WO2019073701A1 - Dual optical frequency comb generating optical system, laser device and measurement device - Google Patents

Dual optical frequency comb generating optical system, laser device and measurement device Download PDF

Info

Publication number
WO2019073701A1
WO2019073701A1 PCT/JP2018/031150 JP2018031150W WO2019073701A1 WO 2019073701 A1 WO2019073701 A1 WO 2019073701A1 JP 2018031150 W JP2018031150 W JP 2018031150W WO 2019073701 A1 WO2019073701 A1 WO 2019073701A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
unit
frequency comb
loop
Prior art date
Application number
PCT/JP2018/031150
Other languages
French (fr)
Japanese (ja)
Inventor
薫 美濃島
善晶 中嶋
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Priority to JP2019509581A priority Critical patent/JP7181613B2/en
Publication of WO2019073701A1 publication Critical patent/WO2019073701A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present invention relates to a dual optical frequency comb generation optical system that outputs two optical frequency combs, and a laser apparatus and a measurement apparatus that include the dual optical frequency comb generation optical system.
  • optical frequency comb The light whose spectral intensity is precisely and equally spaced in a comb shape on the frequency axis.
  • an optical frequency comb For example, in the spectral distribution of a mode-locked laser which is an ultrashort pulse laser, a large number of optical frequency mode trains arranged at equal intervals appear. That is, the optical frequency comb is emitted from the mode-locked laser.
  • Optical frequency combs having a comb-like spectral intensity are widely used as precise measures of time, space, and frequency.
  • the spacing of the optical frequency mode sequence in the optical frequency domain is called the repetition frequency.
  • Non-Patent Document 1 by performing multi-heterodyne detection of optical frequency combs having different repetition frequencies, it is possible to take out information of molecules and atoms in the optical frequency domain.
  • Optical frequency combs having different repetition frequencies are called dual optical frequency combs.
  • Broadband, high-precision, high-resolution spectroscopy can be performed using two mode-locked lasers (laser devices) that output dual optical frequency combs.
  • Non-Patent Document 1 when using two laser devices, these laser devices are subject to different environmental disturbances and mechanical disturbances.
  • the two laser devices are subjected to different environmental disturbances and mechanical disturbances, thereby reducing the signal-to-noise ratio (SN ratio) of the interference signal obtained at the time of multiheterodyne detection.
  • SN ratio signal-to-noise ratio
  • the SN ratio of the interference signal is increased, a large optical system for relatively phase-synchronizing the two laser devices is required, and the laser device becomes large.
  • the present invention takes the above-mentioned circumstances into consideration, and is a dual optical frequency comb capable of enhancing the signal-to-noise ratio of optical frequency combs having different repetition frequencies and miniaturizing the optical system and the entire apparatus.
  • a generation optical system a laser device, and a measurement device.
  • the dual optical frequency comb generation optical system guides the first laser light whose polarization direction is the first direction, and the second laser whose polarization direction is the second direction different from the first direction.
  • a first loop optical fiber for guiding light and maintaining the polarization direction of each of the first laser light and the second laser light; and a first loop optical fiber provided in the first loop optical fiber
  • An introducing unit for introducing the first laser beam and the second laser beam, and the first loop optical fiber, and the polarization direction of the first laser beam and the second laser beam is maintained while the direction of the polarization is maintained.
  • the first laser light and the second laser light are amplified to generate a first laser amplification light and a second laser amplification light, and the first direction of the first loop optical fiber in the circumferential direction and the direction opposite to the circumferential direction are generated.
  • laser An amplification unit for emitting the width light and the second laser amplification light; and the first laser amplification light and the second laser amplification light provided in the first loop optical fiber and guided along the circumferential direction.
  • a laser amplification light return unit that emits amplification light to the first loop optical fiber along at least one of the circumferential direction and a direction opposite to the circumferential direction; and the first loop optical fiber, A first optical frequency comb generated in the one-loop optical fiber and having a polarization direction of the first direction and a second optical frequency code generated in the first loop optical fiber and having a polarization direction of the second direction And a, a deriving unit that derives from the first loop optical fiber and.
  • the first loop optical fiber may be configured of a second loop portion and a third loop portion connected to the second loop portion via a coupling portion.
  • Good The introduction unit and the amplification unit may be provided in the second loop unit, and the lead-out unit may be provided in the third loop unit.
  • the laser amplification light return unit may be configured by the connection unit and the third loop unit.
  • the predetermined condition is that the phase difference is an odd multiple of half of the wavelengths of the first laser amplified light and the second laser amplified light.
  • the first laser amplification light and the second laser amplification light are generated only when the first laser amplification light and the second laser amplification light guided from the second loop portion satisfy the predetermined condition. May be returned to the second loop portion after being circulated in the third loop portion.
  • the first loop optical fiber may be configured of a second loop portion and a linear portion connected to the second loop portion via a coupling portion.
  • the introduction unit and the amplification unit may be provided in the second loop unit, the lead-out unit may be connected to the connection unit, and the laser amplification light return unit may be configured by the connection unit and the linear unit.
  • the predetermined condition is that the phase difference is an even multiple of half the wavelengths of the first laser amplified light and the second laser amplified light.
  • the first laser amplification light and the second laser amplification light are generated only when the first laser amplification light and the second laser amplification light guided from the second loop portion satisfy the predetermined condition. May be returned to the second loop portion after reciprocation in the linear portion.
  • the third loop portion or the linear portion is provided with a phase modulation portion capable of modulating the phases of the first laser amplification light and the second laser amplification light. It is also good.
  • the first loop optical fiber is provided with a resonator length control element capable of controlling the resonator length of the first laser amplification light and the second laser amplification light.
  • the resonator length control element is preferably provided in the second loop unit.
  • the laser device of the present invention is connected to the introduction portion of the above-described dual optical frequency comb generation optical system, and includes a light source that emits the first laser light and the second laser light.
  • the measurement apparatus includes the above-described laser device, and is disposed on the far side of the traveling direction of the first optical frequency comb and the second optical frequency comb derived from the derivation unit, and the first optical frequency comb and A polarization separation unit that separates the second optical frequency comb and travels on different paths, and a path of at least one of the first optical frequency comb and the second optical frequency comb separated from each other by the polarization separation unit A polarization which is disposed on the far side of the traveling direction of the first optical frequency comb and the second optical frequency comb from the sample disposed on the upper side, and causes the first optical frequency comb and the second optical frequency comb to be measured to interfere A wave interference unit, and a sample information extraction unit disposed on the back side in the traveling direction of the interference signal obtained by the polarization interference unit and extracting information of the sample from the interference signal.
  • the signal-to-noise ratio of optical frequency combs having different repetition frequencies can be increased, and the optical system can be miniaturized.
  • FIG. 7 is a plan view of another laser apparatus of the present invention.
  • the polarization maintaining optical fiber 31 and the dual optical frequency comb generating optical system 10A are provided.
  • the incident end (one end) of the polarization maintaining optical fiber 6 is connected to the light source 5.
  • the end (the other end) of the output side of the polarization maintaining optical fiber 6 is connected to the polarization separation element 12.
  • the end (one end) of the incident side of the polarization maintaining optical fiber 31 is connected to the polarization separation element 12.
  • the end (other end) of the output side of the polarization maintaining optical fiber 31 is connected to the dual optical frequency comb generation optical system 10A.
  • the light source 5 is at least a laser beam (first laser beam) S1 whose polarization direction is the first direction with respect to the optical axis A, and a laser beam whose polarization direction is the second direction with respect to the optical axis A 2) Laser beam S2 is emitted.
  • the optical axis A indicates the traveling direction of light. Assuming that the optical axis A is in a direction perpendicular to the paper surface of FIG. 1, the first direction is a direction toward the upper side and the lower side of the paper surface, and the second direction is a direction toward the left side and the right side of the paper surface. The first direction and the second direction may be respectively directed in any directions as long as they are different from each other.
  • laser light may be guided with the slow axis and the fast axis of the polarization maintaining fiber as the first direction and the second direction.
  • the light source 5 includes the laser beams S1 and S2, and third laser beams S3 and S4 in any direction different from the first direction and the second direction with respect to the optical axis A. Is a semiconductor laser that emits
  • the polarization direction of the laser beam S0 emitted from the light source 5 is held in the polarization maintaining optical fiber 6.
  • the polarization separation element 12 emits only the laser beams S1 and S2 from the laser beam S0 to the polarization maintaining optical fiber 31.
  • the dual optical frequency comb generation optical system 10 A includes a first loop optical fiber 30, an introducing unit 21 provided in the first loop optical fiber 30, an amplifying unit 40, a laser amplification light returning unit 70, and an extracting unit 24. Have.
  • the first loop optical fiber 30 connects the second loop portion 32 shown on the right side of FIG. 1, the third loop portion 33 shown on the left side of FIG. 1, and the second loop portion 32 and the third loop portion 33. And a unit 22.
  • the connection unit 22 is configured of a polarization maintaining optical coupler. That is, the first loop optical fiber 30 is configured to draw the numeral “8” with the connecting portion 22 as a knot.
  • the second loop portion 32 is composed of polarization maintaining optical fibers 32A, 32B, 32C.
  • the third loop portion 33 is composed of polarization maintaining optical fibers 33A, 33B and 33C.
  • the direction in which light is guided in the order of polarization maintaining optical fibers 32C, 32A, and 32B, and the direction in which light is guided in the order of polarization maintaining optical fibers 33A, 33B, and 33C in the direction R1 Circumferential direction
  • a direction opposite to the direction R1 is referred to as an R2 direction (reverse direction).
  • the first loop optical fiber 30 is connected to the polarization separation element 12 via the introduction unit 21 and the polarization maintaining optical fiber 31.
  • the introducing unit 21 is provided in the second loop unit 32, and is configured of a polarization maintaining optical coupler.
  • the polarization maintaining optical fiber 32C is connected to the near end of the introduction portion 21 in the R1 direction (that is, the end connected to the end on the exit side of the polarization maintaining optical fiber 31). .
  • the polarization maintaining optical fiber 32 ⁇ / b> A is connected to the end on the back side in the R ⁇ b> 1 direction in the introducing unit 21.
  • Laser light S1 and S2 and laser amplification light (first laser amplification light and second laser amplification light) L1 and L2 amplified by the amplification section 40 formed of a rare earth-doped optical fiber pass through the introduction portion 21.
  • the introducing unit 21 is composed of a wavelength division multiplexing type and polarization maintaining type optical coupler capable of introducing and deriving at least a first wavelength of the laser beams S1 and S2 and a second wavelength of the laser amplified beams L1 and L2. ing.
  • the amplification unit 40 is provided between the polarization maintaining optical fiber 32A of the second loop unit 32 and the polarization maintaining optical fiber 32B, and is configured of a polarization maintaining optical amplification fiber.
  • the light amplification fiber include rare earth-doped optical fibers.
  • the rare earth element added to the rare earth-doped optical fiber include erbium (Er), ytterbium (Yb), thulium (Tm) and the like.
  • the rare earth element added to the rare earth-doped optical fiber is appropriately selected in consideration of the first wavelength and the second wavelength.
  • the polarization maintaining optical fibers 32B and 32C are connected to the end of the connecting portion 22 on the second loop 32 side.
  • the polarization maintaining optical fibers 33A and 33C are connected to the end of the connecting portion 22 on the third loop 33 side.
  • the laser amplification light return unit 70 performs mode synchronization of the laser amplification lights L1 and L2 amplified by the amplification unit 40.
  • the laser amplification light return unit 70 includes a coupling unit 22, polarization maintaining optical fibers 33 A, 33 B, and 33 C provided in the third loop unit 33, and a polarization maintaining optical isolator 23.
  • the polarization maintaining optical isolator 23 passes only the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 33B along the R1 direction to the polarization maintaining optical fiber 33C, and polarizes the light along the R2 direction.
  • the laser amplification lights L1 and L2 incident from the holding optical fiber 33C are removed from the first loop optical fiber 30 by light absorption, branching, and the like.
  • the lead-out unit 24 is provided in the third loop unit 33, and is configured of a polarization maintaining optical coupler.
  • the polarization maintaining optical fiber 33A is connected to the near end of the lead-out portion 24 in the R1 direction (that is, the end on the connection portion 22 side).
  • the end (one end) on the incident side of each of the polarization-maintaining optical fibers 33B and 34 is connected to the end on the back side in the R1 direction in the lead-out portion 24.
  • the polarization maintaining optical fiber 34 takes out optical frequency combs (first optical frequency comb, second optical frequency comb) C1 and C2 having different repetition frequencies from the first loop optical fiber 30 through the lead-out unit 24.
  • the first loop optical fiber 30 is composed of the polarization maintaining optical fiber and each component provided in the first loop optical fiber 30 can hold the polarization, the first loop optical fiber 30 The orientation of the guided and controlled polarization is maintained.
  • the laser beam S 0 emitted from the light source 5 is guided to the polarization maintaining optical fiber 6 and enters the polarization separation element 12.
  • the polarization separation element 12 separates the laser beams S1 and S2 from the laser beam S0, and only the laser beams S1 and S2 are guided to the polarization maintaining optical fiber 31.
  • the laser beams S1 and S2 guided through the polarization maintaining optical fiber 31 are guided to the polarization maintaining optical fiber 32A through the introduction unit 21 and enter the amplification unit 40.
  • the laser beams S1 and S2 are amplified by the amplification unit 40, and the laser amplification lights L1 and L2 are generated. Since a rare earth-doped optical fiber is used as the amplification unit 40, the wavelengths (second wavelengths) of the laser amplification lights L1 and L2 are different from the wavelengths (first wavelengths) of the laser lights S1 and S2 before amplification.
  • the laser amplification lights L1 and L2 having the second wavelength are guided from the amplification unit 40 to the polarization maintaining optical fibers 32B and 32A along both the R1 direction and the R2 direction.
  • the laser amplification lights L1 and L2 are guided from the amplification unit 40 along the R2 direction in this order through the polarization maintaining optical fiber 32A and the introducing unit 21 to the polarization maintaining optical fiber 32C.
  • the laser amplified lights L1 and L2 guided to the polarization maintaining optical fiber 32B along the R1 direction and the laser amplified lights L1 and L2 guided to the polarization maintaining optical fiber 32C along the R2 direction are The light is incident on the connecting portion 22.
  • the laser amplified lights L1 and L2 which propagate the polarization maintaining optical fiber 32B from the amplifying unit 40 along the R1 direction and enter the connection unit 22 have nonlinear phases according to the length of the polarization maintaining optical fiber 32B. Get a shift.
  • the laser amplified lights L1 and L2 that are guided from the amplifying unit 40 to the polarization maintaining optical fiber 32A, the introducing unit 21 and the polarization maintaining optical fiber 32C along the R2 direction and enter the connection unit 22 are polarization maintaining Nonlinear phase shift according to the length of the optical fibers 32A, 32C.
  • the laser amplified lights L1 and L2 incident from the polarization maintaining optical fiber 32B along the R1 direction and the polarization maintaining optical fiber 32C along the R2 direction The incident laser amplified lights L1 and L2 interfere with each other.
  • the phase difference between the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 32B and the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 32C In the polarization maintaining optical coupler of the connecting portion 22, the phase difference between the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 32B and the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 32C.
  • the light quantity ratio of the laser amplification lights L1 and L2 guided to the polarization maintaining optical fiber 33A and the laser amplification lights L1 and L2 guided to the polarization maintaining optical fiber 33C changes according to ⁇ .
  • the phase difference ⁇ corresponds to the difference between the non-linear phase shifts received by the laser amplified lights L1 and L2 incident on the coupling portion 22 from the polarization maintaining optical fibers 32B and 32C.
  • the phase difference ⁇ is an odd multiple of half of the second wavelength (when the predetermined condition is satisfied)
  • all the laser amplified lights L1 and L2 intensified by the interference in the polarization maintaining optical coupler of the connecting portion 22 are in the R1 direction.
  • a part of the laser amplified light L1 and L2 incident on the lead-out portion 24 is guided to the polarization maintaining optical fiber 33B along the R1 direction, passes through the polarization maintaining optical isolator 23, and The light is guided to 33 C and enters the connection portion 22 again.
  • the laser amplified lights L1 and L2 guided from the connecting portion 22 to the polarization maintaining optical fiber 33C along the R2 direction are removed by the polarization maintaining optical isolator 23. That is, the third loop unit 33 circulates only the laser amplification lights L1 and L2 derived from the connecting unit 22 in the R1 direction based on the phase difference ⁇ , and returns the light to the connecting unit 22.
  • a portion (about half) of the laser amplified lights L1 and L2 incident on the coupling portion 22 along the R1 direction from the polarization maintaining optical fiber 33C continues to be guided to the polarization maintaining optical fiber 32C along the R1 direction.
  • the light passes through the introduction unit 21 and the polarization maintaining optical fiber 32A, and is amplified again by the amplification unit 40.
  • the remaining portions of the laser amplified lights L1 and L2 incident on the coupling portion 22 along the R1 direction from the polarization maintaining optical fiber 33C are guided to the polarization maintaining optical fiber 32B along the R2 direction, and the amplification unit 40 is performed again. It is amplified by
  • the laser amplification lights L1 and L2 amplified by the amplification unit 40 are guided along both the R1 and R2 directions as described in the previous stage, and are repeatedly amplified.
  • the second loop unit 32 functions as a nonlinear amplification optical fiber loop mirror having a gain.
  • the second loop portion 32, the connection portion 22, the polarization maintaining optical isolator 23, and the polarization maintaining optical fibers 33A, 33B, and 33C function as a saturable absorber. That is, the connection portion 22 and the third loop portion 33 function as a saturable absorber.
  • the weak laser amplification lights L1 and L2 based on the interference at the coupling portion 22 are guided to the polarization maintaining optical fiber 33C of the third loop portion 33, but are removed by the polarization maintaining optical isolator 23.
  • the laser amplified lights L1 and L2 guided from the connecting part 22 to the second loop part 32 along each direction of R1 and R2 have nonlinear phase shift according to the length of each polarization maintaining optical fiber. receive.
  • the number of circulations in the second loop portion 32 and the third loop portion 33 is smaller than a predetermined number, the powers of the laser amplified lights L1 and L2 are low, and the gain in the second loop portion 32 is small.
  • the dual optical frequency comb generation optical system 10A and the laser device 60A operate in a state where the laser amplification lights L1 and L2 are continuous lights.
  • the gain in the loop section 32 becomes very large.
  • the dual optical frequency comb generation optical system 10A and the laser device 60A operate in a state where the laser amplification lights L1 and L2 are pulse lights.
  • the dual optical frequency comb generation optical system 10A and the laser device 60A while the laser amplified lights L1 and L2 oscillate respectively in the state of continuous light or pulsed light, transition to the mode synchronization state is performed, and the optical frequency combs C1 and C2 are generated. Be done. The generated optical frequency combs C1 and C2 are led from the lead-out unit 24 to the polarization maintaining optical fiber 34.
  • Repetition frequency f rep2 of repetition frequency f rep1 and optical frequency comb C2 of the optical frequency comb C1 is determined by the resonator length of the dual optical frequency comb generation optical system 10A.
  • the resonator length of the dual optical frequency comb generation optical system 10A is the total length of the polarization maintaining optical fibers 32A, 32B, 32C, 33A, 33B, 33C and the polarization maintaining amplifying optical fiber constituting the amplifying unit 40. , That is, the length of the first loop optical fiber 30.
  • the optical path length of the resonator of the laser amplification light L1 in the dual optical frequency comb generation optical system 10A is determined by the refractive index of the laser amplification light L1 and the resonator length of the dual optical frequency comb generation optical system 10A.
  • the optical path length of the resonator of the laser amplification light L2 in the dual optical frequency comb generation optical system 10A is determined by the refractive index of the laser amplification light L2 and the resonator length of the dual optical frequency comb generation optical system 10A.
  • the resonator length of the dual optical frequency comb generation optical system 10A is common to the laser amplification lights L1 and L2, but the polarization directions of the laser amplification lights L1 and L2 are different in the first direction and the second direction. Therefore, the refractive indexes of the laser amplification lights L1 and L2 are different from each other. Therefore, the optical path length of the resonator of the laser amplified light L1 and the optical path length of the resonator of the laser amplified light L2 differ from each other according to the refractive index difference ⁇ n of the laser amplified light L1 and L2.
  • the repetition frequency f rep2 is represented by (f rep1 + ⁇ f rep ).
  • the frequency difference ⁇ f rep depends on the optical path length difference ⁇ L.
  • the laser amplification lights L1 and L2 including pulse light with high intensity are held along the R1 direction from the coupling unit 22 It is guided to the fiber 33A.
  • the laser amplified lights L1 and L2 including continuous light with small intensity are also guided to the polarization maintaining optical fiber 33C along the R2 direction.
  • the polarization maintaining optical isolator 23 is provided, the laser amplification lights L1 and L2 guided to the polarization maintaining optical fiber 33A along the R1 direction circulate the third loop portion 33.
  • the laser amplified lights L1 and L2 guided to the polarization maintaining optical fiber 33C along the R2 direction are guided only by the polarization maintaining optical fiber 33C and do not go around the third loop portion 33. Therefore, in the dual optical frequency comb generation optical system 10A and the laser device 60A, the third loop portion in which the laser amplified lights L1 and L2 circulate only in the R1 direction in the resonator constituting the mode-locked laser of the laser amplified lights L1 and L2.
  • the 33 polarization maintaining optical fibers 33A, 33B and 33C are common parts.
  • the difference between the length of the polarization maintaining optical fiber 32B and the total length of the polarization maintaining optical fibers 32A and 32C is set so that the phase difference ⁇ is an odd multiple of half of the second wavelength It is done.
  • the total length of the polarization maintaining optical fibers 33A, 33B and 33C is the resonator length of the laser amplified lights L1 and L2 in consideration of the refractive index and the second wavelength of each of the laser amplified lights L1 and L2.
  • the optical path difference ⁇ L is set to correspond to the desired repetition frequencies f rep1 and f rep2 .
  • the laser amplification lights L1 and L2 are resonated while being shifted to the mode synchronization state in the common first loop optical fiber 30.
  • the refractive indexes of the laser amplified lights L1 and L2 are different.
  • the optical path lengths of the resonators configured by the first loop optical fiber 30 differ from each other for the laser amplification lights L1 and L2.
  • the optical frequency comb C1 whose polarization direction is the first direction and has the repetition frequency f rep1 , and the repetition frequency whose polarization direction is the second direction and which is different from the optical frequency comb C1
  • An optical frequency comb C2 having f rep2 can be obtained.
  • the dual light frequency comb generation optical system 10A and the laser device 60A use laser lights S1 and S2 and laser amplified lights L1 and L2 whose polarization directions are different from each other.
  • the refractive indices of the laser amplification lights L1 and L2 are made different from each other, and the resonator lengths of the laser amplification lights L1 and L2 are made different from each other. be able to.
  • the environmental disturbance or mechanical disturbances received by the dual optical frequency comb generation optical system 10A and the laser device 60A by sharing the dual optical frequency comb generation optical system 10A and the laser device 60A as one mode-locked laser as the laser amplification lights L1 and L2 Common disturbances.
  • the difference between the environmental disturbance and the mechanical disturbance included in each of the optical frequency combs C1 and C2 is suppressed, and the environmental disturbance and the mechanical disturbance are easily removed as common noise, and the optical frequency comb C1 and C2 are eliminated.
  • the SN ratio of C2 can be increased.
  • the dual optical frequency comb generation optical system 10A and the laser device 60A can be miniaturized.
  • the first loop optical fiber 30 is constituted by the second loop portion 32 and the third loop portion 33, and the second loop portion 32 and the third loop portion 33 are connection portions 22 are linked.
  • the connecting portion 22 the laser amplified lights L1 and L2 which are guided along the second loop portion 32 in both the R1 and R2 directions interfere with each other.
  • the laser amplification is performed via the connecting unit 22 without being affected by the phase shift due to the nonlinear optical effect.
  • the lights L1 and L2 can be returned to both of the polarization maintaining optical fibers 32B and 32C.
  • the laser amplification lights L1 and L2 incident on the coupling portion 22 from the polarization maintaining optical fiber 33C along the R1 direction are polarized.
  • the light is guided to both of the wave holding optical fibers 32B and 32C.
  • the laser amplified lights L1 and L2 circulated in the third loop portion 33 can be guided to both of the polarization maintaining optical fibers 32B and 32C of the second loop portion 32. Therefore, the operation of the dual optical frequency comb generation optical system 10A can be stabilized, and the mode synchronization operation can be favorably generated.
  • the measuring apparatus 50 includes a laser device 60A having a dual optical frequency comb generation optical system 10A, a polarization separation unit 52, a polarization interference unit 56, and a sample information extraction unit 58.
  • the end (the other end) of the output side of the polarization maintaining optical fiber 34 is connected to the polarization separation unit 52.
  • the polarization interference unit 56 causes the optical frequency combs C1 and C2 separated by the polarization separation unit 52 to interfere with each other.
  • the sample information extraction unit 58 extracts information of the sample from the interference signal of the optical frequency combs C1 and C2 interfered by the polarization interference unit 56.
  • the polarization separation unit 52 is disposed at the far side in the traveling direction of the optical frequency combs C1 and C2 emitted from the polarization maintaining optical fiber 34 in order to separate the optical frequency combs C1 and C2 whose polarization directions are different from each other. It is done.
  • the polarization separation unit 52 is configured of, for example, a polarization separation type light beam splitter.
  • the sample S is disposed on the path X35 of the optical frequency comb C1 among the paths X35 and X36 of the optical frequency combs C1 and C2 separated from each other by the polarization separation unit 52.
  • the sample S is a measurement target of the measuring device 50.
  • Polarization maintaining mirrors 57A and 57B are provided along the path X36 of the optical frequency comb C2 for turning the path X36 toward the polarization interference unit 56.
  • the polarization interference unit 56 causes the optical frequency combs C1 and C2 separated by the polarization separation unit 52 to interfere with each other.
  • the polarization interference unit 56 performs an optical frequency comb C3 traveling direction from the sample S in order to cause the optical frequency comb C1 (hereinafter referred to as the optical frequency comb C3) including the information of the sample S to interfere with the optical frequency comb C2. It is arranged on the back side.
  • the polarization interference unit 56 is configured of a polarization separation type light beam splitter or a half mirror.
  • the sample information extraction unit 58 extracts information of the sample from the interference signal of the optical frequency combs C1 and C2 interfered by the polarization interference unit 56.
  • the sample information extraction unit 58 is disposed on the far side in the traveling direction of the multiheterodyne signal (interference signal) generated by the optical frequency combs C2 and C3 interfering with each other in the polarization interference unit 56.
  • the sample information extraction unit 58 is capable of acquiring information on the sample S from the multiheterodyne signal, and is configured of a generally known optical system, for example, a device that converts it into an electric signal by a light receiver.
  • the optical frequency combs C1 and C2 emitted from the polarization maintaining optical fiber 34 are separated by the polarization separating unit 52 so as to travel on different paths.
  • the optical frequency comb C1 travels along the path X35 and passes through the sample S.
  • optical information possessed by the sample S is added to the optical frequency comb C1.
  • the optical frequency comb C2 is folded back by the polarization maintaining mirrors 57A and 57B and travels along the path X35.
  • the optical frequency comb C3 traveling along the path X35 and the optical frequency comb C2 traveling along the path X36 are combined again in the polarization interference unit 56 and interfere with each other.
  • the interference of the optical frequency combs C2, C3 generates a multiheterodyne signal.
  • the multiheterodyne signal travels along the path X 37 and enters the sample information extraction unit 58.
  • the sample information extraction unit 58 the multiheterodyne signal is converted into a mode decomposition spectrum of a high frequency band by, for example, Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • Optical information of the sample S is extracted from the waveform W (waveform indicated by a broken line in FIG. 2) of the mode decomposition spectrum.
  • the frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum corresponds to the repetition frequency difference ⁇ f rep .
  • the polarization separation unit 52 separates the paths of the optical frequency combs C1 and C2, and can add optical information of the sample S to the optical frequency comb C1.
  • the polarization interference unit 56 interferes with the optical frequency combs C2 and C3 to remove environmental disturbances and mechanical disturbances commonly included in the optical frequency combs C2 and C3, and allows easy observation in a high frequency band. Possible mode resolved spectra can be obtained.
  • the sample information extraction unit 58 can extract the information of the sample S from the waveform W of the spectrum distribution of the obtained mode decomposition spectrum.
  • the measuring apparatus 50 of the present invention since the optical frequency combs C1 and C2 having a high SN ratio are used, the information of the sample S can be acquired with high accuracy. Since the configuration relating to the generation of the optical frequency combs C1 and C2 is made common in the measuring device 50, it is not necessary to prepare optical systems for generating the optical frequency combs C1 and C2 in the respective spaces as in the prior art. 50 can be miniaturized.
  • Second Embodiment A dual optical frequency comb generation optical system, a laser device and a measurement apparatus according to a second embodiment of the present invention will be described.
  • the components common to the dual optical frequency comb generation optical system 10A, the laser device 60A, and the measuring device 50 of the first embodiment are designated by the same reference numerals. And I omit the explanation.
  • the second and subsequent embodiments basically describe configurations and operations different from those of the first embodiment, and are common to the first embodiment except for the configurations and operations described.
  • the laser device 60B of the second embodiment includes a polarization maintaining optical fiber 42 in place of the polarization maintaining optical fiber 6 and the polarization separation element 12 of the laser device 60A, and The dual optical frequency comb generation optical system 10A described in the embodiment is provided.
  • the polarization maintaining optical fiber 42 is an optical fiber capable of maintaining the direction of polarization of the laser beams S1 and S2 guided internally.
  • the polarization axis J42 of the cladding 77 of the polarization maintaining optical fiber 42 centered on the optical axis A is 45 ° to the polarization axis J31 of the cladding 71 of the polarization maintaining optical fiber 31 centered on the optical axis A, Any one of 135 °, 225 °, and 315 ° is formed.
  • the polarization axes J42 and J31 are determined by the positions of the pair of stress applying portions 80 and 80 provided in each of the clads 77 and 71 with the core 80 interposed in a cross sectional view.
  • optical frequency combs C1 and C2 having mutually different repetition frequencies are obtained.
  • the laser device 60B has the dual optical frequency comb generation optical system 10A, and therefore exhibits the same effect as the laser device 60A.
  • the polarization axes J42 and J31 of the polarization maintaining optical fibers 42 and 31 are mutually 45 ° (or 135 °, 225 °, 315 °) in a cross section orthogonal to the optical axis A
  • the laser beam LX can be divided into the lasers S1 and S2 without using the polarization separation element 12.
  • the polarization maintaining optical fiber 42 is directly connected to the emission port of the semiconductor laser constituting the light source 5, the polarization axis J42 is polarized with the polarization axis J31 being inclined with respect to the optical axis A.
  • the ends of the wave holding optical fibers 42 and 31 can be connected by fusion or the like.
  • the measurement device of the second embodiment includes a laser device 60B shown in FIG. 3 instead of the laser device 60A of the measurement device 50 shown in FIG.
  • the configuration of the measurement device of the second embodiment other than the laser device is the same as that of the measurement device 50.
  • the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A. Therefore, the measuring device of the second embodiment operates in the same manner as the measuring device 50. It produces the same effect as
  • the laser device 60C of the third embodiment is replaced by one light source 5, a polarization maintaining optical fiber 6, and a polarization separation element 12 of the laser device 60A, and two light sources 5A, 5B, two polarization maintaining optical fibers 6A and 6B, and a polarization coupling element 14 are provided, and the dual optical frequency comb generation optical system 10A of the first embodiment is provided.
  • the light sources 5A and 5B are composed of semiconductor lasers.
  • the light source 5A emits only the laser beam S1, and the light source 5B emits only the laser beam S2.
  • the polarization coupling element 14 couples the laser beams S1 and S2 incident from the polarization maintaining optical fibers 6A and 6B as different paths, and combines the coupled laser beams S1 and S2 into a common polarization maintaining optical fiber 31. I will emit.
  • the polarization coupling element 14 is configured of, for example, a polarization beam splitter.
  • the laser light S1 emitted from the light source 5A is guided to the polarization maintaining optical fiber 6A, and the laser light S2 emitted from the light source 5B is guided to the polarization maintaining optical fiber 6B.
  • Ru When the laser beams S1 and S2 enter the polarization coupling element 14 from the polarization maintaining optical fibers 6A and 6B, they are mutually coupled. The coupled laser beams S1 and S2 are incident on the introduction portion 21 of the dual optical frequency comb generation optical system 10A through the polarization maintaining optical fiber 31.
  • optical frequency combs C1 and C2 having mutually different repetition frequencies are obtained.
  • the laser device 60C has the dual optical frequency comb generation optical system 10A, and therefore exhibits the same effect as the laser device 60A.
  • the laser beams S1 and S2 are generated by different light sources, guided by different polarization maintaining optical fibers, and coupled by the polarization coupling element 14 to obtain laser beams L1 and L2.
  • the laser beams S1 and S2 can be individually controlled, and the characteristics of the optical frequency combs C1 and C2 can be easily and accurately adjusted. For example, and modulating and controlling only the repetition frequency f rep2 of repetition frequency f rep1 or optical frequency comb C2 of the optical frequency comb C1, it can control the phase of the optical frequency of only the optical frequency comb C1 or optical frequency comb C2.
  • the measurement device of the third embodiment includes a laser device 60C shown in FIG. 4 in place of the laser device 60A of the measurement device 50 shown in FIG.
  • the configuration of the measurement device of the third embodiment other than the laser device is the same as that of the measurement device 50.
  • the measuring device of the third embodiment operates in the same manner as the measuring device 50. It produces the same effect as
  • the configuration from the light source 5 to the introducing unit 21 in the laser device 60D of the fourth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser device 60A described in the first embodiment. is there.
  • the laser device 60D includes a dual light frequency comb generation optical system 10B in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
  • a phase modulation unit 72 is incorporated in the polarization maintaining optical fiber 33B of the third loop unit 33 of the dual optical frequency comb generation optical system 10B.
  • the phase modulation unit 72 can modulate the phases of the laser amplification lights L1 and L2 guided by the third loop unit 33.
  • the phase modulation unit 72 includes an electro-optical modulator 73A provided on the near side in the R1 direction, and an electro-optical modulator 73B provided on the far side in the R1 direction.
  • a light emission terminal 81 and a collimator lens 82 are provided between the end of the polarization maintaining optical fiber 33B and the electro-optic modulators 73A and 73B, respectively.
  • a high power high frequency electric signal is supplied from the high frequency generator 84 to each of the electro-optic modulators 73A and 73B from the outside of the third loop unit 33 via the amplifier 83.
  • the electro-optic modulator 73A can modulate only the phase of the laser amplification light L1 whose polarization direction is the first direction.
  • the electro-optic modulator 73B can modulate only the phase of the laser amplified light L2 whose polarization direction is the second direction.
  • the phase modulation unit 72 is generated along the R1 direction.
  • the optical path length of the incident laser amplified light L1 is changed by the electro-optical modulator 73A.
  • the optical path length of the laser amplification light L2 incident on the phase modulation unit 72 along the R1 direction is changed by the electro-optical modulator 73B.
  • the resonator length and the optical path length difference ⁇ L of the laser amplified lights L1 and L2 change according to the amount of change in the optical path length of the laser amplified light L1 by the electro-optic modulators 73A and 73B.
  • the laser device 60D has the dual optical frequency comb generation optical system 10B, and therefore exhibits the same effect as the laser device 60A. Further, in the dual optical frequency comb generation optical system 10B and the laser device 60C, the amount of change in the optical path length of the laser amplified light L1 by the electro-optical modulator 73A and the amount of change in the optical path length of the laser amplified light L2 by the electro-optical modulator 73B
  • the resonator length of the laser amplification lights L1 and L2 and the optical path length difference ⁇ L can be controlled with high accuracy by adjusting the difference between By controlling the resonator length of the laser amplified lights L1 and L2 and the optical path length difference ⁇ L with high precision, it is possible to easily control only the repetition frequency f rep1 of the optical frequency comb C1 or the repetition frequency f rep2 of the optical frequency comb C2 .
  • the measurement apparatus of the fourth embodiment of the present invention includes a laser apparatus 60D shown in FIG. 5 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement device of the fourth embodiment other than the laser device is the same as that of the measurement device 50.
  • the measuring device of the fourth embodiment operates in the same manner as the measuring device 50.
  • the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be easily controlled, the frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum can be easily controlled.
  • the measurement resolution of the measurement apparatus of the fourth embodiment can be easily adjusted.
  • the configuration from the light source 5 to the introducing unit 21 in the laser device 60E of the fifth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser device 60A described in the first embodiment. is there.
  • the laser apparatus 60E includes a dual light frequency comb generation optical system 10C in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
  • the dual optical frequency comb generation optical system 10C has at least the configuration of the dual optical frequency comb generation optical system 10B described in the fourth embodiment.
  • a polarization multiplexing non-reciprocal phase shift unit 90 is incorporated in the polarization maintaining optical fiber 32C of the second loop unit 32 of the dual optical frequency comb generation optical system 10C.
  • polarization multiplexed type means that it acts on both the laser amplification light L1 whose polarization direction is the first direction and the laser amplification light L2 whose polarization direction is the second direction. Show.
  • non-reciprocal refers to individually acting on both the laser amplified lights L1 and L2 guided in the R1 direction and the laser amplified lights L1 and L2 guided in the R2 direction. Show. That is, the non-reciprocal phase shift unit 90 can shift the phase difference ⁇ between the laser amplification lights L1 and L2 guided in the R1 direction and the laser amplification lights L1 and L2 guided in the R2 direction.
  • FIG. 7 and 8 show a first configuration example and a second configuration example of the non-reciprocal phase shift unit 90.
  • the nonreciprocal phase shift unit 90A of the first configuration example includes two Faraday rotators 91 and 92, and a quarter-wave plate (QWP) 93.
  • QWP quarter-wave plate
  • collimators 100A and 100B connected to the polarization maintaining optical fiber 32C are provided at the front and back ends of the base 98 in the R1 direction.
  • a Faraday rotator 91, a QWP 93, and a Faraday rotator 92 are arranged in this order along the R1 direction between the collimators 100A and 100B at intervals in the base 98.
  • the Faraday rotator 91 rotates the polarization direction of the laser amplified lights L1 and L2 incident along the R1 direction in a predetermined direction.
  • the predetermined direction is, for example, a direction rotated about the optical axis A by a predetermined angle ⁇ from the first direction.
  • the Faraday rotator 91 rotates the polarization direction of the laser amplified lights L1 and L2 incident along the R2 direction in a predetermined reverse direction.
  • the predetermined reverse direction is, for example, a direction rotated from the first direction around the optical axis A in the opposite direction to that at the time of incidence from the R1 direction by the predetermined angle ⁇ .
  • the Faraday rotator 92 rotates the polarization direction of the laser amplified lights L1 and L2 incident along the R2 direction in a predetermined direction.
  • the predetermined direction is, for example, a direction rotated about the optical axis A by a predetermined angle ⁇ from the first direction.
  • the Faraday rotator 92 rotates the polarization direction of the laser amplified lights L1 and L2 incident along the R1 direction in a predetermined reverse direction.
  • the predetermined reverse direction is, for example, a direction rotated from the first direction around the optical axis A in the opposite direction to that at the time of incidence from the R1 direction by the predetermined angle ⁇ .
  • the polarization direction of the laser amplified lights L1 and L2 incident on the Faraday rotator 91 from the collimator 100A through the polarization maintaining optical fiber 32C along the R1 direction is firstly determined by the Faraday rotator 91.
  • the direction and the second direction are changed to the third direction and the fourth direction.
  • the laser amplified lights L1 and L2 whose polarization directions are the third and fourth directions enter the QWP 93.
  • the direction of polarization of the laser amplified light L1 and L2 emitted from the QWP 93 along the R1 direction and incident on the Faraday rotator 92 is from the third direction to the first direction and from the fourth direction to the second direction by the Faraday rotator 92.
  • the laser amplified lights L1 and L2 having passed through the Faraday rotator 92 are guided from the collimator 100B to the polarization maintaining optical fiber 32C.
  • the direction of polarization of the laser amplified lights L1 and L2 incident on the Faraday rotator 92 from the collimator 100B through the polarization maintaining optical fiber 32C along the R2 direction is first determined by the Faraday rotator 92. It rotates in the opposite direction to the R1 direction.
  • the crystal axis of QWP 93 is aligned with the direction of polarization in the R1 direction, a relative phase difference of 90 ° can be given to the laser amplified lights L1 and L2 traveling along the R2 direction. Therefore, after passing through the QWP 93, the polarization direction is returned by the Faraday rotator 91.
  • the orientation of the crystal axis of the QWP 93 can be adjusted, for example, to the direction changed from the first direction / second direction of the laser amplification lights L1 and L2 to the third direction / the fourth direction.
  • phase difference offset is based on the characteristics of QWP 93.
  • the number of wave plates disposed between the Faraday rotators 91 and 92 is one in FIG. 7, but may be changed.
  • a half-wave plate (HWP) and a QWP different from the QWP 93 may be provided on the far side of the QWP 93 in the R1 direction, that is, between the QWP 93 and the Faraday rotator 92.
  • the non-reciprocal phase shift unit 90B of the second configuration example includes four Faraday rotators 91A, 91B, 92A, 92B, and two QWPs 93A, 93B.
  • the Faraday rotators 91A and 91B function in the same manner as the Faraday rotator 91.
  • the Faraday rotators 92A and 92B function in the same manner as the Faraday rotator 92.
  • the QWPs 93A and 93B function in the same manner as the QWP 93.
  • the nonreciprocal phase shift unit 90B a series of configurations of the Faraday rotator 91, the QWP 93, and the Faraday rotator 92 in the nonreciprocal phase shift unit 90A of the first configuration example are provided in parallel.
  • the Faraday rotator 91A, the QWP 93A, and the Faraday rotator 92A are arranged in this order between the collimators 100A and 100B at an interval.
  • the Faraday rotator 91B, the QWP 93B, and the Faraday rotator 92B as the second series are arranged in this order at intervals different from the first series along the R1 direction.
  • a polarization separation coupling element 97A is provided on the near side in the R1 direction of the Faraday rotator 91A.
  • a polarization splitting / coupling element 97B is provided on the far side of the Faraday rotator 92A in the R1 direction.
  • a polarization maintaining mirror 99A is provided on the near side in the R1 direction of the Faraday rotator 91B.
  • a polarization maintaining mirror 99B is provided on the far side in the R1 direction of the Faraday rotator 92B.
  • the laser amplified lights L1 and L2 incident on the Faraday rotator 91 from the collimator 100A along the R1 direction are separated by the polarization splitting / coupling element 97A based on the difference in the direction of polarization of each other.
  • One of the laser amplification lights L1 of the laser amplification lights L1 and L2 travels from the polarization splitting / coupling element 97A toward the first system.
  • the laser amplification light L1 passes through the Faraday rotator 91A, the QWP 93A, and the Faraday rotator 92A in this order, and receives a phase shift based on the characteristics of the QWP 93A.
  • the laser amplified light L2 separated by the polarization separation coupling element 97A is turned back by the mirror 99A and travels toward the second system, and passes through the Faraday rotator 91B, QWP 93B, and Faraday rotator 92B in this order, and the characteristics of the QWP 93B Subject to phase shift based on The laser amplification light L2 emitted from the Faraday rotator 92B is folded back to the polarization separation coupling element 97B by the mirror 99B.
  • the lasers L1 and L2 incident on the polarization separation coupling element 97B are coupled while maintaining the direction of each polarization in the first direction or the second direction, and the polarization maintaining light at the back side in the R1 direction from the collimator 100B. It enters the fiber 32C.
  • the laser amplified lights L1 and L2 incident on the polarization separation / combination element 97B from the collimator 100B along the R2 direction travel along the R1 direction except that the traveling directions are reversed.
  • nonlinear phase shift is received similarly to the laser amplified lights L1 and L2 which receive nonlinear phase shift.
  • the characteristics of the QWP 93A are applied to both the laser amplified light L1 incident along the R1 direction from the polarization maintaining optical fiber 32C and the laser amplified light L1 incident along the R2 direction. Based on the phase shift. Further, an offset can be given to the phase difference based on the characteristics of the QWP 93B in both the laser amplified light L2 incident from the polarization maintaining optical fiber 32C along the R1 direction and the laser amplified light L2 incident along the R2 direction. .
  • the non-reciprocal phase shift unit 90B can individually apply a phase shift to the laser amplified lights L1 and L2, the repetition frequency difference ⁇ f rep of the optical frequency combs C1 and C2 is highly accurate compared to the non-reciprocal phase shift unit 90A. Can be controlled.
  • the laser device 60E has the dual optical frequency comb generation optical system 10C, and therefore exhibits the same effect as the laser device 60D.
  • the nonreciprocal phase shift unit 90 is used to adjust the nonlinear phase shift amount to the laser amplified lights L1 and L2 to obtain resonators of the laser amplified lights L1 and L2.
  • the length and the optical path length difference ⁇ L can be controlled.
  • the resonator length and the optical path length difference ⁇ L of the laser amplified lights L1 and L2 are controlled by using the nonreciprocal phase shift unit 90, and the optical frequency comb
  • the repetition frequency difference ⁇ f rep of C1 and C2 can be adjusted. If the non-reciprocal phase shift unit 90B is used as the non-reciprocal phase shift unit 90 to individually control the resonator length and the optical path length difference ⁇ L of the laser amplified lights L1 and L2, the repetition frequency difference ⁇ f rep of the optical frequency combs C1 and C2 Can be finely adjusted.
  • the measurement apparatus of the fifth embodiment includes a laser apparatus 60E shown in FIG. 6 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement device of the fifth embodiment other than the laser device is the same as that of the measurement device 50.
  • optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A.
  • the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be easily controlled. Therefore, in the mode decomposition spectrum, the frequency interval between adjacent spectra on the frequency axis can be easily controlled, and the measurement resolution of the measurement apparatus of the fifth embodiment can be easily and accurately adjusted.
  • the configuration from the light source 5 to the introducing unit 21 in the laser device 60F of the sixth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser device 60A described in the first embodiment. is there.
  • the laser device 60F includes a dual light frequency comb generation optical system 10D in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
  • the dual optical frequency comb generation optical system 10D has at least the configuration of the dual optical frequency comb generation optical system 10C described in the fifth embodiment.
  • a resonator length control element 76 is incorporated in the polarization maintaining optical fiber 32B of the second loop portion 32 of the dual optical frequency comb generation optical system 10D.
  • the optical path lengths of the laser amplified lights L1 and L2 in the second loop section 32 can be adjusted by the resonator length control element 76.
  • Examples of the resonator length control element 76 include a piezoelectric element, an acousto-optic element, and an electro-optic element.
  • the measurement apparatus of the sixth embodiment includes a laser apparatus 60F shown in FIG. 6 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement device of the sixth embodiment other than the laser device is the same as that of the measurement device 50.
  • the measuring device of the sixth embodiment operates in the same manner as the measuring device 50. It produces the same effect as According to the laser device 60F, the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be controlled with high accuracy. By this, it is possible to control with high precision the frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum, and to adjust the measurement resolution of the measurement apparatus of the sixth embodiment with high precision.
  • the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60G according to the seventh embodiment of the present invention is the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60A described in the first embodiment.
  • the laser device 60G includes a dual light frequency comb generation optical system 10E in place of the dual light frequency comb generation optical system 10A of the first embodiment.
  • the dual optical frequency comb generation optical system 10E includes a first loop optical fiber 30, an introducing unit 21, an amplifying unit 40, a connecting unit 22, and a space type resonating unit 102.
  • the first loop optical fiber 30 includes a second loop portion 32 shown on the right side of FIG. 10 and polarization maintaining optical fibers 33A, 34, 33C shown on the left side of FIG.
  • the polarization maintaining optical fibers 33A and 34 are formed of a common polarization maintaining optical fiber, but may be formed of different polarization maintaining optical fibers connected to each other.
  • the end (one end) of the incident side of the polarization maintaining optical fiber 33A is connected to the side opposite to the second loop portion 32 side of the connecting portion 22.
  • the end (the other end) of the output side of the polarization maintaining optical fiber 33 A is connected to the polarization separation unit 52 of the measuring device 50.
  • the end (one end) of the incident side of the polarization maintaining optical fiber 33 C is connected to the side opposite to the second loop portion 32 side of the connecting portion 22.
  • the space type resonance unit 102 is connected to the end (the other end) of the output side of the polarization maintaining optical fiber 33C.
  • the "incident side” and the “outgoing side” are the side on which the light first enters the polarization maintaining optical fiber 33C, and the light emerges first Means the side that In the first loop optical fiber 30, an annular loop path is not configured on the left side of the connection portion 22 in FIG. That is, the first loop optical fiber 30 is configured to draw the numeral “9” with the connecting portion 22 as a knot.
  • the laser amplification light return unit 70 includes a connection unit 22, and a linear unit 38 configured of the polarization maintaining optical fiber 33 C and the spatial resonance unit 102.
  • the spatial resonator 102 includes a polarization maintaining output end 104, a lens 108, and a polarization maintaining mirror 106.
  • the emitting end 104 is provided at the end of the output side of the polarization maintaining optical fiber 33C.
  • the lens 108 is disposed on the back side in the P1 direction from the emission end 104.
  • the mirror 106 is disposed on the back side in the P1 direction from the lens 108.
  • the transmittance of the laser amplification lights L1 and L2 at the reflection surface 106r of the mirror 106 is 0%.
  • the lens 108 collimates the laser amplified lights L1 and L2 incident along the P1 direction and condenses the laser amplified lights L1 and L2 incident along the P2 direction on the emission end 104.
  • the guiding of the laser beams S1 and S2 and the laser amplified light L1 and L2 from the light source 5 to the connecting portion 22 in the laser device 60G is the laser light from the light source 5 to the connecting portion 22 in the laser device 60A described in the first embodiment. This is the same as the guiding of S1 and S2 and the laser amplification lights L1 and L2.
  • the ratio of the laser amplification lights L1 and L2 incident on the connecting portion 22 to be guided to the polarization maintaining optical fibers 33A and 33C is determined by the phase difference ⁇ . Since the first loop optical fiber 30 is configured to draw “9”, when the phase difference ⁇ is an even multiple of half of the second wavelength (when the predetermined condition is satisfied), the polarization of the coupling portion 22
  • the laser amplified lights L1 and L2 intensified by the interference in the holding optical coupler are all guided to the polarization maintaining optical fiber 33A along the R1 direction.
  • a part (about 50%) of the laser amplified lights L1 and L2 incident on the coupling portion 22 is guided to the polarization maintaining optical fiber 33A.
  • the remaining portion (about 50%) of the laser amplified light L1 and L2 incident on the coupling portion 22 is guided to the polarization maintaining optical fiber 33C.
  • the laser amplified lights L1 and L2 incident on the lens 108 are collimated by the lens 108, propagate along the P1 direction, and are reflected by the reflection surface 106r of the mirror 106.
  • the laser amplified lights L1 and L2 collected at the emission end 104 pass through the emission end 104 and are guided to the polarization maintaining optical fiber 33C along the R1 direction.
  • the waveguides of the laser amplification lights L1 and L2 which are guided to the polarization maintaining optical fiber 33C and enter the coupling portion 22 along the R1 direction are the dual optical frequency comb generation optical system 10A described in the first embodiment and This is the same as guiding of the laser amplified lights L1 and L2 incident on the coupling portion 22 along the R1 direction in the laser device 60A. From the coupling portion 22 to the polarization maintaining optical fibers 33A and 34, optical frequency combs C1 and C2 having different repetition frequencies are obtained.
  • the laser device 60G has dual optical frequency comb generation optical system 10E, and exhibits the same effect as the laser device 60A.
  • the laser apparatus 60G includes the space type resonance unit 102, the resonator length of the laser amplification lights L1 and L2 can be adjusted by changing the separation distance between the emission end 104 and the mirror 106, and additionally, the resonator length is A large adjustment range can be secured.
  • the measurement apparatus of the seventh embodiment includes a laser apparatus 60G shown in FIG. 10 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement device of the second embodiment other than the laser device is the same as that of the measurement device 50.
  • the measuring device of the seventh embodiment operates in the same manner as the measuring device 50 and measures 50. It produces the same effect as
  • a laser apparatus 60H includes a polarization-maintaining optical fiber 42 in place of the polarization-maintaining optical fiber 6 and the polarization separation element 12 of the laser apparatus 60G.
  • the dual optical frequency comb generation optical system 10E of the embodiment is provided.
  • the polarization axis J 42 of the cladding 77 of the polarization maintaining optical fiber 42 centered on the optical axis A is the polarization of the cladding 71 of the polarization maintaining optical fiber 31 centered on the optical axis A.
  • One of the angles 45 °, 135 °, 225 °, and 315 ° is formed with respect to the axis J31.
  • the laser device 60H has dual optical frequency comb generation optical system 10E, and exhibits the same effect as the laser device 60G. Further, according to the laser device 60G, the laser light emitted from the light source 5 can be divided into the lasers S1 and S2 without using the polarization separation element 12 as in the second embodiment.
  • the measurement apparatus of the eighth embodiment includes a laser apparatus 60H shown in FIG. 11 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement device of the eighth embodiment other than the laser device is the same as that of the measurement device 50.
  • the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 similarly to the laser device 60A, so the measuring device of the eighth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
  • the ninth embodiment Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to a ninth embodiment of the present invention will be described.
  • a laser apparatus 60I includes two light sources 5A, instead of one light source 5, a polarization maintaining optical fiber 6, and a polarization separation element 12 of the laser apparatus 60G.
  • a dual optical frequency comb generation optical system 10E described in the seventh embodiment is provided as well as 5B, two polarization maintaining optical fibers 6A and 6B, and a polarization coupling element 14.
  • the laser device 60I has dual optical frequency comb generation optical system 10E, and exhibits the same effect as the laser device 60G. According to the laser device 60I, as in the third embodiment, the laser beams S1 and S2 can be individually controlled, and the characteristics of the optical frequency combs C1 and C2 can be easily and accurately adjusted.
  • the measurement apparatus of the ninth embodiment is provided with a laser apparatus 60I shown in FIG. 12 instead of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement device of the ninth embodiment other than the laser device is the same as that of the measurement device 50.
  • the measuring device of the ninth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
  • the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60J according to the tenth embodiment of the present invention is the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60A described in the first embodiment.
  • the laser device 60J includes a dual light frequency comb generation optical system 10F in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
  • the dual optical frequency comb generation optical system 10F includes the configuration of the dual optical frequency comb generation optical system 10E of the seventh embodiment and the phase modulation unit 72 described in the fourth embodiment.
  • the electro-optic modulators 73A and 73B of the phase modulation unit 72 are incorporated between the lens 108 and the mirror 106 of the space type resonance unit 102.
  • the phase modulation unit 72 can modulate the phases of the laser amplification lights L1 and L2 resonating in the spatial resonance unit 102.
  • Each of the electro-optic modulators 73A and 73B is supplied with a high power high frequency signal from the high frequency generator 84 from the outside of the spatial resonator 102 via the amplifier 83.
  • the laser device 60J has the dual optical frequency comb generation optical system 10F, and therefore exhibits the same effect as the laser device 60G.
  • the measurement apparatus of the tenth embodiment is provided with a laser apparatus 60J shown in FIG. 13 instead of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement apparatus of the tenth embodiment other than the laser apparatus is the same as that of the measurement apparatus 50.
  • the measuring device of the tenth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
  • the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60K of the eleventh embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60A described in the first embodiment. is there.
  • the laser device 60K includes a dual light frequency comb generation optical system 10G in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
  • the dual optical frequency comb generation optical system 10G has at least the configuration of the dual optical frequency comb generation optical system 10F described in the tenth embodiment.
  • the polarization multiplexing non-reciprocal phase shift unit 90 described in the fifth embodiment is incorporated in the polarization maintaining optical fiber 32C of the second loop unit 32 of the dual optical frequency comb generation optical system 10G. .
  • the laser device 60K has the dual optical frequency comb generation optical system 10G, so that the same effect as the laser device 60J can be obtained, and the laser amplification light L1 can be obtained using the nonreciprocal phase shift unit 90 as in the fifth embodiment. , L2 and the optical path length difference ⁇ L, and the repetition frequency difference ⁇ f rep of the optical frequency combs C1 and C2 can be adjusted.
  • the resonator length of the laser amplification lights L1 and L2 and the optical path length difference ⁇ L can be individually controlled, and the repetition frequency difference ⁇ f rep of the optical frequency combs C1 and C2 can be finely adjusted.
  • the measurement apparatus of the eleventh embodiment is provided with a laser apparatus 60K shown in FIG. 14 instead of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement apparatus of the eleventh embodiment other than the laser apparatus is the same as that of the measurement apparatus 50.
  • the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A. Therefore, the measurement device of the eleventh embodiment operates in the same manner as the measurement device 50. It produces the same effect as
  • the configuration from the light source 5 to the introducing unit 21 in the laser device 60L of the twelfth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser device 60A described in the first embodiment. is there.
  • the laser device 60L includes a dual light frequency comb generation optical system 10H in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
  • the dual optical frequency comb generation optical system 10H has at least the configuration of the dual optical frequency comb generation optical system 10G described in the eleventh embodiment.
  • a resonator length control element 76 is incorporated in the polarization maintaining optical fiber 32B of the second loop portion 32 of the dual optical frequency comb generation optical system 10H.
  • the laser device 60L has the dual optical frequency comb generation optical system 10H, the same effect as the laser device 60K can be obtained, and similarly to the sixth embodiment, the second loop portion 32 is guided along the R1 and R2 directions.
  • the optical path lengths of the waved laser amplification lights L1 and L2 can be changed by the resonator length control element 76.
  • the resonator length of the laser amplified light L1 and L2 is controlled, and the repetition frequency f rep1 of the optical frequency comb C1 or only the repetition frequency f rep2 of the optical frequency comb C2 or the optical frequency comb C1 and C2
  • the repetition frequency difference ⁇ f rep between each other can be easily and finely controlled.
  • the measurement apparatus of the twelfth embodiment is provided with a laser apparatus 60L shown in FIG. 15 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement apparatus of the twelfth embodiment other than the laser apparatus is the same as that of the measurement apparatus 50.
  • the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A. Therefore, the measuring device of the twelfth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
  • the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60M of the thirteenth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60A described in the first embodiment. is there.
  • the laser device 60M is provided with a saturable absorbing reflector 110 in place of the space type resonating portion 102 of the laser device 60G of the seventh embodiment.
  • the saturable absorber reflector 110 strengthens each other by the interference at the connecting portion 22, and makes only the laser amplified light L1 and L2 (pulse light) incident through the polarization maintaining optical fiber 33C into the polarization maintaining optical fiber 33C. reflect.
  • the saturable absorbing reflector 110 is weakened due to the interference at the connecting portion 22, and absorbs the laser amplified lights L1 and L2 incident through the polarization maintaining optical fiber 33C, and the polarization maintaining optical fiber 33C Do not emit. That is, the saturable absorber reflector 110 functions in the same manner as the third loop portion 33 described in the first embodiment and the space type resonator portion 102 described in the seventh embodiment.
  • the laser device 60M has the dual optical frequency comb generation optical system 10M, and therefore exhibits the same effects as the laser device 60A and the laser device 60G.
  • the laser device 60M includes the saturable absorbing reflector 110 as a configuration for returning the laser amplification lights L1 and L2 intensified at the connecting portion 22 to the second loop portion 32. Therefore, the laser device 60M can be miniaturized. it can.
  • the measurement apparatus of the thirteenth embodiment includes a laser apparatus 60M shown in FIG. 16 instead of the laser apparatus 60A of the measurement apparatus 50 shown in FIG.
  • the configuration of the measurement device of the thirteenth embodiment other than the laser device is the same as that of the measurement device 50.
  • the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A. Therefore, the measuring device of the thirteenth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
  • the first loop optical fiber 30 does not have a coupling portion, and is formed by polarization maintaining optical fibers 30A, 30B, 30C, and 30D arranged annularly. It is configured.
  • the first loop optical fiber 30 is provided with an introducing unit 21, an amplifying unit 40, an extracting unit 24, a saturable absorber 75, and a polarization maintaining optical isolator 25 along the R1 direction.
  • the laser amplification light return unit 70 in the dual optical frequency comb generation optical system 10 N is configured of a saturable absorber 75 and a polarization maintaining optical isolator 25.
  • the saturable absorber 75 is sensitive to a wavelength band including the second wavelength. The loss of the saturable absorber 75 becomes small only when the laser amplified lights L1 and L2 having a predetermined power or more enter the saturable absorber 75, and the laser amplified lights L1 and L2 become polarization maintaining optical fibers 30C and 30D Emit at.
  • the polarization maintaining optical isolator 25 passes the laser amplified lights L1 and L2 incident from the polarization maintaining optical fiber 30E along the R2 direction to the polarization maintaining optical fiber 30D.
  • the polarization maintaining optical isolator 25 removes from the first loop optical fiber 30 the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 30D along the R1 direction.
  • the process until the laser beams S1 and S2 are extracted from the laser beam S0 emitted from the light source 5 and the laser beams S1 and S2 are wavelength converted by the amplification unit 40 is This is the same as the dual optical frequency comb generation optical system 10A of the embodiment.
  • Part of the laser amplified lights L1 and L2 amplified by the amplifier 40 passes along the R1 direction through the polarization maintaining optical fiber 30B, the lead-out portion 24, and the polarization maintaining optical fiber 30C, and the saturable absorption absorption It enters the body 75.
  • the remaining portions of the laser amplification lights L1 and L2 amplified by the amplification unit 40 are guided to the polarization maintaining optical fiber 30E along the R2 direction, pass through the polarization maintaining optical isolator 25, and The light is guided to the optical fiber 30 D and enters the saturable absorber 75.
  • the saturable absorber 75 only the strong laser amplification lights L 1 and L 2 incident on the saturable absorber 75 along the R 2 direction are reflected and guided by the first loop optical fiber 30.
  • the strong laser amplification lights L1 and L2 incident on the saturable absorber 75 are pulse lights having high power.
  • a part of the laser amplified lights L1 and L2 emitted from the saturable absorber 75 along the R2 direction is led out from the lead-out portion 24 to the polarization maintaining optical fiber 34.
  • the remaining portions of the laser amplified lights L1 and L2 emitted from the saturable absorber 75 along the R2 direction are guided to the polarization maintaining optical fiber 30B, enter the amplifying unit 40, and are repeatedly amplified.
  • the laser amplification lights L1 and L2 shift to the mode synchronization state, and the optical frequency combs C1 and C2 are generated.
  • the total length of the polarization maintaining optical fibers 30A, 33B, and 33C is the resonator length and the optical path of the laser amplification lights L1 and L2 in consideration of the refractive index and the second wavelength of each of the laser amplification lights L1 and L2.
  • the length difference ⁇ L is set to correspond to the desired repetition frequencies f rep1 and f rep2 .
  • a resonator length control element 76 is provided in the polarization maintaining optical fiber 30B.
  • the resonator length control element 76 makes it possible to control the resonator length of the mode-locked laser formed of the first loop optical fiber 30.
  • Examples of the resonator length control element 76 include a piezoelectric element, an acousto-optic element, and an electro-optic element.
  • the process until the laser beams S1 and S2 are extracted from the laser beam S0 emitted from the light source 5 and the laser beams S1 and S2 are amplified by the amplifier 40 is the first embodiment. It is similar to the form dual optical frequency comb generation optical system 10A. A portion of the laser amplified light L1 and L2 amplified by the amplification unit 40 passes through the polarization maintaining optical fiber 30B, the lead-out unit 24, and the polarization maintaining optical fiber 30C along the R1 direction, and the polarization maintaining , But is removed from the first loop optical fiber 30 by the polarization maintaining optical isolator 25.
  • the remaining portions of the laser amplification lights L1 and L2 amplified by the amplification unit 40 are guided along the R2 direction to the polarization maintaining optical fiber 30D, and the polarization maintaining optical isolator 25 and the polarization maintaining optical fiber
  • the light passes through 30 C and enters the lead-out unit 24.
  • a part of the laser amplified light L1 and L2 incident on the lead-out unit 24 along the R2 direction is led out of the lead-out unit 24 to the polarization maintaining optical fiber 34.
  • the remaining portions of the laser amplification lights L1 and L2 incident on the lead-out portion 24 along the R2 direction are guided to the polarization maintaining optical fiber 30B, are incident on the amplification portion 40, and are repeatedly amplified as described in the previous stage. .
  • the laser beams S1 and S2 and the laser amplification light have different polarization directions.
  • the refractive indices of the laser amplified lights L1 and L2 are made different from each other using L1 and L2. Therefore, while making the resonators of the laser beams S1 and S2 and the laser amplified lights L1 and L2 common, the resonator lengths of the laser amplified lights L1 and L2 can be made different from each other.
  • the optical frequency combs C1 and C2 having different repetition frequencies can be generated from the dual optical frequency comb generation optical systems 10N and 10P constituting one mode-locked laser.
  • the laser amplification lights L1 and L2 share environmental disturbance and mechanical disturbance included in each of the optical frequency combs C1 and C2 And easily removable.
  • the mode-locked lasers for generating the optical frequency combs C1 and C2 are prepared in separate spaces as in the prior art by sharing one dual optical frequency comb generating optical system 10N and 10P with the laser amplified lights L1 and L2 In this case, the dual optical frequency comb generation optical systems 10N and 10P can be miniaturized.
  • the dual optical frequency comb generation optical system, the laser apparatus, and the measurement apparatus of the present invention are widely applicable in the field using optical frequency combs C1 and C2 having different repetition frequencies.
  • the dual optical frequency comb generation optical system, the laser device, and the measurement apparatus of the present invention since the optical frequency combs C1 and C2 having high SN ratio can be obtained, the dual optical frequency comb generation optical system, the laser device of the present invention, The measuring apparatus can be applied to spectroscopic measurement, signal analysis, and the like which require high measurement accuracy.
  • the components of the dual optical frequency comb generating optical system described in each of the above-described embodiments are merely examples, and can be appropriately changed to known configurations having similar functions.
  • the electro-optic modulators 73A and 73B may be changed to modulators equipped with an acousto-optic element.

Abstract

This dual optical frequency comb generating optical system comprises: an amplification unit for emitting laser amplification light in the circumferential direction of a first optical fiber loop and in the reverse-oriented direction along the circumferential direction; and a laser amplification light returning unit for emitting the laser amplification light to the first optical fiber loop only when a predetermined condition is satisfied by the phase difference between the laser amplification light that has been wave-guided along the circumferential direction and the laser amplification light that has been wave-guided along the reverse-oriented direction.

Description

デュアル光周波数コム生成光学系、レーザー装置、計測装置Dual optical frequency comb generation optical system, laser device, measurement device
 本発明は、2つの光周波数コムを出力するデュアル光周波数コム生成光学系、及び該デュアル光周波数コム生成光学系を備えるレーザー装置及び計測装置に関する。本願は、2017年10月13日に、日本に出願された特願2017-199843号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a dual optical frequency comb generation optical system that outputs two optical frequency combs, and a laser apparatus and a measurement apparatus that include the dual optical frequency comb generation optical system. Priority is claimed on Japanese Patent Application No. 2017-199843, filed Oct. 13, 2017, the content of which is incorporated herein by reference.
 周波数軸上においてスペクトル強度が櫛状に精密かつ等間隔に並べられた光は、光周波数コムと呼ばれている。例えば、超短パルスレーザーであるモード同期レーザーのスペクトル分布には、等間隔に並ぶ多数の光周波数モード列が現れる。すなわち、モード同期レーザーから光周波数コムが出射される。櫛状のスペクトル強度を有する光周波数コムは、時間・空間・周波数の精密なものさしとして広く活用されている。光周波数領域における光周波数モード列の間隔は、繰り返し周波数と呼ばれている。 The light whose spectral intensity is precisely and equally spaced in a comb shape on the frequency axis is called an optical frequency comb. For example, in the spectral distribution of a mode-locked laser which is an ultrashort pulse laser, a large number of optical frequency mode trains arranged at equal intervals appear. That is, the optical frequency comb is emitted from the mode-locked laser. Optical frequency combs having a comb-like spectral intensity are widely used as precise measures of time, space, and frequency. The spacing of the optical frequency mode sequence in the optical frequency domain is called the repetition frequency.
 例えば、非特許文献1に記載されているように、繰り返し周波数が互いに異なる光周波数コムのマルチヘテロダイン検出を行うことによって、光周波数領域における分子や原子の情報を取り出すことができる。繰り返し周波数が互いに異なる光周波数コムは、デュアル光周波数コムと呼ばれている。デュアル光周波数コムを出力するモード同期レーザー(レーザー装置)を2台用いて、広帯域・高精度・高分解能な分光計測を行うことができる。 For example, as described in Non-Patent Document 1, by performing multi-heterodyne detection of optical frequency combs having different repetition frequencies, it is possible to take out information of molecules and atoms in the optical frequency domain. Optical frequency combs having different repetition frequencies are called dual optical frequency combs. Broadband, high-precision, high-resolution spectroscopy can be performed using two mode-locked lasers (laser devices) that output dual optical frequency combs.
 しかしながら、上述の非特許文献1に開示されているように、2台のレーザー装置を用いると、これらのレーザー装置が互いに異なる環境外乱や機械的な擾乱を受ける。2台のレーザー装置が互いに異なる環境外乱や機械的な擾乱を受けることによって、マルチヘテロダイン検出時に得られる干渉信号の信号対雑音比(Signal- to noise ratio:SN比)が低くなる。一方、干渉信号のSN比を高くすると、2台のレーザー装置を相対的に位相同期させるための大がかりな光学系が必要となり、レーザー装置が大型になる。 However, as disclosed in the above-mentioned Non-Patent Document 1, when using two laser devices, these laser devices are subject to different environmental disturbances and mechanical disturbances. The two laser devices are subjected to different environmental disturbances and mechanical disturbances, thereby reducing the signal-to-noise ratio (SN ratio) of the interference signal obtained at the time of multiheterodyne detection. On the other hand, if the SN ratio of the interference signal is increased, a large optical system for relatively phase-synchronizing the two laser devices is required, and the laser device becomes large.
 本発明は、上述の事情を勘案したものであって、互いに繰り返し周波数が異なる光周波数コムの信号対雑音比を高め、且つ光学系や装置全体の小型化を図ることが可能なデュアル光周波数コム生成光学系及びレーザー装置及び計測装置を提供する。 The present invention takes the above-mentioned circumstances into consideration, and is a dual optical frequency comb capable of enhancing the signal-to-noise ratio of optical frequency combs having different repetition frequencies and miniaturizing the optical system and the entire apparatus. Provided are a generation optical system, a laser device, and a measurement device.
 本発明のデュアル光周波数コム生成光学系は、偏光の向きが第1方向である第1レーザー光を導波すると共に、偏光の向きが前記第1方向とは異なる第2方向である第2レーザー光を導波し、前記第1レーザー光及び前記第2レーザー光の各々の偏光の向きを保持する第1ループ光ファイバと、前記第1ループ光ファイバに設けられ、前記第1ループ光ファイバに前記第1レーザー光及び前記第2レーザー光を導入する導入部と、前記第1ループ光ファイバに設けられ、前記第1レーザー光及び前記第2レーザー光の前記偏光の向きを保持しつつ、前記第1レーザー光及び前記第2レーザー光を増幅して第1レーザー増幅光及び第2レーザー増幅光を生成し、前記第1ループ光ファイバの周方向及び該周方向とは逆方向に前記第1レーザー増幅光及び前記第2レーザー増幅光を出射する増幅部と、前記第1ループ光ファイバに設けられ、前記周方向に沿って導波された前記第1レーザー増幅光及び前記第2レーザー増幅光と前記周方向とは逆方向に沿って導波された前記第1レーザー増幅光及び前記第2レーザー増幅光との位相差が所定の条件を満たすときのみ前記第1レーザー増幅光及び前記第2レーザー増幅光を前記周方向及び前記周方向とは逆方向の少なくとも一方の方向に沿って前記第1ループ光ファイバに出射するレーザー増幅光戻し部と、前記第1ループ光ファイバに設けられ、前記第1ループ光ファイバで生成され且つ偏光の向きが前記第1方向である第1光周波数コムと前記第1ループ光ファイバで生成され且つ偏光の向きが前記第2方向である第2光周波数コムとを前記第1ループ光ファイバから導出する導出部と、を備えている。 The dual optical frequency comb generation optical system according to the present invention guides the first laser light whose polarization direction is the first direction, and the second laser whose polarization direction is the second direction different from the first direction. A first loop optical fiber for guiding light and maintaining the polarization direction of each of the first laser light and the second laser light; and a first loop optical fiber provided in the first loop optical fiber An introducing unit for introducing the first laser beam and the second laser beam, and the first loop optical fiber, and the polarization direction of the first laser beam and the second laser beam is maintained while the direction of the polarization is maintained. The first laser light and the second laser light are amplified to generate a first laser amplification light and a second laser amplification light, and the first direction of the first loop optical fiber in the circumferential direction and the direction opposite to the circumferential direction are generated. laser An amplification unit for emitting the width light and the second laser amplification light; and the first laser amplification light and the second laser amplification light provided in the first loop optical fiber and guided along the circumferential direction The first laser amplified light and the second laser only when the phase difference between the first laser amplified light and the second laser amplified light guided along the direction opposite to the circumferential direction satisfies a predetermined condition. A laser amplification light return unit that emits amplification light to the first loop optical fiber along at least one of the circumferential direction and a direction opposite to the circumferential direction; and the first loop optical fiber, A first optical frequency comb generated in the one-loop optical fiber and having a polarization direction of the first direction and a second optical frequency code generated in the first loop optical fiber and having a polarization direction of the second direction And a, a deriving unit that derives from the first loop optical fiber and.
 本発明のデュアル光周波数コム生成光学系において、前記第1ループ光ファイバは、第2ループ部と、前記第2ループ部に連結部を介して接続された第3ループ部で構成されていてもよい。前記第2ループ部に前記導入部、前記増幅部が設けられ、前記第3ループ部に前記導出部が設けられてもよい。前記レーザー増幅光戻し部は、前記連結部及び前記第3ループ部で構成されてもよい。前記所定の条件は、前記位相差が前記第1レーザー増幅光及び前記第2レーザー増幅光の波長の半分の奇数倍であることである。前記連結部では、前記第2ループ部から導波された前記第1レーザー増幅光及び前記第2レーザー増幅光が前記所定の条件を満たすときのみ前記第1レーザー増幅光及び前記第2レーザー増幅光が前記第3ループ部で周回した後、前記第2ループ部に戻されてもよい。 In the dual optical frequency comb generation optical system according to the present invention, the first loop optical fiber may be configured of a second loop portion and a third loop portion connected to the second loop portion via a coupling portion. Good. The introduction unit and the amplification unit may be provided in the second loop unit, and the lead-out unit may be provided in the third loop unit. The laser amplification light return unit may be configured by the connection unit and the third loop unit. The predetermined condition is that the phase difference is an odd multiple of half of the wavelengths of the first laser amplified light and the second laser amplified light. In the connection portion, the first laser amplification light and the second laser amplification light are generated only when the first laser amplification light and the second laser amplification light guided from the second loop portion satisfy the predetermined condition. May be returned to the second loop portion after being circulated in the third loop portion.
 本発明のデュアル光周波数コム生成光学系において、前記第1ループ光ファイバは、第2ループ部と、前記第2ループ部に連結部を介して接続された線形部で構成されていてもよい。前記第2ループ部に前記導入部、前記増幅部が設けられ、前記導出部は前記連結部に接続され、前記レーザー増幅光戻し部は、前記連結部及び前記線形部で構成されていてもよい。前記所定の条件は、前記位相差が前記第1レーザー増幅光及び前記第2レーザー増幅光の波長の半分の偶数倍であることである。前記連結部では、前記第2ループ部から導波された前記第1レーザー増幅光及び前記第2レーザー増幅光が前記所定の条件を満たすときのみ前記第1レーザー増幅光及び前記第2レーザー増幅光が前記線形部で往復した後、前記第2ループ部に戻されてもよい。 In the dual optical frequency comb generation optical system of the present invention, the first loop optical fiber may be configured of a second loop portion and a linear portion connected to the second loop portion via a coupling portion. The introduction unit and the amplification unit may be provided in the second loop unit, the lead-out unit may be connected to the connection unit, and the laser amplification light return unit may be configured by the connection unit and the linear unit. . The predetermined condition is that the phase difference is an even multiple of half the wavelengths of the first laser amplified light and the second laser amplified light. In the connection portion, the first laser amplification light and the second laser amplification light are generated only when the first laser amplification light and the second laser amplification light guided from the second loop portion satisfy the predetermined condition. May be returned to the second loop portion after reciprocation in the linear portion.
 本発明のデュアル光周波数コム生成光学系において、前記第3ループ部又は前記線形部には、前記第1レーザー増幅光及び前記第2レーザー増幅光の位相を変調可能な位相変調部が設けられてもよい。 In the dual optical frequency comb generation optical system of the present invention, the third loop portion or the linear portion is provided with a phase modulation portion capable of modulating the phases of the first laser amplification light and the second laser amplification light. It is also good.
 本発明のデュアル光周波数コム生成光学系において、前記第1ループ光ファイバには、前記第1レーザー増幅光及び前記第2レーザー増幅光の共振器長を制御可能な共振器長制御素子が設けられてもよい。前記デュアル光周波数コム生成光学系が第2ループ部を有する場合は、前記共振器長制御素子は前記第2ループ部に設けられることが好ましい。 In the dual optical frequency comb generation optical system of the present invention, the first loop optical fiber is provided with a resonator length control element capable of controlling the resonator length of the first laser amplification light and the second laser amplification light. May be When the dual optical frequency comb generation optical system includes a second loop unit, the resonator length control element is preferably provided in the second loop unit.
 本発明のレーザー装置は、上述のデュアル光周波数コム生成光学系の前記導入部に接続され、前記第1レーザー光及び前記第2レーザー光を発する光源を備えている。 The laser device of the present invention is connected to the introduction portion of the above-described dual optical frequency comb generation optical system, and includes a light source that emits the first laser light and the second laser light.
 本発明の計測装置は、上述のレーザー装置と、前記導出部から導出される前記第1光周波数コム及び前記第2光周波数コムの進行方向の奥側に配置され、前記第1光周波数コム及び前記第2光周波数コムを分離して互いに異なる進路に進行させる偏波分離部と、前記偏波分離部によって互いに分離された前記第1光周波数コム及び前記第2光周波数コムの少なくとも一方の進路上に配置された試料より前記第1光周波数コム及び前記第2光周波数コムの進行方向の奥側に配置され、測定対象の前記第1光周波数コム及び前記第2光周波数コムを干渉させる偏波干渉部と、前記偏波干渉部で得られる干渉信号の進行方向の奥側に配置され、前記干渉信号から前記試料の情報を抽出する試料情報抽出部と、を備えている。 The measurement apparatus according to the present invention includes the above-described laser device, and is disposed on the far side of the traveling direction of the first optical frequency comb and the second optical frequency comb derived from the derivation unit, and the first optical frequency comb and A polarization separation unit that separates the second optical frequency comb and travels on different paths, and a path of at least one of the first optical frequency comb and the second optical frequency comb separated from each other by the polarization separation unit A polarization which is disposed on the far side of the traveling direction of the first optical frequency comb and the second optical frequency comb from the sample disposed on the upper side, and causes the first optical frequency comb and the second optical frequency comb to be measured to interfere A wave interference unit, and a sample information extraction unit disposed on the back side in the traveling direction of the interference signal obtained by the polarization interference unit and extracting information of the sample from the interference signal.
 本発明のデュアル光周波数コム生成光学系、レーザー装置、計測装置によれば、互いに繰り返し周波数が異なる光周波数コムの信号対雑音比を高め、且つ光学系の小型化を図ることができる。 According to the dual optical frequency comb generating optical system, the laser device, and the measuring device of the present invention, the signal-to-noise ratio of optical frequency combs having different repetition frequencies can be increased, and the optical system can be miniaturized.
本発明の第1実施形態のレーザー装置の平面図である。It is a top view of a laser device of a 1st embodiment of the present invention. 本発明の第1実施形態の計測装置の平面図である。It is a top view of a measuring device of a 1st embodiment of the present invention. 本発明の第2実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 3rd Embodiment of this invention. 本発明の第4実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 4th Embodiment of this invention. 本発明の第5実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 5th Embodiment of this invention. 図6のレーザー装置の非相反位相シフト部の第1構成例の平面図である。It is a top view of the 1st structural example of the non-reciprocal phase shift part of the laser apparatus of FIG. 図6のレーザー装置の非相反位相シフト部の第2構成例の平面図である。It is a top view of the 2nd structural example of the non-reciprocal phase shift part of the laser apparatus of FIG. 本発明の第6実施形態のレーザー装置の平面図である。It is a top view of the laser equipment of a 6th embodiment of the present invention. 本発明の第7実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 7th Embodiment of this invention. 本発明の第8実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 8th Embodiment of this invention. 本発明の第9実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 9th Embodiment of this invention. 本発明の第10実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 10th Embodiment of this invention. 本発明の第11実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 11th Embodiment of this invention. 本発明の第12実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 12th Embodiment of this invention. 本発明の第13実施形態のレーザー装置の平面図である。It is a top view of the laser apparatus of 13th Embodiment of this invention. 本発明のレーザー装置の平面図である。It is a top view of a laser device of the present invention. 本発明の別のレーザー装置の平面図である。FIG. 7 is a plan view of another laser apparatus of the present invention.
 以下、本発明のデュアル光周波数コム生成光学系、レーザー装置、計測装置の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of a dual optical frequency comb generation optical system, a laser device, and a measurement apparatus according to the present invention will be described with reference to the drawings.
(第1実施形態)
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図1に示すように、本発明の第1実施形態のレーザー装置60Aは、光源5、偏波保持型光ファイバ6、偏波分離素子12、一方の端部が偏波分離素子12に接続された偏波保持型光ファイバ31、デュアル光周波数コム生成光学系10Aを備えている。偏波保持型光ファイバ6の入射側の端部(一方の端部)は、光源5に接続されている。偏波保持型光ファイバ6の出射側の端部(他方の端部)は、偏波分離素子12に接続されている。偏波保持型光ファイバ31の入射側の端部(一方の端部)は、偏波分離素子12に接続されている。偏波保持型光ファイバ31の出射側の端部(他方の端部)は、デュアル光周波数コム生成光学系10Aに接続されている。
First Embodiment
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 1, in the laser apparatus 60A according to the first embodiment of the present invention, the light source 5, the polarization maintaining optical fiber 6, the polarization separation element 12, one end is connected to the polarization separation element 12. The polarization maintaining optical fiber 31 and the dual optical frequency comb generating optical system 10A are provided. The incident end (one end) of the polarization maintaining optical fiber 6 is connected to the light source 5. The end (the other end) of the output side of the polarization maintaining optical fiber 6 is connected to the polarization separation element 12. The end (one end) of the incident side of the polarization maintaining optical fiber 31 is connected to the polarization separation element 12. The end (other end) of the output side of the polarization maintaining optical fiber 31 is connected to the dual optical frequency comb generation optical system 10A.
 光源5は、少なくとも、光軸Aに対して偏光の向きが第1方向であるレーザー光(第1レーザー光)S1と光軸Aに対して偏光の向きが第2方向であるレーザー光(第2レーザー光)S2とを含むレーザー光S0を発する。光軸Aは、光の進行方向を示している。光軸Aが図1の紙面に垂直な方向を向くとすると、第1方向は紙面の上側及び下側を向く方向であり、第2方向は紙面の左側及び右側を向く方向である。第1方向と第2方向は互いに異なれば、それぞれ任意の方向に向いていてよい。例えば、偏波保持型ファイバの遅軸と速軸を第1方向と第2方向としてレーザー光を導波してもよい。本実施形態の光源5は、レーザー光S1,S2と、光軸Aに対して偏光の向きが第1方向及び第2方向とは異なる任意の方向である第3レーザー光S3,S4,…とを発する半導体レーザーである。 The light source 5 is at least a laser beam (first laser beam) S1 whose polarization direction is the first direction with respect to the optical axis A, and a laser beam whose polarization direction is the second direction with respect to the optical axis A 2) Laser beam S2 is emitted. The optical axis A indicates the traveling direction of light. Assuming that the optical axis A is in a direction perpendicular to the paper surface of FIG. 1, the first direction is a direction toward the upper side and the lower side of the paper surface, and the second direction is a direction toward the left side and the right side of the paper surface. The first direction and the second direction may be respectively directed in any directions as long as they are different from each other. For example, laser light may be guided with the slow axis and the fast axis of the polarization maintaining fiber as the first direction and the second direction. The light source 5 according to the present embodiment includes the laser beams S1 and S2, and third laser beams S3 and S4 in any direction different from the first direction and the second direction with respect to the optical axis A. Is a semiconductor laser that emits
 光源5から発せられたレーザー光S0の偏光の向きは、偏波保持型光ファイバ6において保持される。偏波分離素子12は、レーザー光S0から、レーザー光S1,S2のみを偏波保持型光ファイバ31に出射する。 The polarization direction of the laser beam S0 emitted from the light source 5 is held in the polarization maintaining optical fiber 6. The polarization separation element 12 emits only the laser beams S1 and S2 from the laser beam S0 to the polarization maintaining optical fiber 31.
 デュアル光周波数コム生成光学系10Aは、第1ループ光ファイバ30と、第1ループ光ファイバ30に設けられた導入部21、増幅部40、レーザー増幅光戻し部70、及び、導出部24とを備えている。 The dual optical frequency comb generation optical system 10 A includes a first loop optical fiber 30, an introducing unit 21 provided in the first loop optical fiber 30, an amplifying unit 40, a laser amplification light returning unit 70, and an extracting unit 24. Have.
 第1ループ光ファイバ30は、図1の右側に示す第2ループ部32と、図1の左側に示す第3ループ部33と、第2ループ部32及び第3ループ部33とを連結する連結部22とを備えている。連結部22は、偏波保持型光カプラで構成されている。すなわち、第1ループ光ファイバ30は、連結部22を結び目として、数字の「8」を描くように構成されている。第2ループ部32は、偏波保持型光ファイバ32A,32B,32Cで構成されている。第3ループ部33は、偏波保持型光ファイバ33A,33B,33Cで構成されている。以下では、偏波保持型光ファイバ32C,32A,32Bの順に光が導波される方向、及び、偏波保持型光ファイバ33A,33B,33Cの順に光が導波される方向をR1方向(周方向)と称する。また、R1方向に沿って逆向きの方向をR2方向(逆方向)と称する。第1ループ光ファイバ30は、導入部21及び偏波保持型光ファイバ31を介して、偏波分離素子12に接続されている。 The first loop optical fiber 30 connects the second loop portion 32 shown on the right side of FIG. 1, the third loop portion 33 shown on the left side of FIG. 1, and the second loop portion 32 and the third loop portion 33. And a unit 22. The connection unit 22 is configured of a polarization maintaining optical coupler. That is, the first loop optical fiber 30 is configured to draw the numeral “8” with the connecting portion 22 as a knot. The second loop portion 32 is composed of polarization maintaining optical fibers 32A, 32B, 32C. The third loop portion 33 is composed of polarization maintaining optical fibers 33A, 33B and 33C. In the following, the direction in which light is guided in the order of polarization maintaining optical fibers 32C, 32A, and 32B, and the direction in which light is guided in the order of polarization maintaining optical fibers 33A, 33B, and 33C in the direction R1 ( Circumferential direction). Also, a direction opposite to the direction R1 is referred to as an R2 direction (reverse direction). The first loop optical fiber 30 is connected to the polarization separation element 12 via the introduction unit 21 and the polarization maintaining optical fiber 31.
 導入部21は、第2ループ部32に設けられ、偏波保持型光カプラで構成されている。導入部21においてR1方向の手前側の端部(すなわち、偏波保持型光ファイバ31の出射側の端部に接続されている端部)に、偏波保持型光ファイバ32Cが接続されている。導入部21におけるR1方向の奥側の端部に、偏波保持型光ファイバ32Aが接続されている。導入部21には、レーザー光S1,S2と、希土類添加光ファイバによって構成される増幅部40で増幅されたレーザー増幅光(第1レーザー増幅光,第2レーザー増幅光)L1,L2が通る。そのため、導入部21は、少なくともレーザー光S1,S2の第1波長とレーザー増幅光L1,L2の第2波長とを導入及び導出可能な波長分割多重型且つ偏波保持型の光カプラで構成されている。 The introducing unit 21 is provided in the second loop unit 32, and is configured of a polarization maintaining optical coupler. The polarization maintaining optical fiber 32C is connected to the near end of the introduction portion 21 in the R1 direction (that is, the end connected to the end on the exit side of the polarization maintaining optical fiber 31). . The polarization maintaining optical fiber 32 </ b> A is connected to the end on the back side in the R <b> 1 direction in the introducing unit 21. Laser light S1 and S2 and laser amplification light (first laser amplification light and second laser amplification light) L1 and L2 amplified by the amplification section 40 formed of a rare earth-doped optical fiber pass through the introduction portion 21. Therefore, the introducing unit 21 is composed of a wavelength division multiplexing type and polarization maintaining type optical coupler capable of introducing and deriving at least a first wavelength of the laser beams S1 and S2 and a second wavelength of the laser amplified beams L1 and L2. ing.
 増幅部40は、第2ループ部32の偏波保持型光ファイバ32Aと偏波保持型光ファイバ32Bとの間に設けられ、偏波保持型光増幅ファイバで構成されている。光増幅ファイバとしては、例えば希土類添加光ファイバが挙げられる。希土類添加光ファイバに添加される希土類元素としては、エルビウム(Er)、イッテルビウム(Yb)、ツリウム(Tm)等が挙げられる。なお、希土類添加光ファイバに添加される希土類元素は、第1波長及び第2波長を考慮して適宜選定される。 The amplification unit 40 is provided between the polarization maintaining optical fiber 32A of the second loop unit 32 and the polarization maintaining optical fiber 32B, and is configured of a polarization maintaining optical amplification fiber. Examples of the light amplification fiber include rare earth-doped optical fibers. Examples of the rare earth element added to the rare earth-doped optical fiber include erbium (Er), ytterbium (Yb), thulium (Tm) and the like. The rare earth element added to the rare earth-doped optical fiber is appropriately selected in consideration of the first wavelength and the second wavelength.
 連結部22の第2ループ部32側の端部に、偏波保持型光ファイバ32B,32Cが接続されている。連結部22の第3ループ部33側の端部に、偏波保持型光ファイバ33A,33Cが接続されている。 The polarization maintaining optical fibers 32B and 32C are connected to the end of the connecting portion 22 on the second loop 32 side. The polarization maintaining optical fibers 33A and 33C are connected to the end of the connecting portion 22 on the third loop 33 side.
 レーザー増幅光戻し部70は、増幅部40によって増幅されたレーザー増幅光L1,L2のモード同期を行う。レーザー増幅光戻し部70は、連結部22、第3ループ部33に設けられた偏波保持型光ファイバ33A,33B,33C、及び偏波保持型光アイソレータ23を有する。偏波保持型光アイソレータ23は、R1方向に沿って偏波保持型光ファイバ33Bから入射するレーザー増幅光L1,L2のみを偏波保持型光ファイバ33Cへ通過させ、R2方向に沿って偏波保持型光ファイバ33Cから入射するレーザー増幅光L1,L2を光吸収や分岐等によって第1ループ光ファイバ30から除去する。 The laser amplification light return unit 70 performs mode synchronization of the laser amplification lights L1 and L2 amplified by the amplification unit 40. The laser amplification light return unit 70 includes a coupling unit 22, polarization maintaining optical fibers 33 A, 33 B, and 33 C provided in the third loop unit 33, and a polarization maintaining optical isolator 23. The polarization maintaining optical isolator 23 passes only the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 33B along the R1 direction to the polarization maintaining optical fiber 33C, and polarizes the light along the R2 direction. The laser amplification lights L1 and L2 incident from the holding optical fiber 33C are removed from the first loop optical fiber 30 by light absorption, branching, and the like.
 導出部24は、第3ループ部33に設けられ、偏波保持型光カプラで構成されている。
 導出部24においてR1方向の手前側の端部(すなわち、連結部22側の端部)に、偏波保持型光ファイバ33Aが接続されている。導出部24においてR1方向の奥側の端部に、偏波保持型光ファイバ33B,34の各々の入射側の端部(一方の端部)が接続されている。偏波保持型光ファイバ34は、導出部24を介して、第1ループ光ファイバ30から、互いに繰り返し周波数の異なる光周波数コム(第1光周波数コム,第2光周波数コム)C1,C2を取り出すために設けられる。
The lead-out unit 24 is provided in the third loop unit 33, and is configured of a polarization maintaining optical coupler.
The polarization maintaining optical fiber 33A is connected to the near end of the lead-out portion 24 in the R1 direction (that is, the end on the connection portion 22 side). The end (one end) on the incident side of each of the polarization-maintaining optical fibers 33B and 34 is connected to the end on the back side in the R1 direction in the lead-out portion 24. The polarization maintaining optical fiber 34 takes out optical frequency combs (first optical frequency comb, second optical frequency comb) C1 and C2 having different repetition frequencies from the first loop optical fiber 30 through the lead-out unit 24. Provided for
 上述のように、第1ループ光ファイバ30が偏波保持型光ファイバで構成され、第1ループ光ファイバ30に設けられる各構成要素が偏波保持可能であるので、第1ループ光ファイバ30で導波及び制御される偏光の向きは保持される。 As described above, since the first loop optical fiber 30 is composed of the polarization maintaining optical fiber and each component provided in the first loop optical fiber 30 can hold the polarization, the first loop optical fiber 30 The orientation of the guided and controlled polarization is maintained.
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
 次に、デュアル光周波数コム生成光学系10A及びレーザー装置60Aの動作、及び、デュアル光周波数コム生成光学系10A及びレーザー装置60Aを用いて光周波数コムC1,C2を生成する原理について説明する。
[Operation of dual optical frequency comb generation optical system and laser device]
Next, the operation of the dual optical frequency comb generation optical system 10A and the laser device 60A, and the principle of generating the optical frequency combs C1 and C2 using the dual optical frequency comb generation optical system 10A and the laser device 60A will be described.
 光源5から発せられたレーザー光S0は、偏波保持型光ファイバ6に導波され、偏波分離素子12に入射する。偏波分離素子12によって、レーザー光S0からレーザー光S1,S2が分離され、レーザー光S1,S2のみが偏波保持型光ファイバ31に導波される。 The laser beam S 0 emitted from the light source 5 is guided to the polarization maintaining optical fiber 6 and enters the polarization separation element 12. The polarization separation element 12 separates the laser beams S1 and S2 from the laser beam S0, and only the laser beams S1 and S2 are guided to the polarization maintaining optical fiber 31.
 偏波保持型光ファイバ31を導波したレーザー光S1,S2は、導入部21を介して偏波保持型光ファイバ32Aに導波され、増幅部40に入射する。増幅部40によって、レーザー光S1,S2が増幅され、レーザー増幅光L1,L2が生成される。増幅部40として希土類添加光ファイバが用いられているため、レーザー増幅光L1,L2の波長(第2波長)は、増幅する前のレーザー光S1,S2の波長(第1波長)とは異なる。第2波長を有するレーザー増幅光L1,L2は、増幅部40からR1方向及びR2方向の両方に沿って偏波保持型光ファイバ32B,32Aに導波される。 The laser beams S1 and S2 guided through the polarization maintaining optical fiber 31 are guided to the polarization maintaining optical fiber 32A through the introduction unit 21 and enter the amplification unit 40. The laser beams S1 and S2 are amplified by the amplification unit 40, and the laser amplification lights L1 and L2 are generated. Since a rare earth-doped optical fiber is used as the amplification unit 40, the wavelengths (second wavelengths) of the laser amplification lights L1 and L2 are different from the wavelengths (first wavelengths) of the laser lights S1 and S2 before amplification. The laser amplification lights L1 and L2 having the second wavelength are guided from the amplification unit 40 to the polarization maintaining optical fibers 32B and 32A along both the R1 direction and the R2 direction.
 レーザー増幅光L1,L2は、増幅部40からR2方向に沿って偏波保持型光ファイバ32A、導入部21をこの順に通り、偏波保持型光ファイバ32Cに導波される。 The laser amplification lights L1 and L2 are guided from the amplification unit 40 along the R2 direction in this order through the polarization maintaining optical fiber 32A and the introducing unit 21 to the polarization maintaining optical fiber 32C.
 R1方向に沿って偏波保持型光ファイバ32Bに導波されたレーザー増幅光L1,L2と、R2方向に沿って偏波保持型光ファイバ32Cに導波されたレーザー増幅光L1,L2は、連結部22に入射する。R1方向に沿って増幅部40から偏波保持型光ファイバ32Bを導波して連結部22に入射するレーザー増幅光L1,L2は、偏波保持型光ファイバ32Bの長さに応じた非線形位相シフトを受ける。R2方向に沿って増幅部40から偏波保持型光ファイバ32A、導入部21、偏波保持型光ファイバ32Cを導波して連結部22に入射するレーザー増幅光L1,L2は、偏波保持型光ファイバ32A,32Cの長さに応じた非線形位相シフトを受ける。 The laser amplified lights L1 and L2 guided to the polarization maintaining optical fiber 32B along the R1 direction and the laser amplified lights L1 and L2 guided to the polarization maintaining optical fiber 32C along the R2 direction are The light is incident on the connecting portion 22. The laser amplified lights L1 and L2 which propagate the polarization maintaining optical fiber 32B from the amplifying unit 40 along the R1 direction and enter the connection unit 22 have nonlinear phases according to the length of the polarization maintaining optical fiber 32B. Get a shift. The laser amplified lights L1 and L2 that are guided from the amplifying unit 40 to the polarization maintaining optical fiber 32A, the introducing unit 21 and the polarization maintaining optical fiber 32C along the R2 direction and enter the connection unit 22 are polarization maintaining Nonlinear phase shift according to the length of the optical fibers 32A, 32C.
 連結部22を構成する偏波保持型光カプラでは、R1方向に沿って偏波保持型光ファイバ32Bから入射したレーザー増幅光L1,L2と、R2方向に沿って偏波保持型光ファイバ32Cから入射したレーザー増幅光L1,L2が干渉する。連結部22の偏波保持型光カプラでは、偏波保持型光ファイバ32Bから入射したレーザー増幅光L1,L2と、偏波保持型光ファイバ32Cから入射したレーザー増幅光L1,L2との位相差φによって、偏波保持型光ファイバ33Aに導波されるレーザー増幅光L1,L2と偏波保持型光ファイバ33Cに導波されるレーザー増幅光L1,L2の光量比が変わる。位相差φは、偏波保持型光ファイバ32B,Cの各々から連結部22に入射するレーザー増幅光L1,L2が受けた非線形位相シフトの差に相当する。位相差φが第2波長の半分の奇数倍である場合(所定の条件を満たす場合)、連結部22の偏波保持型光カプラにおける干渉によって強められたレーザー増幅光L1,L2が全てR1方向に沿って偏波保持型光ファイバ33Aに導波される。 In the polarization maintaining optical coupler constituting the connecting portion 22, the laser amplified lights L1 and L2 incident from the polarization maintaining optical fiber 32B along the R1 direction and the polarization maintaining optical fiber 32C along the R2 direction The incident laser amplified lights L1 and L2 interfere with each other. In the polarization maintaining optical coupler of the connecting portion 22, the phase difference between the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 32B and the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 32C. The light quantity ratio of the laser amplification lights L1 and L2 guided to the polarization maintaining optical fiber 33A and the laser amplification lights L1 and L2 guided to the polarization maintaining optical fiber 33C changes according to φ. The phase difference φ corresponds to the difference between the non-linear phase shifts received by the laser amplified lights L1 and L2 incident on the coupling portion 22 from the polarization maintaining optical fibers 32B and 32C. In the case where the phase difference φ is an odd multiple of half of the second wavelength (when the predetermined condition is satisfied), all the laser amplified lights L1 and L2 intensified by the interference in the polarization maintaining optical coupler of the connecting portion 22 are in the R1 direction. , And guided to the polarization maintaining optical fiber 33A.
 連結部22からR1方向に沿って偏波保持型光ファイバ33Aに導波されたレーザー増幅光L1,L2は、導出部24に入射する。導出部24に入射したレーザー増幅光L1,L2の一部は、R1方向に沿って偏波保持型光ファイバ33Bに導波され、偏波保持型光アイソレータ23を通り、偏波保持型光ファイバ33Cに導波され、再び連結部22に入射する。一方で、連結部22からR2方向に沿って偏波保持型光ファイバ33Cに導波されたレーザー増幅光L1,L2は、偏波保持型光アイソレータ23で除去される。すなわち、第3ループ部33は、位相差φに基づいて連結部22からR1方向に導出されたレーザー増幅光L1,L2のみを周回させ、連結部22に戻す。 The laser amplified lights L1 and L2 guided from the connecting portion 22 to the polarization maintaining optical fiber 33A along the R1 direction enter the lead-out portion 24. A part of the laser amplified light L1 and L2 incident on the lead-out portion 24 is guided to the polarization maintaining optical fiber 33B along the R1 direction, passes through the polarization maintaining optical isolator 23, and The light is guided to 33 C and enters the connection portion 22 again. On the other hand, the laser amplified lights L1 and L2 guided from the connecting portion 22 to the polarization maintaining optical fiber 33C along the R2 direction are removed by the polarization maintaining optical isolator 23. That is, the third loop unit 33 circulates only the laser amplification lights L1 and L2 derived from the connecting unit 22 in the R1 direction based on the phase difference φ, and returns the light to the connecting unit 22.
 偏波保持型光ファイバ33CからR1方向に沿って連結部22に入射したレーザー増幅光L1,L2の一部(約半分)は、引き続きR1方向に沿って偏波保持型光ファイバ32Cに導波され、導入部21及び偏波保持型光ファイバ32Aを通り、再び増幅部40で増幅される。偏波保持型光ファイバ33CからR1方向に沿って連結部22に入射したレーザー増幅光L1,L2の残部は、R2方向に沿って偏波保持型光ファイバ32Bに導波され、再び増幅部40で増幅される。増幅部40で増幅されたレーザー増幅光L1,L2は、前段で説明したようにR1,R2方向の両方に沿って導波され、繰り返し増幅される。 A portion (about half) of the laser amplified lights L1 and L2 incident on the coupling portion 22 along the R1 direction from the polarization maintaining optical fiber 33C continues to be guided to the polarization maintaining optical fiber 32C along the R1 direction. The light passes through the introduction unit 21 and the polarization maintaining optical fiber 32A, and is amplified again by the amplification unit 40. The remaining portions of the laser amplified lights L1 and L2 incident on the coupling portion 22 along the R1 direction from the polarization maintaining optical fiber 33C are guided to the polarization maintaining optical fiber 32B along the R2 direction, and the amplification unit 40 is performed again. It is amplified by The laser amplification lights L1 and L2 amplified by the amplification unit 40 are guided along both the R1 and R2 directions as described in the previous stage, and are repeatedly amplified.
 上述のレーザー光S1,S2及びレーザー増幅光L1,L2の導波及びデュアル光周波数コム生成光学系10Aの動作では、第2ループ部32は、利得のある非線形増幅光ファイバーループミラーとして機能する。第2ループ部32、連結部22、偏波保持型光アイソレータ23、偏波保持型光ファイバ33A,33B,33Cは、可飽和吸収体のように機能する。すなわち、連結部22及び第3ループ部33は、可飽和吸収体のように機能する。連結部22での干渉によって強め合ったレーザー増幅光L1,L2のみが、第3ループ部33の偏波保持型光ファイバ33A,33B,33Cを周回し、第2ループ部32に戻り、増幅部40で増幅される。連結部22での干渉に基づく弱いレーザー増幅光L1,L2は、第3ループ部33の偏波保持型光ファイバ33Cに導波されるが、偏波保持型光アイソレータ23によって除去される。このようにレーザー増幅光L1,L2の光強度に応じて第1ループ光ファイバ30での損失が変わる。 In the operation of guiding the laser beams S1 and S2 and the laser amplification beams L1 and L2 and the dual optical frequency comb generation optical system 10A, the second loop unit 32 functions as a nonlinear amplification optical fiber loop mirror having a gain. The second loop portion 32, the connection portion 22, the polarization maintaining optical isolator 23, and the polarization maintaining optical fibers 33A, 33B, and 33C function as a saturable absorber. That is, the connection portion 22 and the third loop portion 33 function as a saturable absorber. Only the laser amplified lights L1 and L2 reinforced by the interference at the connecting part 22 circulate the polarization maintaining optical fibers 33A, 33B and 33C of the third loop part 33, and return to the second loop part 32, and the amplifying part It is amplified at 40. The weak laser amplification lights L1 and L2 based on the interference at the coupling portion 22 are guided to the polarization maintaining optical fiber 33C of the third loop portion 33, but are removed by the polarization maintaining optical isolator 23. Thus, the loss in the first loop optical fiber 30 changes in accordance with the light intensity of the laser amplification lights L1 and L2.
 連結部22からR1,R2方向の各々の方向に沿って第2ループ部32に導波されるレーザー増幅光L1,L2は、各偏波保持型光ファイバの長さに応じた非線形位相シフトを受ける。第2ループ部32及び第3ループ部33における循環回数が所定の回数より少ないときは、レーザー増幅光L1,L2のパワーが低く、第2ループ部32における利得は小さい。第2ループ部32における利得は小さい状態では、デュアル光周波数コム生成光学系10A及びレーザー装置60Aは、レーザー増幅光L1,L2が連続光である状態で動作する。第2ループ部32及び第3ループ部33におけるレーザー増幅光L1,L2の循環回数が所定の回数以上になり、レーザー増幅光L1,L2のパワーが所定のパワーより高くなったときは、第2ループ部32における利得は非常に大きくなる。第2ループ部32における利得が非常に大きくなると、デュアル光周波数コム生成光学系10A及びレーザー装置60Aは、レーザー増幅光L1,L2がパルス光である状態で動作する。 The laser amplified lights L1 and L2 guided from the connecting part 22 to the second loop part 32 along each direction of R1 and R2 have nonlinear phase shift according to the length of each polarization maintaining optical fiber. receive. When the number of circulations in the second loop portion 32 and the third loop portion 33 is smaller than a predetermined number, the powers of the laser amplified lights L1 and L2 are low, and the gain in the second loop portion 32 is small. In a state where the gain in the second loop unit 32 is small, the dual optical frequency comb generation optical system 10A and the laser device 60A operate in a state where the laser amplification lights L1 and L2 are continuous lights. When the number of times of circulation of the laser amplified light L1 and L2 in the second loop unit 32 and the third loop unit 33 becomes equal to or greater than a predetermined number, and the power of the laser amplified light L1 and L2 becomes higher than the predetermined power The gain in the loop section 32 becomes very large. When the gain in the second loop unit 32 becomes very large, the dual optical frequency comb generation optical system 10A and the laser device 60A operate in a state where the laser amplification lights L1 and L2 are pulse lights.
 デュアル光周波数コム生成光学系10A及びレーザー装置60Aでは、レーザー増幅光L1,L2がそれぞれ連続光又はパルス光である状態で発振する間にモード同期状態に移行し、光周波数コムC1,C2が生成される。生成された光周波数コムC1,C2は、導出部24から、偏波保持型光ファイバ34に導出される。 In the dual optical frequency comb generation optical system 10A and the laser device 60A, while the laser amplified lights L1 and L2 oscillate respectively in the state of continuous light or pulsed light, transition to the mode synchronization state is performed, and the optical frequency combs C1 and C2 are generated. Be done. The generated optical frequency combs C1 and C2 are led from the lead-out unit 24 to the polarization maintaining optical fiber 34.
 光周波数コムC1の繰り返し周波数frep1及び光周波数コムC2の繰り返し周波数frep2は、デュアル光周波数コム生成光学系10Aの共振器長によって決まる。デュアル光周波数コム生成光学系10Aの共振器長は、偏波保持型光ファイバ32A,32B,32C,33A,33B,33Cと増幅部40を構成する偏波保持型増幅光ファイバとの合計の長さ、すなわち第1ループ光ファイバ30の長さに相当する。デュアル光周波数コム生成光学系10Aにおけるレーザー増幅光L1の共振器の光路長は、レーザー増幅光L1の屈折率とデュアル光周波数コム生成光学系10Aの共振器長によって決まる。デュアル光周波数コム生成光学系10Aにおけるレーザー増幅光L2の共振器の光路長は、レーザー増幅光L2の屈折率とデュアル光周波数コム生成光学系10Aの共振器長によって決まる。デュアル光周波数コム生成光学系10Aの共振器長はレーザー増幅光L1,L2で共通しているが、偏光の向きがレーザー増幅光L1,L2では第1の向きと第2の向きで異なる。そのため、レーザー増幅光L1,L2の屈折率は、互いに異なる。したがって、レーザー増幅光L1,L2の屈折率差Δnに応じて、レーザー増幅光L1の共振器の光路長とレーザー増幅光L2の共振器の光路長とは互いに異なる。レーザー増幅光L1,L2の共振器の光路長差をΔLとすると、繰り返し周波数frep2は、(frep1+Δfrep)で表わされる。周波数差Δfrepは、光路長差ΔLに依存する。 Repetition frequency f rep2 of repetition frequency f rep1 and optical frequency comb C2 of the optical frequency comb C1 is determined by the resonator length of the dual optical frequency comb generation optical system 10A. The resonator length of the dual optical frequency comb generation optical system 10A is the total length of the polarization maintaining optical fibers 32A, 32B, 32C, 33A, 33B, 33C and the polarization maintaining amplifying optical fiber constituting the amplifying unit 40. , That is, the length of the first loop optical fiber 30. The optical path length of the resonator of the laser amplification light L1 in the dual optical frequency comb generation optical system 10A is determined by the refractive index of the laser amplification light L1 and the resonator length of the dual optical frequency comb generation optical system 10A. The optical path length of the resonator of the laser amplification light L2 in the dual optical frequency comb generation optical system 10A is determined by the refractive index of the laser amplification light L2 and the resonator length of the dual optical frequency comb generation optical system 10A. The resonator length of the dual optical frequency comb generation optical system 10A is common to the laser amplification lights L1 and L2, but the polarization directions of the laser amplification lights L1 and L2 are different in the first direction and the second direction. Therefore, the refractive indexes of the laser amplification lights L1 and L2 are different from each other. Therefore, the optical path length of the resonator of the laser amplified light L1 and the optical path length of the resonator of the laser amplified light L2 differ from each other according to the refractive index difference Δn of the laser amplified light L1 and L2. Assuming that the optical path length difference of the resonators of the laser amplified lights L1 and L2 is ΔL, the repetition frequency f rep2 is represented by (f rep1 + Δf rep ). The frequency difference Δf rep depends on the optical path length difference ΔL.
 上述の動作原理に基づき、デュアル光周波数コム生成光学系10A及びレーザー装置60Aでは、連結部22から、強度の大きいパルス光を含むレーザー増幅光L1,L2がR1方向に沿って偏波保持型光ファイバ33Aに導波される。一方、強度の小さい連続光を含むレーザー増幅光L1,L2は、R2方向に沿って偏波保持型光ファイバ33Cにも導波される。但し、偏波保持型光アイソレータ23が設けられているので、R1方向に沿って偏波保持型光ファイバ33Aに導波されたレーザー増幅光L1,L2は、第3ループ部33を周回する。しかしながら、R2方向に沿って偏波保持型光ファイバ33Cに導波されたレーザー増幅光L1,L2は、偏波保持型光ファイバ33Cのみで導波され、第3ループ部33を周回しない。したがって、デュアル光周波数コム生成光学系10A及びレーザー装置60Aでは、レーザー増幅光L1,L2のモード同期レーザーを構成する共振器において、R1方向のみにレーザー増幅光L1,L2が周回する第3ループ部33の偏波保持型光ファイバ33A,33B,33Cは共通部分となる。このことをふまえ、偏波保持型光ファイバ32Bの長さと偏波保持型光ファイバ32A,32Cの合計の長さとの差は、位相差φが第2波長の半分の奇数倍になるように設定されている。そのうえで、レーザー増幅光L1,L2の各々の屈折率及び第2波長等を考慮し、偏波保持型光ファイバ33A,33B,33Cの合計の長さは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが所望の繰り返し周波数frep1,frep2に相当するように設定されている。 Based on the above operation principle, in the dual optical frequency comb generation optical system 10A and the laser device 60A, the laser amplification lights L1 and L2 including pulse light with high intensity are held along the R1 direction from the coupling unit 22 It is guided to the fiber 33A. On the other hand, the laser amplified lights L1 and L2 including continuous light with small intensity are also guided to the polarization maintaining optical fiber 33C along the R2 direction. However, since the polarization maintaining optical isolator 23 is provided, the laser amplification lights L1 and L2 guided to the polarization maintaining optical fiber 33A along the R1 direction circulate the third loop portion 33. However, the laser amplified lights L1 and L2 guided to the polarization maintaining optical fiber 33C along the R2 direction are guided only by the polarization maintaining optical fiber 33C and do not go around the third loop portion 33. Therefore, in the dual optical frequency comb generation optical system 10A and the laser device 60A, the third loop portion in which the laser amplified lights L1 and L2 circulate only in the R1 direction in the resonator constituting the mode-locked laser of the laser amplified lights L1 and L2. The 33 polarization maintaining optical fibers 33A, 33B and 33C are common parts. Based on this, the difference between the length of the polarization maintaining optical fiber 32B and the total length of the polarization maintaining optical fibers 32A and 32C is set so that the phase difference φ is an odd multiple of half of the second wavelength It is done. In addition, the total length of the polarization maintaining optical fibers 33A, 33B and 33C is the resonator length of the laser amplified lights L1 and L2 in consideration of the refractive index and the second wavelength of each of the laser amplified lights L1 and L2. And the optical path difference ΔL is set to correspond to the desired repetition frequencies f rep1 and f rep2 .
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 デュアル光周波数コム生成光学系10A及びレーザー装置60Aによれば、レーザー増幅光L1,L2を共通の第1ループ光ファイバ30内でモード同期状態に移行させつつ、共振させる。この際、レーザー増幅光L1,L2の偏光の向きが互いに異なるので、レーザー増幅光L1,L2の屈折率が異なる。レーザー増幅光L1,L2にとって、第1ループ光ファイバ30で構成される共振器の光路長は、互いに異なる。このことによって、導出部24から、偏光の向きが第1方向であり且つ繰り返し周波数frep1を有する光周波数コムC1と、偏光の向きが第2方向であり且つ光周波数コムC1とは異なる繰り返し周波数frep2を有する光周波数コムC2を得ることができる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
According to the dual optical frequency comb generation optical system 10A and the laser device 60A, the laser amplification lights L1 and L2 are resonated while being shifted to the mode synchronization state in the common first loop optical fiber 30. At this time, since the directions of polarization of the laser amplified lights L1 and L2 are different from each other, the refractive indexes of the laser amplified lights L1 and L2 are different. The optical path lengths of the resonators configured by the first loop optical fiber 30 differ from each other for the laser amplification lights L1 and L2. By this, from the lead-out portion 24, the optical frequency comb C1 whose polarization direction is the first direction and has the repetition frequency f rep1 , and the repetition frequency whose polarization direction is the second direction and which is different from the optical frequency comb C1 An optical frequency comb C2 having f rep2 can be obtained.
 デュアル光周波数コム生成光学系10A及びレーザー装置60Aでは、偏光の向きが互いに異なるレーザー光S1,S2及びレーザー増幅光L1,L2を用いる。デュアル光周波数コム生成光学系10A及びレーザー装置60Aでは、モード同期レーザーを共通にしつつ、レーザー増幅光L1,L2の屈折率を互いに異ならせ、レーザー増幅光L1,L2の共振器長を互いに異ならせることができる。このことによって、1台のモード同期レーザーで繰り返し周波数が異なる光周波数コムC1,C2(図2参照)を発生させることができる。レーザー増幅光L1,L2が1台のモード同期レーザーとしてデュアル光周波数コム生成光学系10A及びレーザー装置60Aを共有することによって、デュアル光周波数コム生成光学系10A及びレーザー装置60Aが受ける環境外乱や機械的な擾乱を共通にすることができる。このことによって、光周波数コムC1,C2の各々に含まれる環境外乱や機械的な擾乱の差を抑え、これらの環境外乱や機械的な擾乱を共通雑音として容易に除去し、光周波数コムC1,C2のSN比を高くすることができる。さらに、レーザー増幅光L1,L2がデュアル光周波数コム生成光学系10A及びレーザー装置60Aを共有することによって、従来のように光周波数コムC1,C2を生成するモード同期レーザーを個別に用意する場合に比べて、デュアル光周波数コム生成光学系10A及びレーザー装置60Aの小型化を図ることができる。 The dual light frequency comb generation optical system 10A and the laser device 60A use laser lights S1 and S2 and laser amplified lights L1 and L2 whose polarization directions are different from each other. In the dual optical frequency comb generation optical system 10A and the laser device 60A, while making mode-locked lasers common, the refractive indices of the laser amplification lights L1 and L2 are made different from each other, and the resonator lengths of the laser amplification lights L1 and L2 are made different from each other. be able to. By this, it is possible to generate optical frequency combs C1 and C2 (see FIG. 2) having different repetition frequencies with one mode-locked laser. The environmental disturbance or mechanical disturbances received by the dual optical frequency comb generation optical system 10A and the laser device 60A by sharing the dual optical frequency comb generation optical system 10A and the laser device 60A as one mode-locked laser as the laser amplification lights L1 and L2 Common disturbances. By this, the difference between the environmental disturbance and the mechanical disturbance included in each of the optical frequency combs C1 and C2 is suppressed, and the environmental disturbance and the mechanical disturbance are easily removed as common noise, and the optical frequency comb C1 and C2 are eliminated. The SN ratio of C2 can be increased. Furthermore, when the laser amplified lights L1 and L2 share the dual optical frequency comb generation optical system 10A and the laser device 60A, when separately preparing mode-locked lasers that generate the optical frequency combs C1 and C2 as in the prior art. In comparison, the dual optical frequency comb generation optical system 10A and the laser device 60A can be miniaturized.
 デュアル光周波数コム生成光学系10A及びレーザー装置60Aでは、第1ループ光ファイバ30が第2ループ部32及び第3ループ部33で構成され、第2ループ部32及び第3ループ部33が連結部22によって連結されている。連結部22では、第2ループ部32をR1,R2方向の両方に沿って導波されたレーザー増幅光L1,L2が干渉する。位相差φに応じて強め合ったレーザー増幅光L1,L2は、R1方向のみに沿って第3ループ部33で周回する。したがって、連結部22及び第3ループ部33は単純なミラーのように機能する。デュアル光周波数コム生成光学系10A及びレーザー装置60Aでは、第3ループ部33を単純なミラーとして動作させることによって、非線形光学効果による位相シフトに影響されることなく、連結部22を介してレーザー増幅光L1,L2を偏波保持型光ファイバ32B,32Cの両方に戻すことができる。このことによって、レーザー増幅光L1,L2の位相差φによる干渉現象を生じさせることなく、R1方向に沿って偏波保持型光ファイバ33Cから連結部22に入射したレーザー増幅光L1,L2を偏波保持型光ファイバ32B、32Cの両方に導波させる。すなわち、第3ループ部33で周回したレーザー増幅光L1,L2を第2ループ部32の偏波保持型光ファイバ32B、32Cの両方に導波できる。したがって、デュアル光周波数コム生成光学系10Aの動作を安定させ、モード同期動作を良好に発生させることができる。 In the dual optical frequency comb generation optical system 10A and the laser device 60A, the first loop optical fiber 30 is constituted by the second loop portion 32 and the third loop portion 33, and the second loop portion 32 and the third loop portion 33 are connection portions 22 are linked. In the connecting portion 22, the laser amplified lights L1 and L2 which are guided along the second loop portion 32 in both the R1 and R2 directions interfere with each other. The laser amplification lights L1 and L2, which are intensified with each other according to the phase difference φ, circulates in the third loop section 33 only along the R1 direction. Therefore, the connection part 22 and the 3rd loop part 33 function like a simple mirror. In the dual optical frequency comb generation optical system 10A and the laser device 60A, by operating the third loop unit 33 as a simple mirror, the laser amplification is performed via the connecting unit 22 without being affected by the phase shift due to the nonlinear optical effect. The lights L1 and L2 can be returned to both of the polarization maintaining optical fibers 32B and 32C. By this, without causing the interference phenomenon by the phase difference φ of the laser amplification lights L1 and L2, the laser amplification lights L1 and L2 incident on the coupling portion 22 from the polarization maintaining optical fiber 33C along the R1 direction are polarized. The light is guided to both of the wave holding optical fibers 32B and 32C. That is, the laser amplified lights L1 and L2 circulated in the third loop portion 33 can be guided to both of the polarization maintaining optical fibers 32B and 32C of the second loop portion 32. Therefore, the operation of the dual optical frequency comb generation optical system 10A can be stabilized, and the mode synchronization operation can be favorably generated.
[計測装置の構成]
 本発明の第1実施形態の計測装置50の構成について説明する。図2に示すように、計測装置50は、デュアル光周波数コム生成光学系10Aを有するレーザー装置60A、偏波分離部52、偏波干渉部56、試料情報抽出部58を備えている。偏波保持型光ファイバ34の出射側の端部(他方の端部)は、偏波分離部52に接続されている。偏波干渉部56は、偏波分離部52で分離された光周波数コムC1,C2同士を干渉させる。試料情報抽出部58は、偏波干渉部56で干渉した光周波数コムC1,C2の干渉信号から試料の情報を抽出する。
[Configuration of measuring device]
The configuration of the measuring device 50 according to the first embodiment of the present invention will be described. As shown in FIG. 2, the measuring apparatus 50 includes a laser device 60A having a dual optical frequency comb generation optical system 10A, a polarization separation unit 52, a polarization interference unit 56, and a sample information extraction unit 58. The end (the other end) of the output side of the polarization maintaining optical fiber 34 is connected to the polarization separation unit 52. The polarization interference unit 56 causes the optical frequency combs C1 and C2 separated by the polarization separation unit 52 to interfere with each other. The sample information extraction unit 58 extracts information of the sample from the interference signal of the optical frequency combs C1 and C2 interfered by the polarization interference unit 56.
 偏波分離部52は、互いに偏光の向きが異なる光周波数コムC1,C2を分離するために、偏波保持型光ファイバ34から出射された光周波数コムC1,C2の進行方向の奥側に配置されている。偏波分離部52は、例えば偏波分離型の光ビームスプリッタで構成されている。偏波分離部52によって互いに分離された光周波数コムC1,C2の進路X35,X36のうち、光周波数コムC1の進路X35上に、試料Sが配置されている。試料Sは、計測装置50の測定対象である。光周波数コムC2の進路X36に沿って、進路X36を偏波干渉部56に向けて折り返すための偏波保持型のミラー57A,57Bが設けられている。 The polarization separation unit 52 is disposed at the far side in the traveling direction of the optical frequency combs C1 and C2 emitted from the polarization maintaining optical fiber 34 in order to separate the optical frequency combs C1 and C2 whose polarization directions are different from each other. It is done. The polarization separation unit 52 is configured of, for example, a polarization separation type light beam splitter. The sample S is disposed on the path X35 of the optical frequency comb C1 among the paths X35 and X36 of the optical frequency combs C1 and C2 separated from each other by the polarization separation unit 52. The sample S is a measurement target of the measuring device 50. Polarization maintaining mirrors 57A and 57B are provided along the path X36 of the optical frequency comb C2 for turning the path X36 toward the polarization interference unit 56.
 偏波干渉部56は、偏波分離部52で分離された光周波数コムC1,C2同士を干渉させる。偏波干渉部56は、試料Sの情報を含む光周波数コムC1(以下、光周波数コムC3とする)と光周波数コムC2とを干渉させるために、試料Sより光周波数コムC3の進行方向の奥側に配置されている。偏波干渉部56は、偏波分離型の光ビームスプリッタやハーフミラーで構成されている。 The polarization interference unit 56 causes the optical frequency combs C1 and C2 separated by the polarization separation unit 52 to interfere with each other. The polarization interference unit 56 performs an optical frequency comb C3 traveling direction from the sample S in order to cause the optical frequency comb C1 (hereinafter referred to as the optical frequency comb C3) including the information of the sample S to interfere with the optical frequency comb C2. It is arranged on the back side. The polarization interference unit 56 is configured of a polarization separation type light beam splitter or a half mirror.
 試料情報抽出部58は、偏波干渉部56で干渉した光周波数コムC1,C2の干渉信号から試料の情報を抽出する。試料情報抽出部58は、偏波干渉部56で光周波数コムC2,C3が互いに干渉することで発生するマルチヘテロダイン信号(干渉信号)の進行方向の奥側に配置されている。試料情報抽出部58は、マルチヘテロダイン信号から試料Sに関する情報を取得可能であって、一般に知られている光学系、例えば受光器で電気信号に変換する装置等で構成されている。 The sample information extraction unit 58 extracts information of the sample from the interference signal of the optical frequency combs C1 and C2 interfered by the polarization interference unit 56. The sample information extraction unit 58 is disposed on the far side in the traveling direction of the multiheterodyne signal (interference signal) generated by the optical frequency combs C2 and C3 interfering with each other in the polarization interference unit 56. The sample information extraction unit 58 is capable of acquiring information on the sample S from the multiheterodyne signal, and is configured of a generally known optical system, for example, a device that converts it into an electric signal by a light receiver.
[計測装置を用いた計測方法]
 計測装置50では、偏波保持型光ファイバ34から出射した光周波数コムC1,C2が偏波分離部52によって互いに異なる進路に進行するように分離される。光周波数コムC1は、進路X35に沿って進行し、試料Sを通過する。試料Sを通過する際に、光周波数コムC1に試料Sが有する光学的な情報が付加される。光周波数コムC2は偏波保持型のミラー57A,57Bによって折り返され、進路X35に沿って進行する。
[Measuring method using a measuring device]
In the measuring device 50, the optical frequency combs C1 and C2 emitted from the polarization maintaining optical fiber 34 are separated by the polarization separating unit 52 so as to travel on different paths. The optical frequency comb C1 travels along the path X35 and passes through the sample S. When passing through the sample S, optical information possessed by the sample S is added to the optical frequency comb C1. The optical frequency comb C2 is folded back by the polarization maintaining mirrors 57A and 57B and travels along the path X35.
 進路X35に沿って進行する光周波数コムC3と進路X36に沿って進行する光周波数コムC2は、偏波干渉部56で再び合わさり、互いに干渉する。光周波数コムC2,C3の干渉によって、マルチヘテロダイン信号が生成される。マルチヘテロダイン信号は進路X37に沿って進行し、試料情報抽出部58に入射する。図2に示すように、試料情報抽出部58において、マルチヘテロダイン信号は、例えば高速フーリエ変換(Fast Fourier Transform:FFT)によって、高周波数帯域のモード分解スペクトルに変換される。モード分解スペクトルの波形(図2に破線で示す波形)Wから、試料Sの光学的な情報が抽出される。モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔は、繰り返し周波数差Δfrepに相当する。 The optical frequency comb C3 traveling along the path X35 and the optical frequency comb C2 traveling along the path X36 are combined again in the polarization interference unit 56 and interfere with each other. The interference of the optical frequency combs C2, C3 generates a multiheterodyne signal. The multiheterodyne signal travels along the path X 37 and enters the sample information extraction unit 58. As shown in FIG. 2, in the sample information extraction unit 58, the multiheterodyne signal is converted into a mode decomposition spectrum of a high frequency band by, for example, Fast Fourier Transform (FFT). Optical information of the sample S is extracted from the waveform W (waveform indicated by a broken line in FIG. 2) of the mode decomposition spectrum. The frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum corresponds to the repetition frequency difference Δf rep .
[計測装置の作用効果]
 計測装置50では、偏波分離部52によって光周波数コムC1,C2の進路を分離し、光周波数コムC1に試料Sの光学的な情報を付加できる。偏波干渉部56では、光周波数コムC2,C3を互いに干渉させることによって、光周波数コムC2,C3に共通して含まれる環境外乱や機械的な擾乱を除去し、高周波数帯域で容易に観測可能なモード分解スペクトルを得ることができる。試料情報抽出部58では、得られたモード分解スペクトルのスペクトル分布の波形Wから試料Sの情報を抽出できる。したがって、本発明の計測装置50によれば、高SN比の光周波数コムC1,C2を用いるので、試料Sの情報を高精度に取得できる。計測装置50において光周波数コムC1,C2の発生に関する構成を共通化しているので、従来のように光周波数コムC1,C2を生成する光学系をそれぞれ個別のスペースに用意する必要がなく、計測装置50の小型化を図ることができる。
[Operation effect of measuring device]
In the measuring device 50, the polarization separation unit 52 separates the paths of the optical frequency combs C1 and C2, and can add optical information of the sample S to the optical frequency comb C1. The polarization interference unit 56 interferes with the optical frequency combs C2 and C3 to remove environmental disturbances and mechanical disturbances commonly included in the optical frequency combs C2 and C3, and allows easy observation in a high frequency band. Possible mode resolved spectra can be obtained. The sample information extraction unit 58 can extract the information of the sample S from the waveform W of the spectrum distribution of the obtained mode decomposition spectrum. Therefore, according to the measuring apparatus 50 of the present invention, since the optical frequency combs C1 and C2 having a high SN ratio are used, the information of the sample S can be acquired with high accuracy. Since the configuration relating to the generation of the optical frequency combs C1 and C2 is made common in the measuring device 50, it is not necessary to prepare optical systems for generating the optical frequency combs C1 and C2 in the respective spaces as in the prior art. 50 can be miniaturized.
(第2実施形態)
 本発明の第2実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。なお、第2実施形態以降の各実施形態に関する説明及び図面において、第1実施形態のデュアル光周波数コム生成光学系10A、レーザー装置60A及び計測装置50と共通する構成要素には同一の符号を付し、その説明を省略する。第2実施形態以降の各実施形態では、基本的に第1実施形態と異なる構成及び作用について説明し、説明する構成及び作用以外は第1実施形態と共通する。
Second Embodiment
A dual optical frequency comb generation optical system, a laser device and a measurement apparatus according to a second embodiment of the present invention will be described. In the description and drawings of the second and subsequent embodiments, the components common to the dual optical frequency comb generation optical system 10A, the laser device 60A, and the measuring device 50 of the first embodiment are designated by the same reference numerals. And I omit the explanation. The second and subsequent embodiments basically describe configurations and operations different from those of the first embodiment, and are common to the first embodiment except for the configurations and operations described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図3に示すように、第2実施形態のレーザー装置60Bは、レーザー装置60Aの偏波保持型光ファイバ6及び偏波分離素子12に替えて偏波保持型光ファイバ42を備えると共に、第1実施形態で説明したデュアル光周波数コム生成光学系10Aを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 3, the laser device 60B of the second embodiment includes a polarization maintaining optical fiber 42 in place of the polarization maintaining optical fiber 6 and the polarization separation element 12 of the laser device 60A, and The dual optical frequency comb generation optical system 10A described in the embodiment is provided.
 偏波保持型光ファイバ42は、偏波保持型光ファイバ6と同様に、内部で導波するレーザー光S1,S2の偏光の向きを保持可能な光ファイバである。光軸Aを中心とする偏波保持型光ファイバ42のクラッド77の偏光軸J42は、光軸Aを中心とする偏波保持型光ファイバ31のクラッド71の偏光軸J31に対して45°,135°,225°,315°のうち何れかの角度をなしている。偏光軸J42,J31は、断面視でコア80を挟んでクラッド77,71の各々に設けられている一対の応力付与部80,80の位置によって決まる。 Like the polarization maintaining optical fiber 6, the polarization maintaining optical fiber 42 is an optical fiber capable of maintaining the direction of polarization of the laser beams S1 and S2 guided internally. The polarization axis J42 of the cladding 77 of the polarization maintaining optical fiber 42 centered on the optical axis A is 45 ° to the polarization axis J31 of the cladding 71 of the polarization maintaining optical fiber 31 centered on the optical axis A, Any one of 135 °, 225 °, and 315 ° is formed. The polarization axes J42 and J31 are determined by the positions of the pair of stress applying portions 80 and 80 provided in each of the clads 77 and 71 with the core 80 interposed in a cross sectional view.
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
 レーザー装置60Bでは、光源5から発せられたレーザー光S0が偏波保持型光ファイバ42に導波される際に、複数の偏光の向きのレーザー光S0から偏光軸J42に沿う偏光の向きのレーザー光SX(図示略)が取り出される。レーザー光SXが偏波保持型光ファイバ31に導波されると、偏光軸J31によってレーザー光S1,S2に分離される。レーザー光S1,S2のみがデュアル光周波数コム生成光学系10Aの導入部21に入射する。
[Operation of dual optical frequency comb generation optical system and laser device]
In the laser device 60B, when the laser beam S0 emitted from the light source 5 is guided to the polarization maintaining optical fiber 42, the laser beam having a plurality of polarization directions from the laser beam S0 to the polarization direction along the polarization axis J42. Light SX (not shown) is taken out. When the laser beam SX is guided to the polarization maintaining optical fiber 31, it is split into laser beams S1 and S2 by the polarization axis J31. Only the laser beams S1 and S2 are incident on the introducing portion 21 of the dual optical frequency comb generating optical system 10A.
 導入部21を介してデュアル光周波数コム生成光学系10Aに導入されたレーザー光S1,S2の導波及びレーザー増幅光L1,L2の発生等は、第1実施形態で説明した内容と同様である。偏波保持型光ファイバ34からは、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が得られる。 The guiding of the laser beams S1 and S2 introduced into the dual optical frequency comb generation optical system 10A through the introducing unit 21 and the generation of the laser amplified beams L1 and L2 are the same as the contents described in the first embodiment. . From the polarization maintaining optical fiber 34, optical frequency combs C1 and C2 (see FIG. 2) having mutually different repetition frequencies are obtained.
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Bは、デュアル光周波数コム生成光学系10Aを有するので、レーザー装置60Aと同様の効果を奏する。また、レーザー装置60Bでは、偏波保持型光ファイバ42,31の各々の偏光軸J42,J31を光軸Aに直交する断面において互いに45°(又は135°,225°,315°)をなすように傾けるので、偏波分離素子12を使わずにレーザー光LXをレーザーS1,S2に分けることができる。例えば、光源5を構成する半導体レーザーの出射口に偏波保持型光ファイバ42が直接接続されていれば、偏光軸J42を偏光軸J31に対して光軸Aを中心に傾けた状態で、偏波保持型光ファイバ42,31の端部を融着等により接続できる。このような構成によって、偏波分離素子12を使わずに、レーザー装置60Bの構成をレーザー装置60Aの構成に比べて簡易にすることができる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60B has the dual optical frequency comb generation optical system 10A, and therefore exhibits the same effect as the laser device 60A. In the laser device 60B, the polarization axes J42 and J31 of the polarization maintaining optical fibers 42 and 31 are mutually 45 ° (or 135 °, 225 °, 315 °) in a cross section orthogonal to the optical axis A The laser beam LX can be divided into the lasers S1 and S2 without using the polarization separation element 12. For example, if the polarization maintaining optical fiber 42 is directly connected to the emission port of the semiconductor laser constituting the light source 5, the polarization axis J42 is polarized with the polarization axis J31 being inclined with respect to the optical axis A. The ends of the wave holding optical fibers 42 and 31 can be connected by fusion or the like. With such a configuration, the configuration of the laser device 60B can be simplified as compared with the configuration of the laser device 60A without using the polarization separation element 12.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第2実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図3に示すレーザー装置60Bを備えている。レーザー装置以外の第2実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Bではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第2実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement device of the second embodiment includes a laser device 60B shown in FIG. 3 instead of the laser device 60A of the measurement device 50 shown in FIG. The configuration of the measurement device of the second embodiment other than the laser device is the same as that of the measurement device 50. In the laser device 60B, the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A. Therefore, the measuring device of the second embodiment operates in the same manner as the measuring device 50. It produces the same effect as
(第3実施形態)
 次に、本発明の第3実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
Third Embodiment
Next, a dual optical frequency comb generation optical system, a laser apparatus and a measurement apparatus according to a third embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図4に示すように、第3実施形態のレーザー装置60Cは、レーザー装置60Aの1台の光源5、偏波保持型光ファイバ6及び偏波分離素子12に替えて、2台の光源5A,5B、2本の偏波保持型光ファイバ6A,6B及び偏波結合素子14を備えると共に、第1実施形態のデュアル光周波数コム生成光学系10Aを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 4, the laser device 60C of the third embodiment is replaced by one light source 5, a polarization maintaining optical fiber 6, and a polarization separation element 12 of the laser device 60A, and two light sources 5A, 5B, two polarization maintaining optical fibers 6A and 6B, and a polarization coupling element 14 are provided, and the dual optical frequency comb generation optical system 10A of the first embodiment is provided.
 光源5A,5Bは、光源5と同様、半導体レーザーで構成されている。光源5Aはレーザー光S1のみを発し、光源5Bはレーザー光S2のみを発する。偏波結合素子14は、異なる経路としての偏波保持型光ファイバ6A,6Bから入射したレーザー光S1,S2を結合し、結合したレーザー光S1,S2を共通の偏波保持型光ファイバ31に出射する。偏波結合素子14は、例えば偏光ビームスプリッタで構成されている。 Similar to the light source 5, the light sources 5A and 5B are composed of semiconductor lasers. The light source 5A emits only the laser beam S1, and the light source 5B emits only the laser beam S2. The polarization coupling element 14 couples the laser beams S1 and S2 incident from the polarization maintaining optical fibers 6A and 6B as different paths, and combines the coupled laser beams S1 and S2 into a common polarization maintaining optical fiber 31. I will emit. The polarization coupling element 14 is configured of, for example, a polarization beam splitter.
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
 レーザー装置60Cでは、光源5Aから発せられたレーザー光S1が偏波保持型光ファイバ6Aに導波されると共に、光源5Bから発せられたレーザー光S2が偏波保持型光ファイバ6Bに導波される。レーザー光S1,S2が偏波保持型光ファイバ6A,6Bから偏波結合素子14に入射すると、互いに結合する。結合したレーザー光S1,S2は、偏波保持型光ファイバ31を介して、デュアル光周波数コム生成光学系10Aの導入部21に入射する。
[Operation of dual optical frequency comb generation optical system and laser device]
In the laser device 60C, the laser light S1 emitted from the light source 5A is guided to the polarization maintaining optical fiber 6A, and the laser light S2 emitted from the light source 5B is guided to the polarization maintaining optical fiber 6B. Ru. When the laser beams S1 and S2 enter the polarization coupling element 14 from the polarization maintaining optical fibers 6A and 6B, they are mutually coupled. The coupled laser beams S1 and S2 are incident on the introduction portion 21 of the dual optical frequency comb generation optical system 10A through the polarization maintaining optical fiber 31.
 導入部21を介してデュアル光周波数コム生成光学系10Aに導入されたレーザー光S1,S2の導波は、第1実施形態で説明した内容と同様である。偏波保持型光ファイバ34からは、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が得られる。 The guiding of the laser beams S1 and S2 introduced into the dual optical frequency comb generation optical system 10A through the introduction unit 21 is the same as the contents described in the first embodiment. From the polarization maintaining optical fiber 34, optical frequency combs C1 and C2 (see FIG. 2) having mutually different repetition frequencies are obtained.
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Cは、デュアル光周波数コム生成光学系10Aを有するので、レーザー装置60Aと同様の効果を奏する。また、レーザー装置60Cでは、レーザー光S1,S2を互いに異なる光源で発生させ、互いに異なる偏波保持型光ファイバで導波させ、偏波結合素子14で結合し、レーザー光L1,L2を得る。このことによって、レーザー光S1,S2を個別に制御し、光周波数コムC1,C2の特性を容易且つ高精度に調整できる。例えば、光周波数コムC1の繰り返し周波数frep1あるいは光周波数コムC2の繰り返し周波数frep2のみを変調及び制御することや、光周波数コムC1又は光周波数コムC2のみの光周波数の位相を制御できる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60C has the dual optical frequency comb generation optical system 10A, and therefore exhibits the same effect as the laser device 60A. In the laser device 60C, the laser beams S1 and S2 are generated by different light sources, guided by different polarization maintaining optical fibers, and coupled by the polarization coupling element 14 to obtain laser beams L1 and L2. By this, the laser beams S1 and S2 can be individually controlled, and the characteristics of the optical frequency combs C1 and C2 can be easily and accurately adjusted. For example, and modulating and controlling only the repetition frequency f rep2 of repetition frequency f rep1 or optical frequency comb C2 of the optical frequency comb C1, it can control the phase of the optical frequency of only the optical frequency comb C1 or optical frequency comb C2.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第3実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図4に示すレーザー装置60Cを備えている。レーザー装置以外の第3実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Cではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第3実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement device of the third embodiment includes a laser device 60C shown in FIG. 4 in place of the laser device 60A of the measurement device 50 shown in FIG. The configuration of the measurement device of the third embodiment other than the laser device is the same as that of the measurement device 50. In the laser device 60C, since the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 similarly to the laser device 60A, the measuring device of the third embodiment operates in the same manner as the measuring device 50. It produces the same effect as
(第4実施形態)
 次に、本発明の第4実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
Fourth Embodiment
Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to a fourth embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図5に示すように、第4実施形態のレーザー装置60Dにおける光源5から導入部21までの構成は、第1実施形態で説明したレーザー装置60Aにおける光源5から導入部21までの構成と同様である。レーザー装置60Dは、第1実施形態で説明したデュアル光周波数コム生成光学系10Aに替えて、デュアル光周波数コム生成光学系10Bを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 5, the configuration from the light source 5 to the introducing unit 21 in the laser device 60D of the fourth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser device 60A described in the first embodiment. is there. The laser device 60D includes a dual light frequency comb generation optical system 10B in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
 デュアル光周波数コム生成光学系10Bの第3ループ部33の偏波保持型光ファイバ33Bには、位相変調部72が組み込まれている。位相変調部72は、第3ループ部33で導波されるレーザー増幅光L1,L2の位相を変調できる。位相変調部72は、R1方向の手前側に設けられた電気光学変調器73Aと、R1方向の奥側に設けられた電気光学変調器73Bと、を備えている。偏波保持型光ファイバ33Bの端部と電気光学変調器73A,73Bとの間には、それぞれ出射端子81、コリメータレンズ82が設けられている。電気光学変調器73A,73Bの各々には、第3ループ部33の外部から、増幅器83を介して高周波発生器84から高パワーの高周波電気信号が供給される。電気光学変調器73Aは、偏光の向きが第1方向であるレーザー増幅光L1の位相のみを変調できる。電気光学変調器73Bは、偏光の向きが第2方向であるレーザー増幅光L2の位相のみを変調できる。 A phase modulation unit 72 is incorporated in the polarization maintaining optical fiber 33B of the third loop unit 33 of the dual optical frequency comb generation optical system 10B. The phase modulation unit 72 can modulate the phases of the laser amplification lights L1 and L2 guided by the third loop unit 33. The phase modulation unit 72 includes an electro-optical modulator 73A provided on the near side in the R1 direction, and an electro-optical modulator 73B provided on the far side in the R1 direction. A light emission terminal 81 and a collimator lens 82 are provided between the end of the polarization maintaining optical fiber 33B and the electro- optic modulators 73A and 73B, respectively. A high power high frequency electric signal is supplied from the high frequency generator 84 to each of the electro- optic modulators 73A and 73B from the outside of the third loop unit 33 via the amplifier 83. The electro-optic modulator 73A can modulate only the phase of the laser amplification light L1 whose polarization direction is the first direction. The electro-optic modulator 73B can modulate only the phase of the laser amplified light L2 whose polarization direction is the second direction.
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
 デュアル光周波数コム生成光学系10B及びレーザー装置60Dでは、第1実施形態で説明した内容と同様の導波及び動作原理によって、偏波保持型光ファイバ34からは、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が得られる。
[Operation of dual optical frequency comb generation optical system and laser device]
In the dual optical frequency comb generation optical system 10B and the laser apparatus 60D, optical frequency combs having different repetition frequencies from the polarization maintaining optical fiber 34 according to the same guiding and operation principle as the contents described in the first embodiment. C1 and C2 (see FIG. 2) are obtained.
 デュアル光周波数コム生成光学系10B及びレーザー装置60Dでは、R1,R2方向に沿って第3ループ部33に導波されたレーザー増幅光L1,L2のうち、R1方向に沿って位相変調部72に入射したレーザー増幅光L1の光路長が電気光学変調器73Aによって変化する。また、R1方向に沿って位相変調部72に入射したレーザー増幅光L2の光路長は、電気光学変調器73Bによって変化する。すなわち、電気光学変調器73A,73Bによるレーザー増幅光L1の光路長の変化量によって、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが変化する。 In the dual optical frequency comb generation optical system 10B and the laser device 60D, of the laser amplified lights L1 and L2 guided to the third loop unit 33 along the R1 and R2 directions, the phase modulation unit 72 is generated along the R1 direction. The optical path length of the incident laser amplified light L1 is changed by the electro-optical modulator 73A. The optical path length of the laser amplification light L2 incident on the phase modulation unit 72 along the R1 direction is changed by the electro-optical modulator 73B. That is, the resonator length and the optical path length difference ΔL of the laser amplified lights L1 and L2 change according to the amount of change in the optical path length of the laser amplified light L1 by the electro- optic modulators 73A and 73B.
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Dは、デュアル光周波数コム生成光学系10Bを有するので、レーザー装置60Aと同様の効果を奏する。また、デュアル光周波数コム生成光学系10B及びレーザー装置60Cでは、電気光学変調器73Aによるレーザー増幅光L1の光路長の変化量と電気光学変調器73Bによるレーザー増幅光L2の光路長の変化量との差を調整することによって、レーザー増幅光L1,L2の共振器長及び光路長差ΔLを高精度に制御できる。レーザー増幅光L1,L2の共振器長及び光路長差ΔLを高精度に制御することで、光周波数コムC1の繰り返し周波数frep1、又は光周波数コムC2の繰り返し周波数frep2のみを容易に制御できる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60D has the dual optical frequency comb generation optical system 10B, and therefore exhibits the same effect as the laser device 60A. Further, in the dual optical frequency comb generation optical system 10B and the laser device 60C, the amount of change in the optical path length of the laser amplified light L1 by the electro-optical modulator 73A and the amount of change in the optical path length of the laser amplified light L2 by the electro-optical modulator 73B The resonator length of the laser amplification lights L1 and L2 and the optical path length difference ΔL can be controlled with high accuracy by adjusting the difference between By controlling the resonator length of the laser amplified lights L1 and L2 and the optical path length difference ΔL with high precision, it is possible to easily control only the repetition frequency f rep1 of the optical frequency comb C1 or the repetition frequency f rep2 of the optical frequency comb C2 .
[計測装置の構成、動作、及び作用効果]
 図示していないが、本発明の第4実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図5に示すレーザー装置60Dを備えている。レーザー装置以外の第4実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Dではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第4実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。レーザー装置60Dによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易に制御できるので、モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔を容易に制御すると共に、第4実施形態の計測装置の測定分解能を容易に調整できる。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the fourth embodiment of the present invention includes a laser apparatus 60D shown in FIG. 5 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement device of the fourth embodiment other than the laser device is the same as that of the measurement device 50. In the laser device 60D, since the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A, the measuring device of the fourth embodiment operates in the same manner as the measuring device 50. It produces the same effect as According to the laser device 60D, since the repetition frequency difference Δf rep between the optical frequency combs C1 and C2 can be easily controlled, the frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum can be easily controlled. The measurement resolution of the measurement apparatus of the fourth embodiment can be easily adjusted.
(第5実施形態)
 次に、本発明の第5実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
Fifth Embodiment
Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to a fifth embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図6に示すように、第5実施形態のレーザー装置60Eにおける光源5から導入部21までの構成は、第1実施形態で説明したレーザー装置60Aにおける光源5から導入部21までの構成と同様である。レーザー装置60Eは、第1実施形態で説明したデュアル光周波数コム生成光学系10Aに替えて、デュアル光周波数コム生成光学系10Cを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 6, the configuration from the light source 5 to the introducing unit 21 in the laser device 60E of the fifth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser device 60A described in the first embodiment. is there. The laser apparatus 60E includes a dual light frequency comb generation optical system 10C in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
 デュアル光周波数コム生成光学系10Cは、少なくとも第4実施形態で説明したデュアル光周波数コム生成光学系10Bの構成を備えている。加えて、デュアル光周波数コム生成光学系10Cの第2ループ部32の偏波保持型光ファイバ32Cには、偏波多重型の非相反位相シフト部90が組み込まれている。ここで、「偏波多重型」であるとは、偏光の向きが第1方向であるレーザー増幅光L1と、偏光の向きが第2方向であるレーザー増幅光L2の両方に対して作用することを示す。前述の「非相反」であるとは、R1方向に導波されるレーザー増幅光L1,L2と、R2方向に導波されるレーザー増幅光L1,L2の両方に対して個別に作用することを示す。すなわち、非相反位相シフト部90は、R1方向に導波されるレーザー増幅光L1,L2とR2方向に導波されるレーザー増幅光L1,L2との位相差φをシフトさせることができる。 The dual optical frequency comb generation optical system 10C has at least the configuration of the dual optical frequency comb generation optical system 10B described in the fourth embodiment. In addition, a polarization multiplexing non-reciprocal phase shift unit 90 is incorporated in the polarization maintaining optical fiber 32C of the second loop unit 32 of the dual optical frequency comb generation optical system 10C. Here, “polarization multiplexed type” means that it acts on both the laser amplification light L1 whose polarization direction is the first direction and the laser amplification light L2 whose polarization direction is the second direction. Show. The above-mentioned "non-reciprocal" refers to individually acting on both the laser amplified lights L1 and L2 guided in the R1 direction and the laser amplified lights L1 and L2 guided in the R2 direction. Show. That is, the non-reciprocal phase shift unit 90 can shift the phase difference φ between the laser amplification lights L1 and L2 guided in the R1 direction and the laser amplification lights L1 and L2 guided in the R2 direction.
 図7及び図8は、非相反位相シフト部90の第1構成例及び第2構成例を示す。図7に示すように、第1構成例の非相反位相シフト部90Aは、2台のファラデーローテータ91,92と、1/4波長板(quarter-wave plate:QWP)93と、を備えている。非相反位相シフト部90Aでは、基台98のR1方向の手前側及び奥側の端部に、偏波保持型光ファイバ32Cに接続されたコリメータ100A,100Bが設けられている。R1方向に沿って、基台98に、コリメータ100A,100Bの間に、ファラデーローテータ91、QWP93、ファラデーローテータ92が間隔をあけてこの順に配置されている。 7 and 8 show a first configuration example and a second configuration example of the non-reciprocal phase shift unit 90. FIG. As shown in FIG. 7, the nonreciprocal phase shift unit 90A of the first configuration example includes two Faraday rotators 91 and 92, and a quarter-wave plate (QWP) 93. . In the non-reciprocal phase shift unit 90A, collimators 100A and 100B connected to the polarization maintaining optical fiber 32C are provided at the front and back ends of the base 98 in the R1 direction. A Faraday rotator 91, a QWP 93, and a Faraday rotator 92 are arranged in this order along the R1 direction between the collimators 100A and 100B at intervals in the base 98.
 ファラデーローテータ91は、R1方向に沿って入射するレーザー増幅光L1,L2の偏光の向きを所定の方向に回転させる。所定の方向は、例えば、第1方向から光軸Aを中心に所定の角度θだけ回転させた方向である。ファラデーローテータ91は、R2方向に沿って入射するレーザー増幅光L1,L2の偏光の向きを所定の逆方向に回転させる。所定の逆方向は、例えば、第1方向から光軸Aを中心に所定の角度θだけR1方向からの入射時とは逆側に回転させた方向である。 The Faraday rotator 91 rotates the polarization direction of the laser amplified lights L1 and L2 incident along the R1 direction in a predetermined direction. The predetermined direction is, for example, a direction rotated about the optical axis A by a predetermined angle θ from the first direction. The Faraday rotator 91 rotates the polarization direction of the laser amplified lights L1 and L2 incident along the R2 direction in a predetermined reverse direction. The predetermined reverse direction is, for example, a direction rotated from the first direction around the optical axis A in the opposite direction to that at the time of incidence from the R1 direction by the predetermined angle θ.
 ファラデーローテータ92は、R2方向に沿って入射するレーザー増幅光L1,L2の偏光の向きを所定の方向に回転させる。所定の方向は、例えば、第1方向から光軸Aを中心に所定の角度θだけ回転させた方向である。ファラデーローテータ92は、R1方向に沿って入射するレーザー増幅光L1,L2の偏光の向きを所定の逆方向に回転させる。所定の逆方向は、例えば、第1方向から光軸Aを中心に所定の角度θだけR1方向からの入射時とは逆側に回転させた方向である。 The Faraday rotator 92 rotates the polarization direction of the laser amplified lights L1 and L2 incident along the R2 direction in a predetermined direction. The predetermined direction is, for example, a direction rotated about the optical axis A by a predetermined angle θ from the first direction. The Faraday rotator 92 rotates the polarization direction of the laser amplified lights L1 and L2 incident along the R1 direction in a predetermined reverse direction. The predetermined reverse direction is, for example, a direction rotated from the first direction around the optical axis A in the opposite direction to that at the time of incidence from the R1 direction by the predetermined angle θ.
 非相反位相シフト部90Aでは、R1方向に沿って偏波保持型光ファイバ32Cを通ってコリメータ100Aからファラデーローテータ91に入射したレーザー増幅光L1,L2の偏光の向きは、ファラデーローテータ91によって第1方向及び第2方向から第3方向及び第4方向に変更される。偏光の向きが第3方向及び第4方向になったレーザー増幅光L1,L2は、QWP93に入射する。R1方向に沿ってQWP93から出射されてファラデーローテータ92に入射したレーザー増幅光L1,L2の偏光の向きは、ファラデーローテータ92によって第3方向から第1方向に、及び、第4方向から第2方向に戻る。ファラデーローテータ92を通過したレーザー増幅光L1,L2は、コリメータ100Bから偏波保持型光ファイバ32Cに導波される。 In the nonreciprocal phase shift unit 90A, the polarization direction of the laser amplified lights L1 and L2 incident on the Faraday rotator 91 from the collimator 100A through the polarization maintaining optical fiber 32C along the R1 direction is firstly determined by the Faraday rotator 91. The direction and the second direction are changed to the third direction and the fourth direction. The laser amplified lights L1 and L2 whose polarization directions are the third and fourth directions enter the QWP 93. The direction of polarization of the laser amplified light L1 and L2 emitted from the QWP 93 along the R1 direction and incident on the Faraday rotator 92 is from the third direction to the first direction and from the fourth direction to the second direction by the Faraday rotator 92. Return to The laser amplified lights L1 and L2 having passed through the Faraday rotator 92 are guided from the collimator 100B to the polarization maintaining optical fiber 32C.
 非相反位相シフト部90Aにおいて、R2方向に沿って偏波保持型光ファイバ32Cを通ってコリメータ100Bからファラデーローテータ92に入射したレーザー増幅光L1,L2の偏光の向きは、先にファラデーローテータ92によってR1方向とは逆に回転する。この際、QWP93の結晶軸をR1方向の偏光の向きに合わせておけば、R2方向に沿って進行するレーザー増幅光L1,L2に対して相対的な位相差90°を与えることができる。したがって、QWP93を通過した後に、ファラデーローテータ91によって偏光の向きが戻される。QWP93の結晶軸の向きは、例えばレーザー増幅光L1,L2の第1方向/第2方向から第3方向/第4方向とは逆に変更された向きに合わせることができる。 In the nonreciprocal phase shift unit 90A, the direction of polarization of the laser amplified lights L1 and L2 incident on the Faraday rotator 92 from the collimator 100B through the polarization maintaining optical fiber 32C along the R2 direction is first determined by the Faraday rotator 92. It rotates in the opposite direction to the R1 direction. At this time, if the crystal axis of QWP 93 is aligned with the direction of polarization in the R1 direction, a relative phase difference of 90 ° can be given to the laser amplified lights L1 and L2 traveling along the R2 direction. Therefore, after passing through the QWP 93, the polarization direction is returned by the Faraday rotator 91. The orientation of the crystal axis of the QWP 93 can be adjusted, for example, to the direction changed from the first direction / second direction of the laser amplification lights L1 and L2 to the third direction / the fourth direction.
 非相反位相シフト部90Aによれば、偏波保持型光ファイバ32CからR1方向に沿って入射するレーザー増幅光L1,L2と、R2方向に沿って入射するレーザー増幅光L1,L2の両方に、位相差オフセットを付与できる。位相差オフセットは、QWP93の特性に基づいている。 According to the nonreciprocal phase shift unit 90A, both of the laser amplified lights L1 and L2 incident along the R1 direction from the polarization maintaining optical fiber 32C and the laser amplified lights L1 and L2 incident along the R2 direction A phase difference offset can be applied. The phase difference offset is based on the characteristics of QWP 93.
 ファラデーローテータ91,92の間に配置される波長板の数は、図7では1であるが、変更されてもよい。QWP93のR1方向の奥側に、すなわち、QWP93とファラデーローテータ92との間に、1/2波長板(half-wave plate:HWP)と、QWP93とは異なるQWPが設けられてもよい。 The number of wave plates disposed between the Faraday rotators 91 and 92 is one in FIG. 7, but may be changed. A half-wave plate (HWP) and a QWP different from the QWP 93 may be provided on the far side of the QWP 93 in the R1 direction, that is, between the QWP 93 and the Faraday rotator 92.
 図8に示すように、第2構成例の非相反位相シフト部90Bは、4台のファラデーローテータ91A,91B,92A,92B、2つのQWP93A,93Bを備えている。ファラデーローテータ91A,91Bは、ファラデーローテータ91と同様に機能する。ファラデーローテータ92A,92Bは、ファラデーローテータ92と同様に機能する。QWP93A,93Bは、QWP93と同様に機能する。 As shown in FIG. 8, the non-reciprocal phase shift unit 90B of the second configuration example includes four Faraday rotators 91A, 91B, 92A, 92B, and two QWPs 93A, 93B. The Faraday rotators 91A and 91B function in the same manner as the Faraday rotator 91. The Faraday rotators 92A and 92B function in the same manner as the Faraday rotator 92. The QWPs 93A and 93B function in the same manner as the QWP 93.
 非相反位相シフト部90Bでは、第1構成例の非相反位相シフト部90Aにおけるファラデーローテータ91、QWP93、及び、ファラデーローテータ92の一連の構成が並列に設けられている。基台98には、R1方向に沿って、コリメータ100A,100Bの間に、第1系列としてファラデーローテータ91A、QWP93A、ファラデーローテータ92Aが互いに間隔をあけてこの順に配置されている。コリメータ100A,100Bの間には、第1系列とは異なる位置に、R1方向に沿って、第2系列としてファラデーローテータ91B、QWP93B、ファラデーローテータ92Bが間隔をあけてこの順に配置されている。第1系統において、ファラデーローテータ91AのR1方向の手前側には、偏波分離結合素子97Aが設けられている。ファラデーローテータ92AのR1方向の奥側には、偏波分離結合素子97Bが設けられている。第2系統において、ファラデーローテータ91BのR1方向の手前側には、偏波保持型のミラー99Aが設けられている。ファラデーローテータ92BのR1方向の奥側には、偏波保持型のミラー99Bが設けられている。 In the nonreciprocal phase shift unit 90B, a series of configurations of the Faraday rotator 91, the QWP 93, and the Faraday rotator 92 in the nonreciprocal phase shift unit 90A of the first configuration example are provided in parallel. In the base 98, along the R1 direction, as a first series, the Faraday rotator 91A, the QWP 93A, and the Faraday rotator 92A are arranged in this order between the collimators 100A and 100B at an interval. Between the collimators 100A and 100B, the Faraday rotator 91B, the QWP 93B, and the Faraday rotator 92B as the second series are arranged in this order at intervals different from the first series along the R1 direction. In the first system, a polarization separation coupling element 97A is provided on the near side in the R1 direction of the Faraday rotator 91A. A polarization splitting / coupling element 97B is provided on the far side of the Faraday rotator 92A in the R1 direction. In the second system, a polarization maintaining mirror 99A is provided on the near side in the R1 direction of the Faraday rotator 91B. A polarization maintaining mirror 99B is provided on the far side in the R1 direction of the Faraday rotator 92B.
 非相反位相シフト部90Bでは、R1方向に沿ってコリメータ100Aからファラデーローテータ91に入射したレーザー増幅光L1,L2は、互いの偏光の向きの違いに基づいて偏波分離結合素子97Aによって分離される。レーザー増幅光L1,L2の一方のレーザー増幅光L1は、偏波分離結合素子97Aから第1系統に向けて進行する。レーザー増幅光L1は、ファラデーローテータ91A、QWP93A、ファラデーローテータ92Aをこの順に通過し、QWP93Aの特性に基づく位相シフトを受ける。偏波分離結合素子97Aによって分離されたレーザー増幅光L2は、ミラー99Aによって折り返されて第2系統に向けて進行し、ファラデーローテータ91B、QWP93B、ファラデーローテータ92Bをこの順に通過し、QWP93B、の特性に基づく位相シフトを受ける。ファラデーローテータ92Bから出射されたレーザー増幅光L2は、ミラー99Bによって偏波分離結合素子97Bに折り返される。偏波分離結合素子97Bに入射したレーザーL1,L2は、各々の偏光の向きを第1方向又は第2方向に維持しつつ、結合され、コリメータ100BからR1方向の奥側の偏波保持型光ファイバ32Cに入射する。 In the nonreciprocal phase shift unit 90B, the laser amplified lights L1 and L2 incident on the Faraday rotator 91 from the collimator 100A along the R1 direction are separated by the polarization splitting / coupling element 97A based on the difference in the direction of polarization of each other. . One of the laser amplification lights L1 of the laser amplification lights L1 and L2 travels from the polarization splitting / coupling element 97A toward the first system. The laser amplification light L1 passes through the Faraday rotator 91A, the QWP 93A, and the Faraday rotator 92A in this order, and receives a phase shift based on the characteristics of the QWP 93A. The laser amplified light L2 separated by the polarization separation coupling element 97A is turned back by the mirror 99A and travels toward the second system, and passes through the Faraday rotator 91B, QWP 93B, and Faraday rotator 92B in this order, and the characteristics of the QWP 93B Subject to phase shift based on The laser amplification light L2 emitted from the Faraday rotator 92B is folded back to the polarization separation coupling element 97B by the mirror 99B. The lasers L1 and L2 incident on the polarization separation coupling element 97B are coupled while maintaining the direction of each polarization in the first direction or the second direction, and the polarization maintaining light at the back side in the R1 direction from the collimator 100B. It enters the fiber 32C.
 非相反位相シフト部90Bにおいて、R2方向に沿ってコリメータ100Bから偏波分離結合素子97Bに入射したレーザー増幅光L1,L2は、進行方向が逆になる点を除き、R1方向に沿って進行しつつ非線形位相シフトを受けるレーザー増幅光L1,L2と同様に、非線形位相シフトを受ける。 In the nonreciprocal phase shift unit 90B, the laser amplified lights L1 and L2 incident on the polarization separation / combination element 97B from the collimator 100B along the R2 direction travel along the R1 direction except that the traveling directions are reversed. However, nonlinear phase shift is received similarly to the laser amplified lights L1 and L2 which receive nonlinear phase shift.
 非相反位相シフト部90Bによれば、偏波保持型光ファイバ32CからR1方向に沿って入射するレーザー増幅光L1と、R2方向に沿って入射するレーザー増幅光L1の両方に、QWP93Aの特性に基づく位相シフトを付与できる。また、偏波保持型光ファイバ32CからR1方向に沿って入射するレーザー増幅光L2と、R2方向に沿って入射するレーザー増幅光L2の両方に、QWP93Bの特性に基づく位相差にオフセットを付与できる。非相反位相シフト部90Bでは、レーザー増幅光L1,L2に対して個別に位相シフトを付与できるので、非相反位相シフト部90Aに比べて光周波数コムC1,C2の繰り返し周波数差Δfrepを高精度に制御できる。 According to the nonreciprocal phase shift unit 90B, the characteristics of the QWP 93A are applied to both the laser amplified light L1 incident along the R1 direction from the polarization maintaining optical fiber 32C and the laser amplified light L1 incident along the R2 direction. Based on the phase shift. Further, an offset can be given to the phase difference based on the characteristics of the QWP 93B in both the laser amplified light L2 incident from the polarization maintaining optical fiber 32C along the R1 direction and the laser amplified light L2 incident along the R2 direction. . Since the non-reciprocal phase shift unit 90B can individually apply a phase shift to the laser amplified lights L1 and L2, the repetition frequency difference Δf rep of the optical frequency combs C1 and C2 is highly accurate compared to the non-reciprocal phase shift unit 90A. Can be controlled.
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
 デュアル光周波数コム生成光学系10C及びレーザー装置60Eでは、第4実施形態で説明した内容と同様の導波及び動作原理によって、偏波保持型光ファイバ34からは、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が得られる。但し、デュアル光周波数コム生成光学系10C及びレーザー装置60Eでは、R1,R2方向に沿って第2ループ部32に導波されたレーザー増幅光L1,L2が非相反位相シフト部90によって非線形位相シフトを受ける。
[Operation of dual optical frequency comb generation optical system and laser device]
In the dual optical frequency comb generation optical system 10C and the laser apparatus 60E, optical frequency combs having different repetition frequencies from the polarization maintaining optical fiber 34 according to the same guiding and operation principle as the contents described in the fourth embodiment. C1 and C2 (see FIG. 2) are obtained. However, in the dual optical frequency comb generation optical system 10C and the laser 60E, the non-reciprocal phase shift unit 90 causes the non-reciprocal phase shift unit 90 to nonlinearly shift the laser amplified lights L1 and L2 guided to the second loop unit 32 along the R1 and R2 directions. Receive
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Eは、デュアル光周波数コム生成光学系10Cを有するので、レーザー装置60Dと同様の効果を奏する。デュアル光周波数コム生成光学系10C及びレーザー装置60Eでは、非相反位相シフト部90を用いてレーザー増幅光L1,L2への非線形位相シフト量を調整することによって、レーザー増幅光L1,L2の共振器長及び光路長差ΔLを制御できる。したがって、デュアル光周波数コム生成光学系10C及びレーザー装置60Eによれば、非相反位相シフト部90を用いて、レーザー増幅光L1,L2の共振器長及び光路長差ΔLを制御し、光周波数コムC1,C2の繰り返し周波数差Δfrepを調整できる。非相反位相シフト部90として非相反位相シフト部90Bを用いてレーザー増幅光L1,L2の共振器長及び光路長差ΔLを個別に制御すれば、光周波数コムC1,C2の繰り返し周波数差Δfrepを細かく調整できる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60E has the dual optical frequency comb generation optical system 10C, and therefore exhibits the same effect as the laser device 60D. In the dual optical frequency comb generation optical system 10C and the laser apparatus 60E, the nonreciprocal phase shift unit 90 is used to adjust the nonlinear phase shift amount to the laser amplified lights L1 and L2 to obtain resonators of the laser amplified lights L1 and L2. The length and the optical path length difference ΔL can be controlled. Therefore, according to the dual optical frequency comb generation optical system 10C and the laser device 60E, the resonator length and the optical path length difference ΔL of the laser amplified lights L1 and L2 are controlled by using the nonreciprocal phase shift unit 90, and the optical frequency comb The repetition frequency difference Δf rep of C1 and C2 can be adjusted. If the non-reciprocal phase shift unit 90B is used as the non-reciprocal phase shift unit 90 to individually control the resonator length and the optical path length difference ΔL of the laser amplified lights L1 and L2, the repetition frequency difference Δf rep of the optical frequency combs C1 and C2 Can be finely adjusted.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第5実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図6に示すレーザー装置60Eを備えている。レーザー装置以外の第5実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Eではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られる。このことによって、第5実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。レーザー装置60Eによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易に制御できる。したがって、モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔を容易に制御すると共に、第5実施形態の計測装置の測定分解能を容易に且つ高精度に調整できる。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the fifth embodiment includes a laser apparatus 60E shown in FIG. 6 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement device of the fifth embodiment other than the laser device is the same as that of the measurement device 50. In the laser device 60E, optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A. By this, the measuring apparatus of 5th Embodiment operate | moves similarly to the measuring apparatus 50, and there exists an effect similar to the measuring apparatus 50. FIG. According to the laser device 60E, the repetition frequency difference Δf rep between the optical frequency combs C1 and C2 can be easily controlled. Therefore, in the mode decomposition spectrum, the frequency interval between adjacent spectra on the frequency axis can be easily controlled, and the measurement resolution of the measurement apparatus of the fifth embodiment can be easily and accurately adjusted.
(第6実施形態)
 次に、本発明の第6実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
Sixth Embodiment
Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to a sixth embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図9に示すように、第6実施形態のレーザー装置60Fにおける光源5から導入部21までの構成は、第1実施形態で説明したレーザー装置60Aにおける光源5から導入部21までの構成と同様である。レーザー装置60Fは、第1実施形態で説明したデュアル光周波数コム生成光学系10Aに替えて、デュアル光周波数コム生成光学系10Dを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 9, the configuration from the light source 5 to the introducing unit 21 in the laser device 60F of the sixth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser device 60A described in the first embodiment. is there. The laser device 60F includes a dual light frequency comb generation optical system 10D in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
 デュアル光周波数コム生成光学系10Dは、少なくとも第5実施形態で説明したデュアル光周波数コム生成光学系10Cの構成を備えている。デュアル光周波数コム生成光学系10Dの第2ループ部32の偏波保持型光ファイバ32Bには、共振器長制御素子76が組み込まれている。共振器長制御素子76によって、第2ループ部32におけるレーザー増幅光L1,L2の光路長が調節可能になる。共振器長制御素子76としては、例えば圧電素子や音響光学素子、電気光学素子等が挙げられる。 The dual optical frequency comb generation optical system 10D has at least the configuration of the dual optical frequency comb generation optical system 10C described in the fifth embodiment. A resonator length control element 76 is incorporated in the polarization maintaining optical fiber 32B of the second loop portion 32 of the dual optical frequency comb generation optical system 10D. The optical path lengths of the laser amplified lights L1 and L2 in the second loop section 32 can be adjusted by the resonator length control element 76. Examples of the resonator length control element 76 include a piezoelectric element, an acousto-optic element, and an electro-optic element.
[デュアル光周波数コム生成光学系及びレーザー装置の動作及び作用効果]
 デュアル光周波数コム生成光学系10D及びレーザー装置60Fでは、第5実施形態で説明した内容と同様の導波及び動作原理によって、偏波保持型光ファイバ34からは、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が得られる。デュアル光周波数コム生成光学系10D及びレーザー装置60Fでは、R1,R2方向に沿って第2ループ部32に導波されたレーザー増幅光L1,L2の光路長さを共振器長制御素子76によって変更できる。共振器長制御素子76によって、レーザー増幅光L1,L2の共振器長を制御し、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易に且つ細かく制御できる。
[Operation and effect of dual optical frequency comb generation optical system and laser device]
In the dual optical frequency comb generation optical system 10D and the laser apparatus 60F, optical frequency combs having different repetition frequencies from the polarization maintaining optical fiber 34 according to the same guiding and operation principle as the contents described in the fifth embodiment. C1 and C2 (see FIG. 2) are obtained. In the dual optical frequency comb generation optical system 10D and the laser device 60F, the optical path lengths of the laser amplified lights L1 and L2 guided to the second loop portion 32 along the R1 and R2 directions are changed by the resonator length control element 76 it can. The resonator length control element 76 can control the resonator length of the laser amplified lights L1 and L2 so as to easily and finely control the repetition frequency difference Δf rep between the optical frequency combs C1 and C2.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第6実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図6に示すレーザー装置60Fを備えている。レーザー装置以外の第6実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Fではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第6実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。レーザー装置60Fによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを高精度に制御できる。このことによって、モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔を高精度に制御し、第6実施形態の計測装置の測定分解能を高精度に調整できる。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the sixth embodiment includes a laser apparatus 60F shown in FIG. 6 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement device of the sixth embodiment other than the laser device is the same as that of the measurement device 50. In the laser device 60F, since the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A, the measuring device of the sixth embodiment operates in the same manner as the measuring device 50. It produces the same effect as According to the laser device 60F, the repetition frequency difference Δf rep between the optical frequency combs C1 and C2 can be controlled with high accuracy. By this, it is possible to control with high precision the frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum, and to adjust the measurement resolution of the measurement apparatus of the sixth embodiment with high precision.
(第7実施形態)
 次に、本発明の第7実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
Seventh Embodiment
Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to a seventh embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図10に示すように、本発明の第7実施形態のレーザー装置60Gにおける光源5から導入部21までの構成は、第1実施形態で説明したレーザー装置60Aにおける光源5から導入部21までの構成と同様である。レーザー装置60Gは、第1実施形態のデュアル光周波数コム生成光学系10Aに替えて、デュアル光周波数コム生成光学系10Eを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 10, the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60G according to the seventh embodiment of the present invention is the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60A described in the first embodiment. Is the same as The laser device 60G includes a dual light frequency comb generation optical system 10E in place of the dual light frequency comb generation optical system 10A of the first embodiment.
 デュアル光周波数コム生成光学系10Eは、第1ループ光ファイバ30、導入部21、増幅部40、連結部22、空間型共振部102を備えている。第1ループ光ファイバ30は、図10の右側に示す第2ループ部32と、図10の左側に示す偏波保持型光ファイバ33A,34,33Cを備えている。偏波保持型光ファイバ33A,34は共通の偏波保持型光ファイバで構成されているが、互いに接続された異なる偏波保持型光ファイバで構成されてもよい。偏波保持型光ファイバ33Aの入射側の端部(一方の端部)は連結部22の第2ループ部32側とは反対側に接続されている。偏波保持型光ファイバ33Aの出射側の端部(他方の端部)は計測装置50の偏波分離部52に接続されている。偏波保持型光ファイバ33Cの入射側の端部(一方の端部)は連結部22の第2ループ部32側とは反対側に接続されている。偏波保持型光ファイバ33Cの出射側の端部(他方の端部)には、空間型共振部102が接続されている。偏波保持型光ファイバ33Cでは光が長手方向に沿って往復するので、「入射側」及び「出射側」は偏波保持型光ファイバ33Cに最初に光が入射する側及び最初に光が出射する側を意味する。第1ループ光ファイバ30において、連結部22より図10の左側では、環状のループ経路は構成されていない。すなわち、第1ループ光ファイバ30は、連結部22を結び目として、数字の「9」を描くように構成されている。 The dual optical frequency comb generation optical system 10E includes a first loop optical fiber 30, an introducing unit 21, an amplifying unit 40, a connecting unit 22, and a space type resonating unit 102. The first loop optical fiber 30 includes a second loop portion 32 shown on the right side of FIG. 10 and polarization maintaining optical fibers 33A, 34, 33C shown on the left side of FIG. The polarization maintaining optical fibers 33A and 34 are formed of a common polarization maintaining optical fiber, but may be formed of different polarization maintaining optical fibers connected to each other. The end (one end) of the incident side of the polarization maintaining optical fiber 33A is connected to the side opposite to the second loop portion 32 side of the connecting portion 22. The end (the other end) of the output side of the polarization maintaining optical fiber 33 A is connected to the polarization separation unit 52 of the measuring device 50. The end (one end) of the incident side of the polarization maintaining optical fiber 33 C is connected to the side opposite to the second loop portion 32 side of the connecting portion 22. The space type resonance unit 102 is connected to the end (the other end) of the output side of the polarization maintaining optical fiber 33C. Since light reciprocates along the longitudinal direction in the polarization maintaining optical fiber 33C, the "incident side" and the "outgoing side" are the side on which the light first enters the polarization maintaining optical fiber 33C, and the light emerges first Means the side that In the first loop optical fiber 30, an annular loop path is not configured on the left side of the connection portion 22 in FIG. That is, the first loop optical fiber 30 is configured to draw the numeral “9” with the connecting portion 22 as a knot.
 レーザー増幅光戻し部70は、連結部22と、偏波保持型光ファイバ33C及び空間型共振部102で構成される線形部38と、を有する。 The laser amplification light return unit 70 includes a connection unit 22, and a linear unit 38 configured of the polarization maintaining optical fiber 33 C and the spatial resonance unit 102.
 以下では、偏波保持型光ファイバ33Cの出射側の端部から、連結部22に対して離間する直線方向の1つをP1方向と称する。また、P1方向に沿って逆向きの直線方向をP2方向と称する。空間型共振部102は、偏波保持型の出射端104、レンズ108、偏波保持型のミラー106を備えている。出射端104は、偏波保持型光ファイバ33Cの出射側の端部に設けられている。レンズ108は、出射端104よりP1方向の奥側に配置されている。ミラー106は、レンズ108よりP1方向の奥側に配置されている。ミラー106の反射面106rにおけるレーザー増幅光L1,L2の透過率は、0%である。レンズ108は、P1方向に沿って入射するレーザー増幅光L1,L2をコリメートすると共に、P2方向に沿って入射するレーザー増幅光L1,L2を出射端104上に集光する。  Hereinafter, one of the linear directions separating from the end portion on the output side of the polarization maintaining optical fiber 33C with respect to the connecting portion 22 will be referred to as a P1 direction. In addition, a linear direction opposite to the P1 direction is referred to as a P2 direction. The spatial resonator 102 includes a polarization maintaining output end 104, a lens 108, and a polarization maintaining mirror 106. The emitting end 104 is provided at the end of the output side of the polarization maintaining optical fiber 33C. The lens 108 is disposed on the back side in the P1 direction from the emission end 104. The mirror 106 is disposed on the back side in the P1 direction from the lens 108. The transmittance of the laser amplification lights L1 and L2 at the reflection surface 106r of the mirror 106 is 0%. The lens 108 collimates the laser amplified lights L1 and L2 incident along the P1 direction and condenses the laser amplified lights L1 and L2 incident along the P2 direction on the emission end 104.
 レーザー装置60Gにおける光源5から連結部22までのレーザー光S1,S2及びレーザー増幅光L1,L2の導波は、第1実施形態で説明したレーザー装置60Aにおける光源5から連結部22までのレーザー光S1,S2及びレーザー増幅光L1,L2の導波と同様である。 The guiding of the laser beams S1 and S2 and the laser amplified light L1 and L2 from the light source 5 to the connecting portion 22 in the laser device 60G is the laser light from the light source 5 to the connecting portion 22 in the laser device 60A described in the first embodiment. This is the same as the guiding of S1 and S2 and the laser amplification lights L1 and L2.
 連結部22では、位相差φによって、連結部22に入射したレーザー増幅光L1,L2が偏波保持型光ファイバ33A,33Cの各々に導波される比率が決まる。第1ループ光ファイバ30が「9」を描くように構成されているので、位相差φが第2波長の半分の偶数倍である場合(所定の条件を満たす場合)、連結部22の偏波保持型光カプラにおける干渉によって強められたレーザー増幅光L1,L2が全てR1方向に沿って偏波保持型光ファイバ33Aに導波される。連結部22に入射したレーザー増幅光L1,L2の一部(約50%)が偏波保持型光ファイバ33Aに導波される。連結部22に入射したレーザー増幅光L1,L2の残部(約50%)が偏波保持型光ファイバ33Cに導波される。 In the connecting portion 22, the ratio of the laser amplification lights L1 and L2 incident on the connecting portion 22 to be guided to the polarization maintaining optical fibers 33A and 33C is determined by the phase difference φ. Since the first loop optical fiber 30 is configured to draw “9”, when the phase difference φ is an even multiple of half of the second wavelength (when the predetermined condition is satisfied), the polarization of the coupling portion 22 The laser amplified lights L1 and L2 intensified by the interference in the holding optical coupler are all guided to the polarization maintaining optical fiber 33A along the R1 direction. A part (about 50%) of the laser amplified lights L1 and L2 incident on the coupling portion 22 is guided to the polarization maintaining optical fiber 33A. The remaining portion (about 50%) of the laser amplified light L1 and L2 incident on the coupling portion 22 is guided to the polarization maintaining optical fiber 33C.
 連結部22から偏波保持型光ファイバ33Cに導波されたレーザー増幅光L1,L2は、偏波保持型光ファイバ33Cの他方の端部から空間型共振部102に入射し、出射端104を通って空間内に出射し、P1方向に沿って拡散してレンズ108に入射する。レンズ108に入射したレーザー増幅光L1,L2は、レンズ108によってコリメートされ、P1方向に沿って伝搬し、ミラー106の反射面106rによって反射される。反射面106rによって反射されたレーザー増幅光L1,L2は、P2方向に沿って伝搬し、レンズ108に入射し、レンズ108によって出射端104に集光する。出射端104に集光したレーザー増幅光L1,L2は、出射端104を通過し、R1方向に沿って偏波保持型光ファイバ33Cに導波される。 The laser amplified lights L1 and L2 guided from the connecting portion 22 to the polarization maintaining optical fiber 33C enter the spatial resonator 102 from the other end of the polarization maintaining optical fiber 33C, and the emission end 104 is It passes through and exits into space, diffuses along the P1 direction, and enters the lens 108. The laser amplified lights L1 and L2 incident on the lens 108 are collimated by the lens 108, propagate along the P1 direction, and are reflected by the reflection surface 106r of the mirror 106. The laser amplified lights L1 and L2 reflected by the reflecting surface 106r propagate along the P2 direction, enter the lens 108, and are condensed on the emitting end 104 by the lens 108. The laser amplified lights L1 and L2 collected at the emission end 104 pass through the emission end 104 and are guided to the polarization maintaining optical fiber 33C along the R1 direction.
 偏波保持型光ファイバ33Cに導波され、R1方向に沿って連結部22に入射したレーザー増幅光L1,L2の導波は、第1実施形態で説明したデュアル光周波数コム生成光学系10A及びレーザー装置60AにおいてR1方向に沿って連結部22に入射したレーザー増幅光L1,L2の導波と同様である。連結部22から偏波保持型光ファイバ33A,34には、互いに異なる繰り返し周波数を有する光周波数コムC1,C2が得られる。 The waveguides of the laser amplification lights L1 and L2 which are guided to the polarization maintaining optical fiber 33C and enter the coupling portion 22 along the R1 direction are the dual optical frequency comb generation optical system 10A described in the first embodiment and This is the same as guiding of the laser amplified lights L1 and L2 incident on the coupling portion 22 along the R1 direction in the laser device 60A. From the coupling portion 22 to the polarization maintaining optical fibers 33A and 34, optical frequency combs C1 and C2 having different repetition frequencies are obtained.
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Gは、デュアル光周波数コム生成光学系10Eを有し、レーザー装置60Aと同様の効果を奏する。また、レーザー装置60Gは、空間型共振部102を備えるので、出射端104,ミラー106の離間距離を変えることによって、レーザー増幅光L1,L2の共振器長を調節でき、加えて共振器長の調節範囲を大きく確保できる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60G has dual optical frequency comb generation optical system 10E, and exhibits the same effect as the laser device 60A. In addition, since the laser apparatus 60G includes the space type resonance unit 102, the resonator length of the laser amplification lights L1 and L2 can be adjusted by changing the separation distance between the emission end 104 and the mirror 106, and additionally, the resonator length is A large adjustment range can be secured.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第7実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図10に示すレーザー装置60Gを備えている。レーザー装置以外の第2実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Gではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第7実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the seventh embodiment includes a laser apparatus 60G shown in FIG. 10 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement device of the second embodiment other than the laser device is the same as that of the measurement device 50. In the laser device 60G, since the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 similarly to the laser device 60A, the measuring device of the seventh embodiment operates in the same manner as the measuring device 50 and measures 50. It produces the same effect as
(第8実施形態)
 次に、本発明の第8実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
Eighth Embodiment
Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to an eighth embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図11に示すように、第8実施形態のレーザー装置60Hは、レーザー装置60Gの偏波保持型光ファイバ6及び偏波分離素子12に替えて偏波保持型光ファイバ42を備えると共に、第7実施形態のデュアル光周波数コム生成光学系10Eを備えている。第2実施形態と同様に、光軸Aを中心とする偏波保持型光ファイバ42のクラッド77の偏光軸J42は、光軸Aを中心とする偏波保持型光ファイバ31のクラッド71の偏光軸J31に対して45°,135°,225°,315°のうち何れかの角度をなしている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 11, a laser apparatus 60H according to the eighth embodiment includes a polarization-maintaining optical fiber 42 in place of the polarization-maintaining optical fiber 6 and the polarization separation element 12 of the laser apparatus 60G. The dual optical frequency comb generation optical system 10E of the embodiment is provided. As in the second embodiment, the polarization axis J 42 of the cladding 77 of the polarization maintaining optical fiber 42 centered on the optical axis A is the polarization of the cladding 71 of the polarization maintaining optical fiber 31 centered on the optical axis A. One of the angles 45 °, 135 °, 225 °, and 315 ° is formed with respect to the axis J31.
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Hは、デュアル光周波数コム生成光学系10Eを有し、レーザー装置60Gと同様の効果を奏する。また、レーザー装置60Gによれば、第2実施形態と同様に、偏波分離素子12を使わずに光源5から発せられたレーザー光をレーザーS1,S2に分けることができる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60H has dual optical frequency comb generation optical system 10E, and exhibits the same effect as the laser device 60G. Further, according to the laser device 60G, the laser light emitted from the light source 5 can be divided into the lasers S1 and S2 without using the polarization separation element 12 as in the second embodiment.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第8実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図11に示すレーザー装置60Hを備えている。レーザー装置以外の第8実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Hではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第8実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the eighth embodiment includes a laser apparatus 60H shown in FIG. 11 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement device of the eighth embodiment other than the laser device is the same as that of the measurement device 50. In the laser device 60H, the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 similarly to the laser device 60A, so the measuring device of the eighth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
(第9実施形態)
 次に、本発明の第9実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
The ninth embodiment
Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to a ninth embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図12に示すように、第9実施形態のレーザー装置60Iは、レーザー装置60Gの1台の光源5、偏波保持型光ファイバ6及び偏波分離素子12に替えて、2台の光源5A,5B、2本の偏波保持型光ファイバ6A,6B及び偏波結合素子14を備えると共に、第7実施形態で説明したデュアル光周波数コム生成光学系10Eを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 12, a laser apparatus 60I according to the ninth embodiment includes two light sources 5A, instead of one light source 5, a polarization maintaining optical fiber 6, and a polarization separation element 12 of the laser apparatus 60G. A dual optical frequency comb generation optical system 10E described in the seventh embodiment is provided as well as 5B, two polarization maintaining optical fibers 6A and 6B, and a polarization coupling element 14.
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Iは、デュアル光周波数コム生成光学系10Eを有し、レーザー装置60Gと同様の効果を奏する。レーザー装置60Iによれば、第3実施形態と同様に、レーザー光S1,S2を個別に制御し、光周波数コムC1,C2の特性を容易且つ高精度に調整できる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60I has dual optical frequency comb generation optical system 10E, and exhibits the same effect as the laser device 60G. According to the laser device 60I, as in the third embodiment, the laser beams S1 and S2 can be individually controlled, and the characteristics of the optical frequency combs C1 and C2 can be easily and accurately adjusted.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第9実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図12に示すレーザー装置60Iを備えている。レーザー装置以外の第9実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Iではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第9実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the ninth embodiment is provided with a laser apparatus 60I shown in FIG. 12 instead of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement device of the ninth embodiment other than the laser device is the same as that of the measurement device 50. In the laser device 60I, since the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 similarly to the laser device 60A, the measuring device of the ninth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
(第10実施形態)
 次に、本発明の第10実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
Tenth Embodiment
Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to a tenth embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図13に示すように、本発明の第10実施形態のレーザー装置60Jにおける光源5から導入部21までの構成は、第1実施形態で説明したレーザー装置60Aにおける光源5から導入部21までの構成と同様である。レーザー装置60Jは、第1実施形態で説明したデュアル光周波数コム生成光学系10Aに替えて、デュアル光周波数コム生成光学系10Fを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 13, the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60J according to the tenth embodiment of the present invention is the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60A described in the first embodiment. Is the same as The laser device 60J includes a dual light frequency comb generation optical system 10F in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
 デュアル光周波数コム生成光学系10Fは、第7実施形態のデュアル光周波数コム生成光学系10Eの構成と、第4実施形態で説明した位相変調部72を備えている。空間型共振部102のレンズ108とミラー106との間には、位相変調部72の電気光学変調器73A,73Bが組み込まれている。位相変調部72は、空間型共振部102で共振するレーザー増幅光L1,L2の位相を変調できる。電気光学変調器73A,73Bの各々には、空間型共振部102の外部から増幅器83を介して高周波発生器84から高パワーの高周波信号が供給される。 The dual optical frequency comb generation optical system 10F includes the configuration of the dual optical frequency comb generation optical system 10E of the seventh embodiment and the phase modulation unit 72 described in the fourth embodiment. The electro- optic modulators 73A and 73B of the phase modulation unit 72 are incorporated between the lens 108 and the mirror 106 of the space type resonance unit 102. The phase modulation unit 72 can modulate the phases of the laser amplification lights L1 and L2 resonating in the spatial resonance unit 102. Each of the electro- optic modulators 73A and 73B is supplied with a high power high frequency signal from the high frequency generator 84 from the outside of the spatial resonator 102 via the amplifier 83.
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Jは、デュアル光周波数コム生成光学系10Fを有するので、レーザー装置60Gと同様の効果を奏する。レーザー装置60Jにおいては、第4実施形態で説明したように、電気光学変調器73Aによるレーザー増幅光L1の光路長の変化量と電気光学変調器73Bによるレーザー増幅光L2の光路長の変化量との差を調整できる。このことによって、レーザー増幅光L1,L2の共振器長及び光路長差ΔLを高精度に制御できる。すなわち、レーザー装置60Jでは、光周波数コムC1の繰り返し周波数frep1、又は光周波数コムC2の繰り返し周波数差Δfrep2のみを容易に制御できる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60J has the dual optical frequency comb generation optical system 10F, and therefore exhibits the same effect as the laser device 60G. In the laser apparatus 60J, as described in the fourth embodiment, the amount of change in the optical path length of the laser amplified light L1 by the electro-optical modulator 73A and the amount of change in the optical path length of the laser amplified light L2 by the electro-optical modulator 73B. You can adjust the difference between By this, it is possible to control the resonator length of the laser amplified lights L1 and L2 and the optical path length difference ΔL with high accuracy. That is, in the laser device 60J, only the repetition frequency f rep1 of the optical frequency comb C1 or the repetition frequency difference Δf rep2 of the optical frequency comb C2 can be easily controlled.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第10実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図13に示すレーザー装置60Jを備えている。レーザー装置以外の第10実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Jではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第10実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the tenth embodiment is provided with a laser apparatus 60J shown in FIG. 13 instead of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement apparatus of the tenth embodiment other than the laser apparatus is the same as that of the measurement apparatus 50. In the laser device 60J, since the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 similarly to the laser device 60A, the measuring device of the tenth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
(第11実施形態)
 次に、本発明の第11実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
Eleventh Embodiment
Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to an eleventh embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図14に示すように、第11実施形態のレーザー装置60Kにおける光源5から導入部21までの構成は、第1実施形態で説明したレーザー装置60Aにおける光源5から導入部21までの構成と同様である。レーザー装置60Kは、第1実施形態で説明したデュアル光周波数コム生成光学系10Aに替えて、デュアル光周波数コム生成光学系10Gを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 14, the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60K of the eleventh embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60A described in the first embodiment. is there. The laser device 60K includes a dual light frequency comb generation optical system 10G in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
 デュアル光周波数コム生成光学系10Gは、少なくとも第10実施形態で説明したデュアル光周波数コム生成光学系10Fの構成を備えている。加えて、デュアル光周波数コム生成光学系10Gの第2ループ部32の偏波保持型光ファイバ32Cには、第5実施形態で説明した偏波多重型の非相反位相シフト部90が組み込まれている。 The dual optical frequency comb generation optical system 10G has at least the configuration of the dual optical frequency comb generation optical system 10F described in the tenth embodiment. In addition, the polarization multiplexing non-reciprocal phase shift unit 90 described in the fifth embodiment is incorporated in the polarization maintaining optical fiber 32C of the second loop unit 32 of the dual optical frequency comb generation optical system 10G. .
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Kは、デュアル光周波数コム生成光学系10Gを有するので、レーザー装置60Jと同様の効果を奏すると共に、第5実施形態と同様に、非相反位相シフト部90を用いて、レーザー増幅光L1,L2の共振器長及び光路長差ΔLを制御し、光周波数コムC1,C2の繰り返し周波数差Δfrepを調整できる。レーザー装置60Kでは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLを個別に制御し、光周波数コムC1,C2の繰り返し周波数差Δfrepを細かく調整できる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60K has the dual optical frequency comb generation optical system 10G, so that the same effect as the laser device 60J can be obtained, and the laser amplification light L1 can be obtained using the nonreciprocal phase shift unit 90 as in the fifth embodiment. , L2 and the optical path length difference ΔL, and the repetition frequency difference Δf rep of the optical frequency combs C1 and C2 can be adjusted. In the laser device 60K, the resonator length of the laser amplification lights L1 and L2 and the optical path length difference ΔL can be individually controlled, and the repetition frequency difference Δf rep of the optical frequency combs C1 and C2 can be finely adjusted.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第11実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図14に示すレーザー装置60Kを備えている。レーザー装置以外の第11実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Kではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第11実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the eleventh embodiment is provided with a laser apparatus 60K shown in FIG. 14 instead of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement apparatus of the eleventh embodiment other than the laser apparatus is the same as that of the measurement apparatus 50. In the laser device 60K, the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A. Therefore, the measurement device of the eleventh embodiment operates in the same manner as the measurement device 50. It produces the same effect as
(第12実施形態)
 次に、本発明の第12実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
(Twelfth embodiment)
Next, a dual optical frequency comb generation optical system, a laser device and a measurement apparatus according to a twelfth embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図15に示すように、第12実施形態のレーザー装置60Lにおける光源5から導入部21までの構成は、第1実施形態で説明したレーザー装置60Aにおける光源5から導入部21までの構成と同様である。レーザー装置60Lは、第1実施形態で説明したデュアル光周波数コム生成光学系10Aに替えて、デュアル光周波数コム生成光学系10Hを備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 15, the configuration from the light source 5 to the introducing unit 21 in the laser device 60L of the twelfth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser device 60A described in the first embodiment. is there. The laser device 60L includes a dual light frequency comb generation optical system 10H in place of the dual light frequency comb generation optical system 10A described in the first embodiment.
 デュアル光周波数コム生成光学系10Hは、少なくとも第11実施形態で説明したデュアル光周波数コム生成光学系10Gの構成を備えている。加えて、デュアル光周波数コム生成光学系10Hの第2ループ部32の偏波保持型光ファイバ32Bには、共振器長制御素子76が組み込まれている。 The dual optical frequency comb generation optical system 10H has at least the configuration of the dual optical frequency comb generation optical system 10G described in the eleventh embodiment. In addition, a resonator length control element 76 is incorporated in the polarization maintaining optical fiber 32B of the second loop portion 32 of the dual optical frequency comb generation optical system 10H.
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Lは、デュアル光周波数コム生成光学系10Hを有するので、レーザー装置60Kと同様の効果を奏すると共に、第6実施形態と同様に、R1,R2方向に沿って第2ループ部32に導波されたレーザー増幅光L1,L2の光路長さを共振器長制御素子76によって変更できる。レーザー装置60Lによれば、レーザー増幅光L1,L2の共振器長を制御し、光周波数コムC1の繰り返し周波数frep1、又は光周波数コムC2の繰り返し周波数frep2のみ、あるいは光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易に且つ細かく制御できる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
Since the laser device 60L has the dual optical frequency comb generation optical system 10H, the same effect as the laser device 60K can be obtained, and similarly to the sixth embodiment, the second loop portion 32 is guided along the R1 and R2 directions. The optical path lengths of the waved laser amplification lights L1 and L2 can be changed by the resonator length control element 76. According to the laser device 60L, the resonator length of the laser amplified light L1 and L2 is controlled, and the repetition frequency f rep1 of the optical frequency comb C1 or only the repetition frequency f rep2 of the optical frequency comb C2 or the optical frequency comb C1 and C2 The repetition frequency difference Δf rep between each other can be easily and finely controlled.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第12実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図15に示すレーザー装置60Lを備えている。レーザー装置以外の第12実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Lではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第12実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the twelfth embodiment is provided with a laser apparatus 60L shown in FIG. 15 in place of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement apparatus of the twelfth embodiment other than the laser apparatus is the same as that of the measurement apparatus 50. In the laser device 60L, the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A. Therefore, the measuring device of the twelfth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
(第13実施形態)
 次に、本発明の第13実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
(13th Embodiment)
Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to a thirteenth embodiment of the present invention will be described.
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
 図16に示すように、第13実施形態のレーザー装置60Mにおける光源5から導入部21までの構成は、第1実施形態で説明したレーザー装置60Aにおける光源5から導入部21までの構成と同様である。レーザー装置60Mは、第7実施形態のレーザー装置60Gの空間型共振部102に替えて可飽和吸収反射体110を備えている。
[Configuration of dual optical frequency comb generation optical system and laser device]
As shown in FIG. 16, the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60M of the thirteenth embodiment is the same as the configuration from the light source 5 to the introducing unit 21 in the laser apparatus 60A described in the first embodiment. is there. The laser device 60M is provided with a saturable absorbing reflector 110 in place of the space type resonating portion 102 of the laser device 60G of the seventh embodiment.
 可飽和吸収反射体110は、連結部22での干渉によって強め合い、偏波保持型光ファイバ33Cを通って入射したレーザー増幅光L1,L2(パルス光)のみを偏波保持型光ファイバ33Cに反射する。可飽和吸収反射体110は、連結部22での干渉に基づいて弱まり、偏波保持型光ファイバ33Cを通って入射したレーザー増幅光L1,L2を吸収し、偏波保持型光ファイバ33Cには出射しない。すなわち、可飽和吸収反射体110は、第1実施形態で説明した第3ループ部33や第7実施形態で説明した空間型共振部102と同様に機能する。 The saturable absorber reflector 110 strengthens each other by the interference at the connecting portion 22, and makes only the laser amplified light L1 and L2 (pulse light) incident through the polarization maintaining optical fiber 33C into the polarization maintaining optical fiber 33C. reflect. The saturable absorbing reflector 110 is weakened due to the interference at the connecting portion 22, and absorbs the laser amplified lights L1 and L2 incident through the polarization maintaining optical fiber 33C, and the polarization maintaining optical fiber 33C Do not emit. That is, the saturable absorber reflector 110 functions in the same manner as the third loop portion 33 described in the first embodiment and the space type resonator portion 102 described in the seventh embodiment.
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
 レーザー装置60Mは、デュアル光周波数コム生成光学系10Mを有するので、レーザー装置60Aやレーザー装置60Gと同様の効果を奏する。レーザー装置60Mは、連結部22で強め合ったレーザー増幅光L1,L2を第2ループ部32に戻す構成として可飽和吸収反射体110を備えているので、レーザー装置60Mの小型化を図ることができる。
[Operation effect of dual optical frequency comb generation optical system and laser device]
The laser device 60M has the dual optical frequency comb generation optical system 10M, and therefore exhibits the same effects as the laser device 60A and the laser device 60G. The laser device 60M includes the saturable absorbing reflector 110 as a configuration for returning the laser amplification lights L1 and L2 intensified at the connecting portion 22 to the second loop portion 32. Therefore, the laser device 60M can be miniaturized. it can.
[計測装置の構成、動作、及び作用効果]
 図示していないが、第13実施形態の計測装置は、図2に示す計測装置50のレーザー装置60Aに替えて、図16に示すレーザー装置60Mを備えている。レーザー装置以外の第13実施形態の計測装置の構成は、計測装置50と同様である。レーザー装置60Mではレーザー装置60Aと同様に偏波保持型光ファイバ34から光周波数コムC1,C2が得られるので、第13実施形態の計測装置は、計測装置50と同様に動作し、計測装置50と同様の効果を奏する。
[Configuration, Operation, and Effect of Measurement Device]
Although not shown, the measurement apparatus of the thirteenth embodiment includes a laser apparatus 60M shown in FIG. 16 instead of the laser apparatus 60A of the measurement apparatus 50 shown in FIG. The configuration of the measurement device of the thirteenth embodiment other than the laser device is the same as that of the measurement device 50. In the laser device 60M, the optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fiber 34 as in the laser device 60A. Therefore, the measuring device of the thirteenth embodiment operates in the same manner as the measuring device 50. It produces the same effect as
(その他の実施形態)
 以上、好ましい実施形態のデュアル光周波数コム生成光学系について説明したが、本発明に係る別の実施形態として、例えば図17に示すデュアル光周波数コム生成光学系10Nや、図18に示すデュアル光周波数コム生成光学系10Pが挙げられる。
(Other embodiments)
Although the dual optical frequency comb generation optical system of the preferred embodiment has been described above, as another embodiment according to the present invention, for example, the dual optical frequency comb generation optical system 10N shown in FIG. A comb generation optical system 10P can be mentioned.
 図17に示すように、デュアル光周波数コム生成光学系10Nでは、第1ループ光ファイバ30は連結部を有さず、環状に配置された偏波保持型光ファイバ30A,30B,30C,30Dで構成されている。第1ループ光ファイバ30には、R1方向に沿って、導入部21、増幅部40、導出部24、可飽和吸収体75、及び、偏波保持型光アイソレータ25が設けられている。 As shown in FIG. 17, in the dual optical frequency comb generation optical system 10N, the first loop optical fiber 30 does not have a coupling portion, and is formed by polarization maintaining optical fibers 30A, 30B, 30C, and 30D arranged annularly. It is configured. The first loop optical fiber 30 is provided with an introducing unit 21, an amplifying unit 40, an extracting unit 24, a saturable absorber 75, and a polarization maintaining optical isolator 25 along the R1 direction.
 デュアル光周波数コム生成光学系10Nにおけるレーザー増幅光戻し部70は、可飽和吸収体75及び偏波保持型光アイソレータ25で構成されている。可飽和吸収体75は、第2波長を含む波長帯域に感度を有する。可飽和吸収体75に所定のパワー以上のレーザー増幅光L1,L2が入射したときのみ、可飽和吸収体75の損失が小さくなり、レーザー増幅光L1,L2を偏波保持型光ファイバ30C,30Dに出射する。偏波保持型光アイソレータ25は、R2方向に沿って偏波保持型光ファイバ30Eから入射したレーザー増幅光L1,L2を偏波保持型光ファイバ30Dに通過させる。偏波保持型光アイソレータ25は、R1方向に沿って偏波保持型光ファイバ30Dから入射したレーザー増幅光L1,L2を第1ループ光ファイバ30から除去する。 The laser amplification light return unit 70 in the dual optical frequency comb generation optical system 10 N is configured of a saturable absorber 75 and a polarization maintaining optical isolator 25. The saturable absorber 75 is sensitive to a wavelength band including the second wavelength. The loss of the saturable absorber 75 becomes small only when the laser amplified lights L1 and L2 having a predetermined power or more enter the saturable absorber 75, and the laser amplified lights L1 and L2 become polarization maintaining optical fibers 30C and 30D Emit at. The polarization maintaining optical isolator 25 passes the laser amplified lights L1 and L2 incident from the polarization maintaining optical fiber 30E along the R2 direction to the polarization maintaining optical fiber 30D. The polarization maintaining optical isolator 25 removes from the first loop optical fiber 30 the laser amplification lights L1 and L2 incident from the polarization maintaining optical fiber 30D along the R1 direction.
 デュアル光周波数コム生成光学系10Nにおいて、光源5から発せられたレーザー光S0からレーザー光S1,S2が取り出されてレーザー光S1,S2が増幅部40によって波長変換されるまでの過程は、第1実施形態のデュアル光周波数コム生成光学系10Aと同様である。増幅部40で増幅された後のレーザー増幅光L1,L2の一部は、R1方向に沿って偏波保持型光ファイバ30B、導出部24、偏波保持型光ファイバ30Cを通り、可飽和吸収体75に入射する。増幅部40で増幅された後のレーザー増幅光L1,L2の残部は、R2方向に沿って偏波保持型光ファイバ30Eに導波され、偏波保持型光アイソレータ25を通り、偏波保持型光ファイバ30Dに導波され、可飽和吸収体75に入射する。 In the dual optical frequency comb generation optical system 10N, the process until the laser beams S1 and S2 are extracted from the laser beam S0 emitted from the light source 5 and the laser beams S1 and S2 are wavelength converted by the amplification unit 40 is This is the same as the dual optical frequency comb generation optical system 10A of the embodiment. Part of the laser amplified lights L1 and L2 amplified by the amplifier 40 passes along the R1 direction through the polarization maintaining optical fiber 30B, the lead-out portion 24, and the polarization maintaining optical fiber 30C, and the saturable absorption absorption It enters the body 75. The remaining portions of the laser amplification lights L1 and L2 amplified by the amplification unit 40 are guided to the polarization maintaining optical fiber 30E along the R2 direction, pass through the polarization maintaining optical isolator 25, and The light is guided to the optical fiber 30 D and enters the saturable absorber 75.
 可飽和吸収体75は、R2方向に沿って可飽和吸収体75に入射する強いレーザー増幅光L1,L2のみが反射され、第1ループ光ファイバ30で導波される。可飽和吸収体75に入射する強いレーザー増幅光L1,L2は、高パワーになったパルス光である。R2方向に沿って可飽和吸収体75から出射したレーザー増幅光L1,L2の一部は、導出部24から偏波保持型光ファイバ34に導出される。R2方向に沿って可飽和吸収体75ら出射したレーザー増幅光L1,L2の残部は、偏波保持型光ファイバ30Bに導波され、増幅部40に入射し、繰り返し増幅される。 In the saturable absorber 75, only the strong laser amplification lights L 1 and L 2 incident on the saturable absorber 75 along the R 2 direction are reflected and guided by the first loop optical fiber 30. The strong laser amplification lights L1 and L2 incident on the saturable absorber 75 are pulse lights having high power. A part of the laser amplified lights L1 and L2 emitted from the saturable absorber 75 along the R2 direction is led out from the lead-out portion 24 to the polarization maintaining optical fiber 34. The remaining portions of the laser amplified lights L1 and L2 emitted from the saturable absorber 75 along the R2 direction are guided to the polarization maintaining optical fiber 30B, enter the amplifying unit 40, and are repeatedly amplified.
 上述の動作原理によって、デュアル光周波数コム生成光学系10Nでは、レーザー増幅光L1,L2がモード同期状態へ移行し、光周波数コムC1,C2が生成される。レーザー増幅光L1,L2の各々の屈折率及び第2波長等を考慮し、偏波保持型光ファイバ30A,33B,33Cの合計の長さは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが所望の繰り返し周波数frep1,frep2に相当するように設定されている。 According to the above-described operation principle, in the dual optical frequency comb generation optical system 10N, the laser amplification lights L1 and L2 shift to the mode synchronization state, and the optical frequency combs C1 and C2 are generated. The total length of the polarization maintaining optical fibers 30A, 33B, and 33C is the resonator length and the optical path of the laser amplification lights L1 and L2 in consideration of the refractive index and the second wavelength of each of the laser amplification lights L1 and L2. The length difference ΔL is set to correspond to the desired repetition frequencies f rep1 and f rep2 .
 図18に示すように、デュアル光周波数コム生成光学系10Pでは、デュアル光周波数コム生成光学系10Nの構成において、偏波保持型光ファイバ30C,30Dの間に設けられた可飽和吸収体75に替えて、偏波保持型光ファイバ30Bに共振器長制御素子76が設けられている。共振器長制御素子76によって、第1ループ光ファイバ30で構成されるモード同期レーザーの共振器長は制御可能になっている。共振器長制御素子76としては、例えば圧電素子や音響光学素子、電気光学素子等が挙げられる。 As shown in FIG. 18, in the dual optical frequency comb generation optical system 10P, in the configuration of the dual optical frequency comb generation optical system 10N, in the saturable absorber 75 provided between the polarization maintaining optical fibers 30C and 30D. Instead, a resonator length control element 76 is provided in the polarization maintaining optical fiber 30B. The resonator length control element 76 makes it possible to control the resonator length of the mode-locked laser formed of the first loop optical fiber 30. Examples of the resonator length control element 76 include a piezoelectric element, an acousto-optic element, and an electro-optic element.
 デュアル光周波数コム生成光学系10Pにおいて、光源5から発せられたレーザー光S0からレーザー光S1,S2が取り出され、レーザー光S1,S2が増幅部40によって増幅されるまでの過程は、第1実施形態のデュアル光周波数コム生成光学系10Aと同様である。増幅部40で増幅された後のレーザー増幅光L1,L2の一部は、R1方向に沿って偏波保持型光ファイバ30B、導出部24、偏波保持型光ファイバ30Cを通り、偏波保持型光アイソレータ25に入射するが、偏波保持型光アイソレータ25によって第1ループ光ファイバ30から除去される。 In the dual optical frequency comb generation optical system 10P, the process until the laser beams S1 and S2 are extracted from the laser beam S0 emitted from the light source 5 and the laser beams S1 and S2 are amplified by the amplifier 40 is the first embodiment. It is similar to the form dual optical frequency comb generation optical system 10A. A portion of the laser amplified light L1 and L2 amplified by the amplification unit 40 passes through the polarization maintaining optical fiber 30B, the lead-out unit 24, and the polarization maintaining optical fiber 30C along the R1 direction, and the polarization maintaining , But is removed from the first loop optical fiber 30 by the polarization maintaining optical isolator 25.
 増幅部40で増幅された後のレーザー増幅光L1,L2の残部は、R2方向に沿って偏波保持型光ファイバ30Dに導波され、偏波保持型光アイソレータ25及び偏波保持型光ファイバ30Cを通り、導出部24に入射する。R2方向に沿って導出部24に入射したレーザー増幅光L1,L2の一部は、導出部24から偏波保持型光ファイバ34に導出される。R2方向に沿って導出部24に入射したレーザー増幅光L1,L2の残部は、偏波保持型光ファイバ30Bに導波され、増幅部40に入射し、前段で説明したように繰り返し増幅される。 The remaining portions of the laser amplification lights L1 and L2 amplified by the amplification unit 40 are guided along the R2 direction to the polarization maintaining optical fiber 30D, and the polarization maintaining optical isolator 25 and the polarization maintaining optical fiber The light passes through 30 C and enters the lead-out unit 24. A part of the laser amplified light L1 and L2 incident on the lead-out unit 24 along the R2 direction is led out of the lead-out unit 24 to the polarization maintaining optical fiber 34. The remaining portions of the laser amplification lights L1 and L2 incident on the lead-out portion 24 along the R2 direction are guided to the polarization maintaining optical fiber 30B, are incident on the amplification portion 40, and are repeatedly amplified as described in the previous stage. .
 上述説明したように、デュアル光周波数コム生成光学系10N,10Pでは、第1実施形態のデュアル光周波数コム生成光学系10Aと同様に、偏光の向きが互いに異なるレーザー光S1,S2及びレーザー増幅光L1,L2を用い、レーザー増幅光L1,L2の屈折率を互いに異ならせる。そのため、レーザー光S1,S2及びレーザー増幅光L1,L2の共振器は共通にしつつ、レーザー増幅光L1,L2の互いの共振器長を異ならせることができる。このことによって、1台のモード同期レーザーを構成するデュアル光周波数コム生成光学系10N,10Pから繰り返し周波数が異なる光周波数コムC1,C2を発生させることができる。レーザー増幅光L1,L2が1台のモード同期レーザーとしてデュアル光周波数コム生成光学系10N,10Pを共有することによって、光周波数コムC1,C2の各々に含まれる環境外乱や機械的な擾乱を共通化し、容易に除去可能にすることができる。レーザー増幅光L1,L2が1台のデュアル光周波数コム生成光学系10N,10Pを共有することによって、従来のように光周波数コムC1,C2を生成するモード同期レーザーを個別のスペースに用意する場合に比べてデュアル光周波数コム生成光学系10N,10Pの小型化を図ることができる。 As described above, in the dual optical frequency comb generation optical systems 10N and 10P, as in the dual optical frequency comb generation optical system 10A of the first embodiment, the laser beams S1 and S2 and the laser amplification light have different polarization directions. The refractive indices of the laser amplified lights L1 and L2 are made different from each other using L1 and L2. Therefore, while making the resonators of the laser beams S1 and S2 and the laser amplified lights L1 and L2 common, the resonator lengths of the laser amplified lights L1 and L2 can be made different from each other. As a result, the optical frequency combs C1 and C2 having different repetition frequencies can be generated from the dual optical frequency comb generation optical systems 10N and 10P constituting one mode-locked laser. By sharing the dual optical frequency comb generation optical systems 10N and 10P as one mode-locked laser, the laser amplification lights L1 and L2 share environmental disturbance and mechanical disturbance included in each of the optical frequency combs C1 and C2 And easily removable. When the mode-locked lasers for generating the optical frequency combs C1 and C2 are prepared in separate spaces as in the prior art by sharing one dual optical frequency comb generating optical system 10N and 10P with the laser amplified lights L1 and L2 In this case, the dual optical frequency comb generation optical systems 10N and 10P can be miniaturized.
 本発明のデュアル光周波数コム生成光学系、レーザー装置、計測装置は、互いに繰り返し周波数が異なる光周波数コムC1,C2を用いる分野で広く応用可能である。本発明のデュアル光周波数コム生成光学系、レーザー装置、計測装置によれば、高SN比を有する光周波数コムC1,C2が得られるので、本発明のデュアル光周波数コム生成光学系、レーザー装置、計測装置は、計測精度の高さを求められる分光計測や信号解析等に応用可能である。 The dual optical frequency comb generation optical system, the laser apparatus, and the measurement apparatus of the present invention are widely applicable in the field using optical frequency combs C1 and C2 having different repetition frequencies. According to the dual optical frequency comb generation optical system, the laser device, and the measurement apparatus of the present invention, since the optical frequency combs C1 and C2 having high SN ratio can be obtained, the dual optical frequency comb generation optical system, the laser device of the present invention, The measuring apparatus can be applied to spectroscopic measurement, signal analysis, and the like which require high measurement accuracy.
 以上、本発明の好ましい実施形態について詳述したが、本発明は上述の特定の実施形態に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更可能である。 Although the preferred embodiments of the present invention have been described above in detail, the present invention is not limited to the specific embodiments described above. The invention can be varied within the scope of the invention as set forth in the claims.
 例えば、上述した各実施形態で説明したデュアル光周波数コム生成光学系の構成要素は、一例であって、同様の機能を有する公知の構成に適宜変更できる。例えば、電気光学変調器73A,73Bを、音響光学素子を備えた変調器に変更してもよい。 For example, the components of the dual optical frequency comb generating optical system described in each of the above-described embodiments are merely examples, and can be appropriately changed to known configurations having similar functions. For example, the electro- optic modulators 73A and 73B may be changed to modulators equipped with an acousto-optic element.
5…光源
10A,10B,10C,10D,10E,10F,10G,10H,10M,10N,10P…デュアル光周波数コム生成光学系
21…導入部
22…連結部
24…導出部
30…第1ループ光ファイバ
32…第2ループ部
33…第3ループ部
40…増幅部
50…計測装置
60A,60B,60C,60D,60E,60F,60G,60H,60I,60J,60K,60L,60M,60N,60P…レーザー装置
70…レーザー増幅光戻し部
5: light source 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10M, 10N, 10P, ... dual optical frequency comb generation optical system 21 ... introduction unit 22 ... connection unit 24 ... derivation unit 30 ... first loop light Fiber 32 ... second loop section 33 ... third loop section 40 ... amplification section 50 ... measuring devices 60A, 60B, 60C, 60D, 60E, 60F, 60G, 60H, 60I, 60J, 60K, 60L, 60M, 60N, 60P ... Laser device 70 ... Laser amplification light return part

Claims (8)

  1.  偏光の向きが第1方向である第1レーザー光を導波すると共に、偏光の向きが前記第1方向とは異なる第2方向である第2レーザー光を導波し、前記第1レーザー光及び前記第2レーザー光の各々の偏光の向きを保持する第1ループ光ファイバと、
     前記第1ループ光ファイバに設けられ、前記第1ループ光ファイバに前記第1レーザー光及び前記第2レーザー光を導入する導入部と、
     前記第1ループ光ファイバに設けられ、前記第1レーザー光及び前記第2レーザー光の前記偏光の向きを保持しつつ、前記第1レーザー光及び前記第2レーザー光を増幅して第1レーザー増幅光及び第2レーザー増幅光を生成し、前記第1ループ光ファイバの周方向及び該周方向とは逆方向に前記第1レーザー増幅光及び前記第2レーザー増幅光を出射する増幅部と、
     前記第1ループ光ファイバに設けられ、前記周方向に沿って導波された前記第1レーザー増幅光及び前記第2レーザー増幅光と前記周方向とは逆方向に沿って導波された前記第1レーザー増幅光及び前記第2レーザー増幅光との位相差が所定の条件を満たすときのみ前記第1レーザー増幅光及び前記第2レーザー増幅光を前記周方向及び前記周方向とは逆方向の少なくとも一方の方向に沿って前記第1ループ光ファイバに出射するレーザー増幅光戻し部と、
     前記第1ループ光ファイバに設けられ、前記第1ループ光ファイバで生成され且つ偏光の向きが前記第1方向である第1光周波数コムと前記第1ループ光ファイバで生成され且つ偏光の向きが前記第2方向である第2光周波数コムとを前記第1ループ光ファイバから導出する導出部と、
     を備える、
     デュアル光周波数コム生成光学系。
    While guiding the first laser light whose polarization direction is the first direction, the second laser light whose polarization direction is the second direction different from the first direction is guided, and the first laser light and A first loop optical fiber that holds the direction of polarization of each of the second laser light;
    An introducing unit provided in the first loop optical fiber for introducing the first laser beam and the second laser beam into the first loop optical fiber;
    First laser amplification provided to the first loop optical fiber, amplifying the first laser light and the second laser light while maintaining the direction of the polarization of the first laser light and the second laser light An amplification unit that generates the light and the second laser amplification light, and emits the first laser amplification light and the second laser amplification light in a circumferential direction of the first loop optical fiber and in a direction opposite to the circumferential direction;
    The first laser-amplified light and the second laser-amplified light provided in the first loop optical fiber and guided along the circumferential direction, and the second laser-amplified light guided along the opposite direction to the circumferential direction The first laser amplification light and the second laser amplification light are at least in the circumferential direction and at least in a direction reverse to the circumferential direction only when the phase difference between the first laser amplification beam and the second laser amplification light satisfies a predetermined condition. A laser-amplified light return unit that emits the first loop optical fiber along one direction;
    The first loop optical fiber is provided, the first loop optical fiber is generated, and the polarization direction is the first direction. The first optical frequency comb and the first loop optical fiber are generated and the polarization direction is A deriving unit that derives the second optical frequency comb that is the second direction from the first loop optical fiber;
    Equipped with
    Dual optical frequency comb generation optics.
  2.  前記第1ループ光ファイバは、
      第2ループ部と、
      前記第2ループ部に連結部を介して接続された第3ループ部で構成され、
     前記第2ループ部に前記導入部、前記増幅部が設けられ、
     前記第3ループ部に前記導出部が設けられ、
     前記レーザー増幅光戻し部は、前記連結部及び前記第3ループ部で構成され、
     前記所定の条件は、前記位相差が前記第1レーザー増幅光及び前記第2レーザー増幅光の波長の半分の奇数倍であることであり、
     前記連結部では前記第2ループ部から導波された前記第1レーザー増幅光及び前記第2レーザー増幅光が前記所定の条件を満たすときのみ前記第1レーザー増幅光及び前記第2レーザー増幅光が前記第3ループ部で周回した後、前記第2ループ部に戻される、
     請求項1に記載のデュアル光周波数コム生成光学系。
    The first loop optical fiber is
    The second loop section,
    It is comprised by the 3rd loop part connected via the connection part to the said 2nd loop part,
    The introduction unit and the amplification unit are provided in the second loop unit,
    The derivation unit is provided in the third loop unit,
    The laser amplification light return unit includes the connection unit and the third loop unit.
    The predetermined condition is that the phase difference is an odd multiple of half of the wavelength of the first laser amplified light and the second laser amplified light,
    The first laser amplification light and the second laser amplification light are generated at the connection portion only when the first laser amplification light and the second laser amplification light guided from the second loop portion satisfy the predetermined condition. After being circulated in the third loop portion, it is returned to the second loop portion,
    The dual optical frequency comb generation optical system according to claim 1.
  3.  前記第3ループ部には、前記第1レーザー増幅光及び前記第2レーザー増幅光の位相を変調可能な位相変調部が設けられる、
     請求項2に記載のデュアル光周波数コム生成光学系。
    The third loop unit is provided with a phase modulation unit capable of modulating the phases of the first laser amplification light and the second laser amplification light.
    The dual optical frequency comb generation optical system according to claim 2.
  4.  前記第1ループ光ファイバは、
      第2ループ部と、
      前記第2ループ部に連結部を介して接続された線形部で構成され、
     前記第2ループ部に前記導入部、前記増幅部が設けられ、
     前記導出部は前記連結部に接続され、
     前記レーザー増幅光戻し部は、前記連結部及び前記線形部で構成され、
     前記所定の条件は、前記位相差が前記第1レーザー増幅光及び前記第2レーザー増幅光の波長の半分の偶数倍であることであり、
     前記連結部では前記第2ループ部から導波された前記第1レーザー増幅光及び前記第2レーザー増幅光が前記所定の条件を満たすときのみ前記第1レーザー増幅光及び前記第2レーザー増幅光が前記線形部で往復した後、前記第2ループ部に戻される、
     請求項1に記載のデュアル光周波数コム生成光学系。
    The first loop optical fiber is
    The second loop section,
    It is comprised by the linear part connected to the said 2nd loop part via the connection part,
    The introduction unit and the amplification unit are provided in the second loop unit,
    The derivation unit is connected to the connection unit,
    The laser amplification light return unit includes the connection unit and the linear unit.
    The predetermined condition is that the phase difference is an even multiple of half the wavelengths of the first laser amplified light and the second laser amplified light,
    The first laser amplification light and the second laser amplification light are generated at the connection portion only when the first laser amplification light and the second laser amplification light guided from the second loop portion satisfy the predetermined condition. After being reciprocated by the linear portion, it is returned to the second loop portion,
    The dual optical frequency comb generation optical system according to claim 1.
  5.  前記線形部には、前記第1レーザー増幅光及び前記第2レーザー増幅光の位相を変調可能な位相変調部が設けられる、
     請求項4に記載のデュアル光周波数コム生成光学系。
    The linear portion is provided with a phase modulation unit capable of modulating the phases of the first laser amplification light and the second laser amplification light.
    The dual optical frequency comb generation optical system according to claim 4.
  6.  前記第1ループ光ファイバには、前記第1レーザー増幅光及び前記第2レーザー増幅光の共振器長を制御可能な共振器長制御素子が設けられる、
     請求項1から請求項5の何れか一項に記載のデュアル光周波数コム生成光学系。
    The first loop optical fiber is provided with a resonator length control element capable of controlling the resonator length of the first laser amplified light and the second laser amplified light.
    The dual optical frequency comb generation optical system according to any one of claims 1 to 5.
  7.  請求項1から請求項6の何れか一項に記載のデュアル光周波数コム生成光学系の前記導入部に接続され、前記第1レーザー光及び前記第2レーザー光を発する光源を備える、
     レーザー装置。
    A light source connected to the introduction portion of the dual optical frequency comb generation optical system according to any one of claims 1 to 6 and emitting the first laser light and the second laser light.
    Laser device.
  8.  請求項7に記載のレーザー装置と、
     前記導出部から導出される前記第1光周波数コム及び前記第2光周波数コムの進行方向の奥側に配置され、前記第1光周波数コム及び前記第2光周波数コムを分離して互いに異なる進路に進行させる偏波分離部と、
     前記偏波分離部によって互いに分離された前記第1光周波数コム及び前記第2光周波数コムの少なくとも一方の進路上に配置された試料より前記第1光周波数コム及び前記第2光周波数コムの進行方向の奥側に配置され、測定対象の前記第1光周波数コム及び前記第2光周波数コムを干渉させる偏波干渉部と、
     前記偏波干渉部で得られる干渉信号の進行方向の奥側に配置され、前記干渉信号から前記試料の情報を抽出する試料情報抽出部と、
     を備える、
     計測装置。
    A laser device according to claim 7;
    It is disposed on the far side of the traveling direction of the first optical frequency comb and the second optical frequency comb derived from the derivation unit, and the first optical frequency comb and the second optical frequency comb are separated to be different from each other A polarization separation unit to advance to
    Progress of the first optical frequency comb and the second optical frequency comb from a sample disposed on the path of at least one of the first optical frequency comb and the second optical frequency comb separated from each other by the polarization separation unit A polarization interference unit disposed on the far side of the direction to cause the first optical frequency comb and the second optical frequency comb to be measured to interfere with each other;
    A sample information extraction unit disposed on the back side of the traveling direction of the interference signal obtained by the polarization interference unit and extracting information of the sample from the interference signal;
    Equipped with
    Measuring device.
PCT/JP2018/031150 2017-10-13 2018-08-23 Dual optical frequency comb generating optical system, laser device and measurement device WO2019073701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509581A JP7181613B2 (en) 2017-10-13 2018-08-23 Dual optical frequency comb generation optics, laser device, measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-199843 2017-10-13
JP2017199843 2017-10-13

Publications (1)

Publication Number Publication Date
WO2019073701A1 true WO2019073701A1 (en) 2019-04-18

Family

ID=66101323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031150 WO2019073701A1 (en) 2017-10-13 2018-08-23 Dual optical frequency comb generating optical system, laser device and measurement device

Country Status (2)

Country Link
JP (1) JP7181613B2 (en)
WO (1) WO2019073701A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670811A (en) * 2020-12-23 2021-04-16 中国地质大学(武汉) Double-optical-frequency comb generation system and method based on optical fiber ring resonant cavity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050183A (en) * 1990-11-05 1991-09-17 The United States Of America As Represented By The Secretary Of The Navy Figure eight shaped coherent optical pulse source
JP2009516227A (en) * 2005-11-18 2009-04-16 オプティシンクス リミテッド Optical comb frequency source
JP2010062568A (en) * 2008-09-05 2010-03-18 Ofs Fitel Llc Figure eight fiber laser for ultrashort pulse generation
US20150071322A1 (en) * 2013-09-06 2015-03-12 Menlo Systems Gmbh Laser with non-linear optical loop mirror
JP2016018124A (en) * 2014-07-09 2016-02-01 日本電信電話株式会社 Optical frequency comb generation device
JP2017508301A (en) * 2014-03-17 2017-03-23 メンロ システムズ ゲーエムベーハー Method of operating a laser device, use of a resonance device and a phase shifter
JP2017138129A (en) * 2016-02-01 2017-08-10 学校法人慶應義塾 Polarization measurement device using dual-comb spectroscopy, and polarization measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365531A (en) * 1992-11-24 1994-11-15 Hewlett-Packard Company Apparatus and method for initializing an optical-fiber laser for mode locking
JPWO2016080415A1 (en) * 2014-11-17 2017-08-31 国立大学法人東京農工大学 Measuring device and sensor system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050183A (en) * 1990-11-05 1991-09-17 The United States Of America As Represented By The Secretary Of The Navy Figure eight shaped coherent optical pulse source
JP2009516227A (en) * 2005-11-18 2009-04-16 オプティシンクス リミテッド Optical comb frequency source
JP2010062568A (en) * 2008-09-05 2010-03-18 Ofs Fitel Llc Figure eight fiber laser for ultrashort pulse generation
US20150071322A1 (en) * 2013-09-06 2015-03-12 Menlo Systems Gmbh Laser with non-linear optical loop mirror
JP2017508301A (en) * 2014-03-17 2017-03-23 メンロ システムズ ゲーエムベーハー Method of operating a laser device, use of a resonance device and a phase shifter
JP2016018124A (en) * 2014-07-09 2016-02-01 日本電信電話株式会社 Optical frequency comb generation device
JP2017138129A (en) * 2016-02-01 2017-08-10 学校法人慶應義塾 Polarization measurement device using dual-comb spectroscopy, and polarization measurement method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANSEL ET AL.: "All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation", APPLIED PHYSICS B, vol. 123, 11 January 2017 (2017-01-11), pages 1 - 6, XP036148270 *
ZHAO ET AL.: "Picometer-resolution dual-comb spectroscopy with a free-running fiber laser", OPTICS EXPRESS, vol. 24, no. 19, 12 September 2016 (2016-09-12), pages 21833 - 21845, XP055593878 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670811A (en) * 2020-12-23 2021-04-16 中国地质大学(武汉) Double-optical-frequency comb generation system and method based on optical fiber ring resonant cavity
CN112670811B (en) * 2020-12-23 2023-10-17 中国地质大学(武汉) Dual-optical-frequency comb generation system and method based on optical fiber ring resonant cavity

Also Published As

Publication number Publication date
JP7181613B2 (en) 2022-12-02
JPWO2019073701A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
DE112010006131B3 (en) Optical scanning and imaging systems based on dual-pulsed laser systems
US9759983B2 (en) Frequency comb source with large comb spacing
US9983356B2 (en) Optical buffer-based apparatus for increasing light source repetition rate
US20020131049A1 (en) Broadband light source system and method thereof
KR101501509B1 (en) Dual Optical-comb Femto-second Optical Fiber Laser
CN106058620B (en) Multi-wavelength synchronism output optical fiber laser based on nonlinear polarization rotation mode locking
US10790634B2 (en) Laser system with optical feedback
JP2007271783A (en) Light source apparatus and light source system
Luo et al. Wavelength switchable all-fiber comb filter using a dual-pass Mach-Zehnder interferometer and its application in multiwavelength laser
JP2014135341A (en) Optical frequency com stabilization light source and method
CN105720472B (en) Optical resonantor is arranged and the method for adjusting the two-way time in resonator
JP2009252813A (en) Light source, and optical tomography imaging apparatus
JP7026373B2 (en) Fiber optic laser device
EP2608327B1 (en) System for generating a beat signal
JP2018045229A (en) Light source device, and information acquisition device using the same
US20200006912A1 (en) An optical plural-comb generator, a method of generating an optical plural comb, and a plurality of mode locked lasers that are mechanically coupled and optically independent
JP7181613B2 (en) Dual optical frequency comb generation optics, laser device, measurement device
JP7210025B2 (en) Dual optical frequency comb generation optics, laser device, measurement device
JP2009253129A (en) Light source, and optical tomography imaging apparatus
DE102011104512A1 (en) Light source module for tri-axes rotational measuring triad system used in navigation system, has light source that is integrated in substrate to emit polarized light on photoconductive fibers
Uyama et al. Orthogonally-polarized bi-directional dual-comb fiber laser
US8922875B2 (en) Method for optical phase modulation, optical phase modulator and optical network using the same
AU2020415534B2 (en) Atomic gyroscope and atomic interferometer
JPWO2019245027A1 (en) Optical fiber output light source device
JP2022129276A (en) Spectral polarization characteristic measuring device and spectral polarization characteristic measuring method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019509581

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866545

Country of ref document: EP

Kind code of ref document: A1