WO2019074152A1 - Method for analyzing eyeball image - Google Patents

Method for analyzing eyeball image Download PDF

Info

Publication number
WO2019074152A1
WO2019074152A1 PCT/KR2017/013058 KR2017013058W WO2019074152A1 WO 2019074152 A1 WO2019074152 A1 WO 2019074152A1 KR 2017013058 W KR2017013058 W KR 2017013058W WO 2019074152 A1 WO2019074152 A1 WO 2019074152A1
Authority
WO
WIPO (PCT)
Prior art keywords
eyeball
image
eye
treatment
angle
Prior art date
Application number
PCT/KR2017/013058
Other languages
French (fr)
Korean (ko)
Inventor
김학수
신동호
김태현
문성호
이세병
임영경
정종휘
Original Assignee
국립암센터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립암센터 filed Critical 국립암센터
Publication of WO2019074152A1 publication Critical patent/WO2019074152A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/145Arrangements specially adapted for eye photography by video means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic

Definitions

  • the present invention relates to an image analysis method of an eyeball.
  • Proton beam treatment has the advantage of precisely aiming and destroying only the cancer cells present at a certain depth in the human body by regulating the energy of the proton beam passing through the human body.
  • the position of the clip inserted into the eye was confirmed using an x-ray image.
  • An eye model was created using the eye size measured from the position of the identified clip and the dose was calculated to establish the treatment plan.
  • the prior art does not sufficiently reflect the three-dimensional shape of the eyeball, so that accurate dose calculation and tumor contouring are difficult, and it is difficult to establish an accurate treatment plan.
  • an object of the present invention to provide an image analysis method of an eyeball capable of establishing an accurate treatment plan.
  • a method of analyzing an image of an eyeball comprising: obtaining a 3D image of the eyeball; Obtaining a 3D model of the eyeball from the 3D image; And obtaining the rotational center axis of the eyeball using the 3D model.
  • the determination of the eyeball angle can be made based on the particle treatment beam amount applied to the lens of the eyeball and the optic nerve.
  • the establishment of the eye treatment plan may include the determination of the ocular gaze direction during treatment.
  • the 3D image may be obtained using at least one of CT and MR.
  • the 3D image may be obtained for a plurality of eye directions of the eyeball.
  • the plurality of gaze directions can be obtained by changing the position of the light gauges.
  • an eye image analysis method capable of establishing an accurate treatment plan.
  • FIG. 1 is a flowchart of an image analysis method of an eyeball according to an embodiment of the present invention
  • FIGS. 2A, 2B and 2C illustrate 3D image acquisition and rotation center axis determination in an eye image analysis method according to an embodiment of the present invention
  • FIGS. 3A and 3B illustrate eyeball angle determination in an image analysis method of an eyeball according to an embodiment of the present invention
  • FIG. 4 is a view for explaining generation of an eyeball rotation image in a method of analyzing an image of an eyeball according to an embodiment of the present invention
  • Figure 5 is intended to illustrate the treatment of an ocular tumor of a patient.
  • the rotational center axis of the eyeball obtained according to the present invention is utilized for establishing the eye treatment plan, but the rotational center axis of the eyeball obtained according to the present invention can be used for other purposes.
  • FIG. 1 An image analysis method of an eyeball according to the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 is a diagrammatic representation of an eyeball according to the present invention.
  • FIG. 1 is a flowchart of a method of analyzing an image of an eye according to an embodiment of the present invention.
  • FIGS. 2A, 2B, and 2C illustrate a method of analyzing an image of an eye according to an embodiment of the present invention.
  • FIGS. 3A and 3B are views for explaining the eyeball angle determination in the eyeball image analysis method according to an embodiment of the present invention, and
  • FIG. 4 are views for explaining an eyeball image analysis method according to an embodiment of the present invention
  • Fig. 5 illustrates the treatment of an ocular tumor of a patient.
  • a proton beam is exemplified as a particle treatment beam for treatment, but the particle treatment beam of the present invention is not limited to a proton beam, and a carbon beam or the like may be used.
  • a 3D image of the eyeball is obtained (S100).
  • the 3D image can be obtained by using computed tomography (CT) and / or magnetic resonance (MR), but is not limited thereto.
  • CT computed tomography
  • MR magnetic resonance
  • the 3D image consists of a set of slices by tomography.
  • the 3D image can be obtained from a plurality of eye directions of the eyeball as shown in FIGS. 2A and 2B.
  • a light gauge can be used to change and fix the direction of eye gaze.
  • the image is acquired while the gaze is fixed in a specific direction.
  • tantalum clips are inserted into the patient's retina or eye size is measured.
  • the inserted clip is used to verify the rotational position of the eyeball with the X-ray image to match the eye rotation angle of the treatment plan prior to patient treatment.
  • Eye size is used for semi-automatic eye segmentation.
  • a 3D model for the eyeball is generated based on the 3D image (S200).
  • the 3D model can be obtained by performing semi-auto ocular segmentation on each of a plurality of photographed images.
  • Various methods can be used for the generation of the 3D model, and the following methods can be used.
  • the 3D model of the eye is made using eye size information such as eyeball length, sclera thickness, rim bus diameter, and lens thickness measured in ophthalmology.
  • the generated model automatically matches the outline of the eyeball in the 3D image.
  • the outline of the eyeball automatically sets the segmentation area and performs automatic segmentation by clustering, compression-based, and histogram-based methods. These methods are common methods used for segmentation and methods that can accurately extract the outline of the eye from a 3D image can be used.
  • the rotation center axis of the eyeball is determined from the 3D model (S300).
  • the rotation center axis can be obtained from the intersection point of the line passing through the lens of the eye in the different viewing direction as shown in Fig. 2C.
  • 3D models can be generated for different viewing directions, and the rotation center axis can be calculated using a plurality of 3D models.
  • the intersection of the lines passing through the lens from three or more 3D models is not a single point, a point at which the sum of the distances to a plurality of intersection points becomes minimum can be selected as the rotation center axis to minimize the error.
  • the eyeball angle at the time of treatment is determined while rotating the eyeball on the 3D model (S400).
  • the eye angle at the time of treatment i.e., the optimal eye angle, can be determined based on the amount of radiation applied to the lens of the eye and the optic nerve.
  • the proton beam emitted from the proton beam passes through the eye to treat an ocular tumor.
  • Adjusting the angle of rotation of the eye and the energy of the proton beam irradiator can reduce the radiation dose to the lens and optic nerve while treating the ocular tumor.
  • This process determines the optimal angle of the eye at the time of treatment.
  • the rotation image of the eyeball is generated while only the eyeball is rotated in the 3D image (S500). That is, as shown in FIG. 4, the eye image is rotated around the rotation center axis in the 3D image.
  • the 3D image has a three-dimensional coordinate system and can acquire a rotated image of the eyeball by moving all the pixel values on the image in the 3D model of the eyeball by the eyeball rotation angle.
  • a three-dimensional spherical coordinate system having a rotation center axis as an origin is used.
  • the position of the pixel to be moved can be calculated from the spherical coordinate system (r, ⁇ , ⁇ ) by the Cartesian coordinate system transformation.
  • r is the distance from the origin
  • is the angle between the origin and the pixel position from the positive direction of the z axis
  • is the angle between the origin and the pixel position from the positive direction of the x axis.
  • an eye treatment plan is established based on the rotation image of the eyeball (S600).
  • the eye treatment plan uses a rotating image of the eyeball.
  • the width of the beam in the beam incidence direction covering the tumor can be controlled using a brass block.
  • the brass block should be made to conform to the shape of the tumor in a plane perpendicular to the beam incidence direction.
  • the energy covering the tumor reaches the end of the tumor in the direction of beam incidence and can be used as a spread-out Bragg Peak (SOBP) to cover the thickness of the tumor in the direction of incidence.
  • SOBP spread-out Bragg Peak
  • the margin of the patient's treatment fixture can be placed in consideration of the inaccuracy of the fixation device and the penumbra of the proton beam caused by the brass block.
  • the treatment plan may include the use of a light gauze or tantalum clip positioning using an X-ray image for therapeutic setup.
  • a light gauze or tantalum clip positioning using an X-ray image for therapeutic setup.
  • the position of the tantalum clips formed by taking two X-ray images in the direction perpendicular to the beam direction and the beam direction is compared with a virtual DRR (Digitally Reconstructed Radiography) Adjust the angle so that it is the same as the plan.
  • DRR Digitally Reconstructed Radiography
  • the patient may be subjected to proton beam treatment in a lying state as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Computer Graphics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The present invention relates to a method for analyzing an eyeball image, the method comprising the steps of: acquiring a 3D-image of an eyeball; acquiring a 3D-model of the eyeball from the 3D-image; and determining the central rotational axis of the eyeball by means of the 3D-model.

Description

안구의 이미지 분석 방법Image analysis method of eyeball
본 발명은 안구의 이미지 분석 방법에 관한 것이다.The present invention relates to an image analysis method of an eyeball.
양성자빔을 사용하는 안구종양 치료 시스템을 이용한 안구의 종양 치료 방법이 개발되어 이용되고 있다. 양성자빔을 이용한 치료는 인체를 투과하는 양성자빔의 에너지를 조절하면 인체 내 특정 깊이에 존재하는 암세포만 정확히 조준해 파괴시킬 수 있는 장점이 있다.An ocular tumor treatment method using an ocular tumor treatment system using a proton beam has been developed and used. Proton beam treatment has the advantage of precisely aiming and destroying only the cancer cells present at a certain depth in the human body by regulating the energy of the proton beam passing through the human body.
양성자빔을 사용하여 안구종양 치료에서 렌즈 및 시신경과 같은 중요한 장기들에 가해지는 방사선량을 최소화하기 위해서는 안구 이미지의 분석을 통한 치료계획 수립이 필요하다.To minimize the radiation dose to important organs such as the lens and optic nerve in the treatment of ocular tumors using proton beams, it is necessary to establish a treatment plan through analysis of the ocular image.
종래 기술에서는 엑스레이 이미지를 이용하여 안구에 삽입된 클립위치를 확인하였다. 확인된 클립의 위치로부터 실측된 안구사이즈를 이용하여 안구모델을 생성하고 선량 계산을 하여 치료계획을 수립하였다.In the prior art, the position of the clip inserted into the eye was confirmed using an x-ray image. An eye model was created using the eye size measured from the position of the identified clip and the dose was calculated to establish the treatment plan.
그러나 종래 기술에서는 안구의 3차원적 형상을 충분히 반영하지 않아 정확한 선량계산 및 종양 컨투어링이 어려웠으며, 이에 따라 정확한 치료계획을 수립하기 어려운 문제가 있었다.However, the prior art does not sufficiently reflect the three-dimensional shape of the eyeball, so that accurate dose calculation and tumor contouring are difficult, and it is difficult to establish an accurate treatment plan.
따라서 본 발명의 목적은 정확한 치료계획 수립이 가능한 안구의 이미지 분석 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide an image analysis method of an eyeball capable of establishing an accurate treatment plan.
상기 본 발명의 목적은 안구의 이미지 분석 방법에 있어서, 상기 안구의 3D 이미지를 얻는 단계와; 상기 3D 이미지로부터의 상기 안구의 3D 모델을 얻는 단계와; 상기 3D 모델을 이용하여 상기 안구의 회전중심축을 얻는 단계를 포함하는 것에 의해 달성된다.According to another aspect of the present invention, there is provided a method of analyzing an image of an eyeball, comprising: obtaining a 3D image of the eyeball; Obtaining a 3D model of the eyeball from the 3D image; And obtaining the rotational center axis of the eyeball using the 3D model.
상기 3D 모델 및 상기 회전중심축을 이용하여 입자치료빔 치료를 위한 안구 각도를 결정하는 단계를 더 포함할 수 있다.And determining an eyeball angle for particle beam treatment using the 3D model and the rotation center axis.
상기 안구 각도의 결정은 상기 안구의 렌즈 및 시신경에 가해지는 입자치료빔량에 기초하여 이루어질 수 있다.The determination of the eyeball angle can be made based on the particle treatment beam amount applied to the lens of the eyeball and the optic nerve.
결정된 상기 안구 각도를 이용하여 상기 3D 이미지 내에서 상기 안구를 회전하여 안구 회전 이미지를 얻는 단계를 더 포함할 수 있다.And obtaining the eyeball rotation image by rotating the eyeball in the 3D image using the determined eyeball angle.
상기 안구 회전 이미지로부터 안구 치료 계획을 수립하는 단계를 더 포함할 수 있다.And developing an eye treatment plan from the eye rotation image.
상기 안구 치료 계획의 수립은 치료 시 안구 시선 방향 결정을 포함할 수 있다.The establishment of the eye treatment plan may include the determination of the ocular gaze direction during treatment.
상기 3D 이미지는 CT 및 MR 중 적어도 어느 하나를 이용하여 얻어질 수 있다.The 3D image may be obtained using at least one of CT and MR.
상기 3D 이미지는, 상기 안구의 복수의 시선 방향에 대해 얻는 것일 수 있다.The 3D image may be obtained for a plurality of eye directions of the eyeball.
상기 복수의 시선 방향은 라이트 게이저의 위치를 변경하여 얻을 수 있다.The plurality of gaze directions can be obtained by changing the position of the light gauges.
본 발명에 따르면 정확한 치료계획 수립이 가능한 안구의 이미지 분석 방법이 제공된다.According to the present invention, an eye image analysis method capable of establishing an accurate treatment plan is provided.
도 1은 본 발명의 일 실시예에 따른 안구의 이미지 분석 방법의 순서도이고,1 is a flowchart of an image analysis method of an eyeball according to an embodiment of the present invention,
도 2a, 2b 및 2c는 본 발명의 일 실시예에 따른 안구의 이미지 분석 방법에서 3D 이미지 획득 및 회전중심축 결정을 설명하기 위한 것이고,FIGS. 2A, 2B and 2C illustrate 3D image acquisition and rotation center axis determination in an eye image analysis method according to an embodiment of the present invention,
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 안구의 이미지 분석 방법에서 안구 각도 결정을 설명하기 위한 것이고,FIGS. 3A and 3B illustrate eyeball angle determination in an image analysis method of an eyeball according to an embodiment of the present invention,
도 4는 본 발명의 일 실시예에 따른 안구의 이미지 분석 방법에서 안구회전이미지 생성을 설명하기 위한 것이고,FIG. 4 is a view for explaining generation of an eyeball rotation image in a method of analyzing an image of an eyeball according to an embodiment of the present invention,
도 5는 환자의 안구종양 치료를 설명하기 위한 것이다.Figure 5 is intended to illustrate the treatment of an ocular tumor of a patient.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the drawings.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일예에 불과하므로 본 발명의 사상이 첨부된 도면에 한정되는 것은 아니다. The accompanying drawings are merely illustrative and do not limit the scope of the present invention.
이하의 설명에서는 본 발명에 따라 얻은 안구의 회전중심축을 눈치료 계획 수립에 활용하는 것을 예시로 설명하나, 본 발명에 따라 얻은 안구의 회전중심축은 다른 용도로 사용될 수 있다.In the following description, the rotational center axis of the eyeball obtained according to the present invention is utilized for establishing the eye treatment plan, but the rotational center axis of the eyeball obtained according to the present invention can be used for other purposes.
이하 도 1 내지 도 5를 참조하여 본 발명에 따른 안구의 이미지 분석 방법을 설명한다.Hereinafter, an image analysis method of an eyeball according to the present invention will be described with reference to FIGS. 1 to 5. FIG.
도 1은 본 발명의 일 실시예에 따른 안구의 이미지 분석 방법의 순서도이고, 도 2a, 2b 및 2c는 본 발명의 일 실시예에 따른 안구의 이미지 분석 방법에서 3D 이미지 획득 및 회전중심축 결정을 설명하기 위한 것이고, 도 3a 및 도 3b는 본 발명의 일 실시예에 따른 안구의 이미지 분석 방법에서 안구 각도 결정을 설명하기 위한 것이고, 도 4는 본 발명의 일 실시예에 따른 안구의 이미지 분석 방법에서 안구회전이미지 생성을 설명하기 위한 것이고, 도 5는 환자의 안구종양 치료를 설명하기 위한 것이다.FIG. 1 is a flowchart of a method of analyzing an image of an eye according to an embodiment of the present invention. FIGS. 2A, 2B, and 2C illustrate a method of analyzing an image of an eye according to an embodiment of the present invention. FIGS. 3A and 3B are views for explaining the eyeball angle determination in the eyeball image analysis method according to an embodiment of the present invention, and FIG. 4 are views for explaining an eyeball image analysis method according to an embodiment of the present invention Fig. 5 illustrates the treatment of an ocular tumor of a patient. Fig.
이하의 설명에서는 치료를 위한 입자치료빔으로 양성자빔을 예시하여 설명하나, 본 발명의 입자치료빔은 양성자빔에 한정되지 않고 탄소빔 등이 사용될 수도 있다.In the following description, a proton beam is exemplified as a particle treatment beam for treatment, but the particle treatment beam of the present invention is not limited to a proton beam, and a carbon beam or the like may be used.
먼저, 안구에 대한 3D이미지를 획득한다(S100). 3D이미지는 컴퓨터 단층촬영(computed tomography, CT) 및/또는 자기공명촬영(magnetic resonance, MR)을 이용해 얻을 수 있으나, 이에 한정되지 않는다. 3D이미지는 단층촬영에 의해 슬라이스의 집합으로 이루어진다.First, a 3D image of the eyeball is obtained (S100). The 3D image can be obtained by using computed tomography (CT) and / or magnetic resonance (MR), but is not limited thereto. The 3D image consists of a set of slices by tomography.
이 때 3D이미지는 도 2a 및 도 2b와 같이 안구의 복수의 시선방향에서 얻을 수 있다. 안구의 시선방향을 변경하고 고정하기 위해 라이트 게이저를 사용할 수 있다. 3D 이미지를 획득할 때 특정 방향으로 시선을 고정한 상태에서 이미지를 획득한다.At this time, the 3D image can be obtained from a plurality of eye directions of the eyeball as shown in FIGS. 2A and 2B. A light gauge can be used to change and fix the direction of eye gaze. When acquiring a 3D image, the image is acquired while the gaze is fixed in a specific direction.
한편, 3D이미지 획득 전에 환자의 망막에 탄탈륨 클립을 삽입하거나 안구 사이즈를 측정한다. 삽입된 클립은 환자 치료 전에 안구의 회전 위치를 치료계획의 안구회전 각도와 일치하는지 X-ray 이미지를 통해 검증하기 위해서 사용된다. 안구 사이즈는 반자동 안구 세그먼테이션에 이용된다.On the other hand, before 3D image acquisition, tantalum clips are inserted into the patient's retina or eye size is measured. The inserted clip is used to verify the rotational position of the eyeball with the X-ray image to match the eye rotation angle of the treatment plan prior to patient treatment. Eye size is used for semi-automatic eye segmentation.
다음으로, 3D이미지를 기초로 안구에 대한 3D모델을 생성한다(S200). 3D모델은 촬영된 복수의 이미지에서 각각 반자동 안구 세그먼테이션(semi-auto ocular segmentation)을 수행하여 얻을 수 있다. 3D모델의 생성방법은 다양한 방법이 사용될 수 있으며, 아래와 같은 방법을 사용할 수 있다.Next, a 3D model for the eyeball is generated based on the 3D image (S200). The 3D model can be obtained by performing semi-auto ocular segmentation on each of a plurality of photographed images. Various methods can be used for the generation of the 3D model, and the following methods can be used.
안과에서 실측한 안구의 길이, 공막(sclera)의 두께, 림버스 직경 및 수정체 두께와 같은 안구의 사이즈 정보를 이용하여 안구 3D 모델을 만든다. 생성된 모델은 3D이미지에서 안구의 아웃라인과 자동으로 매칭되도록 한다. The 3D model of the eye is made using eye size information such as eyeball length, sclera thickness, rim bus diameter, and lens thickness measured in ophthalmology. The generated model automatically matches the outline of the eyeball in the 3D image.
3D이미지에서 안구의 아웃라인은 세그먼테이션 영역(segmentation area)을 수동으로 설정하고 클러스터링 방법, 압축-기반 방법 및 히스토그램-기반 방법 등으로 자동 세그먼테이션을 진행한다. 이 방식들은 세그먼테이션에 사용되는 일반적인 방법이며 3D이미지에서 안구의 아웃라인을 정확하게 추출할 수 있는 방법들이 사용될 수 있다.In the 3D image, the outline of the eyeball automatically sets the segmentation area and performs automatic segmentation by clustering, compression-based, and histogram-based methods. These methods are common methods used for segmentation and methods that can accurately extract the outline of the eye from a 3D image can be used.
3D모델을 생성한 후에는 3D모델로부터 안구의 회전중심축을 결정한다(S300). 회전중심축은 도 2c와 같이 서로 다른 시선방향에서의 안구의 렌즈를 통과하는 선의 교차점으로부터 구할 수 있다.After generating the 3D model, the rotation center axis of the eyeball is determined from the 3D model (S300). The rotation center axis can be obtained from the intersection point of the line passing through the lens of the eye in the different viewing direction as shown in Fig. 2C.
서로 다른 시선방향에 대해 각각 3D 모델이 생성될 수 있으며, 회전중심축은 복수의 3D모델을 이용하여 계산될 수 있다. 3개 이상의 3D모델로부터 수정체를 통과하는 선의 교차점이 단일점이 아닐 때는 에러를 최소화하기 위하여 다수의 교차점들까지의 거리의 합이 최소가 되는 지점을 회전 중심축으로 선정할 수 있다.3D models can be generated for different viewing directions, and the rotation center axis can be calculated using a plurality of 3D models. When the intersection of the lines passing through the lens from three or more 3D models is not a single point, a point at which the sum of the distances to a plurality of intersection points becomes minimum can be selected as the rotation center axis to minimize the error.
이후 3D모델 상에 안구를 회전시키면서 치료시의 안구각도를 결정한다(S400). 치료시의 안구각도, 즉 최적의 안구각도는 안구의 렌즈 및 시신경에 가해지는 방사선량에 기초하여 결정될 수 있다.Then, the eyeball angle at the time of treatment is determined while rotating the eyeball on the 3D model (S400). The eye angle at the time of treatment, i.e., the optimal eye angle, can be determined based on the amount of radiation applied to the lens of the eye and the optic nerve.
도 3a와 도 3b와 같이 양성자빔에서 조사되는 양성자빔은 안구종양을 치료하기 위해 안구를 통과하게 된다. 안구의 회전각도와 양성자빔 조사장치의 에너지를 조절하면 안구종양을 치료하면서도 렌즈 및 시신경에 가해지는 방사선량은 줄일 수 있다.As in Figures 3a and 3b, the proton beam emitted from the proton beam passes through the eye to treat an ocular tumor. Adjusting the angle of rotation of the eye and the energy of the proton beam irradiator can reduce the radiation dose to the lens and optic nerve while treating the ocular tumor.
이와 같은 과정을 통해 치료시의 최적의 안구각도가 결정된다.This process determines the optimal angle of the eye at the time of treatment.
다음으로, 3D이미지에서 안구만 회전시키면서 안구의 회전이미지를 생성한다(S500). 즉, 도 4와 같이 3D이미지에서 회전중심축을 중심으로 안구이미지를 회전시키는 것이다. 3D이미지는 3차원 좌표계를 가지고 있으며 안구 3D 모델 안에 있는 이미지 상의 모든 픽셀값을 안구 회전각도만큼 옮김으로써 안구의 회전이미지를 획득할 수 있다. 이때 사용하는 방식은 회전중심축을 원점으로 가지는 3차원 구좌표계가 이용된다. 옮기고자 하는 픽셀의 위치는 구좌표계에서 좌표(r,θ,φ)를 직교좌표계 변환으로 계산될 수 있다.Next, the rotation image of the eyeball is generated while only the eyeball is rotated in the 3D image (S500). That is, as shown in FIG. 4, the eye image is rotated around the rotation center axis in the 3D image. The 3D image has a three-dimensional coordinate system and can acquire a rotated image of the eyeball by moving all the pixel values on the image in the 3D model of the eyeball by the eyeball rotation angle. In this case, a three-dimensional spherical coordinate system having a rotation center axis as an origin is used. The position of the pixel to be moved can be calculated from the spherical coordinate system (r, θ, φ) by the Cartesian coordinate system transformation.
r 은 원점에서의 거리, θ는 z축의 양의 방향으로부터 원점과 픽셀의 위치가 이루는 각도, φ는 x축의 양의 방향으로부터 원점과 픽셀의 위치가 이루는 각도로 구성된다. r is the distance from the origin, θ is the angle between the origin and the pixel position from the positive direction of the z axis, and φ is the angle between the origin and the pixel position from the positive direction of the x axis.
다음으로는 안구의 회전이미지를 기초로 눈치료 계획을 수립한다(S600). 눈치료 계획에는 안구의 회전이미지가 이용된다. 안구로 들어오는 양성자빔의 각도, 종양에 가해져야 하는 방사선량, 빔 방향에서 종양을 커버하기 위한 에너지 및 너비를 결정한다. 종양을 커버하는 빔 입사 방향에서의 빔의 폭은 황동 블럭이 이용하여 조절할 수 있다. 황동 블럭은 빔 입사 방향에서 수직인 평면에서 종양의 모양에 맞게 제작되어야 한다. 종양을 커버하는 에너지는 빔 입사 방향에서 종양의 끝에 도달하며 종양의 입사방향 두께만큼을 커버하기 위해서 SOBP(Spread-out Bragg Peak)를 이용할 수 있다.Next, an eye treatment plan is established based on the rotation image of the eyeball (S600). The eye treatment plan uses a rotating image of the eyeball. The angle of the proton beam entering the eye, the amount of radiation that must be applied to the tumor, and the energy and width to cover the tumor in the beam direction. The width of the beam in the beam incidence direction covering the tumor can be controlled using a brass block. The brass block should be made to conform to the shape of the tumor in a plane perpendicular to the beam incidence direction. The energy covering the tumor reaches the end of the tumor in the direction of beam incidence and can be used as a spread-out Bragg Peak (SOBP) to cover the thickness of the tumor in the direction of incidence.
환자의 치료 고정장치의 부정확도, 황동 블럭에 의해 생기는 양성자 빔의 반영(penumbra)을 고려하여 마진(margin)을 둘 수 있다. The margin of the patient's treatment fixture can be placed in consideration of the inaccuracy of the fixation device and the penumbra of the proton beam caused by the brass block.
치료 계획은 라이트 게이저의 사용방법이나 치료 셋업을 위한 X-ray이미지를 이용한 탄탈륨 클립 위치 확인 등을 포함할 수 있다. 탄탈륨 클립의 위치 확인을 위해서 빔 방향과 빔 방향에 수직인 방향에서 2개의 X-ray 이미지를 찍어서 생기는 탄탈륨 클립의 위치를 플랜 상에서 생성되는 가상의 DRR (Digitally Reconstructed Radiography) 이미지를 비교하여 환자의 안구각도를 세세하게 조절하여 플랜과 동일하도록 조정한다.The treatment plan may include the use of a light gauze or tantalum clip positioning using an X-ray image for therapeutic setup. In order to confirm the position of the tantalum clip, the position of the tantalum clips formed by taking two X-ray images in the direction perpendicular to the beam direction and the beam direction is compared with a virtual DRR (Digitally Reconstructed Radiography) Adjust the angle so that it is the same as the plan.
치료 시 환자는 도 5와 같이 누워있는 상태에서 양성자빔 치료를 받을 수 있다.  During treatment, the patient may be subjected to proton beam treatment in a lying state as shown in FIG.
전술한 실시예들은 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The above-described embodiments are illustrative of the present invention, and the present invention is not limited thereto. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (9)

  1. 안구의 이미지 분석 방법에 있어서,In an image analysis method of an eyeball,
    상기 안구의 3D 이미지를 얻는 단계와;Obtaining a 3D image of the eyeball;
    상기 3D 이미지로부터의 상기 안구의 3D 모델을 얻는 단계와;Obtaining a 3D model of the eyeball from the 3D image;
    상기 3D 모델을 이용하여 상기 안구의 회전중심축을 얻는 단계를 포함하는 안구의 이미지 분석 방법.And obtaining the rotation center axis of the eyeball using the 3D model.
  2. 제1항에 있어서,The method according to claim 1,
    상기 3D 모델 및 상기 회전중심축을 이용하여 입자치료빔 치료를 위한 안구 각도를 결정하는 단계를 더 포함하는 것을 특징으로 하는 안구의 이미지 분석 방법.Further comprising the step of determining an eye angle for particle beam treatment using the 3D model and the rotation center axis.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 안구 각도의 결정은 상기 안구의 렌즈 및 시신경에 가해지는 입자치료빔량에 기초하여 이루어지는 것을 특징으로 하는 안구의 이미지 분석 방법.Wherein the determination of the eyeball angle is based on an amount of a particle treatment beam applied to the lens of the eyeball and the optic nerve.
  4. 제2항에 있어서,3. The method of claim 2,
    결정된 상기 안구 각도를 이용하여 상기 3D 이미지 내에서 상기 안구를 회전하여 안구 회전 이미지를 얻는 단계를 더 포함하는 것을 특징으로 하는 안구의 이미지 분석 방법.Further comprising rotating the eyeball in the 3D image to obtain an eyeball rotation image using the determined eyeball angle.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 안구 회전 이미지로부터 안구 치료 계획을 수립하는 단계를 더 포함하는 것을 특징으로 하는 안구의 이미지 분석 방법.Further comprising the step of establishing an eye treatment plan from the eye rotation image.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 안구 치료 계획의 수립은 치료 시 안구 시선 방향 결정을 포함하는 것을 특징으로 안구의 이미지 분석 방법.Wherein the establishment of the eye treatment plan comprises the determination of the direction of the ocular gaze during treatment.
  7. 제4항에 있어서,5. The method of claim 4,
    상기 3D 이미지는 CT 및 MR 중 적어도 어느 하나를 이용하여 얻는 것을 특징으로 하는 안구의 이미지 분석 방법.Wherein the 3D image is obtained using at least one of CT and MR.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 3D 이미지는,Wherein the 3D image comprises:
    상기 안구의 복수의 시선 방향에 대해 얻는 것을 특징으로 하는 안구의 이미지 분석 방법.Wherein the image is obtained with respect to a plurality of eye directions of the eyeball.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 복수의 시선 방향은 라이트 게이저의 위치를 변경하여 얻는 것을 특징으로 하는 안구의 이미지 분석 방법.Wherein the plurality of gaze directions are obtained by changing the positions of the light gauges.
PCT/KR2017/013058 2017-10-13 2017-11-17 Method for analyzing eyeball image WO2019074152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170133383A KR102024993B1 (en) 2017-10-13 2017-10-13 Method for analyzing image of eyeball
KR10-2017-0133383 2017-10-13

Publications (1)

Publication Number Publication Date
WO2019074152A1 true WO2019074152A1 (en) 2019-04-18

Family

ID=66100828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013058 WO2019074152A1 (en) 2017-10-13 2017-11-17 Method for analyzing eyeball image

Country Status (2)

Country Link
KR (1) KR102024993B1 (en)
WO (1) WO2019074152A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111207690B (en) * 2020-02-17 2021-03-12 天目爱视(北京)科技有限公司 Adjustable iris 3D information acquisition measuring equipment
KR102646243B1 (en) * 2022-03-07 2024-03-11 울산과학기술원 A method and apparatus for manufacturing artificial cornea through image processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060007537A (en) * 2004-07-20 2006-01-26 재단법인서울대학교산학협력재단 Method for torsional eye movement measurement compensation
KR20100135055A (en) * 2009-06-16 2010-12-24 국립암센터 Method of measuring displacement of eyeball, recording media of the same and apparatus of the same
KR20140104587A (en) * 2013-02-19 2014-08-29 주식회사 루트로닉 An ophthalmic surgical apparatus and an method for controlling that
US20160135682A1 (en) * 2014-11-14 2016-05-19 Ricoh Company, Ltd. Simultaneous Capture of Filtered Images of the Eye
JP2017111746A (en) * 2015-12-18 2017-06-22 国立大学法人静岡大学 Sight line detection device and sight line detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101252782B1 (en) 2011-09-21 2013-04-11 조나단 퀜튼 엘킨 Apparatus and method for measuring axial length of eyeball

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060007537A (en) * 2004-07-20 2006-01-26 재단법인서울대학교산학협력재단 Method for torsional eye movement measurement compensation
KR20100135055A (en) * 2009-06-16 2010-12-24 국립암센터 Method of measuring displacement of eyeball, recording media of the same and apparatus of the same
KR20140104587A (en) * 2013-02-19 2014-08-29 주식회사 루트로닉 An ophthalmic surgical apparatus and an method for controlling that
US20160135682A1 (en) * 2014-11-14 2016-05-19 Ricoh Company, Ltd. Simultaneous Capture of Filtered Images of the Eye
JP2017111746A (en) * 2015-12-18 2017-06-22 国立大学法人静岡大学 Sight line detection device and sight line detection method

Also Published As

Publication number Publication date
KR20190041752A (en) 2019-04-23
KR102024993B1 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
JP6894987B2 (en) 3D localization and tracking for adaptive radiation therapy
Schallenkamp et al. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging
CN107530552B (en) Three-dimensional localization of moving targets for adaptive radiotherapy
Litzenberg et al. Daily prostate targeting using implanted radiopaque markers
US9329462B2 (en) Proton treatment location projection system
CN111870825B (en) Radiation therapy accurate field-by-field positioning method based on virtual intelligent medical platform
CN109513121B (en) Dose-guided adaptive radiotherapy plan re-optimization system and method
Ali et al. Evaluation of the setup accuracy of a stereotactic radiotherapy head immobilization mask system using kV on‐board imaging
CN109922863A (en) A kind of generation method and radiotherapy treatment planning system of radiotherapy treatment planning
WO2019074152A1 (en) Method for analyzing eyeball image
Via et al. Noninvasive eye localization in ocular proton therapy through optical eye tracking: A proof of concept
CN109529205A (en) Launched field method for arranging and system
Calvo-Ortega et al. A closer look at the conventional Winston-Lutz test: Analysis in terms of dose
Jones et al. A frameless method for stereotactic radiotherapy
WO2024058497A1 (en) Method for displaying treatment information for ultrasound brain treatment
CN107693958A (en) The method of radiotherapy full travel position checking
WO2018038299A1 (en) Patient alignment method and system using light field and light reflector during radiation therapy
CN107754097B (en) Shooting and verifying method of intensity modulated radiotherapy radiation field confirmation tablet
WO2021071306A1 (en) Apparatus and method for establishing radiation therapy plan for intensity-modulated radiation therapy
Righetto et al. Technical challenges in the treatment of mediastinal lymphomas by proton pencil beam scanning and deep inspiration breath-hold
CN113893466A (en) Method for determining CT positioning center
CN110678225B (en) Patient irradiation treatment plan verification system
McParland Uncertainty analysis of field placement error measurements using digital portal and simulation image correlations
Yoon et al. Accuracy of an automatic patient-positioning system based on the correlation of two edge images in radiotherapy
Via et al. Eye Tracking in Ocular Proton Therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928194

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17928194

Country of ref document: EP

Kind code of ref document: A1