WO2019073745A1 - 生体認証装置及び生体認証方法 - Google Patents

生体認証装置及び生体認証方法 Download PDF

Info

Publication number
WO2019073745A1
WO2019073745A1 PCT/JP2018/034075 JP2018034075W WO2019073745A1 WO 2019073745 A1 WO2019073745 A1 WO 2019073745A1 JP 2018034075 W JP2018034075 W JP 2018034075W WO 2019073745 A1 WO2019073745 A1 WO 2019073745A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
score
image
living body
biometric
Prior art date
Application number
PCT/JP2018/034075
Other languages
English (en)
French (fr)
Inventor
達也 島原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2019547955A priority Critical patent/JP6866929B2/ja
Priority to EP18867156.4A priority patent/EP3696770A4/en
Priority to US16/322,233 priority patent/US11170197B2/en
Publication of WO2019073745A1 publication Critical patent/WO2019073745A1/ja
Priority to US17/502,925 priority patent/US11776302B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1353Extracting features related to minutiae or pores
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/211Selection of the most significant subset of features
    • G06F18/2115Selection of the most significant subset of features by evaluating different subsets according to an optimisation criterion, e.g. class separability, forward selection or backward elimination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/771Feature selection, e.g. selecting representative features from a multi-dimensional feature space
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification

Definitions

  • the present invention relates to a biometric authentication apparatus and a biometric authentication method, and more particularly to a technique for automatically optimizing parameters used to extract a feature from a biometric image.
  • Fingerprints and palm prints formed by ridges on the skin of fingers and palms are characterized by being unequal and lifelong. For this reason, fingerprints and palm prints are used in criminal investigations as biometric authentication means for identifying individuals.
  • Patent Document 1 Collected images such as an impression fingerprint collected in advance for a criminal investigation and a retained fingerprint collected at a case site are registered in a database in advance, and read out in a criminal investigation to extract feature quantities.
  • noise extraction processing and enhancement processing are performed when extracting a feature amount from a sampled image, thereby clarifying the feature amount of the fingerprint and improving the collation accuracy of the fingerprint.
  • Parameters such as combinations of noise removal processing and enhancement processing used when extracting feature quantities from biological images and weights are optimum values according to fingerprint collection methods (for example, ink and paper quality in the ink method), etc. Is different. For this reason, the parameters for extracting the feature amount from the biometric image need to be set appropriately in accordance with the operation style of the biometric device.
  • the first living body image and the second living body image are generated using a teacher data generation unit that generates a correct pair and an incorrect pair of the first living body image and the second living body image, and a plurality of different temporary parameters.
  • the learning data generation unit for extracting the feature quantity from the living body image, the first score indicating the matching degree of the feature quantity pair extracted from the correct answer pair, and the matching degree of the feature quantity pair extracted from the incorrect answer pair
  • a solution determining unit configured to calculate the score separation degree for each temporary parameter based on the second score, and to determine the temporary parameter based on the degree of the score separation degree.
  • a training data generation step for generating a correct pair and an incorrect pair of a first living body image and a second living body image, and using a plurality of different temporary parameters to obtain a first living body image and
  • the learning data generation step of extracting the feature amount from the second living body image, the first score indicating the matching degree of the feature amount pair extracted from the correct pair, and the match of the feature amount pair extracted from the incorrect answer pair
  • An optimal solution determining step of calculating a score separation degree for each temporary parameter based on the second score representing the degree and determining the temporary parameter based on the magnitude of the score separation degree;
  • a biometric authentication method used in a control calculation unit is provided.
  • a biometric authentication device and a fingerprint feature extraction method capable of automatically optimizing parameters for extracting a feature amount from a living body image.
  • FIG. 1 is a block diagram schematically showing the configuration of the biometric device according to the first embodiment.
  • the biometric authentication device of the present embodiment is configured to include a control calculation unit 1 and a recording unit 2.
  • the control calculation unit 1 is a semiconductor IC including a microprocessor and a memory for executing the program recorded in the recording unit 2 and performing control and calculation of the biometric device.
  • the control calculation unit 1 includes a living body image reading unit 11, a teacher data generation unit 12, a learning data generation unit 13, an optimum solution determination unit 14, and a parameter update unit 15.
  • the recording unit 2 is a recording device such as a flash memory or an HDD in which a program executed by the control calculation unit 1 and data necessary for the execution of the program are stored.
  • biometric images such as an impression fingerprint collected in advance for a criminal investigation and a residual fingerprint collected at an incident site are registered as a database.
  • the living body image reading unit 11 reads out a plurality of living body images from living body images registered as a database in the recording unit 2 in order to perform machine learning for automatically optimizing parameters for feature amount extraction.
  • the automatic optimization of parameters described below can be performed as a background process of a normal appraisal process, or as a batch process performed at night or the like.
  • the living body image may be a taken image of a palm print, a finger vein, an iris of a pupil, or the like. Further, the living body image may be one obtained by directly reading living body information by a camera or the like, or one obtained by reading living body information pressed on paper by ink etc. by a scanner.
  • the teacher data generation unit 12 generates a pair of a first living body image and a second living body image to be used as teacher data in learning data generation processing described later.
  • the collected image of the latent fingerprint is taken as a first living body image
  • the taken image of the depressed fingerprint is taken as a second living body image.
  • the teacher data generation unit 12 determines from the plurality of living body images read by the living body image reading unit 11 that the first living body image and the second living body image are determined to be based on the same finger. Select the pair as the correct pair. Further, the teacher data generation unit 12 selects the pair of the first biometric image and the second biometric image that is not determined to be based on the same finger as an incorrect pair.
  • the teacher data generation unit 12 does not have to be a dedicated process for generating teacher data, and one process in a normal appraisal operation can also be used as one process in the teacher data generation unit 12.
  • the teacher data generation unit 12 directly corrects the pair of the first biometric image and the second biometric image, which are identified in advance as being based on the same finger by an examiner or the like who is a user of the biometric device. It may be selected as
  • the learning data generation unit 13 generates a feature amount for learning data from the first living body image for teacher data and the second living body image generated by the training data generation unit 12 using a plurality of different temporary parameters.
  • a group of feature points end points or branch points of fingerprint ridges extracted from a collected image of a latent fingerprint or an impression fingerprint is used as a feature value for learning data.
  • the term "parameter” is used in a broad sense.
  • the parameters may include combinations and weights of algorithms for de-noising, enhancing and other processing in image extraction.
  • the optimal solution determination unit 14 determines a first score representing the matching degree of the feature quantity pair extracted from the correct pair and a second score representing the matching degree of the feature quantity pair extracted from the non-correct answer pair. Based on the score, the score separation degree is calculated for each temporary parameter. And a temporary parameter is determined as an optimal solution based on the magnitude
  • the parameter updating unit 15 updates the parameters recorded in the recording unit 2 with the temporary parameters determined as the optimal solution.
  • FIG. 2A and FIG. 2B are diagrams showing an example of teacher data generation processing in the biometric apparatus according to the first embodiment.
  • the teacher data generation unit 12 selects a pair of a first living body image and a second living body image determined to be based on the same finger from a plurality of living body images read by the living body image reading unit 11 as a correct pair. Do. Further, the teacher data generation unit 12 selects the pair of the first biometric image and the second biometric image that is not determined to be based on the same finger as an incorrect pair.
  • the collected image of the retained fingerprint F generated by the teacher data generation unit 12 and the collected image of the depressed fingerprint f are represented by the same graphic, the collected image of the actual retained fingerprint F is the depressed fingerprint It is unclear than the collected image of f.
  • the present embodiment is not limited to this example.
  • the teacher data generation unit 12 pairs a correct pair of the collected image of the retained fingerprint F and the collected image of the crush fingerprint f, which are previously identified as being based on the same finger by the forensic inspector or the like who is the user of the biometric device. Generate as teacher data. In addition, the teacher data generation unit 12 is not correct for the sampled image of the retained fingerprint F and the sampled image of the squeeze fingerprint f that were not identified as being based on the same finger by the forensic inspector or the like who is the user of the biometric device. Generate pairs as teacher data.
  • the feature point group ⁇ M1, M2,... ⁇ Of the collected image of the residual fingerprint F, which is the first living body image, and the feature point group ⁇ m1, m2 of the collected image of the depressed fingerprint f, which is the second living body image. , ... ⁇ are shown for reference.
  • the forensic examiner refers to the feature point group ⁇ M1, M2,... ⁇ And the feature point group ⁇ m1, m2,.
  • the correct pair and the non-correct pair are selected, but the present embodiment is not limited thereto.
  • FIG. 2B shows an example of the plurality of correct answer pairs F1-f1, F2-f2 and F3-f3 generated by the teacher data generation unit 12.
  • the correct answer pair F1-f1 is a correct answer pair of the collected image of the permanent fingerprint F1 and the collected image of the squeeze fingerprint f1, and the same applies to the other correct answer pairs F2-f2 and F3-f3.
  • three correct pairs are shown in FIG. 2B, more correct pairs may be generated in an actual teacher data generation process.
  • FIG. 3A and FIG. 3B are diagrams showing an example of learning data generation processing in the biometric device according to the first embodiment.
  • the learning data generation unit 13 uses a plurality of different temporary parameters from the first living body image and the second living body image of the correct answer pair for training data generated by the training data generation unit 12 to obtain a feature amount for learning data.
  • a group of feature points end points or branch points of fingerprint ridges
  • FIG. 3B shows the first and second biological images of the correct pair shown in FIG. 2B.
  • this embodiment is not limited to this example.
  • the learning data generation unit 13 extracts feature point groups G ⁇ N1, N2,... ⁇ From the collected image of the residual fingerprint F using temporary parameters. Further, similarly, the learning data generation unit 13 extracts feature point groups g ⁇ n1, n2,... ⁇ From the collected image of the crush fingerprint f using temporary parameters.
  • a method of extracting feature points for example, a known technique described in Patent Document 1 can be used.
  • the feature point group G1 is a group of feature points extracted from the collected image of the retained fingerprint F1 which is the first living body image
  • the feature point group g1 is a collected image of the depressed fingerprint f1 which is the second living body image Is a group of feature points extracted from.
  • FIG. 3B shows the first biometric image and the second biometric image of the three pairs of correct pairs, but in the actual learning data generation process, the feature amounts from more of the first biometric image and the second biometric image Can be generated.
  • FIG. 4A and FIG. 4B are 1st figures which show the example of the score calculation process in the biometrics apparatus based on 1st Embodiment.
  • FIG. 4A shows feature point groups Ga1 to Ga3 respectively extracted from the residual fingerprints F1 to F3 by the learning data generation unit 13 using the temporary parameter Pa.
  • feature point groups ga1 to ga3 extracted from the fingerprints f1 to f3 by the learning data generation unit 13 are indicated using the temporary parameter pa.
  • the optimum solution determination unit 14 is configured of a feature point group Gai (i is a natural number) extracted from the first living body image and a feature point group gaj (j is a natural number) extracted from the second living body image. For each combination, a score Saij representing the degree of coincidence between the feature point group pair Gai-gaj is calculated.
  • the optimal solution determination unit 14 not only determines the score (hereinafter referred to as the “first score”) representing the matching degree of the feature quantity pair extracted from the correct pair, but also the feature quantity pair extracted from the incorrect pair A score (hereinafter referred to as a “second score”) representing the degree of matching of is also calculated.
  • FIG. 5A and 5B are second diagrams showing an example of the score calculation process in the biometric device according to the first embodiment.
  • FIG. 5A shows feature point groups Gb1 to Gb3 extracted from the residual fingerprints F1 to F3 by the learning data generation unit 13 using the temporary parameter Pb.
  • feature point groups gb1 to gb3 extracted from the fingerprints f1 to f3 by the learning data generation unit 13 using the temporary parameter pb are shown.
  • the optimal solution determination unit 14 calculates, for each combination of the feature point group Gbi and the feature point group gbj, a score Sbij representing the degree of coincidence of the feature point group pair Gbi-gbj.
  • FIG. 5B shows the score Sbij calculated by the optimum solution determination unit 14.
  • FIG. 6A and 6B are third diagrams showing an example of the score calculation process in the biometric device according to the first embodiment.
  • FIG. 6A shows feature point groups Gc1 to Gc3 extracted from the residual fingerprints F1 to F3 by the learning data generation unit 13 using the temporary parameters Pc.
  • feature point groups gc1 to gc3 extracted from the fingerprints f1 to f3 by the learning data generation unit 13 using the temporary parameter pc are shown.
  • the optimum solution determination unit 14 calculates, for each combination of the feature point group Gci and the feature point group gcj, a score Scij representing the matching degree of the pair of feature point groups Gci-gcj.
  • FIG. 6B shows the score Scij calculated by the optimum solution determination unit 14.
  • the optimum solution determination unit 14 generates a second score representing the first score representing the matching degree of the feature quantity pair extracted from the correct answer pair and the second matching degree representing the feature quantity pair extracted from the incorrect answer pair Calculate a score separation degree that represents a statistical degree of separation with the score.
  • separation degree is not limited to this example.
  • FIG. 7 is a diagram showing an example of the optimum solution determination process in the biometric device according to the first embodiment.
  • the optimal solution determination unit 14 calculates the score S ij representing the degree of coincidence between the latent fingerprint Fi and the depressed fingerprint f j by making the weights (A, B, C) of the temporary parameter P different and using the following equation (1).
  • Saij, Sbij, and Scij are the scores shown in FIG. 4B, FIG. 5B, and FIG. 6B, and A, B, and C represent the weights of the scores Saij, Sbij, and Scij, respectively.
  • Sij A ⁇ Saij + B ⁇ Sbij + C ⁇ Scij + (1)
  • the score S ij is calculated by the combination of the three temporary parameter P weights (1, 1, 1), (1, 2, 1), and (2, 1, 1).
  • combinations of weights (A, B, C) of more temporary parameters P may be used.
  • a second score S ij (i ⁇ j) representing H is calculated for each retained fingerprint Fi (first biometric image).
  • FIG. 7 shows the calculated first score and second score separately for each remaining fingerprint Fi. The first score and the second score may be calculated for each depressed fingerprint fj (second biological image).
  • the optimal solution determination unit 14 determines the ratio of the retained fingerprint Fi (first biometric image) having the first rank in the first score in the score separation degree for each temporary parameter P (A, B, C). Calculated as S.
  • the ratio of the depressed fingerprint fj (second biological image) having the first score rank may be calculated as the score separation degree S for each temporary parameter P (A, B, C).
  • the ranking of the first score of the retained fingerprint Fi is shown in parentheses.
  • the parameter updating unit 15 updates the parameters recorded in the recording unit 2 with the temporary parameters determined as the optimal solution by the optimal solution determining unit 14.
  • the parameters recorded in the recording unit 2 are optimized. Therefore, it is possible to automatically optimize the parameters for extracting the feature amount from the living body image while operating the biometric authentication device.
  • the first score representing the matching degree of the feature amount pair extracted from the correct pair, and the second score representing the matching degree of the feature amount pair extracted from the non-correct pair Based on the score separation degree S is calculated. Therefore, as the temporary parameter (2, 1, 1) shown in FIG. 7, the temporary parameter which calculates the second score representing the matching degree of the feature amount pair extracted from the incorrect pair as the optimal solution is determined as the optimal solution You can avoid it.
  • separation degree is not restricted to determination by the ratio of 1st place.
  • FIG. 8 is a diagram showing a flowchart of the biometric authentication method according to the first embodiment. The biometric authentication method of this embodiment will be described below with reference to the flowchart shown in FIG.
  • step S101 the living body image reading unit 11 reads a living body image registered as a database in the recording unit 2.
  • the teacher data generation unit 12 selects a pair of living body images determined to be based on the same finger from among a plurality of living body images read by the living body image reading unit 11 as a correct pair.
  • the learning data generation unit 13 uses the plurality of temporary parameters from the first biometric image for teacher data and the second biometric image generated by the teacher data generation unit 12 to use as a feature for learning data.
  • step S104 the optimal solution determination unit 14 generates a first score representing the matching degree of the feature amount pair extracted from the correct pair and a second score representing the matching degree of the feature amount pair extracted from the non-correct pair
  • the score separation degree is calculated for each temporary parameter based on the score of.
  • step S105 the optimal solution determination unit 14 determines a temporary parameter with the highest score separation degree as an optimal solution.
  • step S106 the parameter updating unit 15 updates the parameters recorded in the recording unit 2 with the temporary parameters determined as the optimal solution.
  • the first score representing the matching degree of the feature amount pair extracted from the correct pair, and the matching degree of the feature amount pair extracted from the incorrect answer pair The score separation degree is calculated for each temporary parameter based on the second score to be expressed. Then, the provisional parameter is determined based on the degree of score separation. According to such a configuration, it is possible to provide a biometric authentication device and a fingerprint feature extraction method capable of automatically optimizing parameters for extracting a feature amount from a living body image.
  • the score of the correct answer pair F2-f2 in the above-described embodiment is calculated high regardless of the value of the temporary parameter P (A, B, C) for learning. It hardly contributes. Therefore, the optimal solution determination unit 14 may exclude the correct answer pair whose score is a predetermined value (for example, 1500) or more from the calculation process of the score separation degree. As a result, when there are many correct answer pairs having a large score, the processing load of the control calculation unit 1 in the calculation process of the score separation degree can be greatly reduced.
  • the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a recording medium, and one or more processors in a computer of the system or apparatus read and execute the program. Can also be realized. It can also be implemented by a circuit (eg, an ASIC) that implements one or more functions.
  • a circuit eg, an ASIC
  • a teacher data generation unit that generates a correct pair and an incorrect pair of the first living body image and the second living body image;
  • a learning data generation unit that extracts feature quantities from the first biological image and the second biological image using a plurality of different temporary parameters; Based on a first score representing the matching degree of the feature quantity pair extracted from the correct answer pair, and a second score representing the matching degree of the feature quantity pair extracted from the incorrect answer pair
  • An optimal solution determination unit that calculates a score separation degree for each of the temporary parameters, and determines the temporary parameters based on the magnitude of the score separation degree;
  • Biometrics authentication device provided with
  • the optimal solution determining unit calculates the first score and the second score for each of the first living body image or the second living body image, and a ratio in which the order of the first score is first
  • the biometric authentication device according to claim 1 or 2 which is calculated as the score separation degree.
  • a recording unit that records a parameter for extracting the feature amount from the first biological image and the second biological image;
  • a parameter updating unit that updates the parameter recorded in the recording unit with the determined temporary parameter;
  • the pair of the first biometric image and the second biometric image is a pair of a captured image of a fingerprint or a palm print
  • the biometric authentication device according to any one of appendices 1 to 5, wherein the feature amount is a fingerprint or palm print feature point group.
  • a biometric authentication method used in a control operation unit of a biometric authentication device comprising:
  • Control operation unit 2 Recording unit 11: Living body image reading unit 12: Teacher data generation unit 13: Learning data generation unit 14: Optimal solution determination unit 15: Parameter update unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Collating Specific Patterns (AREA)
  • Image Analysis (AREA)

Abstract

生体画像から特徴量を抽出するためのパラメータを自動最適化することが可能な生体認証装置及び指紋特徴抽出方法を提供する。第1生体画像と第2生体画像の正解対及び非正解対を生成する教師データ生成部と、複数の異なる仮パラメータを用いて、第1生体画像及び第2生体画像から特徴量を抽出する学習データ生成部と、正解対から抽出された特徴量の対の一致度を表す第1のスコアと、非正解対から抽出された特徴量の対の一致度を表す第2のスコアとに基づいて、仮パラメータごとにスコア分離度を算出し、スコア分離度の大きさに基づいて仮パラメータを判定する最適解判定部と、を備える。

Description

生体認証装置及び生体認証方法
 本発明は、生体認証装置及び生体認証方法に関し、特に、生体画像から特徴量を抽出するために用いるパラメータの自動最適化技術に関するものである。
 指や掌の皮膚の隆線が形作る指紋や掌紋は万人不同かつ終生不変という特徴を有している。このため、指紋や掌紋は個人を識別する生体認証手段として犯罪捜査等に利用されている。
 犯罪捜査用に事前に採取される押捺指紋や、事件現場で採取される遺留指紋等の採取画像は、予めデータベースに登録され、犯罪捜査において読み出されて特徴量が抽出される。特許文献1では、採取画像から特徴量を抽出する際にノイズ除去処理や強調処理を行うことで、指紋の特徴量を鮮明化して指紋の照合精度を向上させている。
特開2007-048000号公報
 生体画像から特徴量を抽出する際に用いられるノイズ除去処理や強調処理の組み合わせ及び重み等のパラメータは、指紋の採取方法(例えばインク方式では、インクや紙の質)等に応じて最適な値が異なる。このため、生体画像から特徴量を抽出するパラメータは、生体認証装置の運用スタイルに合わせて適切に設定する必要がある。
 しかし、生体画像から特徴量を抽出するパラメータを運用スタイルごとに設定することは手間を有するだけでなく、最適なパラメータは実際の運用において試行錯誤しながらでないと分からないことも多い。特に、運用スタイルは途中で変更され得ることから、データベースには様々な運用スタイルにおいて採取された生体画像が含まれ得る。このため、生体画像から特徴量を抽出するためのパラメータを最適化して維持することが難しいという課題があった。
 本発明の一観点によれば、第1生体画像と第2生体画像の正解対及び非正解対を生成する教師データ生成部と、複数の異なる仮パラメータを用いて、第1生体画像及び第2生体画像から特徴量を抽出する学習データ生成部と、正解対から抽出された特徴量の対の一致度を表す第1のスコアと、非正解対から抽出された特徴量の対の一致度を表す第2のスコアとに基づいて、仮パラメータごとにスコア分離度を算出し、スコア分離度の大きさに基づいて仮パラメータを判定する最適解判定部と、を備える生体認証装置が提供される。
 また、本発明の別観点によれば、第1生体画像と第2生体画像の正解対及び非正解対を生成する教師データ生成ステップと、複数の異なる仮パラメータを用いて、第1生体画像及び第2生体画像から特徴量を抽出する学習データ生成ステップと、正解対から抽出された特徴量の対の一致度を表す第1のスコアと、非正解対から抽出された特徴量の対の一致度を表す第2のスコアとに基づいて、仮パラメータごとにスコア分離度を算出し、スコア分離度の大きさに基づいて仮パラメータを判定する最適解判定ステップと、を有する、生体認証装置の制御演算部において用いられる生体認証方法が提供される。
 本発明によれば、生体画像から特徴量を抽出するためのパラメータを自動最適化することが可能な生体認証装置及び指紋特徴抽出方法を提供することができる。
第1実施形態に係る生体認証装置の構成を概略的に示すブロック図である。 第1実施形態に係る生体認証装置における教師データ生成処理の例を示す図である。 第1実施形態に係る生体認証装置における教師データ生成処理の例を示す図である。 第1実施形態に係る生体認証装置における学習データ生成処理の例を示す図である。 第1実施形態に係る生体認証装置における学習データ生成処理の例を示す図である。 第1実施形態に係る生体認証装置におけるスコア算出処理の例を示す第1の図である。 第1実施形態に係る生体認証装置におけるスコア算出処理の例を示す第1の図である。 第1実施形態に係る生体認証装置におけるスコア算出処理の例を示す第2の図である。 第1実施形態に係る生体認証装置におけるスコア算出処理の例を示す第2の図である。 第1実施形態に係る生体認証装置におけるスコア算出処理の例を示す第3の図である。 第1実施形態に係る生体認証装置におけるスコア算出処理の例を示す第3の図である。 第1実施形態に係る生体認証装置における最適解判定処理の例を示す図である。 第1実施形態に係る生体認証方法のフローチャートを示す図である。
 以下、本発明の好適な実施形態について図面を用いて説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において適宜変更可能である。各図において同一、又は相当する機能を有するものは、同一符号を付し、その説明を省略又は簡潔にすることもある。
 (第1実施形態)
 図1は、第1実施形態に係る生体認証装置の構成を概略的に示すブロック図である。本実施形態の生体認証装置は、制御演算部1、及び記録部2を備えて構成される。
 制御演算部1は、記録部2に記録されたプログラムを実行し、生体認証装置の制御及び演算を行うためのマイクロプロセッサ及びメモリを備えた半導体ICである。制御演算部1は、生体画像読み出し部11、教師データ生成部12、学習データ生成部13、最適解判定部14、及びパラメータ更新部15を有している。
 記録部2は、制御演算部1により実行されるプログラムや、プログラムの実行に必要となるデータが保存されるフラッシュメモリやHDD等の記録装置である。記録部2には、犯罪捜査用に事前に採取された押捺指紋や、事件現場で採取された遺留指紋等の生体画像が、データベースとして登録されている。
 生体画像読み出し部11は、特徴量抽出用のパラメータを自動最適化するための機械学習を行うために、記録部2にデータベースとして登録されている生体画像の中から、複数の生体画像を読み出す。以下で説明するパラメータの自動最適化は、通常の鑑定処理のバックグラウンド処理として、或いは、夜間等に行われるバッチ処理として実行され得る。
 なお、以下の説明では、犯罪捜査用に予め採取された押捺指紋の採取画像や、事件現場で採取された遺留指紋の採取画像を、生体画像とするが、本実施形態はこれに限定されない。生体画像は掌紋、指の静脈、瞳の虹彩等の採取画像であってもよい。また、生体画像は、生体情報をカメラ等で直接読み取ったものでもよいし、インク等で紙に押捺された生体情報をスキャナで読み取ったものでもよい。
 教師データ生成部12は、後述の学習データ生成処理おいて教師データとして用いるための第1生体画像と第2生体画像の対を生成する。ここで、本実施形態では、遺留指紋の採取画像を第1生体画像とし、押捺指紋の採取画像を第2生体画像とする。
 より具体的には、教師データ生成部12は、生体画像読み出し部11により読み出された複数の生体画像から、同一の指に基づくものであると判定した第1生体画像と第2生体画像の対を正解対として選択する。また、教師データ生成部12は、同一の指に基づくものであると判定しなかった第1生体画像と第2生体画像の対を非正解対として選択する。
 教師データ生成部12は、教師データを生成するための専用の処理である必要はなく、通常の鑑定業務における一処理を、教師データ生成部12における一処理として利用することも可能である。例えば、教師データ生成部12は、生体認証装置の利用者である鑑識官等によって同一の指に基づくものであると予め識別された第1生体画像と第2生体画像の対を、そのまま正解対として選択してもよい。
 学習データ生成部13は、教師データ生成部12により生成された教師データ用の第1生体画像及び第2生体画像から、複数の異なる仮パラメータを用いて、学習データ用の特徴量を生成する。ここで、本実施形態では、遺留指紋や押捺指紋の採取画像から抽出される特徴点(指紋隆線の端点や分岐点)の群(Group)を、学習データ用の特徴量とする。
 なお、本実施形態ではパラメータという用語を広い意味で用いる。パラメータは、画像抽出におけるノイズ除去処理、強調処理、及びその他の処理のアルゴリズムの組み合わせ及び重みを含み得る。
 最適解判定部14は、正解対から抽出された特徴量の対の一致度を表す第1のスコアと、非正解対から抽出された特徴量の対の一致度を表す第2のスコアとに基づいて、仮パラメータごとにスコア分離度を算出する。そして、スコア分離度の大きさに基づいて仮パラメータを最適解として判定する。パラメータ更新部15は、記録部2に記録されているパラメータを、最適解として判定された仮パラメータによって更新する。
 図2A及び図2Bは、第1実施形態に係る生体認証装置における教師データ生成処理の例を示す図である。教師データ生成部12は、生体画像読み出し部11により読み出された複数の生体画像から、同一の指に基づくものであると判定した第1生体画像と第2生体画像の対を正解対として選択する。また、教師データ生成部12は、同一の指に基づくものであると判定しなかった第1生体画像と第2生体画像の対を非正解対として選択する。
 なお、図2Aには、教師データ生成部12により生成された遺留指紋Fの採取画像と押捺指紋fの採取画像を同じ図形で表しているが、実際の遺留指紋Fの採取画像は、押捺指紋fの採取画像よりも不鮮明である。以下、教師データ生成部12による正解対及び非正解対の生成方法の一例について説明するが、本実施形態はこの例に限定されるものではない。
 教師データ生成部12は、生体認証装置の利用者である鑑識官等によって同一の指に基づくものであると予め識別された遺留指紋Fの採取画像と押捺指紋fの採取画像の正解対を、教師データとして生成する。また、教師データ生成部12は、生体認証装置の利用者である鑑識官等によって同一の指に基づくものであると識別されなかった遺留指紋Fの採取画像と押捺指紋fの採取画像の非正解対を、教師データとして生成する。
 図2Aには、第1生体画像である遺留指紋Fの採取画像の特徴点群{M1、M2、…}と、第2生体画像である押捺指紋fの採取画像の特徴点群{m1、m2、…}を参考用に示している。一般的には、鑑識官は、図2Aに示すような特徴点群{M1、M2、…}及び特徴点群{m1、m2、…}を参照しながら、第1生体画像と第2生体画像の正解対及び非正解対を選択するが、本実施形態はこれに限定されるものではない。
 図2Bには、教師データ生成部12により生成された複数の正解対F1-f1、F2-f2、F3-f3の例を示している。ここで、正解対F1-f1は、遺留指紋F1の採取画像と押捺指紋f1の採取画像の正解対であり、他の正解対F2-f2、F3-f3についても同様である。なお、図2Bには、3対の正解対を示したが、実際の教師データ生成処理においては更に多くの正解対が生成され得る。
 図3A及び図3Bは、第1実施形態に係る生体認証装置における学習データ生成処理の例を示す図である。学習データ生成部13は、教師データ生成部12により生成された教師データ用の正解対の第1生体画像及び第2生体画像から、複数の異なる仮パラメータを用いて、学習データ用の特徴量を生成する。ここで、本実施形態では、遺留指紋や押捺指紋の採取画像から抽出される特徴点(指紋隆線の端点や分岐点)の群(Group)を、学習データ用の特徴量とする。図3Bには、図2Bに示した正解対の第1生体画像及び第2生体画像を示している。以下、学習データ生成部13による特徴量の生成方法の一例について説明するが、本実施形態はこの例に限定されるものではない。
 図3Aに示すように、学習データ生成部13は、仮パラメータを用いて、遺留指紋Fの採取画像から特徴点群G{N1、N2、…}を抽出する。また、学習データ生成部13は、同様に、仮パラメータを用いて、押捺指紋fの採取画像から特徴点群g{n1、n2、…}を抽出する。特徴点の抽出方法としては、例えば特許文献1に記載の周知技術が用いられ得る。
 図3Bには、教師データ生成部12により生成された正解対の遺留指紋F1、F2、F3、及び押捺指紋f1、f2、f3とともに、学習データ生成部13により生成された特徴点群G1、G2、G3、及び特徴点群g1、g2、g3を示している。ここで、特徴点群G1は、第1生体画像である遺留指紋F1の採取画像から抽出された特徴点の群であり、特徴点群g1は、第2生体画像である押捺指紋f1の採取画像から抽出された特徴点の群である。他の特徴点群G2、G3、g2、g3についても同様である。なお、図3Bには、3対の正解対の第1生体画像及び第2生体画像を示したが、実際の学習データ生成処理においては更に多くの第1生体画像及び第2生体画像から特徴量が生成され得る。
 図4A及び図4Bは、第1実施形態に係る生体認証装置におけるスコア算出処理の例を示す第1の図である。図4Aには、仮パラメータPaを用いて、学習データ生成部13により遺留指紋F1~F3からそれぞれ抽出された特徴点群Ga1~Ga3を示している。また同様に、仮パラメータpaを用いて、学習データ生成部13により押捺指紋f1~f3からそれぞれ抽出された特徴点群ga1~ga3を示している。
 最適解判定部14は、図4Aに示すように、第1生体画像から抽出された特徴点群Gai(iは自然数)と第2生体画像から抽出された特徴点群gaj(jは自然数)の組み合わせごとに、特徴点群の対Gai-gajの一致度を表すスコアSaijを算出する。
 この際、最適解判定部14は、正解対から抽出された特徴量の対の一致度を表すスコア(以下「第1のスコア」)だけでなく、非正解対から抽出された特徴量の対の一致度を表すスコア(以下「第2のスコア」)も算出する。図4Bには、正解対から抽出された特徴量の対の第1のスコアSaij(i=j)と、非正解対から抽出された特徴量の対の第2のスコアSaij(i≠j)とを、上下に分けて示している。
 図5A及び図5Bは、第1実施形態に係る生体認証装置におけるスコア算出処理の例を示す第2の図である。図5Aには、仮パラメータPbを用いて、学習データ生成部13により遺留指紋F1~F3からそれぞれ抽出された特徴点群Gb1~Gb3を示している。また同様に、仮パラメータpbを用いて、学習データ生成部13により押捺指紋f1~f3からそれぞれ抽出された特徴点群gb1~gb3を示している。
 最適解判定部14は、図4Bと同様にして、特徴点群Gbiと特徴点群gbjの組み合わせごとに、特徴点群の対Gbi-gbjの一致度を表すスコアSbijを算出する。図5Bには、最適解判定部14により算出されたスコアSbijを示している。
 図6A及び図6Bは、第1実施形態に係る生体認証装置におけるスコア算出処理の例を示す第3の図である。図6Aには、仮パラメータPcを用いて、学習データ生成部13により遺留指紋F1~F3からそれぞれ抽出された特徴点群Gc1~Gc3を示している。また同様に、仮パラメータpcを用いて、学習データ生成部13により押捺指紋f1~f3からそれぞれ抽出された特徴点群gc1~gc3を示している。
 最適解判定部14は、図4Bと同様にして、特徴点群Gciと特徴点群gcjの組み合わせごとに、特徴点群の対Gci-gcjの一致度を表すスコアScijを算出する。図6Bには、最適解判定部14により算出されたスコアScijを示している。
 次に、最適解判定部14は、正解対から抽出された特徴量の対の一致度を表す第1のスコアと、非正解対から抽出された特徴量の対の一致度を表す第2のスコアとの、統計的な分離度を表すスコア分離度を算出する。以下、図7を参照しながら、スコア分離度の算出方法の一例について説明するが、本実施形態のスコア分離度の算出方法はこの例に限定されるものではない。
 図7は、第1実施形態に係る生体認証装置における最適解判定処理の例を示す図である。最適解判定部14は、仮パラメータPの重み(A、B、C)を異ならせて、下式(1)により、遺留指紋Fiと押捺指紋fjの一致度を表すスコアSijを算出する。ここで、Saij、Sbij、Scijは、図4B、図5B及び図6Bに示したスコアであり、A、B、Cは、それぞれスコアSaij、Sbij、Scijの重みを表す。
  Sij = A・Saij+B・Sbij+C・Scij+…  (1)
 なお、図7では、3通りの仮パラメータPの重み(1、1、1)、(1、2、1)、(2、1、1)の組み合わせでスコアSijを算出したが、実際の最適解判定処理においては更に多くの仮パラメータPの重み(A、B、C)の組み合わせが用いられ得る。
 まず、最適解判定部14は、正解対から抽出された特徴量の対の一致度を表す第1のスコアSij(i=j)と、非正解対から抽出された特徴量の対の一致度を表す第2のスコアSij(i≠j)を、遺留指紋Fi(第1生体画像)ごとに算出する。図7には、算出した第1のスコア及び第2のスコアを、遺留指紋Fiごとに分けて示している。なお、第1のスコア及び第2のスコアは、押捺指紋fj(第2生体画像)ごとに算出してもよい。
 次に、最適解判定部14は、第1のスコアの順位が1位である遺留指紋Fi(第1生体画像)の割合を、仮パラメータP(A、B、C)ごとに、スコア分離度Sとして算出する。なお、第1のスコアの順位が1位である押捺指紋fj(第2生体画像)の割合を、仮パラメータP(A、B、C)ごとに、スコア分離度Sとして算出してもよい。図7には、遺留指紋Fiの第1のスコアの順位を括弧付で示している。
 最後に、最適解判定部14は、スコア分離度Sが最大となる仮パラメータP(A、B、C)を最適解と判定する。例えば図7に示す例では、スコア分離度Sが最大(=3/3)である仮パラメータP(1、2、1)が、最適解として判定される。
 その後、パラメータ更新部15は、記録部2に記録されているパラメータを、最適解判定部14により最適解として判定された仮パラメータによって更新する。これにより、記録部2に記録されているパラメータが最適化されるので、生体認証装置を運用しながら、生体画像から特徴量を抽出するためのパラメータを自動最適化することが可能となる。
 特に、本実施形態では、正解対から抽出された特徴量の対の一致度を表す第1のスコアと、非正解対から抽出された特徴量の対の一致度を表す第2のスコアとに基づいて、スコア分離度Sを算出している。このため、図7に示す仮パラメータ(2、1、1)のように、非正解対から抽出した特徴量の対の一致度を表す第2のスコアを高く算出する仮パラメータを最適解として判定しまうことを避けることができる。なお、スコア分離度の算出方法は、1位の割合による判定に限らない。
 図8は、第1実施形態に係る生体認証方法のフローチャートを示す図である。以下、図8に示すフローチャートを参照しながら、本実施形態の生体認証方法について説明する。
 ステップS101において、生体画像読み出し部11は、記録部2にデータベースとして登録された生体画像を読み出す。ステップS102において、教師データ生成部12は、生体画像読み出し部11により読み出された複数の生体画像から、同一の指に基づくものであると判定した生体画像の対を正解対として選択する。ステップS103において、学習データ生成部13は、教師データ生成部12により生成された教師データ用の第1生体画像及び第2生体画像から、複数の異なる仮パラメータを用いて、学習データ用の特徴量を生成する。
 ステップS104において、最適解判定部14は、正解対から抽出された特徴量の対の一致度を表す第1のスコアと、非正解対から抽出された特徴量の対の一致度を表す第2のスコアとに基づいて、仮パラメータごとにスコア分離度を算出する。ステップS105において、最適解判定部14は、スコア分離度が最大となる仮パラメータを最適解として判定する。ステップS106において、パラメータ更新部15は、記録部2に記録されているパラメータを、最適解として判定された仮パラメータによって更新する。
 以上のように、本実施形態の生体認証装置は、正解対から抽出された特徴量の対の一致度を表す第1のスコアと、非正解対から抽出された特徴量の対の一致度を表す第2のスコアとに基づいて、仮パラメータごとにスコア分離度を算出する。そして、スコア分離度の大きさに基づいて仮パラメータを判定する。このような構成によれば、生体画像から特徴量を抽出するためのパラメータを自動最適化することが可能な生体認証装置及び指紋特徴抽出方法を提供することができる。
 (その他の実施形態)
 なお、上述の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 例えば、上述の実施形態における正解対F2-f2は、学習用の仮パラメータP(A、B、C)の値に関わらずスコアが高く算出されるため、仮パラメータの優劣を判定するためには殆ど寄与していない。そこで、最適解判定部14は、スコアが所定値(例えば1500)以上である正解対を、スコア分離度の算出処理から除外してもよい。これにより、スコアの大きい正解対が多い場合には、スコア分離度の算出処理における制御演算部1の処理負荷を大きく軽減することができる。
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記録媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 上述の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 第1生体画像と第2生体画像の正解対及び非正解対を生成する教師データ生成部と、
 複数の異なる仮パラメータを用いて、前記第1生体画像及び前記第2生体画像から特徴量を抽出する学習データ生成部と、
 前記正解対から抽出された前記特徴量の対の一致度を表す第1のスコアと、前記非正解対から抽出された前記特徴量の対の一致度を表す第2のスコアとに基づいて、前記仮パラメータごとにスコア分離度を算出し、前記スコア分離度の大きさに基づいて前記仮パラメータを判定する最適解判定部と、
 を備える生体認証装置。
(付記2)
 前記最適解判定部は、最大となる前記スコア分離度に基づいて前記仮パラメータを判定する
 付記1に記載の生体認証装置。
(付記3)
 前記最適解判定部は、前記第1のスコア及び前記第2のスコアを、前記第1生体画像又は前記第2生体画像ごとに算出し、前記第1のスコアの順位が1位である割合を、前記スコア分離度として算出する
 付記1又は2に記載の生体認証装置。
(付記4)
 前記最適解判定部は、前記第1のスコアが所定値以上である前記正解対を、前記スコア分離度の算出処理から除外する
 付記1から3のいずれか1項に記載の生体認証装置。
(付記5)
 前記第1生体画像及び前記第2生体画像から前記特徴量を抽出するためのパラメータを記録する記録部と、
 前記記録部に記録されている前記パラメータを、前記判定された前記仮パラメータによって更新するパラメータ更新部と、
 を更に備える付記1から4のいずれか1項に記載の生体認証装置。
(付記6)
 前記第1生体画像と前記第2生体画像の対は、指紋又は掌紋の採取画像の対であり、
 前記特徴量は、指紋又は掌紋の特徴点群である
 付記1から5のいずれか1項に記載の生体認証装置。
(付記7)
 前記第1生体画像と前記第2生体画像の対は、遺留指紋の採取画像と押捺指紋の採取画像の対である
 付記6に記載の生体認証装置。
(付記8)
 前記仮パラメータは、ノイズ除去処理及び強調処理の組み合わせ及び重みを含む
 付記1から7のいずれか1項に記載の生体認証装置。
(付記9)
 第1生体画像と第2生体画像の正解対及び非正解対を生成する教師データ生成ステップと、
 複数の異なる仮パラメータを用いて、前記第1生体画像及び前記第2生体画像から特徴量を抽出する学習データ生成ステップと、
 前記正解対から抽出された前記特徴量の対の一致度を表す第1のスコアと、前記非正解対から抽出された前記特徴量の対の一致度を表す第2のスコアとに基づいて、前記仮パラメータごとにスコア分離度を算出し、前記スコア分離度の大きさに基づいて前記仮パラメータを判定する最適解判定ステップと、
 を有する、生体認証装置の制御演算部において用いられる生体認証方法。
(付記10)
 第1生体画像と第2生体画像の正解対及び非正解対を生成する教師データ生成手段と、
 複数の異なる仮パラメータを用いて、前記第1生体画像及び前記第2生体画像から特徴量を抽出する学習データ生成手段と、
 前記正解対から抽出された前記特徴量の対の一致度を表す第1のスコアと、前記非正解対から抽出された前記特徴量の対の一致度を表す第2のスコアとに基づいて、前記仮パラメータごとにスコア分離度を算出し、前記スコア分離度の大きさに基づいて前記仮パラメータを判定する最適解判定手段と、
 して、コンピュータを機能させるプログラムを記録したコンピュータが読み取り可能な記録媒体。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2017年10月13日に出願された日本出願特願2017-199167を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1     :制御演算部
2     :記録部
11    :生体画像読み出し部
12    :教師データ生成部
13    :学習データ生成部
14    :最適解判定部
15    :パラメータ更新部

Claims (10)

  1.  第1生体画像と第2生体画像の正解対及び非正解対を生成する教師データ生成部と、
     複数の異なる仮パラメータを用いて、前記第1生体画像及び前記第2生体画像から特徴量を抽出する学習データ生成部と、
     前記正解対から抽出された前記特徴量の対の一致度を表す第1のスコアと、前記非正解対から抽出された前記特徴量の対の一致度を表す第2のスコアとに基づいて、前記仮パラメータごとにスコア分離度を算出し、前記スコア分離度の大きさに基づいて前記仮パラメータを判定する最適解判定部と、
     を備える生体認証装置。
  2.  前記最適解判定部は、最大となる前記スコア分離度に基づいて前記仮パラメータを判定する
     請求項1に記載の生体認証装置。
  3.  前記最適解判定部は、前記第1のスコア及び前記第2のスコアを、前記第1生体画像又は前記第2生体画像ごとに算出し、前記第1のスコアの順位が1位である割合を、前記スコア分離度として算出する
     請求項1又は2に記載の生体認証装置。
  4.  前記最適解判定部は、前記第1のスコアが所定値以上である前記正解対を、前記スコア分離度の算出処理から除外する
     請求項1から3のいずれか1項に記載の生体認証装置。
  5.  前記第1生体画像及び前記第2生体画像から前記特徴量を抽出するためのパラメータを記録する記録部と、
     前記記録部に記録されている前記パラメータを、前記判定された前記仮パラメータによって更新するパラメータ更新部と、
     を更に備える請求項1から4のいずれか1項に記載の生体認証装置。
  6.  前記第1生体画像と前記第2生体画像の対は、指紋又は掌紋の採取画像の対であり、
     前記特徴量は、指紋又は掌紋の特徴点群である
     請求項1から5のいずれか1項に記載の生体認証装置。
  7.  前記第1生体画像と前記第2生体画像の対は、遺留指紋の採取画像と押捺指紋の採取画像の対である
     請求項6に記載の生体認証装置。
  8.  前記仮パラメータは、ノイズ除去処理及び強調処理の組み合わせ及び重みを含む
     請求項1から7のいずれか1項に記載の生体認証装置。
  9.  第1生体画像と第2生体画像の正解対及び非正解対を生成する教師データ生成ステップと、
     複数の異なる仮パラメータを用いて、前記第1生体画像及び前記第2生体画像から特徴量を抽出する学習データ生成ステップと、
     前記正解対から抽出された前記特徴量の対の一致度を表す第1のスコアと、前記非正解対から抽出された前記特徴量の対の一致度を表す第2のスコアとに基づいて、前記仮パラメータごとにスコア分離度を算出し、前記スコア分離度の大きさに基づいて前記仮パラメータを判定する最適解判定ステップと、
     を有する、生体認証装置の制御演算部において用いられる生体認証方法。
  10.  第1生体画像と第2生体画像の正解対及び非正解対を生成する教師データ生成手段と、
     複数の異なる仮パラメータを用いて、前記第1生体画像及び前記第2生体画像から特徴量を抽出する学習データ生成手段と、
     前記正解対から抽出された前記特徴量の対の一致度を表す第1のスコアと、前記非正解対から抽出された前記特徴量の対の一致度を表す第2のスコアとに基づいて、前記仮パラメータごとにスコア分離度を算出し、前記スコア分離度の大きさに基づいて前記仮パラメータを判定する最適解判定手段と、
     して、コンピュータを機能させるプログラムを記録したコンピュータが読み取り可能な記録媒体。
PCT/JP2018/034075 2017-10-13 2018-09-13 生体認証装置及び生体認証方法 WO2019073745A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019547955A JP6866929B2 (ja) 2017-10-13 2018-09-13 生体認証装置及び生体認証方法
EP18867156.4A EP3696770A4 (en) 2017-10-13 2018-09-13 BIOMETRIC AUTHENTICATION DEVICE AND BIOMETRIC AUTHENTICATION PROCESS
US16/322,233 US11170197B2 (en) 2017-10-13 2018-09-13 Biometric recognition apparatus and biometric recognition method
US17/502,925 US11776302B2 (en) 2017-10-13 2021-10-15 Biometric recognition apparatus and biometric recognition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017199167 2017-10-13
JP2017-199167 2017-10-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/322,233 A-371-Of-International US11170197B2 (en) 2017-10-13 2018-09-13 Biometric recognition apparatus and biometric recognition method
US17/502,925 Continuation US11776302B2 (en) 2017-10-13 2021-10-15 Biometric recognition apparatus and biometric recognition method

Publications (1)

Publication Number Publication Date
WO2019073745A1 true WO2019073745A1 (ja) 2019-04-18

Family

ID=66100622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034075 WO2019073745A1 (ja) 2017-10-13 2018-09-13 生体認証装置及び生体認証方法

Country Status (4)

Country Link
US (2) US11170197B2 (ja)
EP (1) EP3696770A4 (ja)
JP (2) JP6866929B2 (ja)
WO (1) WO2019073745A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048000A (ja) 2005-08-09 2007-02-22 Nec Corp 指紋画像認識システム、指紋画像認識方法、及びプログラム
JP2009076020A (ja) * 2007-09-25 2009-04-09 Oki Electric Ind Co Ltd 虹彩認識装置
WO2010106644A1 (ja) * 2009-03-17 2010-09-23 富士通株式会社 データ照合装置およびプログラム
WO2012063708A1 (ja) * 2010-11-08 2012-05-18 日本電気株式会社 画像照合装置
US20130287271A1 (en) * 2012-04-25 2013-10-31 Jack Harper Finger asperity resistive discharge wafer-scale integration for forensic palm print collection
JP2017199167A (ja) 2016-04-27 2017-11-02 ルネサスエレクトロニクス株式会社 半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827994B2 (ja) * 1995-12-22 1998-11-25 日本電気株式会社 指紋特徴抽出装置
JP4701518B2 (ja) 2001-03-02 2011-06-15 日本電気株式会社 パターン認識装置、パターン認識方法及びプログラム
JP5459312B2 (ja) 2009-03-27 2014-04-02 日本電気株式会社 パターン照合装置、パターン照合方法及びパターン照合プログラム
JP5319726B2 (ja) 2011-04-14 2013-10-16 株式会社東芝 パターン選択装置、パターン選択方法、およびプログラム
JP6544900B2 (ja) 2014-09-17 2019-07-17 キヤノン株式会社 オブジェクト識別装置、オブジェクト識別方法及びプログラム
KR102434562B1 (ko) * 2015-06-30 2022-08-22 삼성전자주식회사 위조 지문 검출 방법 및 장치, 지문 인식 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048000A (ja) 2005-08-09 2007-02-22 Nec Corp 指紋画像認識システム、指紋画像認識方法、及びプログラム
JP2009076020A (ja) * 2007-09-25 2009-04-09 Oki Electric Ind Co Ltd 虹彩認識装置
WO2010106644A1 (ja) * 2009-03-17 2010-09-23 富士通株式会社 データ照合装置およびプログラム
WO2012063708A1 (ja) * 2010-11-08 2012-05-18 日本電気株式会社 画像照合装置
US20130287271A1 (en) * 2012-04-25 2013-10-31 Jack Harper Finger asperity resistive discharge wafer-scale integration for forensic palm print collection
JP2017199167A (ja) 2016-04-27 2017-11-02 ルネサスエレクトロニクス株式会社 半導体装置

Also Published As

Publication number Publication date
US20220036040A1 (en) 2022-02-03
JP2021101390A (ja) 2021-07-08
EP3696770A4 (en) 2020-11-18
JP7143915B2 (ja) 2022-09-29
US20200387690A1 (en) 2020-12-10
EP3696770A1 (en) 2020-08-19
JP6866929B2 (ja) 2021-04-28
US11170197B2 (en) 2021-11-09
US11776302B2 (en) 2023-10-03
JPWO2019073745A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
US10706276B2 (en) Image processing apparatus, control method therefor, and storage medium
US9721221B2 (en) Skill estimation method in machine-human hybrid crowdsourcing
WO2007088926A1 (ja) 画像処理、画像特徴抽出、および画像照合の装置、方法、およびプログラム並びに画像照合システム
CN112257613A (zh) 体检报告信息结构化提取方法、装置及计算机设备
JP2005258801A (ja) 個人認証システム
CN104933022B (zh) 信息处理装置和信息处理方法
CN110111243B (zh) 一种利用ai技术美化手写字体的方法及装置
JP7143915B2 (ja) 生体認証装置及び生体認証方法
CN116453200B (zh) 人脸识别方法、装置、电子设备及存储介质
JP5357711B2 (ja) 文書処理装置
CN110969095A (zh) 一种信鸽的身份信息分析方法及装置
JP4326107B2 (ja) 問題作成装置及び記録媒体
JP6930754B2 (ja) 学習支援装置及び出題方法
JP6832194B2 (ja) 答案採点方法
KR102036507B1 (ko) 에디터 추천 장치 및 방법
JP2020108598A (ja) 識別システム
WO2021199141A1 (ja) 画像処理装置、画像処理方法、及び、記録媒体
JP2014078168A (ja) 文字認識装置及びプログラム
US20220254192A1 (en) Processing system, processing method, and non-transitory storage medium
WO2024034308A1 (ja) 情報処理装置、情報処理方法、及び、記録媒体
WO2022113281A1 (ja) 生体認証システム、生体認証方法、及びコンピュータプログラム
US20150334255A1 (en) Image processing apparatus, image processing method, and computer program product
WO2020183705A1 (ja) 生成方法、学習データ生成装置及びプログラム
CN116737905A (zh) 内容提取方法及其在研发创意应答中的应用
JP2023081040A (ja) 文書電子化システム、情報処理装置、文書分割方法、学習方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018867156

Country of ref document: EP

Effective date: 20200513