WO2019073969A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2019073969A1
WO2019073969A1 PCT/JP2018/037598 JP2018037598W WO2019073969A1 WO 2019073969 A1 WO2019073969 A1 WO 2019073969A1 JP 2018037598 W JP2018037598 W JP 2018037598W WO 2019073969 A1 WO2019073969 A1 WO 2019073969A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
pucch
unit
signal
encoding
Prior art date
Application number
PCT/JP2018/037598
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US16/754,928 priority Critical patent/US20200296714A1/en
Priority to EP18866564.0A priority patent/EP3697002B1/en
Publication of WO2019073969A1 publication Critical patent/WO2019073969A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( Also referred to as New RAT), LTE Rel. 14, 15 and so on.
  • downlink Downlink
  • uplink are performed using subframes of 1 ms (also referred to as Transmission Time Interval (TTI) or the like).
  • TTI Transmission Time Interval
  • UL Uplink
  • the subframe is a transmission time unit of one channel-coded data packet, and is a processing unit such as scheduling, link adaptation, and retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • the user terminal may be a UL control channel (for example, PUCCH: Physical Uplink Control Channel) or a UL data channel (for example, PUSCH: Uplink Control Information (UCI) is transmitted using Physical Uplink Shared Channel.
  • UL control channel for example, PUCCH: Physical Uplink Control Channel
  • PUSCH Uplink Control Information
  • the configuration (format) of the UL control channel is called PUCCH format or the like.
  • UCI is a scheduling request (SR: Scheduling Request), retransmission control information (HARQ-ACK: Hybrid Automatic Repeat reQuest-Acknowledge, ACK or NACK (Negative) for DL data (DL PD (for example, PDSCH: Physical Downlink Shared Channel)). And at least one of channel state information (CSI).
  • SR Scheduling Request
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledge
  • ACK or NACK NACK
  • DL data for example, PDSCH: Physical Downlink Shared Channel
  • CSI channel state information
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Future wireless communication systems (for example, LTE Rel. 14, 15 or later, 5G, NR, etc.) use a UL control channel of a configuration (format) different from that of the existing LTE system (for example, LTE Rel. 13 or earlier) , UCI is assumed to be sent.
  • the PUCCH format used in the existing LTE system is configured in subframe units of 1 ms.
  • a short PUCCH UL control channel
  • a long duration UL control channel hereinafter also referred to as a long PUCCH
  • the present invention has been made in view of the foregoing, and an object thereof is to provide a user terminal and a wireless communication method capable of appropriately transmitting a plurality of uplink control information.
  • One aspect of the user terminal of the present invention performs a first encoding on at least one of a plurality of uplink control information, concatenates a plurality of information obtained by the first encoding, and the concatenated information And a transmission unit that transmits information obtained by the second encoding using an uplink control channel.
  • a plurality of uplink control information can be transmitted appropriately.
  • FIGS. 1A and 1B are diagrams showing an example of short PUCCH and long PUCCH. It is a figure which shows an example of the PUCCH format in the future radio
  • a configuration also referred to as a format, PUCCH format, etc.
  • a UL control channel for example, PUCCH
  • FIG. 1 is a diagram illustrating an example of PUCCH in a future wireless communication system.
  • a PUCCH short PUCCH
  • a relatively small number of symbols duration, eg, 1 to 2 symbols
  • PUCCH long PUCCH
  • PUCCH long PUCCH
  • period e.g. 4 to 14 symbols
  • the short PUCCH may be arranged in a predetermined number of symbols (eg, 1 to 2 symbols) from the end of the slot.
  • the arrangement symbol of the short PUCCH is not limited to the end of the slot, and may be a predetermined number of symbols at the beginning or in the middle of the slot.
  • the short PUCCH is allocated to one or more frequency resources (for example, one or more physical resource blocks (PRBs)).
  • PRBs physical resource blocks
  • short PUCCHs are arranged in continuous PRBs, but may be arranged in non-continuous PRBs.
  • the short PUCCH may be time division multiplexed and / or frequency division multiplexed with a UL data channel (hereinafter also referred to as PUSCH) in a slot.
  • the short PUCCH may be time division multiplexed and / or frequency division multiplexed with a DL data channel (hereinafter also referred to as PDSCH) and / or a DL control channel (hereinafter referred to as PDCCH: Physical Downlink Control Channel) in a slot. Good.
  • a multicarrier waveform for example, Orthogonal Frequency Division Multiplexing (OFDM) waveform
  • OFDM Orthogonal Frequency Division Multiplexing
  • a single carrier waveform for example, DFT-s-OFDM (Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing) Waveforms may be used.
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the long PUCCH is arranged over a larger number of symbols (eg, 4 to 14 symbols) than the short PUCCH.
  • the long PUCCH is not arranged in the first predetermined number of symbols of the slot, but may be arranged in the first predetermined number of symbols.
  • the long PUCCH may be configured with a smaller number of frequency resources (eg, one or two PRBs) than the short PUCCH to obtain a power boosting effect, or with the short PUCCH. It may be configured with an equal number of frequency resources.
  • the long PUCCH may be frequency division multiplexed with the PUSCH in the slot. Also, the long PUCCH may be time division multiplexed with the PDCCH in the slot. Also, the long PUCCH may be arranged in the same slot as the short PUCCH.
  • a single carrier waveform eg, DFT-s-OFDM waveform
  • a multi-carrier waveform eg, OFDM waveform
  • frequency hopping may be applied for each predetermined period (for example, mini (sub) slot) in the slot.
  • the frequency hopping may be performed at the timing (for example, 7 symbols in the case of 14 symbols per slot) when the number of symbols to be transmitted before and after the frequency hopping becomes equal (for example, the timing when the number of symbols before and after becomes uneven
  • the first half may be 6 symbols and the second half may be 8 symbols).
  • FIG. 2 is a diagram showing an example of a PUCCH format in a future wireless communication system.
  • a plurality of PUCCH formats in which the number of symbols constituting the PUCCH and / or the number of UCI bits transmitted using the PUCCH are different are shown.
  • the PUCCH format shown in FIG. 2 is merely an example, and the contents of PUCCH formats 0 to 4 are not limited to those shown in FIG.
  • PUCCH format 0 is a short PUCCH (for example, FIG. 1A) for UCI of 2 bits or less (up to 2 bits) and is also called a sequence-based short PUCCH or the like.
  • the short PUCCH conveys UCI (for example, HARQ-ACK and / or SR) of 2 bits or less in 1 or 2 symbols.
  • PUCCH format 1 is a long PUCCH for UCI with 2 bits or less (eg, FIG. 1B).
  • the long PUCCH transmits UCI of 2 bits or less in 4 to 14 symbols.
  • a plurality of user terminals perform block-wise spreading of time-domain (time-domain) using, for example, cyclic shift (CS) and / or orthogonal spreading code (OCC). May be code division multiplexed (CDM) within the same PRB.
  • CS cyclic shift
  • OCC orthogonal spreading code
  • PUCCH format 2 is a short PUCCH for UCI (more than 2 bits) (for example, FIG. 1A).
  • the short PUCCH transmits UCI of more than 2 bits in 1 or 2 symbols.
  • PUCCH format 3 is a long PUCCH for UCI having more than 2 bits (eg, FIG. 1B), and a plurality of user terminals can be multiplexed in the same PRB.
  • the long PUCCH transmits UCI of more than 2 bits and less than N bits (or less than N bits) in 4 to 14 symbols.
  • a plurality of user terminals may be code division multiplexed in the same PRB by block spreading in the time domain using CS and / or OCC.
  • a plurality of user terminals are multiplexed using at least one of block diffusion (frequency domain) prior to discrete Fourier transform (DFT), frequency division multiplexing (FDM), and comb-like subcarriers (Comb) May be
  • the threshold N of the UCI bit number may be an integer larger than 3 (or 3 or more), and may be defined in the specification, or higher layer signaling (for example, RRC (Radio Resource Control) signaling, broadcast Information (eg, MIB: Master Information Block), system information (eg, SIB: System Information Block, RMSI: Remaining Minimum System Information, etc.) may be set.
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information, etc.
  • PUCCH format 4 is a long PUCCH (for example, FIG. 1B) for UCI with more than 2 bits, and a single user terminal is multiplexed in the same PRB.
  • the long PUCCH transmits UCI larger than N bits (or more than N bits).
  • PUCCH format 4 differs from PUCCH format 3 in that multiple user terminals are not multiplexed in the same PRB.
  • UCI transmission is performed by applying a plurality of PUCCH formats (short PUCCH or long PUCCH) based on the number of bits of UCI to be transmitted.
  • the UE allocates UCI to a predetermined uplink control channel resource (also referred to as PUCCH resource) and performs transmission.
  • PUCCH resource refers to a resource specified in at least one of the time domain, the frequency domain and the code domain.
  • PUCCH resources can be identified in the frequency domain and / or time domain.
  • other information may be added as information for specifying a PUCCH resource.
  • the frequency domain of PUCCH resources is set in a predetermined resource unit (eg, PRB unit).
  • the time domain of PUCCH resources is set, for example, in units of symbols included in the slot, or in units of slots and symbols.
  • the base station may designate a combination of PRB and symbol or a combination of PRB and symbol and code information as a PUCCH resource for the UE.
  • FIG. 3 shows a case where PUCCH resource # 0 is provided to the first symbol of the two symbols and PUCCH resource # 1 is provided to the second symbol.
  • the UE can perform UCI transmission using multiple (for example, two) PUCCH resources.
  • the PUCCH resource of each symbol is not limited to 1 PRB, and may be set by a plurality of PRBs.
  • short PUCCHs for example, PUCCH format 2
  • PUCCH format 2 used for transmission of a larger number of bits than PUCCH format 1
  • the short PUCCH is set with one or two symbols, it is conceivable to set multiple continuous or non-consecutive PRBs as PUCCH resources in each symbol (see FIG. 4).
  • FIG. 4 shows a case where PUCCH resources (here, PUCCH resources # 0 to # 3) are set using four non-consecutive PRBs in a short PUCCH set by one symbol.
  • PUCCH resource is not limited to one PRB, and may be configured with multiple PRBs.
  • PRBs configuring each PUCCH resource may be configured to include a plurality of continuous PRBs or a non-continuous PRB.
  • PUCCH format 2 it is possible that UE transmits UCI using the several PUCCH resource respectively set to several PRB of a predetermined symbol.
  • frequency hopping is applied as in the existing system, and the PUCCH is placed at the end of the frequency band set for each UE.
  • PUCCHs may be arranged in a plurality of areas of the system band as the number of UEs with different frequency bands increases, and resource utilization efficiency may be reduced.
  • FIG. 5 shows the case where PUCCH resources # 0 and # 1 are set in the first half and the second half of frequency hopping, respectively.
  • UCI is a scheduling request (SR: Scheduling Request), delivery acknowledgment information (HARQ-ACK: Hybrid Automatic Repeat request) for DL data channel (eg PDSCH: Physical Downlink Shared Channel), ACK or NACK (Negative ACK) or A Channel quality information (CQI: Channel Quality Indicator), rank information (RI: Rank Indicator), channel state information (CSI: Channel State Information), beam index information (BI: Beam Index), buffer It may include at least one of a status report (BSR: Buffer Status Report).
  • SR Scheduling Request
  • HARQ-ACK Hybrid Automatic Repeat request
  • DL data channel eg PDSCH: Physical Downlink Shared Channel
  • ACK or NACK NACK
  • CQI Channel Quality Indicator
  • rank information RI: Rank Indicator
  • CSI Channel State Information
  • BI Beam Index
  • buffer It may include at least one of a status report (BSR: Buffer Status Report).
  • PUCCH short or long PUCCH
  • CSI CQI, RI, PMI, BI, etc.
  • SR BSR, etc.
  • joint coding and separate coding can be considered as a plurality of UCI coding methods.
  • Joint coding One piece of coding information is generated by combining and coding a plurality of UCIs. For example, joint coding generates combined information by combining a plurality of UCIs, calculates a CRC of the combined information, and generates encoded information by adding a CRC to the combined information. In this case, since it is not necessary to add a CRC (Cyclic Redundancy Check) to each of the plurality of UCIs, the CRC overhead can be suppressed. Also, if the required error rates of each of a plurality of UCIs to be multiplexed are different, joint coding needs to satisfy the lowest required error rate of the UCIs to be multiplexed.
  • CRC Cyclic Redundancy Check
  • Separate coding Multiple coded information is generated by coding each of multiple UCIs. For example, separate encoding calculates a CRC of each of a plurality of UCIs and generates a plurality of pieces of encoded information by adding a CRC corresponding to each UCI. In this case, since it is necessary to add a CRC to each UCI, the CRC overhead is large. Also, if the required error rates of each of the plurality of UCIs are different, separate coding is performed so as to satisfy the required error rates of the respective UCIs. If the required error rates for each UCI are different, different lengths of CRC may be added to each UCI.
  • the UE encodes each of a plurality of UCIs according to the UCI type (type), and jointly encodes a plurality of pieces of information obtained by the encoding.
  • UCI1 and UCI2 may be different types of UCI.
  • Each UCI type may be, for example, one of HARQ-ACK, CSI, CQI, RI, PMI, BI, SR, BSR.
  • the required error rate of UCI1 and the required error rate of UCI2 may be different from each other.
  • the UE generates first encoded information by performing encoding (first encoding) according to the type of UCI for each of UCI1 and UCI2.
  • the UE generates second coding information by performing joint coding (second coding) on the plurality of first coding information.
  • the UE transmits the second coding information using PUCCH (short PUCCH or long PUCCH).
  • the UE may transmit three or more UCIs using one PUCCH.
  • the required error rate for each UCI can be set independently. Also, by performing the first encoding and the second encoding, joint encoding can be used even when the plurality of UCIs have different required error rates. Moreover, since it is not necessary to add a CRC to each UCI, the utilization efficiency of PUCCH resources can be improved and the load on the UE can be suppressed.
  • UCI1 is HARQ-ACK
  • the required BER is 10 ⁇ (-3)
  • the type of UCI2 is CSI
  • the required BER is 10 ⁇ (-2).
  • UCI1 is ⁇ 1, 0 ⁇ and UCI 2 is ⁇ 1, 0, 0, 1, 0, 1, 1 ⁇ .
  • the first encoding may be a spreading process.
  • the spreading process may use a repetition code (Repetition code).
  • the first encoding for UCI 1 spreads to a 10 ⁇ code length using a repetition code.
  • the first encoded information UCI1 'obtained from UCI1 is ⁇ (1, 1, 1, 1, 1, 1, 1, 1, 1), (0, 0, 0, 0, 0) 0, 0, 0, 0, 0) ⁇ .
  • the spreading process may spread (modulate) UCI by multiplying by a predetermined spreading code.
  • first encoded information UCI2 'obtained from UCI2 is ⁇ 1, 0, 0, 1, 0, 1, 1 ⁇ , which is the same as UCI2.
  • any one of the plurality of first encodings respectively corresponding to the plurality of UCIs may not process the UCI.
  • the first coding of the UCI with the highest required error rate among multiple UCIs may not process the UCI.
  • UCI2 may be subjected to a first encoding different from UCI1.
  • the first coding for UCI2 may be spreading with a different spreading factor than UCI1.
  • the second coding is joint coding of UCI1 'and UCI2'.
  • the second encoding generates concatenation information by concatenating UCI 1 'and UCI 2', and encodes the second encoding information by encoding the concatenation information using a predetermined encoding method.
  • the predetermined encoding method may be RM code (Reed-Muller code) or may be Polar code.
  • the UE may use RM code as a coding method when the connection information length (number of bits) is 11 bits or less, and may use Polar code as a coding method when the connection information length exceeds 11 bits. .
  • the UE may calculate, for the second encoded information, a CRC having a length corresponding to the second encoded information length, and add the CRC to the second encoded information.
  • the second encoding may include the addition of a CRC.
  • the UE may not add the CRC to the second coded information.
  • the coding rate of the first coding and / or the second coding may be determined.
  • UCI1 satisfies the required error rate by the first encoding and the second encoding for UCI1.
  • UCI2 meets the required error rate. Therefore, different required error rates can be realized for UCI1 and UCI2.
  • the UE may determine the first coding and / or the second coding depending on the type of UCI generated. Since the type and number of UCIs to be transmitted are different depending on the transmission timing of PUCCH, the required error rate according to UCI can be realized.
  • the association between the UCI type and the first coding and / or the second coding may be configured from the radio base station to the UE using higher layer signaling, broadcast information, etc. or is defined in the specification. It is also good.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. It may be called (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio) or the like, or it may be called a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • the radio communication system 1 includes a radio base station 11 forming a macrocell C1 with a relatively wide coverage, and radio base stations 12 (12a to 12c) disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. And. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 by CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, 5 or less CCs, 6 or more CCs).
  • CCs cells
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth carrier (also called an existing carrier, legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • a wired connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • a wireless connection Can be configured.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink as a radio access scheme, and single carrier frequency division multiple access (SC-FDMA: single carrier) to the uplink.
  • SC-FDMA single carrier frequency division multiple access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission scheme that divides the system bandwidth into bands consisting of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • the radio communication system 1 may be configured to apply different mermorology in and / or between cells.
  • the term “neurology” refers to, for example, communication parameters (eg, subcarrier spacing, bandwidth, etc.) applied to transmission and reception of a certain signal.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, etc. are used as downlink channels. Used. User data, upper layer control information, SIB (System Information Block) and the like are transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • the downlink L1 / L2 control channel includes PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • Delivery confirmation information (for example, also referred to as retransmission control information, HARQ-ACK, or ACK / NACK) of HARQ (Hybrid Automatic Repeat reQuest) for the PUSCH is transmitted by the PHICH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel), and is used for transmission such as DCI, similarly to the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • User data, upper layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, etc. are transmitted by the PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), a demodulation reference signal (DMRS: DeModulation Reference Signal, positioning reference signal (PRS), etc.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS DeModulation Reference Signal
  • PRS positioning reference signal
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS positioning reference signal
  • DMRS Demodulation reference signal
  • PRS positioning reference signal
  • FIG. 8 is a diagram showing an example of the entire configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Transmission processing such as retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. It is transferred to 103. Further, transmission processing such as channel coding and inverse fast Fourier transform is also performed on the downlink control signal and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmission / reception unit 103 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of the communication channel, state management of the radio base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the other wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). May be
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • FIG. 9 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and the wireless base station 10 also has another functional block required for wireless communication.
  • the baseband signal processing unit 104 at least includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the wireless base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
  • a control unit (scheduler) 301 performs control of the entire radio base station 10.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 301 controls, for example, generation of a signal by the transmission signal generation unit 302, assignment of a signal by the mapping unit 303, and the like. Further, the control unit 301 controls reception processing of a signal by the reception signal processing unit 304, measurement of a signal by the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resource allocation) of system information, downlink data signals (for example, signals transmitted on PDSCH), and downlink control signals (for example, signals transmitted on PDCCH, EPDCCH, NR-PDCCH). Control. Further, the control unit 301 controls generation of a downlink control signal (for example, delivery confirmation information and the like), a downlink data signal and the like based on a result of determining whether or not retransmission control for the uplink data signal is necessary.
  • a downlink control signal for example, delivery confirmation information and the like
  • the control unit 301 also controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • synchronization signals for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • SSS Secondary Synchronization Signal
  • CRS Channel Reference Signal
  • CSI-RS CSI-RS
  • DMRS Downlink reference signals
  • control unit 301 may include an uplink data signal (for example, a signal transmitted by PUSCH), an uplink control signal (for example, a signal transmitted by PUCCH and / or PUSCH), a random access preamble transmitted by PRACH, uplink reference Control scheduling of signals etc.
  • an uplink data signal for example, a signal transmitted by PUSCH
  • an uplink control signal for example, a signal transmitted by PUCCH and / or PUSCH
  • a random access preamble transmitted by PRACH uplink reference Control scheduling of signals etc.
  • the control unit 301 controls to notify the UE of PUCCH resources used for UCI transmission.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal or the like) based on an instruction from the control unit 301, and outputs the downlink signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 For example, based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a DL assignment for notifying downlink signal allocation information and a UL grant for notifying uplink signal allocation information. Also, coding processing and modulation processing are performed on the downlink data signal according to a coding rate, a modulation method, and the like determined based on channel state information (CSI: Channel State Information) and the like from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to the above-described predetermined radio resource based on an instruction from the control unit 301, and outputs the downlink signal to the transmission / reception unit 103.
  • the mapping unit 303 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the reception signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception process to the control unit 301. For example, when the PUCCH including the HARQ-ACK is received, the HARQ-ACK is output to the control unit 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 305 may, for example, receive power of the received signal (for example, reference signal received power (RSRP)), reception quality (for example, reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR)), uplink
  • RSRP reference signal received power
  • RSS reception quality
  • SINR signal to interference plus noise ratio
  • CSI channel information
  • the measurement result may be output to the control unit 301.
  • FIG. 10 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmitting and receiving antennas 201, an amplifier unit 202, a transmitting and receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • each of the transmitting and receiving antenna 201, the amplifier unit 202, and the transmitting and receiving unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmitting and receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured of a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs reception processing of FFT processing, error correction decoding, retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Moreover, broadcast information may also be transferred to the application unit 205 among downlink data.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. It is transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmitting / receiving unit 203 may transmit information (for example, second encoded information) obtained by the second encoding using an uplink control channel (for example, short PUCCH or long PUCCH).
  • information for example, second encoded information
  • an uplink control channel for example, short PUCCH or long PUCCH
  • FIG. 11 is a diagram showing an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it is assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 at least includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402, assignment of signals by the mapping unit 403, and the like. Further, the control unit 401 controls reception processing of a signal by the reception signal processing unit 404, measurement of a signal by the measurement unit 405, and the like.
  • control unit 401 performs the first encoding on at least one of the plurality of uplink control information (for example, UCI), and a plurality of information obtained by the first encoding (for example, the first encoding information) ) And controlling the second encoding of the concatenated information.
  • the plurality of uplink control information for example, UCI
  • a plurality of information obtained by the first encoding for example, the first encoding information
  • control unit 401 may perform the first encoding according to the type of uplink control information.
  • the plurality of uplink control information may have different types.
  • the first encoding may be diffusion processing.
  • control unit 401 may perform second encoding according to the length of concatenated information.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal or the like) based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates, for example, an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401. Further, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, when the downlink control signal notified from the radio base station 10 includes a UL grant, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the uplink signal to transmission / reception section 203.
  • the mapping unit 403 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 203.
  • the reception signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, or the like) transmitted from the radio base station 10.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception process to the control unit 401.
  • the received signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 performs measurement using the downlink reference signal transmitted from the radio base station 10.
  • the measuring unit 405 can be configured of a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 405 may measure the reception power (for example, RSRP), reception quality (for example, RSRQ, reception SINR) of received signals, downlink propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block is realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
  • a wireless base station, a user terminal, and the like in an embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 12 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is performed, for example, by causing a processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the processor 1001 performs an operation. Control, and control of reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may consist of one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be composed of
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • a radio frame may be configured with one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured with one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • the slot may be configured with one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.).
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be comprised of one or more symbols in the time domain. Minislots may also be referred to as subslots.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units.
  • radio resources frequency bandwidth usable in each user terminal, transmission power, etc.
  • the TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
  • a long TTI for example, a normal TTI, a subframe, etc.
  • a short TTI eg, a shortened TTI, etc.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be configured of one or more resource blocks, respectively. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB
  • the number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
  • the information, parameters, and the like described in the present specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by corresponding other information.
  • the radio resources may be indicated by a predetermined index.
  • the formulas etc. that use these parameters may differ from those explicitly disclosed herein.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed in other manners.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to what is explicitly performed, but implicitly (for example, by not notifying the predetermined information or another It may be performed by notification of information.
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein are used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell cell
  • cell group cell group
  • carrier carrier
  • component carrier component carrier
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head).
  • RRH Communication service can also be provided by Remote Radio Head.
  • the terms "cell” or “sector” refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • Node station Node station
  • NodeB NodeB
  • eNodeB eNodeB
  • access point access point
  • transmission point reception point
  • femtocell small cell, and so on.
  • the mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • the wordings such as "up” and “down” may be read as "side".
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the specific operation to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark),
  • the present invention may be applied to a system utilizing another appropriate wireless communication method of and / or an extended next generation system based on these.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using the designation "first,” “second,” etc. as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • connection As used herein, the terms “connected”, “coupled”, or any variation thereof are any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof.
  • connection may be read as "access”.
  • the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered “connected” or “coupled” to one another by using electromagnetic energy or the like having wavelengths in the region, microwave region and / or light (both visible and invisible) regions.
  • This present disclosure relates to joint coding of multiple uplink control information (UCI) for uplink (UL) control channel (short PUCCH (Physical Uplink Control Channel) or long PUCCH).
  • UCI uplink control information
  • UL uplink
  • short PUCCH Physical Uplink Control Channel
  • long PUCCH Physical Uplink Control Channel
  • the following two coding methods can be considered as a plurality of UCI coding methods.
  • UCI1 and UCI2 are multiplexed
  • UCI1 and UCI2 are independently encoded (first encoding)
  • first encoded UCI1 and UCI2 are joint encoded (second encoding) Do.
  • the UCI2 may also be spread independently, but it does not have to.
  • the spreading code may be a predetermined method. For example, a repetition code may be used as the spreading code.
  • UCI1 and UCI2 are joint encoded (second encoding).
  • second encoding it may be assumed that RM code is used up to 11 bits in total, and Polar code is used more than 11 bits. Also, a predetermined CRC may be added according to the number of bits.
  • [Configuration 1] Performing a first encoding on at least one of the plurality of uplink control information, concatenating a plurality of pieces of information obtained by the first encoding, and performing a second encoding of the concatenated information; A control unit to control And a transmitter configured to transmit information obtained by the second coding using an uplink control channel.
  • [Configuration 2] The user terminal according to Configuration 1, wherein the control unit performs the first encoding in accordance with a type of uplink control information.
  • [Configuration 3] The user terminal according to Configuration 1 or 2, wherein the plurality of uplink control information have different types.
  • [Configuration 4] The user terminal according to any one of configurations 1 to 3, characterized in that the first coding is spreading processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

複数の上りリンク制御情報を適切に送信する。ユーザ端末は、複数の上りリンク制御情報の少なくとも1つに対して第一符号化を行い、前記第一符号化によって得られる複数の情報を連結し、前記連結された情報の第二符号化を行うこと、を制御する制御部と、上りリンク制御チャネルを用いて、前記第二符号化によって得られた情報を送信する送信部と、を有する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、1msのサブフレーム(伝送時間間隔(TTI:Transmission Time Interval)等ともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末(UE:User Equipment)は、UL制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)又はULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)を用いて、上りリンク制御情報(UCI:Uplink Control Information)を送信する。当該UL制御チャネルの構成(フォーマット)は、PUCCHフォーマット等と呼ばれる。
 UCIは、スケジューリング要求(SR:Scheduling Request)、DLデータ(DLデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel))に対する再送制御情報(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge、ACK又はNACK(Negative ACK))、チャネル状態情報(CSI:Channel State Information)の少なくとも一つを含む。
 将来の無線通信システム(例えば、LTE Rel.14、15以降、5G、NRなど)では、既存のLTEシステム(例えば、LTE Rel.13以前)とは異なる構成(フォーマット)のUL制御チャネルを用いて、UCIを送信することが想定される。
 例えば、既存のLTEシステムで利用されるPUCCHフォーマットは、1msのサブフレーム単位で構成される。一方、将来の無線通信システムでは、既存のLTEシステムよりも短い期間(short duration)のUL制御チャネル(以下、ショートPUCCHともいう)をサポートすることが検討されている。また、当該ショートPUCCHよりの長い期間の(long duration)のUL制御チャネル(以下、ロングPUCCHともいう)をサポートすることも検討されている。
 また、複数の上りリンク制御情報が発生することが想定される。この場合、複数の上りリンク制御情報をどのように送信するかが問題となる。
 本発明はかかる点に鑑みてなされたものであり、複数の上りリンク制御情報を適切に送信可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本発明のユーザ端末の一態様は、複数の上りリンク制御情報の少なくとも1つに対して第一符号化を行い、前記第一符号化によって得られる複数の情報を連結し、前記連結された情報の第二符号化を行うこと、を制御する制御部と、上りリンク制御チャネルを用いて、前記第二符号化によって得られた情報を送信する送信部と、を有することを特徴とする。
 本発明によれば、複数の上りリンク制御情報を適切に送信できる。
図1A及び1Bは、ショートPUCCHとロングPUCCHの一例を示す図である。 将来の無線通信システムにおけるPUCCHフォーマットの一例を示す図である。 ショートPUCCHにおけるPUCCHリソースの割当ての一例を示す図である。 ショートPUCCHにおけるPUCCHリソースの割当ての他の例を示す図である。 ロングPUCCHにおけるPUCCHリソースの割当ての一例を示す図である。 複数のUCIの符号化の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(例えば、LTE Rel.15以降、5G、NRなど)では、UCIの送信に用いられるUL制御チャネル(例えば、PUCCH)用の構成(フォーマット、PUCCHフォーマット等ともいう)が検討されている。
 図1は、将来の無線通信システムにおけるPUCCHの一例を示す図である。図1Aでは、相対的に少ないシンボル数(期間(duration)、例えば、1~2シンボル)で構成されるPUCCH(ショートPUCCH)が示される。図1Bでは、ショートPUCCHよりも多いシンボル数(期間、例えば、4~14シンボル)で構成されるPUCCH(ロングPUCCH)が示される。
 図1Aに示すように、ショートPUCCHは、スロットの最後から所定数のシンボル(例えば、1~2シンボル)に配置されてもよい。なお、ショートPUCCHの配置シンボルは、スロットの最後に限られず、スロットの最初又は途中の所定数のシンボルであってもよい。また、ショートPUCCHは、一以上の周波数リソース(例えば、一以上の物理リソースブロック(PRB:Physical Resource Block))に配置される。なお、図1Aでは、連続するPRBにショートPUCCHが配置されるものとするが、非連続のPRBに配置されてもよい。
 また、ショートPUCCHは、スロット内でULデータチャネル(以下、PUSCHともいう)と時分割多重及び/又は周波数分割多重されてもよい。また、ショートPUCCHは、スロット内でDLデータチャネル(以下、PDSCHともいう)及び/又はDL制御チャネル(以下、PDCCH:Physical Downlink Control Channelともいう)と時分割多重及び/又は周波数分割多重されてもよい。
 ショートPUCCHでは、マルチキャリア波形(例えば、OFDM(Orthogonal Frequency Division Multiplexing)波形)が用いられてもよいし、シングルキャリア波形(例えば、DFT-s-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形)が用いられてもよい。
 一方、図1Bに示すように、ロングPUCCHは、ショートPUCCHよりも多い数のシンボル(例えば、4~14シンボル)に渡って配置される。図1Bでは、当該ロングPUCCHが、スロットの最初の所定数のシンボルには配置されないが、当該最初の所定数のシンボルに配置されてもよい。
 図1Bに示すように、ロングPUCCHは、パワーブースティング効果を得るため、ショートPUCCHよりも少ない数の周波数リソース(例えば、1又は2つのPRB)で構成されてもよいし、又は、ショートPUCCHと等しい数の周波数リソースで構成されてもよい。
 また、ロングPUCCHは、スロット内でPUSCHと周波数分割多重されてもよい。また、ロングPUCCHは、スロット内でPDCCHと時分割多重されてもよい。また、ロングPUCCHは、ショートPUCCHと同一のスロット内に配置されてもよい。ロングPUCCHでは、シングルキャリア波形(例えば、DFT-s-OFDM波形)が用いられてもよいし、マルチキャリア波形(例えば、OFDM波形)が用いられてもよい。
 また、図1Bに示すように、ロングPUCCHでは、スロット内の所定期間(例えば、ミニ(サブ)スロット)毎に周波数ホッピングが適用されてもよい。当該周波数ホッピングは、周波数ホッピングの前後で送信するシンボル数が等しくなるタイミング(例えば、スロット当たり14シンボルの場合、7シンボル)で行ってもよいし、前後のシンボル数が不均一となるタイミング(例えば、スロット当たり14シンボルの場合、前半は6シンボル、後半は8シンボルなど)で行ってもよい。
 図2は、将来の無線通信システムにおけるPUCCHフォーマットの一例を示す図である。図2では、PUCCHを構成するシンボル数及び/又はPUCCHを用いて送信されるUCIのビット数が異なる複数のPUCCHフォーマットが示される。なお、図2に示すPUCCHフォーマットは例示にすぎず、PUCCHフォーマット0~4の内容は図2に示すものに限られない。
 例えば、図2において、PUCCHフォーマット0は、2ビット以下(up to 2 bits)のUCI用のショートPUCCH(例えば、図1A)であり、シーケンスベース(sequence-based)ショートPUCCH等とも呼ばれる。当該ショートPUCCHは、1又は2シンボルで2ビット以下のUCI(例えば、HARQ-ACK及び/又はSR)を伝送(convey)する。
 PUCCHフォーマット1は、2ビット以下のUCI用のロングPUCCH(例えば、図1B)である。当該ロングPUCCHは、4~14シンボルで2ビット以下のUCIを伝送する。PUCCHフォーマット1では、複数のユーザ端末が、例えば、巡回シフト(CS)及び/又は直交拡散符号(OCC:Orthogonal Cover Code)を用いた時間領域(time-domain)のブロック拡散(block-wise spreading)により、同一のPRB内で符号分割多重(CDM)されてもよい。
 PUCCHフォーマット2は、2ビットを超える(more than 2 bits)UCI用のショートPUCCH(例えば、図1A)である。当該ショートPUCCHは、1又は2シンボルで2ビットを超えるUCIを伝送する。
 PUCCHフォーマット3は、2ビットを超えるUCI用ロングPUCCH(例えば、図1B)であり、同一PRB内で複数のユーザ端末が多重され得る。当該ロングPUCCHは、4~14シンボルで2ビットを超え、Nビットより小さい(又はNビット以下の)UCIを伝送する。PUCCHフォーマット3では、複数のユーザ端末が、CS及び/又はOCCを用いた時間領域のブロック拡散により、同一PRB内で符号分割多重されてもよい。或いは、複数のユーザ端末が、離散フーリエ変換(DFT)前の(周波数領域)のブロック拡散、周波数分割多重(FDM)、櫛の歯状のサブキャリア(Comb)の少なくとも一つを用いて多重されてもよい。
 なお、UCIのビット数の閾値Nは、3より大きい(又は3以上の)整数であればよく、仕様で定められてもよいし、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(例えば、MIB:Master Information Block)、システム情報(例えば、SIB:System Information Block、RMSI:Remaining Minimum System Informationなど)の少なくとも一つ)により設定されてもよい。
 PUCCHフォーマット4は、2ビットを超えるUCI用のロングPUCCH(例えば、図1B)であり、同一PRB内で単一のユーザ端末が多重される。当該ロングPUCCHは、Nビットより大きい(又はNビット以上の)UCIを伝送する。PUCCHフォーマット4では、複数のユーザ端末が同一PRB内に多重されない点で、PUCCHフォーマット3と異なる。
 このように、将来の無線通信システムでは、送信するUCIのビット数等に基づいて複数のPUCCHフォーマット(ショートPUCCH又はロングPUCCH)を適用してUCIの送信を行うことが想定されている。
 また、PUCCHを利用してUCIの送信を行う場合、UEはUCIを所定の上り制御チャネルのリソース(PUCCHリソースとも呼ぶ)に割当てて送信を行う。PUCCHリソースは、時間領域、周波数領域及び符号領域の少なくとも一つで特定されるリソースを指す。PUCCH送信に符号を利用しない場合には、周波数領域及び/又は時間領域でPUCCHリソースを特定することができる。もちろん、PUCCHリソースを指定する情報として他の情報を追加してもよい。
 PUCCHリソースの周波数領域は、所定のリソース単位(例えば、PRB単位)で設定される。PUCCHリソースの時間領域は、例えばスロットに含まれるシンボル単位、又はスロットとシンボル単位で設定される。基地局は、PRBとシンボルの組み合わせ、又はPRBとシンボルと符号情報の組み合わせをPUCCHリソースとしてUEに指定してもよい。
 ショートPUCCH(例えば、PUCCHフォーマット0)が2シンボルで設定される場合、各シンボルにそれぞれ割当てられるPUCCHリソースを利用してUCIの送信を行うことが考えられる(図3参照)。図3では、2シンボルのうち1シンボル目にPUCCHリソース#0を設け、2シンボル目にPUCCHリソース#1を設ける場合を示している。この場合、UEは複数(例えば、2個)のPUCCHリソースを利用してUCIの送信を行うことができる。なお、各シンボルのPUCCHリソースは、1PRBに限られず複数PRBで設定されてもよい。
 また、PUCCHフォーマット0より多くのビット数の送信に利用される他のショートPUCCH(例えば、PUCCHフォーマット2)では、より多くのPRBを利用してUCIの送信を行うことが考えられる。例えば、ショートPUCCHが1又は2シンボルで設定される場合、各シンボルにおいて連続又は非連続の複数PRBをPUCCHリソースとして設定することが考えられる(図4参照)。
 図4では、1シンボルで設定されるショートPUCCHにおいて非連続の4個のPRBを利用してPUCCHリソース(ここでは、PUCCHリソース#0-#3)が設定される場合を示している。各PUCCHリソースは、1PRBに限られず複数PRBで設定されてもよい。この場合、各PUCCHリソースを構成するPRBは、連続する複数PRB又は非連続のPRBを含む構成としてもよい。このように、PUCCHフォーマット2を利用する場合、UEは所定シンボルの複数PRBにそれぞれ設定される複数PUCCHリソースを利用してUCIの送信を行うことが考えられる。
 また、ロングPUCCH(例えば、PUCCHフォーマット1、3、4)では、既存システムのPUCCHと同様に、周波数方向にホッピングされるPUCCHリソースを利用してUCIの送信を行うことが考えられる(図1B参照)。
 既存のLTEシステムでは、UEに設定されるシステム帯域が共通であったため、PUCCHがシステム帯域の両端に配置されるように周波数ホッピングを適用している。一方で、将来の無線通信システムでは、全てのUEが共通のシステムバンドを利用して通信を行うのではなく、UE毎に通信に利用する周波数領域が個別に設定されることが検討されている。例えば、ULにおいて、高い性能を有するUEに相対的に広い第1の周波数帯域(BWP:Bandwidth part)が設定され、性能が高くないUEに第1のBWPより狭い第2のBWPが設定されることが考えられる。
 そのため、既存システムと同様に周波数ホッピングを適用し、UE毎に設定された周波数帯域の端部にPUCCHが配置されることになる。この場合、周波数帯域が異なるUEが多くなるにつれてシステム帯域の複数領域にPUCCHが配置され、リソースの利用効率が低下するおそれがある。
 各UEのPUCCHを柔軟に設定してリソースの利用効率を向上する観点からは、PUCCHの設定領域を必ずしも周波数帯域の端部に限定せずに柔軟に制御することが想定される。そのため、ロングPUCCHを利用する場合にも、周波数ホッピング前後で複数のPUCCHリソース(例えば、2個)を基地局が指定してUCIの送信を制御することが想定される(図5参照)。図5では、周波数ホッピングの前半と後半にそれぞれPUCCHリソース#0、#1が設定される場合を示している。
 UCIは、スケジューリング要求(SR:Scheduling Request)、DLデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel)に対する送達確認情報(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge、ACK又はNACK(Negative ACK)又はA/N等ともいう)、チャネル品質情報(CQI:Channel Quality Indicator)、ランク情報(RI:Rank Indicator)を含むチャネル状態情報(CSI:Channel State Information)、ビームインデックス情報(BI:Beam Index)、バッファステータスレポート(BSR:Buffer Status Report)の少なくとも一つを含んでもよい。
 2ビットを超える情報のためのPUCCH(ショート又はロングPUCCH)が、HARQ-ACK、CSI(CQI、RI、PMI、BI等)、SR、BSR等、異なる所要誤り率のUCIを送信することが想定される。
 また、複数のUCIの符号化方法として、ジョイント符号化(Joint coding)及びセパレート符号化(Separate coding)が考えられる。
・ジョイント符号化:複数のUCIを結合して符号化することによって、1つの符号化情報を生成する。例えば、ジョイント符号化は、複数のUCIを結合することによって結合情報を生成し、結合情報のCRCを算出し、結合情報にCRCを付加することによって符号化情報を生成する。この場合、複数のUCIのそれぞれにCRC(Cyclic Redundancy Check)を付加する必要がないため、CRCオーバーヘッドを抑えることができる。また、多重される複数のUCIのそれぞれの所要誤り率が異なる場合、ジョイント符号化は、多重されるUCIのうち最も低い所要誤り率を満たす必要がある。
・セパレート符号化:複数のUCIのそれぞれを符号化することによって、複数の符号化情報を生成する。例えば、セパレート符号化は、複数のUCIのそれぞれのCRCを算出し、各UCIに対応するCRCを付加することによって複数の符号化情報を生成する。この場合、各UCIにCRCを付加する必要があるため、CRCオーバーヘッドが大きい。また、複数のUCIのそれぞれの所要誤り率が異なる場合、セパレート符号化は、各UCIの所要誤り率を満たすように符号化する。各UCIの所要誤り率が異なる場合、各UCIに異なる長さのCRCが付加されてもよい。
 このように、1つのPUCCHを用いて複数のUCIを送信する場合、どのように符号化するかが問題となる。そこで、本発明者らは、複数のUCIに対する符号化方法を検討し、本発明に至った。
 以下、本実施の形態について詳細に説明する。
(態様)
 本態様において、UEは、複数のUCIのそれぞれに対し、UCIのタイプ(種類)に応じて符号化し、符号化によって得られた複数の情報をジョイント符号化する。
 例えば、1つのPUCCHを用いてUCI1とUCI2を送信する場合のUEの動作を説明する。UCI1及びUCI2は、互いに異なるタイプのUCIであってもよい。各UCIのタイプは、例えば、HARQ-ACK、CSI、CQI、RI、PMI、BI、SR、BSRの1つであってもよい。UCI1の所要誤り率とUCI2の所要誤り率とが、互いに異なっていてもよい。
 まず、UEは、UCI1及びUCI2のそれぞれに対し、UCIのタイプに応じた符号化(第一符号化)を行うことによって、第一符号化情報を生成する。次に、UEは、複数の第一符号化情報をジョイント符号化(第二の符号化)を行うことによって、第二符号化情報を生成する。次に、UEは、PUCCH(ショートPUCCH又はロングPUCCH)を用いて第二符号化情報を送信する。
 なお、UEは、1つのPUCCHを用いて3以上のUCIを送信してもよい。
 各UCIに対して独立に第一の符号化を行うことによって、各UCIの所要誤り率を独立に設定できる。また、第一の符号化及び第二の符号化を行うことによって、複数のUCIが異なる所要誤り率を有する場合であっても、ジョイント符号化を用いることができる。また、各UCIにCRCを付加する必要がないため、PUCCHリソースの利用効率を高め、UEの負荷を抑えることができる。
 この符号化方法の具体例について、図6を用いて説明する。
 UCI1のタイプがHARQ-ACKであり、所要BERが10^(-3)であり、UCI2のタイプがCSIであり、所要BERが10^(-2)であることを想定する。また、UCI1が{1,0}であり、UCI2が{1,0,0,1,0,1,1}であるとする。
 第一の符号化は、拡散処理であってもよい。拡散処理は、繰り返し符号(反復符号、Repetition code)を用いてもよい。例えば、UCI1に対する第一の符号化は、繰り返し符号を用いて10倍の符号長に拡散する。その結果、UCI1から得られる第一符号化情報UCI1’は、{(1,1,1,1,1,1,1,1,1,1),(0,0,0,0,0,0,0,0,0,0)}である。拡散処理は、所定の拡散符号を乗ずることによってUCIを拡散(変調)してもよい。
 例えば、UCI2に対する第一の符号化は、UCI2を処理しない。その結果、UCI2から得られる第一符号化情報UCI2’は、UCI2と同じ{1,0,0,1,0,1,1}である。
 このように、複数のUCIにそれぞれ対応する複数の第一符号化のいずれかは、UCIを処理しなくてもよい。また、複数のUCIのうち最も所要誤り率の高いUCIの第一符号化は、UCIを処理しなくてもよい。また、UCI2に対し、UCI1と異なる第一の符号化が行われてもよい。UCI2に対する第一の符号化は、UCI1と異なる拡散率の拡散であってもよい。
 第二の符号化は、UCI1’及びUCI2’のジョイント符号化である。例えば、第二の符号化は、UCI1’及びUCI2’を連結する(concatenate)ことによって連結情報を生成し、所定の符号化方法を用いて連結情報を符号化することによって第二符号化情報を生成する。所定の符号化方法は、RM符号(Reed-Muller code)であってもよいし、Polar符号であってもよい。また、UEは、連結情報長(ビット数)が11ビット以下である場合の符号化方法としてRM符号を用い、連結情報長が11ビットを超える場合の符号化方法としてPolar符号を用いてもよい。
 更に、UEは、第二符号化情報に対し、第二符号化情報長に応じた長さのCRCを算出し、第二符号化情報にCRCを付加してもよい。第二の符号化がCRCの付加を含んでもよい。UEは、第二符号化情報にCRCを付加しなくてもよい。
 各UCIの所要誤り率に基づいて、第一の符号化及び/又は第二の符号化の符号化率が決定されてもよい。図6の例において、UCI1に対する第一の符号化と、第二の符号化と、によって、UCI1は所要誤り率を満たす。第二の符号化によって、UCI2は所要誤り率を満たす。したがって、UCI1及びUCI2に対して異なる所要誤り率を実現できる。
 UEは、発生したUCIの種類に応じて第一の符号化及び/又は第二の符号化を決定してもよい。PUCCHの送信タイミングによって、送信すべきUCIのタイプ及び数は異なるため、UCIに応じた所要誤り率を実現できる。UCIの種類と第一の符号化及び/又は第二の符号化との関連付けが、上位レイヤシグナリング、ブロードキャスト情報などを用いて無線基地局からUEに設定されてもよいし、仕様で定義されてもよい。
 複数のUCIのそれぞれ異なる処理を行い、処理結果をジョイント符号化することによって、各UCIに独立して誤り率を設定できると共に、PUCCHリソースを有効に利用できる。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図7は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置は、図に示すものに限られない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)が適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、セル内及び/又はセル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、例えば、ある信号の送受信に適用される通信パラメータ(例えば、サブキャリア間隔、帯域幅など)のことをいう。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図8は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図9は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成、マッピング部303による信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304による信号の受信処理、測定部305による信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH、EPDCCH、NR-PDCCHで伝送される信号)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号(例えば、送達確認情報など)、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号)、PRACHで送信されるランダムアクセスプリアンブル、上り参照信号などのスケジューリングを制御する。
 制御部301は、UCIの送信に利用するPUCCHリソースをUEに通知するように制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、上記した所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))、上り伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図10は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、上りリンク制御チャネル(例えば、ショートPUCCH又はロングPUCCH)を用いて、第二符号化によって得られた情報(例えば、第二符号化情報)を送信してもよい。
 図11は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成、マッピング部403による信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404による信号の受信処理、測定部405による信号の測定などを制御する。
 また、制御部401は、複数の上りリンク制御情報(例えば、UCI)の少なくとも1つに対して第一符号化を行い、第一符号化によって得られる複数の情報(例えば、第一符号化情報)を連結し、連結された情報の第二符号化を行うこと、を制御してもよい。
 また、制御部401は、上りリンク制御情報の種類に応じて第一符号化を行ってもよい。
 また、複数の上りリンク制御情報は、互いに異なる種類を有してもよい。
 また、第一符号化は、拡散処理であってもよい。
 また、制御部401は、連結された情報の長さに応じた第二符号化を行ってもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、無線基地局10から送信された下り参照信号を用いて測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、受信SINR)、下り伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
(付記)
 以下、本開示の補足事項について付記する。
 この本開示は、上りリンク(UL)制御チャネル(ショートPUCCH(Physical Uplink Control Channel)又はロングPUCCH)のための複数の上りリンク制御情報(UCI:Uplink Control Information)のジョイント符号化(Joint coding)に関する。
(背景・課題)
 2ビットを超える情報のためのショート又はロングPUCCHは、HARQ-ACK、CSI(CQI、RI、PMI、BI等)、SR等、異なる所要誤り率のUCIを同時に送信する。
 複数のUCIの符号化方法として、次の2つの符号化方法が考えられる。
・ジョイント符号化:それぞれのUCIにCRC(Cyclic Redundancy Check)を付けなくていいが、多重される複数のUCIのそれぞれの所要誤り率が異なるので、多重されるUCIのうち所要誤り率の低いほうの誤り率を満たさなければならない。
・セパレート符号化(Separate coding):それぞれのUCIにCRCを付けなくてはならないので、CRCオーバーヘッドが大きい。
(提案)
 UCIのタイプに応じて、複数のUCIをそれぞれ独立に符号化したのち、それらをジョイント符号化する。
 例えば、UCI1とUCI2を多重する場合、UCI1とUCI2をそれぞれ独立に符号化(第一の符号化)したのち、第一の符号化されたUCI1とUCI2をジョイント符号化(第二の符号化)する。
 UCI1とUCI2の誤り率をそれぞれ独立に設定可能なので、所要誤り率の異なる複数のUCIをジョイント符号化できる(CRCをそれぞれ独立につける必要なく、効率的に多重できる)。
(実施例)
 例えば、UCI1がHARK-ACK(所要BER=10^(-3))、UCI2がCSI(所要BER=10^(-2))を想定する。
 図6に示すように、第一の符号化において、UCI1={1,0}を10倍に拡散する。拡散後のUCI1は、例えば、{(1,1,1,1,1,1,1,1,1,1),(0,0,0,0,0,0,0,0,0,0)}である。
 UCI2も独立に拡散してもいいが、しなくてもいい。拡散符号は、所定の方法としてもいい。拡散符号としては、例えば繰り返し符号を用いてもいい。
 第一の符号化後のUCI1とUCI2を合成したのち、UCI1とUCI2をジョイント符号化(第二の符号化)する。ジョイント符号化方法として、合計のビット数が11ビットまではRM符号、それ以上ならPolar符号を用いると想定してもいい。また、ビット数に応じて所定のCRCを付加してもいい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
[構成1]
 複数の上りリンク制御情報の少なくとも1つに対して第一符号化を行い、前記第一符号化によって得られる複数の情報を連結し、前記連結された情報の第二符号化を行うこと、を制御する制御部と、
 上りリンク制御チャネルを用いて、前記第二符号化によって得られた情報を送信する送信部と、を有することを特徴とするユーザ端末。
[構成2]
 前記制御部は、上りリンク制御情報の種類に応じて前記第一符号化を行うことを特徴とする構成1に記載のユーザ端末。
[構成3]
 前記複数の上りリンク制御情報は、互いに異なる種類を有することを特徴とする構成1又は2に記載のユーザ端末。
[構成4]
 前記第一符号化は、拡散処理であることを特徴とする構成1から構成3のいずれかに記載のユーザ端末。
[構成5]
 前記制御部は、前記連結された情報の長さに応じた第二符号化を行うことを特徴とする構成1から構成4のいずれかに記載のユーザ端末。
[構成6]
 複数の上りリンク制御情報の少なくとも1つに対して第一符号化を行い、前記第一符号化によって得られる複数の情報を連結し、前記連結された情報の第二符号化を行うこと、を制御する工程と、
 上りリンク制御チャネルを用いて、前記第二符号化によって得られた情報を送信する工程と、を有することを特徴とするユーザ端末の無線通信方法。
 本出願は、2017年10月11日出願の特願2017-208620に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  複数の上りリンク制御情報の少なくとも1つに対して第一符号化を行い、前記第一符号化によって得られる複数の情報を連結し、前記連結された情報の第二符号化を行うこと、を制御する制御部と、
     上りリンク制御チャネルを用いて、前記第二符号化によって得られた情報を送信する送信部と、を有することを特徴とするユーザ端末。
  2.  前記制御部は、上りリンク制御情報の種類に応じて前記第一符号化を行うことを特徴とする請求項1に記載のユーザ端末。
  3.  前記複数の上りリンク制御情報は、互いに異なる種類を有することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記第一符号化は、拡散処理であることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、前記連結された情報の長さに応じた第二符号化を行うことを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  複数の上りリンク制御情報の少なくとも1つに対して第一符号化を行い、前記第一符号化によって得られる複数の情報を連結し、前記連結された情報の第二符号化を行うこと、を制御する工程と、
     上りリンク制御チャネルを用いて、前記第二符号化によって得られた情報を送信する工程と、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2018/037598 2017-10-11 2018-10-09 ユーザ端末及び無線通信方法 WO2019073969A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/754,928 US20200296714A1 (en) 2017-10-11 2018-10-09 User terminal and radio communication method
EP18866564.0A EP3697002B1 (en) 2017-10-11 2018-10-09 User equipment and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017208620 2017-10-11
JP2017-208620 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019073969A1 true WO2019073969A1 (ja) 2019-04-18

Family

ID=66100895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037598 WO2019073969A1 (ja) 2017-10-11 2018-10-09 ユーザ端末及び無線通信方法

Country Status (3)

Country Link
US (1) US20200296714A1 (ja)
EP (1) EP3697002B1 (ja)
WO (1) WO2019073969A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120082157A1 (en) * 2010-10-02 2012-04-05 Sharp Laboratories Of America, Inc. Uplink control information multiplexing on the physical uplink control channel for lte-a
JP2014208620A (ja) 2013-03-25 2014-11-06 株式会社漢方医科学研究所 抗肥満剤
JP2015092716A (ja) * 2010-01-08 2015-05-14 インターデイジタル パテント ホールディングス インコーポレイテッド 複数キャリアのチャネル状態情報の伝送

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10178651B2 (en) * 2012-05-11 2019-01-08 Blackberry Limited Method and system for uplink HARQ and CSI multiplexing for carrier aggregation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092716A (ja) * 2010-01-08 2015-05-14 インターデイジタル パテント ホールディングス インコーポレイテッド 複数キャリアのチャネル状態情報の伝送
US20120082157A1 (en) * 2010-10-02 2012-04-05 Sharp Laboratories Of America, Inc. Uplink control information multiplexing on the physical uplink control channel for lte-a
JP2014208620A (ja) 2013-03-25 2014-11-06 株式会社漢方医科学研究所 抗肥満剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
LG ELECTRONICS: "Performance of ACK/NACK sub-code in joint coding on PUCCH for extended CP", 3GPP TSG-RAN WG1#52B R1-081264, 26 March 2008 (2008-03-26), pages 1 - 7, XP050109705 *
See also references of EP3697002A4

Also Published As

Publication number Publication date
US20200296714A1 (en) 2020-09-17
EP3697002A4 (en) 2021-07-07
EP3697002B1 (en) 2024-06-05
EP3697002A1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP7269164B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019130521A1 (ja) ユーザ端末及び無線通信方法
WO2019159300A1 (ja) ユーザ端末及び無線通信方法
WO2019130522A1 (ja) 無線基地局及び無線通信方法
WO2019097646A1 (ja) ユーザ端末及び無線通信方法
JP7183260B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7121031B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019021486A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2019038832A1 (ja) ユーザ端末及び無線通信方法
WO2019016953A1 (ja) ユーザ端末及び無線通信方法
WO2019163111A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2019155587A1 (ja) ユーザ端末及び無線通信方法
WO2019097638A1 (ja) ユーザ端末及び無線通信方法
WO2019064569A1 (ja) ユーザ端末及び無線通信方法
WO2019077727A1 (ja) ユーザ端末及び無線通信方法
WO2019064549A1 (ja) ユーザ端末及び無線通信方法
WO2019021487A1 (ja) ユーザ端末及び無線通信方法
WO2019069465A1 (ja) ユーザ端末及び無線通信方法
WO2019107239A1 (ja) ユーザ端末及び無線通信方法
JP7108021B2 (ja) 端末、基地局、無線通信方法及びシステム
JP7293134B2 (ja) 端末、無線通信方法、基地局及びシステム
US11647484B2 (en) User terminal and radio communication method
WO2019130498A1 (ja) 基地局及び無線通信方法
WO2019159299A1 (ja) ユーザ端末及び無線通信方法
WO2019064582A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018866564

Country of ref document: EP

Effective date: 20200511

NENP Non-entry into the national phase

Ref country code: JP