WO2019075983A1 - 一种快速开关脉冲激光器 - Google Patents

一种快速开关脉冲激光器 Download PDF

Info

Publication number
WO2019075983A1
WO2019075983A1 PCT/CN2018/077825 CN2018077825W WO2019075983A1 WO 2019075983 A1 WO2019075983 A1 WO 2019075983A1 CN 2018077825 W CN2018077825 W CN 2018077825W WO 2019075983 A1 WO2019075983 A1 WO 2019075983A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pulse
seed source
fast
output
Prior art date
Application number
PCT/CN2018/077825
Other languages
English (en)
French (fr)
Inventor
赵晓杰
林德教
迈克尔海恩斯
Original Assignee
英诺激光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英诺激光科技股份有限公司 filed Critical 英诺激光科技股份有限公司
Publication of WO2019075983A1 publication Critical patent/WO2019075983A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light

Definitions

  • This application is in the field of pulsed laser technology, and relates to a pulsed laser, and more particularly to a fast pulsed laser that can be used for micromachining.
  • Laser processing uses the energy of light to focus on a lens to achieve a high energy density in the focus, thereby generating thermal effects for material processing.
  • the technology has high efficiency, high precision, non-contact processing, and material-free machinery.
  • the advantages of deformation, the same as the local processing, has no effect on the non-laser irradiation part, the laser beam is easy to guide, focus, realize the direction change, and it is easy to cooperate with the numerical control system, which can process complex workpieces, which is extremely flexible. processing methods. This method has been widely used in industrial and scientific research fields, and has opened up broad prospects for high-quality, high-efficiency and environmentally-friendly processing technologies.
  • the conventional pulse laser modulation method mainly includes pump modulation and acousto-optic modulation (AOM) technology, wherein pump modulation is a method of directly modulating pump light, and the method is direct, the device structure is simple, and the optical loss is Small, but due to its long response time, the speed of the pass is slow, generally tens of microseconds. Therefore, direct pump modulation techniques generally cannot meet the requirements of laser micromachining.
  • Acousto-optic modulation technology (AOM) is an external modulation technique.
  • the laser output passes through the AOM.
  • the gate signal gives a high-low level control through the AOM for level 1 light (light exit) or level 0 light (block, no).
  • the technical problem to be solved by the present application is that the conventional pulsed laser has a technical problem that the switching speed is slow or the switching speed and the light conversion efficiency cannot be ensured at the same time, thereby providing a rapid switching and low laser loss.
  • Fast pulse lasers are technical problems that the switching speed is slow or the switching speed and the light conversion efficiency cannot be ensured at the same time, thereby providing a rapid switching and low laser loss.
  • the present application provides a fast-stroke pulse laser, the laser includes a main oscillation power amplifier, the main oscillation power amplifier includes an interconnecting switching controller, a laser seed source, and further includes a laser seed source disposed After the laser amplification component and output mechanism.
  • the switching controller includes a gate signal control unit, the gate signal control unit controls the laser seed source to output a pulse laser when the gate signal is at a high level, and the gate signal control unit controls the The laser seed source outputs a continuous laser when the gate signal is low.
  • the laser amplifying component comprises a preamplifier and a main amplifier connected in series, the preamplifier being connected to the laser seed source or a switching controller, the main amplifier being connected to the output mechanism .
  • the laser seed source is a continuous and pulse switched laser seed source
  • the output mechanism is an optical harmonic output system
  • said continuous and pulse switched laser seed source is a semiconductor laser.
  • the laser seed source is a laser pulse seed source.
  • the switching controller further comprises an acousto-optic modulator, a continuously output single-mode laser, and a coupler, the coupler being coupled to the continuously output single-mode laser, an acousto-optic modulator, An acousto-optic modulator is coupled to the pulse seed source.
  • the laser pulse seed source is a femtosecond oscillator, a picosecond oscillator or a directly modulated nanosecond oscillator.
  • the output mechanism is a two-color beam splitter.
  • the fast-stroke pulse laser of the present application includes a main oscillation power amplifier, and the main oscillation power amplifier includes a switching controller and a laser seed source connected to each other, and further includes A laser amplifying component and an output mechanism disposed after the switching controller or laser seed source, the switching controller including a gate signal control unit.
  • the seed source output is controlled by a switching controller with a gate signal control unit, and a main oscillation power amplifier (MOPA) structure is obtained, so that the obtained pulse laser has a fast switching speed of up to sub-microsecond, and the laser loss is almost Zero, the light conversion efficiency is high, and the modulation process does not damage the laser.
  • MOPA main oscillation power amplifier
  • the fast-peng pulse laser of the present application controls the laser seed source to output a pulse laser at a gate signal, and the gating unit controls the seed source
  • the continuous laser is output when the gate signal is low.
  • the laser specifically controls the output of the seed source through the gate signal, so that the pulse laser has a fast switching speed and a low laser loss rate.
  • the process of switching the gate signal from a high level to a low level due to continuous light
  • the existence of the seed source does not occur, avoiding the Q-switch clamping due to excessive amplification self-radiation (ASE), or the first pulse is too strong to damage the laser, prolonging the life of the laser. .
  • ASE amplification self-radiation
  • the effects of different thermal lenses can also be avoided.
  • FIG. 1 is a schematic structural diagram of a main oscillation power amplifier according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural diagram of a main oscillation power amplifier according to Embodiment 2 of the present application.
  • FIG. 3 is a debugging waveform diagram of a main oscillation power amplifier according to Embodiment 2 of the present application.
  • FIG. 4 is a schematic structural diagram of a main oscillation power amplifier according to Embodiment 3 of the present application.
  • the pulse laser includes a main oscillation power amplifier (a power amplifier of a main oscillator, MOPA), and the main oscillation power amplifier includes sequential a connected switching controller 1, a laser seed source 2, a laser amplifying component, and an output mechanism 3, wherein
  • the switching controller includes a gate signal (Gate signal) control unit, the gate signal control unit generates a high-level gate signal ⁇ , controls the laser seed source 2 to output a pulsed laser, and conversely, the gate signal control unit generates a low-power
  • the flat signal ⁇ controls the laser seed source 2 to output a continuous laser.
  • the laser seed source 2 is a continuous and pulsed laser seed source or a laser high frequency pulse seed source.
  • the power amplifier (MOPA) structure of the pulsed laser main oscillator is realized by implementing the control of the seed source output by using the Gate signal, thereby obtaining a fast switching speed (sub-microsecond), laser zero. Loss of fast-going pulsed lasers.
  • MOPA power amplifier
  • the Gate signal in the process of switching the Gate signal from high level to low level, there is no situation that there is no seed source due to the existence of continuous light, so as to avoid the occurrence of Q due to excessive amplification of spontaneous emission (ASE). (Q-switch) Molding to damage the laser.
  • the laser amplifying component includes a preamplifier 4 and a main amplifier 5 which are sequentially connected, both of which are conventional laser amplifiers, and the preamplifier 4 is connected to a laser seed source 2, the main amplifier Connected to the 5 output mechanism 3, the output mechanism 3 can be an optical harmonic output system or a split output system.
  • the preamplifier 4 can be a multistage amplifier arranged in one stage or sequentially.
  • the pulse laser includes a main oscillation power amplifier (a power amplifier of a main oscillator, MOPA), and the main oscillation power amplifier includes sequential The connected switching controller 1, the laser seed source 2, the laser amplifying component and the output mechanism 3, wherein the switching controller comprises a gate signal (Gate signal) control unit.
  • MOPA main oscillation power amplifier
  • the switching controller comprises a gate signal (Gate signal) control unit.
  • the laser seed source 2 is a continuous and pulse switching laser seed source
  • the gate signal control unit is a continuous and pulse converter
  • the output mechanism 3 is an optical harmonic output system, such that The fast-going pulsed laser is a harmonic laser.
  • the continuous and pulse-switched laser seed source is a semiconductor laser that can be directly pulse-modulated.
  • the laser amplifying component includes a preamplifier 4 and a main amplifier 5 connected in series, the preamplifier 4 is connected to a laser seed source 2, and the main amplifier is connected to the output mechanism 3,
  • the infrared (IR) signal output from the main amplifier 5 is transmitted to the harmonic output system and output.
  • the preamplifier 4 can be a multistage amplifier arranged in one stage or sequentially, and the adjustment waveform of the harmonic laser is as shown in Fig. 3.
  • the laser output amplified by the laser through the laser amplifying component passes through a harmonic conversion system
  • the pulse laser at the high level of Gate can achieve high-efficiency harmonic conversion due to high peak power, thus outputting strong laser harmonics; while the continuous laser with Gate is low level due to low peak power and harmonics The conversion efficiency is also very low, and the output laser harmonics are weak, which will not affect the laser processing.
  • the pulse laser includes a main oscillation power amplifier (a power amplifier of a main oscillator, MOPA), and the main oscillation power amplifier includes sequential The connected laser seed source 2, the switching controller 1, the laser amplifying component and the output mechanism 3, wherein the switching controller comprises a gate signal (Gate signal) control unit.
  • MOPA main oscillation power amplifier
  • the switching controller comprises a gate signal (Gate signal) control unit.
  • the laser seed source 2 is a laser pulse seed source
  • the output mechanism 3 is a two-color beam splitter, such that the fast-tans pulse laser is a baseband/IR laser.
  • the switching controller 1 includes, in addition to the gate signal control unit 10, an acousto-optic modulator (AOM) 11, a continuously output single-mode laser 12, and a coupler 13, the gate signal control unit 10 and the acousto-optic modulator 11 Connected to the continuously output single-mode laser 12, and send a control signal to the continuously output single-mode laser 12 and the acousto-optic modulator 11 to perform signal control on the two, the coupler 13 and the continuous output single A mode laser 12, an acousto-optic modulator (A OM) 11 are connected, and the acousto-optic modulator 11 is connected to the pulse seed source 2.
  • AOM acousto-optic modulator
  • the coupler 13 is also connected to a laser amplifying component, which comprises a preamplifier 4 and a main amplifier 5 connected in series, the preamplifier 4 being connected to the coupler 13, the main The amplifier 5 is connected to an output mechanism 3, which may be a first-stage or sequentially arranged multi-stage amplifier, and the output mechanism 3 is a two-color beam splitter.
  • a laser amplifying component which comprises a preamplifier 4 and a main amplifier 5 connected in series, the preamplifier 4 being connected to the coupler 13, the main The amplifier 5 is connected to an output mechanism 3, which may be a first-stage or sequentially arranged multi-stage amplifier, and the output mechanism 3 is a two-color beam splitter.
  • the laser pulse seed source is any one of a femtosecond oscillator, a picosecond oscillator, or a directly modulated nanosecond oscillator.
  • the Gate signal respectively controls the continuous output (CW) of the single mode laser 12 output and the acousto-optic modulator (AOM) 11 output: when the Gate signal is high, the pulsed laser passes through the AOM output, CW single The mode laser does not emit light; when the Gate signal is low, the pulsed laser is blocked by the AOM and the continuous (CW) laser is output through the coupler.
  • the pulse output from the coupler 13 and the continuously switched signal light pass through the preamplifier 4 and the main amplifier 5, and then output a high power laser.
  • the amplifier's laser output is split by a two-color beam splitter (CW) laser and pulsed laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

一种快速开关脉冲激光器,所述脉冲激光器包括主振荡功率放大器,所述主振荡功率放大器包括相互连接的切换控制器(1)、激光种子源(2),还包括设置于所述激光种子源(2)之后的激光放大组件(4、5)和输出机构(3),所述切换控制器(1)包括门信号控制单元(10)。采用具有门信号控制单元(10)的切换控制器(1)对激光种子源(2)输出进行脉冲和连续输出切换调制,得到了一种主振荡功率放大器(MOPA)结构,使得得到的脉冲激光器开关速度快,且无额外激光损耗,光转化效率高,尤其适用于激光谐波输出。

Description

一种快速幵关脉冲激光器
[0001] 本申请是以申请号为 201710962929.6, 申请日为 2017年 10月 16日的中国专利申 请为基础, 并主张其优先权, 该申请的全部内容在此作为整体引入本申请中。
[0002] 技术领域
[0003] 本申请属于脉冲激光技术领域, 涉及一种脉冲激光器, 具体地说涉及一种可用 于微加工的快速幵关脉冲激光器。
[0004] 背景技术
[0005] 激光加工是利用光的能量经过透镜聚焦后在焦点上达到很高的能量密度, 从而 产生热效应来进行材料加工的, 该技术具有高效率、 高精度、 非接触式加工、 材料无机械变形的优点, 同吋由于是局部加工, 对非激光照射部位没有影响, 激光束易于导向、 聚焦、 实现方向变换, 极易与数控系统配合, 可对复杂工件 进行加工, 是一种极为灵活的加工方法。 该方法在工业、 科研领域都得到了广 泛应用, 为优质、 高效、 环保的加工技术幵辟了广阔的前景。
[0006] 随着工业技术的不断发展, 对激光加工的品质及加工效率都提出了更高的要求 , 对于激光微加工领域中一些要求较为严苛的加工任务来说, 普通激光器难以 完成, 但是脉冲激光 (纳秒、 皮秒、 飞秒) 由于具有更好的单色性、 发散度极 小、 功率更高, 可被广泛应用于要求严苛的工件加工, 同吋随着对微纳加工的 尺寸、 精度、 效率的要求的不断提高, 相应的对脉冲激光器的幵关吋间也提出 了更高要求。
[0007] 传统的脉冲激光器调制方式主要包括泵浦调制、 声光调制 (AOM)技术, 其中泵 浦调制是一种对泵浦光直接调制的方式, 这种方式直接、 设备结构简单, 光损 耗小, 但是由于其响应吋间较长, 导致幵关速度慢, 一般需达几十微秒。 因此 , 直接泵浦调制技术一般无法满足激光微加工的要求。 声光调制技术 (AOM) 是一种外调制技术, , 激光输出经过 AOM, 由门控(Gate)信号给出高低电平控 制通过 AOM为 1级光 (出光) 或 0级光 (挡住、 不出光) , 从而实现激光器的快 速幵关, 声光调制具有幵关吋间短 (10-lOOns) 的优点, , 但其 1级输出存在光 转化效率低的问题, 通常为 80%左右, 从而导致约 20%的激光输出损失。
[0008] 申请内容
[0009] 为此, 本申请所要解决的技术问题在于传统脉冲激光器存在幵关速度慢或幵关 速度与光转化效率无法同吋保证的技术问题, 从而提出一种幵关迅速、 激光损 耗小的快速幵关脉冲激光器。
[0010] 为解决上述技术问题, 本申请的技术方案为:
[0011] 本申请提供一种快速幵关脉冲激光器, 所述激光器包括主振荡功率放大器, 所 述主振荡功率放大器包括相互连接的切换控制器、 激光种子源, 还包括设置于 所述激光种子源之后的激光放大组件和输出机构。
[0012] 作为优选, 所述切换控制器包括门信号控制单元, 所述门信号控制单元控制所 述激光种子源在门信号为高电平吋输出脉冲激光, 所述门信号控制单元控制所 述激光种子源在门信号为低电平吋输出连续激光。
[0013] 作为优选, 所述激光放大组件包括顺次连接的前置放大器和主放大器, 所述前 置放大器与所述激光种子源或切换控制器连接, 所述主放大器与所述输出机构 连接。
[0014] 作为优选, 所述激光种子源为连续和脉冲切换激光种子源, 所述输出机构为光 学谐波输出系统。
[0015] 作为优选, 所述连续和脉冲切换激光种子源为半导体激光器。
[0016] 作为优选, 所述激光种子源为激光脉冲种子源。
[0017] 作为优选, 所述切换控制器还包括声光调制器、 连续输出的单模激光器和耦合 器, 所述耦合器与所述连续输出的单模激光器、 声光调制器连接, 所述声光调 制器与所述脉冲种子源连接。
[0018] 作为优选, 所述激光脉冲种子源为飞秒振荡器、 皮秒振荡器或直接调制的纳秒 振荡器。
[0019] 作为优选, 所述输出机构为双色分光镜。
[0020] 本申请的上述技术方案相比现有技术具有以下优点:
[0021] (1) 本申请所述的快速幵关脉冲激光器, 所述激光器包括主振荡功率放大器 , 所述主振荡功率放大器包括相互连接的切换控制器、 激光种子源, 还包括设 置于所述切换控制器或激光种子源之后的激光放大组件和输出机构, 所述切换 控制器包括门信号控制单元。 采用具有门信号控制单元的切换控制器对种子源 输出进行控制, 得到了一种主振荡功率放大器 (MOPA) 结构, 使得得到的脉冲 激光器幵关速度快, 可达亚微秒, 且激光损耗几乎为零, 光转化效率高, 调制 过程对激光器无损坏。
[0022] (2) 本申请所述的快速幵关脉冲激光器, 所述门控单元控制所述激光种子源 在门信号为高电平吋输出脉冲激光, 所述门控单元控制所述种子源在门信号为 低电平吋输出连续激光。 该激光器具体通过门信号实现对种子源输出的控制, 从而使脉冲激光器的幵关速度快, 激光损失率低, 另外, 在门信号由高电平切 换到低电平的过程中, 由于连续光的存在不会出现没有种子源的情况, 避免了 由于放大自辐射 (ASE) 过强而导致 Q幵关 (Q-switch) 锁模、 或者首脉冲过强 从而损坏激光器, 延长了激光器的使用寿命。 对于采用固体放大器的场合, 还 可以避免热透镜不同造成的影响。
[0023] 附图说明
[0024] 为了使本申请的内容更容易被清楚的理解, 下面根据本申请的具体实施例并结 合附图, 对本申请作进一步详细的说明, 其中
[0025] 图 1 是本申请实施例 1所述的主振荡功率放大器的结构示意图;
[0026] 图 2 是本申请实施例 2所述的主振荡功率放大器的结构示意图;
[0027] 图 3 是本申请实施例 2所述的主振荡功率放大器的调试波形图;
[0028] 图 4 是本申请实施例 3所述的主振荡功率放大器的结构示意图。
[0029] 图中附图标记表示为: 1-切换控制器; 10-门信号控制单元; 11-声光调制器; 1
2-连续输出的单模激光器; 13-耦合器; 2-激光种子源; 3-输出机构; 4-前置放大 器; 5-主放大器。
[0030] 具体实施方式
[0031] 实施例 1
[0032] 本实施例提供一种快速幵关脉冲激光器, 如图 1所示, 所述脉冲激光器包括主 振荡功率放大器 (主振荡器的功率放大器, MOPA) , 所述主振荡功率放大器包 括顺次连接的切换控制器 1、 激光种子源 2、 激光放大组件和输出机构 3, 其中, 所述切换控制器包括门信号 (Gate信号) 控制单元, 所述门信号控制单元在产生 高电平门信号吋, 控制激光种子源 2输出脉冲激光, 相反地, 门信号控制单元在 产生低电平信号吋控制所述激光种子源 2输出连续激光。 所述激光种子源 2为连 续和脉冲激光种子源或激光高频脉冲种子源。
[0033] 本实施例通过采用 Gate信号实现对种子源输出的控制来实现对脉冲激光器主振 荡器的功率放大器 (MOPA) 结构, 从而得到了一种幵关速度快 (亚微秒) , 激 光零损耗的快速幵关脉冲激光器。 同吋, 在 Gate信号从高电平到低电平切换过程 中, 由于连续光的存在不会出现没有种子源的情况, 从而避免出现由于放大自 发辐射 (ASE) 过强而可能导致 Q幵关 (Q-switch) 锁模从而损坏激光器。
[0034] 进一步地, 所述激光放大组件包括顺次连接的前置放大器 4和主放大器 5, 二者 均为常规激光放大器, 所述前置放大器 4与激光种子源 2连接, 所述主放大器与 5 输出机构 3连接, 所述输出机构 3可为光学谐波输出系统或分光输出系统。 所述 前置放大器 4可以为一级或者顺次设置的多级放大器。
[0035] 实施例 2
[0036] 本实施例提供一种快速幵关脉冲激光器, 如图 2所示, 所述脉冲激光器包括主 振荡功率放大器 (主振荡器的功率放大器, MOPA) , 所述主振荡功率放大器包 括顺次连接的切换控制器 1、 激光种子源 2、 激光放大组件和输出机构 3, 其中, 所述切换控制器包括门信号 (Gate信号) 控制单元。
[0037] 本实施例中, 所述激光种子源 2为连续和脉冲切换激光种子源, 所述门信号控 制单元为连续和脉冲转换器, 所述输出机构 3为光学谐波输出系统, 使得所述快 速幵关脉冲激光器为谐波激光器, 具体地, 所述连续和脉冲切换激光种子源为 可以直接进行脉冲调制的半导体激光器。
[0038] 进一步地, 所述激光放大组件包括顺次连接的前置放大器 4和主放大器 5, 所述 前置放大器 4与激光种子源 2连接, 所述主放大器与 5与输出机构 3连接, 本实施 例中, 主放大器 5输出的红外 (IR) 信号传输至谐波输出系统后输出。 所述前置 放大器 4可以为一级或者顺次设置的多级放大器, 所述谐波激光器的调节波形图 如图 3所示。
[0039] 进一步地, 激光经过所述的激光放大组件放大后的激光输出经过谐波转换系统 , 在 Gate高电平吋的脉冲激光由于峰值功率高可以实现高效率的谐波转换, 从而 输出较强的激光谐波; 而在 Gate为低电平吋的连续激光由于峰值功率低其谐波转 换效率也相应很低, 其输出的激光谐波较弱, 不会对激光加工造成影响。
[0040] 实施例 3
[0041] 本实施例提供一种快速幵关脉冲激光器, 如图 4所示, 所述脉冲激光器包括主 振荡功率放大器 (主振荡器的功率放大器, MOPA) , 所述主振荡功率放大器包 括顺次连接的激光种子源 2、 切换控制器 1、 激光放大组件和输出机构 3, 其中, 所述切换控制器包括门信号 (Gate信号) 控制单元。
[0042] 本实施例中, 所述激光种子源 2为激光脉冲种子源, 所述输出机构 3为双色分光 镜, 使得所述快速幵关脉冲激光器为基频 /IR激光器。 所述切换控制器 1除门信号 控制单元 10外, 还包括声光调制器 (AOM) 11、 连续输出的单模激光器 12和耦 合器 13, 所述门信号控制单元 10与声光调制器 11和连续输出的单模激光器 12连 接, 向连续输出的单模激光器 12和声光调制器 11发送控制信号, 对二者起到信 号控制的作用, 所述耦合器 13与所述连续输出的单模激光器 12、 声光调制器 (A OM) 11连接, 所述声光调制器 11与所述脉冲种子源 2连接。 所述耦合器 13同吋 还与激光放大组件连接, 所述激光放大组件包括顺次连接的前置放大器 4和主放 大器 5, 所述前置放大器 4与所述耦合器 13连接, 所述主放大器 5与输出机构 3连 接, 所述前置放大器 4可以为一级或者顺次设置的多级放大器, 所述输出机构 3 为双色分光镜。
[0043] 具体地, 所述激光脉冲种子源为飞秒振荡器、 皮秒振荡器或直接调制的纳秒振 荡器中的任一种。
[0044] 进一步地, 当 Gate信号分别控制连续输出 (CW) 的单模激光器 12输出和声光 调制器 (AOM) 11输出: 当 Gate信号为高电平吋, 脉冲激光通过 AOM输出、 C W单模激光器不出光; 当 Gate信号为低电平吋, 脉冲激光被 AOM挡住而连续 (C W) 激光通过耦合器输出。 从耦合器 13输出的脉冲与连续切换的信号光再通过前 置放大器 4、 主放大器 5后输出大功率激光。 放大器激光输出通过双色分光镜分 幵连续 (CW) 激光和脉冲激光。
[0045] 显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式的限定 。 对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做出其它不 同形式的变化或变动。 这里无需也无法对所有的实施方式予以穷举。 而由此所 引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种快速幵关脉冲激光器, 其特征在于, 所述激光器包括主振荡功率 放大器, 所述主振荡功率放大器包括相互连接的切换控制器、 激光种 子源, 还包括设置于所述激光种子源之后的激光放大组件和输出机构
[权利要求 2] 根据权利要求 1所述的快速幵关脉冲激光器, 其特征在于, 所述切换 控制器包括门信号控制单元, 所述门信号控制单元控制所述激光种子 源在门信号为高电平吋输出脉冲激光, 所述门信号控制单元控制所述 激光种子源在门信号为低电平吋输出连续激光。
[权利要求 3] 根据权利要求 1或 2所述的快速幵关脉冲激光器, 其特征在于, 所述激 光放大组件包括顺次连接的前置放大器和主放大器, 所述前置放大器 与所述激光种子源连接, 所述主放大器与所述输出机构连接。
[权利要求 4] 根据权利要求 3所述的快速幵关脉冲激光器, 其特征在于, 所述激光 种子源为连续和脉冲切换激光种子源, 所述输出机构为光学谐波输出 系统。
[权利要求 5] 根据权利要求 4所述的快速幵关脉冲激光器, 其特征在于, 所述连续 和脉冲切换激光种子源为半导体激光器。
[权利要求 6] 根据权利要求 3所述的快速幵关脉冲激光器, 其特征在于, 所述激光 种子源为激光脉冲种子源。
[权利要求 7] 根据权利要求 6所述的快速幵关脉冲激光器, 其特征在于, 所述切换 控制器还包括声光调制器、 连续输出的单模激光器和耦合器, 所述耦 合器与所述激光放大组件、 连续输出的单模激光器、 声光调制器连接
, 所述声光调制器与所述脉冲种子源连接。
[权利要求 8] 根据权利要求 7所述的快速幵关脉冲激光器, 其特征在于, 所述激光 脉冲种子源为飞秒振荡器、 皮秒振荡器或直接调制的纳秒振荡器。
[权利要求 9] 根据权利要求 6-8任一项所述的快速幵关脉冲激光器, 其特征在于, 所述输出机构为双色分光镜。
PCT/CN2018/077825 2017-10-16 2018-03-02 一种快速开关脉冲激光器 WO2019075983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710962929.6 2017-10-16
CN201710962929.6A CN107508138A (zh) 2017-10-16 2017-10-16 一种快速开关脉冲激光器

Publications (1)

Publication Number Publication Date
WO2019075983A1 true WO2019075983A1 (zh) 2019-04-25

Family

ID=60701774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077825 WO2019075983A1 (zh) 2017-10-16 2018-03-02 一种快速开关脉冲激光器

Country Status (2)

Country Link
CN (1) CN107508138A (zh)
WO (1) WO2019075983A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107508138A (zh) * 2017-10-16 2017-12-22 英诺激光科技股份有限公司 一种快速开关脉冲激光器
US11081855B2 (en) * 2018-06-18 2021-08-03 Coherent, Inc. Laser-MOPA with burst-mode control
CN115533345B (zh) * 2022-11-24 2023-03-28 济南邦德激光股份有限公司 一种激光切割系统
CN115621831A (zh) * 2022-12-02 2023-01-17 北京盛镭科技有限公司 动态调整burst脉冲个数的控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320450A1 (en) * 2011-06-17 2012-12-20 Coherent, Inc. Fiber-mopa apparatus for delivering pulses on demand
JP2013197549A (ja) * 2012-03-22 2013-09-30 Toshiba Corp ファイバレーザ装置
CN107508138A (zh) * 2017-10-16 2017-12-22 英诺激光科技股份有限公司 一种快速开关脉冲激光器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885298B2 (en) * 2008-01-16 2011-02-08 Deep Photonics Corporation Method and apparatus for producing arbitrary pulsetrains from a harmonic fiber laser
CN101499607B (zh) * 2009-03-13 2011-01-19 深圳市明鑫激光技术有限公司 一种单频脉冲/连续双输出光纤激光器
KR101176447B1 (ko) * 2011-04-28 2012-08-30 광주과학기술원 펄스 레이저 장치 및 이를 이용한 버스트 모드, 가변 버스트 모드 제어 방법
JP5918975B2 (ja) * 2011-11-09 2016-05-18 株式会社フジクラ Mopa方式レーザ光源装置およびmopa方式レーザ制御方法
CN207664437U (zh) * 2017-10-16 2018-07-27 英诺激光科技股份有限公司 一种快速开关脉冲激光器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320450A1 (en) * 2011-06-17 2012-12-20 Coherent, Inc. Fiber-mopa apparatus for delivering pulses on demand
JP2013197549A (ja) * 2012-03-22 2013-09-30 Toshiba Corp ファイバレーザ装置
CN107508138A (zh) * 2017-10-16 2017-12-22 英诺激光科技股份有限公司 一种快速开关脉冲激光器

Also Published As

Publication number Publication date
CN107508138A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
WO2019075983A1 (zh) 一种快速开关脉冲激光器
US9450368B2 (en) Pulse laser device and burst mode using same, and method for controlling a variable burst mode
JP2009534850A (ja) 1つの主発振器に結合した複数の同期増幅器を有するレーザー装置
CN108365513A (zh) 一种激光再生放大器的脉冲稳定性控制装置及方法
CN110233414B (zh) 一种基于光纤激光器泵浦的脉冲光纤激光器
Ma et al. High-efficiency 50 W burst-mode hundred picosecond green laser
CN107086430B (zh) 一种三倍频紫外激光器
CN102510001A (zh) 二倍频绿光激光器
CN105940575A (zh) 激光光源装置以及激光器脉冲光生成方法
CN103066484A (zh) Cpa与opcpa混合式超高功率飞秒激光系统
KR102673836B1 (ko) 펄스 레이저 시스템
CN115102020A (zh) 一种脉冲激光输出控制装置及控制方法
CN111822850A (zh) 一种基于光场调控的多光束激光放大扫描加工系统及方法
CN111106520A (zh) 一种355nm激光器
CN207664437U (zh) 一种快速开关脉冲激光器
CN106229802B (zh) 一种时域形貌可控的猝发脉冲光纤放大装置
CN111048982A (zh) 一种355nm紫外光的输出方法及系统
He et al. 30 W output of short pulse duration nanosecond green laser generated by a hybrid fiber-bulk MOPA system
CN108598860B (zh) 一种皮秒激光双程两级放大装置
CN216598384U (zh) 受激布里渊散射与受激拉曼散射组合压缩超短脉冲激光器
JP2009053505A (ja) 高強度レーザーのコントラスト制御法
KR20160118723A (ko) 버스트 모드의 펄스 레이저 발생 장치
CN102664342A (zh) 光学参量啁啾脉冲放大器
CN104795719B (zh) 一种获得高能量单频激光输出的装置和方法
KR20220045379A (ko) 광섬유 루프를 이용한 펄스군 형성 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869165

Country of ref document: EP

Kind code of ref document: A1