及び図9は、移動局200の他の実施形態を示している。前述の移動局200において、第1アンテナ515,525は、受信アンテナ517,527と送信アンテナ519,529とが分離した送受信分離型であり、第2アンテナ615,625も同様に送受信分離型である。これに対し、図8及び図9において、第1アンテナ515,525は送受信一体型であり、第2アンテナ615,625も同様に送受信一体型である。なお、図8及び図9に示す移動局200に関して、図3等を参照して前述した移動局200と同様の構成については、説明を省略する。 8 and 9 show another embodiment of the mobile station 200. FIG. In the above-described mobile station 200, the first antennas 515 and 525 are of the transmission / reception separation type in which the reception antennas 517 and 527 and the transmission antennas 519 and 529 are separated, and the second antennas 615 and 625 are of transmission / reception separation type as well. . On the other hand, in FIGS. 8 and 9, the first antennas 515 and 525 are integrated with transmission and reception, and the second antennas 615 and 625 are also integrated with transmission and reception. Descriptions of configurations of the mobile station 200 shown in FIGS. 8 and 9 that are similar to those of the mobile station 200 described above with reference to FIG. 3 and the like will be omitted.
 第1ユニット510が備える第1アンテナ515は、アレイアンテナ(第1アレイアンテナ)である。第1アンテナ515としてのアレイアンテナは、第1アンテナ素子515a、第2アンテナ素子515b、第3アンテナ素子515c、第4アンテナ素子515dを備える。各アンテナ素子515a~515dは、水平偏波及び垂直偏波の共用アンテナ素子である。 The first antenna 515 included in the first unit 510 is an array antenna (first array antenna). The array antenna as the first antenna 515 includes a first antenna element 515a, a second antenna element 515b, a third antenna element 515c, and a fourth antenna element 515d. Each of the antenna elements 515a to 515d is a shared antenna element of horizontal polarization and vertical polarization.
 第1ユニット510において、合成分配器511aによって4分配された送信用水平偏波RF信号は、4つのトランシーバ513a,513b,513c,513dを介して、4つのアンテナ素子515a,515b,515c,515dに与えられる。合成分配器511bによって4分配された送信用垂直偏波RF信号は、4つのトランシーバ513a,513b,513c,513dを介して、4つのアンテナ素子515a,515b,515c,515dに与えられる。 In the first unit 510, the horizontally polarized RF signal for transmission, which is divided into four by the combination distributor 511a, is transmitted to four antenna elements 515a, 515b, 515c, 515d via four transceivers 513a, 513b, 513c, 513d. Given. The vertically polarized RF signals for transmission, which are divided into four by the combination distributor 511b, are supplied to four antenna elements 515a, 515b, 515c, 515d via the four transceivers 513a, 513b, 513c, 513d.
 4つアンテナ素子515a,515b,515c,515dによって受信された水平偏波RF信号は、4つのトランシーバ513a,513b,513c,513dを介して、合成分配器511aに与えられ、合成される。4つのアンテナ素子515a,515b,515c,515dによって受信された垂直偏波RF信号は、4つのトランシーバ513a,513b,513c,513dを介して、合成分配器511bに与えられ、合成される。 The horizontally polarized RF signals received by the four antenna elements 515a, 515b, 515c, 515d are supplied to the combining / distributing device 511a via the four transceivers 513a, 513b, 513c, 513d and combined. The vertically polarized RF signals received by the four antenna elements 515a, 515b, 515c, 515d are provided to the combining / distributing device 511b via the four transceivers 513a, 513b, 513c, 513d and combined.
 図10に示すように、トランシーバ513a,513b,513c,513dの送信系550と受信系560とは、スイッチ540a及びスイッチ540bによって時分割にて切り替えられる。スイッチ540a及びスイッチ540bはコントローラ530によって制御される。 As shown in FIG. 10, the transmission system 550 and the reception system 560 of the transceivers 513a, 513b, 513c, 513d are switched in time division by the switch 540a and the switch 540b. The switch 540 a and the switch 540 b are controlled by the controller 530.
 図8及び図9に示す実施形態においても、第2ユニット520は、第1ユニット510と同様の構成を備える。第2ユニット520が備える第1アンテナ525も、第1ユニット510が備える第1アンテナ515と同様である。すなわち、第1アンテナ525は、アレイアンテナである。第1アンテナ525としてのアレイアンテナは、第1アンテナ素子525a、第2アンテナ素子525b、第3アンテナ素子525c、第4アンテナ素子525dを備える。各アンテナ素子525a~525dは、水平偏波及び垂直偏波の共用アンテナ素子である。 Also in the embodiment shown in FIGS. 8 and 9, the second unit 520 has the same configuration as the first unit 510. The first antenna 525 included in the second unit 520 is also similar to the first antenna 515 included in the first unit 510. That is, the first antenna 525 is an array antenna. The array antenna as the first antenna 525 includes a first antenna element 525a, a second antenna element 525b, a third antenna element 525c, and a fourth antenna element 525d. Each of the antenna elements 525a to 525d is a shared antenna element of horizontal polarization and vertical polarization.
 第2ユニット520において、合成分配器521aによって4分配された送信用水平偏波RF信号は、4つのトランシーバ523a,523b,523c,523dを介して、4つのアンテナ素子525a,525b,525c,525dに与えられる。合成分配器521bによって4分配された送信用垂直偏波RF信号は、4つのトランシーバ523a,523b,523c,523dを介して、4つのアンテナ素子525a,525b,525c,525dに与えられる。 In the second unit 520, the horizontally polarized RF signal for transmission divided by four by the combining / distributing device 521a is transmitted to four antenna elements 525a, 525b, 525c, 525d via four transceivers 523a, 523b, 523c, 523d. Given. The vertically polarized RF signals for transmission divided into four by the combining / distributing device 521b are applied to four antenna elements 525a, 525b, 525c, 525d via four transceivers 523a, 523b, 523c, 523d.
 4つアンテナ素子525a,525b,525c,525dによって受信された水平偏波RF信号は、4つのトランシーバ523a,523b,523c,523dを介して、合成分配器521aに与えられ、合成される。4つのアンテナ素子525a,525b,525c,525dによって受信された垂直偏波RF信号は、4つのトランシーバ523a,523b,523c,523dを介して、合成分配器521bに与えられ、合成される。 The horizontally polarized RF signals received by the four antenna elements 525a, 525b, 525c, 525d are applied to the combining / distributing device 521a via the four transceivers 523a, 523b, 523c, 523d and combined. The vertically polarized RF signals received by the four antenna elements 525a, 525b, 525c, and 525d are provided to the combining and distributing device 521b via the four transceivers 523a, 523b, 523c, and 523d, and combined.
 第2ユニット520のトランシーバ523a,523b,523c,523dの構成も、図10に示すとおりである。 The configurations of the transceivers 523a, 523b, 523c, and 523d of the second unit 520 are also as shown in FIG.
 第2選択器504は、送信用の水平偏波のRF信号を、複数のアレイアンテナ515,525のいずれかに与えるかを選択する。この選択は、複数のアレイアンテナ515,525のいずれによって受信したRF信号を、ダウンコンバートして親機400に送信するかの選択にもなっている。 The second selector 504 selects which of the plurality of array antennas 515 and 525 to apply the RF signal of horizontal polarization for transmission. This selection is also a selection of which of the plurality of array antennas 515 and 525 down-converts and transmits the RF signal received to the master unit 400.
 第2選択器505は、送信用の垂直偏波のRF信号を複数のアレイアンテナ515,525のいずれに与えるかを選択する。この選択は、複数のアレイアンテナ515,525のいずれによって受信したRF信号を、ダウンコンバートして親機400に送信するかの選択にもなっている。 The second selector 505 selects which of the plurality of array antennas 515 and 525 to apply a vertically polarized RF signal for transmission to. This selection is also a selection of which of the plurality of array antennas 515 and 525 down-converts and transmits the RF signal received to the master unit 400.
 第2選択器504,505によって、RF信号を送受信するアレイアンテナとして第1ユニット510のアレイアンテナ515が選択された場合、第2選択器504,505は、水平偏波及び垂直偏波のRF信号を第1ユニット510に与える。第1ユニット510に与えられたRF信号は、第1アレイアンテナ515によって送信される。また、第1ユニット510によって受信されたRF信号が、IF信号にダウンコンバートされて、親機400に送信される。 When the second selectors 504 and 505 select the array antenna 515 of the first unit 510 as an array antenna for transmitting and receiving RF signals, the second selectors 504 and 505 are RF signals of horizontal polarization and vertical polarization. To the first unit 510. The RF signal provided to the first unit 510 is transmitted by the first array antenna 515. Also, the RF signal received by the first unit 510 is down-converted to an IF signal and transmitted to the parent device 400.
 第2選択器505,505によって、RF信号を送受信するアレイアンテナとして第2ユニットのアレイアンテナ525が選択された場合、第2選択器504,505は、水平偏波及び垂直偏波のRF信号を第2ユニット520に与える。第2ユニット520に与えられたRF信号は、第1アレイアンテナ525によって送信される。また、第2ユニット520によって受信されたRF信号が、IF信号にダウンコンバートされて、親機400に送信される。 If the second selectors 505 and 505 select the array antenna 525 of the second unit as an array antenna for transmitting and receiving RF signals, the second selectors 504 and 505 generate RF signals of horizontal polarization and vertical polarization. The second unit 520 is provided. The RF signal provided to the second unit 520 is transmitted by the first array antenna 525. Also, the RF signal received by the second unit 520 is down-converted to an IF signal and transmitted to the parent device 400.
 第2子機600は、第1子機500と同様の構成を備えている。ここでも、第1子機500が備えているアンテナ515,525を第1アンテナ515,525と呼ぶのに対して、第2子機600が備えているアンテナ615,625を第2アンテナ615,625と呼ぶ。前述のように、アンテナ515,525,615,625は、それぞれ、アレイアンテナであり、ビームの指向性の調整が可能である。 Second handset 600 has the same configuration as first handset 500. Here, while the antennas 515 and 525 included in the first handset 500 are referred to as first antennas 515 and 525, the antennas 615 and 625 included in the second handset 600 are referred to as second antennas 615, 625. Call it As described above, the antennas 515, 525, 615, 625 are array antennas, respectively, and can adjust beam directivity.
[3.付記]
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
[3. Appendix]
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown by the scope of the claims, not the meaning described above, and is intended to include the meanings equivalent to the scope of the claims and all modifications within the scope.
10 装置(建設機械)
11 装置本体
13 走行体
14 旋回体
15 運転席
16 可動部(作業機)
17 ブーム
18 アーム
19 バケット
30 カメラ
40 リモートコントロールシステム
100 基地局
200 移動局
201 移動局本体
300 リモートアンテナシステム
360 水平面
400 親機
401 水平偏波端子
402 垂直偏波端子
403 制御端子
404 周波数変換器
405 周波数変換器
406 第1選択器
407 第1選択器
408 コントローラ
409 重畳分離部
500 第1子機
501 第1周波数変換器
502 第2周波数変換器
503 重畳分離部
504 第2選択器
505 第2選択器
510 第1ユニット
511a 合成分配器
511b 合成分配器
513a トランシーバ
513b トランシーバ
513c トランシーバ
513d トランシーバ
515  第1アンテナ(アレイアンテナ)
515a 第1アンテナ素子
515b 第2アンテナ素子
515c 第3アンテナ素子
515d 第4アンテナ素子
517  第1アレイアンテナ(第1受信アレイアンテナ)
517a 第1受信アンテナ素子
517b 第2受信アンテナ素子
517c 第3受信アンテナ素子
517d 第4受信アンテナ素子
519  第1アレイアンテナ(第1送信アレイアンテナ)
519a 第1送信アンテナ素子
519b 第2送信アンテナ素子
519c 第3送信アンテナ素子
519d 第4送信アンテナ素子
520 第2ユニット
521a 合成分配器
521b 合成分配器
523a トランシーバ
523b トランシーバ
523c トランシーバ
523d トランシーバ
525  第1アンテナ(アレイアンテナ)
525a 第1アンテナ素子
525b 第2アンテナ素子
525c 第3アンテナ素子
525d 第4アンテナ素子
527  第1アレイアンテナ(第1受信アレイアンテナ)
527a 第1受信アンテナ素子
527b 第2受信アンテナ素子
527c 第3受信アンテナ素子
527d 第4受信アンテナ素子
529  第1アレイアンテナ(第1送信アレイアンテナ)
529a 第1送信アンテナ素子
529b 第2送信アンテナ素子
529c 第3送信アンテナ素子
529d 第4送信アンテナ素子
530 コントローラ
540,540a,540b スイッチ
550 送信系
551 増幅器(パワーアンプ)
553 振幅調整器
555 位相器
560 受信系
556 増幅器(ローノイズアンプ)560 受信系
563 振幅調整器
565 位相器
600 第2子機
615 第2アンテナ(アレイアンテナ)
625 第2アンテナ(アレイアンテナ)
700 第1伝送路
800 第2伝送路
900 第2子機
10 equipment (construction machinery)
11 Device Body 13 Traveling Body 14 Rotating Body 15 Driver Seat 16 Movable Part (Working Machine)
Reference Signs List 17 boom 18 arm 19 bucket 30 camera 40 remote control system 100 base station 200 mobile station 201 mobile station main body 300 remote antenna system 360 horizontal plane 400 master polarization terminal 402 horizontal polarization terminal 402 vertical polarization terminal 403 control terminal 404 frequency converter 405 frequency Converter 406 First selector 407 First selector 408 Controller 409 Superposition separation unit 500 First slave unit 501 First frequency converter 502 Second frequency converter 503 Superposition separation unit 504 Second selector 505 Second selector 510 First unit 511a combining distributor 511b combining distributor 513a transceiver 513b transceiver 513c transceiver 513d transceiver 515 first antenna (array antenna)
515a first antenna element 515b second antenna element 515c third antenna element 515d fourth antenna element 517 first array antenna (first receiving array antenna)
517a first reception antenna element 517b second reception antenna element 517c third reception antenna element 517d fourth reception antenna element 519 first array antenna (first transmission array antenna)
519a first transmitting antenna element 519b second transmitting antenna element 519c third transmitting antenna element 519d fourth transmitting antenna element 520 second unit 521a combining distributor 521b combining distributor 523a transceiver 523b transceiver 523c transceiver 523d transceiver 525 first antenna (array antenna)
525a first antenna element 525b second antenna element 525c third antenna element 525d fourth antenna element 527 first array antenna (first receiving array antenna)
527a first receive antenna element 527b second receive antenna element 527c third receive antenna element 527d fourth receive antenna element 529 first array antenna (first transmit array antenna)
529a first transmission antenna element 529b second transmission antenna element 529c third transmission antenna element 529d fourth transmission antenna element 530 controller 540, 540a, 540b switch 550 transmission system 551 amplifier (power amplifier)
553 Amplitude adjuster 555 Phase shifter 560 Receiver 556 Amplifier (low noise amplifier) 560 Receiver 563 Amplitude adjuster 565 Phase shifter 600 Second slave 615 Second antenna (array antenna)
625 Second antenna (array antenna)
700 1st transmission line 800 2nd transmission line 900 2nd child machine

Claims (15)

  1.  移動可能な装置本体と前記装置本体に設けられた可動部とを備える装置に搭載される移動局であって、
     前記装置本体に配置される第1アンテナと、
     前記装置本体において前記第1アンテナとは異なる位置に配置される第2アンテナであって、前記第1アンテナからみて前記可動部によって遮蔽されることがある範囲へ向くビームを形成する第2アンテナと、
    を備える移動局。
    A mobile station mounted on a device comprising a movable device body and a movable part provided in the device body,
    A first antenna disposed in the device body;
    A second antenna disposed at a position different from the first antenna in the apparatus main body, the second antenna forming a beam directed to a range which may be shielded by the movable portion as viewed from the first antenna; ,
    Mobile station with
  2.  無線周波数信号を出力する移動局本体に接続される親機と、
     前記第1アンテナを備える第1子機と、
     前記親機と前記第1子機とを接続する第1伝送路と、
     前記第2アンテナを備える第2子機と、
     前記親機と前記第2子機とを接続する第2伝送路と、
    を備える請求項1に記載の移動局。
    A master unit connected to a mobile station body which outputs a radio frequency signal;
    A first handset comprising the first antenna;
    A first transmission path connecting the master unit and the first slave unit;
    A second handset including the second antenna;
    A second transmission path connecting the master unit and the second slave unit;
    The mobile station according to claim 1, comprising
  3.  前記親機は、前記移動局本体から受信した前記無線周波数信号を中間周波数信号に変換し、前記中間周波数信号を前記第1伝送路又は前記第2伝送路へ出力し、
     前記第1子機は、前記第1伝送路を介して前記親機から受信した前記中間周波数信号を無線周波数信号に変換し、前記無線周波数信号のビームを前記第1アンテナによって形成し、
     前記第2子機は、前記第2伝送路を介して前記親機から受信した前記中間周波数信号を無線周波数信号に変換し、前記無線周波数信号のビームを前記第2アンテナによって形成する
     請求項2に記載の移動局。
    The base unit converts the radio frequency signal received from the mobile station body into an intermediate frequency signal, and outputs the intermediate frequency signal to the first transmission path or the second transmission path.
    The first slave unit converts the intermediate frequency signal received from the master unit via the first transmission path into a radio frequency signal, and forms a beam of the radio frequency signal by the first antenna.
    The second slave unit converts the intermediate frequency signal received from the master unit via the second transmission path into a radio frequency signal, and forms a beam of the radio frequency signal by the second antenna. Mobile station as described in.
  4.  前記第1子機は、前記第1アンテナによって受信した無線周波数信号を中間周波数に変換し、前記中間周波数信号を前記第1伝送路へ出力し、
     前記第2子機は、前記第2アンテナによって受信した無線周波数信号を中間周波数に変換し、前記中間周波数信号を前記第2伝送路へ出力し、
     前記親機は、前記第1伝送路又は前記第2伝送路を介して前記第1子機又は前記第2子機から受信した前記中間周波数信号を無線周波数信号に変換し、前記無線周波数信号を前記移動局本体に出力する
     請求項2又は3に記載の移動局。
    The first child device converts a radio frequency signal received by the first antenna into an intermediate frequency, and outputs the intermediate frequency signal to the first transmission path.
    The second handset converts a radio frequency signal received by the second antenna into an intermediate frequency, and outputs the intermediate frequency signal to the second transmission path.
    The master unit converts the intermediate frequency signal received from the first handset or the second handset via the first transmission path or the second transport path into a radio frequency signal, and the radio frequency signal The mobile station according to claim 2 or 3, which outputs to the mobile station body.
  5.  前記第1子機及び前記第2子機は、それぞれ、前記無線周波数信号を増幅する増幅器を備える
     請求項2~4のいずれか1項に記載の移動局。
    The mobile station according to any one of claims 2 to 4, wherein each of the first slave unit and the second slave unit includes an amplifier for amplifying the radio frequency signal.
  6.  前記親機は、前記親機から出力される信号が与えられる子機を選択する第1選択器を備える
     請求項2~5のいずれか1項に記載の移動局。
    The mobile station according to any one of claims 2 to 5, wherein the master unit comprises a first selector for selecting a slave unit to which a signal output from the master unit is given.
  7.  前記第1アンテナ及び前記第2アンテナの少なくとも一つのアンテナは、それぞれ異なる複数の角度範囲内でビームを形成することができる複数のアレイアンテナを含み、
     前記第1子機及び前記第2子機のうち前記複数のアレイアンテナを備える子機は、前記無線周波数信号を複数のアレイアンテナのいずれに与えるかを選択する第2選択器を更に備える
     請求項6に記載の移動局。
    The at least one antenna of the first antenna and the second antenna includes a plurality of array antennas each capable of forming a beam within a plurality of different angular ranges,
    A cordless handset provided with the plurality of array antennas among the first cordless handset and the second cordless handset further comprises a second selector for selecting which of the plurality of array antennas to apply the radio frequency signal to. The mobile station according to 6.
  8.  前記複数のアレイアンテナは、それぞれ異なる複数の角度範囲内で、ビームの指向性を変化させることができる
     請求項7に記載の移動局。
    The mobile station according to claim 7, wherein the plurality of array antennas can change the directivity of a beam within a plurality of different angle ranges.
  9.  前記装置本体は、走行体と、前記走行体上において旋回する旋回体と、を備え、
     第1選択器による選択は、前記旋回体の旋回を示すデータに基づいて行われる
     請求項6に記載の移動局。
    The device body includes a traveling body, and a revolving body that pivots on the traveling body.
    The mobile station according to claim 6, wherein the selection by the first selector is performed based on data indicating the turning of the turning body.
  10.  前記装置本体は、走行体と、前記走行体上において旋回する旋回体と、を備え、
     第2選択器による選択は、前記旋回体の旋回を示すデータに基づいて行われる
     請求項7に記載の移動局。
    The device body includes a traveling body, and a revolving body that pivots on the traveling body.
    The mobile station according to claim 7, wherein the selection by the second selector is performed based on data indicating the turning of the turning body.
  11.  前記装置本体は、走行体と、前記走行体上において旋回する旋回体と、を備え、
     前記ビームの指向性の変化は、前記旋回体の旋回を示すデータに基づいて行われる
     請求項8に記載の移動局。
    The device body includes a traveling body, and a revolving body that pivots on the traveling body.
    The mobile station according to claim 8, wherein the change in directivity of the beam is performed based on data indicating the turning of the turning body.
  12.  前記第1アンテナ及び前記第2アンテナは、ミリ波又は準ミリ波用である
     請求項1~11のいずれか1項に記載の移動局。
    The mobile station according to any one of claims 1 to 11, wherein the first antenna and the second antenna are for millimeter waves or quasi-millimeter waves.
  13.  前記装置が備えるカメラによって撮影された画像データの送信に用いられる請求項1~12のいずれか1項に記載の移動局。 The mobile station according to any one of claims 1 to 12, which is used to transmit image data captured by a camera included in the device.
  14.  前記装置本体は、走行体と、前記走行体上において旋回する旋回体と、を備え、
     前記第1アンテナ及び前記第2アンテナを含む複数のアンテナが、ビームを形成可能な角度範囲を互いに補って、水平面における360°の範囲内のいずれの方向へもビームの形成が可能であるように前記旋回体に配置される
     請求項1~13のいずれか1項に記載の移動局。
    The device body includes a traveling body, and a revolving body that pivots on the traveling body.
    A plurality of antennas including the first antenna and the second antenna compensate each other for an angle range in which the beams can be formed so that the beam can be formed in any direction within a 360 ° range in the horizontal plane The mobile station according to any one of claims 1 to 13, wherein the mobile station is disposed in the revolving unit.
  15.  移動可能な装置本体と前記装置本体に設けられた可動部とを備える装置に搭載されるリモートアンテナシステムであって、
     無線周波数信号を出力する移動局本体に接続される親機と、
     前記装置本体に配置される第1アンテナを備える第1子機と、
     前記親機と前記第1子機とを接続する第1伝送路と、
     前記装置本体において前記第1アンテナとは異なる位置に配置される第2アンテナであって、前記第1アンテナからみて前記可動部によって遮蔽されることがある範囲へ向くビームを形成する第2アンテナを備える第2子機と、
     前記親機と前記第2子機とを接続する第2伝送路と、
     を備えるリモートアンテナシステム。
    A remote antenna system mounted on a device comprising a movable device body and a movable part provided on the device body, the remote antenna system comprising:
    A master unit connected to a mobile station body which outputs a radio frequency signal;
    A first handset including a first antenna disposed in the device body;
    A first transmission path connecting the master unit and the first slave unit;
    A second antenna disposed at a position different from the first antenna in the apparatus main body, the second antenna forming a beam directed to an area which may be shielded by the movable portion as viewed from the first antenna; The second child machine to be equipped,
    A second transmission path connecting the master unit and the second slave unit;
    Remote antenna system comprising:
PCT/JP2018/017548 2017-10-18 2018-05-02 Mobile station and remote antenna system WO2019077787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017201893 2017-10-18
JP2017-201893 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019077787A1 true WO2019077787A1 (en) 2019-04-25

Family

ID=66174334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017548 WO2019077787A1 (en) 2017-10-18 2018-05-02 Mobile station and remote antenna system

Country Status (1)

Country Link
WO (1) WO2019077787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153969A1 (en) * 2022-02-14 2023-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Handling blockage of communication for user equipment in industrial environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138988U (en) * 1989-04-25 1990-11-20
JPH08331660A (en) * 1995-05-26 1996-12-13 Hibino Terupa:Kk Automatic rotation tracking device
JP2005142658A (en) * 2003-11-04 2005-06-02 Hitachi Cable Ltd Antenna device for vehicle
JP2015013329A (en) * 2013-07-04 2015-01-22 キヤノン株式会社 Production apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138988U (en) * 1989-04-25 1990-11-20
JPH08331660A (en) * 1995-05-26 1996-12-13 Hibino Terupa:Kk Automatic rotation tracking device
JP2005142658A (en) * 2003-11-04 2005-06-02 Hitachi Cable Ltd Antenna device for vehicle
JP2015013329A (en) * 2013-07-04 2015-01-22 キヤノン株式会社 Production apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153969A1 (en) * 2022-02-14 2023-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Handling blockage of communication for user equipment in industrial environment

Similar Documents

Publication Publication Date Title
US11871245B2 (en) Architecture for simultaneous spectrum usage by air-to-ground and terrestrial networks
US9030363B2 (en) Method and apparatus for tilting beams in a mobile communications network
AU2014280835C1 (en) A stabilized platform for a wireless communication link
US20080293451A1 (en) Sectorisation of Cellular Radio
EP2802089B1 (en) Repeater for a wireless communication network
JP2012222523A (en) Antenna scanning device and radio communication system using the same
JP6541823B1 (en) Wireless relay system
AU2003290499A1 (en) Wireless communication system and lift system having the same
WO2019077787A1 (en) Mobile station and remote antenna system
EP3017502B1 (en) Airborne antenna system with controllable null pattern
AU2015278274B2 (en) Communication unit in a mining machine
WO2015086403A1 (en) Beam forming for industrial system
JP2014050028A (en) Radio communication device
KR100541884B1 (en) The single-unit antenna system for feedback controlling
KR101205214B1 (en) Polarization adjustable apparatus applied for mobile communications and m/w link system
JP2020136807A (en) Antenna module, mobile communication device, vehicle, switching method, and computer program
JPH09162799A (en) Base station antenna system for mobile communication
JP2000332534A (en) Construction machine and its remote operation facility
JP6476770B2 (en) Base station equipment
KR20240092555A (en) 5th generation repeater and its operating method
JP2019122015A (en) Radio communication device and controller
JP2004235841A (en) Radio antenna system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP