WO2019073741A1 - Vehicle control system, vehicle control method, and program - Google Patents

Vehicle control system, vehicle control method, and program Download PDF

Info

Publication number
WO2019073741A1
WO2019073741A1 PCT/JP2018/033809 JP2018033809W WO2019073741A1 WO 2019073741 A1 WO2019073741 A1 WO 2019073741A1 JP 2018033809 W JP2018033809 W JP 2018033809W WO 2019073741 A1 WO2019073741 A1 WO 2019073741A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
vehicle
unit
divided
Prior art date
Application number
PCT/JP2018/033809
Other languages
French (fr)
Japanese (ja)
Inventor
晋一 奥西
賢 華山
一彦 山本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2019073741A1 publication Critical patent/WO2019073741A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a vehicle control system, a vehicle control method, and a program.
  • Priority is claimed on Japanese Patent Application No. 2017-197086, filed Oct. 10, 2017, the content of which is incorporated herein by reference.
  • Hybrid vehicles equipped with storage batteries and internal combustion engines that output power for power generation are in widespread use.
  • a hybrid vehicle that draws up a charge / discharge plan that is advantageous for improving fuel consumption along the entire route from the departure point to the destination (see, for example, Patent Document 1).
  • the present invention has been made in consideration of such circumstances, and provides a vehicle control system, a vehicle control method, and a program that can improve the comfort for the occupant while eliminating the fear of the power shortage.
  • a vehicle control system a vehicle control method, and a program that can improve the comfort for the occupant while eliminating the fear of the power shortage.
  • One aspect of the present invention is an internal combustion engine that outputs power, a generator that generates electric power using the power output from the internal combustion engine, a storage battery that stores electric power generated by the generator, Based on a traveling motor driven by using a generator or power supplied from the storage battery, the amount of power stored in the storage battery at a predetermined time, and the amount of power required to reach the destination
  • a first derivation unit that derives generated power to be generated by the generator and a second derivation unit that derives a power generation scheduled power amount that is a power amount scheduled to be generated for each divided section where the route to the destination is divided
  • a selection unit for selecting the divided sections in descending order of priority set for each of the divided sections; and the divided engine selected by the selecting section during traveling using the traveling motor.
  • Get up and running A vehicle control system comprising a control unit for generating the power of the serial generation planned power amount.
  • the vehicle control system wherein the selection unit selects the divided section such that the electric energy obtained by integrating the electric power generation scheduled electric energy exceeds the generated electric power. It is.
  • the vehicle control system when arriving at a preset check point, storage of the storage battery upon arrival at the checkpoint predicted in advance
  • the check unit further includes a difference deriving unit that derives a difference between an amount and an actual storage amount at the time of arrival at the check point, and the control unit performs the check so as to compensate the difference derived by the difference deriving unit.
  • the planned power generation amount of one or more post-passage division sections traveling after passing the point is corrected, and the power of the corrected planned power generation amount is generated in the one or more post-passage division sections.
  • the vehicle control system according to any one of the above (1) to (3), wherein, when arriving at a preset check point, the previously predicted checkpoint upon arrival arrives at the checkpoint.
  • the apparatus further comprises a difference deriving unit that derives a difference between a storage amount of the storage battery and an actual storage amount at the time of arrival at the check point, and the selection unit determines that the difference derived by the difference derivation unit is equal to or greater than a threshold.
  • the one or more post-passage divisions are selected such that the power of the difference is compensated in the descending order of priority set for each of one or more post-passage divisions traveling after passing the check point
  • the control unit operates the internal combustion engine during traveling using the traveling motor in the one or more post-passage division sections selected by the selection unit to operate the check point It is intended to power the necessary power amount to reach the Luo destination.
  • the apparatus further includes a setting unit configured to set the priority based on at least one of the frequency, the distance from the divided section to the destination, or the information on the upward slope of the divided section.
  • the setting unit is configured to prioritize the divided section with a low frequency at which the vehicle is predicted to stop. It is set to be higher than the priority of the divided section which is predicted to stop the vehicle at a high frequency.
  • control unit controls the internal combustion engine based on an operation amount of an accelerator pedal during traveling of the divided section. Control the amount of power generated by the
  • the vehicle control system according to any one of the above (1) to (11), wherein the threshold speed of the vehicle for operating the generator is determined based on the amount of power stored in the storage battery.
  • the speed determining unit further includes a speed determining unit that determines the threshold speed to be a larger speed as the amount of power increases, and the control unit determines the speed of the vehicle by the speed determining unit. When the threshold speed is reached, the internal combustion engine is operated during traveling using the traveling motor.
  • One aspect of the present invention relates to an amount of electric power stored in a storage battery that stores electric power generated by a generator that generates electric power using an electric power output from an internal combustion engine that outputs electric power at a predetermined time. Based on the amount of power required to reach the destination, the generated power to be generated by the generator is derived, and the amount of power scheduled to be generated for each of the divided sections into which the route to the destination is divided A power generation scheduled power amount is derived, the divided sections are selected in descending order of priority set for each of the divided sections, and the selected divided sections are supplied with electric power supplied from the generator or the storage battery.
  • the present invention is a vehicle control method for operating the internal combustion engine during traveling using a traveling motor driven by using to generate electric power of the planned power generation amount.
  • One aspect of the present invention relates to an amount of electric power stored in a storage battery that stores electric power generated by a generator that generates electric power using an electric power output from an internal combustion engine that outputs electric power to a computer at a predetermined time. And the power generation amount to be generated by the generator based on the necessary power amount required to reach the destination, and the power amount scheduled to be generated for each divided section where the route to the destination is divided A power generation scheduled power amount is derived, and the divided sections are selected in descending order of priority set for each of the divided sections, and the selected divided sections are supplied with electric power supplied from the generator or the storage battery.
  • This is a program for operating the internal combustion engine to generate electric power of the planned power generation amount while traveling using a traveling motor driven by using.
  • One aspect of the present invention is an internal combustion engine that outputs power, a generator that generates electric power using the power output from the internal combustion engine, and a storage battery that stores electric power generated by the generator.
  • a driving electric motor driven using an electric power supplied from a generator or the storage battery, and a speed determining unit determining a threshold speed of a vehicle operating the electric generator based on the amount of electric power stored in the storage battery,
  • a speed determination unit that determines the threshold speed to be a higher speed as the amount of power increases, and the traveling motor is used when the speed of the vehicle reaches the threshold speed determined by the speed determination unit
  • a control unit for operating the internal combustion engine while traveling is
  • the comfort for the occupant can be improved while eliminating the fear of the power shortage.
  • FIG. 1 is a diagram showing an example of the configuration of a vehicle equipped with a vehicle system 1.
  • the vehicle on which the vehicle system 1 is mounted is, for example, a vehicle such as a two-wheeled vehicle, a three-wheeled vehicle, or a four-wheeled vehicle, and a driving source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof.
  • the motor operates using the power generated by the generator connected to the internal combustion engine or the discharge power of the secondary battery or the fuel cell.
  • a hybrid vehicle adopting a series system will be described as an example.
  • the series system is a system in which the engine and the drive wheels are not mechanically connected, the motive power of the engine is used exclusively for power generation by a generator, and the generated power is supplied to a motor for traveling.
  • this vehicle may be a vehicle capable of plug-in charge of a battery.
  • the vehicle includes, for example, an engine 10, a first motor (generator) 12, a second motor (electric motor) 18, a drive wheel 25, and a PCU (Power Control Unit) 30.
  • a battery 60 is mounted.
  • the engine 10 is an internal combustion engine that outputs power by burning a fuel such as gasoline.
  • the engine 10 is, for example, a reciprocating engine including a cylinder and a piston, an intake valve, an exhaust valve, a fuel injection device, a spark plug, a connecting rod, a crankshaft, and the like.
  • the engine 10 may be a rotary engine.
  • the power that can be output by the engine 10 is to generate an amount of power for the first motor 12 to drive the second motor 18 in real time (or an amount of power that can cause the host vehicle M to travel at a predetermined speed or more). Power less than necessary power. Since the engine is small and light, it has the advantage of a high degree of freedom in vehicle layout.
  • the first motor 12 is, for example, a three-phase alternating current generator.
  • the first motor 12 has a rotor connected to an output shaft (e.g., a crankshaft) of the engine 10 and generates electric power using power output from the engine 10.
  • the second motor 18 is, for example, a three-phase alternating current motor.
  • the rotor of the second motor 18 is coupled to the drive wheel 25.
  • the second motor 18 outputs power to the drive wheel 25 using the supplied power.
  • the second motor 18 generates electric power using the kinetic energy of the vehicle at the time of deceleration of the vehicle.
  • the power generation operation by the second motor 18 may be referred to as regeneration.
  • the PCU 30 includes, for example, a first converter 32, a second converter 38, and a VCU (Voltage Control Unit) 40. It is an example to the last to set these components as PCU30 to one group, and these components may be arrange
  • the first converter 32 and the second converter 38 are, for example, AC-DC converters.
  • the DC side terminals of the first converter 32 and the second converter 38 are connected to the DC link DL.
  • a battery 60 is connected to the DC link DL via the VCU 40.
  • the first converter 32 converts alternating current generated by the first motor 12 into direct current and outputs it to the direct current link DL, or converts direct current supplied via the direct current link DL into alternating current to convert the first motor 12 Supply to
  • the second converter 38 converts alternating current generated by the second motor 18 into direct current and outputs it to the direct current link DL, or converts direct current supplied via the direct current link DL into alternating current to 2) Supply to the motor 18 or the like.
  • the VCU 40 is, for example, a DC-DC converter.
  • the VCU 40 boosts the power supplied from the battery 60 and outputs it to the DC link DL.
  • the battery 60 is, for example, a secondary battery such as a lithium ion battery.
  • the power control unit 70 includes, for example, a hybrid control unit 70A, an engine control unit 71, a motor control unit 72, a brake control unit 73, and a battery control unit 74.
  • Hybrid control unit 70A outputs instructions to engine control unit 71, motor control unit 72, brake control unit 73, and battery control unit 74. The instruction by the hybrid control unit 70A will be described later.
  • the engine control unit 71 performs ignition control of the engine 10, throttle opening control, fuel injection control, fuel cut control, and the like according to an instruction from the plan control unit 100. Further, the engine control unit 71 may calculate the engine rotational speed based on the output of the crank angle sensor attached to the crankshaft, and may output it to the hybrid control unit 70A.
  • the motor control unit 72 performs switching control of the first converter 32 and / or the second converter 38 in accordance with an instruction from the hybrid control unit 70A.
  • the brake control unit 73 controls a brake device (not shown) in accordance with an instruction from the hybrid control unit 70A.
  • the brake device is a device that outputs a brake torque corresponding to the driver's braking operation to each wheel.
  • the battery control unit 74 calculates the amount of power (for example, State Of Charge; charging rate) of the battery 60 based on the output of the battery sensor 62 attached to the battery 60, and outputs it to the hybrid control unit 70A.
  • the amount of power of the battery 60 may be referred to as “SOC”.
  • the vehicle sensor 75 includes, for example, an accelerator opening sensor, a vehicle speed sensor, a brake depression amount sensor, and the like.
  • the accelerator opening degree sensor is attached to an accelerator pedal, which is an example of an operating element that receives an acceleration instruction from a driver.
  • the accelerator opening degree sensor detects the amount of operation of the accelerator pedal, and outputs the detected amount to the power control unit 70 or the plan control unit 100 as the accelerator opening degree.
  • the vehicle speed sensor includes, for example, a wheel speed sensor and a speed calculator attached to each wheel. The vehicle speed sensor integrates the wheel speeds detected by the wheel speed sensors to derive the speed (vehicle speed) of the vehicle, and outputs the derived speed to the power control unit 70.
  • the brake depression amount sensor is attached to a brake pedal that is an example of an operating element that receives a deceleration or stop instruction from the driver.
  • the brake depression amount sensor detects the operation amount of the brake pedal, and outputs the detected operation amount to the power control unit 70 as the brake depression amount.
  • Hybrid control unit 70A determines engine power Pe to be output from engine 10 based on an instruction from plan control unit 100.
  • the hybrid control unit 70A determines the reaction torque of the first motor 12 to balance with the engine power Pe in accordance with the determined engine power Pe.
  • Hybrid control unit 70A outputs the determined information to engine control unit 71.
  • the hybrid control unit 70A determines the distribution between the brake torque that can be output by the regeneration of the second motor 18 and the brake torque that is to be output by the brake device. It outputs to the brake control unit 73.
  • the plan control unit 100 derives a power generation scheduled power amount which is a power amount scheduled to be generated for each divided section in which the route to the destination is divided. Then, the plan control unit 100 selects the divided sections in the descending order of priority set for each divided section so that the power amount obtained by integrating the planned power generation amount exceeds the generated power covered by power generation, and the selected division While traveling on the section, the internal combustion engine is operated to generate electric power of divided section electric energy. Since the power generation is performed in the high-priority divided sections in which the comfort for the vehicle occupant is taken into consideration, the comfort for the vehicle occupant is improved.
  • plan control unit 100 confirms the difference between the current SOC, which is the current SOC, and the predicted SOC at a predetermined check point, and if the power to be generated is insufficient, the next selected division Generate electricity to compensate for the shortage in the section. Thereby, necessary power can be generated. Details will be described below.
  • FIG. 2 is a block diagram showing a functional configuration of the plan control unit 100.
  • the plan control unit 100 includes, for example, an information processing unit 110, a section information processing unit 120, a plan processing unit 130, an output control unit 140, and an adjustment processing unit 150.
  • These functional units are realized, for example, by execution of a program (software) by a hardware processor such as a CPU (Central Processing Unit).
  • a hardware processor such as a CPU (Central Processing Unit).
  • some or all of these components may be hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), etc. Circuit (including circuitry) or may be realized by cooperation of software and hardware.
  • the program may be stored in advance in a storage device such as a hard disk drive (HDD) or a flash memory, or is stored in a removable storage medium such as a DVD or a CD-ROM. It may be installed in the storage device by being attached. Among the functional configurations included in the plan control unit 100, some or all of the configurations may be installed in other devices.
  • a storage device such as a hard disk drive (HDD) or a flash memory
  • HDD hard disk drive
  • flash memory or is stored in a removable storage medium such as a DVD or a CD-ROM. It may be installed in the storage device by being attached.
  • a storage device such as a hard disk drive (HDD) or a flash memory
  • a removable storage medium such as a DVD or a CD-ROM.
  • the information processing unit 110 includes, for example, a navigation information acquisition unit 112, a section determination unit 114, and a vehicle information acquisition unit 116.
  • the navigation information acquisition unit 112 receives, from the navigation device 90, the route from the departure point to the destination, information on the road included in the route, environmental information on the road, and the like.
  • Road information includes, for example, road type (general road or expressway), width and shape of road, number of lanes, speed limit, stop information (for example, signal position, stop line position, crossing position, toll gate Position information, etc.).
  • the environmental information of the road is information indicating the road environment or the environment around the road, and is information indicating the degree of congestion of the road, the weather around the road, and the like.
  • the navigation information acquisition unit 112 acquires road information, road environment information, and the like included in the route from the departure point to the destination point, for example, by acquiring the above information for each predetermined section.
  • the section determination unit 114 divides the route from the departure place to the destination according to a predetermined standard.
  • the predetermined reference is, for example, a predetermined distance or a distance estimated to travel in a predetermined unit time.
  • the section divided as described above is referred to as a "division section".
  • the vehicle information acquisition unit 116 acquires information on the vehicle including the information acquired by the vehicle sensor 75, the SOC of the battery 60, the amount of power consumed by the on-vehicle device, and the like.
  • the information processing unit 110 outputs the acquired information and the information generated by processing the acquired information to the section information processing unit 120, the plan processing unit 130, the output control unit 140, or the adjustment processing unit 150.
  • FIG. 3 is a diagram showing an example of information output by the information processing unit 110. As shown in FIG. FIG. 3 also includes information (1-5) output to the plan processing unit 130 by the section information processing unit 120 described later. For example, the information processing unit 110 outputs the information (1-1) to (1-4).
  • the information output to the section information processing unit 120 includes, for example, the distance to the destination, the estimated arrival time to the destination, the average vehicle speed, the altitude of the route, the time zone for traveling the route, and the vehicle Information indicating the position where it is expected to stop (stop information), the weather of the route, information indicating the presence or absence of a charging facility at the destination, and information indicating whether all information regarding the route from the departure location to the destination has been received ( Reception completion information).
  • the information output to the section information processing unit 120 is, for example, the current SOC, information indicating traveling resistance when traveling on a route, the weight of a vehicle, the distance of divided sections, and the like.
  • the information output to the plan processing unit 130 is, for example, the current SOC.
  • the information output to the output control unit 140 is, for example, information indicating that the divided section has been passed (division section passing information), the distance to the destination, the actual vehicle speed, and the operation amount of the accelerator pedal (Opening degree) etc.
  • the information output to the adjustment processing unit 150 is, for example, information indicating that the divided section has been passed, power consumed by the on-vehicle device (on-vehicle power consumption), actual vehicle speed and the like.
  • the section information processing unit 120 includes, for example, an implementation determination unit 122, a target SCO setting unit 124, and a section information derivation unit 126.
  • the implementation determination unit 122 determines, for example, whether or not to execute the section information processing.
  • Section information processing is processing executed by the target SCO setting unit 124 or the section information derivation unit 126 included in the section information processing unit 120. For example, when departure from the departure point to the destination, or when the adjustment processing unit 150 outputs a section information processing instruction, the execution determination section 122 determines to execute the section information processing, and Generate implementation flag.
  • the target SCO setting unit 124 sets, for example, the SOC (the target SOC of the destination) when arriving at the destination. For example, when there is no charging facility at the destination, the target SOC setting unit 124 determines the SOC at the time of arrival, taking into consideration the power necessary for the departure place and the next destination. For example, when there is a charging facility at the destination, the target SOC setting unit 124 determines the SOC at the time of arrival at the destination to be 0 to several tens percent.
  • the section information derivation unit 126 generates division section information (see (1-5) in FIG. 3) which is information corresponding to the division section based on the information acquired from the information processing section 110.
  • the section information deriving unit 126 generates divided section information using, for example, the traffic condition of the road in the time zone in which the vehicle travels, the weather of the road, a predetermined algorithm, a function, or the like.
  • the divided section information is, for example, the amount of power consumed by the acceleration / deceleration of the vehicle in the divided section (acceleration / deceleration power amount), information indicating the running resistance when traveling the divided section, and consumed by vehicle equipment in the divided section SOC (vehicle power consumption), average vehicle speed in divided sections, time zone for traveling divided sections, priority of divided sections to be described later, and the like.
  • the priority may be set in advance for each section of the road.
  • the section information deriving unit 126 turns on the headlights and the like of the vehicle, so the SOC consumed by the on-vehicle equipment is also taken into consideration in consideration of the SOC consumed by the control.
  • the information acquired or generated by the section information processing unit 120 is output to the plan processing unit 130.
  • the priority is, for example, based on (2-1) vehicle speed, (2-2) possibility of stopping, (2-3) remaining distance to destination, (2-4) size of upslope (degree) It is set.
  • FIG. 4 is a diagram showing an example of the priority set to the divided section.
  • the section information derivation unit 126 sets scores or indices (“high, middle, low”, “low” or “low” in FIG. a1 to d3 ′ ′) and the like, and the given score, index and the like are applied to a predetermined algorithm, function or the like to derive a priority (“high, middle, low” in the drawing).
  • (2-2) A divided section in which the frequency of stopping the vehicle is predicted to be lower than that of the other divided sections is set to have high priority.
  • the power generation unit When the power generation unit is in operation when the vehicle stops, the occupants of the vehicle may feel the operation noise uncomfortable. Therefore, when the vehicle stops, it is desirable to stop the operation of the power generation unit. When the vehicle frequently stops, the power generation unit is repeatedly turned on and off, and the operation noise at this time may be uncomfortable for the occupants of the vehicle.
  • the frequency of stopping is derived by the section information processing unit 120 based on the stop information.
  • the division interval having the longer remaining distance to the destination is set to have higher priority than the other division intervals.
  • the divided section having a higher degree of upslope is set to have higher priority than the other divided sections.
  • the degree of the upslope is, for example, an index derived based on the distance of the upslope in the divided section, the time for traveling the upslope, the slope of the slope, and the like. If the degree of upslope is large, the amount of power consumed will be large, and the occupants of the vehicle may feel uneasy, so actively generate electricity, maintain or increase the SOC, and alleviate the occupant's anxiety. Is desirable.
  • the plan processing unit 130 includes, for example, a section SOC derivation unit 132, an availability determination unit 134, a priority threshold derivation unit 136, a plan control unit 138, and a storage unit 139.
  • the storage unit 139 is realized by, for example, a non-volatile storage medium such as a read only memory (ROM), a flash memory, a hard disk drive (HDD), and a volatile storage medium such as a random access memory (RAM) or a register. Be done.
  • the storage unit 139 stores a first map 139A and a second map 139B described later.
  • the section SOC derivation unit 132 is an example of the “second derivation unit”
  • the priority threshold derivation unit 136 or the plan control unit 138 is an example of the “selection unit”.
  • Section SOC derivation unit 132 derives the necessary amount of power for each divided section based on the information acquired from section information processing section 120.
  • the amount of power is, for example, the amount of power consumed by the traveling of the vehicle and the amount of power consumed by the on-vehicle device.
  • the availability determination unit 134 integrates the amount of power derived by the section SOC derivation unit 132, and determines whether or not power generation is required before reaching the destination.
  • FIG. 5 is a diagram for explaining the process of the availability determination unit 134.
  • the vertical axis of FIG. 5 indicates the SOC [%], and the horizontal axis indicates the distance.
  • a transition line M indicates the transition of the SOC when traveling at the current SOC without generating power to the destination.
  • the transition line M1 indicates the transition of the SOC when power generation is performed using a first map 139A described later in all sections of the route to the destination.
  • the transition line M2 indicates the transition of the SOC when power generation is performed using a second map 139B described later in all sections of the route to the destination.
  • the possibility determination unit 134 travels to the destination based on the SOC required for each section derived by the section SOC derivation unit 132 and the current SOC (or the SOC at a predetermined time such as after charge) Derive the consumption trend of SOC. Then, in the case where the SOC at the time of traveling to the destination is lower than the target SOC of the destination, the availability determination unit 134 covers the difference between the target SOC of the destination and the SOC at the destination by power generation ( It determines that it is SOC).
  • the availability determination unit 134 uses which one of the first map 139A and the second map 139B to use in order for the SOC at the time of arrival at the destination to exceed the target SOC. Decide. Even if the first map 139A is used, the second map 139B is used when the SOC at the time of arrival at the destination does not exceed the target SOC (the SOC obtained by adding the SOC for the allowance to the target SOC). .
  • the availability determination unit 134 predicts the traveling state of the vehicle in the divided section based on the information acquired from the section information processing unit 120, and the amount of power generation to be generated for each divided section based on the predicted result and the determined map , And the SOC when arriving at the destination when using the map.
  • the accelerator pedal opening degree the average accelerator pedal opening degree predicted when traveling the divided section is applied to the map, and the power generation amount is predicted.
  • FIG. 6 is a diagram showing an example of the first map 139A.
  • the vertical axis in FIG. 6 indicates the output of the power generation unit, and the horizontal axis indicates the vehicle speed.
  • the output is, for example, ⁇ 1 ⁇ 2 ⁇ 3... ⁇ 6), and the vehicle speed is, for example, ⁇ 1 ⁇ 2 ⁇ 3.
  • the four control lines in the figure indicate the powers output to the power generation unit according to the vehicle speed when the accelerator pedal opening is AP1, AP2, AP3, AP4 [percent], for example (for example, AP1 ⁇ AP2 ⁇ AP3 ⁇ AP4).
  • the accelerator pedal opening degree is larger, the output value output by the power generation unit at the later stage of the vehicle speed is larger than when the accelerator pedal opening degree is smaller.
  • the vehicle speed at which the degree of output by the power generation unit becomes maximum is slower than when the accelerator pedal opening degree is small.
  • the output by the power generation unit is maximum (for example, ⁇ 3.5 [kW]) before the vehicle speed exceeds ⁇ 2 [km / h]
  • the accelerator pedal opening is AP3
  • the output by the power generation unit is maximum (for example, ⁇ 3.5 [kW]) before the vehicle speed exceeds ⁇ 3 [km / h]
  • the accelerator pedal opening is AP2 [percent]
  • the vehicle speed The power output by the power generation unit is maximum ( ⁇ 3.5 [kW]) near ⁇ 3.5 [km / h].
  • the output by the power generation unit is maximum (for example, ⁇ 3 [kW]) when the vehicle speed is around ⁇ 3.5 [km / h], and the accelerator pedal opening is large. In comparison, the maximum output also decreases.
  • an output value obtained by linearly changing the tendency of the above control line may be set according to the accelerator pedal opening degree. For example, if the accelerator pedal opening is between AP1 and AP2 [percent], the maximum power is set between the maximum power of the accelerator pedal opening AP1 [percent] and the maximum power of AP4 [percent] .
  • the control line of AP1 [percent] is applied, and if it is greater than AP1 [percent] and less than AP2 [percent], then AP1 [percent]
  • a control line is applied, if it exceeds AP2 [percent] and is less than AP3 [percent]
  • a control line of AP3 [percent] is applied, if it exceeds AP4 [percent]
  • control of AP4 [percent] Lines may be applied.
  • the power generation unit is controlled in such a manner that the operation noise of the power generation unit increases as the operation amount of the accelerator pedal by the vehicle occupant increases. As a result, it is possible to reduce the discomfort of the occupant due to the operation noise of the power generation unit.
  • FIG. 7 is a diagram showing an example of the second map 139B. The description similar to that of FIG. 6 is omitted.
  • the maximum value of the power generation unit output is ⁇ 3.5 [kW]
  • the maximum value in the second map 139B is ⁇ 5 [kW].
  • the accelerator pedal opening degree is AP1 [percent]
  • the maximum value in the second map 139B is ⁇ 3.5 [kW].
  • the amount of power generation is larger than that of the first map 139A even if the vehicle speed is the same, so the power generation capacity is insufficient even if the first map 139A is used Even in this case, it is possible to reduce the discomfort of the occupant due to the operation noise of the power generation unit.
  • the priority threshold derivation unit 136 determines a priority threshold. For example, the priority threshold derivation unit 136 sequentially selects divided sections with high priority, integrates the electric energy that can be generated in the selected divided area, and performs the above process until the integrated electric energy needs to be covered repeat.
  • the amount of power that can be generated in the divided section is the amount of power when control according to the map (the first map 139A or the second map 139B) determined by the availability determination unit 134 is performed in the divided section.
  • the priority threshold derivation unit 136 first needs to integrate, for example, the amount of power that can be generated in the divided section with the priority “high”, and the accumulated amount of power needs to be covered If it does not reach a certain amount of power, it integrates the amount of power that can be generated in the "middle" divided section with the next highest priority. Then, when the integrated power amount reaches the required power amount, the priority threshold derivation unit 136 sets the lowest priority as the priority threshold among the priorities of the division sections selected at that time. Do. That is, the priority threshold is determined to be "middle" in priority.
  • the priority threshold deriving unit 136 determines that the amount of power obtained by integrating the amount of power generation generated in the divided sections of the preset priority (or the lowest priority) does not reach the amount of power that needs to be covered.
  • the second map 139B may be used to derive an electric energy obtained by integrating the amount of electric power generated in the divided section.
  • FIG. 8 is a diagram for explaining the determination of the priority threshold.
  • the upper drawing of FIG. 8 shows the relationship between the distance to the destination (horizontal axis in the drawing) and the velocity (vertical axis in the drawing).
  • the middle view of FIG. 8 shows the possibility (stoppability) of the vehicle stopping on the route to the destination.
  • the vertical axis in the middle view of FIG. 8 indicates the size of the index indicating the possibility of stopping.
  • the lower part of FIG. 8 shows the remaining distance to the destination.
  • the vertical axis in the lower part of FIG. 8 indicates the length of the remaining distance.
  • the plan control unit 138 sets a divided section for performing power generation based on the determined priority threshold, and sets a vehicle speed threshold in the set divided section and an amount of generated power to be generated in the divided section.
  • the vehicle speed threshold is a vehicle speed serving as a trigger for starting power generation.
  • the vehicle speed threshold is, for example, a vehicle speed preset for each divided section.
  • the plan control unit 138 predicts the predicted SOC, which is the SOC when the check point (for example, the end point of the divided section) arrives, and outputs the predicted predicted SOC to the adjustment processing unit 150.
  • the output control unit 140 includes, for example, a vehicle speed threshold updating unit 142 and an output deriving unit 144.
  • the vehicle speed threshold update unit 142 determines, based on the vehicle speed threshold acquired from the plan control unit 138, whether the vehicle speed in the divided section has reached the vehicle speed threshold of the divided section.
  • the output deriving unit 144 When it is determined by the vehicle speed threshold updating unit 142 that the vehicle speed has reached the vehicle speed threshold of the divided section, the output deriving unit 144 powers an instruction to operate the power generation unit based on the map determined by the plan processing unit 130. It outputs to the control unit 70. Then, the power control unit 70 controls the power generation unit based on the instruction of the output derivation unit 144.
  • the output deriving unit 144 operates the power generation unit based on information (adjustment execution flag, life correction value, and travel correction value) acquired from the adjustment processing unit 150 described later.
  • the power generation amount generated at this time is a power generation amount that compensates for the insufficient SOC (the difference between the predicted SOC and the current SOC) in the previous or two or more previous divided sections. In this case, the map is corrected as described below, or the time for generating power in the divided section is adjusted.
  • the output deriving unit 144 may adjust the amount of power generated by the power generation unit by correcting the map determined by the plan processing unit 130.
  • the output deriving unit 144 refers to the correspondence relationship between the position in the division section predicted in advance and the amount of power generation, and when the amount of power actually generated is smaller than the planned amount of power generation, the amount of power generation is large.
  • the map may be adjusted to increase the output of the power generation unit.
  • the adjustment processing unit 150 includes, for example, an adjustment execution determination unit 152, a life correction unit 154, and a travel correction unit 156.
  • the adjustment processing unit 150 feeds back the difference between the predicted SOC and the current SOC at the check point to the output control unit 140.
  • the adjustment execution determination unit 152 obtains the difference between the current SOC acquired from the information processing unit 110 and the predicted SOC acquired from the plan control unit 138, and if this difference is equal to or greater than the first threshold, life correction as described later.
  • the unit 154 is caused to derive a life correction value to be described later, and the travel correction unit 156 is to derive a travel correction value to be described later.
  • the adjustment execution determination unit 152 may cause the section information processing unit 120 to execute the section information processing. That is, when the above difference is large, the power consumed for each divided section is recalculated, and further, the priority threshold is reset. In this case, the priority may be reset. Thus, the vehicle system 1 can execute control on the power generation unit more accurately.
  • the life correction unit 154 derives the SOC (life SOC) consumed by the in-vehicle device in the divided section based on the information acquired from the information processing unit 110. Furthermore, the life correction unit 154 derives a life correction value for correcting the power generation amount of the next divided section based on the life SOC. For example, if the life correction value is larger than the SOC (for example, the SOC derived by the section information processing unit 120) where the life SOC is assumed in advance, the amount of power generation in the divided section after passing the check point will be large. It is derived.
  • the traveling correction unit 156 derives SOC (traveling SOC) consumed by traveling of the vehicle in the divided section based on the information acquired from the information processing unit 110.
  • the traveling SOC is an SOC obtained by further subtracting the living SOC from the SOC obtained by subtracting the SOC at the end point of the divided section from the SOC of the battery 60 at the start point of the divided section.
  • the traveling correction unit 156 derives a traveling correction value for correcting the power generation amount of the next divided section based on the traveling SOC. For example, if the running correction value is larger than the running SOC (for example, the SOC derived by the section information processing unit 120), the amount of power generation of the divided section after passing the check point is increased. It is derived.
  • the adjustment processing unit 150 outputs the adjustment execution flag, the lifestyle correction value, and the traveling correction value, which are generated when the difference is equal to or more than the first threshold value, by the adjustment execution determination unit 152 to the plan processing unit 130.
  • FIG. 9 is a flowchart showing the flow of processing executed by the plan control unit 100. This process is, for example, a process executed when a destination is set in the navigation device 90 at the departure place.
  • the section information processing unit 120 divides the route to the destination and generates a divided section (step S100). Next, the section information processing unit 120 sets the priority for each divided section (step S102). Next, the section information processing unit 120 determines the target SOC at the time of arrival at the destination, and determines the determined target SOC and division section information including the execution flag of the section information processing which is the generated information and the priority. It outputs to the plan process part 130 (step S104).
  • the plan processing unit 130 derives the necessary power for each divided section, integrates the derived power and arrives at the destination The required amount of power is predicted (step S106).
  • the SOC of the battery 60 at the destination is the target SOC acquired in step S104.
  • the amount of power generation that needs to be generated and covered while traveling to the destination is derived (step S108).
  • plan processing unit 130 selects a divided section with high priority acquired in step S104, and integrates the amount of power generation to be generated in the selected divided section (step S110).
  • the plan processing unit 130 determines whether or not the accumulated power generation amount exceeds the power generation amount that is required to be obtained in step S108 (step S112). If the accumulated power generation amount does not exceed the power generation amount that is required to be met, the processing returns to step S110.
  • the plan processing unit 130 sets a threshold of priority based on the selected divided section (step S114).
  • the plan processing unit 130 sets a divided section to be generated based on the threshold of the priority set in step S114 (step S116). Then, the vehicle travels to a destination. Thus, the processing of one routine of this flowchart ends.
  • power generation is preferentially performed in the high-priority divided sections set based on the comfort for the occupant of the vehicle, so that the comfort for the occupant of the vehicle can be improved.
  • FIG. 10 is a flowchart showing the flow of the feedback process executed by the plan control unit 100.
  • the flowchart is, for example, processing executed after the vehicle departs to a destination.
  • the information processing unit 110 sets a check point (step S200).
  • the output control unit 140 causes the power generation unit to generate power based on the map (step S202).
  • the information processing unit 110 determines whether the vehicle has reached the check point (step S204).
  • the adjustment processing unit 150 obtains a difference between the current SOC at the time of arrival at the check point and the predicted SOC acquired from the plan control unit 138, and the difference between them is equal to or greater than the first threshold. It is determined whether or not (step S206). If the difference between the current SOC and the predicted SOC is less than the first threshold, the process proceeds to step S212.
  • the adjustment processing unit 150 derives a life correction value and a travel correction value (step S208).
  • the plan processing unit 130 reflects the traveling correction value and the living correction value generated in step S208 on the power generation amount of the division section existing after passing the check point, and the division existing after passing the check point
  • the amount of power generation to be generated in the section is derived (step S210). That is, “the power generation scheduled power amount of one or more post-passage division sections traveling after passing the check point is corrected” so as to compensate for the difference derived by the difference derivation unit.
  • the amount of power generation generated in the divided section is an example of “the power generation scheduled power amount corrected in the divided section after passing”. This amount of power generation includes the amount of power generation that was planned to be generated in the previous division but was insufficient.
  • the power generation amount reflects the travel correction value and the life correction value.
  • the SOC assumed for example, the SOC derived by the section information processing unit 120. The difference between the and the SOC actually consumed is included in the above-mentioned power generation amount.
  • the plan processing unit 130 executes the processing of step S110 to step S116 described in the flowchart of FIG. 9 (step S211). That is, the process of “generating power of the corrected planned power amount in the one or more post-pass divided sections” (a process in which the divided sections to be generated are selected again), or “pass that travels after passing the check point”
  • the post-passage division sections are selected in the order of high priority set for each post-division section and so that the difference power is compensated.
  • the plan processing unit 130 outputs the power generation amount derived in step S210, the divided section set in the process of step S211, and the vehicle speed threshold of the divided section to the output control unit 140.
  • the plan processing unit 130 can predict the SOC consumed in traveling more accurately. Specifically, for example, the plan processing unit 130 further calculates the traveling resistance, the average vehicle speed, etc. acquired from the section information processing unit 120 (the traveling resistance to be generated in the future, the average vehicle speed in the future, etc.) By adding it, the SOC consumed in traveling can be derived more accurately.
  • the output control unit 140 controls the power generation unit to output the amount of power generation derived in step S210 (step S212).
  • the output control unit 140 may increase the output of the power generation unit more than when the environment is not rain. It is because the occupants of the vehicle do not mind the operation noise of the power generation unit due to the sound of rain.
  • the output control unit 140 acquires, from the information processing unit 110, information on the weather of the environment in which the vehicle is traveling.
  • the information processing unit 110 determines whether the vehicle has arrived at the destination (step S214). If the vehicle has not arrived at the destination, the process proceeds to step S204. When the vehicle arrives at the destination, the processing of one routine of this flowchart ends.
  • step S206 when the difference between the current SOC and the predicted SOC is equal to or greater than the first threshold, or equal to or greater than the second threshold larger than the first threshold, the processing of steps S102 to S116 in the flowchart of FIG. It may be
  • the section information processing unit 120 sets the priority for each divided section, and determines the target SOC at the time of arrival at the destination.
  • the plan processing unit 130 derives a necessary amount of power for each divided section after passing the check point, integrates the derived power amounts, and outputs the result as the destination. Predict the amount of power required to arrive.
  • the plan processing unit 130 sets the SOC of the battery 60 at the destination so as to exceed the target SOC based on the amount of power required to arrive at the predicted destination and the current SOC, while traveling to the destination. Deriving the amount of power that needs to be generated. Then, the plan processing unit 130 selects a divided section having a high priority, integrates the power generation amount scheduled to be generated in the selected divided section, and determines whether the accumulated power generation amount exceeds the generated power amount required judge. When the accumulated power generation amount exceeds the necessary power generation amount, the plan processing unit 130 sets a threshold of priority based on the selected divided section, and the divided section to generate power based on the set threshold of priority. Set
  • the vehicle system 1 determines whether or not the amount of power generation is insufficient at each check point, and if the amount of power generation is insufficient, the power generation is then performed to compensate for the shortage in the divided section. By doing this, it is possible to generate the necessary power while improving the comfort for the vehicle occupants.
  • the priority threshold derivation unit 136 determines the vehicle speed threshold, for example, with reference to the vehicle speed threshold map 139C.
  • FIG. 11 is a diagram showing an example of the vehicle speed threshold map 139C. The vertical axis in FIG. 11 indicates the vehicle speed threshold, and the horizontal axis indicates the SOC of the battery 60 at present.
  • the vehicle speed threshold map 139C when the SOC is equal to or less than Th (for example, S5) [percent], the vehicle speed threshold is set to ⁇ 2 [km / h], and when the SOC exceeds Th [percent], the SOC increases.
  • the vehicle speed of the vehicle speed threshold is set to increase in accordance with. That is, when the SOC is equal to or less than a predetermined value, the vehicle speed threshold is set to start power generation even when the vehicle speed is lower than when the SOC exceeds the predetermined value.
  • the state of the SOC is set to a predetermined value. It is possible to improve the comfort for the occupant while maintaining the state.
  • a first predetermined value for example, S8 percent
  • power generation is not performed
  • a predetermined range for example, S1 to S8 percent
  • the engine 11 that outputs power the first motor 12 that generates electric power using the power output by the engine 11, and the battery 60 that stores the electric power generated by the first motor 12;
  • the section information processing unit 120 for deriving the generated power to be generated by the first motor 12 and the generation scheduled power amount which is the amount of power scheduled for power generation for each divided section where the route to the destination is divided.
  • a section SOC derivation unit 132 which selects divided sections in descending order of priority set for each divided section, and a priority threshold derivation unit 136
  • the output control unit 140 that operates the internal combustion engine while the selected divided section is traveling using the traveling motor to generate the electric power of the planned power generation amount, the fear of power shortage is eliminated In addition, the comfort for the occupant can be improved.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of the plan control unit 100 according to the embodiment.
  • the plan control unit 100 includes a communication controller 100-1, a CPU 100-2, a RAM 100-3, a ROM 100-4, a storage device 100-5 such as a flash memory or an HDD, and a drive device 100-6, which are internal buses or dedicated communication lines Are mutually connected.
  • a portable storage medium such as an optical disk is attached to the drive device 100-6.
  • the program 100-5a stored in the storage device 100-5 is expanded on the RAM 100-3 by a DMA controller (not shown) or the like and executed by the CPU 100-2, whereby the plan control unit 100 is realized.
  • the program referred to by the CPU 100-2 may be stored in a portable storage medium attached to the drive device 100-6, or may be downloaded from another device via the network NW.
  • An internal combustion engine that outputs power
  • a generator that generates electricity using the power output by the internal combustion engine
  • a storage battery for storing electric power generated by the generator
  • a traveling motor driven using electric power supplied from the generator or the storage battery
  • Storage device A hardware processor that executes a program stored in the storage device, and is based on the amount of power stored in the storage battery at a predetermined time and the amount of power required to reach a destination.
  • the power generation scheduled power amount which is the power amount scheduled to be generated, is derived for each divided section in which the route to the destination is divided, Select the divided sections in descending order of priority set for each of the divided sections;
  • the internal combustion engine is operated during traveling using the traveling electric motor to generate the electric power of the electric power generation scheduled electric energy in the selected divided section.
  • Vehicle control system Vehicle control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

This vehicle control system derives generation power to be generated by a generator on the basis of the amount of power stored in a storage battery and the required amount of power that is required to reach a destination, derives a scheduled power generation amount for each divided section into which a route to the destination is divided, selects divided sections in order of priority, and, over a selected divided section, operates an internal combustion engine during travel using a travel electric motor to generate the scheduled power generation amount.

Description

車両制御システム、車両制御方法、およびプログラムVehicle control system, vehicle control method, and program
 本発明は、車両制御システム、車両制御方法、およびプログラムに関する。
 本願は、2017年10月10日に、日本に出願された特願2017-197086号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a vehicle control system, a vehicle control method, and a program.
Priority is claimed on Japanese Patent Application No. 2017-197086, filed Oct. 10, 2017, the content of which is incorporated herein by reference.
 蓄電池と発電のために動力を出力する内燃機関を搭載したハイブリッド車両が普及している。これに関連して、出発地から目的地までの全体の経路において燃費向上のために有利となる充放電計画を立案するハイブリッド車両が開示されている(例えば、特許文献1参照)。 Hybrid vehicles equipped with storage batteries and internal combustion engines that output power for power generation are in widespread use. In connection with this, there is disclosed a hybrid vehicle that draws up a charge / discharge plan that is advantageous for improving fuel consumption along the entire route from the departure point to the destination (see, for example, Patent Document 1).
特開2015-155261号公報JP, 2015-155261, A
 従来の技術では、内燃機関の稼働による電力の確保および稼働によって生じる作動音の抑制を同時に達成することができない場合があった。 In the prior art, there have been cases in which it has not been possible to simultaneously achieve securing of power by operation of the internal combustion engine and suppression of operation noise generated by the operation.
 本発明は、このような事情を考慮してなされたものであり、電力不足の不安を解消しつつ、乗員にとっての快適性を向上させることができる車両制御システム、車両制御方法、およびプログラムを提供することを目的の一つとする。 The present invention has been made in consideration of such circumstances, and provides a vehicle control system, a vehicle control method, and a program that can improve the comfort for the occupant while eliminating the fear of the power shortage. One of the goals.
 (1):本発明の一態様は、動力を出力する内燃機関と、前記内燃機関により出力された動力を用いて発電する発電機と、前記発電機により発電された電力を蓄える蓄電池と、前記発電機または前記蓄電池から供給される電力を用いて駆動する走行用電動機と、所定の時点において前記蓄電池に蓄えられた電力量と、目的地に到達するのに必要な必要電力量とに基づいて、前記発電機に発電させる発電電力を導出する第1導出部と、目的地までの経路が分割された分割区間ごとに発電予定の電力量である発電予定電力量を導出する第2導出部と、前記分割区間ごとに設定された優先度の高い順に前記分割区間を選択する選択部と、前記選択部により選択された前記分割区間を、前記走行用電動機を用いた走行中に前記内燃機関を稼働させて前記発電予定電力量の電力を発電させる制御部とを備える車両制御システムである。 (1): One aspect of the present invention is an internal combustion engine that outputs power, a generator that generates electric power using the power output from the internal combustion engine, a storage battery that stores electric power generated by the generator, Based on a traveling motor driven by using a generator or power supplied from the storage battery, the amount of power stored in the storage battery at a predetermined time, and the amount of power required to reach the destination A first derivation unit that derives generated power to be generated by the generator; and a second derivation unit that derives a power generation scheduled power amount that is a power amount scheduled to be generated for each divided section where the route to the destination is divided A selection unit for selecting the divided sections in descending order of priority set for each of the divided sections; and the divided engine selected by the selecting section during traveling using the traveling motor. Get up and running A vehicle control system comprising a control unit for generating the power of the serial generation planned power amount.
 (2):上記(1)の態様において、車両制御システムであって、前記選択部は、前記発電予定電力量を積算した電力量が前記発電電力を超えるように、前記分割区間を選択するものである。 (2) In the aspect of the above (1), the vehicle control system, wherein the selection unit selects the divided section such that the electric energy obtained by integrating the electric power generation scheduled electric energy exceeds the generated electric power. It is.
 (3):上記(1)または(2)の態様において車両制御システムであって、予め設定されたチェックポイントに到着した場合に、事前に予測された前記チェックポイントに到着時の前記蓄電池の蓄電量と、前記チェックポイントに到着時の実際の蓄電量との差分を導出する差分導出部を、更に備え、前記制御部は、前記差分導出部により導出された差分を補填するように、前記チェックポイントを通過後に走行する一以上の通過後分割区間の発電予定電力量を補正し、前記一以上の通過後分割区間において前記補正した前記発電予定電力量の電力を発電させるものである。 (3) The vehicle control system according to the above aspect (1) or (2), wherein, when arriving at a preset check point, storage of the storage battery upon arrival at the checkpoint predicted in advance The check unit further includes a difference deriving unit that derives a difference between an amount and an actual storage amount at the time of arrival at the check point, and the control unit performs the check so as to compensate the difference derived by the difference deriving unit. The planned power generation amount of one or more post-passage division sections traveling after passing the point is corrected, and the power of the corrected planned power generation amount is generated in the one or more post-passage division sections.
 (4):上記(1)から(3)のうちいずれかの態様の車両制御システムであって、予め設定されたチェックポイントに到着した場合に、事前に予測された前記チェックポイントに到着時の前記蓄電池の蓄電量と、前記チェックポイントに到着時の実際の蓄電量との差分を導出する差分導出部を、更に備え、前記選択部は、前記差分導出部により導出された差分が閾値以上である場合、前記チェックポイントを通過後に走行する一以上の通過後分割区間ごとに設定された優先度の高い順に、且つ前記差分の電力が補填されるように前記一以上の通過後分割区間を選択し、前記制御部は、前記選択部により選択された前記一以上の通過後分割区間において、前記走行用電動機を用いた走行中に前記内燃機関を稼働させて前記チェックポイントから目的地に到達するのに必要電力量を発電させるものである。 (4): The vehicle control system according to any one of the above (1) to (3), wherein, when arriving at a preset check point, the previously predicted checkpoint upon arrival arrives at the checkpoint. The apparatus further comprises a difference deriving unit that derives a difference between a storage amount of the storage battery and an actual storage amount at the time of arrival at the check point, and the selection unit determines that the difference derived by the difference derivation unit is equal to or greater than a threshold. In some cases, the one or more post-passage divisions are selected such that the power of the difference is compensated in the descending order of priority set for each of one or more post-passage divisions traveling after passing the check point And the control unit operates the internal combustion engine during traveling using the traveling motor in the one or more post-passage division sections selected by the selection unit to operate the check point It is intended to power the necessary power amount to reach the Luo destination.
 (5):上記(1)から(4)のうちいずれかの態様の車両制御システムであって、車両が前記分割区間において走行すると予測される車速、車両が前記分割区間において停車すると予測される頻度、前記分割区間から目的地までの距離、または前記分割区間の上り勾配に関する情報のうち少なくとも一つ以上の要素に基づいて、前記優先度を設定する設定部を、更に備えるものである。 (5) The vehicle control system according to any one of the above (1) to (4), wherein the vehicle speed is predicted to travel in the divided section, and the vehicle is predicted to stop in the divided section The apparatus further includes a setting unit configured to set the priority based on at least one of the frequency, the distance from the divided section to the destination, or the information on the upward slope of the divided section.
 (6):上記(5)の態様の車両制御システムであって、前記設定部は、前記車両の車速が速い前記分割区間の優先度を、前記車両の車速が遅い前記分割区間の優先度に比して高く設定するものである。 (6) The vehicle control system according to the aspect (5), wherein the setting unit sets the priority of the divided section where the vehicle speed of the vehicle is high to the priority of the divided section where the vehicle speed of the vehicle is low. It is set relatively high.
 (7):上記(5)または(6)の態様の車両制御システムであって、前記設定部は、上り勾配の度合が大きい前記分割区間の優先度を、前記上り勾配の度合が低い前記分割区間の優先度に比して高く設定するものである。 (7): The vehicle control system according to the aspect (5) or (6), wherein the setting unit sets the priority of the divided section having a high degree of upslope to the division according to a low degree of the upslope. It is set higher than the priority of the section.
 (8):上記(5)から(7)のうちいずれかの態様の車両制御システムであって、前記設定部は、前記車両が停車すると予測される頻度が低い前記分割区間の優先度を、前記車両が停車すると予測される頻度が高い前記分割区間の優先度に比して高く設定するものである。 (8) The vehicle control system according to any one of the aspects (5) to (7), wherein the setting unit is configured to prioritize the divided section with a low frequency at which the vehicle is predicted to stop. It is set to be higher than the priority of the divided section which is predicted to stop the vehicle at a high frequency.
 (9):上記(5)から(8)のうちいずれかの態様の車両制御システムであって、前記設定部は、前記目的地までの距離が長い前記分割区間の優先度を、前記目的地までの距離が短い前記分割区間の優先度に比して高く設定するものである。 (9): The vehicle control system according to any one of the aspects (5) to (8), wherein the setting unit sets the priority of the divided section having a long distance to the destination to the destination. The distance up to the distance is set to be higher than the priority of the divided section which is short.
 (10):上記(1)から(9)のうちいずれかの態様の車両制御システムであって、前記制御部は、前記分割区間の走行時におけるアクセルペダルの操作量に基づいて、前記内燃機関に発電させる発電量を制御するものである。 (10) The vehicle control system according to any one of the above (1) to (9), wherein the control unit controls the internal combustion engine based on an operation amount of an accelerator pedal during traveling of the divided section. Control the amount of power generated by the
 (11):上記(1)から(10)のうちいずれかの態様の車両制御システムであって、前記第2導出部は、前記分割区間の走行時におけるアクセルペダルの操作量を予測し、予測したアクセルペダルの操作量、およびアクセルペダルの操作量ごとに対応付けられた前記内燃機関に発電させる発電量に基づいて、前記発電予定電力量を導出するものである。 (11): The vehicle control system according to any one of the above (1) to (10), wherein the second derivation unit predicts the operation amount of the accelerator pedal during traveling of the divided section, and predicts The electric power generation scheduled electric energy is derived based on the operation amount of the accelerator pedal and the electric power generation amount generated by the internal combustion engine associated with each operation amount of the accelerator pedal.
 (12):上記(1)から(11)のうちいずれかの態様の車両制御システムであって、前記蓄電池に蓄電された電力量に基づいて前記発電機を稼働させる車両の閾値速度を決定する速度決定部であって、前記電力量が大きくなるに従って前記閾値速度を大きい速度に決定する速度決定部と、を更に備え、前記制御部は、前記車両の速度が前記速度決定部により決定された閾値速度に到達した場合に、前記走行用電動機を用いた走行中に前記内燃機関を稼働させるものである。 (12) The vehicle control system according to any one of the above (1) to (11), wherein the threshold speed of the vehicle for operating the generator is determined based on the amount of power stored in the storage battery. The speed determining unit further includes a speed determining unit that determines the threshold speed to be a larger speed as the amount of power increases, and the control unit determines the speed of the vehicle by the speed determining unit. When the threshold speed is reached, the internal combustion engine is operated during traveling using the traveling motor.
 (13): 本発明の一態様は、コンピュータが、所定の時点において動力を出力する内燃機関により出力された動力を用いて発電する発電機により発電された電力を蓄える蓄電池に蓄えられた電力量と、目的地に到達するのに必要な必要電力量とに基づいて、前記発電機に発電させる発電電力を導出し、目的地までの経路が分割された分割区間ごとに発電予定の電力量である発電予定電力量を導出し、前記分割区間ごとに設定された優先度の高い順に前記分割区間を選択し、前記選択された前記分割区間を、前記発電機または前記蓄電池から供給される電力を用いて駆動する走行用電動機を用いた走行中に前記内燃機関を稼働させて前記発電予定電力量の電力を発電させる車両制御方法である。 (13): One aspect of the present invention relates to an amount of electric power stored in a storage battery that stores electric power generated by a generator that generates electric power using an electric power output from an internal combustion engine that outputs electric power at a predetermined time. Based on the amount of power required to reach the destination, the generated power to be generated by the generator is derived, and the amount of power scheduled to be generated for each of the divided sections into which the route to the destination is divided A power generation scheduled power amount is derived, the divided sections are selected in descending order of priority set for each of the divided sections, and the selected divided sections are supplied with electric power supplied from the generator or the storage battery. The present invention is a vehicle control method for operating the internal combustion engine during traveling using a traveling motor driven by using to generate electric power of the planned power generation amount.
 (14):本発明の一態様は、コンピュータに、所定の時点において動力を出力する内燃機関により出力された動力を用いて発電する発電機により発電された電力を蓄える蓄電池に蓄えられた電力量と、目的地に到達するのに必要な必要電力量とに基づいて、前記発電機に発電させる発電電力を導出させ、目的地までの経路が分割された分割区間ごとに発電予定の電力量である発電予定電力量を導出させ、前記分割区間ごとに設定された優先度の高い順に前記分割区間を選択させ、前記選択された前記分割区間を、前記発電機または前記蓄電池から供給される電力を用いて駆動する走行用電動機を用いた走行中に前記内燃機関を稼働させて前記発電予定電力量の電力を発電させるプログラムである。 (14): One aspect of the present invention relates to an amount of electric power stored in a storage battery that stores electric power generated by a generator that generates electric power using an electric power output from an internal combustion engine that outputs electric power to a computer at a predetermined time. And the power generation amount to be generated by the generator based on the necessary power amount required to reach the destination, and the power amount scheduled to be generated for each divided section where the route to the destination is divided A power generation scheduled power amount is derived, and the divided sections are selected in descending order of priority set for each of the divided sections, and the selected divided sections are supplied with electric power supplied from the generator or the storage battery. This is a program for operating the internal combustion engine to generate electric power of the planned power generation amount while traveling using a traveling motor driven by using.
 (15):本発明の一態様は、動力を出力する内燃機関と、前記内燃機関により出力された動力を用いて発電する発電機と、前記発電機により発電された電力を蓄える蓄電池と、前記発電機または前記蓄電池から供給される電力を用いて駆動する走行用電動機と、前記蓄電池に蓄電された電力量に基づいて前記発電機を稼働させる車両の閾値速度を決定する速度決定部であって、前記電力量が大きくなるに従って前記閾値速度を大きい速度に決定する速度決定部と、前記車両の速度が前記速度決定部により決定された閾値速度に到達した場合に、前記走行用電動機を用いた走行中に前記内燃機関を稼働させる制御部とを備える車両制御システムである。 (15) One aspect of the present invention is an internal combustion engine that outputs power, a generator that generates electric power using the power output from the internal combustion engine, and a storage battery that stores electric power generated by the generator. A driving electric motor driven using an electric power supplied from a generator or the storage battery, and a speed determining unit determining a threshold speed of a vehicle operating the electric generator based on the amount of electric power stored in the storage battery, A speed determination unit that determines the threshold speed to be a higher speed as the amount of power increases, and the traveling motor is used when the speed of the vehicle reaches the threshold speed determined by the speed determination unit And a control unit for operating the internal combustion engine while traveling.
 上記(1)~(14)の態様によれば、電力不足の不安を解消しつつ、乗員にとっての快適性を向上させることができる。 According to the above aspects (1) to (14), it is possible to improve the comfort for the occupant while eliminating the fear of the power shortage.
 上記(15)の態様によれば、目的地が設定されていない場合であっても、電力不足の不安を解消しつつ、乗員にとっての快適性を向上させることができる。 According to the above aspect (15), even when the destination is not set, the comfort for the occupant can be improved while eliminating the fear of the power shortage.
車両システムを搭載した車両の構成の一例を示す図である。It is a figure which shows an example of a structure of the vehicle carrying a vehicle system. 計画制御部の機能構成を示す構成図である。It is a block diagram which shows the function structure of a plan control part. 情報処理部により出力される情報の一例を示す図である。It is a figure which shows an example of the information output by an information processing part. 分割区間に設定された優先度の一例を示す図である。It is a figure which shows an example of the priority set to the division area. 可否判定部の処理について説明するための図である。It is a figure for demonstrating the process of the availability determination part. 第1マップの一例を示す図である。It is a figure which shows an example of a 1st map. 第2マップの一例を示す図である。It is a figure which shows an example of a 2nd map. 優先度閾値の決定について説明するための図である。It is a figure for demonstrating determination of a priority threshold value. 計画制御部により実行される処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process performed by a plan control part. 計画制御部により実行されるフィードバック処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the feedback process performed by a plan control part. 車速閾値マップの一例を示す図である。It is a figure which shows an example of a vehicle speed threshold value map. 実施形態の車両制御装置のハードウェア構成の一例を示す図である。It is a figure showing an example of the hardware constitutions of the vehicle control device of an embodiment.
 以下、図面を参照し、本発明の車両制御システム、車両制御方法、およびプログラムの実施形態について説明する。 Hereinafter, embodiments of a vehicle control system, a vehicle control method, and a program according to the present invention will be described with reference to the drawings.
 [全体構成]
 図1は、車両システム1を搭載した車両の構成の一例を示す図である。車両システム1が搭載される車両は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機を備える場合、電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。以下の説明では、シリーズ方式を採用したハイブリッド車両を例に説明する。シリーズ方式とは、エンジンと駆動輪が機械的に連結されておらず、エンジンの動力は専ら発電機による発電に用いられ、発電電力が走行用の電動機に供給される方式である。また、この車両は、バッテリをプラグイン充電可能な車両であってよい。
[overall structure]
FIG. 1 is a diagram showing an example of the configuration of a vehicle equipped with a vehicle system 1. The vehicle on which the vehicle system 1 is mounted is, for example, a vehicle such as a two-wheeled vehicle, a three-wheeled vehicle, or a four-wheeled vehicle, and a driving source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof. When the motor is provided, the motor operates using the power generated by the generator connected to the internal combustion engine or the discharge power of the secondary battery or the fuel cell. In the following description, a hybrid vehicle adopting a series system will be described as an example. The series system is a system in which the engine and the drive wheels are not mechanically connected, the motive power of the engine is used exclusively for power generation by a generator, and the generated power is supplied to a motor for traveling. In addition, this vehicle may be a vehicle capable of plug-in charge of a battery.
 図1に示すように、車両には、例えば、エンジン10と、第1モータ(発電機)12と、第2モータ(電動機)18と、駆動輪25と、PCU(Power Control Unit)30と、バッテリ60とが搭載される。 As shown in FIG. 1, the vehicle includes, for example, an engine 10, a first motor (generator) 12, a second motor (electric motor) 18, a drive wheel 25, and a PCU (Power Control Unit) 30. A battery 60 is mounted.
 エンジン10は、ガソリンなどの燃料を燃焼させることで動力を出力する内燃機関である。エンジン10は、例えば、シリンダとピストン、吸気バルブ、排気バルブ、燃料噴射装置、点火プラグ、コンロッド、クランクシャフトなどを備えるレシプロエンジンである。また、エンジン10は、ロータリーエンジンであってもよい。エンジン10が出力可能な動力は、第1モータ12がリアルタイムで第2モータ18を駆動させるための電力量(または自車両Mを所定速度以上で走行させることができる電力量)を発電するために必要な動力未満の動力である。該エンジンは小型・軽量であるため、車載レイアウトの自由度が高いというメリットを有する。 The engine 10 is an internal combustion engine that outputs power by burning a fuel such as gasoline. The engine 10 is, for example, a reciprocating engine including a cylinder and a piston, an intake valve, an exhaust valve, a fuel injection device, a spark plug, a connecting rod, a crankshaft, and the like. Also, the engine 10 may be a rotary engine. The power that can be output by the engine 10 is to generate an amount of power for the first motor 12 to drive the second motor 18 in real time (or an amount of power that can cause the host vehicle M to travel at a predetermined speed or more). Power less than necessary power. Since the engine is small and light, it has the advantage of a high degree of freedom in vehicle layout.
 第1モータ12は、例えば、三相交流発電機である。第1モータ12は、エンジン10の出力軸(例えばクランクシャフト)にロータが連結され、エンジン10により出力される動力を用いて発電する。 The first motor 12 is, for example, a three-phase alternating current generator. The first motor 12 has a rotor connected to an output shaft (e.g., a crankshaft) of the engine 10 and generates electric power using power output from the engine 10.
 第2モータ18は、例えば、三相交流電動機である。第2モータ18のロータは、駆動輪25に連結される。第2モータ18は、供給される電力を用いて動力を駆動輪25に出力する。また、第2モータ18は、車両の減速時に車両の運動エネルギーを用いて発電する。以下、第2モータ18による発電動作を回生と称する場合がある。 The second motor 18 is, for example, a three-phase alternating current motor. The rotor of the second motor 18 is coupled to the drive wheel 25. The second motor 18 outputs power to the drive wheel 25 using the supplied power. In addition, the second motor 18 generates electric power using the kinetic energy of the vehicle at the time of deceleration of the vehicle. Hereinafter, the power generation operation by the second motor 18 may be referred to as regeneration.
 PCU30は、例えば、第1変換器32と、第2変換器38と、VCU(Voltage Control Unit)40とを備える。これらの構成要素をPCU30として一まとまりの構成としたのは、あくまで一例であり、これらの構成要素は分散的に配置されても構わない。 The PCU 30 includes, for example, a first converter 32, a second converter 38, and a VCU (Voltage Control Unit) 40. It is an example to the last to set these components as PCU30 to one group, and these components may be arrange | positioned distributedly.
 第1変換器32および第2変換器38は、例えば、AC-DC変換器である。第1変換器32および第2変換器38の直流側端子は、直流リンクDLに接続されている。直流リンクDLには、VCU40を介してバッテリ60が接続されている。第1変換器32は、第1モータ12により発電された交流を直流に変換して直流リンクDLに出力したり、直流リンクDLを介して供給される直流を交流に変換して第1モータ12に供給したりする。同様に、第2変換器38は、第2モータ18により発電された交流を直流に変換して直流リンクDLに出力したり、直流リンクDLを介して供給される直流を交流に変換して第2モータ18に供給したりする。 The first converter 32 and the second converter 38 are, for example, AC-DC converters. The DC side terminals of the first converter 32 and the second converter 38 are connected to the DC link DL. A battery 60 is connected to the DC link DL via the VCU 40. The first converter 32 converts alternating current generated by the first motor 12 into direct current and outputs it to the direct current link DL, or converts direct current supplied via the direct current link DL into alternating current to convert the first motor 12 Supply to Similarly, the second converter 38 converts alternating current generated by the second motor 18 into direct current and outputs it to the direct current link DL, or converts direct current supplied via the direct current link DL into alternating current to 2) Supply to the motor 18 or the like.
 VCU40は、例えば、DC―DCコンバータである。VCU40は、バッテリ60から供給される電力を昇圧してDCリンクDLに出力する。 The VCU 40 is, for example, a DC-DC converter. The VCU 40 boosts the power supplied from the battery 60 and outputs it to the DC link DL.
 バッテリ60は、例えば、リチウムイオン電池などの二次電池である。 The battery 60 is, for example, a secondary battery such as a lithium ion battery.
 動力制御部70は、例えば、ハイブリッド制御部70Aと、エンジン制御部71と、モータ制御部72と、ブレーキ制御部73と、バッテリ制御部74とを含む。ハイブリッド制御部70Aは、エンジン制御部71、モータ制御部72、ブレーキ制御部73、およびバッテリ制御部74に指示を出力する。ハイブリッド制御部70Aによる指示については、後述する。 The power control unit 70 includes, for example, a hybrid control unit 70A, an engine control unit 71, a motor control unit 72, a brake control unit 73, and a battery control unit 74. Hybrid control unit 70A outputs instructions to engine control unit 71, motor control unit 72, brake control unit 73, and battery control unit 74. The instruction by the hybrid control unit 70A will be described later.
 エンジン制御部71は、計画制御部100からの指示に応じて、エンジン10の点火制御、スロットル開度制御、燃料噴射制御、燃料カット制御などを行う。また、エンジン制御部71は、クランクシャフトに取り付けられたクランク角センサの出力に基づいて、エンジン回転数を算出し、ハイブリッド制御部70Aに出力してもよい。 The engine control unit 71 performs ignition control of the engine 10, throttle opening control, fuel injection control, fuel cut control, and the like according to an instruction from the plan control unit 100. Further, the engine control unit 71 may calculate the engine rotational speed based on the output of the crank angle sensor attached to the crankshaft, and may output it to the hybrid control unit 70A.
 モータ制御部72は、ハイブリッド制御部70Aからの指示に応じて、第1変換器32および/または第2変換器38のスイッチング制御を行う。 The motor control unit 72 performs switching control of the first converter 32 and / or the second converter 38 in accordance with an instruction from the hybrid control unit 70A.
 ブレーキ制御部73は、ハイブリッド制御部70Aからの指示に応じて、不図示のブレーキ装置を制御する。ブレーキ装置は、運転者の制動操作に応じたブレーキトルクを各車輪に出力する装置である。 The brake control unit 73 controls a brake device (not shown) in accordance with an instruction from the hybrid control unit 70A. The brake device is a device that outputs a brake torque corresponding to the driver's braking operation to each wheel.
 バッテリ制御部74は、バッテリ60に取り付けられたバッテリセンサ62の出力に基づいて、バッテリ60の電力量(例えばState Of Charge;充電率)を算出し、ハイブリッド制御部70Aに出力する。以下、バッテリ60の電力量を「SOC」と称する場合がある。 The battery control unit 74 calculates the amount of power (for example, State Of Charge; charging rate) of the battery 60 based on the output of the battery sensor 62 attached to the battery 60, and outputs it to the hybrid control unit 70A. Hereinafter, the amount of power of the battery 60 may be referred to as “SOC”.
 車両センサ75は、例えば、アクセル開度センサ、車速センサ、ブレーキ踏量センサ等を含む。アクセル開度センサは、運転者による加速指示を受け付ける操作子の一例であるアクセルペダルに取り付けられる。このアクセル開度センサは、アクセルペダルの操作量を検出し、アクセル開度として動力制御部70または計画制御部100に出力する。車速センサは、例えば、各車輪に取り付けられた車輪速センサと速度計算機とを備える。車速センサは、車輪速センサにより検出された車輪速を統合して車両の速度(車速)を導出し、導出した速度を動力制御部70に出力する。ブレーキ踏量センサは、運転者による減速または停止指示を受け付ける操作子の一例であるブレーキペダルに取り付けられる。ブレーキ踏量センサは、ブレーキペダルの操作量を検出し、検出した操作量をブレーキ踏量として動力制御部70に出力する。 The vehicle sensor 75 includes, for example, an accelerator opening sensor, a vehicle speed sensor, a brake depression amount sensor, and the like. The accelerator opening degree sensor is attached to an accelerator pedal, which is an example of an operating element that receives an acceleration instruction from a driver. The accelerator opening degree sensor detects the amount of operation of the accelerator pedal, and outputs the detected amount to the power control unit 70 or the plan control unit 100 as the accelerator opening degree. The vehicle speed sensor includes, for example, a wheel speed sensor and a speed calculator attached to each wheel. The vehicle speed sensor integrates the wheel speeds detected by the wheel speed sensors to derive the speed (vehicle speed) of the vehicle, and outputs the derived speed to the power control unit 70. The brake depression amount sensor is attached to a brake pedal that is an example of an operating element that receives a deceleration or stop instruction from the driver. The brake depression amount sensor detects the operation amount of the brake pedal, and outputs the detected operation amount to the power control unit 70 as the brake depression amount.
 ここで、ハイブリッド制御部70Aによる制御について説明する。ハイブリッド制御部70Aは、計画制御部100の指示に基づいて、エンジン10の出力すべきエンジンパワーPeを決定する。ハイブリッド制御部70Aは、決定したエンジンパワーPeに応じて、エンジンパワーPeに釣り合うように第1モータ12の反力トルクを決定する。ハイブリッド制御部70Aは、決定した情報を、エンジン制御部71に出力する。運転者によりブレーキが操作された場合、ハイブリッド制御部70Aは、第2モータ18の回生で出力可能なブレーキトルクと、ブレーキ装置が出力すべきブレーキトルクとの配分を決定し、モータ制御部72とブレーキ制御部73に出力する。 Here, control by the hybrid control unit 70A will be described. Hybrid control unit 70A determines engine power Pe to be output from engine 10 based on an instruction from plan control unit 100. The hybrid control unit 70A determines the reaction torque of the first motor 12 to balance with the engine power Pe in accordance with the determined engine power Pe. Hybrid control unit 70A outputs the determined information to engine control unit 71. When the driver operates the brake, the hybrid control unit 70A determines the distribution between the brake torque that can be output by the regeneration of the second motor 18 and the brake torque that is to be output by the brake device. It outputs to the brake control unit 73.
 [計画制御部]
 計画制御部100は、目的地までの経路が分割された分割区間ごとに発電予定の電力量である発電予定電力量を導出する。そして、計画制御部100は、発電予定電力量を積算した電力量が、発電により賄う発電電力を超えるように、分割区間ごとに設定された優先度の高い順に分割区間を選択し、選択した分割区間を走行中において内燃機関を稼働させて分割区間電力量の電力を発電させる。発電は、車両の乗員にとっての快適性が考慮された優先度の高い分割区間で行われるため、車両の乗員にとっての快適性が向上する。
[Planning control unit]
The plan control unit 100 derives a power generation scheduled power amount which is a power amount scheduled to be generated for each divided section in which the route to the destination is divided. Then, the plan control unit 100 selects the divided sections in the descending order of priority set for each divided section so that the power amount obtained by integrating the planned power generation amount exceeds the generated power covered by power generation, and the selected division While traveling on the section, the internal combustion engine is operated to generate electric power of divided section electric energy. Since the power generation is performed in the high-priority divided sections in which the comfort for the vehicle occupant is taken into consideration, the comfort for the vehicle occupant is improved.
 また、計画制御部100は、所定のチェックポイントにおいて、現状のSOCである現状SOCと予測されたSOCとの差分を確認し、発電予定の電力が不足している場合、次の選択された分割区間において不足分を補うように発電を行う。これにより、必要な電力を発電することができる。以下、詳細について説明する。 Further, the plan control unit 100 confirms the difference between the current SOC, which is the current SOC, and the predicted SOC at a predetermined check point, and if the power to be generated is insufficient, the next selected division Generate electricity to compensate for the shortage in the section. Thereby, necessary power can be generated. Details will be described below.
 図2は、計画制御部100の機能構成を示す構成図である。計画制御部100は、例えば、情報処理部110と、区間情報処理部120と、計画処理部130と、出力制御部140と、調整処理部150とを備える。これらの機能部は、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予めHDD(Hard Disk Drive)やフラッシュメモリ等の記憶装置に格納されていてもよいし、DVDやCD-ROM等の着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることで記憶装置にインストールされてもよい。計画制御部100に含まれる機能構成のうち、一部または全部の構成は他の装置に搭載されてもよい。 FIG. 2 is a block diagram showing a functional configuration of the plan control unit 100. As shown in FIG. The plan control unit 100 includes, for example, an information processing unit 110, a section information processing unit 120, a plan processing unit 130, an output control unit 140, and an adjustment processing unit 150. These functional units are realized, for example, by execution of a program (software) by a hardware processor such as a CPU (Central Processing Unit). In addition, some or all of these components may be hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), etc. Circuit (including circuitry) or may be realized by cooperation of software and hardware. The program may be stored in advance in a storage device such as a hard disk drive (HDD) or a flash memory, or is stored in a removable storage medium such as a DVD or a CD-ROM. It may be installed in the storage device by being attached. Among the functional configurations included in the plan control unit 100, some or all of the configurations may be installed in other devices.
 [情報処理部]
 情報処理部110は、例えば、ナビ情報取得部112と、区間判定部114と、車両情報取得部116とを備える。
[Information processing unit]
The information processing unit 110 includes, for example, a navigation information acquisition unit 112, a section determination unit 114, and a vehicle information acquisition unit 116.
 ナビ情報取得部112は、ナビゲーション装置90から出発地から目的地までの経路や、経路に含まれる道路の情報、道路の環境情報等を受信する。道路の情報とは、例えば、道路の種別(一般道または高速道路)、道路の幅や形状、車線数、制限速度、停止情報(例えば信号の位置、停止線の位置、踏切の位置、料金所の位置)等の情報である。道路の環境情報とは、道路の環境、または道路の周辺の環境を示す情報であって、道路の混雑度や、道路周辺の天候を示す情報等である。ナビ情報取得部112は、例えば、所定の区間ごとに上記の情報を取得することにより、出発地から目的地までの経路に含まれる道路の情報や道路の環境情報等を取得する。 The navigation information acquisition unit 112 receives, from the navigation device 90, the route from the departure point to the destination, information on the road included in the route, environmental information on the road, and the like. Road information includes, for example, road type (general road or expressway), width and shape of road, number of lanes, speed limit, stop information (for example, signal position, stop line position, crossing position, toll gate Position information, etc.). The environmental information of the road is information indicating the road environment or the environment around the road, and is information indicating the degree of congestion of the road, the weather around the road, and the like. The navigation information acquisition unit 112 acquires road information, road environment information, and the like included in the route from the departure point to the destination point, for example, by acquiring the above information for each predetermined section.
 区間判定部114は、出発地から目的地までの経路を所定の基準に従って分割する。所定の基準とは、例えば、所定距離や、所定の単位時間で走行すると推定される距離である。以下、上記の分割された区間を「分割区間」と称する。 The section determination unit 114 divides the route from the departure place to the destination according to a predetermined standard. The predetermined reference is, for example, a predetermined distance or a distance estimated to travel in a predetermined unit time. Hereinafter, the section divided as described above is referred to as a "division section".
 車両情報取得部116は、車両センサ75により取得された情報や、バッテリ60のSOC、車載機器により消費された電力量等を含む車両に関する情報を取得する。 The vehicle information acquisition unit 116 acquires information on the vehicle including the information acquired by the vehicle sensor 75, the SOC of the battery 60, the amount of power consumed by the on-vehicle device, and the like.
 情報処理部110は、取得した情報や、取得した情報を加工して生成した情報を区間情報処理部120、計画処理部130、出力制御部140、または調整処理部150に出力する。 The information processing unit 110 outputs the acquired information and the information generated by processing the acquired information to the section information processing unit 120, the plan processing unit 130, the output control unit 140, or the adjustment processing unit 150.
 [出力される情報]
 図3は、情報処理部110により出力される情報の一例を示す図である。図3では、後述する区間情報処理部120によって計画処理部130に出力される情報(1-5)も含んでいる。例えば、情報処理部110により(1-1)から(1-4)の情報が出力される。
[Information to be output]
FIG. 3 is a diagram showing an example of information output by the information processing unit 110. As shown in FIG. FIG. 3 also includes information (1-5) output to the plan processing unit 130 by the section information processing unit 120 described later. For example, the information processing unit 110 outputs the information (1-1) to (1-4).
 (1-1)区間情報処理部120に出力される情報は、例えば、目的地までの距離や、目的地までの到着予定時刻、平均車速、経路の標高、経路を走行する時間帯、車両が停止することが予測される位置(停止情報)、経路の天候、目的地における充電施設の有無を示す情報、出発地から目的地までの経路に関する全ての情報を受信したか否かを示す情報(受信完了情報)等である。区間情報処理部120に出力される情報は、例えば、現状SOCや、経路を走行した際の走行抵抗を示す情報、車両の重量、分割区間の距離等である。 (1-1) The information output to the section information processing unit 120 includes, for example, the distance to the destination, the estimated arrival time to the destination, the average vehicle speed, the altitude of the route, the time zone for traveling the route, and the vehicle Information indicating the position where it is expected to stop (stop information), the weather of the route, information indicating the presence or absence of a charging facility at the destination, and information indicating whether all information regarding the route from the departure location to the destination has been received ( Reception completion information). The information output to the section information processing unit 120 is, for example, the current SOC, information indicating traveling resistance when traveling on a route, the weight of a vehicle, the distance of divided sections, and the like.
 (1-2)計画処理部130に出力される情報は、例えば、現状SOCである。 (1-2) The information output to the plan processing unit 130 is, for example, the current SOC.
 (1-3)出力制御部140に出力される情報は、例えば、分割区間を通過したことを示す情報(分割区間通過情報)や、目的地までの距離、実際の車速、アクセルペダルの操作量(開度)等である。 (1-3) The information output to the output control unit 140 is, for example, information indicating that the divided section has been passed (division section passing information), the distance to the destination, the actual vehicle speed, and the operation amount of the accelerator pedal (Opening degree) etc.
 (1-4)調整処理部150に出力される情報は、例えば、分割区間を通過したことを示す情報や、車載機器により消費された電力(車載消費電力)、実際の車速等である。 (1-4) The information output to the adjustment processing unit 150 is, for example, information indicating that the divided section has been passed, power consumed by the on-vehicle device (on-vehicle power consumption), actual vehicle speed and the like.
 [区間情報処理部]
 区間情報処理部(第1導出部の一例)120は、例えば、実施判定部122と、目標SCO設定部124と、区間情報導出部126とを備える。
[Section information processing unit]
The section information processing unit (an example of a first derivation unit) 120 includes, for example, an implementation determination unit 122, a target SCO setting unit 124, and a section information derivation unit 126.
 実施判定部122は、例えば、区間情報処理を実行するか否かを判定する。区間情報処理とは、区間情報処理部120に含まれる目標SCO設定部124、または区間情報導出部126により実行される処理である。実施判定部122は、例えば、出発地から目的地に向けて出発する際、または調整処理部150により区間情報処理の指示が出力された場合、区間情報処理を実行すると判定し、区間情報処理の実施フラグを生成する。 The implementation determination unit 122 determines, for example, whether or not to execute the section information processing. Section information processing is processing executed by the target SCO setting unit 124 or the section information derivation unit 126 included in the section information processing unit 120. For example, when departure from the departure point to the destination, or when the adjustment processing unit 150 outputs a section information processing instruction, the execution determination section 122 determines to execute the section information processing, and Generate implementation flag.
 目標SCO設定部124は、例えば、目的地に到着した時のSOC(目的地の目標SOC)を設定する。例えば、目標SOC設定部124は、目的地に充電施設が存在しない場合、出発地や次の目的地までに必要な電力を考慮して、到着時のSOCを決定する。例えば、目標SOC設定部124は、目的地に充電施設が存在する場合、目的地に到着した時のSOCを0~数十パーセントに決定する。 The target SCO setting unit 124 sets, for example, the SOC (the target SOC of the destination) when arriving at the destination. For example, when there is no charging facility at the destination, the target SOC setting unit 124 determines the SOC at the time of arrival, taking into consideration the power necessary for the departure place and the next destination. For example, when there is a charging facility at the destination, the target SOC setting unit 124 determines the SOC at the time of arrival at the destination to be 0 to several tens percent.
 区間情報導出部126は、情報処理部110から取得した情報に基づいて、分割区間に対応する情報である分割区間情報(図3の(1-5)参照)を生成する。区間情報導出部126は、例えば、車両が走行する時間帯の道路の交通状況や道路の天候、所定のアルゴリズムや関数等を用いて、分割区間情報を生成する。分割区間情報とは、例えば、分割区間において車両の加減速によって消費される電力量(加減速電力量)や、分割区間を走行した際に走行抵抗を示す情報、分割区間において車載機器により消費されるSOC(車載消費電力)、分割区間における平均車速、分割区間を走行する時間帯、後述する分割区間の優先度等である。優先度は道路の区間ごとに予め設定されていてもよい。 The section information derivation unit 126 generates division section information (see (1-5) in FIG. 3) which is information corresponding to the division section based on the information acquired from the information processing section 110. The section information deriving unit 126 generates divided section information using, for example, the traffic condition of the road in the time zone in which the vehicle travels, the weather of the road, a predetermined algorithm, a function, or the like. The divided section information is, for example, the amount of power consumed by the acceleration / deceleration of the vehicle in the divided section (acceleration / deceleration power amount), information indicating the running resistance when traveling the divided section, and consumed by vehicle equipment in the divided section SOC (vehicle power consumption), average vehicle speed in divided sections, time zone for traveling divided sections, priority of divided sections to be described later, and the like. The priority may be set in advance for each section of the road.
 区間情報導出部126は、分割区間を走行する時間帯が夜間の場合は、車両のヘッドライト等が点灯されるため、その制御によって消費されるSOCも加味して、車載機器により消費されるSOCを導出する。 If the time zone for traveling the divided sections is nighttime, the section information deriving unit 126 turns on the headlights and the like of the vehicle, so the SOC consumed by the on-vehicle equipment is also taken into consideration in consideration of the SOC consumed by the control. Derive
 区間情報処理部120により取得、または生成された情報は、計画処理部130に出力される。 The information acquired or generated by the section information processing unit 120 is output to the plan processing unit 130.
 [優先度]
 優先度は、例えば、(2-1)車速、(2-2)停止可能性、(2-3)目的地までの残距離、(2-4)上り勾配の大きさ(度合)に基づいて設定される。図4は、分割区間に設定された優先度の一例を示す図である。区間情報導出部126は、分割区間ごとに、上記(2-1)~(2-4)の要素に対して、所定の基準に従ってスコアや指標(図中、「高、中、低」や「a1~d3」)等を付与し、付与したスコアや指標等を所定のアルゴリズムや関数等に適用して優先度(図中、「高、中、低」)を導出する。
[priority]
The priority is, for example, based on (2-1) vehicle speed, (2-2) possibility of stopping, (2-3) remaining distance to destination, (2-4) size of upslope (degree) It is set. FIG. 4 is a diagram showing an example of the priority set to the divided section. The section information derivation unit 126 sets scores or indices (“high, middle, low”, “low” or “low” in FIG. a1 to d3 ′ ′) and the like, and the given score, index and the like are applied to a predetermined algorithm, function or the like to derive a priority (“high, middle, low” in the drawing).
 (2-1)例えば、他の分割区間に比して、分割区間を走行する平均車速が速い分割区間は、優先度が高く設定される。速い車速で走行している場合は車両のタイヤと道路とによって生じるロードノイズが遅い車速で走行している場合に比べて大きいため、車両の乗員にとって、発電ユニット(例えばエンジン10および/または第1モータ12)を稼働させた際の作動音が気にならないためである。 (2-1) For example, in a divided section in which the average vehicle speed traveling in the divided section is faster than other divided sections, the priority is set higher. When traveling at a high vehicle speed, road noise generated by the tires of the vehicle and the road is larger than when traveling at a low vehicle speed. Therefore, for the vehicle occupant, the power generation unit (for example, the engine 10 and / or the first This is because the operation noise when the motor 12) is operated is not a concern.
 (2-2)他の分割区間に比して、車両が停止する頻度が低いことが予測される分割区間は、優先が高く設定される。車両が停止した際に発電ユニットが稼働していると、車両の乗員は、作動音を不快に感じることがあるため、車両が停止した際は発電ユニットの稼働を停止することが望ましい。車両が停止する頻度が高いと、発電ユニットのオンおよびオフが繰り返され、このときの作動音は、車両の乗員にとって不快となる場合があるためである。停止する頻度は、停止情報に基づいて区間情報処理部120により導出される。 (2-2) A divided section in which the frequency of stopping the vehicle is predicted to be lower than that of the other divided sections is set to have high priority. When the power generation unit is in operation when the vehicle stops, the occupants of the vehicle may feel the operation noise uncomfortable. Therefore, when the vehicle stops, it is desirable to stop the operation of the power generation unit. When the vehicle frequently stops, the power generation unit is repeatedly turned on and off, and the operation noise at this time may be uncomfortable for the occupants of the vehicle. The frequency of stopping is derived by the section information processing unit 120 based on the stop information.
 (2-3)他の分割区間に比して、目的地までの残距離が長い分割区間は、優先度が高く設定される。残距離が長い場合、SOCが低下していると、車両の乗員は不安を感じるため、残距離が長い分割区間では積極的に発電を行い、SOCを維持または上昇させて、乗員の不安を緩和することが望ましいためである。 (2-3) The division interval having the longer remaining distance to the destination is set to have higher priority than the other division intervals. When the remaining distance is long, when the SOC decreases, the occupants of the vehicle feel uneasy, so actively generate power in the divided sections where the remaining distance is long, maintain or increase the SOC, and ease the occupant's anxiety Because it is desirable to
 (2-4)他の分割区間に比して、上り勾配の度合が大きい分割区間は、優先度が高く設定される。上り勾配の度合とは、例えば、分割区間における上り勾配の距離や上り勾配を走行する時間、勾配の傾斜等に基づいて導出された指標である。上り勾配の度合が大きい場合、電力の消費量が大きくなり、車両の乗員は不安を感じることがあるため、積極的に発電を行い、SOCを維持または上昇させて、乗員の不安を緩和することが望ましいためである。 (2-4) The divided section having a higher degree of upslope is set to have higher priority than the other divided sections. The degree of the upslope is, for example, an index derived based on the distance of the upslope in the divided section, the time for traveling the upslope, the slope of the slope, and the like. If the degree of upslope is large, the amount of power consumed will be large, and the occupants of the vehicle may feel uneasy, so actively generate electricity, maintain or increase the SOC, and alleviate the occupant's anxiety. Is desirable.
 [計画処理部]
 計画処理部130は、例えば、区間SOC導出部132と、可否判定部134と、優先度閾値導出部136と、計画制御部138と、記憶部139とを備える。記憶部139は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等の不揮発性の記憶媒体と、RAM(Random Access Memory)、レジスタ等の揮発性の記憶媒体とによって実現される。記憶部139には、後述する第1マップ139Aおよび第2マップ139Bが記憶されている。区間SOC導出部132は「第2導出部」の一例であり、優先度閾値導出部136または計画制御部138は「選択部」の一例である。
[Planning Processing Department]
The plan processing unit 130 includes, for example, a section SOC derivation unit 132, an availability determination unit 134, a priority threshold derivation unit 136, a plan control unit 138, and a storage unit 139. The storage unit 139 is realized by, for example, a non-volatile storage medium such as a read only memory (ROM), a flash memory, a hard disk drive (HDD), and a volatile storage medium such as a random access memory (RAM) or a register. Be done. The storage unit 139 stores a first map 139A and a second map 139B described later. The section SOC derivation unit 132 is an example of the “second derivation unit”, and the priority threshold derivation unit 136 or the plan control unit 138 is an example of the “selection unit”.
 区間SOC導出部132は、区間情報処理部120から取得した情報に基づいて、分割区間ごとに必要な電力量を導出する。この電力量は、例えば、車両の走行により消費される電力量および車載機器により消費される電力量である。 Section SOC derivation unit 132 derives the necessary amount of power for each divided section based on the information acquired from section information processing section 120. The amount of power is, for example, the amount of power consumed by the traveling of the vehicle and the amount of power consumed by the on-vehicle device.
 可否判定部134は、区間SOC導出部132により導出された電力量を積算して、目的地に到着するまでに発電が必要であるか否かを判定する。図5は、可否判定部134の処理について説明するための図である。図5の縦軸はSOC[%]を示し、横軸は距離を示している。推移線Mは、現状SOCで目的地まで発電をせずに走行した場合のSOCの推移を示している。推移線M1は、目的地までの経路の全区間において、後述する第1マップ139Aを用いて発電を行った場合のSOCの推移を示している。推移線M2は、目的地までの経路の全区間において、後述する第2マップ139Bを用いて発電を行った場合のSOCの推移を示している。 The availability determination unit 134 integrates the amount of power derived by the section SOC derivation unit 132, and determines whether or not power generation is required before reaching the destination. FIG. 5 is a diagram for explaining the process of the availability determination unit 134. The vertical axis of FIG. 5 indicates the SOC [%], and the horizontal axis indicates the distance. A transition line M indicates the transition of the SOC when traveling at the current SOC without generating power to the destination. The transition line M1 indicates the transition of the SOC when power generation is performed using a first map 139A described later in all sections of the route to the destination. The transition line M2 indicates the transition of the SOC when power generation is performed using a second map 139B described later in all sections of the route to the destination.
 可否判定部134は、例えば、区間SOC導出部132により導出された区間ごとに必要なSOCと、現状SOC(或いは充電後などの所定の時点におけるSOC)とに基づいて、目的地まで走行した際のSOCの消費傾向を導出する。そして、可否判定部134は、目的地まで走行した際のSOCが目的地の目標SOCを下回る場合、目的地の目標SOCと目的地に到着した際のSOCとの差分を発電で賄う発電量(SOC)であると判定する。 When, for example, the possibility determination unit 134 travels to the destination based on the SOC required for each section derived by the section SOC derivation unit 132 and the current SOC (or the SOC at a predetermined time such as after charge) Derive the consumption trend of SOC. Then, in the case where the SOC at the time of traveling to the destination is lower than the target SOC of the destination, the availability determination unit 134 covers the difference between the target SOC of the destination and the SOC at the destination by power generation ( It determines that it is SOC).
 可否判定部134は、目的地に到着した際のSOCが目標SOCを上回るためには、図5に示した傾向に基づいて第1マップ139Aおよび第2マップ139Bのうち、いずれのマップを用いるかを決定する。第1マップ139Aを用いた場合であっても、目的地に到着した際のSOCが目標SOC(目標SOCに余裕分のSOCを加算したSOC)を上回らない場合は、第2マップ139Bが用いられる。 Based on the tendency shown in FIG. 5, the availability determination unit 134 uses which one of the first map 139A and the second map 139B to use in order for the SOC at the time of arrival at the destination to exceed the target SOC. Decide. Even if the first map 139A is used, the second map 139B is used when the SOC at the time of arrival at the destination does not exceed the target SOC (the SOC obtained by adding the SOC for the allowance to the target SOC). .
 可否判定部134は、分割区間における車両の走行状態を区間情報処理部120から取得した情報に基づいて予測し、予測した結果および決定したマップに基づいて、分割区間ごとに発電する予定の発電量、およびマップを用いた際の目的地に到着し場合のSOCを導出する。この際、アクセルペダル開度は、分割区間を走行する際に予測される平均アクセルペダル開度がマップに適用され、発電量が予測される。 The availability determination unit 134 predicts the traveling state of the vehicle in the divided section based on the information acquired from the section information processing unit 120, and the amount of power generation to be generated for each divided section based on the predicted result and the determined map , And the SOC when arriving at the destination when using the map. At this time, as the accelerator pedal opening degree, the average accelerator pedal opening degree predicted when traveling the divided section is applied to the map, and the power generation amount is predicted.
 [第1マップ]
 図6は、第1マップ139Aの一例を示す図である。図6の縦軸は発電ユニットの出力を示し、横軸は車速を示している。出力は、例えば、β1<β2<β3・・・<β6)であり、車速は、例えば、α1<α2<α3・・・<α7である。図中の4つの制御線は、それぞれアクセルペダル開度がAP1、AP2、AP3、AP4[パーセント]のときに、車速に応じて発電ユニットに出力される電力を示している(例えばAP1<AP2<AP3<AP4)。アクセルペダル開度が大きいほど、アクセルペダル開度が小さい場合に比較して車速が遅い段階で発電ユニットにより出力される出力値が大きい。
[First map]
FIG. 6 is a diagram showing an example of the first map 139A. The vertical axis in FIG. 6 indicates the output of the power generation unit, and the horizontal axis indicates the vehicle speed. The output is, for example, β1 <β2 <β3... <Β6), and the vehicle speed is, for example, α1 <α2 <α3. The four control lines in the figure indicate the powers output to the power generation unit according to the vehicle speed when the accelerator pedal opening is AP1, AP2, AP3, AP4 [percent], for example (for example, AP1 <AP2 < AP3 <AP4). As the accelerator pedal opening degree is larger, the output value output by the power generation unit at the later stage of the vehicle speed is larger than when the accelerator pedal opening degree is smaller.
 アクセルペダル開度が大きいほど、アクセルペダル開度が小さい場合に比較して発電ユニットによる出力の度合が最大となる車速が遅くなる。例えば、アクセルペダル開度がAP4[パーセント]の場合は、車速がα2[km/h]を超える手前で発電ユニットによる出力が最大(例えばβ3.5[kW])となり、アクセルペダル開度がAP3[パーセント]の場合は、車速がα3[km/h]を超える手前で発電ユニットによる出力が最大(例えばβ3.5[kW])となり、アクセルペダル開度がAP2[パーセント]の場合は、車速がα3.5[km/h]付近で発電ユニットによる出力が最大(β3.5[kW])となる。例えば、アクセルペダル開度がAP4[パーセント]の場合は、車速がα3.5[km/h]付近で発電ユニットによる出力が最大(例えばβ3[kW])となり、アクセルペダル開度が大きい場合に比して最大出力も小さくなる。 As the accelerator pedal opening degree is larger, the vehicle speed at which the degree of output by the power generation unit becomes maximum is slower than when the accelerator pedal opening degree is small. For example, when the accelerator pedal opening is AP4 [percent], the output by the power generation unit is maximum (for example, β 3.5 [kW]) before the vehicle speed exceeds α2 [km / h], and the accelerator pedal opening is AP3 In the case of [percent], the output by the power generation unit is maximum (for example, β 3.5 [kW]) before the vehicle speed exceeds α3 [km / h], and when the accelerator pedal opening is AP2 [percent], the vehicle speed The power output by the power generation unit is maximum (β 3.5 [kW]) near α 3.5 [km / h]. For example, when the accelerator pedal opening is AP4 [percent], the output by the power generation unit is maximum (for example, β3 [kW]) when the vehicle speed is around α 3.5 [km / h], and the accelerator pedal opening is large. In comparison, the maximum output also decreases.
 アクセルペダル開度が、上述したアクセルペダル開度とは異なる場合、アクセルペダル開度に応じて、上記の制御線の傾向を線形に変化させた出力値が設定されてもよい。例えば、アクセルペダル開度がAP1~AP2[パーセント]の間である場合、最大出力は、アクセルペダル開度がAP1[パーセント]の最大出力とAP4[パーセント]の最大出力との間に設定される。 When the accelerator pedal opening degree is different from the above-described accelerator pedal opening degree, an output value obtained by linearly changing the tendency of the above control line may be set according to the accelerator pedal opening degree. For example, if the accelerator pedal opening is between AP1 and AP2 [percent], the maximum power is set between the maximum power of the accelerator pedal opening AP1 [percent] and the maximum power of AP4 [percent] .
 アクセルペダル開度が、AP1[パーセント]未満である場合は、AP1[パーセント]の制御線が適用され、AP1[パーセント]を超え、且つAP2[パーセント]未満である場合は、AP1[パーセント]の制御線が適用され、AP2[パーセント]を超え、且つAP3[パーセント]未満である場合は、AP3[パーセント]の制御線が適用され、AP4[パーセント]を超える場合は、AP4[パーセント]の制御線が適用されてもよい。 If the accelerator pedal position is less than AP1 [percent], the control line of AP1 [percent] is applied, and if it is greater than AP1 [percent] and less than AP2 [percent], then AP1 [percent] A control line is applied, if it exceeds AP2 [percent] and is less than AP3 [percent], a control line of AP3 [percent] is applied, if it exceeds AP4 [percent], control of AP4 [percent] Lines may be applied.
 上述したように、第1マップ139Aが用いられた場合、車両の乗員によるアクセルペダルの操作量が大きい程、発電ユニットの作動音が大きくなる傾向で発電ユニットが制御される。これにより、発電ユニットの作動音によって乗員に違和感を与えることを軽減させることができる。 As described above, when the first map 139A is used, the power generation unit is controlled in such a manner that the operation noise of the power generation unit increases as the operation amount of the accelerator pedal by the vehicle occupant increases. As a result, it is possible to reduce the discomfort of the occupant due to the operation noise of the power generation unit.
 [第2マップ]
 図7は、第2マップ139Bの一例を示す図である。図6と同様の説明については省略する。第1マップ139Aでは発電ユニットの出力の最大値はβ3.5[kW]であったが、第2マップ139Bでは最大値はβ5[kW]である。例えば、アクセルペダル開度がAP1[パーセント]の場合は、第2マップ139Bでは最大値はβ3.5[kW]である。
[The second map]
FIG. 7 is a diagram showing an example of the second map 139B. The description similar to that of FIG. 6 is omitted. In the first map 139A, the maximum value of the power generation unit output is β 3.5 [kW], but in the second map 139B, the maximum value is β 5 [kW]. For example, when the accelerator pedal opening degree is AP1 [percent], the maximum value in the second map 139B is β 3.5 [kW].
 上述したように、第2マップ139Bが用いられた場合、車速が同じであっても、第1マップ139Aに比して発電量が大きくなるため、第1マップ139Aを用いても発電力が不足する場合であっても、発電ユニットの作動音によって乗員に違和感を与えることを軽減させることができる。 As described above, when the second map 139B is used, the amount of power generation is larger than that of the first map 139A even if the vehicle speed is the same, so the power generation capacity is insufficient even if the first map 139A is used Even in this case, it is possible to reduce the discomfort of the occupant due to the operation noise of the power generation unit.
 [優先度閾値導出部]
 優先度閾値導出部136は、可否判定部134によりSOCを発電で賄う必要があると判定された場合、優先度閾値を決定する。例えば、優先度閾値導出部136は、優先度の高い分割区間を順に選択し、選択した分割区間で発電できる電力量を積算し、積算した電力量が賄う必要がある電力量になるまで上記処理を繰り返す。分割区間で発電できる電力量は、可否判定部134により決定されたマップ(第1マップ139Aまたは第2マップ139B)に応じた制御が、分割区間において実行された際の電力量である。
[Priority threshold derivation unit]
When it is determined by the availability determination unit 134 that the SOC needs to be covered by power generation, the priority threshold derivation unit 136 determines a priority threshold. For example, the priority threshold derivation unit 136 sequentially selects divided sections with high priority, integrates the electric energy that can be generated in the selected divided area, and performs the above process until the integrated electric energy needs to be covered repeat. The amount of power that can be generated in the divided section is the amount of power when control according to the map (the first map 139A or the second map 139B) determined by the availability determination unit 134 is performed in the divided section.
 より具体的には、図8に示すように、優先度閾値導出部136は、例えば、最初に優先度が「高」の分割区間において発電できる電力量を積算し、積算した電力量が賄う必要がある電力量に達しない場合、次に優先度が高い「中」の分割区間において発電できる電力量を積算する。そして、優先度閾値導出部136は、積算した電力量が賄う必要がある電力量に達した場合に、そのときに選択している分割区間の優先度のうち最も低い優先度を優先度閾値とする。すなわち、優先度閾値は、優先度「中」に決定される。 More specifically, as shown in FIG. 8, the priority threshold derivation unit 136 first needs to integrate, for example, the amount of power that can be generated in the divided section with the priority “high”, and the accumulated amount of power needs to be covered If it does not reach a certain amount of power, it integrates the amount of power that can be generated in the "middle" divided section with the next highest priority. Then, when the integrated power amount reaches the required power amount, the priority threshold derivation unit 136 sets the lowest priority as the priority threshold among the priorities of the division sections selected at that time. Do. That is, the priority threshold is determined to be "middle" in priority.
 例えば、優先度閾値導出部136は、予め設定された優先度(或いは最も低い優先度)の分割区間で発電する発電量を積算した電力量が、賄う必要がある電力量に達しない場合に、第1マップ139Aに代えて、第2マップ139Bを用いて分割区間で発電する発電量を積算した電力量を導出してもよい。 For example, when the priority threshold deriving unit 136 determines that the amount of power obtained by integrating the amount of power generation generated in the divided sections of the preset priority (or the lowest priority) does not reach the amount of power that needs to be covered, Instead of the first map 139A, the second map 139B may be used to derive an electric energy obtained by integrating the amount of electric power generated in the divided section.
 図8は、優先度閾値の決定について説明するための図である。図8の上図は、目的地までの距離(図中の横軸)と速度(図中の縦軸)との関係を示している。図8の中図は、目的地までの経路における車両が停止する可能性(停止可能性)を示している。図8の中図の縦軸は、停止可能性を示す指標の大きさを示している。図8の下図は、目的地までの残距離を示している。図8の下図の縦軸は、残距離の長さを示している。 FIG. 8 is a diagram for explaining the determination of the priority threshold. The upper drawing of FIG. 8 shows the relationship between the distance to the destination (horizontal axis in the drawing) and the velocity (vertical axis in the drawing). The middle view of FIG. 8 shows the possibility (stoppability) of the vehicle stopping on the route to the destination. The vertical axis in the middle view of FIG. 8 indicates the size of the index indicating the possibility of stopping. The lower part of FIG. 8 shows the remaining distance to the destination. The vertical axis in the lower part of FIG. 8 indicates the length of the remaining distance.
 計画制御部138は、決定された優先度閾値に基づいて、発電を実施する分割区間を設定し、設定した分割区間における車速閾値、およびその分割区間で発電する発電量を設定する。車速閾値は、発電を開始するトリガーとする車速である。車速閾値は、例えば、分割区間ごとに予め設定された車速である。計画制御部138は、チェックポイント(例えば分割区間の終点)に到着したときのSOCである予測SOCを予測し、予測した予測SOCを調整処理部150に出力する。 The plan control unit 138 sets a divided section for performing power generation based on the determined priority threshold, and sets a vehicle speed threshold in the set divided section and an amount of generated power to be generated in the divided section. The vehicle speed threshold is a vehicle speed serving as a trigger for starting power generation. The vehicle speed threshold is, for example, a vehicle speed preset for each divided section. The plan control unit 138 predicts the predicted SOC, which is the SOC when the check point (for example, the end point of the divided section) arrives, and outputs the predicted predicted SOC to the adjustment processing unit 150.
 [出力制御部]
 出力制御部(制御部の一例)140は、例えば、車速閾値更新部142と、出力導出部144とを備える。
[Output control unit]
The output control unit (an example of the control unit) 140 includes, for example, a vehicle speed threshold updating unit 142 and an output deriving unit 144.
 車速閾値更新部142は、計画制御部138から取得した車速閾値に基づいて、分割区間における車速が、その分割区間の車速閾値に到達したか否かを判定する。 The vehicle speed threshold update unit 142 determines, based on the vehicle speed threshold acquired from the plan control unit 138, whether the vehicle speed in the divided section has reached the vehicle speed threshold of the divided section.
 出力導出部144は、車速閾値更新部142により車速が当該分割区間の車速閾値に到達したと判定された場合、計画処理部130により決定されたマップに基づいて、発電ユニットを稼働させる指示を動力制御部70に出力する。そして、動力制御部70は、出力導出部144の指示に基づいて、発電ユニットを制御する。 When it is determined by the vehicle speed threshold updating unit 142 that the vehicle speed has reached the vehicle speed threshold of the divided section, the output deriving unit 144 powers an instruction to operate the power generation unit based on the map determined by the plan processing unit 130. It outputs to the control unit 70. Then, the power control unit 70 controls the power generation unit based on the instruction of the output derivation unit 144.
 出力導出部144は、後述する調整処理部150から取得した情報(調整実施フラグ、生活補正値、および走行補正値)に基づいて、発電ユニットを稼働させる。この際に発電させる発電量は、1つ前、または2つ以上前の分割区間において、不足したSOC(予測SOCと現状SOCとの差分)を補う発電量である。この場合、下記のようにマップが修正されたり、分割区間において発電する時間が調整されたりする。 The output deriving unit 144 operates the power generation unit based on information (adjustment execution flag, life correction value, and travel correction value) acquired from the adjustment processing unit 150 described later. The power generation amount generated at this time is a power generation amount that compensates for the insufficient SOC (the difference between the predicted SOC and the current SOC) in the previous or two or more previous divided sections. In this case, the map is corrected as described below, or the time for generating power in the divided section is adjusted.
 出力導出部144は、計画処理部130により決定されたマップを修正して、発電ユニットに発電させる電力量を調整してもよい。例えば、出力導出部144は、予め予想された分割区間における位置と発電量との対応関係を参照し、計画された発電量に比して実際に発電した発電量が小さい場合、発電量が多くなるようにマップを調整して発電ユニットの出力を上昇させてもよい。 The output deriving unit 144 may adjust the amount of power generated by the power generation unit by correcting the map determined by the plan processing unit 130. For example, the output deriving unit 144 refers to the correspondence relationship between the position in the division section predicted in advance and the amount of power generation, and when the amount of power actually generated is smaller than the planned amount of power generation, the amount of power generation is large. The map may be adjusted to increase the output of the power generation unit.
 [調整処理部]
 調整処理部150は、例えば、調整実施判定部152と、生活補正部154と、走行補正部156とを備える。調整処理部150は、チェックポイントにおける予測SOCと現状SOCとの差分を出力制御部140にフィードバックする。
[Adjustment processing unit]
The adjustment processing unit 150 includes, for example, an adjustment execution determination unit 152, a life correction unit 154, and a travel correction unit 156. The adjustment processing unit 150 feeds back the difference between the predicted SOC and the current SOC at the check point to the output control unit 140.
 調整実施判定部152は、情報処理部110から取得した現状SOCと、計画制御部138から取得した予測SOCとの差分を求め、この差分が第1閾値以上である場合、後述するように生活補正部154に後述する生活補正値を導出させ、走行補正部156に後述する走行補正値を導出させる。 The adjustment execution determination unit 152 obtains the difference between the current SOC acquired from the information processing unit 110 and the predicted SOC acquired from the plan control unit 138, and if this difference is equal to or greater than the first threshold, life correction as described later The unit 154 is caused to derive a life correction value to be described later, and the travel correction unit 156 is to derive a travel correction value to be described later.
 上記の差分が、第1閾値よりも大きい第2閾値以上である場合、調整実施判定部152は、区間情報処理部120に区間情報処理を実行させてもよい。すなわち、上記の差分が大きい場合は、分割区間ごとに消費する電力が再計算され、更に優先度閾値が再設定される。この場合、優先度が再設定されてもよい。これにより、車両システム1は、より精度よく発電ユニットに対する制御を実行することができる。 If the above difference is equal to or greater than the second threshold larger than the first threshold, the adjustment execution determination unit 152 may cause the section information processing unit 120 to execute the section information processing. That is, when the above difference is large, the power consumed for each divided section is recalculated, and further, the priority threshold is reset. In this case, the priority may be reset. Thus, the vehicle system 1 can execute control on the power generation unit more accurately.
 生活補正部154は、情報処理部110から取得した情報に基づいて、分割区間において車載機器により消費されたSOC(生活SOC)を導出する。更に、生活補正部154は、生活SOCに基づいて、次の分割区間の発電量を補正する生活補正値を導出する。例えば、生活補正値は、生活SOCが事前に想定されていたSOC(例えば区間情報処理部120により導出されたSOC)よりも大きければ、チェックポイント通過後の分割区間の発電量が多くなるように導出される。 The life correction unit 154 derives the SOC (life SOC) consumed by the in-vehicle device in the divided section based on the information acquired from the information processing unit 110. Furthermore, the life correction unit 154 derives a life correction value for correcting the power generation amount of the next divided section based on the life SOC. For example, if the life correction value is larger than the SOC (for example, the SOC derived by the section information processing unit 120) where the life SOC is assumed in advance, the amount of power generation in the divided section after passing the check point will be large. It is derived.
 走行補正部156は、情報処理部110から取得した情報に基づいて、分割区間において車両の走行によって消費されたSOC(走行SOC)を導出する。走行SOCは、分割区間の始点におけるバッテリ60のSOCから分割区間の終点のSOCを減算したSOCに対して、更に生活SOCを減算したSOCである。走行補正部156は、走行SOCに基づいて、次の分割区間の発電量を補正する走行補正値を導出する。例えば、走行補正値は、走行SOCが事前に想定されていたSOC(例えば区間情報処理部120により導出されたSOC)よりも大きければ、チェックポイント通過後の分割区間の発電量が多くなるように導出される。 The traveling correction unit 156 derives SOC (traveling SOC) consumed by traveling of the vehicle in the divided section based on the information acquired from the information processing unit 110. The traveling SOC is an SOC obtained by further subtracting the living SOC from the SOC obtained by subtracting the SOC at the end point of the divided section from the SOC of the battery 60 at the start point of the divided section. The traveling correction unit 156 derives a traveling correction value for correcting the power generation amount of the next divided section based on the traveling SOC. For example, if the running correction value is larger than the running SOC (for example, the SOC derived by the section information processing unit 120), the amount of power generation of the divided section after passing the check point is increased. It is derived.
 調整処理部150は、調整実施判定部152により差分が第1閾値以上である場合に生成される調整実施フラグ、生活補正値、および走行補正値を計画処理部130に出力する。 The adjustment processing unit 150 outputs the adjustment execution flag, the lifestyle correction value, and the traveling correction value, which are generated when the difference is equal to or more than the first threshold value, by the adjustment execution determination unit 152 to the plan processing unit 130.
 [フローチャート]
 図9は、計画制御部100により実行される処理の流れを示すフローチャートである。本処理は、例えば出発地においてナビゲーション装置90に目的地が設定された際に実行される処理である。
[flowchart]
FIG. 9 is a flowchart showing the flow of processing executed by the plan control unit 100. This process is, for example, a process executed when a destination is set in the navigation device 90 at the departure place.
 まず、区間情報処理部120が、目的地までの経路を分割して、分割区間を生成する(ステップS100)。次に、区間情報処理部120は、分割区間ごとに優先度を設定する(ステップS102)。次に、区間情報処理部120は、目的地に到着した際の目標SOCを決定し、決定した目標SOCと、生成した情報である区間情報処理の実施フラグおよび優先度を含む分割区間情報とを計画処理部130に出力する(ステップS104)。 First, the section information processing unit 120 divides the route to the destination and generates a divided section (step S100). Next, the section information processing unit 120 sets the priority for each divided section (step S102). Next, the section information processing unit 120 determines the target SOC at the time of arrival at the destination, and determines the determined target SOC and division section information including the execution flag of the section information processing which is the generated information and the priority. It outputs to the plan process part 130 (step S104).
 次に、計画処理部130が、ステップS102で区間情報処理部120から取得した情報に基づいて、分割区間ごとに必要な電力量を導出し、導出した電力量を積算して目的地に到着するまでに必要な電力量を予測する(ステップS106)。 Next, based on the information acquired from the section information processing unit 120 in step S102, the plan processing unit 130 derives the necessary power for each divided section, integrates the derived power and arrives at the destination The required amount of power is predicted (step S106).
 次に、計画処理部130が、ステップS106で予測した目的地に到着するまでに必要な電力量と、現状SOCとに基づいて、目的地においてバッテリ60のSOCがステップS104で取得した目標SOCを上回るように、目的地までの走行中に発電して賄う必要がある発電量を導出する(ステップS108)。 Next, based on the amount of electric power necessary for the plan processing unit 130 to arrive at the destination predicted in step S106 and the current SOC, the SOC of the battery 60 at the destination is the target SOC acquired in step S104. As above, the amount of power generation that needs to be generated and covered while traveling to the destination is derived (step S108).
 次に、計画処理部130は、ステップS104で取得した優先度の高い分割区間を選択し、選択した分割区間で発電する予定の発電量を積算する(ステップS110)。 Next, the plan processing unit 130 selects a divided section with high priority acquired in step S104, and integrates the amount of power generation to be generated in the selected divided section (step S110).
 次に、計画処理部130は、積算した発電量がステップS108で導出した賄う必要である発電量を超えるか否かを判定する(ステップS112)。積算した発電量が賄う必要である発電量を超えない場合、ステップS110の処理に戻る。 Next, the plan processing unit 130 determines whether or not the accumulated power generation amount exceeds the power generation amount that is required to be obtained in step S108 (step S112). If the accumulated power generation amount does not exceed the power generation amount that is required to be met, the processing returns to step S110.
 積算した発電量が必要な発電量を超える場合、計画処理部130は、選択した分割区間に基づいて、優先度の閾値を設定する(ステップS114)。 If the accumulated power generation amount exceeds the necessary power generation amount, the plan processing unit 130 sets a threshold of priority based on the selected divided section (step S114).
 次に、計画処理部130は、ステップS114で設定した優先度の閾値に基づいて、発電する分割区間を設定する(ステップS116)。そして、車両は、目的地に向けて走行する。これにより本フローチャートの1ルーチンの処理は終了する。 Next, the plan processing unit 130 sets a divided section to be generated based on the threshold of the priority set in step S114 (step S116). Then, the vehicle travels to a destination. Thus, the processing of one routine of this flowchart ends.
 上述した処理により、車両の乗員に対する快適性に基づいて設定された優先度の高い分割区間において、優先的に発電が行われるため、車両の乗員にとっての快適性を向上させることができる。 According to the above-described process, power generation is preferentially performed in the high-priority divided sections set based on the comfort for the occupant of the vehicle, so that the comfort for the occupant of the vehicle can be improved.
 図10は、計画制御部100により実行されるフィードバック処理の流れを示すフローチャートである。本フローチャートは、例えば、車両が目的地に向けて出発した後に実行される処理である。 FIG. 10 is a flowchart showing the flow of the feedback process executed by the plan control unit 100. The flowchart is, for example, processing executed after the vehicle departs to a destination.
 まず、情報処理部110が、チェックポイントを設定する(ステップS200)。次に、出力制御部140が、車速が車速閾値を超えた場合に、マップに基づいて、発電ユニットに発電させる(ステップS202)。 First, the information processing unit 110 sets a check point (step S200). Next, when the vehicle speed exceeds the vehicle speed threshold, the output control unit 140 causes the power generation unit to generate power based on the map (step S202).
 次に、情報処理部110が、車両がチェックポイントに到達したか否かを判定する(ステップS204)。 Next, the information processing unit 110 determines whether the vehicle has reached the check point (step S204).
 車両がチェックポイントに到達した場合、調整処理部150が、チェックポイントに到着時における現状SOCと、計画制御部138から取得した予測SOCとの差分を求め、これらの差分が第1閾値以上であるか否かを判定する(ステップS206)。現状SOCと、予測SOCとの差分が第1閾値未満である場合、ステップS212の処理に進む。 When the vehicle reaches the check point, the adjustment processing unit 150 obtains a difference between the current SOC at the time of arrival at the check point and the predicted SOC acquired from the plan control unit 138, and the difference between them is equal to or greater than the first threshold. It is determined whether or not (step S206). If the difference between the current SOC and the predicted SOC is less than the first threshold, the process proceeds to step S212.
 現状SOCと、予測SOCとの差分が第1閾値値以上である場合、調整処理部150は、生活補正値と走行補正値とを導出する(ステップS208)。 If the difference between the current SOC and the predicted SOC is equal to or greater than the first threshold value, the adjustment processing unit 150 derives a life correction value and a travel correction value (step S208).
 次に、計画処理部130は、ステップS208で生成された走行補正値および生活補正値を、チェックポイントの通過後に存在する分割区間の発電量に反映して、そのチェックポイントの通過後に存在する分割区間において発電する発電量を導出する(ステップS210)。すなわち「差分導出部により導出された差分を補填するように、前記チェックポイントを通過後に走行する一以上の通過後分割区間の発電予定電力量を補正」される。その分割区間において発電する発電量は、「通過後分割区間において補正した発電予定電力量」の一例である。この発電量は、前回の分割区間で発電する予定であったが不足した発電量を含む。この発電量は、走行補正値および生活補正値が反映されている。例えば、実際に消費された生活SOC(または走行SOC)が、想定されていた生活SOC(または走行SOC)よりも大きければ、想定されていたSOC(例えば区間情報処理部120により導出されたSOC)と実際に消費されたSOCとの差分が、上記の発電量に含まれる。 Next, the plan processing unit 130 reflects the traveling correction value and the living correction value generated in step S208 on the power generation amount of the division section existing after passing the check point, and the division existing after passing the check point The amount of power generation to be generated in the section is derived (step S210). That is, “the power generation scheduled power amount of one or more post-passage division sections traveling after passing the check point is corrected” so as to compensate for the difference derived by the difference derivation unit. The amount of power generation generated in the divided section is an example of “the power generation scheduled power amount corrected in the divided section after passing”. This amount of power generation includes the amount of power generation that was planned to be generated in the previous division but was insufficient. The power generation amount reflects the travel correction value and the life correction value. For example, if the life SOC (or traveling SOC) actually consumed is larger than the life SOC (or traveling SOC) assumed, then the SOC assumed (for example, the SOC derived by the section information processing unit 120) The difference between the and the SOC actually consumed is included in the above-mentioned power generation amount.
 次に、計画処理部130は、図9のフローチャートで説明したステップS110~ステップS116の処理を実行する(ステップS211)。すなわち、「前記一以上の通過後分割区間において前記補正した前記発電予定電力量の電力を発電させる」処理(発電させる分割区間が再度選択される処理)、または「チェックポイントを通過後に走行する通過後分割区間ごとに設定された優先度の高い順に、且つ差分の電力が補填されるように通過後分割区間が選択される」処理が行われる。 Next, the plan processing unit 130 executes the processing of step S110 to step S116 described in the flowchart of FIG. 9 (step S211). That is, the process of “generating power of the corrected planned power amount in the one or more post-pass divided sections” (a process in which the divided sections to be generated are selected again), or “pass that travels after passing the check point” The post-passage division sections are selected in the order of high priority set for each post-division section and so that the difference power is compensated.
 そして、計画処理部130は、ステップS210で導出した発電量、ステップS211の処理で設定した分割区間、および分割区間の車速閾値を出力制御部140に出力する。 Then, the plan processing unit 130 outputs the power generation amount derived in step S210, the divided section set in the process of step S211, and the vehicle speed threshold of the divided section to the output control unit 140.
 ここで、生活補正値とは別に、走行補正値が導出されるため、計画処理部130は、より精度よく走行において消費されるSOCを予測することができる。具体的には、例えば、計画処理部130は、走行補正値に対して、更に区間情報処理部120から取得した走行抵抗や平均車速等(将来、発生する走行抵抗や将来の平均車速等)を加味することにより、より精度よく走行において消費されるSOCを導出する。 Here, since the traveling correction value is derived separately from the life correction value, the plan processing unit 130 can predict the SOC consumed in traveling more accurately. Specifically, for example, the plan processing unit 130 further calculates the traveling resistance, the average vehicle speed, etc. acquired from the section information processing unit 120 (the traveling resistance to be generated in the future, the average vehicle speed in the future, etc.) By adding it, the SOC consumed in traveling can be derived more accurately.
 次に、出力制御部140は、車速が閾値以上に到達した場合に、ステップS210で導出した発電量を出力するように発電ユニットを制御する(ステップS212)。車両が走行している環境が雨である場合、出力制御部140は、環境が雨でない場合よりも発電ユニットの出力を高めてもよい。車両の乗員は、雨の音によって発電ユニットの作動音が気にならないためである。出力制御部140は、車両が走行している環境の天候の情報を情報処理部110から取得する。 Next, when the vehicle speed reaches the threshold or more, the output control unit 140 controls the power generation unit to output the amount of power generation derived in step S210 (step S212). When the environment in which the vehicle is traveling is rain, the output control unit 140 may increase the output of the power generation unit more than when the environment is not rain. It is because the occupants of the vehicle do not mind the operation noise of the power generation unit due to the sound of rain. The output control unit 140 acquires, from the information processing unit 110, information on the weather of the environment in which the vehicle is traveling.
 次に、情報処理部110は、車両が目的地に到着したか否かを判定する(ステップS214)。車両が目的地に到着していない場合、ステップS204の処理に進む。車両が目的地に到着した場合、本フローチャートの1ルーチンの処理は終了する。 Next, the information processing unit 110 determines whether the vehicle has arrived at the destination (step S214). If the vehicle has not arrived at the destination, the process proceeds to step S204. When the vehicle arrives at the destination, the processing of one routine of this flowchart ends.
 ステップS206において、現状SOCと、予測SOCとの差分が第1閾値以上である場合、または第1閾値よりも大きい第2閾値以上である場合、図9のフローチャートのステップS102~S116の処理が行われてもよい。この場合、区間情報処理部120は、分割区間ごとに優先度を設定し、目的地に到着した際の目標SOCを決定する。次に、計画処理部130が、区間情報処理部120から取得した情報に基づいて、チェックポイント通過後の分割区間ごとに必要な電力量を導出し、導出した電力量を積算して目的地に到着するまでに必要な電力量を予測する。計画処理部130は、予測した目的地に到着するまでに必要な電力量と、現状SOCとに基づいて、目的地においてバッテリ60のSOCが目標SOCを上回るように、目的地までの走行中に発電して賄う必要がある発電量を導出する。そして、計画処理部130は、優先度の高い分割区間を選択し、選択した分割区間で発電する予定の発電量を積算し、積算した発電量が賄う必要である発電量を超えるか否かを判定する。積算した発電量が必要な発電量を超える場合、計画処理部130は、選択した分割区間に基づいて、優先度の閾値を設定し、設定した優先度の閾値に基づいて、発電する分割区間を設定する。 In step S206, when the difference between the current SOC and the predicted SOC is equal to or greater than the first threshold, or equal to or greater than the second threshold larger than the first threshold, the processing of steps S102 to S116 in the flowchart of FIG. It may be In this case, the section information processing unit 120 sets the priority for each divided section, and determines the target SOC at the time of arrival at the destination. Next, based on the information acquired from the section information processing unit 120, the plan processing unit 130 derives a necessary amount of power for each divided section after passing the check point, integrates the derived power amounts, and outputs the result as the destination. Predict the amount of power required to arrive. The plan processing unit 130 sets the SOC of the battery 60 at the destination so as to exceed the target SOC based on the amount of power required to arrive at the predicted destination and the current SOC, while traveling to the destination. Deriving the amount of power that needs to be generated. Then, the plan processing unit 130 selects a divided section having a high priority, integrates the power generation amount scheduled to be generated in the selected divided section, and determines whether the accumulated power generation amount exceeds the generated power amount required judge. When the accumulated power generation amount exceeds the necessary power generation amount, the plan processing unit 130 sets a threshold of priority based on the selected divided section, and the divided section to generate power based on the set threshold of priority. Set
 上述したように、車両システム1は、チェックポイントごとに発電量が不足している否かを判定し、発電量が不足している場合、次に分割区間において不足分を補填するように発電を行うことにより、車両の乗員にとっての快適性を向上させつつ、必要な電力を発電することができる。 As described above, the vehicle system 1 determines whether or not the amount of power generation is insufficient at each check point, and if the amount of power generation is insufficient, the power generation is then performed to compensate for the shortage in the divided section. By doing this, it is possible to generate the necessary power while improving the comfort for the vehicle occupants.
 上述した図9または図10のフローチャートの一部の処理は省略されてもよいし、処理の順番は変更されてもよい。 The processing of part of the flowchart of FIG. 9 or FIG. 10 described above may be omitted, or the order of processing may be changed.
 [目的地が設定されていない場合]
 上述した例では、目的地が設定された場合の処理について説明したが、目的地が設定されていない場合は、以下のような手法が用いられる。優先度閾値導出部136は、例えば、車速閾値マップ139Cを参照して、車速閾値を決定する。図11は、車速閾値マップ139Cの一例を示す図である。図11の縦軸は車速閾値を示し、横軸は現状のバッテリ60のSOCを示している。例えば、車速閾値マップ139Cにおいて、SOCがTh(例えばS5)[パーセント]以下である場合、車速閾値はα2[km/h]に設定され、SOCがTh[パーセント]を超える場合、SOCが大きくなるに従って車速閾値の車速は上昇するように設定されている。すなわち、SOCが所定値以下である場合は、SOCが所定値を超える場合に比して低い車速であっても発電を開始するように車速閾値が設定されている。
[When the destination is not set]
In the above-described example, the processing in the case where the destination is set is described, but when the destination is not set, the following method is used. The priority threshold derivation unit 136 determines the vehicle speed threshold, for example, with reference to the vehicle speed threshold map 139C. FIG. 11 is a diagram showing an example of the vehicle speed threshold map 139C. The vertical axis in FIG. 11 indicates the vehicle speed threshold, and the horizontal axis indicates the SOC of the battery 60 at present. For example, in the vehicle speed threshold map 139C, when the SOC is equal to or less than Th (for example, S5) [percent], the vehicle speed threshold is set to α2 [km / h], and when the SOC exceeds Th [percent], the SOC increases. The vehicle speed of the vehicle speed threshold is set to increase in accordance with. That is, when the SOC is equal to or less than a predetermined value, the vehicle speed threshold is set to start power generation even when the vehicle speed is lower than when the SOC exceeds the predetermined value.
 このように、車速閾値マップ139Cに設定された車速閾値とSOCとの対応関係に基づいて、発電が開始されるため、目的地が設定されていない場合であっても、SOCの状態を所定の状態に維持しつつ、乗員にとっての快適性を向上させることができる。 As described above, since power generation is started based on the correspondence relationship between the vehicle speed threshold value set in the vehicle speed threshold value map 139C and the SOC, even if the destination is not set, the state of the SOC is set to a predetermined value. It is possible to improve the comfort for the occupant while maintaining the state.
 例えば、SOCが第1所定値(例えばS8パーセント)を超える場合は、発電は行われず、SOCが所定範囲(例えばS1~S8パーセント)である場合は、上述した実施形態により実行される処理が行われる。SOCが第2所定値未満である場合は、常時、発電がおこなわれてもよい。 For example, when the SOC exceeds a first predetermined value (for example, S8 percent), power generation is not performed, and when the SOC is in a predetermined range (for example, S1 to S8 percent), the process performed by the above-described embodiment It will be. When the SOC is less than the second predetermined value, power generation may be performed at all times.
 以上説明した実施形態によれば、動力を出力するエンジン11と、エンジン11により出力された動力を用いて発電する第1モータ12と、第1モータ12により発電された電力を蓄えるバッテリ60と、第1モータ12またはバッテリ60から供給される電力を用いて駆動する第2モータ18と、所定の時点においてバッテリ60に蓄えられた電力量と、目的地に到達するのに必要な必要電力量とに基づいて、第1モータ12に発電させる発電電力を導出する区間情報処理部120と、目的地までの経路が分割された分割区間ごとに発電予定の電力量である発電予定電力量を導出する区間SOC導出部132と、分割区間ごとに設定された優先度の高い順に分割区間を選択する優先度閾値導出部136と、優先度閾値導出部136により選択された分割区間を、前記走行用電動機を用いた走行中に前記内燃機関を稼働させて前記発電予定電力量の電力を発電させる出力制御部140とを備えることにより、電力不足の不安を解消しつつ、乗員にとっての快適性を向上させることができる。 According to the embodiment described above, the engine 11 that outputs power, the first motor 12 that generates electric power using the power output by the engine 11, and the battery 60 that stores the electric power generated by the first motor 12; A second motor 18 driven by using the power supplied from the first motor 12 or the battery 60, the amount of power stored in the battery 60 at a predetermined time, and the necessary amount of power required to reach the destination On the basis of the section information processing unit 120 for deriving the generated power to be generated by the first motor 12 and the generation scheduled power amount which is the amount of power scheduled for power generation for each divided section where the route to the destination is divided. A section SOC derivation unit 132, a priority threshold derivation unit 136 which selects divided sections in descending order of priority set for each divided section, and a priority threshold derivation unit 136 By providing the output control unit 140 that operates the internal combustion engine while the selected divided section is traveling using the traveling motor to generate the electric power of the planned power generation amount, the fear of power shortage is eliminated In addition, the comfort for the occupant can be improved.
 [ハードウェア構成]
 上述した実施形態の車両システム1の計画制御部100は、例えば、図12に示すようなハードウェアの構成により実現される。図12は、実施形態の計画制御部100のハードウェア構成の一例を示す図である。
[Hardware configuration]
The plan control unit 100 of the vehicle system 1 according to the above-described embodiment is realized, for example, by a hardware configuration as shown in FIG. FIG. 12 is a diagram illustrating an example of a hardware configuration of the plan control unit 100 according to the embodiment.
 計画制御部100は、通信コントローラ100-1、CPU100-2、RAM100-3、ROM100-4、フラッシュメモリやHDDなどの記憶装置100-5、およびドライブ装置100-6が、内部バスあるいは専用通信線によって相互に接続された構成となっている。ドライブ装置100-6には、光ディスクなどの可搬型記憶媒体が装着される。記憶装置100-5に格納されたプログラム100-5aがDMAコントローラ(不図示)などによってRAM100-3に展開され、CPU100-2によって実行されることで、計画制御部100が実現される。CPU100-2が参照するプログラムは、ドライブ装置100-6に装着された可搬型記憶媒体に格納されていてもよいし、ネットワークNWを介して他の装置からダウンロードされてもよい。 The plan control unit 100 includes a communication controller 100-1, a CPU 100-2, a RAM 100-3, a ROM 100-4, a storage device 100-5 such as a flash memory or an HDD, and a drive device 100-6, which are internal buses or dedicated communication lines Are mutually connected. A portable storage medium such as an optical disk is attached to the drive device 100-6. The program 100-5a stored in the storage device 100-5 is expanded on the RAM 100-3 by a DMA controller (not shown) or the like and executed by the CPU 100-2, whereby the plan control unit 100 is realized. The program referred to by the CPU 100-2 may be stored in a portable storage medium attached to the drive device 100-6, or may be downloaded from another device via the network NW.
 上記実施形態は、以下のように表現することができる。
 動力を出力する内燃機関と、
 前記内燃機関により出力された動力を用いて発電する発電機と、
 前記発電機により発電された電力を蓄える蓄電池と、
 前記発電機または前記蓄電池から供給される電力を用いて駆動する走行用電動機と、
 記憶装置と、
 前記記憶装置に格納されたプログラムを実行するハードウェアプロセッサであって、所定の時点において前記蓄電池に蓄えられた電力量と、目的地に到達するのに必要な必要電力量とに基づいて、前記発電機に発電させる発電電力を導出し、
 目的地までの経路が分割された分割区間ごとに発電予定の電力量である発電予定電力量を導出し、
 前記分割区間ごとに設定された優先度の高い順に前記分割区間を選択し、
 前記選択された前記分割区間を、前記走行用電動機を用いた走行中に前記内燃機関を稼働させて前記発電予定電力量の電力を発電させる、
 車両制御システム。
The above embodiment can be expressed as follows.
An internal combustion engine that outputs power;
A generator that generates electricity using the power output by the internal combustion engine;
A storage battery for storing electric power generated by the generator;
A traveling motor driven using electric power supplied from the generator or the storage battery;
Storage device,
A hardware processor that executes a program stored in the storage device, and is based on the amount of power stored in the storage battery at a predetermined time and the amount of power required to reach a destination. Derive the generated power to be generated by the generator,
The power generation scheduled power amount, which is the power amount scheduled to be generated, is derived for each divided section in which the route to the destination is divided,
Select the divided sections in descending order of priority set for each of the divided sections;
The internal combustion engine is operated during traveling using the traveling electric motor to generate the electric power of the electric power generation scheduled electric energy in the selected divided section.
Vehicle control system.
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。 As mentioned above, although the form for carrying out the present invention was explained using an embodiment, the present invention is not limited at all by such an embodiment, and various modification and substitution within the range which does not deviate from the gist of the present invention Can be added.
10 エンジン
12 第1モータ
18 第2モータ
60 バッテリ
100 計画制御部
110 情報処理部
120 区間情報処理部
130 計画処理部
139A 第1マップ
139B 第2マップ
139C 車速閾値マップ
140 出力制御部
150 調整処理部
DESCRIPTION OF SYMBOLS 10 engine 12 1st motor 18 2nd motor 60 battery 100 plan control part 110 information processing part 120 zone information processing part 130 plan processing part 139A 1st map 139B 2nd map 139C vehicle speed threshold map 140 output control part 150 adjustment processing part

Claims (15)

  1.  動力を出力する内燃機関と、
     前記内燃機関により出力された動力を用いて発電する発電機と、
     前記発電機により発電された電力を蓄える蓄電池と、
     前記発電機または前記蓄電池から供給される電力を用いて駆動する走行用電動機と、
     所定の時点において前記蓄電池に蓄えられた電力量と、目的地に到達するのに必要な必要電力量とに基づいて、前記発電機に発電させる発電電力を導出する第1導出部と、
     目的地までの経路が分割された分割区間ごとに発電予定の電力量である発電予定電力量を導出する第2導出部と、
     前記分割区間ごとに設定された優先度の高い順に前記分割区間を選択する選択部と、
     前記選択部により選択された前記分割区間を、前記走行用電動機を用いた走行中に前記内燃機関を稼働させて前記発電予定電力量の電力を発電させる制御部と、
     を備える車両制御システム。
    An internal combustion engine that outputs power;
    A generator that generates electricity using the power output by the internal combustion engine;
    A storage battery for storing electric power generated by the generator;
    A traveling motor driven using electric power supplied from the generator or the storage battery;
    A first derivation unit that derives generated power to be generated by the generator based on the amount of power stored in the storage battery at a predetermined time and the amount of power required to reach a destination;
    A second derivation unit that derives a power generation scheduled power amount that is a power amount scheduled to be generated for each divided section in which the route to the destination is divided;
    A selection unit that selects the divided sections in descending order of priority set for each of the divided sections;
    A control unit that operates the internal combustion engine during traveling using the traveling motor and generates electric power of the planned power generation amount during the divided section selected by the selection unit;
    Vehicle control system comprising:
  2.  前記選択部は、前記発電予定電力量を積算した電力量が前記発電電力を超えるように、前記分割区間を選択する、
     請求項1に記載の車両制御システム。
    The selection unit selects the divided section such that an amount of power obtained by integrating the planned power generation amount exceeds the generated power.
    The vehicle control system according to claim 1.
  3.  予め設定されたチェックポイントに到着した場合に、事前に予測された前記チェックポイントに到着時の前記蓄電池の蓄電量と、前記チェックポイントに到着時の実際の蓄電量との差分を導出する差分導出部を、更に備え、
     前記制御部は、前記差分導出部により導出された差分を補填するように、前記チェックポイントを通過後に走行する一以上の通過後分割区間の発電予定電力量を補正し、前記一以上の通過後分割区間において前記補正した前記発電予定電力量の電力を発電させる、
     請求項1または請求項2に記載の車両制御システム。
    A difference derivation for deriving a difference between the storage amount of the storage battery at arrival at the check point predicted in advance and the actual storage amount at arrival at the check point when arriving at a check point set in advance Further equipped with
    The control unit corrects the planned power generation amount of one or more post-passage division sections traveling after passing the check point so as to compensate for the difference derived by the difference derivation unit, and after the one or more passes Generating power of the corrected planned power generation amount in the divided section;
    The vehicle control system according to claim 1 or 2.
  4.  予め設定されたチェックポイントに到着した場合に、事前に予測された前記チェックポイントに到着時の前記蓄電池の蓄電量と、前記チェックポイントに到着時の実際の蓄電量との差分を導出する差分導出部を、更に備え、
     前記選択部は、前記差分導出部により導出された差分が閾値以上である場合、前記チェックポイントを通過後に走行する一以上の通過後分割区間ごとに設定された優先度の高い順に、且つ前記差分の電力が補填されるように前記一以上の通過後分割区間を選択し、
     前記制御部は、前記選択部により選択された前記一以上の通過後分割区間において、前記走行用電動機を用いた走行中に前記内燃機関を稼働させて前記チェックポイントから目的地に到達するのに必要電力量を発電させる、
     請求項1から3のうちいずれか1項に記載の車両制御システム。
    A difference derivation for deriving a difference between the storage amount of the storage battery at arrival at the check point predicted in advance and the actual storage amount at arrival at the check point when arriving at a check point set in advance Further equipped with
    When the difference derived by the difference deriving unit is equal to or greater than a threshold, the selecting unit is configured to increase the difference in order of priority set for each of one or more post-passage division sections traveling after passing the check point. Select the one or more post-passage divisions so that the power of
    The control unit operates the internal combustion engine during traveling using the traveling motor in the one or more post-passage division sections selected by the selection unit to reach the destination from the check point. Generate the required power,
    The vehicle control system according to any one of claims 1 to 3.
  5.  車両が前記分割区間において走行すると予測される車速、車両が前記分割区間において停車すると予測される頻度、前記分割区間から目的地までの距離、または前記分割区間の上り勾配に関する情報のうち少なくとも一つ以上の要素に基づいて、前記優先度を設定する設定部を、更に備える、
     請求項1から4のうちいずれか1項に記載の車両制御システム。
    At least one of the vehicle speed predicted to travel in the divided section, the frequency at which the vehicle is predicted to stop in the divided section, the distance from the divided section to the destination, or the upward slope of the divided section And a setting unit configured to set the priority based on the above elements.
    The vehicle control system according to any one of claims 1 to 4.
  6.  前記設定部は、前記車両の車速が速い前記分割区間の優先度を、前記車両の車速が遅い前記分割区間の優先度に比して高く設定する、
     請求項5に記載の車両制御システム。
    The setting unit sets the priority of the divided section in which the vehicle speed of the vehicle is high relative to the priority of the divided section in which the vehicle speed of the vehicle is low.
    The vehicle control system according to claim 5.
  7.  前記設定部は、上り勾配の度合が大きい前記分割区間の優先度を、前記上り勾配の度合が低い前記分割区間の優先度に比して高く設定する、
     請求項5または請求項6に記載の車両制御システム。
    The setting unit sets the priority of the divided section having a large degree of uplink slope higher than the priority of the divided section having a low degree of uplink gradient.
    A vehicle control system according to claim 5 or 6.
  8.  前記設定部は、前記車両が停車すると予測される頻度が低い前記分割区間の優先度を、前記車両が停車すると予測される頻度が高い前記分割区間の優先度に比して高く設定する、
     請求項5から7のうちいずれか1項に記載の車両制御システム。
    The setting unit sets the priority of the divided section where the frequency at which the vehicle is predicted to stop is low is higher than the priority of the divided section where the frequency at which the vehicle is predicted to stop is high.
    The vehicle control system according to any one of claims 5 to 7.
  9.  前記設定部は、前記目的地までの距離が長い前記分割区間の優先度を、前記目的地までの距離が短い前記分割区間の優先度に比して高く設定する、
     請求項5から8のうちいずれか1項に記載の車両制御システム。
    The setting unit sets the priority of the division section having a long distance to the destination higher than the priority of the division section having a short distance to the destination.
    A vehicle control system according to any one of claims 5 to 8.
  10.  前記制御部は、前記分割区間の走行時におけるアクセルペダルの操作量に基づいて、前記内燃機関に発電させる発電量を制御する、
     請求項1から9のうちいずれか1項に記載の車両制御システム。
    The control unit controls an amount of power generated by the internal combustion engine based on an operation amount of an accelerator pedal during traveling of the divided section.
    The vehicle control system according to any one of claims 1 to 9.
  11.  前記第2導出部は、前記分割区間の走行時におけるアクセルペダルの操作量を予測し、予測したアクセルペダルの操作量、およびアクセルペダルの操作量ごとに対応付けられた前記内燃機関に発電させる発電量に基づいて、前記発電予定電力量を導出する、
     請求項1から10のうちいずれか1項に記載の車両制御システム。
    The second derivation unit predicts the operation amount of the accelerator pedal during traveling of the divided section, and generates electric power to be generated by the internal combustion engine associated with the predicted operation amount of the accelerator pedal and the operation amount of the accelerator pedal. Deriving the planned power generation amount based on the amount;
    The vehicle control system according to any one of claims 1 to 10.
  12.  前記蓄電池に蓄電された電力量に基づいて前記発電機を稼働させる車両の閾値速度を決定する速度決定部であって、前記電力量が大きくなるに従って前記閾値速度を大きい速度に決定する速度決定部と、を更に備え、
     前記制御部は、前記車両の速度が前記速度決定部により決定された閾値速度に到達した場合に、前記走行用電動機を用いた走行中に前記内燃機関を稼働させる、
     請求項1から10のうちいずれか1項に記載の車両制御システム。
    A speed determination unit that determines a threshold speed of a vehicle that operates the generator based on the amount of power stored in the storage battery, wherein the speed determination unit determines the threshold speed as the speed increases as the amount of power increases. And further,
    The control unit operates the internal combustion engine during traveling using the traveling motor, when the speed of the vehicle reaches a threshold speed determined by the speed determination unit.
    The vehicle control system according to any one of claims 1 to 10.
  13.  コンピュータが、
     所定の時点において動力を出力する内燃機関により出力された動力を用いて発電する発電機により発電された電力を蓄える蓄電池に蓄えられた電力量と、目的地に到達するのに必要な必要電力量とに基づいて、前記発電機に発電させる発電電力を導出し、
     目的地までの経路が分割された分割区間ごとに発電予定の電力量である発電予定電力量を導出し、
     前記分割区間ごとに設定された優先度の高い順に前記分割区間を選択し、
     前記選択された前記分割区間を、前記発電機または前記蓄電池から供給される電力を用いて駆動する走行用電動機を用いた走行中に前記内燃機関を稼働させて前記発電予定電力量の電力を発電させる、
     車両制御方法。
    The computer is
    The amount of power stored in the storage battery storing the power generated by the generator that generates power using the power output by the internal combustion engine that outputs power at a predetermined time, and the amount of power required to reach the destination Derive the generated power to be generated by the generator based on
    The power generation scheduled power amount, which is the power amount scheduled to be generated, is derived for each divided section in which the route to the destination is divided,
    Select the divided sections in descending order of priority set for each of the divided sections;
    The internal combustion engine is operated to generate the electric power of the planned electric energy during traveling using the traveling electric motor which drives the selected divided section using the electric power supplied from the generator or the storage battery. Let
    Vehicle control method.
  14.  コンピュータに、
     所定の時点において動力を出力する内燃機関により出力された動力を用いて発電する発電機により発電された電力を蓄える蓄電池に蓄えられた電力量と、目的地に到達するのに必要な必要電力量とに基づいて、前記発電機に発電させる発電電力を導出させ、
     目的地までの経路が分割された分割区間ごとに発電予定の電力量である発電予定電力量を導出させ、
     前記分割区間ごとに設定された優先度の高い順に前記分割区間を選択させ、
     前記選択された前記分割区間を、前記発電機または前記蓄電池から供給される電力を用いて駆動する走行用電動機を用いた走行中に前記内燃機関を稼働させて前記発電予定電力量の電力を発電させる、
     プログラム。
    On the computer
    The amount of power stored in the storage battery storing the power generated by the generator that generates power using the power output by the internal combustion engine that outputs power at a predetermined time, and the amount of power required to reach the destination Causing the generator to derive generated power based on the
    The power generation scheduled power amount, which is the power amount scheduled for power generation, is derived for each divided section where the route to the destination is divided,
    Selecting the divided sections in the descending order of the priority set for each of the divided sections;
    The internal combustion engine is operated to generate the electric power of the planned electric energy during traveling using the traveling electric motor which drives the selected divided section using the electric power supplied from the generator or the storage battery. Let
    program.
  15.  動力を出力する内燃機関と、
     前記内燃機関により出力された動力を用いて発電する発電機と、
     前記発電機により発電された電力を蓄える蓄電池と、
     前記発電機または前記蓄電池から供給される電力を用いて駆動する走行用電動機と、
     前記蓄電池に蓄電された電力量に基づいて前記発電機を稼働させる車両の閾値速度を決定する速度決定部であって、前記電力量が大きくなるに従って前記閾値速度を大きい速度に決定する速度決定部と、
     前記車両の速度が前記速度決定部により決定された閾値速度に到達した場合に、前記走行用電動機を用いた走行中に前記内燃機関を稼働させる制御部と、
     を備える車両制御システム。
    An internal combustion engine that outputs power;
    A generator that generates electricity using the power output by the internal combustion engine;
    A storage battery for storing electric power generated by the generator;
    A traveling motor driven using electric power supplied from the generator or the storage battery;
    A speed determination unit that determines a threshold speed of a vehicle that operates the generator based on the amount of power stored in the storage battery, wherein the speed determination unit determines the threshold speed as the speed increases as the amount of power increases. When,
    A control unit that operates the internal combustion engine during traveling using the traveling motor when the speed of the vehicle reaches a threshold speed determined by the speed determination unit;
    Vehicle control system comprising:
PCT/JP2018/033809 2017-10-10 2018-09-12 Vehicle control system, vehicle control method, and program WO2019073741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017197086 2017-10-10
JP2017-197086 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019073741A1 true WO2019073741A1 (en) 2019-04-18

Family

ID=66100514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033809 WO2019073741A1 (en) 2017-10-10 2018-09-12 Vehicle control system, vehicle control method, and program

Country Status (1)

Country Link
WO (1) WO2019073741A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324609A (en) * 1999-05-06 2000-11-24 Nissan Motor Co Ltd Controlling device for hybrid vehicle
JP2004301128A (en) * 2004-06-04 2004-10-28 Mitsubishi Fuso Truck & Bus Corp Engine operation control device of hybrid electric vehicle
JP2005192319A (en) * 2003-12-25 2005-07-14 Equos Research Co Ltd Controller of hybrid vehicle
JP2010093999A (en) * 2008-10-10 2010-04-22 Aisin Aw Co Ltd Apparatus and method for supporting charging onboard battery, and computer program
JP2012066624A (en) * 2010-09-21 2012-04-05 Suzuki Motor Corp Power generation control device for electric vehicle
JP2013056613A (en) * 2011-09-08 2013-03-28 Suzuki Motor Corp Power supply control apparatus for electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324609A (en) * 1999-05-06 2000-11-24 Nissan Motor Co Ltd Controlling device for hybrid vehicle
JP2005192319A (en) * 2003-12-25 2005-07-14 Equos Research Co Ltd Controller of hybrid vehicle
JP2004301128A (en) * 2004-06-04 2004-10-28 Mitsubishi Fuso Truck & Bus Corp Engine operation control device of hybrid electric vehicle
JP2010093999A (en) * 2008-10-10 2010-04-22 Aisin Aw Co Ltd Apparatus and method for supporting charging onboard battery, and computer program
JP2012066624A (en) * 2010-09-21 2012-04-05 Suzuki Motor Corp Power generation control device for electric vehicle
JP2013056613A (en) * 2011-09-08 2013-03-28 Suzuki Motor Corp Power supply control apparatus for electric vehicle

Similar Documents

Publication Publication Date Title
JP5233713B2 (en) Battery charge control device and battery charge control method
JP5780354B2 (en) Vehicle control device
CN110040122B (en) Vehicle control system, vehicle control method, and storage medium
CN110103937B (en) Vehicle control system, vehicle control method, and storage medium
JP7176376B2 (en) vehicle controller
CN109878506B (en) Vehicle control system, vehicle control method, and storage medium
CN114516320B (en) Travel control device, travel control method, and non-transitory storage medium
JP6017495B2 (en) Vehicle travel control system and information server
KR20170011162A (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
CN112937308B (en) Travel control device, travel control method, non-transitory storage medium, and vehicle
US12054136B2 (en) Vehicle control device, vehicle control method and recording medium
JP6435789B2 (en) Output control device for hybrid drive vehicle
JP2019188883A (en) Hybrid-vehicular control apparatus
JP2019196124A (en) Vehicle control system, vehicle control method, and program
JP6796571B2 (en) Vehicle control systems, vehicle control methods, and programs
JP6964019B2 (en) Vehicle control systems, vehicle control methods, and programs
JP2019069714A (en) Vehicle control system, vehicle control method, and program
CN110053602B (en) Vehicle control system, vehicle control method, and storage medium
WO2019073741A1 (en) Vehicle control system, vehicle control method, and program
US20230150474A1 (en) Hybrid vehicle state of charge control
JP2019123330A (en) Vehicle control system, vehicle control method, and program
JP2019123332A (en) Vehicle control system, vehicle control method, and program
US20230280168A1 (en) Information processing device, system, and method
JP2019055685A (en) Vehicle control system, vehicle control method, and program
JP2023127925A (en) Vehicular travel control device, travel control method, and travel control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP