WO2019074015A1 - Resin composition for stereolithography - Google Patents

Resin composition for stereolithography Download PDF

Info

Publication number
WO2019074015A1
WO2019074015A1 PCT/JP2018/037792 JP2018037792W WO2019074015A1 WO 2019074015 A1 WO2019074015 A1 WO 2019074015A1 JP 2018037792 W JP2018037792 W JP 2018037792W WO 2019074015 A1 WO2019074015 A1 WO 2019074015A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
meth
metal oxide
mass
particles
Prior art date
Application number
PCT/JP2018/037792
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 憲司
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Priority to EP18865886.8A priority Critical patent/EP3696198A4/en
Priority to US16/754,440 priority patent/US11485813B2/en
Priority to JP2019548224A priority patent/JP6953542B2/en
Publication of WO2019074015A1 publication Critical patent/WO2019074015A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • C08F220/68Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • A61C13/0013Production methods using stereolithographic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/082Cosmetic aspects, e.g. inlays; Determination of the colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a resin composition for stereolithography. More specifically, the present invention makes it possible to obtain a shaped article which is easy to be shaped with a low consistency, is excellent in shaping accuracy, and is excellent in color tone shielding properties when shaped by photo-forming. In particular, it is suitable for a dental model material.
  • Patent Document 1 discloses a method of producing a three-dimensional object by repeating the process of curing by lamination, a so-called optical three-dimensional method. And since the basic practical method was further proposed by patent document 2, many proposals regarding optical solid modeling technology are made
  • a computer-controlled ultraviolet laser is applied to the liquid surface of the liquid photocurable resin composition contained in a container so as to obtain a desired pattern. It is selectively irradiated and cured to a predetermined thickness to form a cured layer, and then a liquid photocurable resin composition for one layer is supplied on the cured layer to similarly irradiate ultraviolet laser.
  • a method called liquid bath photofabrication in which a lamination operation of curing in the same manner as described above to form a continuous cured layer is repeated to produce a three-dimensional object having a final shape is generally employed.
  • the application is developed from a simple concept model to a test model, a trial product, etc. from the simple three-dimensional object obtained by the optical modeling method, and the three-dimensional object is excellent in forming accuracy in connection with it That is increasingly required.
  • the characteristics tailored to the purpose be excellent.
  • prostheses called crowns and bridges are expected to be applied to stereolithography because their shapes are different for individual patients and their shapes are complex, but required molding The accuracy (suitability) is extremely high.
  • model applications for producing these crowns and bridges are in widespread use.
  • inorganic particles are generally added.
  • the viscosity is increased and shaping becomes difficult, or light is not transmitted, so that there is a problem that molding accuracy is lowered.
  • the liquid is less likely to be supplied to the shaped surface, and therefore, it is more susceptible to the influence of viscosity.
  • Patent Document 3 proposes a technology in which a specific amount of inorganic fine particles is blended. .
  • JP-A-56-144478 Japanese Patent Application Laid-Open No. 60-247515 JP, 2006-348210, A
  • Patent Documents 1 to 3 have not been specifically described for application to materials that require strong color tone shielding properties, such as dental model materials.
  • an object of this invention is to provide the resin composition for optical shaping
  • Another object of the present invention is to provide a resin composition for stereolithography that is particularly suitable for a dental model material.
  • the present invention relates to the following inventions.
  • the inorganic particles (c) contain 5.0% by mass and 0.01 to 10% by mass of metal oxide particles (d) having an average particle diameter of 0.1 to 10 ⁇ m;
  • a resin composition for stereolithography different from) [2] The resin composition for photofabrication of [1], wherein the inorganic particles (c) contain silica or aluminum oxide;
  • the metal oxide particle (d) contains at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, and cerium oxide, [1] or Resin composition for stereolithography of [2]; [4] For optical shaping of [1] or [2], wherein the metal oxide particles (d) contain at least one metal oxide selected from the group consist
  • the particle diameter ratio of the average particle diameter of the inorganic particles (c) to the average particle diameter of the metal oxide particles (d) is 1: 1.5 to 1: 2000, [1] The resin composition for stereolithography of any one of [6]; [8] The resin composition for photo-forming according to any one of [1] to [7], further comprising an organic ultraviolet absorber (e); [9] The resin composition for photofabrication of [8], wherein the organic ultraviolet absorber (e) is a benzotriazole compound; [10] The resin composition for photo-forming according to any one of [1] to [9], wherein the inorganic particles (c) are surface-treated with a surface treatment agent; [11] At least one metal oxide selected from the group consisting of (meth) acrylate-based polymerizable monomers and (meth) acrylamide-based polymerizable monomers as the polymerizable monomer (a) The resin composition for stereolithography according to any one of [1] to [10], which contains [
  • composition [13] The resin composition for optical shaping according to any one of [1] to [12], which is for a lifting type liquid tank; [14] A dental material comprising a cured product of the resin composition for stereolithography according to any one of [1] to [13]; [15] A dental model material comprising a cured product of the resin composition for stereolithography according to any one of [1] to [13]; [16] A method for producing a three-dimensional object by an optical forming method, using the resin composition for optical forming described in any one of [1] to [13].
  • the resin composition for stereolithography of the present invention is suitable for various dental materials, particularly dental model materials, because it is easy to be molded with a low consistency, has excellent molding accuracy, and is excellent in color tone shielding properties of a cured product. it can.
  • the photocurable resin composition of the present invention comprises a polymerizable monomer (a), a photopolymerization initiator (b), inorganic particles (c) having an average particle diameter of 5 to 200 nm, and an average particle diameter of 0.1 to 10 ⁇ m. And metal oxide particles (d), and the inorganic particles (c) are different from the metal oxide particles (d).
  • the upper limit value and the lower limit value of the numerical range can be appropriately combined.
  • Polymerizable monomer (a) A radically polymerizable monomer is suitably used for the polymerizable monomer (a) used for the resin composition for optical shaping
  • Specific examples of the radical polymerizable monomer in the polymerizable monomer (a) include (meth) acrylate type polymerizable monomers; (meth) acrylamide type polymerizable monomers; ⁇ -cyanoacrylic acid, Meta) Esters such as acrylic acid, ⁇ -halogenated acrylic acid, crotonic acid, cinnamic acid, sorbic acid, maleic acid, itaconic acid, etc .; vinyl esters; vinyl ethers; mono-N-vinyl derivatives; styrene derivatives etc.
  • (meth) acrylate-based polymerizable monomers and (meth) acrylamide-based polymerizable monomers are preferable. These may be used alone or in combination of two or more.
  • the polymerizable monomer (a) is preferably a polymerizable monomer having no acidic group, from the viewpoint of easy formation with low consistency, good molding accuracy, and excellent color tone shielding properties, and having an acidic group. More preferred are (meth) acrylate-based polymerizable monomers that do not occur and (meth) acrylamide-based polymerizable monomers that do not have an acidic group.
  • Examples of the polymerizable monomer (a) in the present invention include monofunctional monomers having one polymerizable group and polyfunctional monomers having a plurality of polymerizable groups.
  • a monofunctional (meth) acrylate type polymerizable monomer 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) ) Acrylate, 6-hydroxyhexyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, propylene glycol mono (meth) acrylate, glycerol mono (meth) acrylate, erythritol mono (meth) acrylate, methyl (meth) acrylate, ethyl (Meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, isobu (Meth) acrylate, n-hexyl (me
  • N- (meth) acryloyl morpholine N, N- dimethyl (meth) acrylamide, N, N- diethyl (meth) acrylamide, N, N- di di -N-propyl (meth) acrylamide, N, N-di-n-butyl (meth) acrylamide, N, N-di-n-hexyl (meth) acrylamide, N, N-di-n-octyl (meth) acrylamide And N, N-di-2-ethylhexyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, and N, N- (dihydroxyethyl) acrylamide.
  • (meth) acrylamide type polymerizable monomers are preferable, and among these, N- (meth) acryloyl morpholine, N, N-dimethyl (meth) acrylamide, N, N- More preferred is diethyl (meth) acrylamide.
  • multifunctional monomers examples include aromatic compound-based difunctional polymerizable monomers, aliphatic compound-based difunctional polymerizable monomers, and trifunctional or higher polymerizable monomers, and the like.
  • aromatic compound-based difunctional polymerizable monomers examples include 2,2-bis ((meth) acryloyloxyphenyl) propane and 2,2-bis [4- (3-acryloyloxy) -2-hydroxypropoxy Phenyl] propane, 2,2-bis [4- (3-methacryloyloxy) -2-hydroxypropoxyphenyl] propane (generally called "Bis-GMA"), 2,2-bis (4- (meth) acryloyloxyethoxyphenyl) ) Propane, 2,2-bis (4- (meth) acryloyloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxydiethoxyphenyl) propane, 2,2-bis (4- ( Meta) acryloyloxytetraethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxypenta) Toxiphenyl) propane, 2,2-bis (4- (meth) acryloyloxydipropoxyphenyl)
  • Oxypolyethoxyphenyl) propane is preferred.
  • 2,2-bis (4- (meth) acryloyloxypolyethoxyphenyl) propanes 2,2-bis (4-methacryloyloxypolyethoxyphenyl) propane (the average number of moles of ethoxy groups added is 2.6) The compound (generally called "D-2.6E”) is preferred.
  • aliphatic compound-based bifunctional polymerizable monomers include glycerol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and propylene glycol di (Meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di ( Meta) acrylate, 1,6-hexanediol di (meth) acrylate, 2-ethyl-1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol
  • 2,2,4-trimethylhexamethylene bis (2-carbamoyloxyethyl) dimethacrylate is preferable in terms of excellent curability and strength of a cured product. These may be used alone or in combination of two or more.
  • trimethylolpropane tri (meth) acrylate trimethylolethane tri (meth) acrylate, trimethylolmethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol Tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, N, N ′-(2,2,4-trimethylhexamethylene) bis [2- (aminocarboxy) propane-1,3-diol] tetra (meth) Acrylate, 1,7-diacryloyloxy-2,2,6,6-tetra (meth) acryloyloxymethyl-4-oxyheptane and the like.
  • N N '-(2,2,4-trimethylhexamethylene) bis [2- (aminocarboxy) propane-1,3-diol] tetramethacrylate in terms of excellent curability and cured product strength.
  • Preferred is 1,7-diacryloyloxy-2,2,6,6-tetraacryloyloxymethyl-4-oxyheptane.
  • the polymerizable monomer (a) contains a monofunctional (meth) acrylate type polymerizable monomer
  • the monofunctional (meth) in 100% by mass of the total amount of the polymerizable monomer (a)
  • the content of the acrylate-based polymerizable monomer is preferably 10 to 55% by mass, more preferably 15 to 50% by mass, and still more preferably 15 to 45% by mass.
  • the said bifunctional (meth) acrylate type polymerizable monomer is contained in 100 mass% of whole quantity of polymerizable monomer (a).
  • the content of a certain polymerizable monomer in the total amount of 100% by mass of the polymerizable monomer component refers to the case where the total amount of the polymerizable monomer components contained is converted to 100% by mass.
  • the content (mass%) of the said polymerizable monomer is meant.
  • the content of the polymerizable monomer (a) is 80 to 99% by mass, preferably 85 to 98.5% by mass, and more preferably 90 to 98% by mass, with respect to the total resin composition for photoforming .
  • Photopolymerization initiator (b) used in the present invention can be selected from photopolymerization initiators used in the general industry, and among them, a photopolymerization initiator used for dental use is preferably used.
  • photopolymerization initiator (b) (bis) acylphosphine oxides, thioxanthones or quaternary ammonium salts of thioxanthones, ketals, ⁇ -diketones, coumarins, anthraquinones, benzoin alkyl ether compounds, ⁇ -amino ketone compounds and the like can be mentioned. These may be used alone or in combination of two or more.
  • photopolymerization initiators (b) it is preferable to use at least one selected from the group consisting of (bis) acylphosphine oxides and salts thereof and ⁇ -diketones.
  • lasers such as Ar laser and He-Cd laser
  • illuminations such as halogen lamp, xenon lamp, metal halide lamp, light emitting diode (LED), mercury lamp and fluorescent lamp
  • any light sources such as, the resin composition for optical shaping
  • acyl phosphine oxide for example, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide, 2,6-dimethoxy benzoyl diphenyl phosphine Oxide, 2,6-dichlorobenzoyl diphenyl phosphine oxide, 2,4,6-trimethyl benzoyl methoxy phenyl phosphine oxide, 2,4,6- trimethyl benzoyl ethoxy phenyl phosphine oxide, 2,3,5,6- tetramethyl benzoyl diphenyl Phosphine oxide, benzoyl di- (2,6-dimethylphenyl) phosphonate, 2,4,6-trimethyl benzoyl phenyl phosphine oxide sodium salt, 2,4,6-trimethyl benzoyl Phenylphosphine oxide potassium salt, ammonium salt
  • bisacyl phosphine oxides for example, bis (2,6-dichlorobenzoyl) phenyl phosphine oxide, bis (2,6-dichlorobenzoyl) -2,5-dimethylphenyl phosphine oxide, bis (2,6-dichlorobenzoyl) ) 4-Propylphenylphosphine oxide, bis (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2, 4,4-trimethylpentyl phosphine oxide, bis (2,6-dimethoxybenzoyl) -2,5-dimethylphenyl phosphine oxide, bis (2,4,6-trimethyl benzoyl) phenyl phosphine oxide, bis (2,5,6 -Trimethyl be
  • Examples of the ⁇ -diketones used as the photopolymerization initiator (b) include diacetyl, benzyl, camphorquinone, 2,3-pentadione, 2,3-octadione, 9,10-phenanthrenequinone, 4,4 ′. -Oxybenzyl and acenaphthene quinone are mentioned. Among these, when using a light source in the visible light range, camphor quinone is particularly preferable.
  • the content of the photopolymerization initiator (b) in the photocurable resin composition of the present invention is 0 with respect to the entire photocurable resin composition from the viewpoint of the curability of the obtained photocurable resin composition and the like. 1 to 10% by mass. 0.5 mass% or more is more preferable, and 1.0 mass% or more is further more preferable.
  • the resin composition for photofabrication when the solubility of the photopolymerization initiator itself is low May cause precipitation of As for content of a photoinitiator (b), 7.5 mass% or less is more preferable with respect to the resin composition for photofabrication, and 5.0 mass% or less is further more preferable.
  • the inorganic particles (c) used in the present invention include, for example, quartz, silica, aluminum oxide (alumina), silica-titania, silica-titania-barium oxide, silica-zirconia, silica-alumina, aluminosilicate glass, fluoroaluminoglass Silicate glass, calcium fluoroaluminosilicate glass, strontium fluoroaluminosilicate glass, barium fluoroaluminosilicate glass, and strontium calcium fluoroaluminosilicate glass can be mentioned. These may also be used alone or in combination of two or more.
  • the thing applicable to the metal oxide particle (d) mentioned later is remove
  • the inorganic particles (c) preferably contain silica or aluminum oxide from the viewpoint of being easily shaped with a low consistency and being excellent in molding accuracy and color tone shielding properties.
  • the shape of the inorganic particles (c) is not particularly limited as long as the effects of the present invention are exhibited, but it is preferably spherical in view of the flowability of the resin composition for photofabrication and the small damage to the container for modeling.
  • the average particle diameter of the inorganic particles (c) is required to be 5 to 200 nm, preferably 7.5 to 100 nm, more preferably 10 to 75 nm, from the viewpoint of molding accuracy and color tone shielding properties. More preferably, it is 5 to 50 nm.
  • the average particle diameter of particles refers to the average primary particle diameter
  • the average particle diameter of the inorganic particles (c) can be determined by observation with an optical microscope or an electron microscope.
  • optical microscope observation is convenient for particle size measurement with a particle size of 100 nm or more
  • electron microscope observation is convenient for particle size measurement with a particle size of less than 100 nm.
  • Optical microscopy or electron microscopy takes a scanning electron microscope (S-4000, manufactured by Hitachi, Ltd.) photograph of particles, and the particle diameter of particles (200 or more) observed in the unit field of the photograph Can be determined by measurement using an image analysis type particle size distribution measurement software (Macview (Muntech Co., Ltd.)).
  • the particle size of the particles is obtained as an arithmetic mean value of the longest length and the shortest length of the particles, and the average primary particle size is calculated from the number of particles and the particle size thereof.
  • the content of the inorganic particles (c) in the resin composition for photo-forming according to the present invention is the resin composition for photo-forming from the viewpoint of the consistency of the resin composition for photo-forming obtained, the molding accuracy of the cured product and the color shading property. It is necessary for the whole to be 0.1 to 5.0% by mass, preferably 0.5 to 3.0% by mass, more preferably 1.0 to 2.99% by mass, and 1.0 to 2.5 mass% is more preferable.
  • the content of the inorganic particles (c) is less than 0.1% by mass, sufficient color shade shielding properties can not be obtained in the three-dimensional object.
  • the content of the inorganic particles (c) exceeds 5.0% by mass, the consistency of the resin composition for photofabrication increases and it can not be modeled.
  • the inorganic particles (c) are, if necessary, an acidic group-containing organic compound to adjust the miscibility with the polymerizable monomer (a); saturated fatty acid amide, unsaturated fatty acid amide, saturated fatty acid bisamide, unsaturated It may be previously surface-treated with a known surface treatment agent such as a fatty acid amide such as a fatty acid bisamide; an organosilicon compound such as a silane coupling agent. In order to enhance the chemical bonding between the polymerizable monomer (a) and the inorganic particles (c) to improve the mechanical strength of the cured product, it is preferable to carry out a surface treatment with an acidic group-containing organic compound.
  • the acidic group-containing organic compound examples include organic compounds having at least one acidic group such as phosphoric acid group, pyrophosphoric acid group, thiophosphoric acid group, phosphonic acid group, sulfonic acid group, carboxylic acid group, etc.
  • An organic compound having at least one is preferred.
  • the surface treatment layer may be a mixture of two or more surface treatment agents, or may be a surface treatment layer having a multilayer structure in which a plurality of surface treatment layers are laminated.
  • the acidic group-containing organic compound containing a phosphoric acid group 2-ethylhexyl acid phosphate, stearyl acid phosphate, 2- (meth) acryloyloxyethyl dihydrogen phosphate, 3- (meth) acryloyloxypropyl dihydrogen phosphate, 4- (Meth) acryloyloxybutyl dihydrogen phosphate, 5- (Meth) acryloyloxypentyl dihydrogen phosphate, 6- (Meth) acryloyl oxyhexyl dihydrogen phosphate, 7- (meth) acryloyl oxyheptyl dihydrogen Phosphate, 8- (meth) acryloyloxyoctyl dihydrogen phosphate, 9- (meth) acryloyl oxynonyl dihydrogen phosphate, 10- Meta) acryloyloxydecyl dihydrogen phosphate, 11-(meth) acryloyl
  • Hydrogen phosphate bis [10- (meth) acryloyloxydecyl] hydrogen phosphate, 1,3-di (meth) acryloyloxypropyl dihydrogen phosphate, 2- (meth) acryloyloxyethyl phenyl hydrogen phosphate, 2- (Meth) acryloyloxyethyl-2-bromoethyl hydrogen phosphate, bis [2- (meth) acryloyloxy- (1-hydroxymethyl) ethyl] hydrogen phosphate, and their acid chlorides, alkali metal salts, Ammonium salts and the like can be mentioned.
  • an acidic group-containing organic compound having an acidic group such as a pyrophosphoric acid group, a thiophosphoric acid group, a phosphonic acid group, a sulfonic acid group, and a carboxylic acid group
  • an acidic group-containing organic compound having an acidic group such as a pyrophosphoric acid group, a thiophosphoric acid group, a phosphonic acid group, a sulfonic acid group, and a carboxylic acid group. It can be used.
  • saturated fatty acid amides include palmitic acid amide, stearic acid amide, behenic acid amide and the like.
  • unsaturated fatty acid amides include oleic acid amide and erucic acid amide.
  • saturated fatty acid bisamides include ethylene bispalmitic acid amide, ethylene bis-stearic acid amide, hexamethylene bis-stearic acid amide and the like.
  • unsaturated fatty acid bisamides include ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl sebacic acid amide and the like.
  • organosilicon compound examples include compounds represented by R 1 n SiX 4-n .
  • R 1 is a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms
  • X is an alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a halogen atom or a hydrogen atom
  • n is It is an integer of 0 to 3, provided that when there are a plurality of R 1 and X, they may be the same or different.
  • silane coupling agents having a functional group copolymerizable with the polymerizable monomer (a) for example, ⁇ - (meth) acryloyloxyalkyltrimethoxysilane [(meth) acryloyloxy group and silicon atom Carbon number between: 3 to 12], ⁇ - (meth) acryloyloxyalkyltriethoxysilane [carbon number between (meth) acryloyloxy group and silicon atom: 3 to 12], vinyltrimethoxysilane, vinyltri Ethoxysilane, vinyltriacetoxysilane, ⁇ -glycidoxypropyltrimethoxysilane and the like are preferably used.
  • a known method can be used without particular limitation.
  • a method of spray addition of the above-mentioned surface treatment agent while vigorously stirring inorganic particles (c), inorganic particles to a suitable solvent There is a method of removing the solvent after dispersing or dissolving (c) and the above-mentioned surface treatment agent.
  • the amount of the surface treatment agent to be used is not particularly limited, and is, for example, preferably 0.1 to 50 parts by mass, more preferably 0.3 to 40 parts by mass, with respect to 100 parts by mass of the inorganic particles (c). Further preferred is 5 to 30 parts by mass.
  • the metal oxide particles (d) used in the present invention preferably contain at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, and cerium oxide. It is more preferable to contain at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide and zirconium oxide.
  • the content of the metal oxide in the metal oxide particles (d) is not particularly limited as long as the metal oxide is contained as a main component, but 50 mass% or more is preferable, and 70 mass% or more is more preferable. 80 mass% or more is further preferable, and 90 mass% or more is especially preferable. Moreover, 100 mass% of content of the said metal oxide may be sufficient as a metal oxide particle (d).
  • metal oxides may be used alone or in combination of two or more.
  • titanium oxide and aluminum oxide are preferable from the viewpoint of excellent molding accuracy and color tone shielding properties.
  • the transparency of the active energy beam such as a laser is simultaneously reduced and the active energy beam is scattered, so that the molding accuracy is lowered.
  • it is intended to improve the color tone shielding property only with the inorganic particles (c) it is necessary to contain a large amount, and the viscosity is increased.
  • the inorganic particles (c) and the metal oxide particles (d) in combination by using the inorganic particles (c) and the metal oxide particles (d) in combination, the surface irregularities of the composition (ink) become large, and the inorganic particles (c) and the metal are made It is considered that high color shade shielding property can be obtained because it appears turbid even though the content of the oxide particles (d) is small. Further, by using the inorganic particles (c) and the metal oxide particles (d) in combination, the transparency of active energy rays such as a laser can be maintained, and as a result, the content of the metal oxide particles (d) can be reduced. Therefore, it is considered that both excellent molding accuracy and color tone shielding properties can be achieved.
  • the average particle diameter of the metal oxide particles (d) needs to be 0.1 to 10 ⁇ m, preferably 0.2 to 7.5 ⁇ m, in order to secure the color tone shielding property.
  • the thickness is more preferably 3 to 5.0 ⁇ m, still more preferably 0.4 to 3.0 ⁇ m, and particularly preferably 0.5 to 1.0 ⁇ m.
  • the laser diffraction scattering method is convenient for measuring the average particle diameter of the metal oxide particles (d).
  • the laser diffraction scattering method can be measured, for example, by a laser diffraction type particle size distribution measuring apparatus (SALD-2100: manufactured by Shimadzu Corporation) using a 0.2% aqueous sodium hexametaphosphate solution as a dispersion medium.
  • the content of the metal oxide particles (d) in the resin composition for photofabrication of the present invention is 0.01 to 10% by mass with respect to the entire resin composition for photofabrication from the viewpoint of molding accuracy and color tone shielding properties. It is necessary to be present, preferably 0.05 to 5% by mass, and more preferably 0.1 to 1.0% by mass.
  • the content of the metal oxide particles (d) is less than 0.01% by mass, sufficient color shade shielding properties can not be obtained in the three-dimensional object.
  • the content of the metal oxide particles (d) exceeds 10% by mass, the color tone shielding property of the resin composition for photofabrication becomes excessive and modeling can not be performed.
  • the content of the metal oxide particles (d) in the resin composition for photofabrication of the present invention is 0 based on 100 parts by mass of the polymerizable monomer (a) from the viewpoint of molding accuracy and color tone shielding properties. .01 to 5 parts by mass is preferable, and 0.05 to 3 parts by mass is more preferable.
  • the metal oxide particles (d) may be subjected to surface treatment in advance to adjust the miscibility with the polymerizable monomer (a), and in that case, the surface treatment agent, the method of surface treatment, etc. are preferred.
  • the embodiment is the same as the contents relating to the inorganic particle (c) described above.
  • the mass ratio of the inorganic particles (c) to the metal oxide particles (d) is low in consistency, easy to be shaped, good in forming accuracy, and excellent in color tone shielding properties of the cured product.
  • Oxide particles (d) 2: 1 to 30: 1 are preferable, 3: 1 to 20: 1 are more preferable, and 5: 1 to 15: 1 are more preferable.
  • the average particle size of the inorganic particles (c) is preferably larger than the average particle size of the metal oxide particles (d).
  • the particle diameter ratio of the average particle diameter of the inorganic particles (c) and the metal oxide particles (d) is easy to be shaped with a low consistency, the forming accuracy is good, and the color shade shielding property of the cured product is excellent.
  • Inorganic particles (c): metal oxide particles (d) 1: 1.5 to 1: 2000 are preferable, 1: 3 to 1: 500 are more preferable, and 1: 5 to 1: 100 are more preferable.
  • Organic UV absorber (e) It is preferable that the resin composition for optical shaping
  • Examples of the organic ultraviolet absorber (e) include benzotriazole compounds, benzophenone compounds, and thiophene compounds.
  • benzotriazole-based compound a compound in which a hydroxy group is bonded to the 2-position of the aromatic ring bonded to the nitrogen atom of the triazole structure is preferable, and it is bonded to the nitrogen atom of the triazole structure from the viewpoint of excellent molding accuracy. More preferred is a compound having a hydroxy group bonded to the 2-position of the aromatic ring and having an alkyl group having 1 to 10 carbon atoms at the 3- and / or 5-position of the aromatic ring.
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4- (dodecyloxy) benzophenone, 2-hydroxy- Examples include 4- (octadecyloxy) benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone and the like.
  • the thiophene compounds include thiophene compounds such as 2,5-bis (5-t-butyl-2-benzoxazolyl) thiophene. Among these, benzotriazole compounds are preferable from the viewpoint of achieving better molding accuracy.
  • organic ultraviolet absorber (e) one type may be used alone, or two or more types may be used in combination.
  • the content of the organic ultraviolet light absorber (e) is preferably in the range of 0.001 to 10% by mass, more preferably in the range of 0.01 to 5% by mass, with respect to the entire resin composition for photoforming. More preferred is 02 to 2% by mass.
  • the resin composition for stereolithography of the present invention particularly contains the above-mentioned polymerizable monomer (a), photopolymerization initiator (b), inorganic particles (c) and metal oxide particles (d).
  • it may contain an organic ultraviolet absorber (e) if necessary, and may contain other components other than these, for example.
  • Other components in the resin composition for stereolithography i.e., polymerizable monomer (a), photopolymerization initiator (b), inorganic particles (c) and metal oxide particles (d), and, if necessary, organic
  • the content of the component other than the ultraviolet absorber (e) may be less than 3% by mass, less than 2% by mass, or less than 1% by mass.
  • molding of this invention can be manufactured according to a well-known method.
  • the resin composition for stereolithography of the present invention can contain a polymerization accelerator for the purpose of improving photocurability within the range not impairing the spirit of the present invention.
  • a polymerization accelerator for example, ethyl 4- (N, N-dimethylamino) benzoate, methyl 4- (N, N-dimethylamino) benzoate, 4- (N, N-dimethylamino) benzoic acid n- Butoxyethyl, 2- (methacryloyloxy) ethyl 4-N, N-dimethylaminobenzoate, 4- (N, N-dimethylamino) benzophenone, and butyl 4- (N, N-dimethylamino) benzoate .
  • ethyl 4- (N, N-dimethylamino) benzoate, n-butoxy 4- (N, N-dimethylamino) benzoate from the viewpoint of imparting excellent curability to the resin composition for photofabrication
  • At least one selected from the group consisting of ethyl and 4- (N, N-dimethylamino) benzophenone is preferably used.
  • a known stabilizer can be added to the photocurable resin composition of the present invention for the purpose of suppressing deterioration or adjusting photocurability.
  • a polymerization inhibitor, an antioxidant, etc. are mentioned, for example.
  • polymerization inhibitor examples include hydroquinone, hydroquinone monomethyl ether, dibutyl hydroquinone, dibutyl hydroquinone monomethyl ether, t-butyl catechol, 2-t-butyl-4,6-dimethylphenol, 2,6-di-t-butyl phenol, And 3,5-di-t-butyl-4-hydroxytoluene.
  • the content of the polymerization inhibitor is preferably 0.001 to 1.0 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable monomer (a).
  • additives may be added to the resin composition for photofabrication of the present invention for the purpose of adjusting color tone or paste properties.
  • additives include pigments, dyes, organic solvents, thickeners and the like.
  • the resin composition for optical shaping of the present invention can be suitably used as a resin composition for lifting type liquid tank optical shaping.
  • the resin composition for stereolithography of the present invention is easy to be shaped with a low consistency when molded by lifting type liquid tank photofabrication, and is excellent in molding accuracy and excellent in color tone shielding properties of a cured product, so various dental materials In particular, it can be suitably used for dental model materials.
  • the resin composition for optical shaping of the present invention is excellent not only in low consistency but in ease of shaping but also in molding accuracy and color tone shielding property of a cured product. Accordingly, the resin composition for stereolithography of the present invention can be applied to applications in which such advantages are exploited, and can be used, for example, for various three-dimensional objects manufactured by optical stereolithography. Among them, it can be suitably used as a dental material, and is particularly suitable as a dental model material.
  • a method for producing a three-dimensional object by an optical forming method (hereinafter, also referred to as “optical three-dimensional forming method”) using any of the above-described resin compositions for optical forming Can be mentioned.
  • optical three-dimensional modeling method a lifting type liquid tank optical three-dimensional modeling method is preferable.
  • an active energy ray as light energy for curing the resin.
  • the "active energy ray” in the present invention means an energy ray capable of curing the photocurable resin composition such as ultraviolet ray, electron beam, X-ray, radiation, high frequency and the like.
  • the active energy beam may be ultraviolet light having a wavelength of 300 to 400 nm.
  • Examples of the light source of active energy ray include lasers such as Ar laser and He-Cd laser; illuminations such as halogen lamp, xenon lamp, metal halide lamp, LED, mercury lamp and fluorescent lamp, and the like, and laser is particularly preferable.
  • lasers such as Ar laser and He-Cd laser
  • illuminations such as halogen lamp, xenon lamp, metal halide lamp, LED, mercury lamp and fluorescent lamp, and the like
  • laser is particularly preferable.
  • a laser is used as a light source, it is possible to increase the energy level and shorten the formation time, and to obtain a three-dimensional object with high forming accuracy by utilizing the good focusing of the laser beam. it can.
  • any of a conventionally known method and a conventionally known optical modeling system device can be adopted, and the present invention is not particularly limited.
  • an active energy beam is selectively irradiated so that a cured layer having a desired pattern can be obtained in the resin composition for optical three-dimensional modeling
  • the step of forming a hardened layer, and then the hardened layer is lifted, and the unhardened liquid resin composition for optical three-dimensional modeling is supplied, and the active energy beam is similarly irradiated to continue with the hardened layer.
  • a method of finally obtaining a desired three-dimensional object can be mentioned by repeating the steps of newly forming a hardened layer and laminating.
  • the three-dimensional object obtained thereby is used as it is or, in some cases, it is further post-cured by light irradiation or post-cured by heat, etc. to further enhance its mechanical characteristics or shape stability. You may use it.
  • the present invention includes embodiments in which the above-described configurations are variously combined within the scope of the technical idea of the present invention as long as the effects of the present invention can be obtained.
  • A) -1 UDMA (2,2,4-trimethylhexamethylene bis (2-carbamoyloxyethyl) dimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd.))
  • A) -2 Bis-GMA (2,2-bis [4- (3-methacryloyloxy) -2-hydroxypropoxyphenyl] propane (manufactured by Shin-Nakamura Chemical Co., Ltd.))
  • A) -3 TEGDMA (triethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.))
  • Inorganic particles (c) Inorganic particles (c) -1: dimethyldichlorosilane surface-treated colloidal silica powder ("AEROSIL (registered trademark) R 972" manufactured by Nippon Aerosil Co., Ltd.) average particle diameter 16 nm (spherical) Inorganic particles (c) -2 and (c) -3: Obtained according to the following production method.
  • AEROSIL registered trademark
  • R 972 manufactured by Nippon Aerosil Co., Ltd.
  • Inorganic particles (c) -2 3-methacryloyloxypropyltrimethoxysilane-treated silica powder 100 g of colloidal silica powder ("AEROSIL (registered trademark) OX 50" manufactured by Nippon Aerosil Co., Ltd.), 3-methacryloyloxypropyltrimethoxysilane (Shin-Ekoshi) Shin-Etsu Chemical (Shin-Etsu Silicone (registered trademark) silane coupling agent "KBM-503”) manufactured by Chemical Industry Co., Ltd.
  • AEROSIL registered trademark
  • OX 50 manufactured by Nippon Aerosil Co., Ltd.
  • Shin-Etsu Chemical Shin-Etsu Silicone (registered trademark) silane coupling agent "KBM-503" manufactured by Chemical Industry Co., Ltd.
  • the particle of inorganic particle (c) -2 is photographed with a scanning electron microscope (S-4000 type, manufactured by Hitachi, Ltd.), and the particle diameter of the particle (200 or more) observed in the unit field of the photograph
  • the average primary particle diameter was determined to be 40 nm (spherical shape) when measured by using an image analysis type particle size distribution measurement software (Macview (Mountech Co., Ltd.)).
  • Inorganic particles (c) -3 10-methacryloyloxydecyl dihydrogen phosphate-treated alumina powder alumina powder ("AEROXIDE (registered trademark) Alu C" manufactured by Nippon Aerosil Co., Ltd.) 100 g, 10-methacryloyloxydecyl dihydrogen phosphate ( 0.5 g of Toho Chemical Industry Co., Ltd. and 200 mL of toluene were placed in a 500 mL single-necked eggplant flask and stirred at room temperature for 2 hours. Then, after distilling off toluene under reduced pressure, vacuum dried at 40 ° C. for 16 hours, further vacuum dried at 90 ° C.
  • AEROXIDE registered trademark
  • Alu C manufactured by Nippon Aerosil Co., Ltd.
  • inorganic particles (C) -3 were surface-treated with 10-methacryloyloxydecyl dihydrogen phosphate alumina powder [inorganic particles (C) -3] was obtained.
  • the particles of inorganic particle (c) -3 are photographed with a scanning electron microscope (type S-4000 manufactured by Hitachi Ltd.), and the particle diameter of the particles (200 or more) observed in the unit field of the photograph The average primary particle diameter was determined to be 25 nm (spherical shape) as determined by using an image analysis type particle size distribution measurement software (Macview (Muntech Co., Ltd.)).
  • Metal oxide particles (d) Metal oxide particles (d) -1: titanium oxide powder (manufactured by Wako Pure Chemical Industries, Ltd. Japanese Pharmacopoeia "Titanium oxide") Average particle size 0.5 ⁇ m Metal oxide particles (d) -2: aluminum oxide powder ("Alumina” manufactured by Admatex Co., Ltd.) average particle diameter 0.7 ⁇ m Metal oxide particles (d) -3: Zirconium oxide powder ("Zirconium oxide” manufactured by Soekawa Chemical Co., Ltd.) average particle diameter 1.0 ⁇ m
  • Examples 1 to 7 and Comparative Examples 1 to 5 Each component is mixed under normal temperature (20 ° C. ⁇ 15 ° C., JIS (Japanese Industrial Standard) Z 8703: 1983) in the amounts shown in Table 1 and Table 2 according to Examples 1 to 7 and Comparative Examples 1 to 5.
  • An ink as a resin composition for stereolithography was prepared.
  • the three-dimensional molded article of the cube of 10.000 mm of 1 side was manufactured using the optical forming machine (DigitalWax (trademark) 020D by DWS). There was no dropout, formation interruption, breakage of the container, etc., and it was observed by visual observation whether formation was possible.
  • Consistency A PET film of 50 mm on a side and a thickness of 0.05 mm was placed on a flat surface, 0.5 ml of the ink of each of the examples and comparative examples was dropped at the center, and left for 10 minutes in a thermostatic chamber at 25 ° C.
  • the diameter of the ink was calculated by taking the average of the maximum diameter (long diameter) and the minimum diameter (short diameter) of the ink spread in a circle.
  • three samples were measured by this method to calculate the diameter of the ink.
  • the average value of the results of these three measurements was taken as the measured value of the consistency. The larger the consistency, the easier the ink flows and the better the formability. Those having a consistency of 30 mm or more in this test are high in flowability and excellent in formability, and those having a thickness of 40 mm or more are preferable.
  • the three-dimensional molded article of the cube of 10.000 mm of 1 side was manufactured using the optical forming machine (DigitalWax (trademark) 020D by DWS company).
  • the obtained three-dimensional object was washed with ethanol to remove unpolymerized monomers, and then the dimensions (unit: mm) were measured using a micrometer, and the molding accuracy was calculated according to the following equation.
  • the forming accuracy dimension error
  • the forming accuracy is excellent, and when a crown or a bridge is formed by forming a model material, the compatibility tends to be excellent, 0.80 % Or less is preferable.
  • the disk-shaped three-dimensional molded article of diameter 15.0 mm x thickness 1.0 mm was manufactured using the optical forming machine (DigitalWax (trademark) 020D by DWS company).
  • the obtained three-dimensional object is washed with ethanol to remove unpolymerized monomers, and then, it is further polymerized for 90 seconds by using the LED polymerization apparatus alpha light V for dental technology (manufactured by Morita Tokyo Seisakusho Co., Ltd.) for 90 seconds.
  • I got The resulting cured product is polished with silicon carbide paper No.
  • Transparency ⁇ L was measured as an evaluation index of color shade shielding property using Z 8722: 2009, condition c, D65 light source).
  • Transparency ⁇ L is defined by the following equation. The transparency ⁇ L needs to be 15 or less in order to ensure high color shade shielding properties. The results are shown in Table 1 and Table 2, respectively.
  • ⁇ L L * W ⁇ L * B (Wherein L * W represents the lightness index L * in the L * a * b * color system of JIS Z 8781-4: 2013 measured on a white background, and L * B is measured on a black background Represents the lightness index L * in the L * a * b * color system
  • the resin composition for photofabrication in Examples 1 to 7 had a viscosity capable of being shaped, was excellent in molding accuracy, and the cured product was excellent in color tone shielding properties.
  • the composition which does not contain the inorganic particles (c) of Comparative Examples 1 to 3 or the metal oxide particles (d) has low molding accuracy and color shade shielding properties, and contains a large amount of the inorganic particles (c) of Comparative Example 4
  • the composition containing the inorganic particles having a high consistency, being not formable, and having the large particle diameter of Comparative Example 5 destroyed the container and was not formable.
  • the resin composition for stereolithography of the present invention is suitable for a dental material, particularly a dental model material, because it is easy to be shaped with a low consistency, has a good molding accuracy, and is excellent in color tone shielding properties of a cured product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Materials Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Dentistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Polymerisation Methods In General (AREA)
  • Dental Preparations (AREA)

Abstract

The present invention provides a resin composition for stereolithography that has a firm consistency and is easy to shape, that has good molding precision, and that yields a cured product having excellent color tone blocking properties. The present invention relates to a resin composition for stereolithography containing 80-99% mass% of a polymerizable monomer (a), 0.1-10 mass% of a photopolymerization initiator (b), 0.1-5.0 mass% of inorganic particles (c) having an average particle size of 5-200 nm, and 0.01-10 mass% of metal oxide particles (d) having an average particle size of 0.1-10 µm. The inorganic particles (c) differ from the metal oxide particles (d).

Description

光造形用樹脂組成物Resin composition for stereolithography
 本発明は光造形用樹脂組成物に関する。より詳細には、本発明は、光造形によって造形したときに、低稠度で造形しやすく、成形精度が良好で、かつ色調遮蔽性に優れた造形物を得ることができる。特に歯科用模型材料に好適である。 The present invention relates to a resin composition for stereolithography. More specifically, the present invention makes it possible to obtain a shaped article which is easy to be shaped with a low consistency, is excellent in shaping accuracy, and is excellent in color tone shielding properties when shaped by photo-forming. In particular, it is suitable for a dental model material.
 液状の光硬化性樹脂に必要量の制御された光エネルギーを供給して、薄層状に硬化させ、その上にさらに液状光硬化性樹脂を供給した後、制御下に光照射して薄層状に積層硬化させるという工程を繰り返すことによって立体造形物を製造する方法、いわゆる光学的立体造形法が特許文献1によって開示された。そして、その基本的な実用方法がさらに特許文献2によって提案されて以来、光学的立体造形技術に関する多数の提案がなされている。 After supplying a required amount of controlled light energy to the liquid photocurable resin to cure it in a thin layer, and further supplying a liquid photocurable resin thereon, light is irradiated under control to form a thin layer Patent Document 1 discloses a method of producing a three-dimensional object by repeating the process of curing by lamination, a so-called optical three-dimensional method. And since the basic practical method was further proposed by patent document 2, many proposals regarding optical solid modeling technology are made | formed.
 立体造形物を光学的に製造する際の代表的な方法としては、容器に入れた液状光硬化性樹脂組成物の液面に、所望のパターンが得られるようにコンピューターで制御された紫外線レーザーを選択的に照射して所定の厚さで硬化させて硬化層を形成し、次にその硬化層の上に1層分の液状光硬化性樹脂組成物を供給して、同様に紫外線レーザーを照射して前記と同じように硬化させて連続した硬化層を形成させるという積層操作を繰り返して最終的な形状の立体造形物を製造する液槽光造形という方法が一般に採用されている。この方法による場合は、造形物の形状がかなり複雑であっても、簡単にかつ比較的短時間で、精度良く目的とする立体造形物を製造することができるために近年大きな注目を集めている。さらに、従来は大量に液状光硬化性樹脂組成物を入れた容器中で造形物が降下していく方式が採られていたが、最近は液状光硬化性樹脂組成物が少量で済み、ロスが少ない吊り上げ式が主流になりつつある。 As a representative method for optically producing a three-dimensional object, a computer-controlled ultraviolet laser is applied to the liquid surface of the liquid photocurable resin composition contained in a container so as to obtain a desired pattern. It is selectively irradiated and cured to a predetermined thickness to form a cured layer, and then a liquid photocurable resin composition for one layer is supplied on the cured layer to similarly irradiate ultraviolet laser. In general, a method called liquid bath photofabrication in which a lamination operation of curing in the same manner as described above to form a continuous cured layer is repeated to produce a three-dimensional object having a final shape is generally employed. According to this method, even if the shape of the object is quite complicated, it can be precisely and precisely manufactured in a relatively short time with high precision, and has attracted great attention in recent years. . Furthermore, conventionally, a method has been adopted in which a shaped object descends in a container containing a large amount of liquid photocurable resin composition, but recently, a small amount of liquid photocurable resin composition is required, and loss Few lifting types are becoming mainstream.
 そして、光造形法によって得られる立体造形物が単なるコンセプトモデルから、テストモデル、試作品等へと用途が展開されるようになっており、それに伴ってその立体造形物は成形精度に優れていることが益々要求されるようになっている。しかも、そのような特性と併せて目的に合わせた特性も優れていることが求められている。とりわけ、歯科材料分野においては、クラウンやブリッジといわれる補綴物は、患者個人ごとに形状が異なり、かつ形状が複雑であることから、光造形法の応用が期待されているが、要求される成形精度(適合性)が極めて高い。現在、これらクラウンやブリッジを作製するための模型用途が普及しつつある。模型用途では、色調遮蔽性を大きくし、表面を視認、観察しやすくすることが要求され、色調遮蔽性を向上させるためには、一般的に無機粒子が添加される。しかしながら、無機粒子を添加した場合、粘度が上昇し造形が困難となったり、光が透過しなくなるため、成形精度が低下するという問題がある。さらに、液量が少ない吊り上げ式では、造形面に液が供給されにくくなるため、粘度の影響をより受けやすくなる。 And the application is developed from a simple concept model to a test model, a trial product, etc. from the simple three-dimensional object obtained by the optical modeling method, and the three-dimensional object is excellent in forming accuracy in connection with it That is increasingly required. In addition to these characteristics, it is also required that the characteristics tailored to the purpose be excellent. In the dental materials field, in particular, prostheses called crowns and bridges are expected to be applied to stereolithography because their shapes are different for individual patients and their shapes are complex, but required molding The accuracy (suitability) is extremely high. At present, model applications for producing these crowns and bridges are in widespread use. In a model application, it is required to increase the color shade shielding property so as to make the surface visible and easy to observe, and in order to improve the color shade shielding property, inorganic particles are generally added. However, when inorganic particles are added, the viscosity is increased and shaping becomes difficult, or light is not transmitted, so that there is a problem that molding accuracy is lowered. Furthermore, in the lifting type in which the amount of liquid is small, the liquid is less likely to be supplied to the shaped surface, and therefore, it is more susceptible to the influence of viscosity.
 このような背景の中、液槽光造形用液状組成物に適正な流動性と硬化性を可能な技術として、例えば、特許文献3には、無機微粒子を特定量配合した技術が提案されている。 Under such background, as a technology capable of providing appropriate fluidity and curability to the liquid composition for liquid form stereolithography, for example, Patent Document 3 proposes a technology in which a specific amount of inorganic fine particles is blended. .
特開昭56-144478号公報JP-A-56-144478 特開昭60-247515号公報Japanese Patent Application Laid-Open No. 60-247515 特開2006-348210号公報JP, 2006-348210, A
 特許文献1~3に記載の光学的立体造形用樹脂組成物は、歯科用模型材料のように強い色調遮蔽性が必要な材料への応用については具体的に記載されていない。 The resin compositions for optical three-dimensional modeling described in Patent Documents 1 to 3 have not been specifically described for application to materials that require strong color tone shielding properties, such as dental model materials.
 そこで、本発明は、低稠度で造形しやすく、成形精度が良好で、かつ硬化物の色調遮蔽性に優れる光造形用樹脂組成物を提供することを目的とする。また、特に歯科用模型材料に好適な光造形用樹脂組成物を提供することを目的とする。 Then, an object of this invention is to provide the resin composition for optical shaping | molding which is easy to shape | mold by low consistency, is favorable in shaping | molding precision, and is excellent in the color-tone shielding property of hardened | cured material. Another object of the present invention is to provide a resin composition for stereolithography that is particularly suitable for a dental model material.
 すなわち、本発明は以下の発明に関する。
[1]重合性単量体(a)80~99質量%と、光重合開始剤(b)0.1~10質量%と、平均粒径5~200nmの無機粒子(c)0.1~5.0質量%と、平均粒径0.1~10μmの金属酸化物粒子(d)0.01~10質量%とを含有し、前記無機粒子(c)は、前記金属酸化物粒子(d)と異なる、光造形用樹脂組成物;
[2]前記無機粒子(c)が、シリカ又は酸化アルミニウムを含有する、[1]の光造形用樹脂組成物;
[3]前記金属酸化物粒子(d)が、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、及び酸化セリウムからなる群から選択される少なくとも1種の金属酸化物を含有する、[1]又は[2]の光造形用樹脂組成物;
[4]前記金属酸化物粒子(d)が、酸化チタン、酸化アルミニウム及び酸化ジルコニウムからなる群から選択される少なくとも1種の金属酸化物を含有する、[1]又は[2]の光造形用樹脂組成物;
[5]前記金属酸化物粒子(d)の平均粒径が、0.2~7.5μmである、[1]~[4]のいずれか1項の光造形用樹脂組成物;
[6]前記無機粒子(c)と前記金属酸化物粒子(d)の質量比が、2:1~30:1である、[1]~[5]のいずれか1項に記載の光造形用樹脂組成物;
[7]前記無機粒子(c)の平均粒径と、前記金属酸化物粒子(d)の平均粒径との粒径比が、1:1.5~1:2000である、[1]~[6]のいずれか1項に記載の光造形用樹脂組成物;
[8]さらに有機紫外線吸収剤(e)を含有する、[1]~[7]のいずれか1項に記載の光造形用樹脂組成物;
[9]前記有機紫外線吸収剤(e)が、ベンゾトリアゾール系化合物である、[8]の光造形用樹脂組成物;
[10]前記無機粒子(c)が、表面処理剤で表面処理されてなる、[1]~[9]のいずれか1項に記載の光造形用樹脂組成物;
[11]前記重合性単量体(a)が、(メタ)アクリレート系重合性単量体及び(メタ)アクリルアミド系重合性単量体からなる群から選択される少なくとも1種の金属酸化物を含有する、[1]~[10]のいずれか1項に記載の光造形用樹脂組成物;
[12]前記重合性単量体(a)が、二官能性(メタ)アクリレート系重合性単量体を含有する、[1]~[11]のいずれか1項に記載の光造形用樹脂組成物;
[13]吊り上げ式液槽用である、[1]~[12]のいずれか1項に記載の光造形用樹脂組成物;
[14][1]~[13]のいずれか1項に記載の光造形用樹脂組成物の硬化物からなる歯科材料;
[15][1]~[13]のいずれか1項に記載の光造形用樹脂組成物の硬化物からなる歯科用模型材料;
[16][1]~[13]のいずれか1項に記載の光造形用樹脂組成物を用いて、光造形法によって立体造形物を製造する方法。
That is, the present invention relates to the following inventions.
[1] 80 to 99% by mass of the polymerizable monomer (a), 0.1 to 10% by mass of the photopolymerization initiator (b), and inorganic particles (c) 0.1 to 5 with an average particle diameter of 5 to 200 nm The inorganic particles (c) contain 5.0% by mass and 0.01 to 10% by mass of metal oxide particles (d) having an average particle diameter of 0.1 to 10 μm; A resin composition for stereolithography different from);
[2] The resin composition for photofabrication of [1], wherein the inorganic particles (c) contain silica or aluminum oxide;
[3] The metal oxide particle (d) contains at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, and cerium oxide, [1] or Resin composition for stereolithography of [2];
[4] For optical shaping of [1] or [2], wherein the metal oxide particles (d) contain at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide and zirconium oxide Resin composition;
[5] The resin composition for photofabrication according to any one of [1] to [4], wherein the average particle diameter of the metal oxide particles (d) is 0.2 to 7.5 μm;
[6] The optical shaping described in any one of [1] to [5], wherein the mass ratio of the inorganic particles (c) to the metal oxide particles (d) is 2: 1 to 30: 1. Resin composition;
[7] The particle diameter ratio of the average particle diameter of the inorganic particles (c) to the average particle diameter of the metal oxide particles (d) is 1: 1.5 to 1: 2000, [1] The resin composition for stereolithography of any one of [6];
[8] The resin composition for photo-forming according to any one of [1] to [7], further comprising an organic ultraviolet absorber (e);
[9] The resin composition for photofabrication of [8], wherein the organic ultraviolet absorber (e) is a benzotriazole compound;
[10] The resin composition for photo-forming according to any one of [1] to [9], wherein the inorganic particles (c) are surface-treated with a surface treatment agent;
[11] At least one metal oxide selected from the group consisting of (meth) acrylate-based polymerizable monomers and (meth) acrylamide-based polymerizable monomers as the polymerizable monomer (a) The resin composition for stereolithography according to any one of [1] to [10], which contains
[12] The resin for optical shaping according to any one of [1] to [11], wherein the polymerizable monomer (a) contains a difunctional (meth) acrylate type polymerizable monomer. Composition;
[13] The resin composition for optical shaping according to any one of [1] to [12], which is for a lifting type liquid tank;
[14] A dental material comprising a cured product of the resin composition for stereolithography according to any one of [1] to [13];
[15] A dental model material comprising a cured product of the resin composition for stereolithography according to any one of [1] to [13];
[16] A method for producing a three-dimensional object by an optical forming method, using the resin composition for optical forming described in any one of [1] to [13].
 本発明の光造形用樹脂組成物は、低稠度で造形しやすく、成形精度が良好で、かつ硬化物の色調遮蔽性に優れるため、各種歯科材料、特に歯科用模型材料に好適に用いることができる。 The resin composition for stereolithography of the present invention is suitable for various dental materials, particularly dental model materials, because it is easy to be molded with a low consistency, has excellent molding accuracy, and is excellent in color tone shielding properties of a cured product. it can.
 本発明の光造形用樹脂組成物は、重合性単量体(a)と、光重合開始剤(b)、平均粒径5~200nmの無機粒子(c)及び平均粒径0.1~10μmの金属酸化物粒子(d)とを含有し、前記無機粒子(c)は、前記金属酸化物粒子(d)と異なる。なお、本明細書において、数値範囲(各成分の含有量、各成分から算出される値及び各物性等)の上限値及び下限値は適宜組み合わせ可能である。 The photocurable resin composition of the present invention comprises a polymerizable monomer (a), a photopolymerization initiator (b), inorganic particles (c) having an average particle diameter of 5 to 200 nm, and an average particle diameter of 0.1 to 10 μm. And metal oxide particles (d), and the inorganic particles (c) are different from the metal oxide particles (d). In the present specification, the upper limit value and the lower limit value of the numerical range (the content of each component, the value calculated from each component, each physical property, etc.) can be appropriately combined.
重合性単量体(a)
 本発明の光造形用樹脂組成物に用いられる重合性単量体(a)には、ラジカル重合性単量体が好適に用いられる。重合性単量体(a)におけるラジカル重合性単量体の具体例としては、(メタ)アクリレート系重合性単量体;(メタ)アクリルアミド系重合性単量体;α-シアノアクリル酸、(メタ)アクリル酸、α-ハロゲン化アクリル酸、クロトン酸、桂皮酸、ソルビン酸、マレイン酸、イタコン酸等のエステル類;ビニルエステル類;ビニルエーテル類;モノ-N-ビニル誘導体;スチレン誘導体等が挙げられる。なかでも、硬化性の観点から、(メタ)アクリレート系重合性単量体及び(メタ)アクリルアミド系重合性単量体が好ましい。これらは、1種単独で用いてもよく、2種以上を併用してよい。重合性単量体(a)としては、低稠度で造形しやすく、成形精度が良好で、かつ色調遮蔽性に優れる点から、酸性基を有しない重合性単量体が好ましく、酸性基を有しない(メタ)アクリレート系重合性単量体及び酸性基を有しない(メタ)アクリルアミド系重合性単量体がより好ましい。
Polymerizable monomer (a)
A radically polymerizable monomer is suitably used for the polymerizable monomer (a) used for the resin composition for optical shaping | molding of this invention. Specific examples of the radical polymerizable monomer in the polymerizable monomer (a) include (meth) acrylate type polymerizable monomers; (meth) acrylamide type polymerizable monomers; α-cyanoacrylic acid, Meta) Esters such as acrylic acid, α-halogenated acrylic acid, crotonic acid, cinnamic acid, sorbic acid, maleic acid, itaconic acid, etc .; vinyl esters; vinyl ethers; mono-N-vinyl derivatives; styrene derivatives etc. Be Among these, from the viewpoint of curability, (meth) acrylate-based polymerizable monomers and (meth) acrylamide-based polymerizable monomers are preferable. These may be used alone or in combination of two or more. The polymerizable monomer (a) is preferably a polymerizable monomer having no acidic group, from the viewpoint of easy formation with low consistency, good molding accuracy, and excellent color tone shielding properties, and having an acidic group. More preferred are (meth) acrylate-based polymerizable monomers that do not occur and (meth) acrylamide-based polymerizable monomers that do not have an acidic group.
 本発明における重合性単量体(a)として、重合性基を1個有する単官能性単量体、及び重合性基を複数有する多官能性単量体が例示される。 Examples of the polymerizable monomer (a) in the present invention include monofunctional monomers having one polymerizable group and polyfunctional monomers having a plurality of polymerizable groups.
 単官能性の(メタ)アクリレート系重合性単量体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、エリスリトールモノ(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、2,3-ジブロモプロピル(メタ)アクリレート、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、11-(メタ)アクリロイルオキシウンデシルトリメトキシシラン、(メタ)アクリルアミド等が挙げられる。単官能性の(メタ)アクリルアミド系重合性単量体としては、N-(メタ)アクリロイルモルホリン、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジ-n-プロピル(メタ)アクリルアミド、N,N-ジ-n-ブチル(メタ)アクリルアミド、N,N-ジ-n-ヘキシル(メタ)アクリルアミド、N,N-ジ-n-オクチル(メタ)アクリルアミド、N,N-ジ-2-エチルヘキシル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N、N-(ジヒドロキシエチル)アクリルアミドが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してよい。これらの中でも、硬化性が優れる点で、(メタ)アクリルアミド系重合性単量体が好ましく、これらの中でも、N-(メタ)アクリロイルモルホリン、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドがさらに好ましい。 As a monofunctional (meth) acrylate type polymerizable monomer, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) ) Acrylate, 6-hydroxyhexyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, propylene glycol mono (meth) acrylate, glycerol mono (meth) acrylate, erythritol mono (meth) acrylate, methyl (meth) acrylate, ethyl (Meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, isobu (Meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, Phenyl (meth) acrylate, 2,3-dibromopropyl (meth) acrylate, 3- (meth) acryloyloxypropyltrimethoxysilane, 11- (meth) acryloyloxyundecyl trimethoxysilane, (meth) acrylamide and the like . As a monofunctional (meth) acrylamide type | system | group polymerizable monomer, N- (meth) acryloyl morpholine, N, N- dimethyl (meth) acrylamide, N, N- diethyl (meth) acrylamide, N, N- di di -N-propyl (meth) acrylamide, N, N-di-n-butyl (meth) acrylamide, N, N-di-n-hexyl (meth) acrylamide, N, N-di-n-octyl (meth) acrylamide And N, N-di-2-ethylhexyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, and N, N- (dihydroxyethyl) acrylamide. These may be used alone or in combination of two or more. Among these, from the viewpoint of excellent curability, (meth) acrylamide type polymerizable monomers are preferable, and among these, N- (meth) acryloyl morpholine, N, N-dimethyl (meth) acrylamide, N, N- More preferred is diethyl (meth) acrylamide.
 多官能性単量体としては、芳香族化合物系の二官能性重合性単量体、脂肪族化合物系の二官能性重合性単量体、三官能性以上の重合性単量体等が挙げられる。 Examples of multifunctional monomers include aromatic compound-based difunctional polymerizable monomers, aliphatic compound-based difunctional polymerizable monomers, and trifunctional or higher polymerizable monomers, and the like. Be
 芳香族化合物系の二官能性重合性単量体としては、2,2-ビス((メタ)アクリロイルオキシフェニル)プロパン、2,2-ビス〔4-(3-アクリロイルオキシ)-2-ヒドロキシプロポキシフェニル〕プロパン、2,2-ビス〔4-(3-メタクリロイルオキシ)-2-ヒドロキシプロポキシフェニル〕プロパン(通称「Bis-GMA」)、2,2-ビス(4-(メタ)アクリロイルオキシエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシポリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシテトラエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシペンタエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシジプロポキシフェニル)プロパン、2-(4-(メタ)アクリロイルオキシジエトキシフェニル)-2-(4-(メタ)アクリロイルオキシエトキシフェニル)プロパン、2-(4-(メタ)アクリロイルオキシジエトキシフェニル)-2-(4-(メタ)アクリロイルオキシトリエトキシフェニル)プロパン、2-(4-(メタ)アクリロイルオキシジプロポキシフェニル)-2-(4-(メタ)アクリロイルオキシトリエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシプロポキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシイソプロポキシフェニル)プロパン、1,4-ビス(2-(メタ)アクリロイルオキシエチル)ピロメリテート等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してよい。これらの中でも、硬化性、硬化物強度が優れる点で、2,2-ビス〔4-(3-メタクリロイルオキシ)-2-ヒドロキシプロポキシフェニル〕プロパン、2,2-ビス(4-(メタ)アクリロイルオキシポリエトキシフェニル)プロパンが好ましい。2,2-ビス(4-(メタ)アクリロイルオキシポリエトキシフェニル)プロパンの中でも、2,2-ビス(4-メタクリロイルオキシポリエトキシフェニル)プロパン(エトキシ基の平均付加モル数が2.6である化合物(通称「D-2.6E」))が好ましい。 Examples of aromatic compound-based difunctional polymerizable monomers include 2,2-bis ((meth) acryloyloxyphenyl) propane and 2,2-bis [4- (3-acryloyloxy) -2-hydroxypropoxy Phenyl] propane, 2,2-bis [4- (3-methacryloyloxy) -2-hydroxypropoxyphenyl] propane (generally called "Bis-GMA"), 2,2-bis (4- (meth) acryloyloxyethoxyphenyl) ) Propane, 2,2-bis (4- (meth) acryloyloxypolyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxydiethoxyphenyl) propane, 2,2-bis (4- ( Meta) acryloyloxytetraethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxypenta) Toxiphenyl) propane, 2,2-bis (4- (meth) acryloyloxydipropoxyphenyl) propane, 2- (4- (meth) acryloyloxydiethoxyphenyl) -2- (4- (meth) acryloyloxyethoxy) Phenyl) propane, 2- (4- (meth) acryloyloxydiethoxyphenyl) -2- (4- (meth) acryloyloxytriethoxyphenyl) propane, 2- (4- (meth) acryloyloxydipropoxyphenyl)- 2- (4- (Meth) acryloyloxytriethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxypropoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxyisopropoxyphenyl) ) Propane, 1,4-bis (2- (meth) acrylo) Ruokishiechiru) pyromellitate, and the like. These may be used alone or in combination of two or more. Among these, 2,2-bis [4- (3-methacryloyloxy) -2-hydroxypropoxyphenyl] propane and 2,2-bis (4- (meth) acryloyl) in view of excellent curability and cured product strength. Oxypolyethoxyphenyl) propane is preferred. Among 2,2-bis (4- (meth) acryloyloxypolyethoxyphenyl) propanes, 2,2-bis (4-methacryloyloxypolyethoxyphenyl) propane (the average number of moles of ethoxy groups added is 2.6) The compound (generally called "D-2.6E") is preferred.
 脂肪族化合物系の二官能性重合性単量体としては、グリセロールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-エチル-1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,2-ビス(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)エタン、2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)ジメタクリレート(通称「UDMA」)等が挙げられる。これらの中でも、硬化性、硬化物の強度が優れる点で、2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)ジメタクリレートが好ましい。これらは、1種単独で用いてもよく、2種以上を併用してよい。 Examples of aliphatic compound-based bifunctional polymerizable monomers include glycerol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and propylene glycol di (Meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di ( Meta) acrylate, 1,6-hexanediol di (meth) acrylate, 2-ethyl-1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol The Meta) acrylate, 1,2-bis (3-methacryloyloxy-2-hydroxypropoxy) ethane, 2,2,4-trimethylhexamethylene bis (2-carbamoyloxyethyl) dimethacrylate (generally called "UDMA") etc. Be Among these, 2,2,4-trimethylhexamethylene bis (2-carbamoyloxyethyl) dimethacrylate is preferable in terms of excellent curability and strength of a cured product. These may be used alone or in combination of two or more.
 三官能性以上の重合性単量体としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールメタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、N,N’-(2,2,4-トリメチルヘキサメチレン)ビス〔2-(アミノカルボキシ)プロパン-1,3-ジオール〕テトラ(メタ)アクリレート、1,7-ジアクリロイルオキシ-2,2,6,6-テトラ(メタ)アクリロイルオキシメチル-4-オキシヘプタン等が挙げられる。これらの中でも、硬化性、硬化物強度が優れる点で、N,N’-(2,2,4-トリメチルヘキサメチレン)ビス〔2-(アミノカルボキシ)プロパン-1,3-ジオール〕テトラメタクリレート、1,7-ジアクリロイルオキシ-2,2,6,6-テトラアクリロイルオキシメチル-4-オキシヘプタンが好ましい。 As a trifunctional or higher polymerizable monomer, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, trimethylolmethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol Tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, N, N ′-(2,2,4-trimethylhexamethylene) bis [2- (aminocarboxy) propane-1,3-diol] tetra (meth) Acrylate, 1,7-diacryloyloxy-2,2,6,6-tetra (meth) acryloyloxymethyl-4-oxyheptane and the like. Among these, N, N '-(2,2,4-trimethylhexamethylene) bis [2- (aminocarboxy) propane-1,3-diol] tetramethacrylate in terms of excellent curability and cured product strength. Preferred is 1,7-diacryloyloxy-2,2,6,6-tetraacryloyloxymethyl-4-oxyheptane.
 重合性単量体(a)が単官能性の(メタ)アクリレート系重合性単量体を含む場合、重合性単量体(a)の全量100質量%中において、単官能性の(メタ)アクリレート系重合性単量体の含有量は、10~55質量%が好ましく、15~50質量%がより好ましく、15~45質量%がさらに好ましい。また、二官能性(メタ)アクリレート系重合性単量体を含む場合、重合性単量体(a)の全量100質量%中において、前記二官能性の(メタ)アクリレート系重合性単量体の含有量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましい。本明細書において、重合性単量体成分の全量100質量%中における、ある重合性単量体の含有量とは、含まれる重合性単量体成分の合計量を100質量%に換算した際の、当該重合性単量体の含有量(質量%)を意味する。 When the polymerizable monomer (a) contains a monofunctional (meth) acrylate type polymerizable monomer, the monofunctional (meth) in 100% by mass of the total amount of the polymerizable monomer (a) The content of the acrylate-based polymerizable monomer is preferably 10 to 55% by mass, more preferably 15 to 50% by mass, and still more preferably 15 to 45% by mass. Moreover, when it contains a bifunctional (meth) acrylate type polymerizable monomer, the said bifunctional (meth) acrylate type polymerizable monomer is contained in 100 mass% of whole quantity of polymerizable monomer (a). 50 mass% or more is preferable, 60 mass% or more is more preferable, and 70 mass% or more is further more preferable. In the present specification, the content of a certain polymerizable monomer in the total amount of 100% by mass of the polymerizable monomer component refers to the case where the total amount of the polymerizable monomer components contained is converted to 100% by mass. The content (mass%) of the said polymerizable monomer is meant.
 重合性単量体(a)の含有量は、光造形用樹脂組成物全体に対して、80~99質量%であり、85~98.5質量%が好ましく、90~98質量%がより好ましい。 The content of the polymerizable monomer (a) is 80 to 99% by mass, preferably 85 to 98.5% by mass, and more preferably 90 to 98% by mass, with respect to the total resin composition for photoforming .
光重合開始剤(b)
 本発明に用いられる光重合開始剤(b)は、一般工業界で使用されている光重合開始剤から選択して使用でき、中でも歯科用途に用いられている光重合開始剤が好ましく用いられる。
Photopolymerization initiator (b)
The photopolymerization initiator (b) used in the present invention can be selected from photopolymerization initiators used in the general industry, and among them, a photopolymerization initiator used for dental use is preferably used.
 光重合開始剤(b)としては、(ビス)アシルホスフィンオキシド類、チオキサントン類又はチオキサントン類の第4級アンモニウム塩、ケタール類、α-ジケトン類、クマリン類、アントラキノン類、ベンゾインアルキルエーテル化合物類、α-アミノケトン系化合物類等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してよい。 As the photopolymerization initiator (b), (bis) acylphosphine oxides, thioxanthones or quaternary ammonium salts of thioxanthones, ketals, α-diketones, coumarins, anthraquinones, benzoin alkyl ether compounds, α-amino ketone compounds and the like can be mentioned. These may be used alone or in combination of two or more.
 これらの光重合開始剤(b)の中でも、(ビス)アシルホスフィンオキシド類及びその塩と、並びにα-ジケトン類とからなる群から選択される少なくとも1種を用いることが好ましい。これにより、紫外領域及び可視光域での光硬化性に優れ、Arレーザー、He-Cdレーザー等のレーザー;ハロゲンランプ、キセノンランプ、メタルハライドランプ、発光ダイオード(LED)、水銀灯、蛍光灯等の照明等のいずれの光源を用いても十分な光硬化性を示す光造形用樹脂組成物が得られる。 Among these photopolymerization initiators (b), it is preferable to use at least one selected from the group consisting of (bis) acylphosphine oxides and salts thereof and α-diketones. Thereby, it is excellent in photocurability in the ultraviolet region and the visible light region, and lasers such as Ar laser and He-Cd laser; illuminations such as halogen lamp, xenon lamp, metal halide lamp, light emitting diode (LED), mercury lamp and fluorescent lamp Even if it uses any light sources, such as, the resin composition for optical shaping | molding which shows sufficient photocurability is obtained.
 上記光重合開始剤(b)として用いられる(ビス)アシルホスフィンオキシド類のうち、アシルホスフィンオキシド類としては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキシド、2,6-ジクロロベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルメトキシフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキシド、2,3,5,6-テトラメチルベンゾイルジフェニルホスフィンオキシド、ベンゾイルジ-(2,6-ジメチルフェニル)ホスホネート、2,4,6-トリメチルベンゾイルフェニルホスフィンオキシドナトリウム塩、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドカリウム塩、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシドのアンモニウム塩等が挙げられる。ビスアシルホスフィンオキシド類としては、例えば、ビス(2,6-ジクロロベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド等が挙げられる。さらに、特開2000-159621号公報に記載されている化合物が挙げられる。 Among the (bis) acyl phosphine oxides used as the above photopolymerization initiator (b), as the acyl phosphine oxide, for example, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide, 2,6-dimethoxy benzoyl diphenyl phosphine Oxide, 2,6-dichlorobenzoyl diphenyl phosphine oxide, 2,4,6-trimethyl benzoyl methoxy phenyl phosphine oxide, 2,4,6- trimethyl benzoyl ethoxy phenyl phosphine oxide, 2,3,5,6- tetramethyl benzoyl diphenyl Phosphine oxide, benzoyl di- (2,6-dimethylphenyl) phosphonate, 2,4,6-trimethyl benzoyl phenyl phosphine oxide sodium salt, 2,4,6-trimethyl benzoyl Phenylphosphine oxide potassium salt, ammonium salts of 2,4,6-trimethylbenzoyl diphenylphosphine oxide. As bisacyl phosphine oxides, for example, bis (2,6-dichlorobenzoyl) phenyl phosphine oxide, bis (2,6-dichlorobenzoyl) -2,5-dimethylphenyl phosphine oxide, bis (2,6-dichlorobenzoyl) ) 4-Propylphenylphosphine oxide, bis (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2, 4,4-trimethylpentyl phosphine oxide, bis (2,6-dimethoxybenzoyl) -2,5-dimethylphenyl phosphine oxide, bis (2,4,6-trimethyl benzoyl) phenyl phosphine oxide, bis (2,5,6 -Trimethyl bee Benzoyl) -2,4,4-trimethyl pentyl phosphine oxide and the like. Furthermore, compounds described in JP-A-2000-159621 can be mentioned.
 これらの(ビス)アシルホスフィンオキシド類の中でも、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルメトキシフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、及び2,4,6-トリメチルベンゾイルフェニルホスフィンオキシドナトリウム塩が特に好ましい。 Among these (bis) acyl phosphine oxides, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide, 2,4,6-trimethyl benzoyl methoxy phenyl phosphine oxide, bis (2,4,6- trimethyl benzoyl) phenyl phosphine Particular preference is given to the oxides and 2,4,6-trimethylbenzoylphenyl phosphine oxide sodium salt.
 上記光重合開始剤(b)として用いられるα-ジケトン類としては、例えば、ジアセチル、ベンジル、カンファーキノン、2,3-ペンタジオン、2,3-オクタジオン、9,10-フェナントレンキノン、4,4’-オキシベンジル、アセナフテンキノンが挙げられる。この中でも、可視光域の光源を使用する場合には、カンファーキノンが特に好ましい。 Examples of the α-diketones used as the photopolymerization initiator (b) include diacetyl, benzyl, camphorquinone, 2,3-pentadione, 2,3-octadione, 9,10-phenanthrenequinone, 4,4 ′. -Oxybenzyl and acenaphthene quinone are mentioned. Among these, when using a light source in the visible light range, camphor quinone is particularly preferable.
 本発明の光造形用樹脂組成物における光重合開始剤(b)の含有量は、得られる光造形用樹脂組成物の硬化性等の観点から、光造形用樹脂組成物全体に対して、0.1~10質量%である。0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましい。一方、光重合開始剤(b)の含有量が、光造形用樹脂組成物に対し、10質量%を超える場合、光重合開始剤自体の溶解性が低い場合に、光造形用樹脂組成物からの析出を招くおそれがある。光重合開始剤(b)の含有量は、光造形用樹脂組成物に対し、7.5質量%以下がより好ましく、5.0質量%以下がさらに好ましい。 The content of the photopolymerization initiator (b) in the photocurable resin composition of the present invention is 0 with respect to the entire photocurable resin composition from the viewpoint of the curability of the obtained photocurable resin composition and the like. 1 to 10% by mass. 0.5 mass% or more is more preferable, and 1.0 mass% or more is further more preferable. On the other hand, when the content of the photopolymerization initiator (b) exceeds 10% by mass with respect to the resin composition for photofabrication, the resin composition for photofabrication when the solubility of the photopolymerization initiator itself is low May cause precipitation of As for content of a photoinitiator (b), 7.5 mass% or less is more preferable with respect to the resin composition for photofabrication, and 5.0 mass% or less is further more preferable.
無機粒子(c)
 本発明に用いられる無機粒子(c)としては、例えば、石英、シリカ、酸化アルミニウム(アルミナ)、シリカ-チタニア、シリカ-チタニア-酸化バリウム、シリカ-ジルコニア、シリカ-アルミナ、アルミノシリケートガラス、フルオロアルミノシリケートガラス、カルシウムフルオロアルミノシリケートガラス、ストロンチウムフルオロアルミノシリケートガラス、バリウムフルオロアルミノシリケートガラス、及びストロンチウムカルシウムフルオロアルミノシリケートガラスが挙げられる。これらもまた、1種単独で用いてもよく、2種以上を併用してもよい。なお、無機粒子(c)としては、後述する金属酸化物粒子(d)に該当するものを除く。すなわち、光造形用樹脂組成物において、後述する金属酸化物粒子(d)と無機粒子(c)は異なる。ただし、無機粒子(c)と金属酸化物粒子(d)の平均粒径が異なる場合は、同一材料であってもよい。無機粒子(c)は、低稠度で造形しやすく、成形精度及び色調遮蔽性により優れる点から、シリカ又は酸化アルミニウムを含有することが好ましい。
Inorganic particles (c)
The inorganic particles (c) used in the present invention include, for example, quartz, silica, aluminum oxide (alumina), silica-titania, silica-titania-barium oxide, silica-zirconia, silica-alumina, aluminosilicate glass, fluoroaluminoglass Silicate glass, calcium fluoroaluminosilicate glass, strontium fluoroaluminosilicate glass, barium fluoroaluminosilicate glass, and strontium calcium fluoroaluminosilicate glass can be mentioned. These may also be used alone or in combination of two or more. In addition, as an inorganic particle (c), the thing applicable to the metal oxide particle (d) mentioned later is remove | excluded. That is, in the resin composition for optical shaping, the metal oxide particles (d) and the inorganic particles (c) described later are different. However, when the inorganic particles (c) and the metal oxide particles (d) have different average particle sizes, they may be the same material. The inorganic particles (c) preferably contain silica or aluminum oxide from the viewpoint of being easily shaped with a low consistency and being excellent in molding accuracy and color tone shielding properties.
 無機粒子(c)の形状は、本発明の効果を奏する限り特に限定されないが、光造形用樹脂組成物の流動性及び造形用の容器へのダメージが小さい点から、球状が好ましい。また、成形精度及び色調遮蔽性の観点から、無機粒子(c)の平均粒径は、5~200nmであることが必要であり、7.5~100nmが好ましく、10~75nmがより好ましく、12.5~50nmがさらに好ましい。 The shape of the inorganic particles (c) is not particularly limited as long as the effects of the present invention are exhibited, but it is preferably spherical in view of the flowability of the resin composition for photofabrication and the small damage to the container for modeling. The average particle diameter of the inorganic particles (c) is required to be 5 to 200 nm, preferably 7.5 to 100 nm, more preferably 10 to 75 nm, from the viewpoint of molding accuracy and color tone shielding properties. More preferably, it is 5 to 50 nm.
 なお、本明細書において、粒子の平均粒径とは平均一次粒径を指し、無機粒子(c)の平均粒径は光学顕微鏡又は電子顕微鏡観察により求めることができる。具体的には、粒径100nm以上の粒径測定には光学顕微鏡観察が、粒径100nm未満の粒子の粒径測定には電子顕微鏡観察が簡便である。光学顕微鏡観察又は電子顕微鏡観察は、例えば、粒子の走査型電子顕微鏡(日立製作所製、S-4000型)写真を撮り、その写真の単位視野内に観察される粒子(200個以上)の粒径を、画像解析式粒度分布測定ソフトウェア(Macview(株式会社マウンテック))を用いて測定することにより求めることができる。このとき、粒子の粒径は、粒子の最長の長さと最短の長さの算術平均値として求められ、粒子の数とその粒径より、平均一次粒径が算出される。 In the present specification, the average particle diameter of particles refers to the average primary particle diameter, and the average particle diameter of the inorganic particles (c) can be determined by observation with an optical microscope or an electron microscope. Specifically, optical microscope observation is convenient for particle size measurement with a particle size of 100 nm or more, and electron microscope observation is convenient for particle size measurement with a particle size of less than 100 nm. Optical microscopy or electron microscopy, for example, takes a scanning electron microscope (S-4000, manufactured by Hitachi, Ltd.) photograph of particles, and the particle diameter of particles (200 or more) observed in the unit field of the photograph Can be determined by measurement using an image analysis type particle size distribution measurement software (Macview (Muntech Co., Ltd.)). At this time, the particle size of the particles is obtained as an arithmetic mean value of the longest length and the shortest length of the particles, and the average primary particle size is calculated from the number of particles and the particle size thereof.
 本発明の光造形用樹脂組成物における無機粒子(c)の含有量は、得られる光造形用樹脂組成物の稠度、硬化物の成形精度及び色調遮蔽性の観点から、光造形用樹脂組成物全体に対し、0.1~5.0質量%であることが必要であり、0.5~3.0質量%が好ましく、1.0~2.99質量%がより好ましく、1.0~2.5質量%がさらに好ましい。無機粒子(c)の含有量が0.1質量%未満の場合、立体造形物において十分な色調遮蔽性が得られない。一方、無機粒子(c)の含有量が、5.0質量%を超える場合、光造形用樹脂組成物の稠度が上昇し、造形できなくなる。 The content of the inorganic particles (c) in the resin composition for photo-forming according to the present invention is the resin composition for photo-forming from the viewpoint of the consistency of the resin composition for photo-forming obtained, the molding accuracy of the cured product and the color shading property. It is necessary for the whole to be 0.1 to 5.0% by mass, preferably 0.5 to 3.0% by mass, more preferably 1.0 to 2.99% by mass, and 1.0 to 2.5 mass% is more preferable. When the content of the inorganic particles (c) is less than 0.1% by mass, sufficient color shade shielding properties can not be obtained in the three-dimensional object. On the other hand, when the content of the inorganic particles (c) exceeds 5.0% by mass, the consistency of the resin composition for photofabrication increases and it can not be modeled.
 無機粒子(c)は、重合性単量体(a)との混和性を調整するため、必要に応じて、酸性基含有有機化合物;飽和脂肪酸アミド、不飽和脂肪酸アミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド等の脂肪酸アミド;シランカップリング剤等の有機ケイ素化合物、等の公知の表面処理剤で予め表面処理したものでもよい。重合性単量体(a)と無機粒子(c)との化学結合性を高めて硬化物の機械的強度を向上させるために、酸性基含有有機化合物で表面処理することが好ましい。該酸性基含有有機化合物としては、リン酸基、ピロリン酸基、チオリン酸基、ホスホン酸基、スルホン酸基、カルボン酸基等の酸性基を少なくとも1個有する有機化合物が挙げられ、リン酸基を少なくとも1個有する有機化合物が好ましい。表面処理剤を2種以上使用する場合は、2種以上の表面処理剤の混合物の表面処理層としてもよく、表面処理層を複数積層した複層構造の表面処理層としてもよい。 The inorganic particles (c) are, if necessary, an acidic group-containing organic compound to adjust the miscibility with the polymerizable monomer (a); saturated fatty acid amide, unsaturated fatty acid amide, saturated fatty acid bisamide, unsaturated It may be previously surface-treated with a known surface treatment agent such as a fatty acid amide such as a fatty acid bisamide; an organosilicon compound such as a silane coupling agent. In order to enhance the chemical bonding between the polymerizable monomer (a) and the inorganic particles (c) to improve the mechanical strength of the cured product, it is preferable to carry out a surface treatment with an acidic group-containing organic compound. Examples of the acidic group-containing organic compound include organic compounds having at least one acidic group such as phosphoric acid group, pyrophosphoric acid group, thiophosphoric acid group, phosphonic acid group, sulfonic acid group, carboxylic acid group, etc. An organic compound having at least one is preferred. When two or more surface treatment agents are used, the surface treatment layer may be a mixture of two or more surface treatment agents, or may be a surface treatment layer having a multilayer structure in which a plurality of surface treatment layers are laminated.
 リン酸基を含有する酸性基含有有機化合物としては、2-エチルヘキシルアシッドホスフェート、ステアリルアシッドホスフェート、2-(メタ)アクリロイルオキシエチルジハイドロジェンホスフェート、3-(メタ)アクリロイルオキシプロピルジハイドロジェンホスフェート、4-(メタ)アクリロイルオキシブチルジハイドロジェンホスフェート、5-(メタ)アクリロイルオキシペンチルジハイドロジェンホスフェート、6-(メタ)アクリロイルオキシヘキシルジハイドロジェンホスフェート、7-(メタ)アクリロイルオキシヘプチルジハイドロジェンホスフェート、8-(メタ)アクリロイルオキシオクチルジハイドロジェンホスフェート、9-(メタ)アクリロイルオキシノニルジハイドロジェンホスフェート、10-(メタ)アクリロイルオキシデシルジハイドロジェンホスフェート、11-(メタ)アクリロイルオキシウンデシルジハイドロジェンホスフェート、12-(メタ)アクリロイルオキシドデシルジハイドロジェンホスフェート、16-(メタ)アクリロイルオキシヘキサデシルジハイドロジェンホスフェート、20-(メタ)アクリロイルオキシイコシルジハイドロジェンホスフェート、ビス〔2-(メタ)アクリロイルオキシエチル〕ハイドロジェンホスフェート、ビス〔4-(メタ)アクリロイルオキシブチル〕ハイドロジェンホスフェート、ビス〔6-(メタ)アクリロイルオキシヘキシル〕ハイドロジェンホスフェート、ビス〔8-(メタ)アクリロイルオキシオクチル〕ハイドロジェンホスフェート、ビス〔9-(メタ)アクリロイルオキシノニル〕ハイドロジェンホスフェート、ビス〔10-(メタ)アクリロイルオキシデシル〕ハイドロジェンホスフェート、1,3-ジ(メタ)アクリロイルオキシプロピルジハイドロジェンホスフェート、2-(メタ)アクリロイルオキシエチルフェニルハイドロジェンホスフェート、2-(メタ)アクリロイルオキシエチル-2-ブロモエチルハイドロジェンホスフェート、ビス〔2-(メタ)アクリロイルオキシ-(1-ヒドロキシメチル)エチル〕ハイドロジェンホスフェート、及びこれらの酸塩化物、アルカリ金属塩、アンモニウム塩等が挙げられる。 As the acidic group-containing organic compound containing a phosphoric acid group, 2-ethylhexyl acid phosphate, stearyl acid phosphate, 2- (meth) acryloyloxyethyl dihydrogen phosphate, 3- (meth) acryloyloxypropyl dihydrogen phosphate, 4- (Meth) acryloyloxybutyl dihydrogen phosphate, 5- (Meth) acryloyloxypentyl dihydrogen phosphate, 6- (Meth) acryloyl oxyhexyl dihydrogen phosphate, 7- (meth) acryloyl oxyheptyl dihydrogen Phosphate, 8- (meth) acryloyloxyoctyl dihydrogen phosphate, 9- (meth) acryloyl oxynonyl dihydrogen phosphate, 10- Meta) acryloyloxydecyl dihydrogen phosphate, 11-(meth) acryloyl oxyundecyl dihydrogen phosphate, 12-(meth) acryloyl oxydodecyl dihydrogen phosphate, 16- (meth) acryloyloxy hexadecyl dihydrogen phosphate 20- (Meth) acryloyloxyicosyl dihydrogen phosphate, bis [2- (meth) acryloyloxyethyl] hydrogen phosphate, bis [4- (meth) acryloyloxybutyl] hydrogen phosphate, bis [6- ( (Meth) acryloyloxyhexyl] hydrogen phosphate, bis [8- (meth) acryloyloxyoctyl] hydrogen phosphate, bis [9- (meth) acrylo acid Hydroxynonyl! Hydrogen phosphate, bis [10- (meth) acryloyloxydecyl] hydrogen phosphate, 1,3-di (meth) acryloyloxypropyl dihydrogen phosphate, 2- (meth) acryloyloxyethyl phenyl hydrogen phosphate, 2- (Meth) acryloyloxyethyl-2-bromoethyl hydrogen phosphate, bis [2- (meth) acryloyloxy- (1-hydroxymethyl) ethyl] hydrogen phosphate, and their acid chlorides, alkali metal salts, Ammonium salts and the like can be mentioned.
 また、ピロリン酸基、チオリン酸基、ホスホン酸基、スルホン酸基、カルボン酸基等の酸性基を有する酸性基含有有機化合物としては、例えば、国際公開2012/042911号に記載のものを好適に用いることができる。 In addition, as an acidic group-containing organic compound having an acidic group such as a pyrophosphoric acid group, a thiophosphoric acid group, a phosphonic acid group, a sulfonic acid group, and a carboxylic acid group, for example, those described in WO 2012/042911 are preferably used. It can be used.
 飽和脂肪酸アミドとしては、パルミチン酸アミド、ステアリン酸アミド、ベヘニン酸アミド等が挙げられる。不飽和脂肪酸アミドとしては、オレイン酸アミド、エルカ酸アミド等が挙げられる。飽和脂肪酸ビスアミドとしては、エチレンビスパルミチン酸アミド、エチレンビスステアリン酸アミド、ヘキサメチレンビスステアリン酸アミド等が挙げられる。不飽和脂肪酸ビスアミドとしては、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルセバシン酸アミド等が挙げられる。 Examples of saturated fatty acid amides include palmitic acid amide, stearic acid amide, behenic acid amide and the like. Examples of unsaturated fatty acid amides include oleic acid amide and erucic acid amide. Examples of saturated fatty acid bisamides include ethylene bispalmitic acid amide, ethylene bis-stearic acid amide, hexamethylene bis-stearic acid amide and the like. Examples of unsaturated fatty acid bisamides include ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, N, N'-dioleyl sebacic acid amide and the like.
 有機ケイ素化合物としては、R SiX4-nで表される化合物が挙げられる。但し、前記式中、Rは炭素数1~12の置換又は無置換の炭化水素基であり、Xは炭素数1~4のアルコキシ基、ヒドロキシ基、ハロゲン原子又は水素原子を示し、nは0~3の整数であり、但し、R及びXが複数ある場合にはそれぞれ、同一でも異なっていてもよい。 Examples of the organosilicon compound include compounds represented by R 1 n SiX 4-n . However, in the above formula, R 1 is a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, X is an alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a halogen atom or a hydrogen atom, and n is It is an integer of 0 to 3, provided that when there are a plurality of R 1 and X, they may be the same or different.
 具体的には、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-メタクリロイルオキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロロシラン、トリメチルブロモシラン、ジエチルシラン、ビニルトリアセトキシシラン、ω-(メタ)アクリロイルオキシアルキルトリメトキシシラン〔(メタ)アクリロイルオキシ基とケイ素原子との間の炭素数:3~12、例、γ-メタクリロイルオキシプロピルトリメトキシシラン等〕、ω-(メタ)アクリロイルオキシアルキルトリエトキシシラン〔(メタ)アクリロイルオキシ基とケイ素原子との間の炭素数:3~12、例、γ-メタクリロイルオキシプロピルトリエトキシシラン等〕等が挙げられる。なお、本発明において「(メタ)アクリロイルオキシ」との表記は、メタクリロイルオキシとアクリロイルオキシの両者を包含する意味で用いられる。 Specifically, for example, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, Vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3 , 4-Epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysila , Γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane N-β (aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane Silane, trimethylsilanol, methyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, trimethyl butane Mosilane, diethylsilane, vinyltriacetoxysilane, ω- (meth) acryloyloxyalkyltrimethoxysilane [carbon number between (meth) acryloyloxy group and silicon atom: 3 to 12, eg, γ-methacryloyloxypropyl tri] Methoxysilane etc.], ω- (Meth) acryloyloxyalkyltriethoxysilane [The carbon number between (meth) acryloyloxy group and silicon atom: 3 to 12, eg γ-methacryloyloxypropyltriethoxysilane etc.] etc Can be mentioned. In the present invention, the expression "(meth) acryloyloxy" is used to mean that both methacryloyloxy and acryloyloxy are included.
 この中でも、重合性単量体(a)と共重合し得る官能基を有するシランカップリング剤、例えば、ω-(メタ)アクリロイルオキシアルキルトリメトキシシラン〔(メタ)アクリロイルオキシ基とケイ素原子との間の炭素数:3~12〕、ω-(メタ)アクリロイルオキシアルキルトリエトキシシラン〔(メタ)アクリロイルオキシ基とケイ素原子との間の炭素数:3~12〕、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等が好ましく用いられる。 Among these, silane coupling agents having a functional group copolymerizable with the polymerizable monomer (a), for example, ω- (meth) acryloyloxyalkyltrimethoxysilane [(meth) acryloyloxy group and silicon atom Carbon number between: 3 to 12], ω- (meth) acryloyloxyalkyltriethoxysilane [carbon number between (meth) acryloyloxy group and silicon atom: 3 to 12], vinyltrimethoxysilane, vinyltri Ethoxysilane, vinyltriacetoxysilane, γ-glycidoxypropyltrimethoxysilane and the like are preferably used.
 表面処理の方法としては、公知の方法を特に限定されずに用いることができ、例えば、無機粒子(c)を激しく撹拌しながら上記の表面処理剤をスプレー添加する方法、適当な溶媒へ無機粒子(c)と上記の表面処理剤とを分散又は溶解させた後、溶媒を除去する方法等がある。 As a method of surface treatment, a known method can be used without particular limitation. For example, a method of spray addition of the above-mentioned surface treatment agent while vigorously stirring inorganic particles (c), inorganic particles to a suitable solvent There is a method of removing the solvent after dispersing or dissolving (c) and the above-mentioned surface treatment agent.
 前記表面処理剤の使用量は、特に限定されず、例えば、無機粒子(c)100質量部に対して、0.1~50質量部が好ましく、0.3~40質量部がより好ましく、0.5~30質量部がさらに好ましい。 The amount of the surface treatment agent to be used is not particularly limited, and is, for example, preferably 0.1 to 50 parts by mass, more preferably 0.3 to 40 parts by mass, with respect to 100 parts by mass of the inorganic particles (c). Further preferred is 5 to 30 parts by mass.
金属酸化物粒子(d)
 本発明に用いられる金属酸化物粒子(d)としては、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、及び酸化セリウムからなる群から選択される少なくとも1種の金属酸化物を含有することが好ましく、酸化チタン、酸化アルミニウム及び酸化ジルコニウムからなる群から選択される少なくとも1種の金属酸化物を含有することがより好ましい。金属酸化物粒子(d)における前記金属酸化物の含有量は、前記金属酸化物を主成分として含有していれば特に限定されないが、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。また、金属酸化物粒子(d)は、前記金属酸化物の含有量が100質量%であってもよい。これらの金属酸化物は、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、成形精度及び色調遮蔽性に優れる観点から、酸化チタン、酸化アルミニウムが好ましい。色調遮蔽性を上げるために、金属酸化物粒子を多く用いると、同時にレーザー等の活性エネルギー光線の透過性が落ち、活性エネルギー光線が散乱されるため、成形精度が低下する。一方、無機粒子(c)のみで色調遮蔽性を上げようとすると大量に含む必要があり、粘度が上昇してしまう。本発明の光造形用樹脂組成物では、無機粒子(c)と金属酸化物粒子(d)を併用することで、組成物(インク)の表面の凹凸が大きくなり、無機粒子(c)と金属酸化物粒子(d)の含有量が少ないながらも濁って見えるために、高い色調遮蔽性が得られると考えられる。また、無機粒子(c)と金属酸化物粒子(d)を併用することで、レーザー等の活性エネルギー光線の透過性が保たれ、結果的に金属酸化物粒子(d)の含有量を低減できるため、優れた成形精度と色調遮蔽性を両立することができると考えられる。
Metal oxide particles (d)
The metal oxide particles (d) used in the present invention preferably contain at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, and cerium oxide. It is more preferable to contain at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide and zirconium oxide. The content of the metal oxide in the metal oxide particles (d) is not particularly limited as long as the metal oxide is contained as a main component, but 50 mass% or more is preferable, and 70 mass% or more is more preferable. 80 mass% or more is further preferable, and 90 mass% or more is especially preferable. Moreover, 100 mass% of content of the said metal oxide may be sufficient as a metal oxide particle (d). These metal oxides may be used alone or in combination of two or more. Among these, titanium oxide and aluminum oxide are preferable from the viewpoint of excellent molding accuracy and color tone shielding properties. When a large amount of metal oxide particles is used to enhance color tone shielding properties, the transparency of the active energy beam such as a laser is simultaneously reduced and the active energy beam is scattered, so that the molding accuracy is lowered. On the other hand, when it is intended to improve the color tone shielding property only with the inorganic particles (c), it is necessary to contain a large amount, and the viscosity is increased. In the resin composition for stereolithography of the present invention, by using the inorganic particles (c) and the metal oxide particles (d) in combination, the surface irregularities of the composition (ink) become large, and the inorganic particles (c) and the metal are made It is considered that high color shade shielding property can be obtained because it appears turbid even though the content of the oxide particles (d) is small. Further, by using the inorganic particles (c) and the metal oxide particles (d) in combination, the transparency of active energy rays such as a laser can be maintained, and as a result, the content of the metal oxide particles (d) can be reduced. Therefore, it is considered that both excellent molding accuracy and color tone shielding properties can be achieved.
 金属酸化物粒子(d)の平均粒径は、色調遮蔽性を確保するために、0.1~10μmであることが必要であり、0.2~7.5μmであることが好ましく、0.3~5.0μmであることがより好ましく、0.4~3.0μmであることがさらに好ましく、0.5~1.0μmであることが特に好ましい。金属酸化物粒子(d)の平均粒径測定にはレーザー回折散乱法が簡便である。レーザー回折散乱法は、例えば、レーザー回折式粒度分布測定装置(SALD-2100:株式会社島津製作所製)により、0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて測定することができる。 The average particle diameter of the metal oxide particles (d) needs to be 0.1 to 10 μm, preferably 0.2 to 7.5 μm, in order to secure the color tone shielding property. The thickness is more preferably 3 to 5.0 μm, still more preferably 0.4 to 3.0 μm, and particularly preferably 0.5 to 1.0 μm. The laser diffraction scattering method is convenient for measuring the average particle diameter of the metal oxide particles (d). The laser diffraction scattering method can be measured, for example, by a laser diffraction type particle size distribution measuring apparatus (SALD-2100: manufactured by Shimadzu Corporation) using a 0.2% aqueous sodium hexametaphosphate solution as a dispersion medium.
 本発明の光造形用樹脂組成物における金属酸化物粒子(d)の含有量は、成形精度及び色調遮蔽性の観点から、光造形用樹脂組成物全体に対し、0.01~10質量%であることが必要であり、0.05~5質量%であることが好ましく、0.1~1.0質量%であることがより好ましい。金属酸化物粒子(d)の含有量が0.01質量%未満の場合、立体造形物において十分な色調遮蔽性が得られない。一方、金属酸化物粒子(d)の含有量が、10質量%を超える場合、光造形用樹脂組成物の色調遮蔽性が過剰となり、造形できなくなる。また、本発明の光造形用樹脂組成物における金属酸化物粒子(d)の含有量は、成形精度及び色調遮蔽性の観点から、重合性単量体(a)100質量部に対して、0.01~5質量部が好ましく、0.05~3質量部がより好ましい。 The content of the metal oxide particles (d) in the resin composition for photofabrication of the present invention is 0.01 to 10% by mass with respect to the entire resin composition for photofabrication from the viewpoint of molding accuracy and color tone shielding properties. It is necessary to be present, preferably 0.05 to 5% by mass, and more preferably 0.1 to 1.0% by mass. When the content of the metal oxide particles (d) is less than 0.01% by mass, sufficient color shade shielding properties can not be obtained in the three-dimensional object. On the other hand, when the content of the metal oxide particles (d) exceeds 10% by mass, the color tone shielding property of the resin composition for photofabrication becomes excessive and modeling can not be performed. In addition, the content of the metal oxide particles (d) in the resin composition for photofabrication of the present invention is 0 based on 100 parts by mass of the polymerizable monomer (a) from the viewpoint of molding accuracy and color tone shielding properties. .01 to 5 parts by mass is preferable, and 0.05 to 3 parts by mass is more preferable.
 金属酸化物粒子(d)は、重合性単量体(a)との混和性を調整するため予め表面処理してから用いてもよく、その場合の表面処理剤、表面処理の方法等の好適な実施形態は、前述した無機粒子(c)に関する内容と同様である。 The metal oxide particles (d) may be subjected to surface treatment in advance to adjust the miscibility with the polymerizable monomer (a), and in that case, the surface treatment agent, the method of surface treatment, etc. are preferred. The embodiment is the same as the contents relating to the inorganic particle (c) described above.
 無機粒子(c)と金属酸化物粒子(d)の質量比は、低稠度で造形しやすく、成形精度が良好で、かつ硬化物の色調遮蔽性に優れる点から、無機粒子(c):金属酸化物粒子(d)=2:1~30:1が好ましく、3:1~20:1がより好ましく、5:1~15:1がさらに好ましい。 The mass ratio of the inorganic particles (c) to the metal oxide particles (d) is low in consistency, easy to be shaped, good in forming accuracy, and excellent in color tone shielding properties of the cured product. Oxide particles (d) = 2: 1 to 30: 1 are preferable, 3: 1 to 20: 1 are more preferable, and 5: 1 to 15: 1 are more preferable.
 無機粒子(c)の平均粒径は、金属酸化物粒子(d)の平均粒径より大きいことが好ましい。また、無機粒子(c)と金属酸化物粒子(d)の平均粒径の粒径比は、低稠度で造形しやすく、成形精度が良好で、かつ硬化物の色調遮蔽性に優れる点から、無機粒子(c):金属酸化物粒子(d)=1:1.5~1:2000が好ましく、1:3~1:500がより好ましく、1:5~1:100がさらに好ましい。 The average particle size of the inorganic particles (c) is preferably larger than the average particle size of the metal oxide particles (d). In addition, the particle diameter ratio of the average particle diameter of the inorganic particles (c) and the metal oxide particles (d) is easy to be shaped with a low consistency, the forming accuracy is good, and the color shade shielding property of the cured product is excellent. Inorganic particles (c): metal oxide particles (d) = 1: 1.5 to 1: 2000 are preferable, 1: 3 to 1: 500 are more preferable, and 1: 5 to 1: 100 are more preferable.
有機紫外線吸収剤(e)
 本発明の光造形用樹脂組成物は、より成形精度を向上させるために、有機紫外線吸収剤(e)を含有することが好ましい。
Organic UV absorber (e)
It is preferable that the resin composition for optical shaping | molding of this invention contains an organic ultraviolet absorber (e), in order to improve a shaping | molding precision more.
 有機紫外線吸収剤(e)としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、チオフェン系化合物等が挙げられる。ベンゾトリアゾール系化合物としては、トリアゾール構造の窒素原子に結合した芳香環の2位の位置にヒドロキシ基が結合している化合物が好ましく、より成形精度に優れる点から、トリアゾール構造の窒素原子に結合した芳香環の2位の位置にヒドロキシ基が結合し、該芳香環の3位及び/又は5位に炭素数1~10のアルキル基を有する化合物がより好ましい。ベンゾトリアゾール系化合物としては、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール(「TINUVIN P」)、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール(「TINUVIN 329」)、2-(2'-ヒドロキシ-3',5'-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-5'-tert-ブチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール等が挙げられる。ベンゾフェノン系化合物としては、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-(ドデシルオキシ)ベンゾフェノン、2-ヒドロキシ-4-(オクタデシルオキシ)ベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2'-ジヒドロキシ-4,4'-ジメトキシベンゾフェノン等が挙げられる。チオフェン系化合物としては、2,5-ビス(5-t-ブチル-2-ベンゾオキサゾリル)チオフェン等のチオフェン系化合物等が挙げられる。これらの中でも、成形精度がより良好となる観点から、ベンゾトリアゾール系化合物が好ましい。 Examples of the organic ultraviolet absorber (e) include benzotriazole compounds, benzophenone compounds, and thiophene compounds. As the benzotriazole-based compound, a compound in which a hydroxy group is bonded to the 2-position of the aromatic ring bonded to the nitrogen atom of the triazole structure is preferable, and it is bonded to the nitrogen atom of the triazole structure from the viewpoint of excellent molding accuracy. More preferred is a compound having a hydroxy group bonded to the 2-position of the aromatic ring and having an alkyl group having 1 to 10 carbon atoms at the 3- and / or 5-position of the aromatic ring. As benzotriazole compounds, 2- (2-hydroxy-5-methylphenyl) benzotriazole ("TINUVIN P"), 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole ("TINUVIN 329") 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-butylphenyl) benzotriazole, 2- (2′- Hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-amylphenyl) benzotriazole, 2- (2'-hydroxy-) 3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t ert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzotriazole and the like. Examples of benzophenone compounds include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4- (dodecyloxy) benzophenone, 2-hydroxy- Examples include 4- (octadecyloxy) benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone and the like. Examples of the thiophene compounds include thiophene compounds such as 2,5-bis (5-t-butyl-2-benzoxazolyl) thiophene. Among these, benzotriazole compounds are preferable from the viewpoint of achieving better molding accuracy.
 有機紫外線吸収剤(e)は、1種単独を用いてもよく、2種以上を併用してもよい。有機紫外線吸収剤(e)の含有量は、光造形用樹脂組成物全体に対して、0.001~10質量%の範囲が好ましく、0.01~5質量%の範囲がより好ましく、0.02~2質量%がさらに好ましい。 As the organic ultraviolet absorber (e), one type may be used alone, or two or more types may be used in combination. The content of the organic ultraviolet light absorber (e) is preferably in the range of 0.001 to 10% by mass, more preferably in the range of 0.01 to 5% by mass, with respect to the entire resin composition for photoforming. More preferred is 02 to 2% by mass.
 本発明の光造形用樹脂組成物は、上記の重合性単量体(a)、光重合開始剤(b)、無機粒子(c)及び金属酸化物粒子(d)を含有していれば特に限定はなく、必要に応じて有機紫外線吸収剤(e)を含有していてもよく、例えば、これら以外の他の成分を含んでいてもよい。光造形用樹脂組成物における他の成分(すなわち、重合性単量体(a)、光重合開始剤(b)、無機粒子(c)及び金属酸化物粒子(d)、並びに必要に応じて有機紫外線吸収剤(e)以外の成分)の含有量は、3質量%未満であってもよく、2質量%未満であってもよく、1質量%未満であってもよい。また、本発明の光造形用樹脂組成物は、公知の方法に準じて製造できる。 The resin composition for stereolithography of the present invention particularly contains the above-mentioned polymerizable monomer (a), photopolymerization initiator (b), inorganic particles (c) and metal oxide particles (d). There is no limitation, and it may contain an organic ultraviolet absorber (e) if necessary, and may contain other components other than these, for example. Other components in the resin composition for stereolithography (i.e., polymerizable monomer (a), photopolymerization initiator (b), inorganic particles (c) and metal oxide particles (d), and, if necessary, organic) The content of the component other than the ultraviolet absorber (e) may be less than 3% by mass, less than 2% by mass, or less than 1% by mass. Moreover, the resin composition for optical shaping | molding of this invention can be manufactured according to a well-known method.
 本発明の光造形用樹脂組成物は、本発明の趣旨を損なわない範囲内で、光硬化性の向上を目的として、重合促進剤を含むことができる。重合促進剤としては、例えば、4-(N,N-ジメチルアミノ)安息香酸エチル、4-(N,N-ジメチルアミノ)安息香酸メチル、4-(N,N-ジメチルアミノ)安息香酸n-ブトキシエチル、4-N,N-ジメチルアミノ安息香酸2-(メタクリロイルオキシ)エチル、4-(N,N-ジメチルアミノ)ベンゾフェノン、及び4-(N,N-ジメチルアミノ)安息香酸ブチルが挙げられる。これらの中でも、光造形用樹脂組成物に優れた硬化性を付与する観点から、4-(N,N-ジメチルアミノ)安息香酸エチル、4-(N,N-ジメチルアミノ)安息香酸n-ブトキシエチル、及び4-(N,N-ジメチルアミノ)ベンゾフェノンからなる群から選択される少なくとも1つが好ましく用いられる。 The resin composition for stereolithography of the present invention can contain a polymerization accelerator for the purpose of improving photocurability within the range not impairing the spirit of the present invention. As the polymerization accelerator, for example, ethyl 4- (N, N-dimethylamino) benzoate, methyl 4- (N, N-dimethylamino) benzoate, 4- (N, N-dimethylamino) benzoic acid n- Butoxyethyl, 2- (methacryloyloxy) ethyl 4-N, N-dimethylaminobenzoate, 4- (N, N-dimethylamino) benzophenone, and butyl 4- (N, N-dimethylamino) benzoate . Among these, ethyl 4- (N, N-dimethylamino) benzoate, n-butoxy 4- (N, N-dimethylamino) benzoate from the viewpoint of imparting excellent curability to the resin composition for photofabrication At least one selected from the group consisting of ethyl and 4- (N, N-dimethylamino) benzophenone is preferably used.
 また、本発明の光造形用樹脂組成物には、劣化の抑制、又は光硬化性の調整を目的として、公知の安定剤を配合することができる。かかる安定剤としては、例えば、重合禁止剤、酸化防止剤等が挙げられる。 In addition, a known stabilizer can be added to the photocurable resin composition of the present invention for the purpose of suppressing deterioration or adjusting photocurability. As this stabilizer, a polymerization inhibitor, an antioxidant, etc. are mentioned, for example.
 重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、ジブチルハイドロキノン、ジブチルハイドロキノンモノメチルエーテル、t-ブチルカテコール、2-t-ブチル-4,6-ジメチルフェノール、2,6-ジ-t-ブチルフェノール、及び3,5-ジ-t-ブチル-4-ヒドロキシトルエン等が挙げられる。重合禁止剤の含有量は、重合性単量体(a)全量100質量部に対して0.001~1.0質量部が好ましい。 Examples of the polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, dibutyl hydroquinone, dibutyl hydroquinone monomethyl ether, t-butyl catechol, 2-t-butyl-4,6-dimethylphenol, 2,6-di-t-butyl phenol, And 3,5-di-t-butyl-4-hydroxytoluene. The content of the polymerization inhibitor is preferably 0.001 to 1.0 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable monomer (a).
 また、本発明の光造形用樹脂組成物には、色調あるいはペースト性状の調整を目的として、公知の添加剤を配合することができる。かかる添加剤としては、例えば、顔料、染料、有機溶媒、増粘剤等が挙げられる。 In addition, known additives may be added to the resin composition for photofabrication of the present invention for the purpose of adjusting color tone or paste properties. Examples of such additives include pigments, dyes, organic solvents, thickeners and the like.
 本発明の光造形用樹脂組成物は、吊り上げ式液槽光造形用樹脂組成物として好適に使用できる。本発明の光造形用樹脂組成物は、吊り上げ式液槽光造形によって造形したときにおいて、低稠度で造形しやすく、成形精度が良好で、かつ硬化物の色調遮蔽性に優れるため、各種歯科材料、特に歯科用模型材料に好適に用いることができる。 The resin composition for optical shaping of the present invention can be suitably used as a resin composition for lifting type liquid tank optical shaping. The resin composition for stereolithography of the present invention is easy to be shaped with a low consistency when molded by lifting type liquid tank photofabrication, and is excellent in molding accuracy and excellent in color tone shielding properties of a cured product, so various dental materials In particular, it can be suitably used for dental model materials.
 本発明の光造形用樹脂組成物は、低稠度で造形しやすいのみならず、成形精度及び硬化物の色調遮蔽性に優れる。従って、本発明の光造形用樹脂組成物は、このような利点が生かされる用途に適用でき、例えば、光学的立体造形法により製造される各種立体造形物に用いることができる。なかでも、歯科材料に好適に用いることができ、特に歯科用模型材料に最適である。 The resin composition for optical shaping of the present invention is excellent not only in low consistency but in ease of shaping but also in molding accuracy and color tone shielding property of a cured product. Accordingly, the resin composition for stereolithography of the present invention can be applied to applications in which such advantages are exploited, and can be used, for example, for various three-dimensional objects manufactured by optical stereolithography. Among them, it can be suitably used as a dental material, and is particularly suitable as a dental model material.
 本発明の他の実施形態としては、前記したいずれかの光造形用樹脂組成物を用いて、光造形法(以下、「光学的立体造形法」ともいう。)によって立体造形物を製造する方法が挙げられる。光学的立体造形法としては、吊り上げ式液槽光学的立体造形法が好ましい。 In another embodiment of the present invention, a method for producing a three-dimensional object by an optical forming method (hereinafter, also referred to as “optical three-dimensional forming method”) using any of the above-described resin compositions for optical forming Can be mentioned. As the optical three-dimensional modeling method, a lifting type liquid tank optical three-dimensional modeling method is preferable.
 本発明の光造形用樹脂組成物を用いて光学的立体造形を行うに当たっては、従来公知の光学的立体造形法及び装置のいずれもが使用できる。そのうちでも、本発明では、樹脂を硬化させるための光エネルギーとして、活性エネルギー光線を用いるのが好ましい。本発明における「活性エネルギー光線」とは、紫外線、電子線、X線、放射線、高周波等のような光硬化性樹脂組成物を硬化させ得るエネルギー線を意味する。例えば、活性エネルギー光線は、300~400nmの波長を有する紫外線であってもよい。活性エネルギー光線の光源としては、Arレーザー、He-Cdレーザー等のレーザー;ハロゲンランプ、キセノンランプ、メタルハライドランプ、LED、水銀灯、蛍光灯等の照明等が挙げられ、レーザーが特に好ましい。光源としてレーザーを用いた場合には、エネルギーレベルを高めて造形時間を短縮することが可能であり、しかもレーザー光線の良好な集光性を利用して、成形精度の高い立体造形物を得ることができる。 In performing optical three-dimensional modeling using the resin composition for optical shaping | molding of this invention, all of a conventionally well-known optical three-dimensional shaping method and apparatus can be used. Among them, in the present invention, it is preferable to use an active energy ray as light energy for curing the resin. The "active energy ray" in the present invention means an energy ray capable of curing the photocurable resin composition such as ultraviolet ray, electron beam, X-ray, radiation, high frequency and the like. For example, the active energy beam may be ultraviolet light having a wavelength of 300 to 400 nm. Examples of the light source of active energy ray include lasers such as Ar laser and He-Cd laser; illuminations such as halogen lamp, xenon lamp, metal halide lamp, LED, mercury lamp and fluorescent lamp, and the like, and laser is particularly preferable. When a laser is used as a light source, it is possible to increase the energy level and shorten the formation time, and to obtain a three-dimensional object with high forming accuracy by utilizing the good focusing of the laser beam. it can.
 上記したように、本発明の光造形用樹脂組成物を用いて光学的立体造形を行うに当たっては、従来公知の方法及び従来公知の光造形システム装置のいずれもが採用でき特に制限されないが、本発明で好ましく用いられる吊り上げ式液槽光学的立体造形法の代表例としては、光学的立体造形用樹脂組成物に所望のパターンを有する硬化層が得られるように活性エネルギー光線を選択的に照射して硬化層を形成する工程と、次いでその硬化層が吊り上げられ、さらに未硬化液状の光学的立体造形用樹脂組成物を供給し、同様に活性エネルギー光線を照射して前記の硬化層と連続した硬化層を新たに形成して積層する工程とを繰り返すことによって最終的に目的とする立体造形物を得る方法を挙げることができる。また、それによって得られる立体造形物はそのまま用いても、また場合によってはさらに光照射によるポストキュアあるいは熱によるポストキュア等を行って、その力学的特性あるいは形状安定性等を一層高いものとしてから使用するようにしてもよい。 As described above, when performing optical three-dimensional modeling using the resin composition for optical molding of the present invention, any of a conventionally known method and a conventionally known optical modeling system device can be adopted, and the present invention is not particularly limited. As a representative example of the lifting type liquid tank optical three-dimensional modeling method preferably used in the invention, an active energy beam is selectively irradiated so that a cured layer having a desired pattern can be obtained in the resin composition for optical three-dimensional modeling The step of forming a hardened layer, and then the hardened layer is lifted, and the unhardened liquid resin composition for optical three-dimensional modeling is supplied, and the active energy beam is similarly irradiated to continue with the hardened layer. A method of finally obtaining a desired three-dimensional object can be mentioned by repeating the steps of newly forming a hardened layer and laminating. In addition, even if the three-dimensional object obtained thereby is used as it is or, in some cases, it is further post-cured by light irradiation or post-cured by heat, etc. to further enhance its mechanical characteristics or shape stability. You may use it.
 本発明は、本発明の効果を奏する限り、本発明の技術的思想の範囲内において、上記の構成を種々組み合わせた態様を含む。 The present invention includes embodiments in which the above-described configurations are variously combined within the scope of the technical idea of the present invention as long as the effects of the present invention can be obtained.
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、本発明の技術的思想の範囲内で多くの変形が当分野において通常の知識を有する者により可能である。実施例又は比較例に係る光造形用樹脂組成物に用いた各成分を略号とともに以下に説明する。 EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention in any way. Many variations are possible within the scope of the technical idea of the present invention. It is possible by those who have ordinary knowledge in the field. Each component used for the resin composition for optical shaping | molding which concerns on an Example or a comparative example is demonstrated below with an abbreviation.
[重合性単量体(a)]
 (a)-1:UDMA(2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)ジメタクリレート(共栄社化学株式会社製))
 (a)-2:Bis-GMA(2,2-ビス〔4-(3-メタクリロイルオキシ)-2-ヒドロキシプロポキシフェニル〕プロパン(新中村化学工業株式会社製))
 (a)-3:TEGDMA(トリエチレングリコールジメタクリレート(新中村化学工業株式会社製))
[Polymerizable monomer (a)]
(A) -1: UDMA (2,2,4-trimethylhexamethylene bis (2-carbamoyloxyethyl) dimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd.))
(A) -2: Bis-GMA (2,2-bis [4- (3-methacryloyloxy) -2-hydroxypropoxyphenyl] propane (manufactured by Shin-Nakamura Chemical Co., Ltd.))
(A) -3: TEGDMA (triethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.))
[光重合開始剤(b)]
 (b)-1:TPO(2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド)
[Photoinitiator (b)]
(B) -1: TPO (2,4,6-trimethyl benzoyl diphenyl phosphine oxide)
[無機粒子(c)]
 無機粒子(c)-1:ジメチルジクロロシラン表面処理コロイドシリカ粉(日本アエロジル株式会社製「AEROSIL(登録商標)R 972」) 平均粒径 16nm(球状)
 無機粒子(c)-2及び(c)-3:以下の製造方法に従って得た。
[Inorganic particles (c)]
Inorganic particles (c) -1: dimethyldichlorosilane surface-treated colloidal silica powder ("AEROSIL (registered trademark) R 972" manufactured by Nippon Aerosil Co., Ltd.) average particle diameter 16 nm (spherical)
Inorganic particles (c) -2 and (c) -3: Obtained according to the following production method.
 無機粒子(c)-2:3-メタクリロイルオキシプロピルトリメトキシシラン処理シリカ粉
 コロイドシリカ粉(日本アエロジル株式会社製「AEROSIL(登録商標)OX 50」)100g、3-メタクリロイルオキシプロピルトリメトキシシラン(信越化学工業株式会社製、信越シリコーン(登録商標)シランカップリング剤「KBM-503」)0.5g(核フィラー100質量部に対して0.5質量部)及びトルエン200mLを500mLの一口ナスフラスコに入れ、室温で2時間撹拌した。続いて、減圧下でトルエンを留去した後、40℃で16時間真空乾燥し、さらに90℃で3時間真空乾燥し、3-メタクリロイルオキシプロピルトリメトキシシラン処理シリカ粉〔無機粒子(c)-2〕を得た。無機粒子(c)-2の粒子を走査型電子顕微鏡(株式会社日立製作所製、S-4000型)で写真に撮り、その写真の単位視野内に観察される粒子(200個以上)の粒径を、画像解析式粒度分布測定ソフトウェア(Macview(株式会社マウンテック))を用いて測定することにより求めたところ、平均一次粒径は40nm(球状)であった。
Inorganic particles (c) -2: 3-methacryloyloxypropyltrimethoxysilane-treated silica powder 100 g of colloidal silica powder ("AEROSIL (registered trademark) OX 50" manufactured by Nippon Aerosil Co., Ltd.), 3-methacryloyloxypropyltrimethoxysilane (Shin-Ekoshi) Shin-Etsu Chemical (Shin-Etsu Silicone (registered trademark) silane coupling agent "KBM-503") manufactured by Chemical Industry Co., Ltd. 0.5 g (0.5 parts by mass with respect to 100 parts by mass of nuclear filler) and 200 mL of toluene in a 500 mL single-part eggplant flask The mixture was stirred at room temperature for 2 hours. Then, after distilling off toluene under reduced pressure, vacuum drying at 40 ° C. for 16 hours, and further vacuum drying at 90 ° C. for 3 hours, 3-methacryloyloxypropyltrimethoxysilane-treated silica powder [inorganic particles (c)- I got 2]. The particle of inorganic particle (c) -2 is photographed with a scanning electron microscope (S-4000 type, manufactured by Hitachi, Ltd.), and the particle diameter of the particle (200 or more) observed in the unit field of the photograph The average primary particle diameter was determined to be 40 nm (spherical shape) when measured by using an image analysis type particle size distribution measurement software (Macview (Mountech Co., Ltd.)).
 無機粒子(c)-3:10-メタクリロイルオキシデシルジハイドロジェンホスフェート処理アルミナ粉
 アルミナ粉(日本アエロジル株式会社製「AEROXIDE(登録商標) Alu C」)100g、10-メタクリロイルオキシデシルジハイドロジェンホスフェート(東邦化学工業株式会社製)0.5g及びトルエン200mLを500mLの一口ナスフラスコに入れ、室温で2時間撹拌した。続いて、減圧下でトルエンを留去した後、40℃で16時間真空乾燥し、さらに90℃で3時間真空乾燥し、10-メタクリロイルオキシデシルジハイドロジェンホスフェートで表面処理したアルミナ粉〔無機粒子(c)-3〕を得た。無機粒子(c)-3の粒子を走査型電子顕微鏡(株式会社日立製作所製、S-4000型)で写真に撮り、その写真の単位視野内に観察される粒子(200個以上)の粒径を、画像解析式粒度分布測定ソフトウェア(Macview(株式会社マウンテック))を用いて測定することにより求めたところ、平均一次粒径は25nm(球状)であった。
Inorganic particles (c) -3: 10-methacryloyloxydecyl dihydrogen phosphate-treated alumina powder alumina powder ("AEROXIDE (registered trademark) Alu C" manufactured by Nippon Aerosil Co., Ltd.) 100 g, 10-methacryloyloxydecyl dihydrogen phosphate ( 0.5 g of Toho Chemical Industry Co., Ltd. and 200 mL of toluene were placed in a 500 mL single-necked eggplant flask and stirred at room temperature for 2 hours. Then, after distilling off toluene under reduced pressure, vacuum dried at 40 ° C. for 16 hours, further vacuum dried at 90 ° C. for 3 hours, and surface-treated with 10-methacryloyloxydecyl dihydrogen phosphate alumina powder [inorganic particles (C) -3] was obtained. The particles of inorganic particle (c) -3 are photographed with a scanning electron microscope (type S-4000 manufactured by Hitachi Ltd.), and the particle diameter of the particles (200 or more) observed in the unit field of the photograph The average primary particle diameter was determined to be 25 nm (spherical shape) as determined by using an image analysis type particle size distribution measurement software (Macview (Muntech Co., Ltd.)).
[金属酸化物粒子(d)]
 金属酸化物粒子(d)-1:酸化チタン粉(和光純薬工業株式会社製 日本薬局方「酸化チタン」) 平均粒径 0.5μm
 金属酸化物粒子(d)-2:酸化アルミニウム粉(株式会社アドマテックス製「アルミナ」)平均粒径0.7μm
 金属酸化物粒子(d)-3:酸化ジルコニアウム粉(添川理化学株式会社製「酸化ジルコニウム」)平均粒径1.0μm
[Metal oxide particles (d)]
Metal oxide particles (d) -1: titanium oxide powder (manufactured by Wako Pure Chemical Industries, Ltd. Japanese Pharmacopoeia "Titanium oxide") Average particle size 0.5 μm
Metal oxide particles (d) -2: aluminum oxide powder ("Alumina" manufactured by Admatex Co., Ltd.) average particle diameter 0.7 μm
Metal oxide particles (d) -3: Zirconium oxide powder ("Zirconium oxide" manufactured by Soekawa Chemical Co., Ltd.) average particle diameter 1.0 μm
[有機紫外線吸収剤(e)]
 (e)-1:HOB(2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール)
[Organic UV absorber (e)]
(E) -1: HOB (2- (2-hydroxy-5-tert-octylphenyl) benzotriazole)
[重合禁止剤]
 BHT:3,5-ジ-t-ブチル-4-ヒドロキシトルエン
[Polymerization inhibitor]
BHT: 3,5-di-t-butyl-4-hydroxytoluene
(実施例1~7及び比較例1~5)
 表1及び表2に示す分量で各成分を常温(20℃±15℃、JIS(日本工業規格) Z 8703:1983)下で混合して、実施例1~7及び比較例1~5に係る光造形用樹脂組成物としてのインクを調製した。
(Examples 1 to 7 and Comparative Examples 1 to 5)
Each component is mixed under normal temperature (20 ° C. ± 15 ° C., JIS (Japanese Industrial Standard) Z 8703: 1983) in the amounts shown in Table 1 and Table 2 according to Examples 1 to 7 and Comparative Examples 1 to 5. An ink as a resin composition for stereolithography was prepared.
<造形性>
1.造形の可否
 各実施例及び比較例のインクについて、光造形機(DWS社製 DigitalWax(登録商標) 020D)を用いて、1辺10.000mmの立方体の立体造形物を製造した。脱落、造形途切れ、容器の破壊等がなく、造形可能か目視により観察した。
2.稠度
 一辺50mm、厚さ0.05mmのPETフィルムを平面に置き、その中心に各実施例及び比較例のインク0.5mlを滴下して、25℃の恒温室内にて、10分間静置した。次いで、円形に広がったインクの最大径(長径)と最小径(短径)の平均を取り、インクの径を算出した。各実施例及び比較例のインクについて、3つのサンプルをこの方法で測定し、インクの径を算出した。さらに、この3回の測定結果の平均値を稠度の測定値とした。稠度が大きいほどインクが流れやすく、造形性に優れることを示す。この試験での稠度が30mm以上のものは、流動性が高く造形性に優れ、40mm以上のものが好ましい。
<Formality>
1. About the ink of each Example and a comparative example, the three-dimensional molded article of the cube of 10.000 mm of 1 side was manufactured using the optical forming machine (DigitalWax (trademark) 020D by DWS). There was no dropout, formation interruption, breakage of the container, etc., and it was observed by visual observation whether formation was possible.
2. Consistency A PET film of 50 mm on a side and a thickness of 0.05 mm was placed on a flat surface, 0.5 ml of the ink of each of the examples and comparative examples was dropped at the center, and left for 10 minutes in a thermostatic chamber at 25 ° C. Next, the diameter of the ink was calculated by taking the average of the maximum diameter (long diameter) and the minimum diameter (short diameter) of the ink spread in a circle. For the inks of each Example and Comparative Example, three samples were measured by this method to calculate the diameter of the ink. Furthermore, the average value of the results of these three measurements was taken as the measured value of the consistency. The larger the consistency, the easier the ink flows and the better the formability. Those having a consistency of 30 mm or more in this test are high in flowability and excellent in formability, and those having a thickness of 40 mm or more are preferable.
<成形精度>
 各実施例及び比較例のインクについて、光造形機(DWS社製 DigitalWax(登録商標) 020D)を用いて、1辺10.000mmの立方体の立体造形物を製造した。得られた立体造形物を、エタノールで洗浄し、未重合の単量体を除去した後、マイクロメーターを用いて寸法(単位:mm)を測定し、下記の式により、成形精度を算出した。該成形精度(寸法誤差)が1.0%以下である場合、成形精度に優れ、模型材を造形して、クラウンやブリッジを作製した場合に、適合性に優れたものとなりやすく、0.80%以下が好ましい。
Figure JPOXMLDOC01-appb-M000001
<Molding accuracy>
About the ink of each Example and a comparative example, the three-dimensional molded article of the cube of 10.000 mm of 1 side was manufactured using the optical forming machine (DigitalWax (trademark) 020D by DWS company). The obtained three-dimensional object was washed with ethanol to remove unpolymerized monomers, and then the dimensions (unit: mm) were measured using a micrometer, and the molding accuracy was calculated according to the following equation. When the forming accuracy (dimension error) is 1.0% or less, the forming accuracy is excellent, and when a crown or a bridge is formed by forming a model material, the compatibility tends to be excellent, 0.80 % Or less is preferable.
Figure JPOXMLDOC01-appb-M000001
<色調遮蔽性>
 各実施例及び比較例のインクについて、光造形機(DWS社製 DigitalWax(登録商標) 020D)を用いて、直径15.0mm×厚さ1.0mmのディスク状の立体造形物を製造した。得られた立体造形物を、エタノールで洗浄し、未重合の単量体を除去した後、歯科技工用LED重合装置アルファライトV(株式会社モリタ東京製作所製)で90秒さらに重合し、硬化物を得た。得られた硬化物をシリコンカーバイド紙1000番で研磨し、続いて歯科用ラッピングフィルム(スリーエム ジャパン株式会社製)で研磨した後、分光測色計(コニカミノルタ株式会社製、SPECTROPHOTOMETER CM-3610d、JIS Z 8722:2009、条件cに準拠、D65光源)を用いて、色調遮蔽性の評価指標として透明性ΔLを測定した。透明性ΔLは以下の式で定義される。なお、高い色調遮蔽性を確保するために、透明性ΔLが15以下である必要がある。結果を表1及び表2にそれぞれ示す。
 ΔL=L*W-L*B
 (式中、L*Wは、白背景で測定されるJIS Z 8781-4:2013のL*a*b*表色系における明度指数L*を表し、L*Bは、黒背景で測定されるL*a*b*表色系における明度指数L*を表す。)
<Color shade shielding property>
About the ink of each Example and a comparative example, the disk-shaped three-dimensional molded article of diameter 15.0 mm x thickness 1.0 mm was manufactured using the optical forming machine (DigitalWax (trademark) 020D by DWS company). The obtained three-dimensional object is washed with ethanol to remove unpolymerized monomers, and then, it is further polymerized for 90 seconds by using the LED polymerization apparatus alpha light V for dental technology (manufactured by Morita Tokyo Seisakusho Co., Ltd.) for 90 seconds. I got The resulting cured product is polished with silicon carbide paper No. 1000 and subsequently polished with a dental lapping film (manufactured by 3M Japan Co., Ltd.), and then a spectrocolorimeter (manufactured by Konica Minolta Co., Ltd. SPECTROPHOTOMETER CM-3610d, JIS) Transparency ΔL was measured as an evaluation index of color shade shielding property using Z 8722: 2009, condition c, D65 light source). Transparency ΔL is defined by the following equation. The transparency ΔL needs to be 15 or less in order to ensure high color shade shielding properties. The results are shown in Table 1 and Table 2, respectively.
ΔL = L * W−L * B
(Wherein L * W represents the lightness index L * in the L * a * b * color system of JIS Z 8781-4: 2013 measured on a white background, and L * B is measured on a black background Represents the lightness index L * in the L * a * b * color system
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び表2に示す通り、実施例1~7における光造形用樹脂組成物は、造形可能な粘度を有し、成形精度に優れ、その硬化物は、色調遮蔽性に優れていた。比較例1~3の無機粒子(c)又は金属酸化物粒子(d)を含まない組成物は、成形精度及び色調遮蔽性が低く、比較例4の無機粒子(c)を多量に含む組成物は、稠度が高く、造形不可であり、比較例5の粒径が大きい無機粒子を含む組成物は、容器を破壊し、造形不可であった。 As shown in Tables 1 and 2, the resin composition for photofabrication in Examples 1 to 7 had a viscosity capable of being shaped, was excellent in molding accuracy, and the cured product was excellent in color tone shielding properties. The composition which does not contain the inorganic particles (c) of Comparative Examples 1 to 3 or the metal oxide particles (d) has low molding accuracy and color shade shielding properties, and contains a large amount of the inorganic particles (c) of Comparative Example 4 The composition containing the inorganic particles having a high consistency, being not formable, and having the large particle diameter of Comparative Example 5 destroyed the container and was not formable.
 本発明の光造形用樹脂組成物は、低稠度で造形しやすく、成形精度が良好で、かつ硬化物の色調遮蔽性に優れるため、歯科材料、特に歯科用模型材料に好適である。 The resin composition for stereolithography of the present invention is suitable for a dental material, particularly a dental model material, because it is easy to be shaped with a low consistency, has a good molding accuracy, and is excellent in color tone shielding properties of a cured product.

Claims (16)

  1.  重合性単量体(a)80~99質量%と、
     光重合開始剤(b)0.1~10質量%と、
     平均粒径5~200nmの無機粒子(c)0.1~5.0質量%と、
     平均粒径0.1~10μmの金属酸化物粒子(d)0.01~10質量%と
    を含有し、前記無機粒子(c)は、前記金属酸化物粒子(d)と異なる、
    光造形用樹脂組成物。
    80 to 99% by mass of a polymerizable monomer (a),
    0.1 to 10% by mass of a photopolymerization initiator (b),
    0.1 to 5.0% by mass of inorganic particles (c) having an average particle diameter of 5 to 200 nm,
    And 0.01 to 10% by mass of metal oxide particles (d) having an average particle diameter of 0.1 to 10 μm, and the inorganic particles (c) are different from the metal oxide particles (d),
    Resin composition for optical molding.
  2.  前記無機粒子(c)が、シリカ又は酸化アルミニウムを含有する、請求項1に記載の光造形用樹脂組成物。 The resin composition for stereolithography of Claim 1 in which the said inorganic particle (c) contains a silica or an aluminum oxide.
  3.  前記金属酸化物粒子(d)が、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、及び酸化セリウムからなる群から選択される少なくとも1種の金属酸化物を含有する、請求項1又は2に記載の光造形用樹脂組成物。 The metal oxide particles (d) according to claim 1 or 2, wherein the metal oxide particles (d) contain at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, and cerium oxide. Resin composition for optical molding.
  4.  前記金属酸化物粒子(d)が、酸化チタン、酸化アルミニウム及び酸化ジルコニウムからなる群から選択される少なくとも1種の金属酸化物を含有する、請求項1又は2に記載の光造形用樹脂組成物。 The resin composition for stereolithography according to claim 1 or 2, wherein the metal oxide particles (d) contain at least one metal oxide selected from the group consisting of titanium oxide, aluminum oxide and zirconium oxide. .
  5.  前記金属酸化物粒子(d)の平均粒径が、0.2~7.5μmである、請求項1~4のいずれか1項に記載の光造形用樹脂組成物。 The photo-forming resin composition according to any one of claims 1 to 4, wherein the metal oxide particles (d) have an average particle size of 0.2 to 7.5 μm.
  6.  前記無機粒子(c)と前記金属酸化物粒子(d)の質量比が、2:1~30:1である、請求項1~5のいずれか1項に記載の光造形用樹脂組成物。 The photo-forming resin composition according to any one of claims 1 to 5, wherein a mass ratio of the inorganic particles (c) to the metal oxide particles (d) is 2: 1 to 30: 1.
  7.  前記無機粒子(c)の平均粒径と、前記金属酸化物粒子(d)の平均粒径との粒径比が、1:1.5~1:2000である、請求項1~6のいずれか1項に記載の光造形用樹脂組成物。 The particle diameter ratio of the average particle diameter of the said inorganic particle (c) and the average particle diameter of the said metal oxide particle (d) is 1: 1.5 to 1: 2000, The resin composition for optical shaping | molding as described in any one of-.
  8.  さらに有機紫外線吸収剤(e)を含有する、請求項1~7のいずれか1項に記載の光造形用樹脂組成物。 The resin composition for optical shaping according to any one of claims 1 to 7, further comprising an organic ultraviolet absorber (e).
  9.  前記有機紫外線吸収剤(e)が、ベンゾトリアゾール系化合物である、請求項8に記載の光造形用樹脂組成物。 The resin composition for optical shaping | molding of Claim 8 whose said organic ultraviolet absorber (e) is a benzotriazole type compound.
  10.  前記無機粒子(c)が、表面処理剤で表面処理されてなる、請求項1~9のいずれか1項に記載の光造形用樹脂組成物。 The resin composition for optical shaping according to any one of claims 1 to 9, wherein the inorganic particles (c) are surface-treated with a surface treatment agent.
  11.  前記重合性単量体(a)が、(メタ)アクリレート系重合性単量体及び(メタ)アクリルアミド系重合性単量体からなる群から選択される少なくとも1種の金属酸化物を含有する、請求項1~10のいずれか1項に記載の光造形用樹脂組成物。 The polymerizable monomer (a) contains at least one metal oxide selected from the group consisting of (meth) acrylate type polymerizable monomers and (meth) acrylamide type polymerizable monomers. The resin composition for optical shaping according to any one of claims 1 to 10.
  12.  前記重合性単量体(a)が、二官能性(メタ)アクリレート系重合性単量体を含有する、請求項1~11のいずれか1項に記載の光造形用樹脂組成物。 The photoforming resin composition according to any one of claims 1 to 11, wherein the polymerizable monomer (a) contains a bifunctional (meth) acrylate type polymerizable monomer.
  13.  吊り上げ式液槽用である、請求項1~12のいずれか1項に記載の光造形用樹脂組成物。 The resin composition for optical shaping according to any one of claims 1 to 12, which is for a lifting type liquid tank.
  14.  請求項1~13のいずれか1項に記載の光造形用樹脂組成物の硬化物からなる歯科材料。 A dental material comprising the cured product of the resin composition for stereolithography according to any one of claims 1 to 13.
  15.  請求項1~13のいずれか1項に記載の光造形用樹脂組成物の硬化物からなる歯科用模型材料。 A dental model material comprising a cured product of the resin composition for stereolithography according to any one of claims 1 to 13.
  16.  請求項1~13のいずれか1項に記載の光造形用樹脂組成物を用いて、光造形法によって立体造形物を製造する方法。 A method for producing a three-dimensional object by an optical forming method using the resin composition for optical forming according to any one of claims 1 to 13.
PCT/JP2018/037792 2017-10-10 2018-10-10 Resin composition for stereolithography WO2019074015A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18865886.8A EP3696198A4 (en) 2017-10-10 2018-10-10 Resin composition for stereolithography
US16/754,440 US11485813B2 (en) 2017-10-10 2018-10-10 Resin composition for stereolithography
JP2019548224A JP6953542B2 (en) 2017-10-10 2018-10-10 Resin composition for stereolithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017197259 2017-10-10
JP2017-197259 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019074015A1 true WO2019074015A1 (en) 2019-04-18

Family

ID=66100611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037792 WO2019074015A1 (en) 2017-10-10 2018-10-10 Resin composition for stereolithography

Country Status (4)

Country Link
US (1) US11485813B2 (en)
EP (1) EP3696198A4 (en)
JP (1) JP6953542B2 (en)
WO (1) WO2019074015A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152414A1 (en) * 2019-01-25 2020-07-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composition and method for making parts consisting of oxide ceramics or hybrid parts by a stereolithographic technique
WO2020246489A1 (en) * 2019-06-07 2020-12-10 キヤノン株式会社 Curable resin composition, cured product thereof, and method for manufacturing three-dimensional article
WO2021193962A1 (en) * 2020-03-26 2021-09-30 三井化学株式会社 Photopolymerizable composition, three-dimensional molded article, and dental product
CN114072439A (en) * 2019-06-28 2022-02-18 株式会社可乐丽 Curable composition and resin composition for stereolithography comprising same
WO2023189567A1 (en) * 2022-03-28 2023-10-05 三井化学株式会社 Photocurable composition, three-dimensional shaped article, and dental product
CN117497779A (en) * 2023-11-20 2024-02-02 长春理工大学 Preparation method and application of integrated carbon-supported platinum tellurium nanosheet formic acid oxidation reaction catalyst
JP7442659B2 (en) 2020-02-04 2024-03-04 キャボット コーポレイション Liquid additive manufacturing composition
JP7508315B2 (en) 2020-08-31 2024-07-01 クラレノリタケデンタル株式会社 Resin composition for stereolithography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022115112A1 (en) * 2020-11-30 2022-06-02 Hewlett-Packard Development Company, L.P. Three-dimensional printing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS60247515A (en) 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPH1030002A (en) * 1996-07-16 1998-02-03 Olympus Optical Co Ltd Photo curable fluid resin composition
JP2000159621A (en) 1998-12-02 2000-06-13 Kuraray Co Ltd Photo-polymerizable composition for dental use
JP2006348210A (en) 2005-06-17 2006-12-28 Jsr Corp Photocurable liquid composition for photo-shaping, three-dimensional shaped article and method for producing the same
WO2012042911A1 (en) 2010-09-30 2012-04-05 クラレメディカル株式会社 Dental mill blank
JP2015043793A (en) * 2013-08-27 2015-03-12 ディーダブルエス エス・アール・エル Method for manufacturing artificial teeth
JP2016525150A (en) * 2014-01-13 2016-08-22 デンカ インク Photocurable resin composition and method of use in three-dimensional printing for producing artificial teeth and denture bases
JP2017160355A (en) * 2016-03-10 2017-09-14 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink, composition storage container, image formation method, image formation apparatus, cured product, and image formation object

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839401A (en) * 1985-07-12 1989-06-13 Jeneric/Pentron, Inc. Light curable dental pit and fissure sealant
DE19848886C2 (en) * 1998-10-23 2000-11-16 Heraeus Kulzer Gmbh & Co Kg Light-polymerizable one-component dental material
ES2879602T3 (en) * 2012-11-14 2021-11-22 Dentsply Sirona Inc Material systems for three-dimensional fabrication to produce dental products
US10357435B2 (en) 2012-12-18 2019-07-23 Dentca, Inc. Photo-curable resin compositions and method of using the same in three-dimensional printing for manufacturing artificial teeth and denture base
WO2014098956A1 (en) * 2012-12-18 2014-06-26 Dentca. Inc. Photo-curable resin compositions and method of using the same in three-dimensional printing for manufacturing artificial teeth and denture base
WO2015126862A1 (en) * 2014-02-18 2015-08-27 3M Innovative Properties Company Dental composition and use thereof
WO2016187155A1 (en) * 2015-05-15 2016-11-24 Dentsply Sirona Inc. Three-dimensional fabricating method for rapidly producing objects

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS60247515A (en) 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPH1030002A (en) * 1996-07-16 1998-02-03 Olympus Optical Co Ltd Photo curable fluid resin composition
JP2000159621A (en) 1998-12-02 2000-06-13 Kuraray Co Ltd Photo-polymerizable composition for dental use
JP2006348210A (en) 2005-06-17 2006-12-28 Jsr Corp Photocurable liquid composition for photo-shaping, three-dimensional shaped article and method for producing the same
WO2012042911A1 (en) 2010-09-30 2012-04-05 クラレメディカル株式会社 Dental mill blank
JP2015043793A (en) * 2013-08-27 2015-03-12 ディーダブルエス エス・アール・エル Method for manufacturing artificial teeth
JP2016525150A (en) * 2014-01-13 2016-08-22 デンカ インク Photocurable resin composition and method of use in three-dimensional printing for producing artificial teeth and denture bases
JP2017160355A (en) * 2016-03-10 2017-09-14 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink, composition storage container, image formation method, image formation apparatus, cured product, and image formation object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3696198A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152414A1 (en) * 2019-01-25 2020-07-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Composition and method for making parts consisting of oxide ceramics or hybrid parts by a stereolithographic technique
FR3092109A1 (en) * 2019-01-25 2020-07-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives COMPOSITION AND METHOD FOR MAKING PARTS CONSISTING OF OXIDIZED CERAMICS OR HYBRID PARTS BY A STEREOLITHOGRAPHY TECHNIQUE.
WO2020246489A1 (en) * 2019-06-07 2020-12-10 キヤノン株式会社 Curable resin composition, cured product thereof, and method for manufacturing three-dimensional article
US11814454B2 (en) 2019-06-28 2023-11-14 Kuraray Co., Ltd. Curable composition, and resin composition for stereolithography prepared therefrom
CN114072439A (en) * 2019-06-28 2022-02-18 株式会社可乐丽 Curable composition and resin composition for stereolithography comprising same
EP3992216A4 (en) * 2019-06-28 2023-06-14 Kuraray Co., Ltd. Curable composition, and resin composition for stereolithography prepared therefrom
CN114072439B (en) * 2019-06-28 2024-05-14 株式会社可乐丽 Curable composition and resin composition for photofabrication comprising same
JP7442659B2 (en) 2020-02-04 2024-03-04 キャボット コーポレイション Liquid additive manufacturing composition
JPWO2021193962A1 (en) * 2020-03-26 2021-09-30
JP7326590B2 (en) 2020-03-26 2023-08-15 三井化学株式会社 Photocurable composition, three-dimensional object, and dental product
WO2021193962A1 (en) * 2020-03-26 2021-09-30 三井化学株式会社 Photopolymerizable composition, three-dimensional molded article, and dental product
JP7508315B2 (en) 2020-08-31 2024-07-01 クラレノリタケデンタル株式会社 Resin composition for stereolithography
WO2023189567A1 (en) * 2022-03-28 2023-10-05 三井化学株式会社 Photocurable composition, three-dimensional shaped article, and dental product
CN117497779A (en) * 2023-11-20 2024-02-02 长春理工大学 Preparation method and application of integrated carbon-supported platinum tellurium nanosheet formic acid oxidation reaction catalyst
CN117497779B (en) * 2023-11-20 2024-04-26 长春理工大学 Preparation method and application of integrated carbon-supported platinum tellurium nanosheet formic acid oxidation reaction catalyst

Also Published As

Publication number Publication date
EP3696198A1 (en) 2020-08-19
JP6953542B2 (en) 2021-10-27
US11485813B2 (en) 2022-11-01
US20200392272A1 (en) 2020-12-17
JPWO2019074015A1 (en) 2020-11-19
EP3696198A4 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6953542B2 (en) Resin composition for stereolithography
US9089482B2 (en) Dental mill blank
JP7017514B2 (en) Composition for optical three-dimensional modeling
JP4782251B2 (en) Dental curable composition and composite resin using the same
JP2018145133A (en) Self-adhesive dental composite resin
JP5730061B2 (en) Adhesive dental restorative material with reduced polymerization shrinkage
WO2021177462A1 (en) Resin composition for stereolithography
CN109952086B (en) Self-adhesive dental composite resin
JP2013071921A (en) Dental curable composition
JP2019026504A (en) Composite oxide particle and dental composite material containing the composite oxide particle
JP2011184402A (en) Nanoparticle fluorescent substance
EP4079280A1 (en) Fluorescent curable dental composition and cured product thereof
JP2012171955A (en) Dental curable composition and dental restorative material
JP7508315B2 (en) Resin composition for stereolithography
JP5843519B2 (en) Dental curable composition having low polymerization shrinkage stress and dental filling restorative material
JP2011079785A (en) Dental composition and composite resin using the same
JP2022041276A (en) Resin composition for optical molding
JP2013014556A (en) Dental restorative material capable of distinguishing restored part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548224

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018865886

Country of ref document: EP

Effective date: 20200511