WO2019074220A1 - Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof - Google Patents

Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof Download PDF

Info

Publication number
WO2019074220A1
WO2019074220A1 PCT/KR2018/010993 KR2018010993W WO2019074220A1 WO 2019074220 A1 WO2019074220 A1 WO 2019074220A1 KR 2018010993 W KR2018010993 W KR 2018010993W WO 2019074220 A1 WO2019074220 A1 WO 2019074220A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
battery
changed
capacity
ocv
Prior art date
Application number
PCT/KR2018/010993
Other languages
French (fr)
Korean (ko)
Inventor
홍성주
김동현
윤석진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180097417A external-priority patent/KR102683336B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/623,860 priority Critical patent/US11391779B2/en
Priority to CN201880040417.7A priority patent/CN110753849B/en
Priority to EP18865430.5A priority patent/EP3627166B1/en
Priority to JP2019538376A priority patent/JP7041800B2/en
Publication of WO2019074220A1 publication Critical patent/WO2019074220A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Definitions

  • the present invention relates to an apparatus and method for estimating a capacity of a battery, and more particularly, to an apparatus and method for estimating a capacity of a battery according to a reduction in a range of voltage used.
  • Batteries are time consuming because they are used in portable devices without an external power source such as AC power. However, if the usable time of the battery, that is, the available time, can not be predicted properly, the user may experience a great difficulty. For example, if the battery life of an electric vehicle can not be accurately predicted, the battery may be discharged during operation, causing the vehicle to halt in the middle of the road.
  • the SOC of the battery is generally expressed as a percentage of the remaining capacity of the battery with respect to the full charge capacity (FCC).
  • FCC full charge capacity
  • a representative method is a method of estimating the SOC using the current integration method. In this current integration method, the SOC is obtained by integrating the input / output current of the battery and adding / subtracting it from the initial capacity.
  • the available voltage range can be reduced from a minimum of 2.4V to a maximum of 4.0V for a battery capable of operating from a minimum of 2.0V to a maximum of 4.2V.
  • the SOC can not be reflected in the FCC calculation algorithm even though the usable capacity decreases. That is, the initial residual amount estimation is not performed due to the reduction in the use range, which causes a larger error as time passes.
  • the present invention provides a battery capacity estimating apparatus and method capable of estimating a capacity of a battery according to a change in a voltage range to be used, and a battery management apparatus and method having the same.
  • the present invention provides a battery capacity estimation apparatus and method capable of estimating a capacity according to a reduced use voltage range using an initial capacity estimation using an OCV table, and a battery management apparatus and method therefor.
  • a battery capacity estimating apparatus includes: a battery; A sensing unit connected to the battery to measure OCV of the battery; An SOC estimator connected to the sensing unit and estimating the SOC of the battery using the OCV measured from the sensing unit; A memory unit for storing data including SOC and OCV of the battery and connected to the SOC estimating unit; And an operation unit connected to the SOC estimating unit and the memory unit, for calculating the degree of SOC reduction according to the range of the operating voltage, and for outputting the changed SOC according to the changed used capacity.
  • the memory unit stores and stores a plurality of initial SOCs and a plurality of initial OCVs, and stores a plurality of changed SOCs and a plurality of changed OCVs.
  • the calculation unit calculates the capacity changed by the following equation (1).
  • X ' is the changed capacity
  • X is the initial capacity
  • a and B are the high and low capacity subtraction rates.
  • the operation unit calculates the changed SOC using Equation (2) below.
  • I ' is the changed SOC
  • I is the initial SOC
  • a and B are the high and low capacity subtraction rates.
  • a battery management apparatus includes a battery; A sensing unit connected to the battery to measure OCV of the battery; An SOC estimator connected to the sensing unit and estimating the SOC of the battery using the OCV measured from the sensing unit; A memory unit for storing data including SOC and OCV of the battery and connected to the SOC estimating unit; A calculating unit connected to the SOC estimating unit and the memory unit, for calculating a degree of SOC reduction according to a change in the operating voltage range and for outputting a changed SOC according to the changed used capacity; A control unit connected to at least one of the operation unit and the memory unit to control charging and discharging of the battery according to the state of the battery by referring to the SOC; And a switching unit provided between the battery and the load for charging / discharging the battery according to a control signal of the control unit.
  • the calculation unit calculates the changed capacity by the following equation (1), and calculates the changed SOC using the following equation (2).
  • X ' is the changed capacity
  • X is the initial capacity
  • a and B are the high and low capacity subtraction rates.
  • I ' is the changed SOC
  • I is the initial SOC
  • a and B are the high and low capacity subtraction rates.
  • a method of estimating a capacity of a battery according to a third aspect of the present invention includes: a step of measuring OCV of a battery; Estimating an initial SOC according to the measured OCV; Calculating the SOC reduction degree according to the use voltage range change and calculating the changed SOC; And calculating a changed OCV according to the changed SOC.
  • the initial SOC is estimated by matching the measured OCV with the initial OCV.
  • the step of calculating the changed SOC may include calculating a degree of SOC change according to the use voltage range change, calculating a changed capacity by subtracting the SOC from the initial capacity, and calculating the changed SOC do.
  • the changed capacity is calculated by the following equation (1).
  • X ' is the changed capacity
  • X is the initial capacity
  • a and B are the high and low capacity subtraction rates.
  • the modified SOC is calculated using the following equation (2).
  • I ' is the changed SOC
  • I is the initial SOC
  • a and B are the high and low capacity subtraction rates.
  • a battery management method includes the steps of: measuring OCV of a battery; Estimating an initial SOC according to the measured OCV; Calculating the SOC reduction degree according to the use voltage range change and calculating the changed SOC; Calculating a changed OCV according to the changed SOC; And controlling the charge / discharge of the battery according to the state of the battery with reference to the changed SOC.
  • the step of calculating the changed SOC may include calculating a degree of SOC change according to the use voltage range change, calculating a changed capacity by subtracting the SOC from the initial capacity, and calculating the changed SOC do.
  • the modified capacity is calculated by the following equation (1), and the modified SOC is calculated using the following equation (2).
  • X ' is the changed capacity
  • X is the initial capacity
  • a and B are the high and low capacity subtraction rates.
  • I ' is the changed SOC
  • I is the initial SOC
  • a and B are the high and low capacity subtraction rates.
  • the embodiments of the present invention can estimate the SOC and the capacity of the battery pack whose operating voltage range has been changed by using the OCV table according to the needs of the manufacturer mounting the battery in an automobile or the like.
  • the range of the operating voltage may be changed according to the manufacturer's request for the battery pack whose manufacture range of the battery pack is completed and the operating voltage range is set.
  • the present SOC is calculated with reference to the OCV table, Calculate the degree of SOC reduction by referring to the OCV table for the upper and lower ranges of the use range, calculate the FCC capacity by deducting the SOC reduction amount, and calculate a new SOC according to the reduced use range.
  • FIG. 1 is a schematic block diagram of an electric vehicle to which SOC estimation of a battery according to embodiments of the present invention is applied;
  • FIG. 3 is a diagram illustrating an example of an initial OCV table used in a SOC estimation method of a battery according to an embodiment of the present invention
  • FIG. 4 is a diagram illustrating an OCV table changed according to a voltage range reduced by a SOC estimation method of a battery according to an embodiment of the present invention
  • FIG. 5 is a schematic view for explaining a SOC estimation method of a battery according to an embodiment of the present invention.
  • FIG. 6 is a graph comparing data of the initial OCV table and the changed OCV table.
  • FIG. 7 and 8 are block diagrams of a battery management apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic view for explaining a SOC estimation method of a battery according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a SOC estimation method of a battery according to an embodiment of the present invention.
  • FIG. 1 is a schematic block diagram of an electric vehicle in which SOC estimation of a battery according to an embodiment of the present invention is used.
  • an electric vehicle includes a battery 10 that provides electric energy, a BMS 20 that manages the battery 10, an ECU 30 that controls the state of the electric vehicle, An inverter 40 for driving the motor 50 so as to enable the motor 50, and a motor 50 for driving the electric vehicle.
  • the battery 10 is an electric energy source that drives the electric vehicle 1 by providing a driving force to the motor 50.
  • the battery 10 can be charged or discharged by the inverter 40 in accordance with the driving of the motor 50 and / or the internal combustion engine (not shown).
  • the battery 10 may include at least one battery pack, each of the at least one patty pack may include a plurality of battery modules, and the battery module may include a plurality of charge and discharge battery cells .
  • the plurality of battery modules may be connected in series and / or in parallel in various ways to meet specifications of a vehicle, a battery pack, etc., and a plurality of battery cells may also be connected in series and / or in parallel.
  • the type of the battery cell is not particularly limited and may be a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydride battery, a nickel zinc battery, or the like.
  • the BMS 20 estimates the state of the battery 10 and manages the battery 10 using the estimated state information. For example, it estimates and manages the state information of the battery 10 such as the SOC, the State of Health (SOH), the maximum input / output power allowable amount, and the output voltage of the battery 10. Then, the charging or discharging of the battery 10 is controlled using this state information.
  • the BMS 20 includes an SOC estimating device for estimating an SOC of a battery.
  • the BMS 20 controls cell balancing to balance the state of charge of each battery cell. That is, a battery cell having a relatively high charging state is discharged, and a battery cell having a relatively low charging state can be charged.
  • An engine controller unit (ECU) 30 is an electronic control unit for controlling the state of an electric vehicle. For example, it determines the degree of torque based on information such as an accelerator, a break, and a speed, and controls the output of the motor 50 to match the torque information.
  • the ECU 30 also allows the battery 10 to be charged or discharged based on status information of the SOC, SOH, etc. of the battery 10 transmitted by the BMS 20. [ For example, when the SOC delivered from the BMS 20 is 55% or less, the switch of the inverter 40 is controlled to output power in the direction of the battery 10 to charge the battery 10, The switch of the inverter 40 is controlled so that electric power is output in the direction of the motor 50 to discharge the battery 10.
  • the inverter (40) drives the motor (50) so that the electric vehicle can run on the basis of the control signal of the ECU (30).
  • the motor 50 drives the electric vehicle 1 based on control information (for example, torque information) transmitted from the ECU 30 using the electric energy of the battery 10.
  • control information for example, torque information
  • FIG. 2 is a block diagram illustrating a configuration of an SOC estimating apparatus for a battery according to an embodiment of the present invention. That is, FIG. 2 is a block diagram of an apparatus for estimating an initial SOC of a battery and estimating a changed SOC according to a reduction of a voltage range of a user.
  • 3 and 4 are views showing an example of an OCV table used in an embodiment of the present invention.
  • FIG. 3 is an exemplary view of an initial OCV table.
  • FIG. 6 is a graph comparing the initial OCV table and the changed OCV table data.
  • an apparatus for estimating SOC of a battery includes a sensing unit 100 for sensing voltage and current of a battery 10, an SOC estimating unit 200 for estimating SOC of a battery A memory unit 300 for storing data such as the SOC and voltage of the battery 10; a calculation unit 400 for calculating the degree of SOC reduction due to the change of the voltage range for use and for outputting the SOC according to the reduced usage range; . ≪ / RTI >
  • the battery 10 may include a plurality of battery cells 11, 12, 13, ..., 1n that can be charged and discharged.
  • the battery 10 may be connected to an even number of battery cells or to an odd number of battery cells. That is, n may be an even number or an odd number.
  • a plurality of battery cells may be connected in series. That is, a plurality of battery cells have one terminal and another terminal, and one terminal of one battery cell may be connected to the other terminal of another battery cell.
  • the cathode of the first battery cell 11 may be connected to the anode of the second battery cell 12, and the cathode of the second battery cell 12 may be connected to the anode of the third battery cell 13.
  • the plurality of battery cells may have the same capacity, and thus the maximum charging voltage may be the same, for example, the maximum charging voltage may be 4.2V.
  • the sensing unit 100 is provided for sensing the state of the battery 10 and senses the voltage and current of the battery 10, for example.
  • the sensing unit 100 may sense voltage and current of the battery pack, the battery module, and the battery cell.
  • the sensor unit 100 may include a plurality of sensors, for example, at least one voltage sensor (not shown) and at least one current sensor (not shown).
  • the voltage sensor can measure the voltage of at least one of the battery pack, the battery module or the battery cell.
  • a voltage sensor can be used to measure the voltage of a battery pack, which can measure a stabilized voltage, or OCV, after a predetermined time from the battery pack after the BMS is enabled.
  • the current sensor can measure the current in the battery pack.
  • the current sensor may include a Hall current transformer (Hall CT) that measures current using, for example, a Hall element and outputs a signal corresponding to the measured current.
  • the sensing unit 110 may further include a battery 10 or a temperature sensor (not shown) for measuring the ambient temperature.
  • the temperature sensor can measure the temperature of one area or a plurality of areas of the battery pack or the battery module, and at least one temperature sensor can be provided for this purpose.
  • the sensing unit 100 may be connected to the battery 10 through a plurality of connection lines to sense voltage, current, temperature, and the like of the battery 10 using the sensing unit 100. [ have. For example, each of the plurality of battery cells 11, 12, 13, 14, ..., 1n may be connected to the sensing unit 100 through a plurality of connection lines.
  • the positive electrode of the first battery cell 11 and the sensing unit 100 are connected through a connection line, and the first battery cell 11 and the second battery cell 12 are connected through a connection line And may be connected to the sensing unit 100.
  • Each of the plurality of battery cells 11, 12, 13, 14, ..., 1n connected in series is connected to the sensing unit 100 through a connection line, ..., 1n can be sensed by the sensing unit 100.
  • the SOC estimating unit 200 estimates the SOC of the battery 10. There are various ways to estimate the SOC.
  • the SOC of the battery 10 can be estimated using the capacity of the battery 10 estimated from the SOH estimation unit (not shown) and the current of the battery 10 measured from the sensing unit 100, for example. That is, the SOC estimating unit 200 estimates the SOC of the battery 10 by integrating the current value measured for the predetermined time from the sensing unit 100 and dividing the current value by the estimated battery capacity (Capacity) from the SOH estimating unit . Also, the SOC estimating unit 200 can estimate the SOC using the OCV (Open Circuit Voltage) of the battery 10.
  • OCV Open Circuit Voltage
  • the SOC can be estimated by referring to the initial OCV table stored in the memory unit 300, and extracting the SOC matched to the OCV measured by the sensing unit 100. For example, if the OCV measured from the sensing unit 100 is 3560 mV, it can be estimated that the SOC is 40% by referring to the OCV table of FIG.
  • the SOC estimating unit 200 can estimate the SOC by various methods such as measuring the impedance of the battery 10 and estimating the SOC.
  • the embodiment of the present invention estimates the SOC by matching the OCV measured from the sensing unit 100 with the OCV table stored in the memory unit 300.
  • the memory unit 300 may store various data for operating the battery 10.
  • the memory unit 300 may store the SOC and the OCV.
  • the SOC and the OCV can be matched and stored. That is, various experimentally measured SOCs and corresponding OCVs may be stored in the memory unit 300. For example, as shown in FIG. 3, SOCs ranging from 0% to 100% and OCVs according to respective SOCs can be measured, and they can be matched and stored.
  • the SOC and OCV stored in the memory unit 300 can be measured and stored in various ways.
  • the battery cell of the same specification as the battery cell used as the battery 10 of the present invention is charged from 0.5 V to 4.2 V, for example, from 3 V to 50 mA cutoff, , And measures the voltage of the battery cell periodically during discharging. This process is repeated a plurality of times, for example, 7 to 8 times, so that the SOC and OCV averages are calculated to provide the SOC and OCV tables.
  • the charge OCV is periodically measured while the battery cell is charged to 0.001C (i.e., charged for 1000 hours), and the discharge COV is periodically measured while discharging to 0.001C (i.e., discharging for 1000 hours) And the discharge OCV are calculated, and the SOC and the OCV table can be prepared by calculating the SOC at this time.
  • the cylindrical battery cell is fully secured using a mechanical fixture and the screw is used to contact the + and - terminals of the charger and loader and the + and - terminals of the cylindrical battery cell.
  • a plurality of structures in which the battery cell is in contact with the charger and the loader are manufactured and placed in a thermo-hygrostat chamber to extract SOC and OCV at a constant temperature.
  • COV and SOC are matched and stored, and the temperature and internal resistance at this time can also be stored. That is, the memory unit 300 may be previously stored by separately obtaining a capacity decrease coefficient depending on the ambient temperature of the battery, the internal resistance, or the temperature. In addition, the memory unit 300 may store the newly corrected OCV and SOC according to the change in the range of the voltage used. For example, as shown in FIG. 4, the newly estimated SOC and the corresponding OCV may be matched and stored according to the reduction of the operating voltage range. At this time, the newly corrected OCV table may be stored by updating the initial OCV table or may be stored separately from the initial OCV table.
  • the memory unit 300 may be provided in the BMS 20, and may be separately provided in addition to the BMS 20.
  • the memory unit 300 may be a hard disk drive, a flash memory, an electrically erasable programmable read-only memory (EEPROM), a static random access memory (SRAM), a ferro-electric random access memory (FRAM), a phase change random access memory (PRAM) ) And the like can be used.
  • EEPROM electrically erasable programmable read-only memory
  • SRAM static random access memory
  • FRAM ferro-electric random access memory
  • PRAM phase change random access memory
  • the operation unit 400 calculates the degree of SOC reduction according to the range of the use voltage and re-calculates the SOC according to the calculated degree of decrease. To this end, the operation unit 400 calculates the degree of SOC reduction using the upper and lower ranges of the operating voltage range according to the range of the operating voltage range. That is, the operation unit 400 detects the upper and lower ranges of the operating voltage range by referring to the initial OCV table of the memory unit 300, and calculates the degree of SOC reduction according to the detected OCV table. For example, when the operating voltage range is from 4.0V to 2.4V, the OCV table of FIG. 3 is referenced to detect the SOC according to the voltage, that is, 90% and 5% %.
  • the operation unit 400 calculates the changed capacity by subtracting the FCC capacity from the initial capacity by the degree of SOC reduction, and calculates a new SOC according to the reduced usage range.
  • the operation unit 400 calculates the changed capacity by using Equation (1), and calculates the changed SOC using Equation (2).
  • FIG. 5 A schematic diagram for calculating the changed capacity X 'and the changed SOC (I') is shown in FIG.
  • the maximum voltage and the minimum voltage are denoted by Vfc and Ve, respectively, and the maximum and minimum SOC are 100% and 0%, respectively.
  • the upper and lower capacity reduction rates are denoted by A% and B%, respectively, and the initial and changed SOC are denoted by I and I ', respectively.
  • the changed maximum voltage and minimum voltage are denoted by V'fc and V'e, respectively.
  • the modified capacity X ' can be calculated by multiplying the initial capacity X by a value obtained by subtracting 1 from the sum of the upper capacity reduction ratio A% and the lower capacity reduction ratio B% as shown in the following equation (1) have.
  • the modified SOC (I ') is a value obtained by subtracting the lower capacity reduction ratio (B%) from the initial SOC (I) as the upper capacity reduction ratio (A%) and the lower capacity reduction ratio B%) divided by the value minus 100%.
  • B% the lower capacity reduction ratio
  • A% and the low capacity reduction ratio B% 10% and 5%
  • the changed capacity is calculated as 1275 mAh by Equation (1)
  • the changed SOC is calculated as 41% by Equation (2).
  • Table 1 shows examples of the modified capacity and SOC calculated by Equations (1) and (2) according to initial capacity and initial SOC and upper and lower capacity subtraction rates.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Initial capacity (mAh) 1500 3000 2800 2200 3000 2400 2400 High Capacity Deduction Rate (%) 10% 15% 7% 0% 2% 10% 10% Sub-capacity deduction rate (%) 5% 3% 0% 7% 8% 3% 3% Initial SOC (%) 40% 60% 55% 64% 60% 95% 2% Modified Capacity (mAh) 1275 2460 2604 2046 2700 2088 2088 Changed SOC (%) 41% 70% 59% 61% 58% 106% -One%
  • the changed SOC exceeds the reduced range, it is calculated as over SOC or under SOC. That is, as shown in Example 6, the changed SOC is 11% larger than the initial SOC and exceeds 10%, which is the reduced range. Therefore, the changed SOC is 3% smaller than the initial SOC as shown in Example 7,
  • the calculation unit 400 calculates the SOC according to the usage voltage thus calculated, that is, the OCV according to the usage voltage reduction, and stores the calculated SOC and the OCV in the memory unit 300. That is, the OCV table newly calculated in the existing OCV table is updated and stored. At this time, the new data may be stored in an overwrite form on the existing data or may be stored as data separate from the existing data.
  • the maximum voltage 4V set by the user is set to SOC 100%
  • the minimum voltage 2.4V is set to SOC 0%
  • the SOC due to OCV therebetween can be calculated and stored in Equation (1).
  • An example of this new OCV table is shown in FIG. 4, and a graph comparing the initial OCV table with the changed OCV table data is shown in FIG.
  • the apparatus for estimating SOC of a battery includes a sensing unit 100, an SOC estimating unit 200, a memory unit 300, and an operation unit 400,
  • the capacity of the battery whose operating voltage range has been changed according to the manufacturer's needs can be estimated using the initial SOC of the OCV table.
  • the use voltage range may be changed according to the manufacturer's request for a battery whose manufacture voltage is set to be the range of the battery, and the present voltage SOC is calculated with reference to the OCV table.
  • Calculate the SOC reduction by referring to the OCV table for the upper and lower voltage use ranges, subtract the FCC capacity by the reduction amount, and recalculate the new SOC for the reduced use range. Therefore, by estimating the changed SOC according to the reduction of the voltage range of the user, it is possible to prevent the occurrence of an error, thereby enabling the stable use of the battery.
  • FIG. 7 is a block diagram of a battery management apparatus according to an embodiment of the present invention
  • FIG. 8 is a block diagram of a battery management apparatus for explaining a configuration of a switching unit of the battery management apparatus.
  • a battery management apparatus includes a battery 10 including a plurality of battery cells 11, 12, 13, 14, ..., 1n, A SOC estimating unit 200 for estimating the SOC of the battery, a memory unit 300 for storing data such as SOC and voltage of the battery 10, And a controller (not shown) for controlling the charging and discharging of the battery 10 according to the state of the battery 10 by referring to the re-calculated SOC And a switching unit 600 for controlling connection between the battery 10 and the load according to a control signal of the control unit 500.
  • the battery management apparatus of the present invention may include a control unit 500 and a switching unit 600 in the SOC estimating apparatus including the sensing unit 100, the SOC estimating unit 200, and the calculating unit 400 have. Since the SOC estimating device has already been described, the control unit 500 and the switching unit 600 of the battery management apparatus of the present invention will be described in detail as follows.
  • the control unit 500 generates a control signal according to the voltage of each of the plurality of battery cells measured by the sensing unit 100 to control the switching unit 600 between the battery 10 and the load, . Therefore, overcharge or overdischarge of the battery cell can be prevented.
  • the control unit 500 compares the first set voltage for stopping the charging operation and the second set voltage for performing the charging operation with the voltages of the plurality of battery cells measured by the sensing unit 100 Generates a control signal for stopping the charging operation of the battery cell when the voltage is higher than or equal to the first set voltage, and generates a control signal for charging operation of the battery cell when the measured voltage is lower than or equal to the second set voltage .
  • the control unit 500 can control the charge / discharge of the battery cell by changing the set voltage of the battery cell according to the changed capacity of the battery cell. For example, when the maximum charge voltage is changed from 4.0 V to 3.8 V and the minimum voltage is changed to 2.5 V, the control unit 500 may use the operation result of the operation unit 400 or the data updated and stored in the memory unit 300 So that the first and second set voltages can be changed and compared with the data of the memory cell.
  • the first set voltage is changed to 3.8 V and the minimum charge voltage is changed to 2.5 V
  • the first set voltage is changed to 3.6 V and the minimum charge voltage is changed to 2.6 V
  • the switching unit 600 is provided between a current path between the battery 10 and the load, and controls the charging and discharging of the battery 10 by the control unit 500.
  • the switching unit 600 may include a first switch 610 and a second switch 620 as shown in FIG. That is, the switching unit 600 is provided between the battery 10 and the load.
  • the first switch 610 may be provided on the battery 10 side and the second switch 620 may be provided on the load side.
  • the first and second switches 610 and 620 are driven according to the control signal generated by the controller 500 and can be driven simultaneously when charging and discharging the battery 10 and either one of them may be driven.
  • the first switch 610 may be driven when the battery 10 is charged
  • the second switch 620 may be driven when the battery 10 is discharged.
  • the load may include an external power source for charging the battery 10, and an electronic device to which the battery 10 driven according to the discharge voltage of the battery 10 is mounted. That is, when the battery 10 is charged, the battery 10 is connected to an external power source, and when the battery 10 is discharged, the battery 10 can be connected to the electronic device.
  • the first switch 610 may include a first FET 610a and a first parasitic diode 610b.
  • the first FET 610a has a source terminal and a drain terminal provided between the battery 10 and the first node Q1 and a gate terminal connected to the control unit 500.
  • the first FET 610a is driven in accordance with a control signal output from the controller 500, and functions to apply a current to the battery 10 during charging.
  • the first parasitic diode 610b is connected in parallel to the first FET 610a. That is, the first parasitic diode 610b is connected in a forward direction between the battery 10 and the first node Q1.
  • This first parasitic diode 610b sets the discharge path of the battery 10 when the first FET 610a is turned off. That is, the battery 10 is charged through the first FET 610a, and the battery 10 can be discharged through the first parasitic diode 610b.
  • the second switch 620 may include a second FET 620a and a second parasitic diode 620b.
  • a source terminal and a drain terminal of the second FET 620a are provided between the first node Q1 and the load, and a gate terminal is connected to the control unit 500.
  • the second FET 620a is driven in accordance with a control signal output from the controller 500, and serves to apply the discharge current of the battery 10 to the electronic device connected to the second FET 620a.
  • the second parasitic diode 620b is connected in parallel to the second FET 620a. That is, the second parasitic diode 620b is connected in the reverse direction between the first node Q1 and the load.
  • the second parasitic diode 620b sets the path of the charging current when the battery 10 is charged. That is, the battery 10 is discharged through the second FET 620a, and the battery 10 can be charged through the second parasitic diode 620b.
  • the switching unit 600 is connected to the gate terminal of the first FET 610a and the gate terminal of the second FET 620a and the control unit 500 is connected to the first and second FETs 620a and 620b in response to a control signal output from the control unit 500.
  • [ FETs 610a and 620a are driven, respectively.
  • the control unit 500 turns on the first FET 610a and turns off the second FET 620b when the battery 10 is charged. Therefore, the battery 10 is charged from the load, i.e., the external power supply, through the second parasitic diode 620b and the first FET 610a.
  • the controller 500 turns on the second FET 620a and turns on the second FET 610a when the battery 10 is discharged.
  • the battery 10 is discharged from the battery 10 through the first FET 610a and the second parasitic diode 620b.
  • the control signal for turning on the first and second FETs 610a and 620a, respectively may be a logic high signal
  • the control signal for turning off the first and second FETs 610a and 620a, respectively may be a logic low signal .
  • the battery control apparatus can control the charging / discharging of the battery 10 after sensing the state of the battery 10.
  • the battery control device can control the charging / discharging of the battery 10 according to the capacity of the battery 10 changed after the capacity and SOC of the battery 10 are changed by the SOC estimating device.
  • the charge / discharge of the battery can be controlled by lowering the set voltage according to the reduced capacity.
  • FIG. 9 is a flowchart illustrating an SOC estimation method according to an embodiment of the present invention
  • FIG. 10 is a detailed flowchart of a process.
  • an SOC estimation method includes a step S100 of measuring the OCV and current of the battery 10, (S200) of matching an OCV with an initial SOC and extracting an initial SOC according to the OCV, calculating a reduction degree of the SOC according to the range of the voltage to be used and restoring the SOC according to the reduced use range (S300) And calculating and storing the calculated SOC and the corresponding OCV (S400).
  • S310 of calculating the degree of SOC reduction using the upper and lower ranges of the operating voltage range according to the operating voltage range change (S310)
  • S320 of calculating the changed capacity by subtracting the new capacity (S320), and calculating a new SOC according to the reduced usage range (S330).
  • the voltage of the battery 10 is measured using the sensing unit 100. That is, the voltage is stabilized after a predetermined time from the battery pack after the BMS is enabled by using the voltage sensor, that is, the OCV is measured. Also, the sensing unit 100 may measure the current of the battery pack using a current sensor.
  • the SOC estimating unit 200 matches the measurement OCV with the initial OCV stored in the memory unit 300 and estimates the initial SOC according to the initial OCV.
  • Various data for operating the battery 10 may be stored in the memory unit 300.
  • various experimentally measured initial SOCs and corresponding initial OCVs may be matched and stored. For example, the SOC from 0% to 100% and the OCV according to each SOC can be measured and stored as matching as shown in FIG. Therefore, the OCV measured from the sensing unit 100 can be compared with the initial OCV stored in the memory unit 300, and the initial SOC can be extracted accordingly.
  • the calculation unit 400 calculates the degree of SOC reduction according to the range of the use voltage and recalculates the SOC according to the reduced usage range.
  • the SOC re-calculation process according to the change in the operating voltage range is as shown in FIG. 7 as follows.
  • the calculation unit 400 calculates the degree of SOC reduction using the upper and lower ranges of the voltage range for use according to the range of the voltage to be used. That is, the operation unit 400 calculates the degree of SOC reduction by referring to the initial OCV table of the memory unit 300, the upper and lower ranges of the operating voltage range. For example, when the operating voltage range is from 4.0V to 2.4V, the OCV table of FIG. 3 is referenced to detect the SOC according to the voltage, that is, 90% and 5% %.
  • the operation unit 400 calculates the changed capacity by subtracting the FCC capacity from the initial capacity by the degree of SOC reduction, and calculates a new SOC according to the reduced usage range.
  • the operation unit 400 calculates the changed capacity by using Equation (1), and calculates the changed SOC using Equation (2). That is, as shown in [Equation 1], the changed capacity X 'is obtained by multiplying the initial capacity X by a value obtained by subtracting 1 from the sum of the upper capacity reduction ratio A% and the lower capacity reduction ratio B% Can be calculated.
  • the modified SOC (I ') is a value obtained by subtracting the lower capacity reduction ratio (B%) from the initial SOC (I) as the upper capacity reduction ratio (A%) and the lower capacity reduction ratio B%) divided by the value minus 100%.
  • the maximum and minimum voltages are 4.2 V and 2.0 V, respectively, and the initial SOC is 40%, and the high capacity reduction ratio A% and the low capacity reduction ratio B% are 10% and 5% .
  • the changed capacity is calculated as 1275 mAh by Equation (1), and the changed SOC is calculated as 41% by Equation (2).
  • the operation unit 400 calculates the SOC and the OCV according to the calculated use voltage reduction, and stores the calculated SOC and the OCV in the memory unit 300.
  • the maximum voltage 4V set by the user is set to SOC 100%
  • the minimum voltage 2.4V is set to SOC 0%
  • the SOC due to OCV therebetween can be calculated and stored in Equation (1).
  • An example of this new OCV table is shown in FIG.
  • the control unit 500 can control the charge / discharge of the battery cell by changing the set voltage of the battery cell according to the changed capacity of the battery cell. For example, when the maximum charge voltage is changed from 4.0 V to 3.8 V and the minimum voltage is changed to 2.5 V, the control unit 500 may use the operation result of the operation unit 400 or the data updated and stored in the memory unit 300 The first and second set voltages are changed to be compared with the data of the memory cell, and then the charging and discharging of the battery cell can be controlled. That is, the charging and discharging of the battery cell can be controlled in accordance with the change of the maximum charging voltage and the minimum charging voltage of the battery cell, thereby preventing overcharge and overdischarge of the changed battery cell.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention provides a battery capacity estimation apparatus and method, and a battery management apparatus provided with the same and a method thereof, the battery capacity estimation apparatus comprising: a battery; a sensing unit connected to the battery so as to measure an OCV of the battery; a SOC estimation unit connected to the sensing unit so as to estimate an initial SOC of the battery by using the OCV measured by the sensing unit; a memory unit which stores data including a SOC and an OCV of the battery and is connected to the SOC estimation unit; and a calculation unit which is connected to the SOC estimation unit and the memory unit, calculates a SOC reduction level according to a range change of a used voltage, and recalculates a changed SOC according to a changed use capacity.

Description

배터리의 용량 추정 장치 및 방법, 이를 구비하는 배터리 관리 장치 및 방법Apparatus and method for estimating the capacity of a battery, and a battery management apparatus and method using the same
본 발명은 배터리의 용량 추정 장치 및 방법에 관한 것으로, 특히 사용 전압 범위의 축소에 따른 배터리의 용량 추정 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for estimating a capacity of a battery, and more particularly, to an apparatus and method for estimating a capacity of a battery according to a reduction in a range of voltage used.
근래 들어, 노트북, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대됨에 따라 반복적인 충방전이 가능한 고성능 이차 전지(이하, 배터리라 함)에 대한 연구가 활발히 진행되고 있다. 현재 상용화된 배터리로는 니켈 카드뮴 배터리, 니켈 수소 배터리, 니켈 아연 배터리, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높다는 등의 장점으로 인해 각광을 받고 있다.2. Description of the Related Art In recent years, demand for portable electronic products such as notebooks, portable phones, and the like has been rapidly increasing, and studies have been actively conducted on high performance secondary batteries (hereinafter referred to as batteries) capable of repeated charging and discharging. Nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, and lithium batteries are currently commercially available batteries. Among them, lithium batteries have little memory effect compared with nickel-based batteries, Low energy density and high energy density.
한편, 최근에는 탄소 에너지가 점차 고갈되고 환경에 대한 관심이 높아지면서, 하이브리드 자동차와 전기 자동차에 대한 수요가 점차 증가하고 있다. 이러한 하이브리드 자동차나 전기 자동차는 배터리 팩의 충방전 에너지를 이용하여 차량 구동력을 얻기 때문에, 엔진만을 이용하는 자동차에 비해 연비가 뛰어나고 공해 물질을 배출하지 않거나 감소시킬 수 있다는 점에서 많은 소비자들에게 좋은 반응을 얻고 있다. 따라서, 하이브리드 자동차나 전기 자동차의 핵심적 부품인 차량용 배터리에 보다 많은 관심과 연구가 집중되고 있다.On the other hand, as carbon energy is gradually depleted and environmental concerns are increasing, demand for hybrid cars and electric vehicles is increasing. Since such hybrid vehicles and electric vehicles use the charge / discharge energy of the battery pack to obtain the vehicle driving power, they are more fuel-efficient than the vehicles using only the engine and can not discharge or reduce pollutants. . Therefore, more attention and research are focused on automotive batteries, which are key components of hybrid cars and electric vehicles.
배터리는 AC 전원과 같은 외부 전원이 연결되어 있지 않은 상태에서 이동성 장치에 사용되는 것이므로 시간에 한계가 있다. 그런데, 이러한 배터리의 사용 가능한 시간, 즉 가용 시간을 제대로 예측하지 못하는 경우, 사용자는 큰 어려움을 겪을 수 있다. 예를 들어, 전기 자동차용 배터리의 가용 시간을 제대로 예측하지 못하는 경우, 운행 중 배터리가 만방전되어 도로 한가운데 자동차가 정지하는 경우가 발생할 수 있다.Batteries are time consuming because they are used in portable devices without an external power source such as AC power. However, if the usable time of the battery, that is, the available time, can not be predicted properly, the user may experience a great difficulty. For example, if the battery life of an electric vehicle can not be accurately predicted, the battery may be discharged during operation, causing the vehicle to halt in the middle of the road.
이와 같이 사용자가 배터리의 만방전을 예측하지 못해 사용 도중에 갑작스럽게 배터리가 만방전되는 것을 방지하기 위해 배터리의 잔량, 즉 SOC(State Of Charge)를 추정하여 사용자에게 제공하는 기술이 널리 알려져 있다. 배터리의 SOC는 배터리의 만충전 용량(Full Charge Capacity; FCC)에 대한 잔량을 백분율로 표시하는 형태가 일반적이다. 배터리의 SOC를 추정하는 방법으로는 다양한 방식이 이용될 수 있는데, 대표적인 방식은 전류 적산법을 이용하여 SOC를 추정하는 방식이다. 이러한 전류 적산 방식은, 배터리의 입출력 전류를 적산하고 초기 용량에서 가감함으로써 SOC를 구하는 형태이다.In order to prevent the battery from suddenly discharging during the use of the battery due to the inability to predict the full discharge of the battery, a technology for estimating the residual amount of the battery, that is, the state of charge (SOC) and providing it to the user is widely known. The SOC of the battery is generally expressed as a percentage of the remaining capacity of the battery with respect to the full charge capacity (FCC). As a method of estimating the SOC of the battery, various methods can be used. A representative method is a method of estimating the SOC using the current integration method. In this current integration method, the SOC is obtained by integrating the input / output current of the battery and adding / subtracting it from the initial capacity.
한편, 배터리 팩을 자동차 등에 장착하는 경우 자동차 제조사는 배터리의 수명과 안정성 등을 고려하여 사용 가능 전압 범위를 변경할 수 있다. 예를 들어, 최소 2.0V로부터 최대 4.2V를 사용할 수 있는 배터리에 대하여 최소 2.4V로부터 최대 4.0V로 사용 가능 전압 범위를 축소할 수 있다. 그런데, 전압 범위가 축소됨에 따라 사용할 수 있는 용량이 감소함에도 불구하고 SOC, FCC 산출 알고리즘에 반영되지 못한다. 즉, 사용 범위 축소에 따른 초기 잔량 추정이 이루어지지 않으며, 이는 시간이 지날수록 더 큰 오차를 발생시킨다.On the other hand, when a battery pack is mounted on an automobile or the like, an automobile manufacturer can change the usable voltage range in consideration of the life and stability of the battery. For example, the available voltage range can be reduced from a minimum of 2.4V to a maximum of 4.0V for a battery capable of operating from a minimum of 2.0V to a maximum of 4.2V. However, as the voltage range decreases, the SOC can not be reflected in the FCC calculation algorithm even though the usable capacity decreases. That is, the initial residual amount estimation is not performed due to the reduction in the use range, which causes a larger error as time passes.
(선행기술문헌)(Prior art document)
한국공개특허 제2014-0053590호Korean Patent Publication No. 2014-0053590
본 발명은 사용 전압 범위의 변경에 따른 배터리의 용량을 추정할 수 있는 배터리 용량 추정 장치 및 방법, 이를 구비하는 배터리 관리 장치 및 방법을 제공한다.The present invention provides a battery capacity estimating apparatus and method capable of estimating a capacity of a battery according to a change in a voltage range to be used, and a battery management apparatus and method having the same.
본 발명은 OCV 테이블을 이용한 초기 용량 추정을 사용하여 축소된 사용 전압 범위에 따른 용량을 추정할 수 있는 배터리 용량 추정 장치 및 방법, 이를 구비하는 배터리 관리 장치 및 방법을 제공한다.The present invention provides a battery capacity estimation apparatus and method capable of estimating a capacity according to a reduced use voltage range using an initial capacity estimation using an OCV table, and a battery management apparatus and method therefor.
본 발명의 제 1 양태에 따른 배터리 용량 추정 장치는 배터리; 상기 배터리와 연결되어 배터리의 OCV를 측정하는 센싱부; 상기 센싱부와 연결되어 상기 센싱부로부터 측정된 OCV를 이용하여 배터리의 SOC를 추정하는 SOC 추정부; 배터리의 SOC 및 OCV를 포함하는 데이터를 저장하고, 상기 SOC 추정부와 연결된 메모리부; 및 상기 SOC 추정부 및 메모리부와 연결되고, 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산하고 변경된 사용 용량에 따른 변경된 SOC를 재산출하는 연산부를 포함한다.A battery capacity estimating apparatus according to a first aspect of the present invention includes: a battery; A sensing unit connected to the battery to measure OCV of the battery; An SOC estimator connected to the sensing unit and estimating the SOC of the battery using the OCV measured from the sensing unit; A memory unit for storing data including SOC and OCV of the battery and connected to the SOC estimating unit; And an operation unit connected to the SOC estimating unit and the memory unit, for calculating the degree of SOC reduction according to the range of the operating voltage, and for outputting the changed SOC according to the changed used capacity.
상기 메모리부는 복수의 초기 SOC 및 복수의 초기 OCV를 매칭하여 저장하고, 복수의 변경된 SOC 및 복수의 변경된 OCV를 매칭하여 저장한다.The memory unit stores and stores a plurality of initial SOCs and a plurality of initial OCVs, and stores a plurality of changed SOCs and a plurality of changed OCVs.
상기 연산부는 하기 [수학식 1]에 의해 변경된 용량을 계산한다.The calculation unit calculates the capacity changed by the following equation (1).
[수학식 1][Equation 1]
Figure PCTKR2018010993-appb-I000001
Figure PCTKR2018010993-appb-I000001
여기서, X'는 변경된 용량, X는 초기 용량, A 및 B는 상위 및 하위 용량 차감율.Where X 'is the changed capacity, X is the initial capacity, A and B are the high and low capacity subtraction rates.
상기 연산부는 하기 [수학식 2]를 이용하여 변경된 SOC를 계산한다.The operation unit calculates the changed SOC using Equation (2) below.
[수학식 2]&Quot; (2) "
Figure PCTKR2018010993-appb-I000002
Figure PCTKR2018010993-appb-I000002
여기서, I'는 변경된 SOC, I는 초기 SOC, A 및 B는 상위 및 하위 용량 차감율.Where I 'is the changed SOC, I is the initial SOC, A and B are the high and low capacity subtraction rates.
본 발명의 제 2 양태에 따른 배터리 관리 장치는 배터리; 상기 배터리와 연결되어 배터리의 OCV를 측정하는 센싱부; 상기 센싱부와 연결되어 상기 센싱부로부터 측정된 OCV를 이용하여 배터리의 SOC를 추정하는 SOC 추정부; 배터리의 SOC 및 OCV를 포함하는 데이터를 저장하고, 상기 SOC 추정부와 연결된 메모리부; 상기 SOC 추정부 및 메모리부와 연결되고, 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산하고 변경된 사용 용량에 따른 변경된 SOC를 재산출하는 연산부; 상기 연산부 및 상기 메모리부 중 적어도 하나와 연결되어 SOC를 참고하여 배터리의 상태에 따라 배터리의 충방전을 제어하는 제어부; 및 상기 배터리와 부하 사이에 마련되어 상기 제어부의 제어 신호에 따라 배터리를 충방전시키는 스위칭부를 포함한다.A battery management apparatus according to a second aspect of the present invention includes a battery; A sensing unit connected to the battery to measure OCV of the battery; An SOC estimator connected to the sensing unit and estimating the SOC of the battery using the OCV measured from the sensing unit; A memory unit for storing data including SOC and OCV of the battery and connected to the SOC estimating unit; A calculating unit connected to the SOC estimating unit and the memory unit, for calculating a degree of SOC reduction according to a change in the operating voltage range and for outputting a changed SOC according to the changed used capacity; A control unit connected to at least one of the operation unit and the memory unit to control charging and discharging of the battery according to the state of the battery by referring to the SOC; And a switching unit provided between the battery and the load for charging / discharging the battery according to a control signal of the control unit.
상기 연산부는 하기 [수학식 1]에 의해 변경된 용량을 계산하고, 하기 [수학식 2]를 이용하여 변경된 SOC를 계산한다.The calculation unit calculates the changed capacity by the following equation (1), and calculates the changed SOC using the following equation (2).
[수학식 1][Equation 1]
Figure PCTKR2018010993-appb-I000003
Figure PCTKR2018010993-appb-I000003
여기서, X'는 변경된 용량, X는 초기 용량, A 및 B는 상위 및 하위 용량 차감율.Where X 'is the changed capacity, X is the initial capacity, A and B are the high and low capacity subtraction rates.
[수학식 2]&Quot; (2) "
Figure PCTKR2018010993-appb-I000004
Figure PCTKR2018010993-appb-I000004
여기서, I'는 변경된 SOC, I는 초기 SOC, A 및 B는 상위 및 하위 용량 차감율.Where I 'is the changed SOC, I is the initial SOC, A and B are the high and low capacity subtraction rates.
본 발명의 제 3 양태에 따른 배터리의 용량 추정 방법은 배터리의 OCV를 측정하는 과정; 상기 측정된 OCV에 따른 초기 SOC를 추정하는 과정; 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산한 후 변경된 SOC를 계산하는 과정; 및 상기 변경된 SOC에 따른 변경된 OCV를 계산하는 과정을 포함한다.A method of estimating a capacity of a battery according to a third aspect of the present invention includes: a step of measuring OCV of a battery; Estimating an initial SOC according to the measured OCV; Calculating the SOC reduction degree according to the use voltage range change and calculating the changed SOC; And calculating a changed OCV according to the changed SOC.
배터리의 복수의 초기 SOC 및 그에 따른 복수의 초기 OCV를 매칭하여 저장하는 과정을 더 포함한다.And a step of matching and storing a plurality of initial SOCs of the battery and a plurality of initial OCVs corresponding thereto.
상기 초기 SOC는 상기 측정된 OCV를 상기 초기 OCV와 매칭하여 추정한다.The initial SOC is estimated by matching the measured OCV with the initial OCV.
상기 변경된 SOC를 계산하는 과정은 사용 전압 범위 변경에 따른 SOC 변경 정도를 계산하는 과정과, 상기 SOC 변경 정도만큼 초기 용량에서 차감하여 변경된 용량을 계산하는 과정과, 상기 변경된 SOC를 계산하는 과정을 포함한다.The step of calculating the changed SOC may include calculating a degree of SOC change according to the use voltage range change, calculating a changed capacity by subtracting the SOC from the initial capacity, and calculating the changed SOC do.
상기 변경된 용량은 하기 [수학식 1]에 의해 계산한다.The changed capacity is calculated by the following equation (1).
[수학식 1][Equation 1]
Figure PCTKR2018010993-appb-I000005
Figure PCTKR2018010993-appb-I000005
여기서, X'는 변경된 용량, X는 초기 용량, A 및 B는 상위 및 하위 용량 차감율.Where X 'is the changed capacity, X is the initial capacity, A and B are the high and low capacity subtraction rates.
상기 변경된 SOC는 하기 [수학식 2]를 이용하여 계산한다.The modified SOC is calculated using the following equation (2).
[수학식 2]&Quot; (2) "
Figure PCTKR2018010993-appb-I000006
Figure PCTKR2018010993-appb-I000006
여기서, I'는 변경된 SOC, I는 초기 SOC, A 및 B는 상위 및 하위 용량 차감율.Where I 'is the changed SOC, I is the initial SOC, A and B are the high and low capacity subtraction rates.
상기 변경된 SOC 및 그에 따른 변경된 OCV를 매칭하여 복수의 데이터를 저장하는 과정을 더 포함한다.And storing the plurality of data by matching the changed SOC and the changed OCV.
본 발명의 제 4 양태에 따른 배터리 관리 방법은 배터리의 OCV를 측정하는 과정; 상기 측정된 OCV에 따른 초기 SOC를 추정하는 과정; 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산한 후 변경된 SOC를 계산하는 과정; 상기 변경된 SOC에 따른 변경된 OCV를 계산하는 과정; 및 상기 변경된 SOC를 참고하여 배터리의 상태에 따라 배터리의 충방전을 제어하는 과정을 포함한다.A battery management method according to a fourth aspect of the present invention includes the steps of: measuring OCV of a battery; Estimating an initial SOC according to the measured OCV; Calculating the SOC reduction degree according to the use voltage range change and calculating the changed SOC; Calculating a changed OCV according to the changed SOC; And controlling the charge / discharge of the battery according to the state of the battery with reference to the changed SOC.
상기 변경된 SOC를 계산하는 과정은 사용 전압 범위 변경에 따른 SOC 변경 정도를 계산하는 과정과, 상기 SOC 변경 정도만큼 초기 용량에서 차감하여 변경된 용량을 계산하는 과정과, 상기 변경된 SOC를 계산하는 과정을 포함한다.The step of calculating the changed SOC may include calculating a degree of SOC change according to the use voltage range change, calculating a changed capacity by subtracting the SOC from the initial capacity, and calculating the changed SOC do.
상기 변경된 용량은 하기 [수학식 1]에 의해 계산하고, 상기 변경된 SOC는 하기 [수학식 2]를 이용하여 계산한다.The modified capacity is calculated by the following equation (1), and the modified SOC is calculated using the following equation (2).
[수학식 1][Equation 1]
Figure PCTKR2018010993-appb-I000007
Figure PCTKR2018010993-appb-I000007
여기서, X'는 변경된 용량, X는 초기 용량, A 및 B는 상위 및 하위 용량 차감율.Where X 'is the changed capacity, X is the initial capacity, A and B are the high and low capacity subtraction rates.
[수학식 2]&Quot; (2) "
Figure PCTKR2018010993-appb-I000008
Figure PCTKR2018010993-appb-I000008
여기서, I'는 변경된 SOC, I는 초기 SOC, A 및 B는 상위 및 하위 용량 차감율.Where I 'is the changed SOC, I is the initial SOC, A and B are the high and low capacity subtraction rates.
본 발명의 실시 예들은 배터리를 자동차 등에 장착하는 제조사의 필요에 따라 사용 전압 범위가 변경된 배터리 팩의 SOC 및 용량을 OCV 테이블을 이용하여 추정할 수 있다. 예를 들어, 배터리 팩의 제조가 완료되어 사용 전압 범위가 세팅된 배터리 팩에 대하여 제조사의 요청에 따라 사용 전압 범위가 변경될 수 있고, 이 경우 OCV 테이블을 참조하여 현재의 SOC를 산출한 후 전압 사용 범위의 상위 및 하위를 OCV 테이블을 참고하여 SOC 감소 정도를 계산하고, FCC 용량을 SOC 감소 정도만큼 차감하여 산출한 후 축소된 사용 범위에 맞는 새로운 SOC를 산출한다. 이렇게 전압 범위 축소에 따라 변경된 SOC를 추정함으로써 오차 발생을 방지할 수 있고, 그에 따라 안정적인 배터리의 이용이 가능하다.The embodiments of the present invention can estimate the SOC and the capacity of the battery pack whose operating voltage range has been changed by using the OCV table according to the needs of the manufacturer mounting the battery in an automobile or the like. For example, the range of the operating voltage may be changed according to the manufacturer's request for the battery pack whose manufacture range of the battery pack is completed and the operating voltage range is set. In this case, the present SOC is calculated with reference to the OCV table, Calculate the degree of SOC reduction by referring to the OCV table for the upper and lower ranges of the use range, calculate the FCC capacity by deducting the SOC reduction amount, and calculate a new SOC according to the reduced use range. By estimating the changed SOC according to the reduction of the voltage range as described above, it is possible to prevent the occurrence of an error, thereby enabling stable use of the battery.
도 1은 본 발명의 실시 예들에 따른 배터리의 SOC 추정이 적용되는 전기 자동차의 개략적인 블록도.1 is a schematic block diagram of an electric vehicle to which SOC estimation of a battery according to embodiments of the present invention is applied;
도 2는 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 장치의 구성을 설명하기 위한 블록도.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]
도 3은 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 방법에 이용되는 초기 OCV 테이블의 예시도.3 is a diagram illustrating an example of an initial OCV table used in a SOC estimation method of a battery according to an embodiment of the present invention;
도 4는 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 방법에 의해 축소된 전압 범위에 따라 변경된 OCV 테이블의 예시도.4 is a diagram illustrating an OCV table changed according to a voltage range reduced by a SOC estimation method of a battery according to an embodiment of the present invention;
도 5는 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 방법을 설명하기 위한 개략도.5 is a schematic view for explaining a SOC estimation method of a battery according to an embodiment of the present invention;
도 6은 초기 OCV 테이블과 변경된 OCV 테이블의 데이터를 비교한 그래프. 6 is a graph comparing data of the initial OCV table and the changed OCV table.
도 7 및 도 8은 본 발명의 일 실시 예에 따른 배터리 관리 장치의 블록도.7 and 8 are block diagrams of a battery management apparatus according to an embodiment of the present invention.
도 9는 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 방법을 설명하기 위한 개략도.FIG. 9 is a schematic view for explaining a SOC estimation method of a battery according to an embodiment of the present invention; FIG.
도 10은 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 방법의 흐름도.10 is a flowchart of a SOC estimation method of a battery according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but is capable of other various forms of implementation, and that these embodiments are provided so that this disclosure will be thorough and complete, It is provided to let you know completely.
도 1은 본 발명의 실시 예에 따른 배터리의 SOC 추정이 이용되는 전기 자동차의 개략적인 블록도이다.1 is a schematic block diagram of an electric vehicle in which SOC estimation of a battery according to an embodiment of the present invention is used.
도 1을 참조하면, 전기 자동차는 전기 에너지를 제공하는 배터리(10)와, 배터리(10)를 관리하는 BMS(20)와, 전기 자동차의 상태를 제어하는 ECU(30)와, 전기 자동차의 주행이 가능하도록 모터(50)를 구동시키는 인버터(40)와, 전기 자동차를 구동하는 모터(50)를 포함할 수 있다.1, an electric vehicle includes a battery 10 that provides electric energy, a BMS 20 that manages the battery 10, an ECU 30 that controls the state of the electric vehicle, An inverter 40 for driving the motor 50 so as to enable the motor 50, and a motor 50 for driving the electric vehicle.
배터리(10)는 모터(50)에 구동력을 제공하여 전기 자동차(1)를 구동시키는 전기 에너지원이다. 배터리(10)는 모터(50) 및/또는 내연 기관(미도시)의 구동에 따라 인버터(40)에 의해 충전되거나 방전될 수 있다. 여기서, 배터리(10)는 적어도 하나의 배터리 팩을 포함할 수 있고, 적어도 하나의 패터리 팩은 각각 복수의 배터리 모듈을 포함할 수 있으며, 배터리 모듈은 충방전 가능한 복수의 배터리 셀 포함할 수 있다. 복수의 배터리 모듈은 차량이나 배터리 팩 등의 스펙(specification)에 부합되도록 다양한 방법으로 직렬 및/또는 병렬 연결될 수 있고, 복수의 배터리 셀 또한 직렬 및/또는 병렬 연결될 수 있다. 여기서, 배터리 셀의 종류는 특별히 한정되지 않으며, 예컨대 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등으로 구성할 수 있다.The battery 10 is an electric energy source that drives the electric vehicle 1 by providing a driving force to the motor 50. [ The battery 10 can be charged or discharged by the inverter 40 in accordance with the driving of the motor 50 and / or the internal combustion engine (not shown). Here, the battery 10 may include at least one battery pack, each of the at least one patty pack may include a plurality of battery modules, and the battery module may include a plurality of charge and discharge battery cells . The plurality of battery modules may be connected in series and / or in parallel in various ways to meet specifications of a vehicle, a battery pack, etc., and a plurality of battery cells may also be connected in series and / or in parallel. Here, the type of the battery cell is not particularly limited and may be a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydride battery, a nickel zinc battery, or the like.
BMS(20)는 배터리(10)의 상태를 추정하고, 추정한 상태 정보를 이용하여 배터리(10)를 관리한다. 예컨대, 배터리(10)의 SOC, 수명(State of Health; SOH), 최대 입출력 전력 허용량, 출력 전압 등 배터리(10) 상태 정보를 추정하고 관리한다. 그리고, 이러한 상태 정보를 이용하여 배터리(10)의 충전 또는 방전을 제어한다. 본 발명에 따른 BMS(20)는 배터리의 SOC를 추정하기 위한 SOC 추정 장치를 포함한다. 또한, BMS(20)는 각 배터리 셀의 충전 상태의 균형을 맞추기 위한 셀 밸런싱을 제어한다. 즉, 충전 상태가 비교적 높은 배터리 셀은 방전시키고 충전 상태가 비교적 낮은 배터리 셀은 충전시킬 수 있다.The BMS 20 estimates the state of the battery 10 and manages the battery 10 using the estimated state information. For example, it estimates and manages the state information of the battery 10 such as the SOC, the State of Health (SOH), the maximum input / output power allowable amount, and the output voltage of the battery 10. Then, the charging or discharging of the battery 10 is controlled using this state information. The BMS 20 according to the present invention includes an SOC estimating device for estimating an SOC of a battery. In addition, the BMS 20 controls cell balancing to balance the state of charge of each battery cell. That is, a battery cell having a relatively high charging state is discharged, and a battery cell having a relatively low charging state can be charged.
ECU(engine controller unit; 30)는 전기 자동차의 상태를 제어하는 전자적 제어 장치이다. 예컨대, 액셀러레이터(accelerator), 브레이크(break), 속도 등의 정보에 기초하여 토크 정도를 결정하고, 모터(50)의 출력이 토크 정보에 맞도록 제어한다. 또한, ECU(30)는 BMS(20)에 의해 전달받은 배터리(10)의 SOC, SOH 등의 상태 정보에 기초하여 배터리(10)가 충전 또는 방전될 수 있도록 한다. 예를 들어, BMS(20)로부터 전달된 SOC가 55% 이하이면 인버터(40)의 스위치를 제어하여 전력이 배터리(10) 방향으로 출력되도록 하여 배터리(10)를 충전시키고, SOC가 55% 이상이면 인버터(40)의 스위치를 제어하여 전력이 모터(50) 방향으로 출력되도록 하여 배터리(10)를 방전시킨다.An engine controller unit (ECU) 30 is an electronic control unit for controlling the state of an electric vehicle. For example, it determines the degree of torque based on information such as an accelerator, a break, and a speed, and controls the output of the motor 50 to match the torque information. The ECU 30 also allows the battery 10 to be charged or discharged based on status information of the SOC, SOH, etc. of the battery 10 transmitted by the BMS 20. [ For example, when the SOC delivered from the BMS 20 is 55% or less, the switch of the inverter 40 is controlled to output power in the direction of the battery 10 to charge the battery 10, The switch of the inverter 40 is controlled so that electric power is output in the direction of the motor 50 to discharge the battery 10.
인버터(40)는 ECU(30)의 제어 신호에 기초하여 전기 자동차의 주행이 가능하도록 모터(50)를 구동시킨다.The inverter (40) drives the motor (50) so that the electric vehicle can run on the basis of the control signal of the ECU (30).
모터(50)는 배터리(10)의 전기 에너지를 이용하여 ECU(30)로부터 전달되는 제어 정보(예컨대, 토크 정보)에 기초하여 전기 자동차(1)를 구동한다.The motor 50 drives the electric vehicle 1 based on control information (for example, torque information) transmitted from the ECU 30 using the electric energy of the battery 10.
도 2는 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 장치의 구성을 설명하기 위한 블록도이다. 즉, 도 2는 배터리의 초기 SOC를 추정하고 사용자의 전압 범위 축소에 따라 변경된 SOC를 추정하는 장치의 블록도이다. 또한, 도 3 및 도 4는 본 발명의 일 실시 예에 이용되는 OCV 테이블의 예시도로서, 도 3은 초기 OCV 테이블의 예시도이고, 도 4는 본 발명에 따라 사용 전압 범위의 축소에 따라 보정된 OCV 테이블의 예시도이다. 그리고, 도 5는 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 방법을 설명하기 위한 개략도이다. 한편, 도 6은 초기 OCV 테이블과 변경된 OCV 테이블의 데이터를 비교한 그래프이다.2 is a block diagram illustrating a configuration of an SOC estimating apparatus for a battery according to an embodiment of the present invention. That is, FIG. 2 is a block diagram of an apparatus for estimating an initial SOC of a battery and estimating a changed SOC according to a reduction of a voltage range of a user. 3 and 4 are views showing an example of an OCV table used in an embodiment of the present invention. FIG. 3 is an exemplary view of an initial OCV table. FIG. Lt; RTI ID = 0.0 > OCV < / RTI > 5 is a schematic diagram for explaining a method of estimating SOC of a battery according to an embodiment of the present invention. Meanwhile, FIG. 6 is a graph comparing the initial OCV table and the changed OCV table data.
도 2를 참조하면, 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 장치는 배터리(10)의 전압 및 전류 등을 센싱하는 센싱부(100)와, 배터리의 SOC를 추정하는 SOC 추정부(200)와, 배터리(10)의 SOC 및 전압 등의 데이터를 저장하는 메모리부(300)와, 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산하고 줄어든 사용 범위에 따른 SOC를 재산출하는 연산부(400)를 포함할 수 있다.2, an apparatus for estimating SOC of a battery according to an embodiment of the present invention includes a sensing unit 100 for sensing voltage and current of a battery 10, an SOC estimating unit 200 for estimating SOC of a battery A memory unit 300 for storing data such as the SOC and voltage of the battery 10; a calculation unit 400 for calculating the degree of SOC reduction due to the change of the voltage range for use and for outputting the SOC according to the reduced usage range; . ≪ / RTI >
먼저, 배터리(10)는 충방전 가능한 복수의 배티리 셀(11, 12, 13, …, 1n)을 포함할 수 있다. 여기서, 배터리(10)는 짝수개의 배터리 셀이 연결되거나 홀수개의 배터리 셀이 연결될 수 있다. 즉, n은 짝수일 수 있고, 홀수일 수 있다. 또한, 복수의 배터리 셀은 직렬 연결될 수 있다. 즉, 복수의 배터리 셀은 일 단자 및 타 단자를 가지는데, 일 배터리 셀의 일 단자가 타 배터리 셀의 타 단자가 연결될 수 있다. 예를 들어, 제 1 배터리 셀(11)의 음극과 제 2 배터리 셀(12)의 양극이 연결될 수 있고, 제 2 배터리 셀(12)의 음극이 제 3 배터리 셀(13)의 양극과 연결될 수 있다. 또한, 복수의 배터리 셀은 동일 용량을 가질 수 있고 그에 따라 최대 충전 전압이 동일할 수 있는데, 예를 들어 최대 충전 전압이 4.2V일 수 있다.First, the battery 10 may include a plurality of battery cells 11, 12, 13, ..., 1n that can be charged and discharged. Here, the battery 10 may be connected to an even number of battery cells or to an odd number of battery cells. That is, n may be an even number or an odd number. In addition, a plurality of battery cells may be connected in series. That is, a plurality of battery cells have one terminal and another terminal, and one terminal of one battery cell may be connected to the other terminal of another battery cell. For example, the cathode of the first battery cell 11 may be connected to the anode of the second battery cell 12, and the cathode of the second battery cell 12 may be connected to the anode of the third battery cell 13. [ have. In addition, the plurality of battery cells may have the same capacity, and thus the maximum charging voltage may be the same, for example, the maximum charging voltage may be 4.2V.
1. 센싱부1. Sensing unit
센싱부(100)는 배터리(10)의 상태를 센싱하기 위해 마련되는데, 예를 들어 배터리(10)의 전압 및 전류 등을 센싱한다. 여기서, 센싱부(100)는 배터리 팩, 배터리 모듈 및 배터리 셀의 전압 및 전류 등을 센싱할 수 있다. 이를 위해 센서부(100)는 복수의 센서를 포함할 수 있는데, 예를 들어 적어도 하나의 전압 센서(미도시) 및 적어도 하나의 전류 센서(미도시)를 포함할 수 있다. 전압 센서는 배터리 팩, 배터리 모듈 또는 배터리 셀의 적어도 어느 하나의 전압을 측정할 수 있다. 예를 들어, 전압 센서를 이용하여 배터리 팩의 전압을 측정할 수 있는데, BMS가 인에이블된 후 배터리 팩으로부터 소정 시간 후 안정화된 전압, 즉 OCV를 측정할 수 있다. 전류 센서는 배터리 팩의 전류를 측정할 수 있다. 전류 센서는 예를 들어 홀(Hall) 소자를 이용하여 전류를 측정하고 측정된 전류에 대응되는 신호를 출력하는 Hall CT(Hall current transformer)를 포함할 수 있다. 한편, 센싱부(110)는 배터리(10) 또는 주변 온도를 측정하는 온도 센서(미도시)를 더 포함할 수 있다. 온도 센서는 배터리 팩 또는 배터리 모듈의 일 영역 또는 복수 영역의 온도를 측정할 수 있고, 이를 위하여 적어도 하나 이상 마련될 수 있다. 이렇게 센싱부(100)를 이용하여 배터리(10)의 전압, 전류, 온도 등을 센싱하기 위해 센싱부(100)는 도 2에 도시된 바와 같이 복수의 연결 라인을 통해 배터리(10)와 연결될 수 있다. 예를 들어, 복수의 배터리 셀(11, 12, 13, 14, …, 1n) 각각이 복수의 연결 라인을 통해 센싱부(100)와 연결될 수 있다. 이를 위한 구체적인 예로서, 제 1 배터리 셀(11)의 양극과 센싱부(100)가 연결 라인을 통해 연결되고, 제 1 배터리 셀(11)과 제 2 배터리 셀(12) 사이가 연결 라인을 통해 센싱부(100)와 연결될 수 있다. 이렇게 직렬 연결된 복수의 배터리 셀(11, 12, 13, 14, …, 1n) 각각이 연결 라인을 통해 센싱부(100)와 연결되고, 그에 따라 복수의 배터리 셀(11, 12, 13, 14, …, 1n)의 상태를 센싱부(100)가 센싱할 수 있다.The sensing unit 100 is provided for sensing the state of the battery 10 and senses the voltage and current of the battery 10, for example. Here, the sensing unit 100 may sense voltage and current of the battery pack, the battery module, and the battery cell. For this, the sensor unit 100 may include a plurality of sensors, for example, at least one voltage sensor (not shown) and at least one current sensor (not shown). The voltage sensor can measure the voltage of at least one of the battery pack, the battery module or the battery cell. For example, a voltage sensor can be used to measure the voltage of a battery pack, which can measure a stabilized voltage, or OCV, after a predetermined time from the battery pack after the BMS is enabled. The current sensor can measure the current in the battery pack. The current sensor may include a Hall current transformer (Hall CT) that measures current using, for example, a Hall element and outputs a signal corresponding to the measured current. Meanwhile, the sensing unit 110 may further include a battery 10 or a temperature sensor (not shown) for measuring the ambient temperature. The temperature sensor can measure the temperature of one area or a plurality of areas of the battery pack or the battery module, and at least one temperature sensor can be provided for this purpose. 2, the sensing unit 100 may be connected to the battery 10 through a plurality of connection lines to sense voltage, current, temperature, and the like of the battery 10 using the sensing unit 100. [ have. For example, each of the plurality of battery cells 11, 12, 13, 14, ..., 1n may be connected to the sensing unit 100 through a plurality of connection lines. For example, the positive electrode of the first battery cell 11 and the sensing unit 100 are connected through a connection line, and the first battery cell 11 and the second battery cell 12 are connected through a connection line And may be connected to the sensing unit 100. Each of the plurality of battery cells 11, 12, 13, 14, ..., 1n connected in series is connected to the sensing unit 100 through a connection line, ..., 1n can be sensed by the sensing unit 100. [
2. SOC 추정부2. SOC estimation section
SOC 추정부(200)는 배터리(10)의 SOC를 추정한다. SOC를 추정하기 위해 다양한 방식이 있을 수 있다. 예를 들어, SOH 추정부(미도시)로부터 추정된 배터리(10)의 용량과 센싱부(100)로부터 측정된 배터리(10)의 전류를 이용하여 배터리(10)의 SOC를 추정할 수 있다. 즉, SOC 추정부(200)는 센싱부(100)로부터 측정된 소정 시간 동안의 전류값을 적산하고, 이를 SOH 추정부로부터 추정된 배터리 용량(Capacity)으로 나눠 배터리(10)의 SOC를 추정할 수 있다. 또한, SOC 추정부(200)는 배터리(10)의 OCV(Open Circuit Voltage)를 이용하여 SOC를 추정할 수 있다. 즉, 센싱부(100)에서 측정된 OCV를 메모리부(300)에 저장된 초기 OCV 테이블을 참고하여 그에 매칭된 SOC를 추출함으로써 SOC를 추정할 수 있다. 예를 들어, 센싱부(100)로부터 측정된 OCV가 3560mV라면 도 3의 OCV 테이블을 참고하여 SOC가 40%임을 추정할 수 있다. 그리고, SOC 추정부(200)는 배터리(10)의 임피던스를 측정하여 SOC를 추정할 수 있는 등 다양한 방법으로 SOC를 추정할 수 있다. 본 발명의 실시 예는 센싱부(100)로부터 측정된 OCV를 메모리부(300)에 저장된 OCV 테이블과 매칭하여 SOC를 추정한다. The SOC estimating unit 200 estimates the SOC of the battery 10. There are various ways to estimate the SOC. The SOC of the battery 10 can be estimated using the capacity of the battery 10 estimated from the SOH estimation unit (not shown) and the current of the battery 10 measured from the sensing unit 100, for example. That is, the SOC estimating unit 200 estimates the SOC of the battery 10 by integrating the current value measured for the predetermined time from the sensing unit 100 and dividing the current value by the estimated battery capacity (Capacity) from the SOH estimating unit . Also, the SOC estimating unit 200 can estimate the SOC using the OCV (Open Circuit Voltage) of the battery 10. [ That is, the SOC can be estimated by referring to the initial OCV table stored in the memory unit 300, and extracting the SOC matched to the OCV measured by the sensing unit 100. For example, if the OCV measured from the sensing unit 100 is 3560 mV, it can be estimated that the SOC is 40% by referring to the OCV table of FIG. The SOC estimating unit 200 can estimate the SOC by various methods such as measuring the impedance of the battery 10 and estimating the SOC. The embodiment of the present invention estimates the SOC by matching the OCV measured from the sensing unit 100 with the OCV table stored in the memory unit 300.
3. 메모리부3. Memory section
메모리부(300)는 배터리(10)의 운용을 위한 다양한 데이터를 저장할 수 있다. 특히 메모리부(300)는 SOC와 OCV를 저장할 수 있다. 이때, SOC와 OCV는 매칭되어 저장될 수 있다. 즉, 실험적으로 측정된 다양한 SOC와 그에 따른 OCV가 메모리부(300)에 저장될 수 있다. 예를 들어, 도 3에 도시된 바와 같이 0%로부터 100%까지의 SOC와 각각의 SOC에 따른 OCV를 측정하고 이들을 매칭하여 저장할 수 있다. 메모리부(300)에 저장된 SOC와 OCV는 다양한 방법으로 측정되어 저장될 수 있다. 하나의 방법으로, 본 발명의 배터리(10)로 이용되는 배터리 셀과 동일 스펙의 배터리 셀을 예를 들어 3V로부터 4.2V까지 0.5C, 50㎃ 컷오프로 충전하고 5시간 유지시킨 후 0.01C로 3V까지 방전시키며, 방전 동안에 주기적으로 배터리 셀의 전압을 측정한다. 이러한 과정을 복수회, 예를 들어 7 내지 8회 반복하여 SOC와 OCV 평균을 산출하여 SOC와 OCV 테이블을 마련할 수 있다. 다른 방법으로, 배터리 셀을 0.001C로 충전(즉 1000시간 동안 충전)하면서 주기적으로 충전 OCV를 측정하고, 다시 0.001C로 방전(즉 1000시간 동안 방전)하면서 주기적으로 방전 COV를 측정하며, 충전 OCV와 방전 OCV의 평균을 산출하고 이때의 SOC를 산출하여 SOC 및 OCV 테이블을 마련할 수 있다. 또다른 방법으로, 기구적 고정물을 이용하여 원통형 배터리 셀을 완전히 고정하고 스크류를 이용하여 차저 및 로더(charger and loader)의 + 및 - 단자와 원통형 배터리 셀의 + 및 - 단자와 접촉시킨다. 이렇게 배터리 셀이 차저 및 로더와 접촉된 구조물을 복수 세트 제작한 후 항온항습 챔버 내에 위치시켜 일정한 온도에서 SOC 및 OCV를 추출한다. 한편, COV와 SOC가 매칭되어 저장되고, 이때의 온도 및 내부 저항 등도 저장될 수 있다. 즉, 메모리부(300)에는 배터리의 주위 온도, 내부 저항 또는 온도에 따른 용량 감소 계수 등을 별도로 구하여 미리 저장될 수 있다. 또한, 메모리부(300)에는 사용 전압 범위의 변경에 따른 새롭게 보정된 OCV 및 SOC가 매칭되어 저장될 수 있다. 예를 들어, 도 4에 도시된 바와 같이 사용 전압 범위의 축소에 따라 새롭게 추정된 SOC와 그에 따른 OCV가 매칭되어 저장될 수 있다. 이때, 새롭게 보정된 OCV 테이블은 초기 OCV 테이블을 업데이트하여 저장될 수도 있고, 초기 OCV 테이블과는 별도로 저장될 수도 있다. 즉, 새롭게 산출된 SOC 및 OCV 데이터가 초기 OCV 테이블에 덮어씌워 저장될 수도 있고, 새로운 OCV 테이블이 초기 OCV 테이블과는 별도의 데이터로 저장될 수도 있다. 한편, 메모리부(300)는 BMS(20) 내에 구비될 수 있고, BMS(20) 외에 별도로 마련될 수 있다. 메모리부(300)는 하드 디스크 드라이브, 플래시 메모리, EEPROM(Electrically erasable programmable read-only memory), SRAM(Static RAM), FRAM (Ferro-electric RAM), PRAM (Phase-change RAM), MRAM(Magnetic RAM) 등과 같은 비휘발성 메모리가 이용될 수 있다.The memory unit 300 may store various data for operating the battery 10. In particular, the memory unit 300 may store the SOC and the OCV. At this time, the SOC and the OCV can be matched and stored. That is, various experimentally measured SOCs and corresponding OCVs may be stored in the memory unit 300. For example, as shown in FIG. 3, SOCs ranging from 0% to 100% and OCVs according to respective SOCs can be measured, and they can be matched and stored. The SOC and OCV stored in the memory unit 300 can be measured and stored in various ways. For example, the battery cell of the same specification as the battery cell used as the battery 10 of the present invention is charged from 0.5 V to 4.2 V, for example, from 3 V to 50 mA cutoff, , And measures the voltage of the battery cell periodically during discharging. This process is repeated a plurality of times, for example, 7 to 8 times, so that the SOC and OCV averages are calculated to provide the SOC and OCV tables. Alternatively, the charge OCV is periodically measured while the battery cell is charged to 0.001C (i.e., charged for 1000 hours), and the discharge COV is periodically measured while discharging to 0.001C (i.e., discharging for 1000 hours) And the discharge OCV are calculated, and the SOC and the OCV table can be prepared by calculating the SOC at this time. Alternatively, the cylindrical battery cell is fully secured using a mechanical fixture and the screw is used to contact the + and - terminals of the charger and loader and the + and - terminals of the cylindrical battery cell. A plurality of structures in which the battery cell is in contact with the charger and the loader are manufactured and placed in a thermo-hygrostat chamber to extract SOC and OCV at a constant temperature. On the other hand, COV and SOC are matched and stored, and the temperature and internal resistance at this time can also be stored. That is, the memory unit 300 may be previously stored by separately obtaining a capacity decrease coefficient depending on the ambient temperature of the battery, the internal resistance, or the temperature. In addition, the memory unit 300 may store the newly corrected OCV and SOC according to the change in the range of the voltage used. For example, as shown in FIG. 4, the newly estimated SOC and the corresponding OCV may be matched and stored according to the reduction of the operating voltage range. At this time, the newly corrected OCV table may be stored by updating the initial OCV table or may be stored separately from the initial OCV table. That is, newly calculated SOC and OCV data may be overwritten and stored in the initial OCV table, or a new OCV table may be stored as data separate from the initial OCV table. Meanwhile, the memory unit 300 may be provided in the BMS 20, and may be separately provided in addition to the BMS 20. The memory unit 300 may be a hard disk drive, a flash memory, an electrically erasable programmable read-only memory (EEPROM), a static random access memory (SRAM), a ferro-electric random access memory (FRAM), a phase change random access memory (PRAM) ) And the like can be used.
4. 연산부4. Operation unit
연산부(400)는 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산하고 그에 따른 SOC를 재산출한다. 이를 위해 연산부(400)는 먼저 사용 전압 범위 변경에 따른 사용 전압 범위의 상위와 하위를 이용하여 SOC 감소 정도를 계산한다. 즉, 연산부(400)는 사용 전압 범위의 상위와 하위를 메모리부(300)의 초기 OCV 테이블을 참고하여 검출하고, 그에 따른 SOC 감소 정도를 계산한다. 예를 들어, 사용 전압 범위가 4.0V 내지 2.4V라면 도 3의 OCV 테이블을 참고하여 해당 전압에 따른 SOC, 즉 90% 및 5%의 검출하고, 그에 따라 SOC 감소 정도가 상위 10% 및 하위 5%임을 계산한다. 또한, 연산부(400)는 FCC 용량을 SOC 감소 정도만큼 초기 용량에서 차감하여 변경된 용량을 계산하고, 축소된 사용 범위에 맞는 새로운 SOC를 계산한다. 여기서, 연산부(400)는 [수학식 1]을 이용하여 변경된 용량을 계산하고, [수학식 2]를 이용하여 변경된 SOC를 계산한다.The operation unit 400 calculates the degree of SOC reduction according to the range of the use voltage and re-calculates the SOC according to the calculated degree of decrease. To this end, the operation unit 400 calculates the degree of SOC reduction using the upper and lower ranges of the operating voltage range according to the range of the operating voltage range. That is, the operation unit 400 detects the upper and lower ranges of the operating voltage range by referring to the initial OCV table of the memory unit 300, and calculates the degree of SOC reduction according to the detected OCV table. For example, when the operating voltage range is from 4.0V to 2.4V, the OCV table of FIG. 3 is referenced to detect the SOC according to the voltage, that is, 90% and 5% %. In addition, the operation unit 400 calculates the changed capacity by subtracting the FCC capacity from the initial capacity by the degree of SOC reduction, and calculates a new SOC according to the reduced usage range. Here, the operation unit 400 calculates the changed capacity by using Equation (1), and calculates the changed SOC using Equation (2).
Figure PCTKR2018010993-appb-M000001
Figure PCTKR2018010993-appb-M000001
Figure PCTKR2018010993-appb-M000002
Figure PCTKR2018010993-appb-M000002
이러한 변경된 용량(X')과 변경된 SOC(I')를 계산하기 위한 개략도를 도 5에 도시하였다. 도 5에 도시된 바와 같이 최대 전압 및 최소 전압을 각각 Vfc 및 Ve라 표시하고, 최대 및 최소 SOC가 각각 100% 및 0%이다. 또한, 상위 및 하위 용량 차감율을 각각 A% 및 B%라 표시하며, 초기 및 변경된 SOC를 각각 I 및 I'라 한다. 그리고, 변경된 최대 전압 및 최소 전압을 각각 V'fc 및 V'e라 표시하였다. [수학식 1]에 나타낸 바와 같이 변경된 용량(X')은 상위 용량 차감율(A%)과 하위 용량 차감율(B%)의 합을 1에서 뺀 값을 초기 용량(X)과 곱해서 계산할 수 있다. 또한, [수학식 2]에 나타낸 바와 같이 변경된 SOC(I')는 초기 SOC(I)에서 하위 용량 차감율(B%)을 뺀 값을 상위 용량 차감율(A%)과 하위 용량 차감율(B%)의 합을 100%에서 뺀 값으로 나누어 계산할 수 있다. 예를 들어, 최대 및 최소 전압이 각각 4.2V 및 2.0V이고, 초기 SOC가 40%이며, 상위 용량 차감율(A%)과 하위 용량 차감율(B%)이 각각 10% 및 5%라 할 때, 변경된 용량은 수학식 1에 의해 1275mAh로 계산되고, 변경된 SOC는 수학식 2에 의해 41%로 계산된다. 초기 용량 및 초기 SOC와 상위 및 하위 용량 차감율에 따른 수학식 1 및 2로 계산되는 변경된 용량 및 SOC의 예를 표 1에 나타내었다.A schematic diagram for calculating the changed capacity X 'and the changed SOC (I') is shown in FIG. As shown in FIG. 5, the maximum voltage and the minimum voltage are denoted by Vfc and Ve, respectively, and the maximum and minimum SOC are 100% and 0%, respectively. Also, the upper and lower capacity reduction rates are denoted by A% and B%, respectively, and the initial and changed SOC are denoted by I and I ', respectively. The changed maximum voltage and minimum voltage are denoted by V'fc and V'e, respectively. The modified capacity X 'can be calculated by multiplying the initial capacity X by a value obtained by subtracting 1 from the sum of the upper capacity reduction ratio A% and the lower capacity reduction ratio B% as shown in the following equation (1) have. The modified SOC (I ') is a value obtained by subtracting the lower capacity reduction ratio (B%) from the initial SOC (I) as the upper capacity reduction ratio (A%) and the lower capacity reduction ratio B%) divided by the value minus 100%. For example, assume that the maximum and minimum voltages are 4.2 V and 2.0 V, respectively, and the initial SOC is 40%, and the high capacity reduction ratio A% and the low capacity reduction ratio B% are 10% and 5% , The changed capacity is calculated as 1275 mAh by Equation (1), and the changed SOC is calculated as 41% by Equation (2). Table 1 shows examples of the modified capacity and SOC calculated by Equations (1) and (2) according to initial capacity and initial SOC and upper and lower capacity subtraction rates.
예시 1Example 1 예시 2Example 2 예시 3Example 3 예시 4Example 4 예시 5Example 5 예시 6Example 6 예시 7Example 7
초기 용량(mAh)Initial capacity (mAh) 15001500 30003000 28002800 22002200 30003000 24002400 24002400
상위 용량 차감율(%)High Capacity Deduction Rate (%) 10%10% 15%15% 7%7% 0%0% 2%2% 10%10% 10%10%
하위 용량 차감율(%)Sub-capacity deduction rate (%) 5%5% 3%3% 0%0% 7%7% 8%8% 3%3% 3%3%
초기 SOC(%)Initial SOC (%) 40%40% 60%60% 55%55% 64%64% 60%60% 95%95% 2%2%
변경된 용량(mAh)Modified Capacity (mAh) 12751275 24602460 26042604 20462046 27002700 20882088 20882088
변경된 SOC(%)Changed SOC (%) 41%41% 70%70% 59%59% 61%61% 58%58% 106%106% -1%-One%
그런데, 변경된 SOC가 축소된 범위를 넘어서게 되면 오버(over) SOC 또는 언더(under) SOC로 계산된다. 즉, 예시 6과 같이 변경된 SOC가 초기 SOC보다 11% 크고 이는 축소 범위인 10%를 초과하므로 오버 SOC로 계산되고, 예시 7과 같이 변경된 SOC가 초기 SOC보다 3% 작고 이는 축소 범위인 3%와 같으므로 언더 SOC로 계산된다.한편, 연산부(400)는 이렇게 산출된 사용 전압 변경, 즉 사용 전압 감축에 따른 SOC 및 그에 따른 OCV를 계산하여 메모리부(300)에 저장한다. 즉, 기존의 OCV 테이블에 새롭게 계산된 OCV 테이블을 업데이트하여 저장한다. 이때, 새로운 데이터는 기존 데이터에 덮어쓰기 형태로 저장될 수도 있고, 기존 데이터와는 별도의 데이터로서 저장될 수 있다. 새로운 OCV 테이블은 사용자가 설정한 최대 전압 4V를 SOC 100%로 하고 최소 전압 2.4V를 SOC 0%로 하여 그 사이의 OCV에 의한 SOC를 수학식 1로 계산하여 저장할 수 있다. 이러한 새로운 OCV 테이블의 예가 도 4에 도시되어 있고, 초기 OCV 테이블과 변경된 OCV 테이블의 데이터를 비교한 그래프가 도 6에 도시되어 있다.However, when the changed SOC exceeds the reduced range, it is calculated as over SOC or under SOC. That is, as shown in Example 6, the changed SOC is 11% larger than the initial SOC and exceeds 10%, which is the reduced range. Therefore, the changed SOC is 3% smaller than the initial SOC as shown in Example 7, The calculation unit 400 calculates the SOC according to the usage voltage thus calculated, that is, the OCV according to the usage voltage reduction, and stores the calculated SOC and the OCV in the memory unit 300. That is, the OCV table newly calculated in the existing OCV table is updated and stored. At this time, the new data may be stored in an overwrite form on the existing data or may be stored as data separate from the existing data. In the new OCV table, the maximum voltage 4V set by the user is set to SOC 100%, the minimum voltage 2.4V is set to SOC 0%, and the SOC due to OCV therebetween can be calculated and stored in Equation (1). An example of this new OCV table is shown in FIG. 4, and a graph comparing the initial OCV table with the changed OCV table data is shown in FIG.
상기한 바와 같이 본 발명의 일 실시 예에 따른 배터리의 SOC 추정 장치는 센싱부(100), SOC 추정부(200), 메모리부(300) 및 연산부(400)를 포함하여 배터리를 자동차 등에 장착하는 제조사의 필요에 따라 사용 전압 범위가 변경된 배터리의 용량을 OCV 테이블의 초기 SOC를 이용하여 추정할 수 있다. 예를 들어, 배터리의 제조가 완료되어 사용 전압 범위가 세팅된 배터리에 대하여 제조사의 요청에 따라 사용 전압 범위가 변경될 수 있고, 이 경우 OCV 테이블을 참조하여 현재의 전압 SOC를 산출하고, 제조사의 전압 사용 범위의 상위 및 하위를 OCV 테이블을 참고하여 SOC 감소분을 계산하며, FCC 용량을 감소분만큼 차감하여 산출하고, 축소된 사용 범위에 맞는 새로운 SOC를 재산출한다. 따라서, 사용자의 전압 범위 축소에 따라 변경된 SOC를 추정함으로써 오차 발생을 방지할 수 있고, 그에 따라 안정적인 배터리의 이용이 가능하다.As described above, the apparatus for estimating SOC of a battery according to an embodiment of the present invention includes a sensing unit 100, an SOC estimating unit 200, a memory unit 300, and an operation unit 400, The capacity of the battery whose operating voltage range has been changed according to the manufacturer's needs can be estimated using the initial SOC of the OCV table. For example, the use voltage range may be changed according to the manufacturer's request for a battery whose manufacture voltage is set to be the range of the battery, and the present voltage SOC is calculated with reference to the OCV table. Calculate the SOC reduction by referring to the OCV table for the upper and lower voltage use ranges, subtract the FCC capacity by the reduction amount, and recalculate the new SOC for the reduced use range. Therefore, by estimating the changed SOC according to the reduction of the voltage range of the user, it is possible to prevent the occurrence of an error, thereby enabling the stable use of the battery.
한편, 상기한 바와 같이 사용 전압 범위가 변경된 배터리(10)의 용량을 본 발명의 SOC 추정 장치를 이용하여 추정하며, 배터리 관리 장치를 이용하여 사용 전압 범위가 변경된 배터리(10)를 충전 및 방전시킬 수 있다. 이러한 본 발명의 SOC 추정 장치를 포함하는 배터리 관리 장치를 도 7 및 도 8에 도시하였다. 도 7은 본 발명의 일 실시 예에 따른 배터리 관리 장치의 블록도이고, 도 8은 배터리 관리 장치의 스위칭부의 구성을 설명하기 위한 배터리 관리 장치의 블록도이다.Meanwhile, as described above, the capacity of the battery 10 whose operating voltage range is changed is estimated using the SOC estimating apparatus of the present invention, and the battery 10 whose operating voltage range is changed by using the battery management apparatus is charged and discharged . 7 and 8 show a battery management apparatus including the SOC estimating apparatus of the present invention. FIG. 7 is a block diagram of a battery management apparatus according to an embodiment of the present invention, and FIG. 8 is a block diagram of a battery management apparatus for explaining a configuration of a switching unit of the battery management apparatus.
도 7을 참조하면, 본 발명의 일 실시 예에 따른 배터리 관리 장치는 복수의 배터리 셀(11, 12, 13, 14, …, 1n)을 포함하는 배터리(10)와, 배터리(10)의 상태를 센싱하는 센싱부(100)와, 배터리의 SOC를 추정하는 SOC 추정부(200)와, 배터리(10)의 SOC 및 전압 등의 데이터를 저장하는 메모리부(300)와, 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산하고 줄어든 사용 범위에 따른 SOC를 재산출하는 연산부(400)와, 재산출된 SOC를 참고하여 배터리(10)의 상태에 따라 배터리(10)의 충방전을 제어하는 제어부(500)와, 제어부(500)의 제어 신호에 따라 배터리(10)와 부하 사이의 연결을 제어하는 스위칭부(600)를 포함할 수 있다. 즉, 본 발명의 배터리 관리 장치는 센싱부(100), SOC 추정부(200) 및 연산부(400)를 포함하는 SOC 추정 장치에 제어부(500) 및 스위칭부(600)를 더 포함하여 구성될 수 있다. 여기서, SOC 추정 장치에 대해서는 이미 설명하였으므로 본 발명의 배터리 관리 장치 중 제어부(500) 및 스위칭부(600)에 대해 상세히 설명하면 다음과 같다.7, a battery management apparatus according to an embodiment of the present invention includes a battery 10 including a plurality of battery cells 11, 12, 13, 14, ..., 1n, A SOC estimating unit 200 for estimating the SOC of the battery, a memory unit 300 for storing data such as SOC and voltage of the battery 10, And a controller (not shown) for controlling the charging and discharging of the battery 10 according to the state of the battery 10 by referring to the re-calculated SOC And a switching unit 600 for controlling connection between the battery 10 and the load according to a control signal of the control unit 500. [ That is, the battery management apparatus of the present invention may include a control unit 500 and a switching unit 600 in the SOC estimating apparatus including the sensing unit 100, the SOC estimating unit 200, and the calculating unit 400 have. Since the SOC estimating device has already been described, the control unit 500 and the switching unit 600 of the battery management apparatus of the present invention will be described in detail as follows.
5. 제어부5. Control section
제어부(500)는 센싱부(100)로부터 측정된 복수의 배터리 셀 각각의 전압에 따라 제어 신호를 생성하여 배터리(10)와 부하 사이의 스위칭부(600)를 제어함으로써 배터리(10)의 충방전을 제어한다. 따라서, 배터리 셀의 과충전 또는 과방전을 방지할 수 있다. 예를 들어, 제어부(500)는 충전 동작을 정지시키기 위한 제 1 설정 전압 및 충전 동작을 실시하기 위한 제 2 설정 전압과 센싱부(100)에서 측정된 복수의 배터리 셀 각각의 전압을 비교하여 측정 전압이 제 1 설정 전압보다 높거나 같을 경우 배터리 셀의 충전 동작을 정지하기 위한 제어 신호를 생성하고, 측정 전압이 제 2 설정 전압보다 낮거나 같을 경우 배터리 셀의 충전 동작을 위한 제어 신호를 생성할 수 있다. 여기서, 제 1 설정 전압은 복수의 배터리 셀 각각의 최대 충전 전압이 4.0V라 할 경우 과충전을 방지하기 위해 예를 들어 3.8V로 설정될 수 있고, 제 2 설정 전압은 복수의 배터리 셀 각각의 과방전을 방지하기 위해 예를 들어 2.4V로 설정될 수 있다. 또한, 제어부(500)는 배터리 셀의 변경된 용량에 따라 배터리 셀의 설정 전압을 변경하여 배터리 셀의 충방전을 제어할 수 있다. 예를 들어, 최대 충전 전압이 4.0V에서 3.8V로 변경되고, 최소 전압이 2.5V로 변경된 경우 제어부(500)는 연산부(400)의 연산 결과 또는 메모리부(300)에 업데이트되어 저장된 데이터를 이용하여 제 1 및 제 2 설정 전압을 변경하여 메모리 셀의 데이터와 비교할 수 있다. 예를 들어, 제 1 설정 전압이 3.8V로 변경되고 최소 충전 전압이 2.5V로 변경될 경우 제 1 설정 전압을 3.6V로 변경하고 최소 충전 전압을 2.6V로 변경하여 메모리 셀의 데이터와 비교할 수 있다. 따라서, 배터리 셀이 최대 충전 전압 및 최소 충전 전압의 변경에 따라 배터리 셀의 충방전을 제어하고 그에 따라 변경된 배터리 셀의 과충전 및 과방전을 방지할 수 있다.The control unit 500 generates a control signal according to the voltage of each of the plurality of battery cells measured by the sensing unit 100 to control the switching unit 600 between the battery 10 and the load, . Therefore, overcharge or overdischarge of the battery cell can be prevented. For example, the control unit 500 compares the first set voltage for stopping the charging operation and the second set voltage for performing the charging operation with the voltages of the plurality of battery cells measured by the sensing unit 100 Generates a control signal for stopping the charging operation of the battery cell when the voltage is higher than or equal to the first set voltage, and generates a control signal for charging operation of the battery cell when the measured voltage is lower than or equal to the second set voltage . Here, when the maximum charging voltage of each of the plurality of battery cells is 4.0 V, the first set voltage may be set to, for example, 3.8 V to prevent overcharging, and the second set voltage may be set to, for example, It may be set to 2.4V, for example. Also, the control unit 500 can control the charge / discharge of the battery cell by changing the set voltage of the battery cell according to the changed capacity of the battery cell. For example, when the maximum charge voltage is changed from 4.0 V to 3.8 V and the minimum voltage is changed to 2.5 V, the control unit 500 may use the operation result of the operation unit 400 or the data updated and stored in the memory unit 300 So that the first and second set voltages can be changed and compared with the data of the memory cell. For example, when the first set voltage is changed to 3.8 V and the minimum charge voltage is changed to 2.5 V, the first set voltage is changed to 3.6 V and the minimum charge voltage is changed to 2.6 V, have. Therefore, it is possible to control the charging and discharging of the battery cell according to the change of the maximum charging voltage and the minimum charging voltage of the battery cell, thereby preventing overcharging and overdischarge of the changed battery cell.
6. 스위칭부6. Switching section
스위칭부(600)는 배터리(10)와 부하 사이의 전류 경로 사이에 마련되어 제어부(500)에 의해 배터리(10)의 충전 및 방전을 제어한다. 이러한 스위칭부(600)는 도 8에 도시된 바와 같이 제 1 스위치(610) 및 제 2 스위치(620)를 포함할 수 있다. 즉, 스위칭부(600)는 배터리(10)와 부하 사이에 마련되는데, 제 1 스위치(610)가 배터리(10) 측에 마련되고, 제 2 스위치(620)가 부하 측에 마련될 수 있다. 제 1 및 제 2 스위치(610, 620)는 제어부(500)에서 생성된 제어 신호에 따라 구동되며, 배터리(10)의 충전 및 방전 시 동시에 구동될 수 있고, 어느 하나가 구동될 수도 있다. 예를 들어, 제 1 스위치(610)은 배터리(10)의 충전 시 구동될 수 있고 제 2 스위치(620)는 배터리(10)의 방전 시 구동될 수 있다. 여기서, 부하는 배터리(10)을 충전하기 위한 외부 전원과, 배터리(10)의 방전 전압에 따라 구동되는 배터리(10)가 장착되는 전자기기를 포함할 수 있다. 즉, 배터리(10)의 충전 시 배터리(10)는 외부 전원과 연결되고, 배터리(10)의 방전 시 배터리(10)는 전자기기에 연결될 수 있다.The switching unit 600 is provided between a current path between the battery 10 and the load, and controls the charging and discharging of the battery 10 by the control unit 500. The switching unit 600 may include a first switch 610 and a second switch 620 as shown in FIG. That is, the switching unit 600 is provided between the battery 10 and the load. The first switch 610 may be provided on the battery 10 side and the second switch 620 may be provided on the load side. The first and second switches 610 and 620 are driven according to the control signal generated by the controller 500 and can be driven simultaneously when charging and discharging the battery 10 and either one of them may be driven. For example, the first switch 610 may be driven when the battery 10 is charged, and the second switch 620 may be driven when the battery 10 is discharged. Here, the load may include an external power source for charging the battery 10, and an electronic device to which the battery 10 driven according to the discharge voltage of the battery 10 is mounted. That is, when the battery 10 is charged, the battery 10 is connected to an external power source, and when the battery 10 is discharged, the battery 10 can be connected to the electronic device.
제 1 스위치(610)는 제 1 FET(610a) 및 제 1 기생 다이오드(610b)를 포함할 수 있다. 제 1 FET(610a)는 소오스 단자 및 드레인 단자가 배터리(10)와 제 1 노드(Q1) 사이에 마련되고, 게이트 단자가 제어부(500)와 연결된다. 따라서, 제 1 FET(610a)는 제어부(500)로부터 출력되는 제어 신호에 따라 구동되며, 충전 시 배터리(10)로 전류를 인가하는 역할을 한다. 제 1 기생 다이오드(610b)는 제 1 FET(610a)에 병렬 연결된다. 즉, 제 1 기생 다이오드(610b)는 배터리(10)와 제 1 노드(Q1) 사이에 순방향으로 연결된다. 이러한 제 1 기생 다이오드(610b)는 제 1 FET(610a)가 턴오프될 때 배터리(10)의 방전 경로를 설정한다. 즉, 제 1 FET(610a)을 통해 배터리(10)가 충전되고, 제 1 기생 다이오드(610b)를 통해 배터리(10)가 방전될 수 있다.The first switch 610 may include a first FET 610a and a first parasitic diode 610b. The first FET 610a has a source terminal and a drain terminal provided between the battery 10 and the first node Q1 and a gate terminal connected to the control unit 500. [ Accordingly, the first FET 610a is driven in accordance with a control signal output from the controller 500, and functions to apply a current to the battery 10 during charging. The first parasitic diode 610b is connected in parallel to the first FET 610a. That is, the first parasitic diode 610b is connected in a forward direction between the battery 10 and the first node Q1. This first parasitic diode 610b sets the discharge path of the battery 10 when the first FET 610a is turned off. That is, the battery 10 is charged through the first FET 610a, and the battery 10 can be discharged through the first parasitic diode 610b.
제 2 스위치(620)는 제 2 FET(620a) 및 제 2 기생 다이오드(620b)를 포함할 수 있다. 제 2 FET(620a)는 소오스 단자 및 드레인 단자가 제 1 노드(Q1)와 부하 사이에 마련되고, 게이트 단자가 제어부(500)와 연결된다. 따라서, 제 2 FET(620a)는 제어부(500)로부터 출력되는 제어 신호에 따라 구동되며, 방전 시 배터리(10)의 방전 전류를 이와 연결된 전자기기에 인가시키는 역할을 한다. 제 2 기생 다이오드(620b)는 제 2 FET(620a)에 병렬 연결된다. 즉, 제 2 기생 다이오드(620b)는 제 1 노드(Q1)와 부하 사이에 역방향으로 연결된다. 이러한 제 2 기생 다이오드(620b)는 배터리(10)의 충전 시 충전 전류의 경로를 설정한다. 즉, 제 2 FET(620a)를 통해 배터리(10)가 방전되고, 제 2 기생 다이오드(620b)을 통해 배터리(10)가 충전될 수 있다.The second switch 620 may include a second FET 620a and a second parasitic diode 620b. A source terminal and a drain terminal of the second FET 620a are provided between the first node Q1 and the load, and a gate terminal is connected to the control unit 500. [ Accordingly, the second FET 620a is driven in accordance with a control signal output from the controller 500, and serves to apply the discharge current of the battery 10 to the electronic device connected to the second FET 620a. The second parasitic diode 620b is connected in parallel to the second FET 620a. That is, the second parasitic diode 620b is connected in the reverse direction between the first node Q1 and the load. The second parasitic diode 620b sets the path of the charging current when the battery 10 is charged. That is, the battery 10 is discharged through the second FET 620a, and the battery 10 can be charged through the second parasitic diode 620b.
이러한 스위칭부(600)는 제 1 FET(610a)의 게이트 단자와 제 2 FET(620a)의 게이트 단자에 제어부(500)가 연결되어 제어부(500)로부터 출력되는 제어 신호에 따라 제 1 및 제 2 FET(610a, 620a)가 각각 구동된다. 제어부(500)는 배터리(10)의 충전 시 제 1 FET(610a)를 턴온시키고, 제 2 FET(620b)를 턴오프시킨다. 따라서, 부하, 즉 외부 전원으로부터 제 2 기생 다이오드(620b) 및 제 1 FET(610a)를 통해 배터리(10)가 충전된다. 또한, 제어부(500)는 배터리(10)의 방전 시 제 2 FET(620a)를 턴온시키고 제 2 FET(610a)를 턴온시킨다. 따라서, 배터리(10)로부터 제 1 FET(610a) 및 제 2 기생 다이오드(620b)를 통해 배터리(10)가 방전된다. 이때, 제 1 및 제 2 FET(610a, 620a)를 각각 턴온시키는 제어 신호는 로직 하이 신호일 수 있고, 제 1 및 제 2 FET(610a, 620a)를 각각 턴오프시키는 제어 신호는 로직 로우 신호일 수 있다.The switching unit 600 is connected to the gate terminal of the first FET 610a and the gate terminal of the second FET 620a and the control unit 500 is connected to the first and second FETs 620a and 620b in response to a control signal output from the control unit 500. [ FETs 610a and 620a are driven, respectively. The control unit 500 turns on the first FET 610a and turns off the second FET 620b when the battery 10 is charged. Therefore, the battery 10 is charged from the load, i.e., the external power supply, through the second parasitic diode 620b and the first FET 610a. In addition, the controller 500 turns on the second FET 620a and turns on the second FET 610a when the battery 10 is discharged. Thus, the battery 10 is discharged from the battery 10 through the first FET 610a and the second parasitic diode 620b. At this time, the control signal for turning on the first and second FETs 610a and 620a, respectively, may be a logic high signal, and the control signal for turning off the first and second FETs 610a and 620a, respectively, may be a logic low signal .
상기한 바와 같이 본 발명의 일 실시 예에 따른 배터리 제어 장치는 배터리(10)의 상태를 센싱한 후 배터리(10)의 충방전을 제어할 수 있다. 또한, 배터리 제어 장치는 SOC 추정 장치에 의해 배터리(10)의 용량 및 SOC가 변경된 후 변경된 배터리(10)의 용량에 따라 배터리(10)의 충방전을 제어할 수 있다. 배터리(10)의 용량이 감소된 경우 감소된 용량에 따라 설정 전압을 낮춰 배터리의 충방전을 제어할 수 있다.As described above, the battery control apparatus according to an embodiment of the present invention can control the charging / discharging of the battery 10 after sensing the state of the battery 10. [ Also, the battery control device can control the charging / discharging of the battery 10 according to the capacity of the battery 10 changed after the capacity and SOC of the battery 10 are changed by the SOC estimating device. When the capacity of the battery 10 is reduced, the charge / discharge of the battery can be controlled by lowering the set voltage according to the reduced capacity.
도 9는 본 발명의 일 실시 예에 따른 SOC 추정 방법을 설명하기 위한 흐름도이고, 도 10은 일부 과정의 상세 흐름도이다.FIG. 9 is a flowchart illustrating an SOC estimation method according to an embodiment of the present invention, and FIG. 10 is a detailed flowchart of a process.
도 9 및 도 10을 참조하면, 본 발명의 일 실시 예에 따른 SOC 추정 방법은 배터리(10)의 OCV 및 전류를 측정하는 과정(S100)과, 측정된 OCV를 메모리부(300)에 저장된 초기 OCV와 매칭하고 그에 따른 초기 SOC를 추출하는 과정(S200)과, 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산하고 줄어든 사용 범위에 따른 SOC를 재산출하는 과정(S300)과, 사용 전압 감축에 따른 산출된 SOC 및 그에 따른 OCV를 계산하여 저장하는 과정(S400)을 포함할 수 있다. 또한, SOC를 재산출하는 과정(S300)은 사용 전압 범위 변경에 따른 사용 전압 범위의 상위와 하위를 이용하여 SOC 감소 정도를 계산하는 과정(S310)과, FCC 용량을 SOC 감소 정도만큼 초기 용량에서 차감하여 변경된 용량을 계산하는 과정(S320)과, 축소된 사용 범위에 맞는 새로운 SOC를 계산하는 과정(S330)을 포함할 수 있다. 이러한 본 발명의 일 실시 예에 따른 SOC 추정 방법을 상세히 설명하면 다음과 같다.9 and 10, an SOC estimation method according to an embodiment of the present invention includes a step S100 of measuring the OCV and current of the battery 10, (S200) of matching an OCV with an initial SOC and extracting an initial SOC according to the OCV, calculating a reduction degree of the SOC according to the range of the voltage to be used and restoring the SOC according to the reduced use range (S300) And calculating and storing the calculated SOC and the corresponding OCV (S400). (S310) of calculating the degree of SOC reduction using the upper and lower ranges of the operating voltage range according to the operating voltage range change (S310) (S320) of calculating the changed capacity by subtracting the new capacity (S320), and calculating a new SOC according to the reduced usage range (S330). The SOC estimation method according to an embodiment of the present invention will be described in detail as follows.
S100 : 센싱부(100)를 이용하여 배터리(10)의 전압을 측정한다. 즉, 전압 센서를 이용하여 BMS가 인에이블된 후 배터리 팩으로부터 소정 시간 후 안정화된 전압, 즉 OCV를 측정한다. 또한, 센싱부(100)는 전류 센서를 이용하여 배터리 팩의 전류를 측정할 수도 있다.S100: The voltage of the battery 10 is measured using the sensing unit 100. That is, the voltage is stabilized after a predetermined time from the battery pack after the BMS is enabled by using the voltage sensor, that is, the OCV is measured. Also, the sensing unit 100 may measure the current of the battery pack using a current sensor.
S200 : SOC 추정부(200)는 측정 OCV를 메모리부(300)에 저장된 초기 OCV와 매칭하고 그에 따른 초기 SOC를 추정한다. 메모리부(300)에는 배터리(10)의 운용을 위한 다양한 데이터가 저장될 수 있는데, 특히 실험적으로 측정된 다양한 초기 SOC 및 그에 따른 초기 OCV가 매칭되어 저장될 수 있다. 예를 들어, 0%로부터 100%까지의 SOC와 각각의 SOC에 따른 OCV를 측정하고 이들을 도 3에 도시된 바와 같이 매칭하여 저장될 수 있다. 따라서, 센싱부(100)로부터 측정된 OCV를 메모리부(300)에 저장된 초기 OCV와 비교하고 그에 따라 초기 SOC를 추출할 수 있다.S200: The SOC estimating unit 200 matches the measurement OCV with the initial OCV stored in the memory unit 300 and estimates the initial SOC according to the initial OCV. Various data for operating the battery 10 may be stored in the memory unit 300. In particular, various experimentally measured initial SOCs and corresponding initial OCVs may be matched and stored. For example, the SOC from 0% to 100% and the OCV according to each SOC can be measured and stored as matching as shown in FIG. Therefore, the OCV measured from the sensing unit 100 can be compared with the initial OCV stored in the memory unit 300, and the initial SOC can be extracted accordingly.
S300 : 연산부(400)는 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산하고 줄어든 사용 범위에 따른 SOC를 재산출한다. 이러한 사용 전압 범위 변경에 따른 SOC 재산출 과정은 도 7에 도시된 바와 같이 다음과 같다.S300: The calculation unit 400 calculates the degree of SOC reduction according to the range of the use voltage and recalculates the SOC according to the reduced usage range. The SOC re-calculation process according to the change in the operating voltage range is as shown in FIG. 7 as follows.
S310 : 연산부(400)는 사용 전압 범위 변경에 따른 사용 전압 범위의 상위와 하위를 이용하여 SOC 감소 정도를 계산한다. 즉, 연산부(400)는 사용 전압 범위의 상위와 하위를 메모리부(300)의 초기 OCV 테이블을 참고하여 SOC 감소 정도를 계산한다. 예를 들어, 사용 전압 범위가 4.0V 내지 2.4V라면 도 3의 OCV 테이블을 참고하여 해당 전압에 따른 SOC, 즉 90% 및 5%의 검출하고, 그에 따라 SOC 감소 정도가 상위 10% 및 하위 5%임을 계산한다. S310: The calculation unit 400 calculates the degree of SOC reduction using the upper and lower ranges of the voltage range for use according to the range of the voltage to be used. That is, the operation unit 400 calculates the degree of SOC reduction by referring to the initial OCV table of the memory unit 300, the upper and lower ranges of the operating voltage range. For example, when the operating voltage range is from 4.0V to 2.4V, the OCV table of FIG. 3 is referenced to detect the SOC according to the voltage, that is, 90% and 5% %.
S320 및 S330 : 연산부(400)는 FCC 용량을 SOC 감소 정도만큼 초기 용량에서 차감하여 변경된 용량을 계산하고, 축소된 사용 범위에 맞는 새로운 SOC를 계산한다. 여기서, 연산부(400)는 [수학식 1]을 이용하여 변경된 용량을 계산하고, [수학식 2]를 이용하여 변경된 SOC를 계산한다. 즉, [수학식 1]에 나타낸 바와 같이 변경된 용량(X')은 상위 용량 차감율(A%)과 하위 용량 차감율(B%)의 합을 1에서 뺀 값을 초기 용량(X)과 곱해서 계산할 수 있다. 또한, [수학식 2]에 나타낸 바와 같이 변경된 SOC(I')는 초기 SOC(I)에서 하위 용량 차감율(B%)을 뺀 값을 상위 용량 차감율(A%)과 하위 용량 차감율(B%)의 합을 100%에서 뺀 값으로 나누어 계산할 수 있다. 예를 들어, 최대 및 최소 전압이 각각 4.2V 및 2.0V이고, 초기 SOC가 40%이며, 상위 용량 차감율(A%)과 하위 용량 차감율(B%)이 각각 10% 및 5%라 할 때, 변경된 용량은 수학식 1에 의해 1275mAh로 계산되고, 변경된 SOC는 수학식 2에 의해 41%로 계산된다.S320 and S330: The operation unit 400 calculates the changed capacity by subtracting the FCC capacity from the initial capacity by the degree of SOC reduction, and calculates a new SOC according to the reduced usage range. Here, the operation unit 400 calculates the changed capacity by using Equation (1), and calculates the changed SOC using Equation (2). That is, as shown in [Equation 1], the changed capacity X 'is obtained by multiplying the initial capacity X by a value obtained by subtracting 1 from the sum of the upper capacity reduction ratio A% and the lower capacity reduction ratio B% Can be calculated. The modified SOC (I ') is a value obtained by subtracting the lower capacity reduction ratio (B%) from the initial SOC (I) as the upper capacity reduction ratio (A%) and the lower capacity reduction ratio B%) divided by the value minus 100%. For example, assume that the maximum and minimum voltages are 4.2 V and 2.0 V, respectively, and the initial SOC is 40%, and the high capacity reduction ratio A% and the low capacity reduction ratio B% are 10% and 5% , The changed capacity is calculated as 1275 mAh by Equation (1), and the changed SOC is calculated as 41% by Equation (2).
S400 : 연산부(400)는 이렇게 산출된 사용 전압 감축에 따른 SOC 및 그에 따른 OCV를 계산하여 메모리부(300)에 저장한다. 즉, 기존의 OCV 테이블에 새롭게 계산된 OCV 테이블을 업데이트하여 저장한다. 이때, 새로운 데이터는 기존 데이터에 덮어쓰기 형태로 저장될 수도 있고, 기존 데이터와는 별도의 데이터로서 저장될 수 있다. 새로운 OCV 테이블은 사용자가 설정한 최대 전압 4V를 SOC 100%로 하고 최소 전압 2.4V를 SOC 0%로 하여 그 사이의 OCV에 의한 SOC를 수학식 1로 계산하여 저장할 수 있다. 이러한 새로운 OCV 테이블의 예가 도 4에 도시되어 있다.S400: The operation unit 400 calculates the SOC and the OCV according to the calculated use voltage reduction, and stores the calculated SOC and the OCV in the memory unit 300. FIG. That is, the OCV table newly calculated in the existing OCV table is updated and stored. At this time, the new data may be stored in an overwrite form on the existing data or may be stored as data separate from the existing data. In the new OCV table, the maximum voltage 4V set by the user is set to SOC 100%, the minimum voltage 2.4V is set to SOC 0%, and the SOC due to OCV therebetween can be calculated and stored in Equation (1). An example of this new OCV table is shown in FIG.
한편, 상기한 바와 같이 사용 전압 범위가 변경된 배터리(10)의 용량을 본 발명의 SOC 추정 장치를 이용하여 추정하며, 도 7 및 도 8에 도시된 배터리 관리 장치를 이용하여 사용 전압 범위가 변경된 배터리(10)를 충전 및 방전시킬 수 있다. 즉, 제어부(500)은 배터리 셀의 변경된 용량에 따라 배터리 셀의 설정 전압을 변경하여 배터리 셀의 충방전을 제어할 수 있다. 예를 들어, 최대 충전 전압이 4.0V에서 3.8V로 변경되고, 최소 전압이 2.5V로 변경된 경우 제어부(500)는 연산부(400)의 연산 결과 또는 메모리부(300)에 업데이트되어 저장된 데이터를 이용하여 제 1 및 제 2 설정 전압을 변경하여 메모리 셀의 데이터와 비교한 후 배터리 셀의 충전 및 방전을 제어할 수 있다. 즉, 배터리 셀이 최대 충전 전압 및 최소 충전 전압의 변경에 따라 배터리 셀의 충방전을 제어하고 그에 따라 변경된 배터리 셀의 과충전 및 과방전을 방지할 수 있다.Meanwhile, as described above, the capacity of the battery 10 whose use voltage range is changed is estimated by using the SOC estimating device of the present invention. By using the battery management apparatus shown in FIGS. 7 and 8, (10) can be charged and discharged. That is, the control unit 500 can control the charge / discharge of the battery cell by changing the set voltage of the battery cell according to the changed capacity of the battery cell. For example, when the maximum charge voltage is changed from 4.0 V to 3.8 V and the minimum voltage is changed to 2.5 V, the control unit 500 may use the operation result of the operation unit 400 or the data updated and stored in the memory unit 300 The first and second set voltages are changed to be compared with the data of the memory cell, and then the charging and discharging of the battery cell can be controlled. That is, the charging and discharging of the battery cell can be controlled in accordance with the change of the maximum charging voltage and the minimum charging voltage of the battery cell, thereby preventing overcharge and overdischarge of the changed battery cell.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention.

Claims (16)

  1. 배터리;battery;
    상기 배터리와 연결되어 배터리의 OCV를 측정하는 센싱부;A sensing unit connected to the battery to measure OCV of the battery;
    상기 센싱부와 연결되어 상기 센싱부로부터 측정된 OCV를 이용하여 배터리의 SOC를 추정하는 SOC 추정부;An SOC estimator connected to the sensing unit and estimating the SOC of the battery using the OCV measured from the sensing unit;
    배터리의 SOC 및 OCV를 포함하는 데이터를 저장하고, 상기 SOC 추정부와 연결된 메모리부; 및A memory unit for storing data including SOC and OCV of the battery and connected to the SOC estimating unit; And
    상기 SOC 추정부 및 메모리부와 연결되고, 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산하고 변경된 사용 용량에 따른 변경된 SOC를 재산출하는 연산부를 포함하는 배터리의 용량 추정 장치.And an arithmetic unit connected to the SOC estimating unit and the memory unit, for calculating a degree of SOC reduction according to the range of the voltage to be used, and for outputting the changed SOC according to the changed used capacity.
  2. 청구항 1에 있어서, 상기 메모리부는 복수의 초기 SOC 및 복수의 초기 OCV를 매칭하여 저장하고, 복수의 변경된 SOC 및 복수의 변경된 OCV를 매칭하여 저장하는 배터리의 용량 추정 장치.The apparatus of claim 1, wherein the memory unit stores a plurality of initial SOCs and a plurality of initial OCVs by matching and storing a plurality of changed SOCs and a plurality of changed OCVs.
  3. 청구항 1에 있어서, 상기 연산부는 하기 [수학식 1]에 의해 변경된 용량을 계산하는 배터리 용량 추정 장치.The battery capacity estimating apparatus according to claim 1, wherein the calculating unit calculates the capacity changed by the following equation (1).
    [수학식 1][Equation 1]
    Figure PCTKR2018010993-appb-I000009
    Figure PCTKR2018010993-appb-I000009
    여기서, X'는 변경된 용량, X는 초기 용량, A 및 B는 상위 및 하위 용량 차감율.Where X 'is the changed capacity, X is the initial capacity, A and B are the high and low capacity subtraction rates.
  4. 청구항 3에 있어서, 상기 연산부는 하기 [수학식 2]를 이용하여 변경된 SOC를 계산하는 배터리 용량 추정 장치.4. The battery capacity estimating apparatus according to claim 3, wherein the calculating unit calculates the changed SOC using Equation (2).
    [수학식 2]&Quot; (2) "
    Figure PCTKR2018010993-appb-I000010
    Figure PCTKR2018010993-appb-I000010
    여기서, I'는 변경된 SOC, I는 초기 SOC, A 및 B는 상위 및 하위 용량 차감율.Where I 'is the changed SOC, I is the initial SOC, A and B are the high and low capacity subtraction rates.
  5. 배터리;battery;
    상기 배터리와 연결되어 배터리의 OCV를 측정하는 센싱부;A sensing unit connected to the battery to measure OCV of the battery;
    상기 센싱부와 연결되어 상기 센싱부로부터 측정된 OCV를 이용하여 배터리의 SOC를 추정하는 SOC 추정부;An SOC estimator connected to the sensing unit and estimating the SOC of the battery using the OCV measured from the sensing unit;
    배터리의 SOC 및 OCV를 포함하는 데이터를 저장하고, 상기 SOC 추정부와 연결된 메모리부;A memory unit for storing data including SOC and OCV of the battery and connected to the SOC estimating unit;
    상기 SOC 추정부 및 메모리부와 연결되고, 사용 전압 범위 변경에 따른 SOC 감소 정도를 계산하고 변경된 사용 용량에 따른 변경된 SOC를 재산출하는 연산부;A calculating unit connected to the SOC estimating unit and the memory unit, for calculating a degree of SOC reduction according to a change in the operating voltage range and for outputting a changed SOC according to the changed used capacity;
    상기 연산부 및 상기 메모리부 중 적어도 하나와 연결되어 SOC를 참고하여 배터리의 상태에 따라 배터리의 충방전을 제어하는 제어부; 및A control unit connected to at least one of the operation unit and the memory unit to control charging and discharging of the battery according to the state of the battery by referring to the SOC; And
    상기 배터리와 부하 사이에 마련되어 상기 제어부의 제어 신호에 따라 배터리를 충방전시키는 스위칭부를 포함하는 배터리 관리 장치.And a switching unit provided between the battery and the load for charging / discharging the battery according to a control signal of the control unit.
  6. 청구항 5에 있어서, 상기 연산부는 하기 [수학식 1]에 의해 변경된 용량을 계산하고, 하기 [수학식 2]를 이용하여 변경된 SOC를 계산하는 배터리 용량 추정 장치.The battery capacity estimating apparatus according to claim 5, wherein the calculating unit calculates the capacity changed by the following equation (1) and calculates the changed SOC using the following equation (2).
    [수학식 1][Equation 1]
    Figure PCTKR2018010993-appb-I000011
    Figure PCTKR2018010993-appb-I000011
    여기서, X'는 변경된 용량, X는 초기 용량, A 및 B는 상위 및 하위 용량 차감율.Where X 'is the changed capacity, X is the initial capacity, A and B are the high and low capacity subtraction rates.
    [수학식 2]&Quot; (2) "
    Figure PCTKR2018010993-appb-I000012
    Figure PCTKR2018010993-appb-I000012
    여기서, I'는 변경된 SOC, I는 초기 SOC, A 및 B는 상위 및 하위 용량 차감율.Where I 'is the changed SOC, I is the initial SOC, A and B are the high and low capacity subtraction rates.
  7. 배터리의 OCV를 측정하는 과정;The process of measuring the OCV of the battery;
    상기 측정된 OCV에 따른 초기 SOC를 추정하는 과정;Estimating an initial SOC according to the measured OCV;
    사용 전압 범위 변경에 따른 SOC 감소 정도를 계산한 후 변경된 SOC를 계산하는 과정; 및Calculating the SOC reduction degree according to the use voltage range change and calculating the changed SOC; And
    상기 변경된 SOC에 따른 변경된 OCV를 계산하는 과정을 포함하는 배터리의 용량 추정 방법.And calculating a changed OCV according to the changed SOC.
  8. 청구항 7에 있어서, 배터리의 복수의 초기 SOC 및 그에 따른 복수의 초기 OCV를 매칭하여 저장하는 과정을 더 포함하는 배터리의 용량 추정 방법.8. The method of claim 7, further comprising the step of matching and storing a plurality of initial SOCs of the battery and a plurality of initial OCVs corresponding thereto.
  9. 청구항 8에 있어서, 상기 초기 SOC는 상기 측정된 OCV를 상기 초기 OCV와 매칭하여 추정하는 배터리의 용량 추정 방법.9. The method of claim 8, wherein the initial SOC is estimated by matching the measured OCV with the initial OCV.
  10. 청구항 7에 있어서, 상기 변경된 SOC를 계산하는 과정은 사용 전압 범위 변경에 따른 SOC 변경 정도를 계산하는 과정과,The method as claimed in claim 7, wherein the step of calculating the changed SOC comprises:
    상기 SOC 변경 정도만큼 초기 용량에서 차감하여 변경된 용량을 계산하는 과정과,Calculating a changed capacity by subtracting from the initial capacity by the degree of SOC change;
    상기 변경된 SOC를 계산하는 과정을 포함하는 배터리 용량 추정 방법.And calculating the changed SOC.
  11. 청구항 10에 있어서, 상기 변경된 용량은 하기 [수학식 1]에 의해 계산하는 배터리 용량 추정 방법.11. The method of claim 10, wherein the modified capacity is calculated by: < EMI ID = 1.0 >
    [수학식 1][Equation 1]
    Figure PCTKR2018010993-appb-I000013
    Figure PCTKR2018010993-appb-I000013
    여기서, X'는 변경된 용량, X는 초기 용량, A 및 B는 상위 및 하위 용량 차감율.Where X 'is the changed capacity, X is the initial capacity, A and B are the high and low capacity subtraction rates.
  12. 청구항 10에 있어서, 상기 변경된 SOC는 하기 [수학식 2]를 이용하여 계산하는 배터리 용량 추정 방법.11. The method of claim 10, wherein the modified SOC is calculated using Equation (2).
    [수학식 2]&Quot; (2) "
    Figure PCTKR2018010993-appb-I000014
    Figure PCTKR2018010993-appb-I000014
    여기서, I'는 변경된 SOC, I는 초기 SOC, A 및 B는 상위 및 하위 용량 차감율.Where I 'is the changed SOC, I is the initial SOC, A and B are the high and low capacity subtraction rates.
  13. 청구항 7에 있어서, 상기 변경된 SOC 및 그에 따른 변경된 OCV를 매칭하여 복수의 데이터를 저장하는 과정을 더 포함하는 배터리의 용량 추정 방법.8. The method of claim 7, further comprising storing a plurality of data by matching the changed SOC and the changed OCV.
  14. 배터리의 OCV를 측정하는 과정;The process of measuring the OCV of the battery;
    상기 측정된 OCV에 따른 초기 SOC를 추정하는 과정;Estimating an initial SOC according to the measured OCV;
    사용 전압 범위 변경에 따른 SOC 감소 정도를 계산한 후 변경된 SOC를 계산하는 과정;Calculating the SOC reduction degree according to the use voltage range change and calculating the changed SOC;
    상기 변경된 SOC에 따른 변경된 OCV를 계산하는 과정; 및Calculating a changed OCV according to the changed SOC; And
    상기 변경된 SOC를 참고하여 배터리의 상태에 따라 배터리의 충방전을 제어하는 과정을 포함하는 배터리 관리 방법.And controlling charging and discharging of the battery according to the state of the battery with reference to the changed SOC.
  15. 청구항 14에 있어서, 상기 변경된 SOC를 계산하는 과정은 사용 전압 범위 변경에 따른 SOC 변경 정도를 계산하는 과정과,The method of claim 14, wherein calculating the modified SOC comprises: calculating a degree of SOC change according to a change in the operating voltage range;
    상기 SOC 변경 정도만큼 초기 용량에서 차감하여 변경된 용량을 계산하는 과정과,Calculating a changed capacity by subtracting from the initial capacity by the degree of SOC change;
    상기 변경된 SOC를 계산하는 과정을 포함하는 배터리 관리 방법.And calculating the changed SOC.
  16. 청구항 15에 있어서, 상기 변경된 용량은 하기 [수학식 1]에 의해 계산하고, 상기 변경된 SOC는 하기 [수학식 2]를 이용하여 계산하는 배터리 용량 추정 방법.16. The method of claim 15, wherein the modified capacity is calculated using Equation (1) and the modified SOC is calculated using Equation (2).
    [수학식 1][Equation 1]
    Figure PCTKR2018010993-appb-I000015
    Figure PCTKR2018010993-appb-I000015
    여기서, X'는 변경된 용량, X는 초기 용량, A 및 B는 상위 및 하위 용량 차감율.Where X 'is the changed capacity, X is the initial capacity, A and B are the high and low capacity subtraction rates.
    [수학식 2]&Quot; (2) "
    Figure PCTKR2018010993-appb-I000016
    Figure PCTKR2018010993-appb-I000016
    여기서, I'는 변경된 SOC, I는 초기 SOC, A 및 B는 상위 및 하위 용량 차감율.Where I 'is the changed SOC, I is the initial SOC, A and B are the high and low capacity subtraction rates.
PCT/KR2018/010993 2017-10-11 2018-09-18 Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof WO2019074220A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/623,860 US11391779B2 (en) 2017-10-11 2018-09-18 Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
CN201880040417.7A CN110753849B (en) 2017-10-11 2018-09-18 Battery capacity estimating apparatus and method, and battery management apparatus and method having battery capacity estimating apparatus
EP18865430.5A EP3627166B1 (en) 2017-10-11 2018-09-18 Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
JP2019538376A JP7041800B2 (en) 2017-10-11 2018-09-18 Battery capacity estimation device and method, battery management device and method equipped with this

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170131671 2017-10-11
KR10-2017-0131671 2017-10-11
KR10-2018-0097417 2018-08-21
KR1020180097417A KR102683336B1 (en) 2017-10-11 2018-08-21 Apparatus and method for estimating the capacity of a battery, apparatus and method for managing the battery having the same

Publications (1)

Publication Number Publication Date
WO2019074220A1 true WO2019074220A1 (en) 2019-04-18

Family

ID=66101510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010993 WO2019074220A1 (en) 2017-10-11 2018-09-18 Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof

Country Status (1)

Country Link
WO (1) WO2019074220A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053590A (en) 2012-10-26 2014-05-08 주식회사 엘지화학 Apparatus and method for estimating state of charging of battery
KR20150048439A (en) * 2013-10-28 2015-05-07 현대모비스 주식회사 Battery management system and its operating method
KR20160013419A (en) * 2014-07-25 2016-02-04 현대모비스 주식회사 Method and System for Battery SOC Estimation
KR20160047157A (en) * 2014-10-22 2016-05-02 주식회사 엘지화학 Method and System for Calculating SOC of Battery
KR20160080380A (en) * 2014-12-29 2016-07-08 주식회사 엘지화학 Apparatus and method of measuring for a state of charge of a battery
KR20170006400A (en) * 2015-07-08 2017-01-18 현대모비스 주식회사 Device for checking of battery SOC on vehicle and method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053590A (en) 2012-10-26 2014-05-08 주식회사 엘지화학 Apparatus and method for estimating state of charging of battery
KR20150048439A (en) * 2013-10-28 2015-05-07 현대모비스 주식회사 Battery management system and its operating method
KR20160013419A (en) * 2014-07-25 2016-02-04 현대모비스 주식회사 Method and System for Battery SOC Estimation
KR20160047157A (en) * 2014-10-22 2016-05-02 주식회사 엘지화학 Method and System for Calculating SOC of Battery
KR20160080380A (en) * 2014-12-29 2016-07-08 주식회사 엘지화학 Apparatus and method of measuring for a state of charge of a battery
KR20170006400A (en) * 2015-07-08 2017-01-18 현대모비스 주식회사 Device for checking of battery SOC on vehicle and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627166A4 *

Similar Documents

Publication Publication Date Title
WO2013137672A1 (en) Battery state estimation device and method
US7514905B2 (en) Battery management system
EP2618454B1 (en) Device for averaging cell voltage of plurality of battery packs
EP1414101B1 (en) Detecting method and detecting apparatus for detecting internal resistance of a rechargeable battery and rechargeable battery pack having said detecting apparatus therein
WO2018190508A1 (en) Apparatus and method for calculating state of charge of battery by reflecting noise
WO2018124511A1 (en) Device and method for managing battery to calibrate state of charge of battery
WO2022055080A1 (en) Method for estimating state of charge of battery
WO2020076127A1 (en) Battery management device and method
WO2012091287A1 (en) Battery pack management device and method involving indicating the degree of degradation of a secondary battery cell, and battery pack including same
EP3627166B1 (en) Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
WO2020080881A1 (en) Battery management device
WO2019088746A1 (en) Apparatus and method for estimating soc of battery
WO2022075618A1 (en) Battery device and method for predicting battery output
WO2020213905A1 (en) Apparatus and method for determining state of degradation of battery, battery pack, and electric vehicle
WO2022265358A1 (en) Battery management system, battery pack, electric vehicle, and battery management method
WO2022065676A1 (en) Battery resistance calculation apparatus and method
WO2022145830A1 (en) Battery diagnosis device, battery diagnosis method, battery pack, and electric vehicle
WO2022039505A1 (en) Battery management system, battery management method, battery pack, and electric vehicle
WO2023063625A1 (en) Battery diagnosis apparatus, battery pack, electric vehicle, and battery diagnosis method
WO2022114826A1 (en) Battery management device and method
WO2019074220A1 (en) Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
WO2022019703A1 (en) Device and method for diagnosing battery
WO2023038398A1 (en) Battery diagnosis device, battery management system, battery pack, electric vehicle, and battery diagnosis method
WO2024063337A1 (en) Battery management system, battery pack, electric vehicle, and battery management method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538376

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018865430

Country of ref document: EP

Effective date: 20191218

NENP Non-entry into the national phase

Ref country code: DE