WO2019073769A1 - Intake air cooling system - Google Patents
Intake air cooling system Download PDFInfo
- Publication number
- WO2019073769A1 WO2019073769A1 PCT/JP2018/034728 JP2018034728W WO2019073769A1 WO 2019073769 A1 WO2019073769 A1 WO 2019073769A1 JP 2018034728 W JP2018034728 W JP 2018034728W WO 2019073769 A1 WO2019073769 A1 WO 2019073769A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- intake air
- intake
- refrigerant
- passage
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present disclosure relates to an intake air cooling system.
- a cooling system for an internal combustion engine described in Patent Document 1 includes a water-cooled intercooler for cooling intake air, an air conditioning device for regulating air in a vehicle cabin, and heat between the water-cooling intercooler and the air conditioning device.
- a radiator for replacement and an ECU for controlling heat exchange operation are provided.
- the coolant circulating in the evaporator included in the air conditioning apparatus is also sent to the side of the radiator connected to the water cooling intercooler, whereby the cooling water circulating in the radiator is cooled. That is, the intake air temperature is optimally controlled by controlling the amount of refrigerant introduced to the intake air cooling side and the air adjustment side using the refrigeration cycle of the air conditioner for the passenger compartment.
- An object of the present disclosure is to provide an intake air cooling system capable of improving intake air cooling efficiency.
- the intake air cooling system of the present disclosure is an intake air cooling system that is used for an internal combustion engine of a vehicle and cools intake air via a refrigeration cycle unit provided in a vehicle air conditioner that performs air conditioning in a vehicle compartment.
- the intake air cooling system includes a variable compressor, a casing cooling heat exchanger, a casing cooling decompression unit, a casing cooling evaporator, an intake cooling evaporator, an intake cooling heat exchanger, And a control unit.
- the variable compressor has a variable output, and compresses and discharges the refrigerant.
- the casing cooling heat exchanger cools the refrigerant discharged from the variable compressor.
- the casing cooling decompression unit decompresses and expands the refrigerant flowing out of the casing cooling heat exchanger.
- the casing cooling evaporator is disposed for casing cooling, and evaporates the refrigerant decompressed and expanded by the casing cooling decompression unit.
- the intake air cooling evaporator is disposed separately from the cabin cooling evaporator, and evaporates the refrigerant that has been decompressed and expanded by the cabin cooling decompression unit or the other decompression units.
- the intake air cooling heat exchanger is provided in the intake passage, and a refrigerant for intake air cooling circulates.
- the control unit controls the operation of the variable compressor based on the air conditioning request cooling output of the vehicle air conditioner.
- the configuration of the present disclosure it is possible to operate the refrigeration cycle unit with high efficiency by changing the output of the variable compressor according to the air conditioning required cooling output of the vehicle air conditioner with the variable compressor capable of changing the output. It is possible to Then, the intake air cooling is performed by the intake air cooling evaporator disposed separately from the casing cooling evaporator, and the intake air cooling efficiency can be improved.
- the casing cooling evaporator and the intake cooling evaporator are disposed in parallel and a refrigerant amount adjusting valve is provided to adjust the amount of refrigerant flowing into each evaporator, the refrigerant flowing into each evaporator The amount can be adjusted, and the amount of cooling in each of the casing cooling and the intake air cooling can be controlled independently.
- FIG. 1 is a view conceptually showing an intake air cooling system of a first embodiment
- FIG. 2 is a view conceptually showing an intake air cooling system of a second embodiment
- FIG. 3 is a flowchart for explaining the process executed by the control unit.
- FIG. 4 is a diagram showing changes in the compressor output and the stored cold amount over time, the graph shown on the upper side shows the compressor output, and the graph shown on the lower side shows the stored cold amount.
- FIG. 5 is a diagram conceptually showing an intake air cooling system of a third embodiment
- FIG. 6 is a diagram conceptually showing an intake air cooling system of a fourth embodiment
- FIG. 1 is a view conceptually showing an intake air cooling system of a first embodiment
- FIG. 2 is a view conceptually showing an intake air cooling system of a second embodiment
- FIG. 3 is a flowchart for explaining the process executed by the control unit.
- FIG. 4 is a diagram showing changes in the compressor output and the stored cold amount over time, the graph shown on the upper side shows the compressor
- FIG. 7 is a flowchart for explaining the process executed by the control unit.
- FIG. 8 is a diagram showing changes in the compressor output and the cabin air conditioner exhaust temperature over time, the graph shown on the upper side shows the compressor output, and the graph shown on the lower side shows the cabin air conditioner exhaust temperature
- FIG. 9 is a diagram conceptually showing an intake air cooling system of a fifth embodiment
- FIG. 10 is a diagram conceptually showing an intake air cooling system of a sixth embodiment
- FIG. 11 is a diagram conceptually showing an intake air cooling system of a seventh embodiment
- FIG. 12 is a diagram conceptually showing an intake air cooling system of the eighth embodiment.
- the intake air cooling system 101 is a system for cooling the intake air of an internal combustion engine 10 of a vehicle via a refrigeration cycle unit 30 provided in a vehicle air conditioner.
- the “intake” is, in other words, the gas drawn into the combustion chamber 12.
- the internal combustion engine 10 is, for example, a diesel engine in which a fuel such as light oil is directly injected into the combustion chamber 12.
- a fuel such as light oil
- the fuel injection valve 14 injects fuel in the vicinity of the piston 13 in the cylinder 11 reaching the top dead center
- the mixture of air and fuel supplied from the intake port 15 is self-ignited in the combustion chamber 12 to cause combustion.
- the explosive force at the time of combustion causes the piston 13 to reciprocate, and the reciprocating motion of the piston 13 is converted to rotational movement of a crankshaft (not shown) via the connecting rod 16.
- the burnt gas generated by the combustion is released to the atmosphere via the exhaust passage.
- An electronic control unit (hereinafter referred to as "ECU") 20 as a control unit is constituted by a microcomputer not shown including CPU, ROM, RAM, input / output port, etc., and signals from various sensors attached to each part Is input.
- the ECU 20 controls the operating state of the internal combustion engine 10 based on detection signals from these various sensors. Further, the ECU 20 is electrically connected to various devices such as a compressor 31, a flow rate adjustment valve 33, expansion valves 34, 36, and other sensors including an air conditioning temperature sensor 38, which will be described later. Function and control each device.
- the refrigeration cycle unit 30 is a vapor compression type refrigerator that exhibits refrigeration capacity by evaporating a refrigerant.
- the refrigeration cycle unit 30 includes a compressor 31, a condenser 32, a flow control valve 33, a casing cooling expansion valve 34, a casing cooling evaporator 35, an intake cooling expansion valve 36, an intake cooling evaporator 37, a refrigerant passage 39, and the like.
- the compressor 31 is a variable compressor that is connected to an electric motor (not shown), has a variable output, and compresses and discharges the refrigerant flowing in the refrigeration cycle unit 30.
- the variable compressor is, for example, an electric compressor, a variable displacement compressor, or the like.
- the casing cooling expansion valve 34 and the casing cooling evaporator 35, and the suction cooling expansion valve 36 and the suction cooling evaporator 37 are arranged in parallel to the compressor 31.
- An air conditioning temperature sensor 38 is used to measure the temperature of the air that is cooled by the cabin cooling evaporator 35 and sent to the cabin (hereinafter referred to as “cabin air conditioner exhaust temperature”).
- the air conditioning temperature sensor 38 is provided in a passage from the evaporator 35 for casing cooling to a vent opening to the casing.
- the flow rate adjustment valve 33 as the refrigerant amount adjustment valve can adjust the ratio of the refrigerant flow rate to the casing cooling expansion valve 34 and the refrigerant flow rate to the intake cooling expansion valve 36 by adjusting a valve body (not shown).
- the refrigeration cycle unit 30 compresses the gas cooling refrigerant by compression with the compressor 31 and heats up and condenses it by the condenser 32 to make it a liquid, and decompresses and expands the liquid cooling refrigerant by the expansion valves 34 and 36 and partially Are evaporated, and the remainder is evaporated and evaporated by the evaporators 35 and 37.
- the casing cooling evaporator 35 is provided at a position in contact with the casing air. When the cooling refrigerant is evaporated by the casing cooling evaporator 35, the surrounding casing air is cooled.
- the internal combustion engine 10 is provided with a supercharger 45 including a turbine 42 provided in the exhaust passage 41 and a compressor 44 provided in the suction passage 43.
- the fresh air compressed by the compressor 44 is drawn into the combustion chamber 12 through the charge cooler 46 and the intake passage 47.
- a heat exchanger 48 and an exhaust treatment catalyst 49 are provided downstream of the turbine in the exhaust passage 41.
- An EGR passage 51 is provided between the exhaust passage 41 and the suction passage 43.
- the EGR passage 51 performs exhaust gas recirculation (Exhaust Gas Recirculation) in which part of the exhaust gas from the exhaust passage 41 is returned to the suction passage 43 and circulated again.
- the gas in the EGR passage 51 (hereinafter referred to as “EGR gas”) is returned to the suction passage 43 through the EGR cooler 52 and the EGR valve 53.
- the intake air cooling heat exchanger 61 is provided in the intake passage 47 on the downstream side of the joining point of the intake passage 43 and the EGR passage 51. Therefore, the intake air to be cooled is a gas in which the fresh air and the EGR gas are mixed.
- the intake air cooling evaporator 37 described above is connected to the downstream of the intake air cooling heat exchanger 61.
- the intake air flows downstream in the intake passage 47 and is cooled by the intake air cooling heat exchanger 61.
- the cooling water in the intake air cooling heat exchanger 61 is sent to the intake air cooling evaporator 37 by the water pump 71 and cooled, and is returned again to the intake air cooling heat exchanger 61. That is, the cooling water connects the intake air cooling evaporator 37 and the intake air cooling heat exchanger 61 and circulates in the annular cooling water passage 72.
- the intake air cooling system 101 is comprised by each apparatus provided in order to cool intake air as it explained in full detail above, ECU20 as a control part, the refrigerating cycle part 30, and the heat exchanger 61 for intake air cooling. And a variety of pipes, passages, etc. that connect them.
- the cabin cooling evaporator 35 and the intake air cooling evaporator 37 are arranged in parallel to make two systems of the cooling function and to change the output.
- the compressor 31 is provided.
- the amount of refrigerant flowing into the evaporators 35 and 37 can be adjusted by the flow rate adjustment valve 33, and the amount of cooling in the casing cooling and the intake air cooling can be controlled independently.
- an intake air cooling system 102 according to a second embodiment will be described with reference to FIG.
- the second embodiment is different from the intake air cooling system 101 according to the first embodiment in that a heat storage material 62 is provided in a heat exchanger 61 for intake air cooling.
- a latent heat storage material can be used as the storage material 62.
- the cool storage material 62 is provided with a cool storage material temperature sensor 63 for detecting the temperature of the cool storage material.
- the latent heat storage material is made of a material that stores cold using latent heat at the time of phase change, such as paraffin.
- the melting point of the material is preferably as low as possible, but if the temperature is 0 ° C. or less, it may freeze when water contained in the intake air condenses. Therefore, as a regenerator material, a material having a melting point as low as possible as 0 ° C. or more is desirable. Specifically, normal tetradecane which is a kind of paraffin and has a melting point of 5.9 ° C. can be adopted.
- step 1 the step is abbreviated as “S”.
- S the step is abbreviated as “S”.
- the measurement of the amount of cold storage is performed by estimating from the detection temperature detected by the cold storage material temperature sensor 63 provided in the cold storage material 62.
- the cold storage material 62 is, for example, phase-changed between liquid and solid, the amount of cold storage is maximum when the liquid is completely solid, and thereafter the temperature of the cold storage material 62 decreases.
- the cold storage amount is zero, and thereafter the temperature of the cold storage material 62 rises. Therefore, the amount of cold storage can be estimated from the temperature change of the cold storage material 62.
- the flow rate of refrigerant to the evaporators 35 and 37 is controlled.
- the flow control valve 33 is controlled such that the flow rate of the refrigerant satisfying the required output of the air conditioner is caused to flow to the evaporator 35 side.
- the required output of the air conditioner that is, the “required air conditioning cooling output” is determined based on a map which is predetermined and stored in the ECU 20 according to various conditions such as the set temperature operated by the user and the air volume mode and other outside air temperatures. Ru.
- FIG. 4 is a diagram showing changes in the compressor output and the stored cold amount over time, and the graph shown on the upper side shows the compressor output, and the graph shown on the lower side shows the stored cold amount. As shown in FIG. 4, from the time T0 to T1, the amount of stored cold is not 100%, so the compressor 31 is operated at an operating point where the coefficient of performance COP is maximum. In this state, casing cooling, intake air cooling, and cool storage to cool storage material 62 are performed.
- the output of the compressor 31 is controlled at S5 in accordance with the required output of the vehicle air conditioner.
- the flow control valve 33 is controlled so that all the refrigerant flows into the evaporator 35 side. As shown at times T1 to T2 in FIG. 4, since the intake air cooling during this time is performed by the cold air stored in the cold storage material 62, the cold storage amount decreases.
- the cold storage amount is measured again, and at S8, it is determined whether the cold storage amount is less than a predetermined lower limit value M.
- the lower limit value M is appropriately set to, for example, 10% of the maximum cold storage amount.
- the present control process is ended. Since the control process shown in FIG. 3 is repeatedly executed, the processes of S1 to S4 are repeated again when the cold storage amount is below the predetermined lower limit value M. That is, as indicated by T2 to T3 in FIG. 4, the compressor 31 is operated at an operating point at which the coefficient of performance COP becomes maximum until the amount of cold storage to the cold storage material 62 becomes maximum.
- the compressor 31 As the compressor 31 is operated at high output, the coefficient of performance COP becomes higher and the cooling efficiency becomes higher.
- the cool storage material 62 can be provided in the heat exchanger 61 for intake air cooling, and the cool output can be stored in the cool storage material 62. Then, for example, as shown at time T0 to T1 and T2 to T3 in FIG. 4, in addition to the output of the compartment cooling and the output of the intake cooling, the output of the cold storage is added, so the compressor 31 has a high output It is possible to operate with high cooling efficiency.
- the latent heat type is used as the cold storage material 62 instead of the sensible heat type, the cold storage capacity can be large and the cold storage can be efficiently performed as compared with the sensible heat type.
- the cold storage amount is provided with the lower limit value M, and as shown at time T2 in FIG. 4, the cold storage is started again without using the cold storage amount.
- the cooling delay of the transition period of the intake air cooling For example, in a hybrid engine or the like, there are times when the engine is stopped during operation, and when intake cooling is performed again thereafter, there may be a delay in cooling after the engine starts operation. If a cooling delay occurs, the efficiency will deteriorate, such as the fuel efficiency will deteriorate. In that respect, if the cold storage material 62 is provided, intake cooling can be started promptly by the amount of cold storage, and cooling delay at the time of a sudden load increase can be eliminated.
- the third embodiment differs from the intake air cooling system 101 of the first embodiment in that the intake air cooling evaporator 37 doubles as the intake air cooling heat exchanger 61 (see FIG. 2). Along with this, in the third embodiment, the water pump 71 and the cooling water passage 72 are not provided.
- the intake air is cooled by the cooling refrigerant flowing in the intake air cooling evaporator 37.
- the same effects as those of the first embodiment can be obtained.
- the intake air cooling evaporator 37 doubles as the intake air cooling heat exchanger, the apparatus configuration can be simplified.
- an intake air cooling system 104 according to a fourth embodiment will be described with reference to FIG.
- the fourth embodiment differs from the intake cooling system 102 of the second embodiment in the form of the intake passage.
- the intake passage 43 has an intake bypass passage 54 and a cooling passage 55 parallel to each other on the downstream side of the junction with the EGR passage 51.
- the intake bypass passage 54 and the cooling passage 55 are passages that the intake manifold 56 has.
- An intake amount adjustment valve 57 is provided at a branch point between the intake bypass passage 54 and the cooling passage 55. The intake amount adjustment valve 57 adjusts the bypass intake amount flowing into the intake bypass passage 54.
- An intake air temperature sensor 58 for detecting the temperature of intake air is provided downstream of the junction of the intake air bypass passage 54 and the cooling passage 55.
- the intake air temperature sensor 58 corresponds to an “intake air temperature detection unit”.
- the ECU 20 controls the intake amount adjustment valve 57 based on the “intake-request required cooling output” determined in accordance with the operating state of the internal combustion engine 10. “Determined according to the operating state of the internal combustion engine 10” means that it is determined by a map that the ECU 20 has in advance, based on parameters such as the engine speed, the outside air temperature, the coolant temperature, and the load.
- the ECU 20 When the intake air temperature detected by the intake air temperature sensor 58 is higher than the "intake air reference temperature" determined according to the operating state of the internal combustion engine 10, the ECU 20 bypasses the intake air cooling heat exchanger 61 to perform intake air bypass. The bypass intake amount flowing into the passage 54 is reduced. On the other hand, when the intake air temperature detected by the intake air temperature sensor 58 is lower than the intake air reference temperature, the bypass intake air amount flowing into the intake bypass passage 54 is increased.
- the intake air temperature detected by the intake air temperature sensor 58 can be controlled to an optimum temperature.
- the optimum temperature is, for example, the temperature at which the fuel efficiency is the best, and the temperature at which the emission can be reduced.
- the air conditioning temperature sensor 38 measures the temperature of air discharged from the passenger compartment.
- step 12 it is determined whether the vehicle interior air conditioner discharge temperature is equal to or lower than the air conditioning required temperature.
- the “air conditioning required temperature” is, for example, a set temperature of the air conditioning set by the user's operation.
- the flow rate adjustment valve 33 is controlled to flow all the refrigerant into the intake air cooling evaporator 37 in S13. This means that if the cabin air conditioner discharge temperature is equal to or lower than the air conditioning required temperature, that the cooling output of the cabin cooling evaporator 35 is already sufficient, all the refrigerant is made to flow into the intake air cooling evaporator 37 To increase the intake air cooling output. As shown at times T4 to T5 and the like in FIG. 8, intake air cooling and cold storage are performed during this time.
- the cabin air conditioner discharge temperature is not lower than the air conditioning required temperature, that is, higher than the air conditioning required temperature, it means that the cooling output of the air conditioning is insufficient.
- the flow control valve 33 is controlled to flow into the evaporator 35. During this time, as shown in FIG. 8, the intake air cooling is performed by the cool storage material 62 from time T5 to T6, and depending on the compressor output, only the casing cooling is performed. After S13 and S14, the control process ends. The control routine is repeatedly executed.
- the cooling efficiency when the other expansion valve is opened is reduced, resulting in the reduction of the total cooling efficiency.
- the cooling efficiency can be improved.
- the intake air cooling and the casing cooling are not performed simultaneously, it is not necessary to stack the output, and the maximum output amount can be reduced, so the size of the compressor 31 can be reduced.
- an intake air cooling system 105 differs from the intake air cooling system 104 of the fourth embodiment shown in FIG. 6 in the form of the refrigeration cycle unit.
- the configuration other than the refrigeration cycle unit 50 is the same as that of the fourth embodiment, so the description will be omitted.
- the refrigeration cycle unit 50 of the intake air cooling system 105 includes a compressor 31, a condenser 32, a casing cooling expansion valve 34, a casing cooling evaporator 35, an intake cooling evaporator 37, and a refrigerant passage 39. .
- the casing cooling evaporator 35 and the suction air cooling evaporator 37 are arranged in series. Moreover, only one expansion valve is provided with respect to the second embodiment.
- the ECU 20 controls the amount of bypass intake air passing through the intake bypass passage 54 to increase as the required output of the cabin air conditioner increases. As the bypass intake air amount is larger, the amount of cooling in the intake air cooling evaporator 37 is reduced, the amount of cooling in the casing cooling evaporator 35 is increased, and the cooling output of the casing air conditioner can be improved.
- the number of the expansion valves 34 may be one as compared with the case where they are arranged in parallel, and the apparatus configuration can be simplified.
- an intake air cooling system 106 of a sixth embodiment will be described with reference to FIG.
- the sixth embodiment is different from the intake air cooling system 105 of the fifth embodiment in that the intake air cooling evaporator bypass passage 65 and the first switching valve 66 are provided, but the intake air bypass passage 54 is not provided.
- the intake air cooling evaporator bypass passage 65 bypasses the intake air cooling evaporator 37 from the downstream side of the expansion valve 34 and connects up to the upstream of the passenger room cooling evaporator 35.
- the first switching valve 66 is provided at a branch point between the refrigerant passage 39 and the intake air cooling evaporator bypass passage 65. The first switching valve 66 switches the passage through which the refrigerant passes between the intake air cooling evaporator bypass passage 65 and the passage passing the intake air cooling evaporator 37.
- the intake air cooling evaporator bypass passage 65 and the first switching valve 66 constitute an “intake air cooling evaporator bypass portion”.
- the ECU 20 controls whether the refrigerant is caused to flow through the intake air cooling evaporator 37 by switching the first switching valve 66 in accordance with the required output of the vehicle compartment air conditioner. For example, when the required output of the cabin air conditioner is high, the first switching valve 66 is controlled so that the refrigerant does not flow to the intake air cooling evaporator 37. At this time, even if the refrigerant is bypassed, intake air can be cooled by the cool storage material 62.
- the cooling efficiency of the casing air conditioner can be improved.
- an intake air cooling system 107 will be described with reference to FIG.
- the refrigeration cycle unit 80 of the seventh embodiment has a casing cooling evaporator bypass passage 67 and a second switching valve 68 instead of the intake air cooling evaporator bypass unit. It is different.
- the passenger compartment cooling evaporator bypass passage 67 bypasses the passenger compartment cooling evaporator 35 from the upstream of the passenger compartment cooling evaporator 35 to connect the passenger compartment cooling evaporator 35 to the downstream.
- the second switching valve 68 is provided at a branch point between the refrigerant passage 39 and the casing cooling evaporator bypass passage 67.
- the second switching valve 68 switches the passage through which the refrigerant passes between the casing cooling evaporator bypass passage 67 and the passage passing through the casing cooling evaporator 35.
- An “intake air cooling evaporator bypass portion” is configured by the casing cooling evaporator bypass passage 67 and the second switching valve 68.
- the ECU 20 performs switching control of whether to flow the refrigerant to the evaporator 35 for casing cooling using a switching valve. Since the refrigerant flows only into the intake air cooling evaporator 37 when bypassing the passenger compartment cooling evaporator 35 does not require cooling of the passenger compartment, such as when the air conditioner is off or heating, the intake air cooling efficiency is improved. Can.
- the refrigeration cycle unit 90 according to the eighth embodiment includes both of the intake air cooling evaporator bypass unit according to the sixth embodiment and the passenger compartment cooling evaporator bypass unit according to the seventh embodiment. That is, the refrigeration cycle unit 90 includes an intake air cooling evaporator bypass passage 65, a first switching valve 66, a vehicle room cooling evaporator bypass passage 67, and a second switching valve 68.
- the switching control of the switching valves 66 and 68 by the ECU 20 causes the refrigerant to flow through only one of the evaporator 35 and the evaporator 37 for intake air cooling. be able to.
- the control for providing the lower limit value M to the cold storage amount is performed, but the lower limit value M may not be provided.
- the intake air cooling heat exchanger 61 may be used as the intake air cooling evaporator 37 to cool the intake air.
- the cool storage material 62 may not be provided.
- the latent heat storage material is used as the cold storage material 62, but a sensible heat storage material may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
According to the present invention, a variable compressor (31) of an intake air cooling system has variable output and compresses and discharges a refrigerant. A cabin cooling heat exchanger (32) cools refrigerant that has been discharged from the variable compressor (31). A cabin cooling decompression unit (34) decompresses and expands refrigerant that has flowed out from the cabin cooling heat exchanger (32). A cabin cooling evaporator (35) is provided for cabin cooling and evaporates refrigerant that has been decompressed and expanded by the cabin cooling decompression unit (34). An intake air cooling evaporator (37) is provided separately from the cabin cooling evaporator (35) and evaporates refrigerant that has been decompressed and expanded by the cabin cooling decompression unit (34) or another decompression unit. An intake air cooling heat exchanger (61) is provided on an intake air passage (47) and circulates cooling water that is for intake air cooling. A control unit (20) controls the operation of the variable compressor (31) on the basis of an air conditioning requested cooling output for a vehicular air conditioning device.
Description
本出願は、2017年10月10日に出願された特許出願番号2017-197126号に基づくものであり、ここにその記載内容を援用する。
This application is based on patent application number 2017-197126 filed on October 10, 2017, the contents of which are incorporated herein by reference.
本開示は、吸気冷却システムに関する。
The present disclosure relates to an intake air cooling system.
従来、内燃機関の熱効率向上のために、吸気を冷却する技術が知られている。吸気を冷却することで冷却損失低減効果、充填効率の増加による出力向上効果、ガソリンエンジンにおけるノッキング抑制効果を得ることができる。
Conventionally, a technique for cooling intake air is known to improve the thermal efficiency of an internal combustion engine. By cooling the intake air, it is possible to obtain a cooling loss reduction effect, an output improvement effect by an increase in charging efficiency, and a knocking suppression effect in a gasoline engine.
例えば、特許文献1に記載される内燃機関の冷却システムは、吸入空気を冷却する水冷インタークーラと、車両室内の空気調整を行う空気調整装置と、水冷インタークーラと空気調整装置との間で熱交換を行うラジエータと、熱交換の動作を制御するECUと、を備える。
For example, a cooling system for an internal combustion engine described in Patent Document 1 includes a water-cooled intercooler for cooling intake air, an air conditioning device for regulating air in a vehicle cabin, and heat between the water-cooling intercooler and the air conditioning device. A radiator for replacement and an ECU for controlling heat exchange operation are provided.
この冷却システムでは、空気調整装置が有するエバポレータ内を循環する冷媒を、水冷インタークーラに接続するラジエータ側にも送ることで、ラジエータ内を循環する冷却水が冷却されるようになっている。すなわち、車室用エアコンの冷凍サイクルを用い、吸気冷却側と空気調整側への冷媒の導入量を制御することで、吸気の温度を最適に制御するようにしている。
In this cooling system, the coolant circulating in the evaporator included in the air conditioning apparatus is also sent to the side of the radiator connected to the water cooling intercooler, whereby the cooling water circulating in the radiator is cooled. That is, the intake air temperature is optimally controlled by controlling the amount of refrigerant introduced to the intake air cooling side and the air adjustment side using the refrigeration cycle of the air conditioner for the passenger compartment.
しかし、上記特許文献1に記載の冷却システムでは、吸気冷却側のラジエータと空気調整装置側のエバポレータとの両方の熱交換器に単に冷媒を流入させる構成であるため、全体としての冷却効率が低下する。冷却効率が低下すると、吸気冷却に必要なエネルギが増加してしまい、吸気冷却する効果を十分に得ることができないと言う問題が生じていた。
However, in the cooling system described in Patent Document 1 described above, the cooling efficiency as a whole is reduced because the refrigerant is simply made to flow into the heat exchangers of both the radiator on the intake air cooling side and the evaporator on the air conditioning device side. Do. When the cooling efficiency is lowered, energy required for intake air cooling is increased, which causes a problem that the effect of intake air cooling can not be sufficiently obtained.
本開示の目的は、吸気の冷却効率を向上させることが可能な吸気冷却システムを提供することにある。
An object of the present disclosure is to provide an intake air cooling system capable of improving intake air cooling efficiency.
本開示の吸気冷却システムは、車両の内燃機関に用いられ、車室内の空調を行う車両用空調装置が備える冷凍サイクル部を介して吸気を冷却する吸気冷却システムである。吸気冷却システムは、可変圧縮機と、車室冷却用熱交換器と、車室冷却用減圧部と、車室冷却用蒸発器と、吸気冷却用蒸発器と、吸気冷却用熱交換器と、制御部と、を備える。可変圧縮機は、出力を可変であり、冷媒を圧縮し吐出する。車室冷却用熱交換器は、可変圧縮機から吐出された冷媒を冷却する。車室冷却用減圧部は、車室冷却用熱交換器から流出された冷媒を減圧膨張させる。車室冷却用蒸発器は、車室冷却用に配され、車室冷却用減圧部により減圧膨張された冷媒を蒸発させる。吸気冷却用蒸発器は、車室冷却用蒸発器とは別に配され、車室冷却用減圧部またはその他の減圧部により減圧膨張された冷媒を蒸発させる。吸気冷却用熱交換器は、吸気通路に設けられ、吸気冷却用の冷媒が循環する。制御部は、車両用空調装置の空調要求冷却出力に基づいて可変圧縮機の作動を制御する。
The intake air cooling system of the present disclosure is an intake air cooling system that is used for an internal combustion engine of a vehicle and cools intake air via a refrigeration cycle unit provided in a vehicle air conditioner that performs air conditioning in a vehicle compartment. The intake air cooling system includes a variable compressor, a casing cooling heat exchanger, a casing cooling decompression unit, a casing cooling evaporator, an intake cooling evaporator, an intake cooling heat exchanger, And a control unit. The variable compressor has a variable output, and compresses and discharges the refrigerant. The casing cooling heat exchanger cools the refrigerant discharged from the variable compressor. The casing cooling decompression unit decompresses and expands the refrigerant flowing out of the casing cooling heat exchanger. The casing cooling evaporator is disposed for casing cooling, and evaporates the refrigerant decompressed and expanded by the casing cooling decompression unit. The intake air cooling evaporator is disposed separately from the cabin cooling evaporator, and evaporates the refrigerant that has been decompressed and expanded by the cabin cooling decompression unit or the other decompression units. The intake air cooling heat exchanger is provided in the intake passage, and a refrigerant for intake air cooling circulates. The control unit controls the operation of the variable compressor based on the air conditioning request cooling output of the vehicle air conditioner.
本開示の構成によれば、出力を変えることが可能な可変圧縮機により、車両用空調装置の空調要求冷却出力に合わせて可変圧縮機の出力を変えることで、高効率に冷凍サイクル部を運転することが可能となる。そして、車室冷却用蒸発器とは別に配される吸気冷却用蒸発器により吸気冷却が行われ、併せて吸気冷却効率を向上させることができる。
According to the configuration of the present disclosure, it is possible to operate the refrigeration cycle unit with high efficiency by changing the output of the variable compressor according to the air conditioning required cooling output of the vehicle air conditioner with the variable compressor capable of changing the output. It is possible to Then, the intake air cooling is performed by the intake air cooling evaporator disposed separately from the casing cooling evaporator, and the intake air cooling efficiency can be improved.
また、車室冷却用蒸発器と吸気冷却用蒸発器とを並列に配置し、各蒸発器へ流入する冷媒量を調整する冷媒量調整弁を設けた場合には、各蒸発器へ流入する冷媒量を調整可能であり、車室冷却と吸気冷却とでのそれぞれの冷却量を独立に制御することができる。
Further, when the casing cooling evaporator and the intake cooling evaporator are disposed in parallel and a refrigerant amount adjusting valve is provided to adjust the amount of refrigerant flowing into each evaporator, the refrigerant flowing into each evaporator The amount can be adjusted, and the amount of cooling in each of the casing cooling and the intake air cooling can be controlled independently.
本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の吸気冷却システムを概念的に示す図であり、
図2は、第2実施形態の吸気冷却システムを概念的に示す図であり、
図3は、制御部が実行する処理を説明するためのフローチャートであり、
図4は、時間経過におけるコンプレッサ出力と蓄冷量の変化を示す図であり、上側に示すグラフがコンプレッサ出力を示し、下側に示すグラフが蓄冷量を示しており、
図5は、第3実施形態の吸気冷却システムを概念的に示す図であり、
図6は、第4実施形態の吸気冷却システムを概念的に示す図であり、
図7は、制御部が実行する処理を説明するためのフローチャートであり、
図8は、時間経過におけるコンプレッサ出力と車室エアコン排出温度の変化を示す図であり、上側に示すグラフがコンプレッサ出力を示し、下側に示すグラフが車室エアコン排出温度を示しており、
図9は、第5実施形態の吸気冷却システムを概念的に示す図であり、
図10は、第6実施形態の吸気冷却システムを概念的に示す図であり、
図11は、第7実施形態の吸気冷却システムを概念的に示す図であり、
図12は、第8実施形態の吸気冷却システムを概念的に示す図である。
The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawing is
FIG. 1 is a view conceptually showing an intake air cooling system of a first embodiment, FIG. 2 is a view conceptually showing an intake air cooling system of a second embodiment, FIG. 3 is a flowchart for explaining the process executed by the control unit. FIG. 4 is a diagram showing changes in the compressor output and the stored cold amount over time, the graph shown on the upper side shows the compressor output, and the graph shown on the lower side shows the stored cold amount. FIG. 5 is a diagram conceptually showing an intake air cooling system of a third embodiment, FIG. 6 is a diagram conceptually showing an intake air cooling system of a fourth embodiment, FIG. 7 is a flowchart for explaining the process executed by the control unit. FIG. 8 is a diagram showing changes in the compressor output and the cabin air conditioner exhaust temperature over time, the graph shown on the upper side shows the compressor output, and the graph shown on the lower side shows the cabin air conditioner exhaust temperature, FIG. 9 is a diagram conceptually showing an intake air cooling system of a fifth embodiment, FIG. 10 is a diagram conceptually showing an intake air cooling system of a sixth embodiment, FIG. 11 is a diagram conceptually showing an intake air cooling system of a seventh embodiment, FIG. 12 is a diagram conceptually showing an intake air cooling system of the eighth embodiment.
以下、複数の実施形態を図面に基づき説明する。実施形態同士で実質的に同一の構成には同一の符号を付して説明を省略する。
Hereinafter, a plurality of embodiments will be described based on the drawings. The same reference numerals are given to the substantially same configuration in each embodiment and the description will be omitted.
〈第1実施形態〉
第1実施形態の吸気冷却システム101の構成について、図1を参照して説明する。図1に示すように、吸気冷却システム101は、車両用空調装置が備える冷凍サイクル部30を介して、車両の内燃機関10の吸気を冷却するシステムである。「吸気」とは、すなわち燃焼室12内に吸入されるガスである。 First Embodiment
The configuration of the intakeair cooling system 101 according to the first embodiment will be described with reference to FIG. As shown in FIG. 1, the intake air cooling system 101 is a system for cooling the intake air of an internal combustion engine 10 of a vehicle via a refrigeration cycle unit 30 provided in a vehicle air conditioner. The “intake” is, in other words, the gas drawn into the combustion chamber 12.
第1実施形態の吸気冷却システム101の構成について、図1を参照して説明する。図1に示すように、吸気冷却システム101は、車両用空調装置が備える冷凍サイクル部30を介して、車両の内燃機関10の吸気を冷却するシステムである。「吸気」とは、すなわち燃焼室12内に吸入されるガスである。 First Embodiment
The configuration of the intake
まず、内燃機関10及びその周辺構成について説明する。内燃機関10は、例えば、軽油等の燃料が燃焼室12に直接噴射されるディーゼルエンジンである。シリンダ11内のピストン13が上死点に到達する付近で、燃料噴射弁14が燃料を噴射すると、吸気ポート15から供給される空気と燃料との混合気が燃焼室12で自己着火し、燃焼する。燃焼時の爆発力によりピストン13が往復運動し、ピストン13の往復運動はコンロッド16を介して図示しないクランクシャフトの回転運動に変換される。燃焼により生じた既燃ガスは、排気通路を経由して大気中に放出される。
First, the internal combustion engine 10 and its peripheral configuration will be described. The internal combustion engine 10 is, for example, a diesel engine in which a fuel such as light oil is directly injected into the combustion chamber 12. When the fuel injection valve 14 injects fuel in the vicinity of the piston 13 in the cylinder 11 reaching the top dead center, the mixture of air and fuel supplied from the intake port 15 is self-ignited in the combustion chamber 12 to cause combustion. Do. The explosive force at the time of combustion causes the piston 13 to reciprocate, and the reciprocating motion of the piston 13 is converted to rotational movement of a crankshaft (not shown) via the connecting rod 16. The burnt gas generated by the combustion is released to the atmosphere via the exhaust passage.
制御部としての電子制御ユニット(以下、「ECU」と言う)20は、図示しないCPU、ROM、RAMおよび入出力ポート等からなるマイクロコンピュータにより構成され、各部位に取り付けられた各種センサからの信号が入力される。ECU20は、これらの各種センサからの検出信号に基づき、内燃機関10の運転状態を制御する。また、ECU20は、後述するコンプレッサ31、流量調整弁33、膨張弁34,36、空調温度センサ38を含むその他センサ等の各機器と電気的に接続しており、吸気冷却システム101の制御部として機能し、各機器を制御する。
An electronic control unit (hereinafter referred to as "ECU") 20 as a control unit is constituted by a microcomputer not shown including CPU, ROM, RAM, input / output port, etc., and signals from various sensors attached to each part Is input. The ECU 20 controls the operating state of the internal combustion engine 10 based on detection signals from these various sensors. Further, the ECU 20 is electrically connected to various devices such as a compressor 31, a flow rate adjustment valve 33, expansion valves 34, 36, and other sensors including an air conditioning temperature sensor 38, which will be described later. Function and control each device.
次に、冷凍サイクル部30の構成について説明する。冷凍サイクル部30は、冷媒を蒸発させることにより冷凍能力を発揮する蒸気圧縮式冷凍機である。冷凍サイクル部30は、コンプレッサ31、コンデンサ32、流量調整弁33、車室冷却用膨張弁34、車室冷却用エバポレータ35、吸気冷却用膨張弁36、吸気冷却用エバポレータ37、及び冷媒通路39等を備える。コンプレッサ31は、図示しない電動モータに連結されており、出力を可変であり、冷凍サイクル部30内を流れる冷媒を圧縮し吐出する可変圧縮機である。可変圧縮機は、例えば、電動コンプレッサや可変容量コンプレッサ等である。
Next, the configuration of the refrigeration cycle unit 30 will be described. The refrigeration cycle unit 30 is a vapor compression type refrigerator that exhibits refrigeration capacity by evaporating a refrigerant. The refrigeration cycle unit 30 includes a compressor 31, a condenser 32, a flow control valve 33, a casing cooling expansion valve 34, a casing cooling evaporator 35, an intake cooling expansion valve 36, an intake cooling evaporator 37, a refrigerant passage 39, and the like. Equipped with The compressor 31 is a variable compressor that is connected to an electric motor (not shown), has a variable output, and compresses and discharges the refrigerant flowing in the refrigeration cycle unit 30. The variable compressor is, for example, an electric compressor, a variable displacement compressor, or the like.
車室冷却用膨張弁34及び車室冷却用エバポレータ35と、吸気冷却用膨張弁36及び吸気冷却用エバポレータ37とは、コンプレッサ31に対して並列に配置されている。車室冷却用エバポレータ35により冷却されて車室内に送られる風の温度(以下、「車室エアコン排出温度」という)の計測には、空調温度センサ38が用いられる。空調温度センサ38は、車室冷却用エバポレータ35から車室へ開口する送風口までの通路内に設けられている。冷媒量調整弁としての流量調整弁33は、図示しない弁体の調整により、車室冷却用膨張弁34への冷媒流量と吸気冷却用膨張弁36への冷媒流量の割合を調整可能である。
The casing cooling expansion valve 34 and the casing cooling evaporator 35, and the suction cooling expansion valve 36 and the suction cooling evaporator 37 are arranged in parallel to the compressor 31. An air conditioning temperature sensor 38 is used to measure the temperature of the air that is cooled by the cabin cooling evaporator 35 and sent to the cabin (hereinafter referred to as “cabin air conditioner exhaust temperature”). The air conditioning temperature sensor 38 is provided in a passage from the evaporator 35 for casing cooling to a vent opening to the casing. The flow rate adjustment valve 33 as the refrigerant amount adjustment valve can adjust the ratio of the refrigerant flow rate to the casing cooling expansion valve 34 and the refrigerant flow rate to the intake cooling expansion valve 36 by adjusting a valve body (not shown).
冷凍サイクル部30は、気体の冷房用冷媒をコンプレッサ31で圧縮して昇温したあとコンデンサ32で放熱凝縮して液体とし、液体の冷房用冷媒を膨張弁34,36で減圧膨張させて一部を蒸発させ、残りをエバポレータ35,37で蒸発気化させる。車室冷却用エバポレータ35は車室空気と触れる位置に設けられる。車室冷却用エバポレータ35で冷房用冷媒を蒸発させる際に周囲の車室空気が冷やされる。
The refrigeration cycle unit 30 compresses the gas cooling refrigerant by compression with the compressor 31 and heats up and condenses it by the condenser 32 to make it a liquid, and decompresses and expands the liquid cooling refrigerant by the expansion valves 34 and 36 and partially Are evaporated, and the remainder is evaporated and evaporated by the evaporators 35 and 37. The casing cooling evaporator 35 is provided at a position in contact with the casing air. When the cooling refrigerant is evaporated by the casing cooling evaporator 35, the surrounding casing air is cooled.
内燃機関10は、排気通路41に設けられたタービン42と吸入通路43に設けられたコンプレッサ44とからなる過給器45を備えている。コンプレッサ44で圧縮された新気は、チャージクーラ46および吸気通路47を通って燃焼室12に吸入される。排気通路41において、タービンの下流側には、熱交換器48、及び排気処理触媒49が設けられている。
The internal combustion engine 10 is provided with a supercharger 45 including a turbine 42 provided in the exhaust passage 41 and a compressor 44 provided in the suction passage 43. The fresh air compressed by the compressor 44 is drawn into the combustion chamber 12 through the charge cooler 46 and the intake passage 47. A heat exchanger 48 and an exhaust treatment catalyst 49 are provided downstream of the turbine in the exhaust passage 41.
排気通路41と吸入通路43との間にはEGR通路51が設けられている。EGR通路51は、排気通路41から排気の一部を吸入通路43に戻して再度循環させる排気再循環(Exhaust Gas Recirculation)を行う。EGR通路51のガス(以下、EGRガス)は、EGRクーラ52およびEGR弁53を経て吸入通路43に戻される。
An EGR passage 51 is provided between the exhaust passage 41 and the suction passage 43. The EGR passage 51 performs exhaust gas recirculation (Exhaust Gas Recirculation) in which part of the exhaust gas from the exhaust passage 41 is returned to the suction passage 43 and circulated again. The gas in the EGR passage 51 (hereinafter referred to as “EGR gas”) is returned to the suction passage 43 through the EGR cooler 52 and the EGR valve 53.
吸気冷却用熱交換器61は、吸入通路43におけるEGR通路51との合流箇所の下流側の吸気通路47に設けられている。そのため冷却する吸気は、新気とEGRガスとが混合したガスである。
The intake air cooling heat exchanger 61 is provided in the intake passage 47 on the downstream side of the joining point of the intake passage 43 and the EGR passage 51. Therefore, the intake air to be cooled is a gas in which the fresh air and the EGR gas are mixed.
次に、吸気冷却用の冷却水サイクル70の構成について説明する。上述した吸気冷却用エバポレータ37は、吸気冷却用熱交換器61の下流に接続している。吸入空気は、吸気通路47を下流に向かって流れ、吸気冷却用熱交換器61によって冷却される。吸気冷却用熱交換器61内の冷却水は、ウォーターポンプ71によって吸気冷却用エバポレータ37に送られて冷却され、再び吸気冷却用熱交換器61に戻される。すなわち、冷却水は、吸気冷却用エバポレータ37と吸気冷却用熱交換器61とを接続し、環状をなす冷却水通路72内を循環している。
Next, the configuration of the cooling water cycle 70 for intake air cooling will be described. The intake air cooling evaporator 37 described above is connected to the downstream of the intake air cooling heat exchanger 61. The intake air flows downstream in the intake passage 47 and is cooled by the intake air cooling heat exchanger 61. The cooling water in the intake air cooling heat exchanger 61 is sent to the intake air cooling evaporator 37 by the water pump 71 and cooled, and is returned again to the intake air cooling heat exchanger 61. That is, the cooling water connects the intake air cooling evaporator 37 and the intake air cooling heat exchanger 61 and circulates in the annular cooling water passage 72.
なお、吸気冷却システム101は、上記詳述したように吸気を冷却するために設けられる各機器によって構成されるものであり、制御部としてのECU20、冷凍サイクル部30、吸気冷却用熱交換器61を含む冷却水サイクル70、およびこれらを接続する各種配管や通路等を含むものである。
In addition, the intake air cooling system 101 is comprised by each apparatus provided in order to cool intake air as it explained in full detail above, ECU20 as a control part, the refrigerating cycle part 30, and the heat exchanger 61 for intake air cooling. And a variety of pipes, passages, etc. that connect them.
上記第1実施形態では、車両用空調装置の冷凍サイクル部30において、車室冷却用エバポレータ35と吸気冷却用エバポレータ37とを並列配置し冷却機能を2系統化すると共に、出力を変えることが可能なコンプレッサ31を設けている。これにより、車両用空調装置の要求出力に合わせてコンプレッサ31の出力を変えることで、高効率に冷凍サイクル部30を運転することが可能となる。
In the first embodiment, in the refrigeration cycle unit 30 of the vehicle air conditioner, the cabin cooling evaporator 35 and the intake air cooling evaporator 37 are arranged in parallel to make two systems of the cooling function and to change the output. The compressor 31 is provided. Thus, by changing the output of the compressor 31 in accordance with the required output of the vehicle air conditioner, the refrigeration cycle unit 30 can be operated with high efficiency.
また、各エバポレータ35,37へ流入する冷媒量を流量調整弁33により調整可能であり、車室冷却と吸気冷却とでの冷却量を独立に制御することができる。
Further, the amount of refrigerant flowing into the evaporators 35 and 37 can be adjusted by the flow rate adjustment valve 33, and the amount of cooling in the casing cooling and the intake air cooling can be controlled independently.
〈第2実施形態〉
次に、第2実施形態の吸気冷却システム102について、図2を参照して説明する。第2実施形態では、第1実施形態の吸気冷却システム101に対し、吸気冷却用熱交換器61に、蓄冷材62が設けられている点が異なる。蓄冷材62は、例えば潜熱蓄冷材を用いることができる。蓄冷材62には、蓄冷材の温度を検出する蓄冷材温度センサ63が設けられている。 Second Embodiment
Next, an intakeair cooling system 102 according to a second embodiment will be described with reference to FIG. The second embodiment is different from the intake air cooling system 101 according to the first embodiment in that a heat storage material 62 is provided in a heat exchanger 61 for intake air cooling. For example, a latent heat storage material can be used as the storage material 62. The cool storage material 62 is provided with a cool storage material temperature sensor 63 for detecting the temperature of the cool storage material.
次に、第2実施形態の吸気冷却システム102について、図2を参照して説明する。第2実施形態では、第1実施形態の吸気冷却システム101に対し、吸気冷却用熱交換器61に、蓄冷材62が設けられている点が異なる。蓄冷材62は、例えば潜熱蓄冷材を用いることができる。蓄冷材62には、蓄冷材の温度を検出する蓄冷材温度センサ63が設けられている。 Second Embodiment
Next, an intake
潜熱蓄冷材は、相変化時の潜熱を用いて蓄冷する材料、例えばパラフィンなどで構成される。材料の融点は極力低い方が望ましいが、0℃以下では吸気に含まれる水分が凝縮したときに凍結する可能性がある。そのため、蓄冷材としては、0℃以上のなるべく低い融点を持つ材料が望ましい。具体的には、パラフィンの一種であり、融点が5.9℃のノルマルテトラデカンを採用することができる。
The latent heat storage material is made of a material that stores cold using latent heat at the time of phase change, such as paraffin. The melting point of the material is preferably as low as possible, but if the temperature is 0 ° C. or less, it may freeze when water contained in the intake air condenses. Therefore, as a regenerator material, a material having a melting point as low as possible as 0 ° C. or more is desirable. Specifically, normal tetradecane which is a kind of paraffin and has a melting point of 5.9 ° C. can be adopted.
第2実施形態の吸気冷却システム102において、ECU20が実行する制御について、図3を参照して説明する。図3に示すように、まずステップ1(以下、ステップを「S」と省略する)において、蓄冷量が計測される。蓄冷量の計測は、蓄冷材62に設けられた蓄冷材温度センサ63により検出された検出温度から推定することで行う。蓄冷材62が例えば液体と固体との間で相変化するものである場合、液体から全て固体になったとき蓄冷量が最大であり、その後は蓄冷材62の温度は下がる。また、固体から全て液体になったとき蓄冷量は0であり、その後は蓄冷材62の温度は上がる。よって、蓄冷材62の温度変化から蓄冷量を推定することができる。
The control performed by the ECU 20 in the intake air cooling system 102 according to the second embodiment will be described with reference to FIG. As shown in FIG. 3, first, in step 1 (hereinafter, the step is abbreviated as “S”), the amount of cold storage is measured. The measurement of the amount of cold storage is performed by estimating from the detection temperature detected by the cold storage material temperature sensor 63 provided in the cold storage material 62. When the cold storage material 62 is, for example, phase-changed between liquid and solid, the amount of cold storage is maximum when the liquid is completely solid, and thereafter the temperature of the cold storage material 62 decreases. In addition, when the solid is completely liquid, the cold storage amount is zero, and thereafter the temperature of the cold storage material 62 rises. Therefore, the amount of cold storage can be estimated from the temperature change of the cold storage material 62.
蓄冷量を計測した後には、S2で、蓄冷量が最大であるか否かが判断される。蓄冷量が最大ではない場合には、S3において、成績係数COPが最大となる動作点で運転するようにコンプレッサ31が制御される。
After measuring the amount of cold storage, it is determined in S2 whether the amount of cold storage is maximum. If the amount of stored cold is not maximum, the compressor 31 is controlled to operate at an operating point where the coefficient of performance COP is maximum in S3.
次いで、S4で、各エバポレータ35,37への冷媒流量が制御される。ここでは、空調装置の要求出力を満たす冷媒流量を車室冷却用エバポレータ35側へ流入させるように流量調整弁33が制御される。空調装置の要求出力、すなわち「空調要求冷却出力」は、ユーザーにより操作された設定温度や風量のモード、その他外気温等の各種条件により、予め定められてECU20に記憶されたマップに基づき決定される。
Next, at S4, the flow rate of refrigerant to the evaporators 35 and 37 is controlled. Here, the flow control valve 33 is controlled such that the flow rate of the refrigerant satisfying the required output of the air conditioner is caused to flow to the evaporator 35 side. The required output of the air conditioner, that is, the “required air conditioning cooling output” is determined based on a map which is predetermined and stored in the ECU 20 according to various conditions such as the set temperature operated by the user and the air volume mode and other outside air temperatures. Ru.
そして、全冷媒のうち車室冷却用エバポレータ35へ流入した分の残りの冷媒が吸気冷却用エバポレータ37へ流入する。吸気冷却用エバポレータ37へ流入した冷媒により、吸気冷却及び蓄冷材62の冷却が行われる。この制御は、図4に示す時刻T0~T1に対応している。図4は、時間経過におけるコンプレッサ出力と蓄冷量の変化を示す図であり、上側に示すグラフがコンプレッサ出力を示し、下側に示すグラフが蓄冷量を示している。図4に示すように、時刻T0~T1では、蓄冷量が100%ではないため、成績係数COPが最大となる動作点でコンプレッサ31は運転される。この状態で、車室冷却、吸気冷却、及び蓄冷材62への蓄冷が行われる。
Then, the remaining refrigerant that has flowed into the casing cooling evaporator 35 among all the refrigerant flows into the suction air cooling evaporator 37. The refrigerant flowing into the intake air cooling evaporator 37 cools the intake air and the cold storage material 62. This control corresponds to time T0 to T1 shown in FIG. FIG. 4 is a diagram showing changes in the compressor output and the stored cold amount over time, and the graph shown on the upper side shows the compressor output, and the graph shown on the lower side shows the stored cold amount. As shown in FIG. 4, from the time T0 to T1, the amount of stored cold is not 100%, so the compressor 31 is operated at an operating point where the coefficient of performance COP is maximum. In this state, casing cooling, intake air cooling, and cool storage to cool storage material 62 are performed.
一方、S2において蓄冷量が最大ではない場合には、S5において、車両用空調装置の要求出力に合わせてコンプレッサ31の出力が制御される。次いで、S6において、全冷媒を車室冷却用エバポレータ35側へ流入させるように流量調整弁33が制御される。図4において時刻T1~T2に示すように、この間の吸気冷却は、蓄冷材62に蓄えられた冷気により行われるため、蓄冷量は減少する。
On the other hand, when the amount of cold storage is not maximum at S2, the output of the compressor 31 is controlled at S5 in accordance with the required output of the vehicle air conditioner. Next, at S6, the flow control valve 33 is controlled so that all the refrigerant flows into the evaporator 35 side. As shown at times T1 to T2 in FIG. 4, since the intake air cooling during this time is performed by the cold air stored in the cold storage material 62, the cold storage amount decreases.
そして、S7において、再び蓄冷量が計測され、S8において、蓄冷量が予め定められた下限値Mを下回っているか否かが判断される。下限値Mは、例えば最大蓄冷量に対して10%等、適宜設定される。蓄冷量が予め定められた下限値Mを下回っている場合には、本制御処理を終了する。なお、図3に示す制御処理は繰り返し実行されるため、蓄冷量が予め定められた下限値Mを下回っている場合には、再びS1~S4の処理が繰り返される。すなわち、図4においてT2~T3に示すように、蓄冷材62への蓄冷量が最大となるまで、成績係数COPが最大となる動作点でコンプレッサ31は運転される。
Then, at S7, the cold storage amount is measured again, and at S8, it is determined whether the cold storage amount is less than a predetermined lower limit value M. The lower limit value M is appropriately set to, for example, 10% of the maximum cold storage amount. When the amount of cold storage is less than the predetermined lower limit value M, the present control process is ended. Since the control process shown in FIG. 3 is repeatedly executed, the processes of S1 to S4 are repeated again when the cold storage amount is below the predetermined lower limit value M. That is, as indicated by T2 to T3 in FIG. 4, the compressor 31 is operated at an operating point at which the coefficient of performance COP becomes maximum until the amount of cold storage to the cold storage material 62 becomes maximum.
S8において、蓄冷量が下限値Mを下回っていない場合には、蓄冷量が下限値Mを下回るまでS5~S7のステップが繰り返される。
In S8, when the amount of cold storage is not below the lower limit M, the steps of S5 to S7 are repeated until the amount of cold storage falls below the lower limit M.
一般に、コンプレッサ31は高出力で運転させたときほど成績係数COPが高くなり、冷却効率がより高くなる。第2実施形態では、吸気冷却用熱交換器61に蓄冷材62を設け、この蓄冷材62に冷却出力を溜めることができる。そして、例えば図4における時刻T0~T1、T2~T3に示すように、車室冷却分の出力と吸気冷却分の出力に加え、さらに蓄冷分の出力が加算されるため、コンプレッサ31を高出力で運転可能であり、高冷却効率を実現することができる。
Generally, as the compressor 31 is operated at high output, the coefficient of performance COP becomes higher and the cooling efficiency becomes higher. In the second embodiment, the cool storage material 62 can be provided in the heat exchanger 61 for intake air cooling, and the cool output can be stored in the cool storage material 62. Then, for example, as shown at time T0 to T1 and T2 to T3 in FIG. 4, in addition to the output of the compartment cooling and the output of the intake cooling, the output of the cold storage is added, so the compressor 31 has a high output It is possible to operate with high cooling efficiency.
さらに、蓄冷材62として顕熱タイプではなく潜熱タイプを用いているため、顕熱タイプと比較して蓄冷容量が大きく効率的に蓄冷を行うことができる。
Further, since the latent heat type is used as the cold storage material 62 instead of the sensible heat type, the cold storage capacity can be large and the cold storage can be efficiently performed as compared with the sensible heat type.
第2実施形態の制御によれば、蓄冷量に下限値Mを設け、図4において時刻T2に示すように、蓄冷量を使い切らずに再度蓄冷を始めるようにしている。これにより、吸気冷却の過渡期の冷却遅れに対応することができる。例えば、ハイブリッドエンジンなどでは、運転中エンジンが停止しているときがあり、その後、再び吸気冷却をする場合、エンジンが運転を開始してから冷却するのでは遅れが生じる場合がある。冷却遅れが生じると、燃費が悪くなるなど効率が悪化する。その点、蓄冷材62を有していれば、蓄冷した分で速やかに吸気冷却を開始することができ、急な負荷上昇時の冷却遅れを解消することができる。
According to the control of the second embodiment, the cold storage amount is provided with the lower limit value M, and as shown at time T2 in FIG. 4, the cold storage is started again without using the cold storage amount. Thereby, it is possible to cope with the cooling delay of the transition period of the intake air cooling. For example, in a hybrid engine or the like, there are times when the engine is stopped during operation, and when intake cooling is performed again thereafter, there may be a delay in cooling after the engine starts operation. If a cooling delay occurs, the efficiency will deteriorate, such as the fuel efficiency will deteriorate. In that respect, if the cold storage material 62 is provided, intake cooling can be started promptly by the amount of cold storage, and cooling delay at the time of a sudden load increase can be eliminated.
〈第3実施形態〉
次に、第3実施形態の吸気冷却システム103について、図5を参照して説明する。第3実施形態では、第1実施形態の吸気冷却システム101に対し、吸気冷却用エバポレータ37が吸気冷却用熱交換器61(図2参照)を兼用している点が異なる。これに伴い、第3実施形態では、ウォーターポンプ71及び冷却水通路72を有さない。 Third Embodiment
Next, an intakeair cooling system 103 according to a third embodiment will be described with reference to FIG. The third embodiment differs from the intake air cooling system 101 of the first embodiment in that the intake air cooling evaporator 37 doubles as the intake air cooling heat exchanger 61 (see FIG. 2). Along with this, in the third embodiment, the water pump 71 and the cooling water passage 72 are not provided.
次に、第3実施形態の吸気冷却システム103について、図5を参照して説明する。第3実施形態では、第1実施形態の吸気冷却システム101に対し、吸気冷却用エバポレータ37が吸気冷却用熱交換器61(図2参照)を兼用している点が異なる。これに伴い、第3実施形態では、ウォーターポンプ71及び冷却水通路72を有さない。 Third Embodiment
Next, an intake
第3実施形態では、吸気冷却用エバポレータ37内を流れる冷房用冷媒によって吸気が冷却される。本実施形態によれば、第1実施形態と同様の効果を奏し、さらに、吸気冷却用エバポレータ37が吸気冷却用熱交換器を兼用するため、装置構成を簡易にすることができる。
In the third embodiment, the intake air is cooled by the cooling refrigerant flowing in the intake air cooling evaporator 37. According to the present embodiment, the same effects as those of the first embodiment can be obtained. Further, since the intake air cooling evaporator 37 doubles as the intake air cooling heat exchanger, the apparatus configuration can be simplified.
〈第4実施形態〉
次に、第4実施形態の吸気冷却システム104について、図6を参照して説明する。第4実施形態では、第2実施形態の吸気冷却システム102に対し、吸気通路の形態が異なる。 <Fourth Embodiment>
Next, an intakeair cooling system 104 according to a fourth embodiment will be described with reference to FIG. The fourth embodiment differs from the intake cooling system 102 of the second embodiment in the form of the intake passage.
次に、第4実施形態の吸気冷却システム104について、図6を参照して説明する。第4実施形態では、第2実施形態の吸気冷却システム102に対し、吸気通路の形態が異なる。 <Fourth Embodiment>
Next, an intake
第4実施形態では、吸入通路43は、EGR通路51との合流箇所の下流側において互いに並行する吸気バイパス通路54および冷却通路55を有している。吸気バイパス通路54および冷却通路55は、インテークマニホールド56が有する通路である。吸気バイパス通路54と冷却通路55との分岐点には吸気量調整弁57が設けられている。吸気量調整弁57は、吸気バイパス通路54に流入するバイパス吸気量を調整する。吸気バイパス通路54と冷却通路55との合流部の下流には、吸気の温度を検出する吸気温度センサ58が設けられている。吸気温度センサ58は、「吸気温度検出部」に相当する。
In the fourth embodiment, the intake passage 43 has an intake bypass passage 54 and a cooling passage 55 parallel to each other on the downstream side of the junction with the EGR passage 51. The intake bypass passage 54 and the cooling passage 55 are passages that the intake manifold 56 has. An intake amount adjustment valve 57 is provided at a branch point between the intake bypass passage 54 and the cooling passage 55. The intake amount adjustment valve 57 adjusts the bypass intake amount flowing into the intake bypass passage 54. An intake air temperature sensor 58 for detecting the temperature of intake air is provided downstream of the junction of the intake air bypass passage 54 and the cooling passage 55. The intake air temperature sensor 58 corresponds to an “intake air temperature detection unit”.
ECU20は、内燃機関10の運転状態に応じて定められる「吸気要求冷却出力」に基づいて吸気量調整弁57を制御する。「内燃機関10の運転状態に応じて定められる」とは、例えばエンジン回転数、外気温、冷却水温度、及び負荷等のパラメータにより、ECU20が予め有するマップにより決定されることを意味する。
The ECU 20 controls the intake amount adjustment valve 57 based on the “intake-request required cooling output” determined in accordance with the operating state of the internal combustion engine 10. “Determined according to the operating state of the internal combustion engine 10” means that it is determined by a map that the ECU 20 has in advance, based on parameters such as the engine speed, the outside air temperature, the coolant temperature, and the load.
ECU20は、吸気温度センサ58から検出される吸気温度が、内燃機関10の運転状態に応じて定められる「吸気基準温度」より高い場合には、吸気冷却用熱交換器61をバイパスして吸気バイパス通路54に流入するバイパス吸気量を少なくする。一方、吸気温度センサ58から検出される吸気温度が、吸気基準温度より低い場合には、吸気バイパス通路54に流入するバイパス吸気量を多くする。
When the intake air temperature detected by the intake air temperature sensor 58 is higher than the "intake air reference temperature" determined according to the operating state of the internal combustion engine 10, the ECU 20 bypasses the intake air cooling heat exchanger 61 to perform intake air bypass. The bypass intake amount flowing into the passage 54 is reduced. On the other hand, when the intake air temperature detected by the intake air temperature sensor 58 is lower than the intake air reference temperature, the bypass intake air amount flowing into the intake bypass passage 54 is increased.
すなわち、吸気温度センサ58から検出される吸気温度が高いほど、バイパス吸気量は少なく、吸気温度が低いほど、バイパス吸気量は多い。これにより、吸気温度を最適な温度に制御することができる。最適な温度とは、例えば最も燃費が良い温度、エミッションを低減できる温度である。
That is, as the intake air temperature detected by the intake air temperature sensor 58 is higher, the bypass intake air amount is smaller, and as the intake air temperature is lower, the bypass intake air amount is larger. Thus, the intake air temperature can be controlled to an optimum temperature. The optimum temperature is, for example, the temperature at which the fuel efficiency is the best, and the temperature at which the emission can be reduced.
第4実施形態の吸気冷却システム104において、さらにECU20が実行する制御について、図7に示すフローチャートを参照して説明する。図7に示すように、まずステップ11において、空調温度センサ38から車室エアコン排出温度が計測される。次いで、ステップ12において、車室エアコン排出温度が空調要求温度以下であるか否かが判断される。「空調要求温度」とは、例えばユーザーの操作により設定された空調の設定温度である。
The control executed by the ECU 20 in the intake air cooling system 104 of the fourth embodiment will be further described with reference to the flowchart shown in FIG. As shown in FIG. 7, first, at step 11, the air conditioning temperature sensor 38 measures the temperature of air discharged from the passenger compartment. Next, in step 12, it is determined whether the vehicle interior air conditioner discharge temperature is equal to or lower than the air conditioning required temperature. The “air conditioning required temperature” is, for example, a set temperature of the air conditioning set by the user's operation.
車室エアコン排出温度が空調要求温度以下である場合、S13において、全冷媒を吸気冷却用エバポレータ37へ流入させるように流量調整弁33が制御される。これは、車室エアコン排出温度が空調要求温度以下であるということは、車室冷却用エバポレータ35の冷却出力は既に十分であることを意味するため、全冷媒を吸気冷却用エバポレータ37へ流入させて吸気冷却出力を上げるためである。図8において時刻T4~T5等に示すように、この間には吸気冷却及び蓄冷が行われる。
When the cabin air conditioner discharge temperature is equal to or lower than the air conditioning required temperature, the flow rate adjustment valve 33 is controlled to flow all the refrigerant into the intake air cooling evaporator 37 in S13. This means that if the cabin air conditioner discharge temperature is equal to or lower than the air conditioning required temperature, that the cooling output of the cabin cooling evaporator 35 is already sufficient, all the refrigerant is made to flow into the intake air cooling evaporator 37 To increase the intake air cooling output. As shown at times T4 to T5 and the like in FIG. 8, intake air cooling and cold storage are performed during this time.
一方、車室エアコン排出温度が空調要求温度以下ではない、すなわち空調要求温度より高い場合には、空調の冷却出力が不足していることを意味するため、S14において、全冷媒を車室冷却用エバポレータ35へ流入させるように流量調整弁33が制御される。この間の吸気冷却は、図8に示すように、時刻T5~T6では蓄冷材62により行われ、コンプレッサ出力によっては車室冷却のみが行われる。S13、S14の後には本制御処理を終了する。なお、本制御ルーチンは繰り返し実行される。
On the other hand, if the cabin air conditioner discharge temperature is not lower than the air conditioning required temperature, that is, higher than the air conditioning required temperature, it means that the cooling output of the air conditioning is insufficient. The flow control valve 33 is controlled to flow into the evaporator 35. During this time, as shown in FIG. 8, the intake air cooling is performed by the cool storage material 62 from time T5 to T6, and depending on the compressor output, only the casing cooling is performed. After S13 and S14, the control process ends. The control routine is repeatedly executed.
本制御では、車室エアコン排出温度に応じて全冷媒をいずれかのエバポレータ35,37に流入させるように切り替えており、図8において時刻T4~T5等に示すように、コンプレッサ31の出力は一定である。
In this control, all refrigerants are switched to flow into either of the evaporators 35 and 37 in accordance with the exhaust temperature of the vehicle room air conditioner, and the output of the compressor 31 is constant as shown from time T4 to T5 in FIG. It is.
一般に、一方の膨張弁を開くと、その上流の圧力が低下するため、もう一方の膨張弁を開いたときの冷却効率が下がり、結果としてトータルの冷却効率が下がる。その点、第4実施形態によれば、いずれかのエバポレータ35,37のみに全冷媒を流すようにしているため、冷却効率を向上させることができる。また、吸気冷却と車室冷却とを同時に行わないため出力を積み上げる必要がなく、出力最大量を減らせるため、コンプレッサ31の体格を小さくすることができる。
Generally, when one expansion valve is opened, the pressure upstream of the expansion valve is reduced, so the cooling efficiency when the other expansion valve is opened is reduced, resulting in the reduction of the total cooling efficiency. In that respect, according to the fourth embodiment, since the entire refrigerant is caused to flow only to either of the evaporators 35 and 37, the cooling efficiency can be improved. In addition, since the intake air cooling and the casing cooling are not performed simultaneously, it is not necessary to stack the output, and the maximum output amount can be reduced, so the size of the compressor 31 can be reduced.
〈第5実施形態〉
次に、第5実施形態の吸気冷却システム105について、図9を参照して説明する。第5実施形態では、図6に示す第4実施形態の吸気冷却システム104に対し、冷凍サイクル部の形態が異なる。冷凍サイクル部50以外の構成については、第4実施形態と同様であるため、説明は省略する。 Fifth Embodiment
Next, an intakeair cooling system 105 according to a fifth embodiment will be described with reference to FIG. The fifth embodiment differs from the intake air cooling system 104 of the fourth embodiment shown in FIG. 6 in the form of the refrigeration cycle unit. The configuration other than the refrigeration cycle unit 50 is the same as that of the fourth embodiment, so the description will be omitted.
次に、第5実施形態の吸気冷却システム105について、図9を参照して説明する。第5実施形態では、図6に示す第4実施形態の吸気冷却システム104に対し、冷凍サイクル部の形態が異なる。冷凍サイクル部50以外の構成については、第4実施形態と同様であるため、説明は省略する。 Fifth Embodiment
Next, an intake
図9に示すように、吸気冷却システム105の冷凍サイクル部50は、コンプレッサ31、コンデンサ32、車室冷却用膨張弁34、車室冷却用エバポレータ35、吸気冷却用エバポレータ37、冷媒通路39を備える。車室冷却用エバポレータ35と吸気冷却用エバポレータ37とは、直列に配置されている。また、第2実施形態に対して、膨張弁は一つのみ有している。
As shown in FIG. 9, the refrigeration cycle unit 50 of the intake air cooling system 105 includes a compressor 31, a condenser 32, a casing cooling expansion valve 34, a casing cooling evaporator 35, an intake cooling evaporator 37, and a refrigerant passage 39. . The casing cooling evaporator 35 and the suction air cooling evaporator 37 are arranged in series. Moreover, only one expansion valve is provided with respect to the second embodiment.
ECU20は、車室エアコンの要求出力が大きいほど、吸気バイパス通路54を通過するバイパス吸気量を増やすように制御する。バイパス吸気量が多いほど、吸気冷却用エバポレータ37での冷却量が減り、車室冷却用エバポレータ35での冷却量が増え、車室エアコンの冷却出力を向上させることができる。
The ECU 20 controls the amount of bypass intake air passing through the intake bypass passage 54 to increase as the required output of the cabin air conditioner increases. As the bypass intake air amount is larger, the amount of cooling in the intake air cooling evaporator 37 is reduced, the amount of cooling in the casing cooling evaporator 35 is increased, and the cooling output of the casing air conditioner can be improved.
また、第5実施形態では、各エバポレータ35,37を直列に配置しているため、並列に配置する場合と比較して膨張弁34が一つでよく、装置構成を簡易化することができる。
Further, in the fifth embodiment, since the evaporators 35 and 37 are arranged in series, the number of the expansion valves 34 may be one as compared with the case where they are arranged in parallel, and the apparatus configuration can be simplified.
〈第6実施形態〉
次に、第6実施形態の吸気冷却システム106について、図10を参照して説明する。第6実施形態では、第5実施形態の吸気冷却システム105に対し、吸気冷却用エバポレータバイパス通路65と第1切替弁66を有する一方、吸気バイパス通路54は有していない点が異なる。 Sixth Embodiment
Next, an intakeair cooling system 106 of a sixth embodiment will be described with reference to FIG. The sixth embodiment is different from the intake air cooling system 105 of the fifth embodiment in that the intake air cooling evaporator bypass passage 65 and the first switching valve 66 are provided, but the intake air bypass passage 54 is not provided.
次に、第6実施形態の吸気冷却システム106について、図10を参照して説明する。第6実施形態では、第5実施形態の吸気冷却システム105に対し、吸気冷却用エバポレータバイパス通路65と第1切替弁66を有する一方、吸気バイパス通路54は有していない点が異なる。 Sixth Embodiment
Next, an intake
吸気冷却用エバポレータバイパス通路65は、膨張弁34の下流から吸気冷却用エバポレータ37をバイパスして、車室冷却用エバポレータ35の上流までを接続する。第1切替弁66は、冷媒通路39と吸気冷却用エバポレータバイパス通路65との分岐点に設けられる。第1切替弁66は、冷媒が通る通路を、吸気冷却用エバポレータバイパス通路65と吸気冷却用エバポレータ37を通る通路との間で切り替える。吸気冷却用エバポレータバイパス通路65と第1切替弁66とで、「吸気冷却用蒸発器バイパス部」が構成されている。
The intake air cooling evaporator bypass passage 65 bypasses the intake air cooling evaporator 37 from the downstream side of the expansion valve 34 and connects up to the upstream of the passenger room cooling evaporator 35. The first switching valve 66 is provided at a branch point between the refrigerant passage 39 and the intake air cooling evaporator bypass passage 65. The first switching valve 66 switches the passage through which the refrigerant passes between the intake air cooling evaporator bypass passage 65 and the passage passing the intake air cooling evaporator 37. The intake air cooling evaporator bypass passage 65 and the first switching valve 66 constitute an “intake air cooling evaporator bypass portion”.
ECU20は、車室エアコンの要求出力に応じて、吸気冷却用エバポレータ37に冷媒を流通させるか否かを第1切替弁66の切り替えにより制御する。例えば、車室エアコンの要求出力が高い場合には、吸気冷却用エバポレータ37に冷媒を流さないように第1切替弁66を制御する。このとき、冷媒をバイパスさせても、蓄冷材62により吸気冷却が可能である。
The ECU 20 controls whether the refrigerant is caused to flow through the intake air cooling evaporator 37 by switching the first switching valve 66 in accordance with the required output of the vehicle compartment air conditioner. For example, when the required output of the cabin air conditioner is high, the first switching valve 66 is controlled so that the refrigerant does not flow to the intake air cooling evaporator 37. At this time, even if the refrigerant is bypassed, intake air can be cooled by the cool storage material 62.
さらに、冷凍サイクル部60において、2つのエバポレータ35,37のうち、車室冷却用エバポレータ35のみに冷媒が流入するため、車室エアコンの冷却効率を向上させることができる。
Furthermore, in the refrigeration cycle unit 60, since the refrigerant flows only into the casing cooling evaporator 35 of the two evaporators 35 and 37, the cooling efficiency of the casing air conditioner can be improved.
〈第7実施形態〉
次に、第7実施形態の吸気冷却システム107について、図11を参照して説明する。第7実施形態の冷凍サイクル部80は、第6実施形態に対し、吸気冷却用蒸発器バイパス部の代わりに、車室冷却用エバポレータバイパス通路67と第2切替弁68を有している点が異なる。 Seventh Embodiment
Next, an intakeair cooling system 107 according to a seventh embodiment will be described with reference to FIG. In contrast to the sixth embodiment, the refrigeration cycle unit 80 of the seventh embodiment has a casing cooling evaporator bypass passage 67 and a second switching valve 68 instead of the intake air cooling evaporator bypass unit. It is different.
次に、第7実施形態の吸気冷却システム107について、図11を参照して説明する。第7実施形態の冷凍サイクル部80は、第6実施形態に対し、吸気冷却用蒸発器バイパス部の代わりに、車室冷却用エバポレータバイパス通路67と第2切替弁68を有している点が異なる。 Seventh Embodiment
Next, an intake
車室冷却用エバポレータバイパス通路67は、車室冷却用エバポレータ35の上流から車室冷却用エバポレータ35をバイパスして、車室冷却用エバポレータ35の下流までを接続する。第2切替弁68は、冷媒通路39と車室冷却用エバポレータバイパス通路67との分岐点に設けられる。第2切替弁68は、冷媒が通る通路を、車室冷却用エバポレータバイパス通路67と車室冷却用エバポレータ35を通る通路との間で切り替える。車室冷却用エバポレータバイパス通路67と第2切替弁68とで、「吸気冷却用蒸発器バイパス部」が構成されている。
The passenger compartment cooling evaporator bypass passage 67 bypasses the passenger compartment cooling evaporator 35 from the upstream of the passenger compartment cooling evaporator 35 to connect the passenger compartment cooling evaporator 35 to the downstream. The second switching valve 68 is provided at a branch point between the refrigerant passage 39 and the casing cooling evaporator bypass passage 67. The second switching valve 68 switches the passage through which the refrigerant passes between the casing cooling evaporator bypass passage 67 and the passage passing through the casing cooling evaporator 35. An “intake air cooling evaporator bypass portion” is configured by the casing cooling evaporator bypass passage 67 and the second switching valve 68.
ECU20は、車室冷却用エバポレータ35に冷媒を流すか否かを切替弁により切り替え制御する。車室冷却用エバポレータ35をバイパスさせることで、エアコンオフ時や暖房時等、車室の冷却が不要の場合に、吸気冷却用エバポレータ37のみに冷媒が流入するため、吸気冷却効率を向上させることができる。
The ECU 20 performs switching control of whether to flow the refrigerant to the evaporator 35 for casing cooling using a switching valve. Since the refrigerant flows only into the intake air cooling evaporator 37 when bypassing the passenger compartment cooling evaporator 35 does not require cooling of the passenger compartment, such as when the air conditioner is off or heating, the intake air cooling efficiency is improved. Can.
〈第8実施形態〉
次に、第8実施形態の吸気冷却システム108について、図12を参照して説明する。第8実施形態の冷凍サイクル部90は、第6実施形態における吸気冷却用蒸発器バイパス部と、第7実施形態における車室冷却用蒸発器バイパス部との両方を有している。すなわち、冷凍サイクル部90は、吸気冷却用エバポレータバイパス通路65、第1切替弁66、車室冷却用エバポレータバイパス通路67、及び第2切替弁68を有している。 Eighth Embodiment
Next, an intakeair cooling system 108 according to an eighth embodiment will be described with reference to FIG. The refrigeration cycle unit 90 according to the eighth embodiment includes both of the intake air cooling evaporator bypass unit according to the sixth embodiment and the passenger compartment cooling evaporator bypass unit according to the seventh embodiment. That is, the refrigeration cycle unit 90 includes an intake air cooling evaporator bypass passage 65, a first switching valve 66, a vehicle room cooling evaporator bypass passage 67, and a second switching valve 68.
次に、第8実施形態の吸気冷却システム108について、図12を参照して説明する。第8実施形態の冷凍サイクル部90は、第6実施形態における吸気冷却用蒸発器バイパス部と、第7実施形態における車室冷却用蒸発器バイパス部との両方を有している。すなわち、冷凍サイクル部90は、吸気冷却用エバポレータバイパス通路65、第1切替弁66、車室冷却用エバポレータバイパス通路67、及び第2切替弁68を有している。 Eighth Embodiment
Next, an intake
第8実施形態によれば、ECU20による各切替弁66,68の切替制御により、車室冷却用エバポレータ35と吸気冷却用エバポレータ37のうち、いずれか一方のエバポレータ35,37にのみ冷媒を流通させることができる。
According to the eighth embodiment, the switching control of the switching valves 66 and 68 by the ECU 20 causes the refrigerant to flow through only one of the evaporator 35 and the evaporator 37 for intake air cooling. be able to.
〈他の実施形態〉
上記第2実施形態では、蓄冷量に下限値Mを設ける制御を行うようにしたが、下限値Mを設けなくても良い。この場合、図3に示すフローチャートのS8に代えて、例えば蓄冷量が0か否かの判断を行うようにしても良い。そして、蓄冷量が0の場合には処理を終了し、蓄冷量が0ではない場合には、S5~S7のステップを繰り返すように実行できる。 Other Embodiments
In the second embodiment, the control for providing the lower limit value M to the cold storage amount is performed, but the lower limit value M may not be provided. In this case, instead of S8 of the flowchart shown in FIG. 3, for example, it may be determined whether the amount of cold storage is zero. Then, the process can be ended when the cold storage amount is zero, and the steps S5 to S7 can be repeated when the cold storage amount is not zero.
上記第2実施形態では、蓄冷量に下限値Mを設ける制御を行うようにしたが、下限値Mを設けなくても良い。この場合、図3に示すフローチャートのS8に代えて、例えば蓄冷量が0か否かの判断を行うようにしても良い。そして、蓄冷量が0の場合には処理を終了し、蓄冷量が0ではない場合には、S5~S7のステップを繰り返すように実行できる。 Other Embodiments
In the second embodiment, the control for providing the lower limit value M to the cold storage amount is performed, but the lower limit value M may not be provided. In this case, instead of S8 of the flowchart shown in FIG. 3, for example, it may be determined whether the amount of cold storage is zero. Then, the process can be ended when the cold storage amount is zero, and the steps S5 to S7 can be repeated when the cold storage amount is not zero.
上記第5実施形態において、図5に示した第3実施形態と同様に、吸気冷却用エバポレータ37に吸気冷却用熱交換器61を兼用させて吸気を冷却する構成としても良い。
In the fifth embodiment, as in the third embodiment shown in FIG. 5, the intake air cooling heat exchanger 61 may be used as the intake air cooling evaporator 37 to cool the intake air.
上記第6実施形態において、蓄冷材62を設けなくても良い。
In the sixth embodiment, the cool storage material 62 may not be provided.
上記各実施形態において、蓄冷材62は潜熱蓄冷材を用いたが、顕熱蓄冷材を用いても良い。
In each of the above embodiments, the latent heat storage material is used as the cold storage material 62, but a sensible heat storage material may be used.
本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。
The present disclosure has been described in accordance with the embodiments. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and variations within the scope of equivalents. In addition, various combinations and forms, and further, other combinations and forms including one element or more, or less or less, are also within the scope and the scope of the present disclosure.
Claims (15)
- 車両の内燃機関(10)に用いられ、車室内の空調を行う車両用空調装置が備える冷凍サイクル部(30,50,60,80,90)を介して吸気を冷却する吸気冷却システムであって、
出力を可変であり、冷媒を圧縮し吐出する可変圧縮機(31)と、
前記可変圧縮機から吐出された前記冷媒を冷却する車室冷却用熱交換器(32)と、
前記車室冷却用熱交換器から流出された前記冷媒を減圧膨張させる車室冷却用減圧部(34)と、
車室冷却用に配され、前記車室冷却用減圧部により減圧膨張された前記冷媒を蒸発させる車室冷却用蒸発器(35)と、
前記車室冷却用蒸発器とは別に配され、前記車室冷却用減圧部またはその他の減圧部により減圧膨張された前記冷媒を蒸発させる吸気冷却用蒸発器(37)と、
吸気通路(47)に設けられ、吸気冷却用の冷媒が循環する吸気冷却用熱交換器(61)と、
前記車両用空調装置の空調要求冷却出力に基づいて前記可変圧縮機の作動を制御する制御部(20)と、
を備える吸気冷却システム。 An intake air cooling system for cooling intake air through a refrigeration cycle unit (30, 50, 60, 80, 90) included in an internal combustion engine (10) of a vehicle and provided in a vehicle air conditioner for air conditioning a vehicle interior ,
A variable compressor (31) which has a variable output and compresses and discharges a refrigerant;
A casing cooling heat exchanger (32) for cooling the refrigerant discharged from the variable compressor;
A casing cooling decompression unit (34) for decompressing and expanding the refrigerant flowing out of the casing cooling heat exchanger;
A casing cooling evaporator (35) disposed for casing cooling, for evaporating the refrigerant decompressed and expanded by the casing cooling decompression unit;
An intake air cooling evaporator (37), which is disposed separately from the casing cooling evaporator, and evaporates the refrigerant decompressed and expanded by the casing cooling decompression unit or the other decompression unit;
An intake air cooling heat exchanger (61) provided in the intake passage (47) and circulating a refrigerant for intake air cooling;
A control unit (20) for controlling the operation of the variable compressor based on an air conditioning request cooling output of the vehicle air conditioner;
An intake air cooling system comprising: - 前記吸気冷却用熱交換器には、蓄冷材(62)が設けられている請求項1に記載の吸気冷却システム。 The intake air cooling system according to claim 1, wherein a heat storage material (62) is provided in the heat exchanger for intake air cooling.
- 前記蓄冷材は、潜熱蓄冷材である請求項2に記載の吸気冷却システム。 The intake air cooling system according to claim 2, wherein the cold storage material is a latent heat storage material.
- その他の前記減圧部は、前記車室冷却用減圧部とは別に配され、前記車室冷却用熱交換器から流出された前記冷媒を減圧膨張させる吸気冷却用減圧部(36)であり、
前記車室冷却用減圧部及び前記吸気冷却用減圧部へ流入する前記冷媒の量を前記制御部により制御可能な冷媒量調整弁(33)、
をさらに備え、前記車室冷却用減圧部及び前記車室冷却用蒸発器と、前記吸気冷却用減圧部及び前記吸気冷却用蒸発器とは、並列に配置されている請求項2または請求項3に記載の吸気冷却システム。 The other decompression section is an intake cooling decompression section (36) which is disposed separately from the casing cooling decompression section and decompresses and expands the refrigerant flowing out from the casing cooling heat exchanger.
A refrigerant amount adjusting valve (33) capable of controlling the amount of the refrigerant flowing into the casing cooling decompression portion and the intake air cooling decompression portion by the control portion;
4. The air conditioner according to claim 2, further comprising: a casing cooling decompression unit and a casing cooling evaporator, and the intake cooling decompression unit and the intake cooling evaporator arranged in parallel with each other. The intake air cooling system as described in. - 前記制御部は、前記空調要求冷却出力に加えて前記蓄冷材の蓄冷量に応じて、前記可変圧縮機及び前記冷媒量調整弁を制御する請求項4に記載の吸気冷却システム。 5. The intake air cooling system according to claim 4, wherein the control unit controls the variable compressor and the refrigerant amount adjusting valve in accordance with a stored cold amount of the cold storage material in addition to the air conditioning required cooling output.
- 前記制御部は、前記可変圧縮機を、前記蓄冷材の蓄冷量が最大ではないとき、前記可変圧縮機の成績係数が最大となる動作点で運転するように制御する請求項5に記載の吸気冷却システム。 The air intake according to claim 5, wherein the control unit controls the variable compressor to operate at an operating point at which the coefficient of performance of the variable compressor becomes maximum when the amount of cold storage of the cold storage material is not maximum. Cooling system.
- 前記制御部は、前記蓄冷材の蓄冷量が最大のとき、前記可変圧縮機を前記空調要求冷却出力に応じて制御するとともに、前記車室冷却用蒸発器へ全冷媒が流入するように前記冷媒量調整弁を制御する請求項5または請求項6に記載の吸気冷却システム。 The control unit controls the variable compressor according to the air conditioning request cooling output when the cold storage amount of the cold storage material is maximum, and the refrigerant so that all refrigerant flows into the casing cooling evaporator The intake air cooling system according to claim 5 or 6, which controls the amount adjustment valve.
- 前記制御部は、前記蓄冷材の蓄冷量が予め設定された下限値を下回った場合には、蓄冷量が0となる前に、前記可変圧縮機の成績係数が最大となる動作点で運転するように制御する請求項5~請求項7のうちいずれか一項に記載の吸気冷却システム。 The control unit operates at an operating point at which the coefficient of performance of the variable compressor becomes maximum before the amount of stored cold reaches 0 when the amount of stored cold storage material falls below a preset lower limit value. The intake air cooling system according to any one of claims 5 to 7, wherein the control is performed as follows.
- 前記吸気通路において前記吸気冷却用熱交換器をバイパスする吸気バイパス通路(54)と、
前記吸気通路において前記吸気冷却用熱交換器が設けられる冷却通路(55)と、
前記吸気バイパス通路と前記冷却通路との分岐点に設けられ、前記吸気バイパス通路及び前記冷却通路へ流れる吸気量を調整する吸気量調整弁(57)と、
をさらに備え、前記制御部は、前記内燃機関の運転状態に応じて定められた吸気要求冷却出力に基づいて前記吸気量調整弁を制御する請求項1~請求項8のうちいずれか一項に記載の吸気冷却システム。 An intake bypass passage (54) bypassing the intake cooling heat exchanger in the intake passage;
A cooling passage (55) in which the heat exchanger for intake air cooling is provided in the intake passage;
An intake amount adjustment valve (57) provided at a branch point between the intake bypass passage and the cooling passage, for adjusting an intake amount flowing to the intake bypass passage and the cooling passage;
The control method according to any one of claims 1 to 8, further comprising: the control unit controlling the intake amount adjustment valve based on an intake required cooling output determined in accordance with an operating state of the internal combustion engine. Intake air cooling system as described. - 前記吸気バイパス通路と前記冷却通路との合流部の下流に設けられ、吸気温度を検出可能な吸気温度検出部(58)をさらに備え、
前記制御部は、
前記吸気温度検出部により検出された吸気温度が、前記内燃機関の運転状態に応じて定められた吸気基準温度より高い場合には前記吸気バイパス通路に流れるバイパス吸気量を少なくするように前記吸気量調整弁を制御し、
前記吸気温度検出部により検出された吸気温度が、前記吸気基準温度より低い場合には前記バイパス吸気量を多くするように前記吸気量調整弁を制御する請求項9に記載の吸気冷却システム。 The intake air temperature detection unit (58) is provided downstream of a junction of the intake air bypass passage and the cooling passage and can detect an intake air temperature.
The control unit
When the intake air temperature detected by the intake air temperature detection unit is higher than the intake air reference temperature determined according to the operating state of the internal combustion engine, the intake air amount is reduced so as to reduce the bypass intake air amount flowing through the intake bypass passage. Control the regulating valve,
10. The intake air cooling system according to claim 9, wherein the intake air amount adjustment valve is controlled to increase the bypass intake air amount when the intake air temperature detected by the intake air temperature detection unit is lower than the intake air reference temperature. - 前記車両用空調装置から前記車室内へ排出される空気の温度を検出する空調温度検出部(38)をさらに備え、
前記制御部は、
前記空調温度検出部により検出された空調温度が、前記車両用空調装置の空調要求温度より低い場合には前記冷媒を前記吸気冷却用蒸発器のみへ流入するように前記冷媒量調整弁を制御し、
前記空調温度検出部により検出された空調温度が、前記空調要求温度より高い場合には前記冷媒を前記車室冷却用蒸発器のみへ流入するように前記冷媒量調整弁を制御する請求項4~請求項10のうちいずれか一項に記載の吸気冷却システム。 It further comprises an air conditioning temperature detection unit (38) for detecting the temperature of air discharged from the air conditioning system for vehicle to the vehicle compartment,
The control unit
If the air conditioning temperature detected by the air conditioning temperature detection unit is lower than the air conditioning required temperature of the vehicle air conditioner, the refrigerant amount adjusting valve is controlled so that the refrigerant flows only into the intake air cooling evaporator. ,
The refrigerant amount adjusting valve is controlled so that the refrigerant flows only into the casing cooling evaporator when the air conditioning temperature detected by the air conditioning temperature detection unit is higher than the air conditioning required temperature. The intake air cooling system according to any one of claims 10. - 前記車室冷却用蒸発器と前記吸気冷却用蒸発器とは、直列に配置されている請求項1~請求項3のうちいずれか一項に記載の吸気冷却システム。 The intake air cooling system according to any one of claims 1 to 3, wherein the casing cooling evaporator and the intake air cooling evaporator are arranged in series.
- 前記吸気通路において前記吸気冷却用熱交換器をバイパスする吸気バイパス通路(54)と、
前記吸気通路において前記吸気冷却用熱交換器が設けられる冷却通路(55)と、
前記吸気バイパス通路と前記冷却通路との分岐点に設けられ、前記吸気バイパス通路及び前記冷却通路へ流れる吸気量を調整する吸気量調整弁(57)と、
をさらに備え、前記制御部は、前記空調要求冷却出力が大きいほど前記吸気バイパス通路を通るバイパス吸気量を増やすように前記吸気量調整弁を制御する請求項12に記載の吸気冷却システム。 An intake bypass passage (54) bypassing the intake cooling heat exchanger in the intake passage;
A cooling passage (55) in which the heat exchanger for intake air cooling is provided in the intake passage;
An intake amount adjustment valve (57) provided at a branch point between the intake bypass passage and the cooling passage, for adjusting an intake amount flowing to the intake bypass passage and the cooling passage;
The intake air cooling system according to claim 12, further comprising: the control unit controls the intake amount adjustment valve to increase a bypass intake amount passing through the intake bypass passage as the air conditioning request cooling output increases. - 前記冷凍サイクル部(60)内の前記冷媒が流れる冷媒流路(39)において
前記車室冷却用減圧部の下流であって、前記吸気冷却用蒸発器をバイパスする吸気冷却用蒸発器バイパス通路(65)と、前記吸気冷却用蒸発器バイパス通路へ前記冷媒を流入させるか否かを切り替える第1切替弁(66)と、を有する吸気冷却用蒸発器バイパス部、
前記車室冷却用減圧部の下流であって、前記車室冷却用蒸発器をバイパスする車室冷却用蒸発器バイパス通路(67)と、前記車室冷却用蒸発器バイパス通路へ前記冷媒を流入させるか否かを切り替える第2切替弁(68)と、を有する車室冷却用蒸発器バイパス部、
のうち少なくとも一つをさらに備える請求項12または請求項13に記載の吸気冷却システム。 In the refrigerant flow path (39) through which the refrigerant flows in the refrigeration cycle part (60), an intake air cooling evaporator bypass passage which is downstream of the casing cooling pressure reduction part and which bypasses the intake air cooling evaporator ( 65) and a first switching valve (66) for switching whether or not the refrigerant is caused to flow into the intake air cooling evaporator bypass passage;
The refrigerant flows into the casing cooling evaporator bypass passage (67) downstream of the casing cooling decompression unit and bypasses the casing cooling evaporator, and the casing cooling evaporator bypass passage. A second switching valve (68) for switching whether or not to
The intake air cooling system according to claim 12 or 13, further comprising at least one of the following. - 前記吸気冷却用蒸発器は、前記吸気通路に設けられ、前記吸気冷却用熱交換器を兼用するものである請求項1~請求項14のうちいずれか一項に記載の吸気冷却システム。 The intake air cooling system according to any one of claims 1 to 14, wherein the intake air cooling evaporator is provided in the intake air passage and doubles as the intake air cooling heat exchanger.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017197126A JP2019070357A (en) | 2017-10-10 | 2017-10-10 | Intake air cooling system |
JP2017-197126 | 2017-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019073769A1 true WO2019073769A1 (en) | 2019-04-18 |
Family
ID=66101586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/034728 WO2019073769A1 (en) | 2017-10-10 | 2018-09-20 | Intake air cooling system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019070357A (en) |
WO (1) | WO2019073769A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021162004A (en) * | 2020-04-03 | 2021-10-11 | マツダ株式会社 | Intake air cooling system |
CN115341990A (en) * | 2022-08-19 | 2022-11-15 | 奇瑞汽车股份有限公司 | Engine air intake cooling device and vehicle |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59121226U (en) * | 1983-02-04 | 1984-08-15 | ダイキン工業株式会社 | Intake air cooling system for cars equipped with supercharged engines |
JPS608418A (en) * | 1983-06-28 | 1985-01-17 | Nissan Motor Co Ltd | Intake-air temperature regulating device in internal-combustion engine |
JPS6348919U (en) * | 1986-09-17 | 1988-04-02 | ||
JPS63112230U (en) * | 1987-01-16 | 1988-07-19 | ||
JPS63255516A (en) * | 1987-04-13 | 1988-10-21 | Calsonic Corp | Intake air cooler for motor car engine |
JPH01152029U (en) * | 1988-04-12 | 1989-10-19 | ||
JPH0294331U (en) * | 1989-01-13 | 1990-07-26 | ||
EP2154347A2 (en) * | 2008-08-12 | 2010-02-17 | Behr GmbH & Co. KG | Device for tempering the intake air of a combustion engine |
JP2011088621A (en) * | 2009-09-24 | 2011-05-06 | Denso Corp | Air-conditioning control device for vehicle |
JP2011524483A (en) * | 2008-06-16 | 2011-09-01 | ベール ゲーエムベーハー ウント コー カーゲー | Apparatus for cooling a coolant, circuit for filling an internal combustion engine, and method for cooling an essentially gaseous filling fluid intended to fill an internal combustion engine |
DE102014019095A1 (en) * | 2014-12-18 | 2015-06-25 | Daimler Ag | Device and method for intercooling |
-
2017
- 2017-10-10 JP JP2017197126A patent/JP2019070357A/en active Pending
-
2018
- 2018-09-20 WO PCT/JP2018/034728 patent/WO2019073769A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59121226U (en) * | 1983-02-04 | 1984-08-15 | ダイキン工業株式会社 | Intake air cooling system for cars equipped with supercharged engines |
JPS608418A (en) * | 1983-06-28 | 1985-01-17 | Nissan Motor Co Ltd | Intake-air temperature regulating device in internal-combustion engine |
JPS6348919U (en) * | 1986-09-17 | 1988-04-02 | ||
JPS63112230U (en) * | 1987-01-16 | 1988-07-19 | ||
JPS63255516A (en) * | 1987-04-13 | 1988-10-21 | Calsonic Corp | Intake air cooler for motor car engine |
JPH01152029U (en) * | 1988-04-12 | 1989-10-19 | ||
JPH0294331U (en) * | 1989-01-13 | 1990-07-26 | ||
JP2011524483A (en) * | 2008-06-16 | 2011-09-01 | ベール ゲーエムベーハー ウント コー カーゲー | Apparatus for cooling a coolant, circuit for filling an internal combustion engine, and method for cooling an essentially gaseous filling fluid intended to fill an internal combustion engine |
EP2154347A2 (en) * | 2008-08-12 | 2010-02-17 | Behr GmbH & Co. KG | Device for tempering the intake air of a combustion engine |
JP2011088621A (en) * | 2009-09-24 | 2011-05-06 | Denso Corp | Air-conditioning control device for vehicle |
DE102014019095A1 (en) * | 2014-12-18 | 2015-06-25 | Daimler Ag | Device and method for intercooling |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021162004A (en) * | 2020-04-03 | 2021-10-11 | マツダ株式会社 | Intake air cooling system |
JP7415247B2 (en) | 2020-04-03 | 2024-01-17 | マツダ株式会社 | intake air cooling system |
CN115341990A (en) * | 2022-08-19 | 2022-11-15 | 奇瑞汽车股份有限公司 | Engine air intake cooling device and vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2019070357A (en) | 2019-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8561580B2 (en) | Engine cooling device | |
US9242532B2 (en) | Air conditioner system control method for vehicle | |
US10232702B2 (en) | Thermal management system | |
US5685160A (en) | Method for operating an air conditioning cooling system for vehicles and a cooling system for carrying out the method | |
US7228705B2 (en) | Air-conditioning installation, especially for motor vehicles | |
US20130067910A1 (en) | Waste heat recovery system | |
US9643469B2 (en) | Vehicle thermal management system | |
JP5627575B2 (en) | Apparatus for cooling a coolant, circuit for filling an internal combustion engine, and method for cooling an essentially gaseous filling fluid intended to fill an internal combustion engine | |
US9359936B2 (en) | System and operating method for a supercharged internal combustion engine with charge-air cooling | |
US20130074497A1 (en) | Waste heat recovery system | |
US20080173029A1 (en) | Air Conditioning System For a Motor Vehicle | |
US10030572B2 (en) | Coolant circuit for an internal combustion engine | |
US10378429B2 (en) | Hybrid intercooler system and control method thereof | |
CN107152335B (en) | Hybrid intercooler system integrated with air conditioning system and control method thereof | |
JP2011518301A (en) | Cooling device and cooling method for cooling a temperature sensitive unit of a vehicle | |
US11260719B2 (en) | Battery cooling system including a cooling water circulation circuit | |
US20210387506A1 (en) | In-vehicle temperature control system | |
CN108119227B (en) | Automobile, engine air inlet system, engine air inlet control unit, engine air inlet control method and automobile air conditioning system | |
JP6358424B2 (en) | Intake air temperature control system | |
WO2019073769A1 (en) | Intake air cooling system | |
US11085354B2 (en) | Control method for integrated thermal management system of vehicle | |
WO2016117309A1 (en) | Refrigeration cycle apparatus for vehicle | |
US10830122B2 (en) | Intake and charge air cooling system | |
JPS61101660A (en) | Fuel cooling device for motorcar | |
JP2019100269A (en) | Intake air cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18867182 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18867182 Country of ref document: EP Kind code of ref document: A1 |