WO2019073599A1 - Motor drive device, refrigeration cycle device equipped with same, and motor drive method - Google Patents

Motor drive device, refrigeration cycle device equipped with same, and motor drive method Download PDF

Info

Publication number
WO2019073599A1
WO2019073599A1 PCT/JP2017/037212 JP2017037212W WO2019073599A1 WO 2019073599 A1 WO2019073599 A1 WO 2019073599A1 JP 2017037212 W JP2017037212 W JP 2017037212W WO 2019073599 A1 WO2019073599 A1 WO 2019073599A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
axis
current
torque
control unit
Prior art date
Application number
PCT/JP2017/037212
Other languages
French (fr)
Japanese (ja)
Inventor
能登原 保夫
悟士 隅田
奥山 敦
田村 建司
浩二 月井
上田 和弘
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2017/037212 priority Critical patent/WO2019073599A1/en
Priority to TW106145904A priority patent/TWI662782B/en
Publication of WO2019073599A1 publication Critical patent/WO2019073599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting

Definitions

  • the present invention relates to a motor drive device and the like for driving a motor.
  • Patent Document 1 describes that the motor is controlled so as to make the difference between the output torque of the motor and the load torque (pulsating torque) of the compressor zero.
  • Patent Document 2 describes that the peak value of the motor current is kept approximately constant.
  • Patent Document 1 can suppress the vibration of the compressor, it causes an increase in loss of a motor or the like (motor or circuit component).
  • the technique described in Patent Document 2 although loss of a motor or the like can be reduced, vibration of the compressor is relatively large. That is, the suppression of the vibration of the compressor and the reduction of the loss of the motor or the like are in a trade-off relationship.
  • this invention makes it a subject to provide the motor drive device etc. which are compatible in suppression of a vibration, and reduction of a loss.
  • the present invention is characterized in that the excitation current of the d-axis is changed according to the change of the torque current of the q-axis in the rotational coordinate system of the motor.
  • FIG. 7 is an explanatory view showing a load torque of a compressor, an output torque of a motor, a rotational speed, and a motor current when the motor is rotated once at a mechanical angle in torque control.
  • FIG. 6 is an explanatory view showing a load torque of a compressor, an output torque of a motor, a rotational speed, and a motor current when the motor is rotated once at a mechanical angle in constant current control.
  • FIG. 5 is a Bode diagram in the case of using a predetermined transfer function in the motor drive device according to the first embodiment of the present invention. It is an experimental result which shows the waveform of the motor current of a dq coordinate system at the time of driving a motor on predetermined conditions based on "high efficiency torque control" of 1st Embodiment of this invention. It is an experimental result which shows the waveform of the three-phase motor current at the time of driving a motor on predetermined conditions based on "high efficiency torque control" of 1st Embodiment of this invention.
  • FIG. 1 is an explanatory view of an air conditioner 100 provided with a motor drive device according to the first embodiment.
  • the air conditioner 100 (refrigerating cycle device) is a device that performs air conditioning such as cooling operation and heating operation.
  • the air conditioner 100 includes an outdoor unit Go, an indoor unit Gi, and a remote control Re.
  • the outdoor unit Go houses the compressor 11 (see FIG. 2), the outdoor heat exchanger 13 and the like.
  • the indoor unit Gi accommodates the indoor heat exchanger 14 (see FIG. 2), the indoor fan Fi, and the like.
  • the outdoor unit Go and the indoor unit Gi are connected via a pipe k and connected via a communication line (not shown).
  • the remote control Re transmits an operation signal such as an operation / stop command, a change of the set temperature, a change of the operation mode, and the like to the indoor unit Gi.
  • FIG. 2 is a block diagram of the air conditioner 100 provided with the motor drive device 50.
  • the air conditioner 100 includes a refrigerant circuit 10, an outdoor fan Fo, and an indoor fan Fi.
  • the air conditioner 100 is provided with the motor M, the converter 20, the inverter 30, the electric current detector 40, and the motor drive device 50 other than the above-mentioned structure.
  • the refrigerant circuit 10 is a circuit through which the refrigerant circulates, and includes a compressor 11 (load), a four-way valve 12, an outdoor heat exchanger 13, an indoor heat exchanger 14, and an expansion valve 15. Ru.
  • the compressor 11 is a device that compresses a gaseous refrigerant, and is connected to the rotor of the motor M.
  • the compressor 11 has a characteristic that the load torque (pulsating torque) periodically changes in the compression process of the refrigerant.
  • a compressor 11 although a rotary compressor and a reciprocating compressor are mentioned, for example, it is not limited to this.
  • the motor M is, for example, a permanent magnet synchronous motor, and is connected to the compressor 11.
  • a salient pole type synchronous motor salient pole machine
  • the four-way valve 12 is a valve that switches the flow direction of the refrigerant. That is, at the time of heating operation (solid arrow in FIG. 2), the four-way valve 12 is controlled such that the indoor heat exchanger 14 functions as a condenser and the outdoor heat exchanger 13 functions as an evaporator. On the other hand, at the time of cooling operation (broken line arrow in FIG. 2), the four-way valve 12 is controlled so that the outdoor heat exchanger 13 functions as a condenser and the indoor heat exchanger 14 functions as an evaporator.
  • the refrigerant circuit 10 includes the compressor 11, the condenser (one of the outdoor heat exchanger 13 and the indoor heat exchanger 14), the expansion valve 15, and the evaporator (the outdoor heat exchanger 13 and the indoor heat exchanger 14). And the other are sequentially connected in an annular fashion via the four-way valve 12. Then, the refrigerant circulates in a known refrigeration cycle (heat pump cycle) in the refrigerant circuit 10 based on an operation signal from the remote control Re (see FIG. 1) and detection values of various sensors (not shown).
  • a known refrigeration cycle heat pump cycle
  • the outdoor heat exchanger 13 is a heat exchanger in which heat exchange is performed between the outside air and the refrigerant.
  • the outdoor fan Fo is a fan that sends outside air to the outdoor heat exchanger 13 and is installed near the outdoor heat exchanger 13.
  • the indoor heat exchanger 14 is a heat exchanger in which heat exchange is performed between indoor air (air in a space to be air-conditioned) and a refrigerant.
  • the indoor fan Fi is a fan that sends indoor air to the indoor heat exchanger 14, and is installed near the indoor heat exchanger 14.
  • the expansion valve 15 is a valve that reduces the pressure of the refrigerant condensed by the above-described "condenser". The refrigerant decompressed by the expansion valve 15 is led to the aforementioned "evaporator”.
  • Converter 20 is a power converter that converts an AC voltage applied from AC power supply E into a DC voltage.
  • the inverter 30 is a power converter that converts a DC voltage applied from the converter 20 into an AC voltage and applies the AC voltage to the winding of the motor M.
  • a three-phase full bridge inverter can be used.
  • the current detector 40 is, for example, a shunt resistor, and detects a current supplied from the converter 20 to the inverter 30.
  • the detection value of the current detector 40 is output to the control unit 51 of the motor drive device 50 described below.
  • the motor drive device 50 drives the motor M to drive the compressor 11 coupled to the motor M at variable speeds.
  • the motor drive device 50 includes a control unit 51.
  • the control unit 51 includes electronic circuits such as a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and various interfaces. Then, the program stored in the ROM is read and expanded in the RAM, and the CPU executes various processing.
  • FIG. 3 is an explanatory view showing a load torque of the compressor 11, an output torque of the motor M, a rotational speed, and a motor current when the motor M is rotated once at a mechanical angle in torque control (as appropriate). See).
  • the “torque control” is control for changing the output torque of the motor M so as to match the load torque of the compressor 11.
  • the load torque of the compressor 11 periodically pulsates.
  • the load torque shown by a broken line is pulsating once in the process of the motor M making one rotation at a mechanical angle.
  • the output torque (solid line) shown in FIG. 3 is made to coincide with the load torque (broken line), and the rotational speed of the motor M is made constant. Vibration and noise of the compressor 11 are thereby suppressed.
  • the crest value of the motor current fluctuates significantly with the fluctuation of the load torque, the loss of the motor M and the like (motor M and circuit components) becomes a relatively large value although not shown.
  • FIG. 4 is an explanatory view showing a load torque of the compressor 11, an output torque of the motor M, a rotational speed, and a motor current when the rotor of the motor M is rotated once at a mechanical angle in constant current control. See Figure 2 as appropriate).
  • the "constant current control” is control to make the output torque of the motor M constant regardless of the fluctuation of the load torque.
  • “high efficiency torque control” refers to the control unit 51 (see FIG. 2) according to the change in q-axis torque current I q in the dq coordinate system (rotational coordinate system) of the motor in which cyclical fluctuations in load torque occur. There is a control to vary the excitation current I d of d axis. The details of “high efficiency torque control” will be described later.
  • FIG. 5 is a block diagram of the control unit 51 provided in the motor drive device 50.
  • the control unit 51 includes a three-phase / two-axis conversion unit 51a, an axis error calculation unit 51b, a PLL circuit 51c, an integrator 51d, a subtractor 51e, and a speed control unit 51f. And a speed fluctuation suppression control unit 51g.
  • the control unit 51 further includes an adder 51h, a subtractor 51i, an optimal phase control unit 51j, another subtractor 51k, a current control unit 51m, and a voltage command calculation unit 51n. , A 2-axis / 3-phase converter 51r, and a PWM signal generator 51s.
  • the control unit 51 reproduces the currents (I u , I v , I w ) of the three-phase coordinate system based on the detection value of the current detector 40 (see FIG. 2). Then, the value of the reproduced current (I u , I v , I w ) is input to the three-phase / two-axis conversion unit 51a as a current detection value.
  • the three-phase / two-axis conversion unit 51a is based on the phase ⁇ dc of the rotor of the motor M (see FIG. 2), and generates currents (I u , I v , I w ) of the three-phase coordinate system It is converted into current detection values (I dc , I qc ).
  • the direction of the actual magnet magnetic flux ⁇ ⁇ ⁇ ⁇ in the motor M is d axis, and the axis orthogonal to the d axis is q axis.
  • the subscript “c” in the current detection value (I dc , I qc ) means that it is based on the detection value of the current or the like.
  • the axis error calculation unit 51 b estimates an axis error ⁇ between the real axis and the control axis regarding the magnet flux of the motor M. More specifically, the axis error computing unit 51b is an axis error between the phase of the actual magnet flux ⁇ ⁇ ⁇ ⁇ in the motor M and the phase ⁇ dc (control phase) which is the computation result of the integrator 51d described later.
  • is calculated using the following equation (1).
  • R shown in the equation (1) is a winding resistance of the motor M
  • ⁇ r is a calculation result of the rotational speed of the motor M.
  • L dc is d-axis inductance of the motor M
  • L qc is q-axis inductance of the motor M
  • the superscript “*” attached to the d-axis voltage command V d * or the like represents that it is a command value.
  • the momentary axis error ⁇ that is the calculation result of the axis error calculator 51b is output to a PLL circuit 51c (Phase Locked Loop) shown in FIG.
  • the control unit 51 estimates the momentary axis error ⁇ based on the instantaneous value of the torque current I qc and the instantaneous value of the excitation current I dc .
  • the control unit 51 controls the motor M without using a position sensor based on the axis error ⁇ .
  • Formula (2) which is a principle formula (principle formula derived from the predetermined formula regarding the motor M) regarding calculation of axial error (DELTA) (theta) of the motor M is shown below for reference.
  • Equation (2) the third and fourth terms of the denominator are differential terms including differential operations, and the third and fourth terms of the numerator are also differential terms.
  • equation (3) shown below has been used in a form in which the differential terms whose processing is relatively complicated are omitted.
  • the time differential value of the excitation current I dc and the torque current I qc becomes substantially zero, so that the axis error ⁇ can be properly calculated also by the equation (3).
  • the torque current I qc is changed to resist the periodic load torque, and the excitation current I dc is also changed according to the torque current I qc. ing.
  • equation (1) is used in order to calculate the momentary axis error ⁇ with high accuracy.
  • the PLL circuit 51c shown in FIG. 5 calculates the rotational speed ⁇ r of the motor M based on PI control (Proportional Integral control) so that the above-mentioned axis error ⁇ becomes zero.
  • PI control Proportional Integral control
  • the integrator 51 d calculates the phase ⁇ dc of the rotor of the motor M by integrating the rotational speed ⁇ r .
  • Speed control unit 51f based on the rotational speed deviation [Delta] [omega r inputted from the subtractor 51e, for example, by the PI control, and calculates a torque current command I q0 * corresponding to the average torque of the motor M.
  • the speed fluctuation suppression control unit 51 g calculates a pulsating torque current command I qsin * that changes in a sinusoidal manner, in order to suppress the speed fluctuation associated with the periodic torque fluctuation of the motor M. Specifically, the speed variation suppression control unit 51g performs rotation based on the rotation speed command ⁇ r * and the rotation speed deviation ⁇ r , for example, using a transfer function G (s) shown in the following equation (4). Pulsating torque current command I qsin * is calculated such that speed deviation ⁇ r becomes zero.
  • the subscript “sin” of the pulsating torque current command I qsin * indicates that the waveform is sinusoidal (sin curve shape). Further, s shown in the equation (4) is a Laplace operator, K 1 , K 2 and K 3 are control coefficients, and ⁇ 0 is a predetermined center frequency.
  • the transfer function G (s) shown in the equation (4) has a characteristic that it has sensitivity (gain) at a predetermined center frequency ⁇ 0 and almost no sensitivity to other frequencies. Therefore, by setting the value of the central frequency ⁇ 0 to the rotational speed command ⁇ r * , the speed fluctuation suppression control unit 51 g can be configured to react only to the angular frequency of the rotational speed command ⁇ r * . Thereby, it is possible to without raising almost the sensitivity of a frequency different from the rotational speed command omega r *, the rotation speed command omega r * of high sensitivity (high gain of). There is also an advantage that the rotational speed deviation ⁇ r can be made substantially zero.
  • a transfer function G (s) shown in the following equation (5) may be used instead of the equation (4).
  • K 4 and K 5 shown in the equation (5) are control coefficients, and ⁇ 0 is a predetermined center frequency.
  • FIG. 6 is a Bode diagram when the transfer function G (s) of equation (5) is used. As shown in FIG. 6, the gain and the phase are largely changed in the vicinity of the predetermined center frequency ⁇ 0 . As described above, by using the transfer function G (s) such as equation (5), it is possible to achieve high sensitivity (high gain) of the rotational speed command ⁇ r * .
  • the adder 51h shown in FIG. 5 is the sum of torque current command I q0 * , which is the calculation result of speed control unit 51 f, and pulsation torque current command I qsin * , which is the calculation result of speed variation suppression control unit 51 g (I By taking q0 * + I qsin * ), a new torque current command I q * is calculated.
  • the torque current command I q0 * is a current command value corresponding to the average torque of the motor M.
  • the pulsating torque current command I qsin * is a current command value for suppressing a periodic torque fluctuation.
  • the subtractor 51i shown in FIG. 5 is a difference between the torque current command I q * , which is the calculation result of the adder 51 h , and the torque current I qc (detection value), which is the calculation result of the three-phase / two-axis converter 51a.
  • I q * the torque current command
  • I qc detection value
  • Ke shown in equation (6) is the induced voltage constant, L d is d-axis inductance of the motor M, L q is q-axis inductance of the motor M.
  • the excitation current command I d * has been calculated based on the temporal average value of the torque current command I q * in equation (6).
  • the optimum phase control unit 51 j uses the equation (6) to calculate the exciting current command I d * based on the instantaneous value (rather than the temporal average value) of the torque current command I q * . Is calculated.
  • control unit 51 periodically changes the torque current I q in the positive region and periodically changes the excitation current I d in the negative region (see FIG. 7A). Then, the control unit 51, as the absolute value of the torque current I q is small, so that also decreases the absolute value of the exciting current I d. It is to be noted that each of the above-mentioned "positive side area” and “negative side area” includes a value of zero.
  • control unit 51 changes the excitation current Id in a sine wave so as to be in reverse phase to the sine wave torque current I q (see FIG. 7A).
  • the control unit 51 increases the torque current I q and increases the absolute value of the excitation current I d (negative value).
  • the loss can be reduced, such as a motor M.
  • the control unit 51 reduces the torque current I q .
  • the absolute value of the excitation current I d negative value
  • the current control unit 51m generates a second excitation current command I d ** such that the difference ⁇ I d that is the calculation result of the subtractor 51k and the difference ⁇ I q that is the calculation result of another subtractor 51i become zero. And a second torque current command I q ** .
  • Voltage command calculation unit 51 n is based on second excitation current command I d ** and second torque current command I q ** , using a known voltage equation to obtain voltage commands (V d * , V q * ).
  • the two-axis / three-phase conversion unit 51r generates three-phase voltage commands (V u * , V d * , V q * ) based on the phase ⁇ dc which is the calculation result of the integrator 51 d . Convert to V v * , V w * ).
  • the PWM signal generation unit 51s generates a PWM signal based on PWM control (Pulse Width Modulation control) based on the three-phase voltage commands (V u * , V v * , V w * ).
  • PWM control Pulse Width Modulation control
  • the PWM signal switches on / off of each switching element (not shown) of the inverter 30 (see FIG. 2).
  • FIG. 13A is a comparative example showing the waveform of the motor current in the dq coordinate system when the motor M is driven under the conditions shown in Table 1 based on the “torque control”.
  • the horizontal axis in FIG. 13A is the crank angle of the compressor 11 (see FIG. 2), and the vertical axis is the motor current (excitation current I d , torque current I q ).
  • the torque current I q changes in a sine wave so as to resist the periodically changing load torque.
  • the crank angle of the compressor 11 mechanical angle of the motor M
  • the excitation current Id is constant.
  • FIG. 13B is a comparative example showing waveforms of three-phase motor currents when the motor M is driven under the conditions shown in Table 1 based on “torque control”.
  • the horizontal axis in FIG. 13B is the crank angle of the compressor 11 (see FIG. 2), which corresponds to the crank angle in the horizontal axis of FIG. 13A. That is, the waveform diagram shown in FIG. 13B is obtained as a result of controlling the torque current I q and the excitation current I d of the motor M as shown in FIG. 13A.
  • the vertical axis in FIG. 13B is three-phase motor current (current of U-phase, V-phase, W-phase).
  • FIG. 7A is an experimental result showing a waveform of a motor current in a dq coordinate system when the motor M is driven under the conditions shown in Table 1 based on the “high efficiency torque control” of the present embodiment.
  • the control unit 51 sinusoidally changes the torque current I q so as to resist the periodically changing load torque. Further, the control unit 51 changes the excitation current Id in a sine wave so that the phase is opposite to that of the torque current Iq .
  • FIG. 7B is an experimental result showing a waveform of a three-phase motor current when the motor M is driven under the conditions shown in Table 1 based on the “high efficiency torque control” of this embodiment.
  • the crank angle on the horizontal axis in FIG. 7B corresponds to the crank angle on the horizontal axis in FIG. 7A.
  • the control unit 51 increases the absolute value of the excitation current I d (negative value) (see FIG. 7A). This makes it possible to reduce the peak of the peak value of the three-phase motor current because the reluctance torque is utilized to the maximum.
  • FIG. 13A even if the peak value of the torque current I q is relatively small (see FIG. 7A), a sufficient torque (pulsating torque) to resist the load torque can be obtained.
  • the control unit 51 reduces the absolute value of the excitation current I d (negative value). As a result, it is possible to suppress the wasteful flow of the three-phase motor current.
  • the crest value in the vicinity of the crank angle of 40 ° and 400 ° of the compressor 11 is smaller than that of the comparative example shown in FIG. 13B.
  • the peak value of the three-phase motor current in the region where output torque is almost unnecessary can be made close to zero. As a result, the loss of the motor M and the like can be significantly reduced as compared with the prior art.
  • the output torque T of the motor M is given by the following equation (7).
  • P m shown in the equation (7) is a pole pair number.
  • the exciting current i d by optimally controlled according to the torque current i q, it is possible to maximize the output torque T of the motor M (minimizing motor current).
  • FIG. 8 is a graph showing an effective value of motor current and motor copper loss in a comparative example, and an effective value of motor current and motor copper loss in the present embodiment.
  • a comparative example is an experimental result at the time of driving motor M on the conditions shown in Table 1 based on the above-mentioned "torque control.” Moreover, the motor M is driven under the conditions shown in Table 1 also in the present embodiment in which "high efficiency torque control" is performed.
  • the effective value of the motor current is smaller than that of the comparative example.
  • the motor copper loss is significantly reduced as compared with the comparative example.
  • the control unit 51 in accordance with the variation of the torque current I q, it executes the "high-efficiency torque control" to vary the excitation current I d.
  • the control unit 51 executes the "high-efficiency torque control" to vary the excitation current I d.
  • control unit 51 estimates the axial error ⁇ every moment based on the above equation (1) based on the instantaneous value of the torque current I qc and the instantaneous value of the excitation current I dc .
  • the axis error ⁇ can be calculated with high accuracy, and consequently, “high efficiency torque control” can be appropriately performed.
  • the second embodiment is different from the first embodiment in that a control unit 51A (see FIG. 9) of the motor drive device includes a torque pulsation estimation unit 51t (see FIG. 9).
  • the configuration of the speed fluctuation suppression control unit 51Ag (see FIG. 9) is different from that of the first embodiment.
  • the other aspects are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the descriptions of the overlapping parts will be omitted.
  • FIG. 9 is a block diagram of a control unit 51A provided in the motor drive device according to the second embodiment.
  • the control unit 51A includes a torque pulsation estimation unit 51t, a speed fluctuation suppression control unit 51Ag, and the like.
  • the torque pulsation estimation unit 51t estimates a torque pulsation component (periodic disturbance) in the motor M.
  • FIG. 10 is a configuration diagram including a torque pulsation estimation unit 51t of the motor drive device.
  • the torque pulsation estimation unit 51t includes a proportional gain calculation unit 511t and multipliers 512t and 513t.
  • the proportional gain calculation unit 511t multiplies the axis error ⁇ , which is the calculation result of the axis error calculation unit 51b, by a predetermined proportional gain (2J / P).
  • J included in the proportional gain (2J / P) is the inertia of the compressor 11 and the motor M, and P is the number of poles of the motor M.
  • the multiplier 512t calculates the square of the rotational speed ⁇ r of the motor M, which is the calculation result of the PLL circuit 51c.
  • the other multiplier 513t calculates a torque pulsation component ⁇ T m by multiplying the calculation result of the proportional gain calculation unit 511t and the calculation result of the multiplier 512t.
  • the torque pulsation component ⁇ T m is input to a speed fluctuation suppression control unit 51Ag (see FIG. 11) to be described next.
  • FIG. 11 is an explanatory diagram of the speed fluctuation suppression control unit 51Ag provided in the control unit 51A of the motor drive device.
  • the speed variation suppression control unit 51Ag includes a signal generation unit g1, a Fourier transform unit g2, an integral compensator g3, and a Fourier inverse transform unit g4.
  • the signal generator g1 generates signals of sin component and cos component of the rotational speed command ⁇ r * .
  • the Fourier transform unit g2 receives the torque pulsation component ⁇ T m and extracts the sin component and the cos component (first-order component) by Fourier transformation.
  • the integral compensator g3 is an integrator that calculates a predetermined sin component and cos component for zeroing the frequency component of the torque pulsation component ⁇ T m extracted by the Fourier transform unit g2.
  • the inverse Fourier transform unit g4 converts the calculation result (sin component and cos component) of the integral compensator g3 into a pulsation torque current command I qsin * by inverse Fourier transform.
  • Figure 12A is an explanatory diagram showing a relationship between a torque current i q and the q-axis inductance L q of the motor M.
  • the horizontal axis in FIG. 12A is the torque current iq
  • the vertical axis is the q-axis inductance Lq .
  • a calculation formula or data table indicating such a relationship may be stored in advance in the control unit 51, and the control unit 51 may calculate the q-axis inductance L q based on the momentary torque current i q .
  • the control unit 51 based on the torque current i q, estimated every moment of the q-axis inductance L q of the motor M, based on the q-axis inductance L q, estimates the axis error [Delta] [theta].
  • FIG. 12B is an explanatory diagram showing the relationship between the excitation current i d and the d-axis inductance L d of the motor M.
  • the horizontal axis in FIG. 12B is the excitation current i d is a negative value is obtained by multiplying the (-1) (-i d), the vertical axis represents the d-axis inductance L d.
  • the absolute value of the excitation current i d of the motor M approaches zero, d-axis inductance L d is gradually increased.
  • control unit 51 may calculate the d-axis inductance L d. By this, it is possible to calculate the axis error ⁇ of the above-mentioned equation (1) with higher accuracy.
  • the control unit 51 may estimate both the q-axis inductance L q and the d-axis inductance L d , or may estimate one of them.
  • the control unit 51 N order component included in the torque current i q (i.e., N order components in the Fourier analysis) in response to changes in, may be to vary the excitation current i d.
  • N is a natural number.
  • the control unit 51 may be changed excitation current i d. That is, in the torque current i q, orders based on the respective extraction result of different frequency components, the control unit 51 may be changed excitation current i d. By this, the vibration of the compressor 11 can be suppressed more effectively.
  • the present invention is not limited thereto. That is, the same control can be performed by using a value related to the vibration of the compressor 11 or the motor M (for example, the vibration acceleration of the motor M) or the fluctuation range of the axis error ⁇ .
  • the second embodiment the same applies to the second embodiment.
  • FIG. 5 was illustrated as the control part 51 with which the motor drive device 50 is equipped in 1st Embodiment, it does not restrict to this. That is, as the configuration of the control unit 51, another known configuration regarding position sensorless vector control may be used.
  • each embodiment demonstrated the structure which controls the motor M by a position sensor-less, it does not restrict to this.
  • each embodiment can be applied to a configuration in which the rotational position of the motor M is detected by a sensor (not shown). When such a sensor is provided, it is not necessary to calculate the axis error ⁇ .
  • each embodiment demonstrated the structure which drives the compressor 11 of the air conditioner 100 by the motor M, it does not restrict to this.
  • each embodiment can be applied to a configuration in which a motor (M) drives a compressor (load) that may cause periodic torque fluctuations, such as a refrigeration cycle apparatus such as a refrigerator.
  • each embodiment the compressor 11 in which one torque fluctuation occurs in one mechanical angle rotation of the motor M has been described, but the present invention is not limited thereto.
  • each embodiment can be applied to a reciprocating compressor widely used in a refrigeration cycle apparatus such as a refrigerator as well as a twin rotary compressor.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
  • each configuration, function, processing unit, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit. Further, the mechanisms and configurations indicate what is considered to be necessary for the description, and not all the mechanisms and configurations are necessarily shown on the product.
  • Air Conditioner (Refrigeration Cycle Equipment) 10 Refrigerant circuit 11 Compressor 12 Four-way valve 13 Outdoor heat exchanger (condenser, evaporator) 14 Indoor heat exchanger (evaporator, condenser) DESCRIPTION OF SYMBOLS 15 Expansion valve 20 Converter 30 Inverter 40 Current detector 50 Motor drive device 51, 51A Control part 51a 2 axis conversion part 51b Axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Provided are a motor drive device and the like capable of both suppressing vibration and reducing loss. The motor drive device (50) is provided with a control unit (51) for changing, in accordance with the change in torque current on the q-axis of a rotating coordinate system of a motor (M), excitation current on the d-axis. By changing the excitation current in accordance with the change in the torque current like this, it is possible to suppress the vibration and noise of the motor (M) and the like and drastically reduce the loss of the motor (M) and the like in comparison with a conventional loss even if periodical variation of a load torque occurs during driving of the motor (M).

Description

モータ駆動装置、及びこれを備える冷凍サイクル装置、並びにモータ駆動方法Motor drive device, refrigeration cycle device including the same, and motor drive method
 本発明は、モータを駆動するモータ駆動装置等に関する。 The present invention relates to a motor drive device and the like for driving a motor.
 ロータリ圧縮機やレシプロ圧縮機は、冷媒の圧縮過程において負荷トルクが周期的に変動することが知られている。このような負荷トルクの変動に伴う振動や騒音を抑制する技術として、例えば、特許文献1に記載の技術が知られている。すなわち、特許文献1には、モータの出力トルクと圧縮機の負荷トルク(脈動トルク)との差をゼロにするようにモータを制御することが記載されている。 In rotary compressors and reciprocating compressors, it is known that load torque periodically fluctuates in the compression process of the refrigerant. As a technique of suppressing the vibration and noise accompanying such fluctuation of load torque, for example, the technique described in Patent Document 1 is known. That is, Patent Document 1 describes that the motor is controlled so as to make the difference between the output torque of the motor and the load torque (pulsating torque) of the compressor zero.
 前記した特許文献1に記載の技術では、圧縮機の振動等を抑制できるものの、負荷トルクの周期的な変動に伴ってモータ電流の波高値が大きく変動し、損失の増加を招く。そこで、モータの損失を低減する技術として、例えば、特許文献2には、モータ電流の波高値を略一定に保つことが記載されている。 In the technology described in Patent Document 1 described above, although the vibration and the like of the compressor can be suppressed, the peak value of the motor current largely fluctuates with the periodic fluctuation of the load torque, leading to an increase in loss. Therefore, as a technique for reducing the loss of the motor, for example, Patent Document 2 describes that the peak value of the motor current is kept approximately constant.
特許第4221307号公報Patent No. 4221307 特許第4958431号公報Patent No. 4958431
 前記したように、特許文献1に記載の技術では、圧縮機の振動を抑制できるものの、モータ等(モータや回路部品)の損失の増加を招く。一方、特許文献2に記載の技術では、モータ等の損失を低減できるものの、圧縮機の振動が比較的大きい。つまり、圧縮機の振動の抑制と、モータ等の損失の低減と、はトレードオフの関係になっている。 As described above, although the technology described in Patent Document 1 can suppress the vibration of the compressor, it causes an increase in loss of a motor or the like (motor or circuit component). On the other hand, in the technique described in Patent Document 2, although loss of a motor or the like can be reduced, vibration of the compressor is relatively large. That is, the suppression of the vibration of the compressor and the reduction of the loss of the motor or the like are in a trade-off relationship.
 そこで、本発明は、振動の抑制と、損失の低減と、を両立可能なモータ駆動装置等を提供することを課題とする。 Then, this invention makes it a subject to provide the motor drive device etc. which are compatible in suppression of a vibration, and reduction of a loss.
 前記した課題を解決するために、本発明は、モータの回転座標系におけるq軸のトルク電流の変化に応じて、d軸の励磁電流を変化させることを特徴とする。 In order to solve the problems described above, the present invention is characterized in that the excitation current of the d-axis is changed according to the change of the torque current of the q-axis in the rotational coordinate system of the motor.
 本発明によれば、振動の抑制と、損失の低減と、を両立可能なモータ駆動装置等を提供できる。 According to the present invention, it is possible to provide a motor drive device and the like that can achieve both suppression of vibration and reduction of loss.
本発明の第1実施形態に係るモータ駆動装置を備える空気調和機の説明図である。It is explanatory drawing of the air conditioner provided with the motor drive device which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るモータ駆動装置を備える空気調和機の構成図である。It is a block diagram of an air conditioner provided with a motor drive concerning a 1st embodiment of the present invention. トルク制御において、モータを機械角で1回転させたときの圧縮機の負荷トルク、モータの出力トルク、回転速度、及びモータ電流を示す説明図である。FIG. 7 is an explanatory view showing a load torque of a compressor, an output torque of a motor, a rotational speed, and a motor current when the motor is rotated once at a mechanical angle in torque control. 電流一定制御において、モータを機械角で1回転させたときの圧縮機の負荷トルク、モータの出力トルク、回転速度、及びモータ電流を示す説明図である。FIG. 6 is an explanatory view showing a load torque of a compressor, an output torque of a motor, a rotational speed, and a motor current when the motor is rotated once at a mechanical angle in constant current control. 本発明の第1実施形態に係るモータ駆動装置が備える制御部の構成図である。It is a block diagram of a control part with which a motor drive concerning a 1st embodiment of the present invention is provided. 本発明の第1実施形態に係るモータ駆動装置において、所定の伝達関数を用いた場合のボード線図である。FIG. 5 is a Bode diagram in the case of using a predetermined transfer function in the motor drive device according to the first embodiment of the present invention. 本発明の第1実施形態の「高効率トルク制御」に基づき、所定の条件下でモータを駆動した場合のdq座標系のモータ電流の波形を示す実験結果である。It is an experimental result which shows the waveform of the motor current of a dq coordinate system at the time of driving a motor on predetermined conditions based on "high efficiency torque control" of 1st Embodiment of this invention. 本発明の第1実施形態の「高効率トルク制御」に基づき、所定の条件下でモータを駆動した場合の三相モータ電流の波形を示す実験結果である。It is an experimental result which shows the waveform of the three-phase motor current at the time of driving a motor on predetermined conditions based on "high efficiency torque control" of 1st Embodiment of this invention. 比較例におけるモータ電流の実効値及びモータ銅損と、本発明の第1実施形態におけるモータ電流の実効値及びモータ銅損と、を示すグラフである。It is a graph which shows the effective value and motor copper loss of a motor current in a comparative example, and the effective value and motor copper loss of a motor current in 1st Embodiment of this invention. 本発明の第2実施形態に係るモータ駆動装置が備える制御部の構成図である。It is a block diagram of the control part with which the motor drive concerning a 2nd embodiment of the present invention is provided. 本発明の第2実施形態に係るモータ駆動装置のトルク脈動推定部を含む構成図である。It is a block diagram containing the torque pulsation estimation part of the motor drive concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係るモータ駆動装置の制御部が備える速度変動抑制制御部の説明図である。It is explanatory drawing of the speed fluctuation suppression control part with which the control part of the motor drive device which concerns on 2nd Embodiment of this invention is provided. モータのトルク電流とq軸インダクタンスとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the torque current of a motor, and q axis | shaft inductance. モータの励磁電流とd軸インダクタンスとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the excitation current of a motor, and d axis | shaft inductance. 「トルク制御」に基づき、所定の条件下でモータを駆動した場合のdq座標系のモータ電流の波形を示す比較例である。It is a comparative example which shows the waveform of the motor current of a dq coordinate system at the time of driving a motor on predetermined conditions based on "torque control." 「トルク制御」に基づき、所定の条件下でモータを駆動した場合の三相モータ電流の波形を示す比較例であるIt is a comparative example which shows the waveform of the three-phase motor current at the time of driving a motor under predetermined conditions based on "torque control".
 以下では、一例として、空気調和機100(図2参照)の圧縮機11をモータMによって駆動する構成について説明する。 Below, the structure which drives the compressor 11 of the air conditioner 100 (refer FIG. 2) by the motor M is demonstrated as an example.
≪第1実施形態≫
<空気調和機の構成>
 図1は、第1実施形態に係るモータ駆動装置を備える空気調和機100の説明図である。
 空気調和機100(冷凍サイクル装置)は、冷房運転や暖房運転等の空調を行う機器である。図1に示すように、空気調和機100は、室外機Goと、室内機Giと、リモコンReと、を備えている。
First Embodiment
<Configuration of air conditioner>
FIG. 1 is an explanatory view of an air conditioner 100 provided with a motor drive device according to the first embodiment.
The air conditioner 100 (refrigerating cycle device) is a device that performs air conditioning such as cooling operation and heating operation. As shown in FIG. 1, the air conditioner 100 includes an outdoor unit Go, an indoor unit Gi, and a remote control Re.
 室外機Goには、圧縮機11(図2参照)や室外熱交換器13等が収容されている。室内機Giには、室内熱交換器14(図2参照)や室内ファンFi等が収容されている。室外機Goと室内機Giとは、配管kを介して接続されるとともに、通信線(図示せず)を介して接続されている。リモコンReは、運転/停止の指令、設定温度の変更、運転モードの変更等の操作信号を室内機Giに送信するものである。 The outdoor unit Go houses the compressor 11 (see FIG. 2), the outdoor heat exchanger 13 and the like. The indoor unit Gi accommodates the indoor heat exchanger 14 (see FIG. 2), the indoor fan Fi, and the like. The outdoor unit Go and the indoor unit Gi are connected via a pipe k and connected via a communication line (not shown). The remote control Re transmits an operation signal such as an operation / stop command, a change of the set temperature, a change of the operation mode, and the like to the indoor unit Gi.
 図2は、モータ駆動装置50を備える空気調和機100の構成図である。
 図2に示すように、空気調和機100は、冷媒回路10と、室外ファンFoと、室内ファンFiと、を備えている。また、空気調和機100は、前記した構成の他に、モータMと、コンバータ20と、インバータ30と、電流検出器40と、モータ駆動装置50と、を備えている。
FIG. 2 is a block diagram of the air conditioner 100 provided with the motor drive device 50. As shown in FIG.
As shown in FIG. 2, the air conditioner 100 includes a refrigerant circuit 10, an outdoor fan Fo, and an indoor fan Fi. Moreover, the air conditioner 100 is provided with the motor M, the converter 20, the inverter 30, the electric current detector 40, and the motor drive device 50 other than the above-mentioned structure.
 冷媒回路10は、冷媒が循環する回路であり、圧縮機11(負荷)と、四方弁12と、室外熱交換器13と、室内熱交換器14と、膨張弁15と、を含んで構成される。 The refrigerant circuit 10 is a circuit through which the refrigerant circulates, and includes a compressor 11 (load), a four-way valve 12, an outdoor heat exchanger 13, an indoor heat exchanger 14, and an expansion valve 15. Ru.
 圧縮機11は、ガス状の冷媒を圧縮する機器であり、モータMの回転子に連結されている。圧縮機11は、冷媒の圧縮過程において負荷トルク(脈動トルク)が周期的に変動するという特性を有している。このような圧縮機11として、例えば、ロータリ圧縮機やレシプロ圧縮機が挙げられるが、これに限定されるものではない。
 モータMは、例えば、永久磁石同期モータであり、圧縮機11に連結されている。このようなモータMとして、突極型の同期モータ(突極機)が挙げられる。
The compressor 11 is a device that compresses a gaseous refrigerant, and is connected to the rotor of the motor M. The compressor 11 has a characteristic that the load torque (pulsating torque) periodically changes in the compression process of the refrigerant. As such a compressor 11, although a rotary compressor and a reciprocating compressor are mentioned, for example, it is not limited to this.
The motor M is, for example, a permanent magnet synchronous motor, and is connected to the compressor 11. As such a motor M, a salient pole type synchronous motor (salient pole machine) is mentioned.
 四方弁12は、冷媒の流れる向きを切り替える弁である。すなわち、暖房運転時(図2の実線矢印)には、室内熱交換器14を凝縮器として機能させ、室外熱交換器13を蒸発器として機能させるように四方弁12が制御される。一方、冷房運転時(図2の破線矢印)には、室外熱交換器13を凝縮器として機能させ、室内熱交換器14を蒸発器として機能させるように四方弁12が制御される。 The four-way valve 12 is a valve that switches the flow direction of the refrigerant. That is, at the time of heating operation (solid arrow in FIG. 2), the four-way valve 12 is controlled such that the indoor heat exchanger 14 functions as a condenser and the outdoor heat exchanger 13 functions as an evaporator. On the other hand, at the time of cooling operation (broken line arrow in FIG. 2), the four-way valve 12 is controlled so that the outdoor heat exchanger 13 functions as a condenser and the indoor heat exchanger 14 functions as an evaporator.
 つまり、冷媒回路10は、圧縮機11と、凝縮器(室外熱交換器13及び室内熱交換器14の一方)と、膨張弁15と、蒸発器(室外熱交換器13及び室内熱交換器14の他方)と、が四方弁12を介して環状に順次接続された構成になっている。そして、リモコンRe(図1参照)からの操作信号や各種センサ(図示せず)の検出値に基づき、冷媒回路10において周知の冷凍サイクル(ヒートポンプサイクル)で冷媒が循環するようになっている。 That is, the refrigerant circuit 10 includes the compressor 11, the condenser (one of the outdoor heat exchanger 13 and the indoor heat exchanger 14), the expansion valve 15, and the evaporator (the outdoor heat exchanger 13 and the indoor heat exchanger 14). And the other are sequentially connected in an annular fashion via the four-way valve 12. Then, the refrigerant circulates in a known refrigeration cycle (heat pump cycle) in the refrigerant circuit 10 based on an operation signal from the remote control Re (see FIG. 1) and detection values of various sensors (not shown).
 室外熱交換器13は、外気と冷媒との間で熱交換が行われる熱交換器である。
 室外ファンFoは、室外熱交換器13に外気を送り込むファンであり、室外熱交換器13の付近に設置されている。
The outdoor heat exchanger 13 is a heat exchanger in which heat exchange is performed between the outside air and the refrigerant.
The outdoor fan Fo is a fan that sends outside air to the outdoor heat exchanger 13 and is installed near the outdoor heat exchanger 13.
 室内熱交換器14は、室内空気(空調対象空間の空気)と冷媒との間で熱交換が行われる熱交換器である。
 室内ファンFiは、室内熱交換器14に室内空気を送り込むファンであり、室内熱交換器14の付近に設置されている。
The indoor heat exchanger 14 is a heat exchanger in which heat exchange is performed between indoor air (air in a space to be air-conditioned) and a refrigerant.
The indoor fan Fi is a fan that sends indoor air to the indoor heat exchanger 14, and is installed near the indoor heat exchanger 14.
 膨張弁15は、前記した「凝縮器」で凝縮した冷媒を減圧する弁である。膨張弁15によって減圧された冷媒は、前記した「蒸発器」に導かれる。 The expansion valve 15 is a valve that reduces the pressure of the refrigerant condensed by the above-described "condenser". The refrigerant decompressed by the expansion valve 15 is led to the aforementioned "evaporator".
 コンバータ20は、交流電源Eから印加される交流電圧を直流電圧に変換する電力変換器である。
 インバータ30は、コンバータ20から印加される直流電圧を交流電圧に変換し、この交流電圧をモータMの巻線に印加する電力変換器である。このようなインバータ30として、例えば、三相フルブリッジインバータを用いることができる。
Converter 20 is a power converter that converts an AC voltage applied from AC power supply E into a DC voltage.
The inverter 30 is a power converter that converts a DC voltage applied from the converter 20 into an AC voltage and applies the AC voltage to the winding of the motor M. As such an inverter 30, for example, a three-phase full bridge inverter can be used.
 電流検出器40は、例えば、シャント抵抗であり、コンバータ20からインバータ30に供給される電流を検出する。電流検出器40の検出値は、次に説明するモータ駆動装置50の制御部51に出力される。 The current detector 40 is, for example, a shunt resistor, and detects a current supplied from the converter 20 to the inverter 30. The detection value of the current detector 40 is output to the control unit 51 of the motor drive device 50 described below.
 モータ駆動装置50は、モータMを駆動することによって、このモータMに連結された圧縮機11を可変速で駆動する装置である。図2に示すように、モータ駆動装置50は、制御部51を備えている。制御部51は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。 The motor drive device 50 drives the motor M to drive the compressor 11 coupled to the motor M at variable speeds. As shown in FIG. 2, the motor drive device 50 includes a control unit 51. Although not shown, the control unit 51 includes electronic circuits such as a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and various interfaces. Then, the program stored in the ROM is read and expanded in the RAM, and the CPU executes various processing.
<トルク制御・電流一定制御・高効率トルク制御>
 次に、これまで行われていた「トルク制御」及び「電流一定制御」について簡単に説明した後、本実施形態の「高効率トルク制御」について説明する。
<Torque control / constant current control / high efficiency torque control>
Next, after briefly describing “torque control” and “constant current control” which have been performed up to this point, “high efficiency torque control” of the present embodiment will be described.
 図3は、トルク制御において、モータMを機械角で1回転させたときの圧縮機11の負荷トルク、モータMの出力トルク、回転速度、及びモータ電流を示す説明図である(適宜、図2を参照)。
 なお、「トルク制御」とは、圧縮機11の負荷トルクに一致させるようにモータMの出力トルクを変動させる制御である。前記したように、モータMを機械角で1回転させると、圧縮機11の負荷トルクが周期的に脈動する。図3に示す例では、モータMが機械角で1回転する過程において、破線で示す負荷トルクが一回脈動している。
FIG. 3 is an explanatory view showing a load torque of the compressor 11, an output torque of the motor M, a rotational speed, and a motor current when the motor M is rotated once at a mechanical angle in torque control (as appropriate). See).
The “torque control” is control for changing the output torque of the motor M so as to match the load torque of the compressor 11. As described above, when the motor M is rotated once at a mechanical angle, the load torque of the compressor 11 periodically pulsates. In the example shown in FIG. 3, the load torque shown by a broken line is pulsating once in the process of the motor M making one rotation at a mechanical angle.
 このトルク制御では、図3に示す出力トルク(実線)を負荷トルク(破線)に一致させ、モータMの回転速度を一定にしている。これによって、圧縮機11の振動や騒音が抑制される。その一方で、負荷トルクの変動に伴ってモータ電流の波高値が大きく変動するため、図示はしないが、モータM等(モータMや回路部品)の損失が比較的大きな値になる。 In this torque control, the output torque (solid line) shown in FIG. 3 is made to coincide with the load torque (broken line), and the rotational speed of the motor M is made constant. Vibration and noise of the compressor 11 are thereby suppressed. On the other hand, since the crest value of the motor current fluctuates significantly with the fluctuation of the load torque, the loss of the motor M and the like (motor M and circuit components) becomes a relatively large value although not shown.
 図4は、電流一定制御において、モータMの回転子を機械角で1回転させたときの圧縮機11の負荷トルク、モータMの出力トルク、回転速度、及びモータ電流を示す説明図である(適宜、図2を参照)。
 なお、「電流一定制御」とは、負荷トルクの変動に関わらず、モータMの出力トルクを一定にする制御である。
FIG. 4 is an explanatory view showing a load torque of the compressor 11, an output torque of the motor M, a rotational speed, and a motor current when the rotor of the motor M is rotated once at a mechanical angle in constant current control. See Figure 2 as appropriate).
The "constant current control" is control to make the output torque of the motor M constant regardless of the fluctuation of the load torque.
 図4に示すように、電流一定制御では、モータMの出力トルクが一定に維持されるため、モータ電流の波高値も一定になる。これによって、モータM等の損失を低減できる。その一方で、モータMの回転速度が大きく変動するため、圧縮機11が振動しやすくなる。 As shown in FIG. 4, in constant current control, the output torque of the motor M is maintained constant, so the peak value of the motor current also becomes constant. Thereby, the loss of the motor M or the like can be reduced. On the other hand, since the rotational speed of the motor M fluctuates greatly, the compressor 11 easily vibrates.
 このように、圧縮機11の振動の抑制と、モータM等の損失の低減と、はトレードオフの関係になっている。そこで、第1実施形態では、圧縮機11の振動の抑制と、モータM等の損失の低減と、を両立させるために、「高効率トルク制御」を行うようにしている。
 「高効率トルク制御」とは、負荷トルクの周期的な変動が生じるモータのdq座標系(回転座標系)におけるq軸のトルク電流Iの変化に応じて、制御部51(図2参照)が、d軸の励磁電流Iを変化させる制御である。なお、「高効率トルク制御」の詳細については後記する。
Thus, the suppression of the vibration of the compressor 11 and the reduction of the loss of the motor M etc. are in a trade-off relationship. So, in 1st Embodiment, in order to make suppression of the vibration of the compressor 11, and reduction of the loss of the motor M etc. make compatible, "high efficiency torque control" is performed.
“High-efficiency torque control” refers to the control unit 51 (see FIG. 2) according to the change in q-axis torque current I q in the dq coordinate system (rotational coordinate system) of the motor in which cyclical fluctuations in load torque occur. There is a control to vary the excitation current I d of d axis. The details of “high efficiency torque control” will be described later.
<制御部の構成>
 図5は、モータ駆動装置50が備える制御部51の構成図である。
 図5に示すように、制御部51は、3相/2軸変換部51aと、軸誤差演算部51bと、PLL回路51cと、積分器51dと、減算器51eと、速度制御部51fと、速度変動抑制制御部51gと、を備えている。また、制御部51は、前記した構成の他に、加算器51hと、減算器51iと、最適位相制御部51jと、別の減算器51kと、電流制御部51mと、電圧指令演算部51nと、2軸/3相変換部51rと、PWM信号生成部51sと、を備えている。
<Configuration of control unit>
FIG. 5 is a block diagram of the control unit 51 provided in the motor drive device 50. As shown in FIG.
As shown in FIG. 5, the control unit 51 includes a three-phase / two-axis conversion unit 51a, an axis error calculation unit 51b, a PLL circuit 51c, an integrator 51d, a subtractor 51e, and a speed control unit 51f. And a speed fluctuation suppression control unit 51g. In addition to the above-described configuration, the control unit 51 further includes an adder 51h, a subtractor 51i, an optimal phase control unit 51j, another subtractor 51k, a current control unit 51m, and a voltage command calculation unit 51n. , A 2-axis / 3-phase converter 51r, and a PWM signal generator 51s.
 なお、電流検出器40(図2参照)の検出値に基づき、制御部51において3相座標系の電流(I,I,I)が再現されるようになっている。そして、再現された電流(I,I,I)の値は、電流検出値として3相/2軸変換部51aに入力される。 The control unit 51 reproduces the currents (I u , I v , I w ) of the three-phase coordinate system based on the detection value of the current detector 40 (see FIG. 2). Then, the value of the reproduced current (I u , I v , I w ) is input to the three-phase / two-axis conversion unit 51a as a current detection value.
 3相/2軸変換部51aは、モータM(図2参照)の回転子の位相θdcに基づき、3相座標系の電流(I,I,I)をdc軸・qc軸の電流検出値(Idc,Iqc)に変換する。なお、モータMにおける実際の磁石磁束Φの向きをd軸とし、このd軸に直交する軸をq軸としている。また、電流検出値(Idc,Iqc)における下付きの「c」は、電流等の検出値に基づくことを意味している。 The three-phase / two-axis conversion unit 51a is based on the phase θ dc of the rotor of the motor M (see FIG. 2), and generates currents (I u , I v , I w ) of the three-phase coordinate system It is converted into current detection values (I dc , I qc ). The direction of the actual magnet magnetic flux に お け る in the motor M is d axis, and the axis orthogonal to the d axis is q axis. Also, the subscript “c” in the current detection value (I dc , I qc ) means that it is based on the detection value of the current or the like.
 軸誤差演算部51bは、モータMの磁石磁束に関する実軸と制御軸との間の軸誤差Δθを推定する。より具体的に説明すると、軸誤差演算部51bは、モータMにおける実際の磁石磁束Φの位相と、後記する積分器51dの演算結果である位相θdc(制御位相)と、の間の軸誤差Δθを、例えば、以下の式(1)を用いて演算する。
 なお、式(1)に示すRはモータMの巻線抵抗であり、ωはモータMの回転速度の算出結果である。また、LdcはモータMのd軸インダクタンスであり、LqcはモータMのq軸インダクタンスである。また、d軸電圧指令V 等に付している上付きの「*」は、指令値であることを表している。
The axis error calculation unit 51 b estimates an axis error Δθ between the real axis and the control axis regarding the magnet flux of the motor M. More specifically, the axis error computing unit 51b is an axis error between the phase of the actual magnet flux に お け る in the motor M and the phase θ dc (control phase) which is the computation result of the integrator 51d described later. For example, Δθ is calculated using the following equation (1).
Here, R shown in the equation (1) is a winding resistance of the motor M, and ω r is a calculation result of the rotational speed of the motor M. Further, L dc is d-axis inductance of the motor M, L qc is q-axis inductance of the motor M. Also, the superscript “*” attached to the d-axis voltage command V d * or the like represents that it is a command value.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 軸誤差演算部51bの演算結果である時々刻々の軸誤差Δθは、図5に示すPLL回路51c(Phase Locked Loop)に出力される。このように制御部51は、トルク電流Iqcの瞬時値、及び、励磁電流Idcの瞬時値に基づいて、時々刻々の軸誤差Δθを推定する。そして、制御部51が、軸誤差Δθに基づいて、モータMを位置センサレスで制御するようになっている。 The momentary axis error Δθ that is the calculation result of the axis error calculator 51b is output to a PLL circuit 51c (Phase Locked Loop) shown in FIG. Thus, the control unit 51 estimates the momentary axis error Δθ based on the instantaneous value of the torque current I qc and the instantaneous value of the excitation current I dc . The control unit 51 controls the motor M without using a position sensor based on the axis error Δθ.
 なお、参考のために、モータMの軸誤差Δθの演算に関する原理式(モータMに関する所定の式から導かれる原理式)である式(2)を以下に示す。 In addition, Formula (2) which is a principle formula (principle formula derived from the predetermined formula regarding the motor M) regarding calculation of axial error (DELTA) (theta) of the motor M is shown below for reference.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)において分母の第3項・第4項は、微分演算を含む微分項であり、また、分子の第3項・第4項も微分項になっている。従来は、その処理が比較的複雑な微分項を省略した形で、以下に示す式(3)が用いられていた。 In Equation (2), the third and fourth terms of the denominator are differential terms including differential operations, and the third and fourth terms of the numerator are also differential terms. Conventionally, equation (3) shown below has been used in a form in which the differential terms whose processing is relatively complicated are omitted.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 例えば、周期的なトルク変動がない安定状態では、励磁電流Idcやトルク電流Iqcの時間微分値が略ゼロになるため、式(3)でも、軸誤差Δθを適切に算出できる。これに対して本実施形態では、後記するように、周期的な負荷トルクに抗するようにトルク電流Iqcを変化させ、さらに、トルク電流Iqcに応じて励磁電流Idcも変化させるようにしている。このような処理に際して、時々刻々の軸誤差Δθを高精度に算出するために、本実施形態では式(1)を用いるようにしている。 For example, in the stable state where there is no periodic torque fluctuation, the time differential value of the excitation current I dc and the torque current I qc becomes substantially zero, so that the axis error Δθ can be properly calculated also by the equation (3). On the other hand, in the present embodiment, as described later, the torque current I qc is changed to resist the periodic load torque, and the excitation current I dc is also changed according to the torque current I qc. ing. In the case of such processing, in order to calculate the momentary axis error Δθ with high accuracy, in the present embodiment, equation (1) is used.
 ちなみに、原理式である式(2)の分母・分子の第4項(軸誤差Δθの微分項)を省略した形の式(1)であっても、軸誤差Δθを十分に高精度に算出できる。 By the way, even in the case of the equation (1) in which the fourth term (differential term of the axis error Δθ) of the denominator and numerator of the equation (2) which is the principle equation is omitted, the axis error Δθ is sufficiently accurately calculated. it can.
 図5に示すPLL回路51cは、前記した軸誤差Δθがゼロになるように、PI制御(Proportional Integral control)に基づいて、モータMの回転速度ωを算出する。これによって、電流検出値等に基づくdc軸・dq軸が、モータMの実際の磁石磁束Φに対応したd軸・q軸に一致するため、モータMを位置センサレスで制御できる。 The PLL circuit 51c shown in FIG. 5 calculates the rotational speed ω r of the motor M based on PI control (Proportional Integral control) so that the above-mentioned axis error Δθ becomes zero. By this, since the dc axis and dq axis based on the current detection value and the like coincide with the d axis and q axis corresponding to the actual magnet flux モ ー タ of the motor M, the motor M can be controlled without position sensor.
 積分器51dは、回転速度ωを積分することによって、モータMの回転子の位相θdcを算出する。
 減算器51eは、上位系(図示せず)から入力される回転速度指令ω と、PLL回路51cから入力されるモータMの回転速度ωと、の差分(ω -ω)を回転速度偏差Δωとして算出する。
The integrator 51 d calculates the phase θ dc of the rotor of the motor M by integrating the rotational speed ω r .
Subtractor 51e, the upper system and the rotational speed command omega r * inputted from the (not shown), the rotation speed omega r of the motor M is inputted from the PLL circuit 51c, the difference (ω r *r) the calculated as the rotational speed deviation [Delta] [omega r.
 速度制御部51fは、減算器51eから入力される回転速度偏差Δωに基づき、例えば、PI制御によって、モータMの平均トルクに対応するトルク電流指令Iq0 を算出する。 Speed control unit 51f, based on the rotational speed deviation [Delta] [omega r inputted from the subtractor 51e, for example, by the PI control, and calculates a torque current command I q0 * corresponding to the average torque of the motor M.
 速度変動抑制制御部51gは、モータMの周期的なトルク変動に伴う速度変動を抑制するために、正弦波状に変化する脈動トルク電流指令Iqsin を算出する。具体的に説明すると、速度変動抑制制御部51gは、回転速度指令ω 及び回転速度偏差Δωに基づき、例えば、以下の式(4)に示す伝達関数G(s)を用いて、回転速度偏差Δωがゼロになるように脈動トルク電流指令Iqsin を算出する。 The speed fluctuation suppression control unit 51 g calculates a pulsating torque current command I qsin * that changes in a sinusoidal manner, in order to suppress the speed fluctuation associated with the periodic torque fluctuation of the motor M. Specifically, the speed variation suppression control unit 51g performs rotation based on the rotation speed command ω r * and the rotation speed deviation Δω r , for example, using a transfer function G (s) shown in the following equation (4). Pulsating torque current command I qsin * is calculated such that speed deviation Δω r becomes zero.
 なお、脈動トルク電流指令Iqsin の下付きの「sin」は、その波形が正弦波状(sinカーブ状)であることを表している。また、式(4)に示すsはラプラス演算子であり、K,K,Kは制御係数であり、ωは所定の中心周波数である。 The subscript “sin” of the pulsating torque current command I qsin * indicates that the waveform is sinusoidal (sin curve shape). Further, s shown in the equation (4) is a Laplace operator, K 1 , K 2 and K 3 are control coefficients, and ω 0 is a predetermined center frequency.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)に示す伝達関数G(s)は、所定の中心周波数ωに感度(ゲイン)を有し、他の周波数にはほとんど感度を有しないという特性を有している。したがって、この中心周波数ωの値を回転速度指令ω に設定することで、回転速度指令ω の角周波数にだけ反応するように速度変動抑制制御部51gを構成できる。これによって、回転速度指令ω とは異なる周波数の感度をほとんど上げることなく、回転速度指令ω の高感度化(高ゲイン化)を図ることができる。また、回転速度偏差Δωを略ゼロにすることができるという利点もある。 The transfer function G (s) shown in the equation (4) has a characteristic that it has sensitivity (gain) at a predetermined center frequency ω 0 and almost no sensitivity to other frequencies. Therefore, by setting the value of the central frequency ω 0 to the rotational speed command ω r * , the speed fluctuation suppression control unit 51 g can be configured to react only to the angular frequency of the rotational speed command ω r * . Thereby, it is possible to without raising almost the sensitivity of a frequency different from the rotational speed command omega r *, the rotation speed command omega r * of high sensitivity (high gain of). There is also an advantage that the rotational speed deviation Δω r can be made substantially zero.
 なお、特定の周波数に感度を有する伝達関数であれば、他の伝達関数を用いてもよい。例えば、式(4)に代えて、以下の式(5)に示す伝達関数G(s)を用いてもよい。ここで、式(5)に示すK,Kは制御係数であり、ωは所定の中心周波数である。 Note that another transfer function may be used as long as the transfer function is sensitive to a specific frequency. For example, instead of the equation (4), a transfer function G (s) shown in the following equation (5) may be used. Here, K 4 and K 5 shown in the equation (5) are control coefficients, and ω 0 is a predetermined center frequency.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図6は、式(5)の伝達関数G(s)を用いた場合のボード線図である。
 図6に示すように、所定の中心周波数ωの付近でゲイン及び位相が大きく変化している。このように、式(5)等の伝達関数G(s)を用いることで、回転速度指令ω の高感度化(高ゲイン化)を図ることができる。
FIG. 6 is a Bode diagram when the transfer function G (s) of equation (5) is used.
As shown in FIG. 6, the gain and the phase are largely changed in the vicinity of the predetermined center frequency ω 0 . As described above, by using the transfer function G (s) such as equation (5), it is possible to achieve high sensitivity (high gain) of the rotational speed command ω r * .
 図5に示す加算器51hは、速度制御部51fの演算結果であるトルク電流指令Iq0 と、速度変動抑制制御部51gの演算結果である脈動トルク電流指令Iqsin と、の和(Iq0 +Iqsin )をとることで、新たなトルク電流指令I を算出する。 The adder 51h shown in FIG. 5 is the sum of torque current command I q0 * , which is the calculation result of speed control unit 51 f, and pulsation torque current command I qsin * , which is the calculation result of speed variation suppression control unit 51 g (I By taking q0 * + I qsin * ), a new torque current command I q * is calculated.
 前記したように、トルク電流指令Iq0 は、モータMの平均トルクに対応する電流指令値である。また、脈動トルク電流指令Iqsin は、周期的なトルク変動を抑制するための電流指令値である。加算器51hの演算結果であるトルク電流指令I (=Iq0 +Iqsin )は、周期的に変動する圧縮機11の負荷トルクに抗するように、正弦波状に変化(脈動)する。 As described above, the torque current command I q0 * is a current command value corresponding to the average torque of the motor M. Further, the pulsating torque current command I qsin * is a current command value for suppressing a periodic torque fluctuation. Adder torque current command is a calculation result of 51h I q * (= I q0 * + I qsin *) , as against the load torque of the compressor 11 to vary periodically vary sinusoidally (pulsation) .
 図5に示す減算器51iは、加算器51hの演算結果であるトルク電流指令I と、3相/2軸変換部51aの演算結果であるトルク電流Iqc(検出値)と、の差ΔI(=I -Iqc)を算出する。この差ΔIは、後記する電流制御部51mに入力される。 The subtractor 51i shown in FIG. 5 is a difference between the torque current command I q * , which is the calculation result of the adder 51 h , and the torque current I qc (detection value), which is the calculation result of the three-phase / two-axis converter 51a. Calculate ΔI q (= I q * −I qc ). The difference ΔI q is input to a current control unit 51 m described later.
 最適位相制御部51jは、加算器51hの演算結果であるトルク電流指令I (=Iq0 +Iqsin )に基づき、以下の式(6)を用いて、時々刻々の励磁電流指令I を算出する。なお、式(6)に示すKeは誘起電圧定数であり、LはモータMのd軸インダクタンスであり、LはモータMのq軸インダクタンスである。 Optimum phase controller 51j on the basis of the adder torque current command is a calculation result of 51h I q * (= I q0 * + I qsin *), using the following equation (6), every moment of the exciting current command I Calculate d * . Incidentally, Ke shown in equation (6) is the induced voltage constant, L d is d-axis inductance of the motor M, L q is q-axis inductance of the motor M.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 これまでは、式(6)において、トルク電流指令I の時間的な平均値に基づき、励磁電流指令I *が算出されていた。これに対して本実施形態では、最適位相制御部51jが、トルク電流指令I の(時間的な平均値ではなく)瞬時値に基づき、式(6)を用いて励磁電流指令I を算出するようにしている。これによって、正弦波状に脈動するトルク電流Iの時々刻々の変化に応じて、励磁電流Iを変化させることができる。 So far, the excitation current command I d * has been calculated based on the temporal average value of the torque current command I q * in equation (6). On the other hand, in the present embodiment, the optimum phase control unit 51 j uses the equation (6) to calculate the exciting current command I d * based on the instantaneous value (rather than the temporal average value) of the torque current command I q * . Is calculated. Thus, in response to changes in momentary torque current I q which pulsates sinusoidally, it is possible to vary the excitation current I d.
 さらに具体的に説明すると、制御部51は、トルク電流Iを正側の領域で周期的に変化させるとともに、励磁電流Iを負側の領域で周期的に変化させる(図7A参照)。そして、制御部51は、トルク電流Iの絶対値が小さいほど、励磁電流Iの絶対値も小さくなるようにする。なお、前記した「正側の領域」及び「負側の領域」には、それぞれ、ゼロの値も含まれるものとする。 More specifically, the control unit 51 periodically changes the torque current I q in the positive region and periodically changes the excitation current I d in the negative region (see FIG. 7A). Then, the control unit 51, as the absolute value of the torque current I q is small, so that also decreases the absolute value of the exciting current I d. It is to be noted that each of the above-mentioned "positive side area" and "negative side area" includes a value of zero.
 また、別の観点から説明すると、制御部51は、正弦波状のトルク電流Iに対して逆位相となるように、励磁電流Iを正弦波状に変化させる(図7A参照)。 In addition, from another viewpoint, the control unit 51 changes the excitation current Id in a sine wave so as to be in reverse phase to the sine wave torque current I q (see FIG. 7A).
 このような「高効率トルク制御」によって、モータMの駆動中、周期的に変動する負荷トルクが大きいときには(図7Aでは、圧縮機11のクランク角:200°、560°の付近)、制御部51が、トルク電流Iを大きくするとともに、励磁電流I(負の値)の絶対値を大きくする。これによって、励磁電流Iに伴うリラクタンストルクを最大限に活用し、圧縮機11の振動を抑制しつつ、モータM等の損失を低減できる。 When the load torque which fluctuates periodically during driving of the motor M is large (in FIG. 7A, the crank angle of the compressor 11: around 200 °, 560 °) by such “high efficiency torque control”, the control unit 51 increases the torque current I q and increases the absolute value of the excitation current I d (negative value). Thus, to take full advantage of the reluctance torque due to the excitation current I d, while suppressing the vibration of the compressor 11, the loss can be reduced, such as a motor M.
 また、モータMの駆動中、周期的に変動する負荷トルクが小さいときには(図7Aでは、圧縮機11のクランク角:40°、400°の付近)、制御部51がトルク電流Iを小さくするとともに、励磁電流I(負の値)の絶対値を小さくする。これによって、モータの機械角に関わらず一定の励磁電流Iを流していた従来技術(電流一定制御)に比べて、無駄に大きな電流が流れることを抑制し、ひいては、モータM等の損失を低減できる。 Further, during driving of the motor M, when the periodically changing load torque is small (in FIG. 7A, the crank angle of the compressor 11: around 40 ° and 400 °), the control unit 51 reduces the torque current I q . At the same time, the absolute value of the excitation current I d (negative value) is reduced. As compared with the prior art (constant current control) in which a constant excitation current I d flows regardless of the mechanical angle of the motor, this prevents unnecessary large current from flowing and, in turn, the loss of the motor M etc. It can be reduced.
 再び、図5に戻って説明を続ける。
 図5に示す減算器51kは、励磁電流指令I と、3相/2軸変換部51aの演算結果である励磁電流Idc(検出値)と、の差ΔI(=I -Idc)を算出する。
Again, returning to FIG. 5, the explanation will be continued.
The subtractor 51k shown in FIG. 5 is the difference ΔI d (= I d * -) between the excitation current command I d * and the excitation current I dc (detection value) which is the calculation result of the 3-phase / 2-axis conversion unit 51a. Calculate I dc ).
 電流制御部51mは、減算器51kの演算結果である差ΔI、及び、別の減算器51iの演算結果である差ΔIがゼロになるように、第二の励磁電流指令I **及び第二のトルク電流指令I **を算出する。 The current control unit 51m generates a second excitation current command I d ** such that the difference ΔI d that is the calculation result of the subtractor 51k and the difference ΔI q that is the calculation result of another subtractor 51i become zero. And a second torque current command I q ** .
 電圧指令演算部51nは、第二の励磁電流指令I **及び第二のトルク電流指令I **に基づき、周知の電圧方程式を用いて、電圧指令(V ,V )を演算する。 Voltage command calculation unit 51 n is based on second excitation current command I d ** and second torque current command I q ** , using a known voltage equation to obtain voltage commands (V d * , V q * ). Calculate
 2軸/3相変換部51rは、前記した電圧指令(V ,V )を、積分器51dの演算結果である位相θdcに基づいて、三相の電圧指令(V ,V ,V )に変換する。 The two-axis / three-phase conversion unit 51r generates three-phase voltage commands (V u * , V d * , V q * ) based on the phase θ dc which is the calculation result of the integrator 51 d . Convert to V v * , V w * ).
 PWM信号生成部51sは、三相の電圧指令(V ,V ,V )に基づいて、PWM制御(Pulse Width Modulation control)に基づくPWM信号を生成する。このPWM信号によって、インバータ30(図2参照)の各スイッチング素子(図示せず)のオン/オフが切り替わるようになっている。 The PWM signal generation unit 51s generates a PWM signal based on PWM control (Pulse Width Modulation control) based on the three-phase voltage commands (V u * , V v * , V w * ). The PWM signal switches on / off of each switching element (not shown) of the inverter 30 (see FIG. 2).
<実験結果>
 図13Aは、「トルク制御」に基づき、表1に示す条件下でモータMを駆動した場合のdq座標系のモータ電流の波形を示す比較例である。
 なお、図13Aの横軸は、圧縮機11(図2参照)のクランク角であり、縦軸は、モータ電流(励磁電流I、トルク電流I)である。
<Experimental result>
FIG. 13A is a comparative example showing the waveform of the motor current in the dq coordinate system when the motor M is driven under the conditions shown in Table 1 based on the “torque control”.
The horizontal axis in FIG. 13A is the crank angle of the compressor 11 (see FIG. 2), and the vertical axis is the motor current (excitation current I d , torque current I q ).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 前記した「トルク制御」では、周期的に変動する負荷トルクに抗するように、トルク電流Iが正弦波状に変化する。その一方、圧縮機11のクランク角(モータMの機械角)に関わらず、励磁電流Iが一定になっている。 In the above-mentioned "torque control", the torque current I q changes in a sine wave so as to resist the periodically changing load torque. On the other hand, regardless of the crank angle of the compressor 11 (mechanical angle of the motor M), the excitation current Id is constant.
 図13Bは、「トルク制御」に基づき、表1に示す条件下でモータMを駆動した場合の三相モータ電流の波形を示す比較例である。
 なお、図13Bの横軸は、圧縮機11(図2参照)のクランク角であり、図13Aの横軸のクランク角に対応している。つまり、図13Bに示す波形図は、モータMのトルク電流I及び励磁電流Iが、図13Aのように制御された結果として得られたものである。また、図13Bの縦軸は、三相のモータ電流(U相・V相・W相の電流)である。
FIG. 13B is a comparative example showing waveforms of three-phase motor currents when the motor M is driven under the conditions shown in Table 1 based on “torque control”.
The horizontal axis in FIG. 13B is the crank angle of the compressor 11 (see FIG. 2), which corresponds to the crank angle in the horizontal axis of FIG. 13A. That is, the waveform diagram shown in FIG. 13B is obtained as a result of controlling the torque current I q and the excitation current I d of the motor M as shown in FIG. 13A. The vertical axis in FIG. 13B is three-phase motor current (current of U-phase, V-phase, W-phase).
 図7Aは、本実施形態の「高効率トルク制御」に基づき、表1に示す条件下でモータMを駆動した場合のdq座標系のモータ電流の波形を示す実験結果である。
 前記したように、制御部51は、周期的に変動する負荷トルクに抗するように、トルク電流Iを正弦波状に変化させる。また、制御部51は、トルク電流Iとは逆位相になるように、励磁電流Iを正弦波状に変化させる。
FIG. 7A is an experimental result showing a waveform of a motor current in a dq coordinate system when the motor M is driven under the conditions shown in Table 1 based on the “high efficiency torque control” of the present embodiment.
As described above, the control unit 51 sinusoidally changes the torque current I q so as to resist the periodically changing load torque. Further, the control unit 51 changes the excitation current Id in a sine wave so that the phase is opposite to that of the torque current Iq .
 図7Bは、本実施形態の「高効率トルク制御」に基づき、表1に示す条件下でモータMを駆動した場合の三相モータ電流の波形を示す実験結果である。
 なお、図7Bの横軸のクランク角は、図7Aの横軸のクランク角に対応している。
 例えば、三相モータ電流が大きくなる領域(大きな出力トルクを要する領域)では、制御部51が、励磁電流I(負の値)の絶対値を大きくする(図7A参照)。これによって、リラクタンストルクが最大限に活用されるため、三相モータ電流の波高値のピークを低減できる。さらに、図13Aの比較例に比べて、トルク電流Iの波高値が比較的小さくても(図7A参照)、負荷トルクに抗するための十分なトルク(脈動トルク)を得ることができる。
FIG. 7B is an experimental result showing a waveform of a three-phase motor current when the motor M is driven under the conditions shown in Table 1 based on the “high efficiency torque control” of this embodiment.
The crank angle on the horizontal axis in FIG. 7B corresponds to the crank angle on the horizontal axis in FIG. 7A.
For example, in a region where the three-phase motor current increases (a region requiring a large output torque), the control unit 51 increases the absolute value of the excitation current I d (negative value) (see FIG. 7A). This makes it possible to reduce the peak of the peak value of the three-phase motor current because the reluctance torque is utilized to the maximum. Furthermore, compared with the comparative example of FIG. 13A, even if the peak value of the torque current I q is relatively small (see FIG. 7A), a sufficient torque (pulsating torque) to resist the load torque can be obtained.
 また、三相モータ電流が小さくなる領域(出力トルクがほとんど不要な領域)では、制御部51が、励磁電流I(負の値)の絶対値を小さくする。これによって、三相モータ電流が無駄に流れることを抑制できる。例えば、図7Bに示す実験結果では、圧縮機11のクランク角:40°、400°の付近の波高値が、図13Bに示す比較例よりも小さくなっている。このように、本実施形態によれば、出力トルクがほとんど不要な領域での三相モータ電流の波高値をゼロに近づけることができる。これによって、従来よりもモータM等の損失を大幅に低減できる。 Further, in a region where the three-phase motor current decreases (a region where output torque is almost unnecessary), the control unit 51 reduces the absolute value of the excitation current I d (negative value). As a result, it is possible to suppress the wasteful flow of the three-phase motor current. For example, in the experimental result shown in FIG. 7B, the crest value in the vicinity of the crank angle of 40 ° and 400 ° of the compressor 11 is smaller than that of the comparative example shown in FIG. 13B. As described above, according to the present embodiment, the peak value of the three-phase motor current in the region where output torque is almost unnecessary can be made close to zero. As a result, the loss of the motor M and the like can be significantly reduced as compared with the prior art.
 ちなみに、モータMの出力トルクTは、以下の式(7)で与えられる。ここで、式(7)に示すPは、極対数である。 Incidentally, the output torque T of the motor M is given by the following equation (7). Here, P m shown in the equation (7) is a pole pair number.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(7)に示すように、モータMの出力トルクTには、磁石によるマグネットトルク(P・Ke・i)と、磁気エネルギの不釣合いを解消しようとするリラクタンストルク(-P(L-L)i・i)と、が含まれている。本実施形態では、励磁電流iをトルク電流iに応じて最適に制御することで、モータMの出力トルクTの最大化(モータ電流の最小化)を図ることができる。 As shown in the equation (7), in the output torque T of the motor M, the magnet torque (P m · Ke · i q ) by the magnet and the reluctance torque (−P m ( L d −L q ) i qid ) and are included. In the present embodiment, the exciting current i d by optimally controlled according to the torque current i q, it is possible to maximize the output torque T of the motor M (minimizing motor current).
 図8は、比較例におけるモータ電流の実効値及びモータ銅損と、本実施形態におけるモータ電流の実効値及びモータ銅損と、を示すグラフである。
 なお、比較例は、前記した「トルク制御」に基づき、表1に示す条件下でモータMを駆動した場合の実験結果である。また、「高効率トルク制御」が行われる本実施形態についても、表1に示す条件下でモータMが駆動されている。
FIG. 8 is a graph showing an effective value of motor current and motor copper loss in a comparative example, and an effective value of motor current and motor copper loss in the present embodiment.
A comparative example is an experimental result at the time of driving motor M on the conditions shown in Table 1 based on the above-mentioned "torque control." Moreover, the motor M is driven under the conditions shown in Table 1 also in the present embodiment in which "high efficiency torque control" is performed.
 図8に示すように、本実施形態では、比較例に比べて、モータ電流の実効値が小さくなっている。また、本実施形態では、比較例に比べて、モータ銅損が大幅に小さくなっている。なお、図8では省略したが、モータ銅損の他にも、インバータ30(図2参照)の各スイッチング素子(図示せず)における通流損やスイッチング損失も低減できる。 As shown in FIG. 8, in the present embodiment, the effective value of the motor current is smaller than that of the comparative example. Further, in the present embodiment, the motor copper loss is significantly reduced as compared with the comparative example. Although omitted in FIG. 8, it is possible to reduce, in addition to the motor copper loss, the conduction loss and the switching loss in each switching element (not shown) of the inverter 30 (see FIG. 2).
<効果>
 第1実施形態によれば、制御部51が、トルク電流Iの変動に応じて、励磁電流Iを変動させる「高効率トルク制御」を実行する。これによって、トルク制御を最大限に効かせた状態で、モータM等の損失の低減(つまり、高効率化)を図ることができる。その結果、圧縮機11の振動や騒音を抑制できるともに、モータM等の損失を従来よりも大幅に低減できる。
<Effect>
According to the first embodiment, the control unit 51, in accordance with the variation of the torque current I q, it executes the "high-efficiency torque control" to vary the excitation current I d. As a result, it is possible to reduce the loss of the motor M and the like (that is, to improve the efficiency) in a state where the torque control is applied to the maximum. As a result, the vibration and noise of the compressor 11 can be suppressed, and the loss of the motor M and the like can be significantly reduced as compared with the prior art.
 また、制御部51は、トルク電流Iqcの瞬時値、及び、励磁電流Idcの瞬時値に基づき、前記した式(1)に基づいて、時々刻々の軸誤差Δθを推定する。これによって、軸誤差Δθを高精度に算出でき、ひいては、「高効率トルク制御」を適切に行うことができる。 Further, the control unit 51 estimates the axial error Δθ every moment based on the above equation (1) based on the instantaneous value of the torque current I qc and the instantaneous value of the excitation current I dc . As a result, the axis error Δθ can be calculated with high accuracy, and consequently, “high efficiency torque control” can be appropriately performed.
≪第2実施形態≫
 第2実施形態は、モータ駆動装置の制御部51A(図9参照)がトルク脈動推定部51t(図9参照)を備える点が、第1実施形態とは異なっている。また、第2実施形態は、速度変動抑制制御部51Ag(図9参照)の構成が、第1実施形態とは異なっている。なお、その他については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
Second Embodiment
The second embodiment is different from the first embodiment in that a control unit 51A (see FIG. 9) of the motor drive device includes a torque pulsation estimation unit 51t (see FIG. 9). In the second embodiment, the configuration of the speed fluctuation suppression control unit 51Ag (see FIG. 9) is different from that of the first embodiment. The other aspects are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the descriptions of the overlapping parts will be omitted.
 図9は、第2実施形態に係るモータ駆動装置が備える制御部51Aの構成図である。
 制御部51Aは、トルク脈動推定部51tや速度変動抑制制御部51Ag等を備えている。トルク脈動推定部51tは、モータMにおけるトルク脈動成分(周期的な外乱)を推定する。
FIG. 9 is a block diagram of a control unit 51A provided in the motor drive device according to the second embodiment.
The control unit 51A includes a torque pulsation estimation unit 51t, a speed fluctuation suppression control unit 51Ag, and the like. The torque pulsation estimation unit 51t estimates a torque pulsation component (periodic disturbance) in the motor M.
 図10は、モータ駆動装置のトルク脈動推定部51tを含む構成図である。
 図10に示すように、トルク脈動推定部51tは、比例ゲイン演算部511tと、乗算器512t,513tと、を備えている。
FIG. 10 is a configuration diagram including a torque pulsation estimation unit 51t of the motor drive device.
As shown in FIG. 10, the torque pulsation estimation unit 51t includes a proportional gain calculation unit 511t and multipliers 512t and 513t.
 比例ゲイン演算部511tは、軸誤差演算部51bの演算結果である軸誤差Δθに所定の比例ゲイン(2J/P)を乗算する。なお、比例ゲイン(2J/P)に含まれるJは、圧縮機11及びモータMのイナーシャであり、PはモータMの極数である。 The proportional gain calculation unit 511t multiplies the axis error Δθ, which is the calculation result of the axis error calculation unit 51b, by a predetermined proportional gain (2J / P). J included in the proportional gain (2J / P) is the inertia of the compressor 11 and the motor M, and P is the number of poles of the motor M.
 乗算器512tは、PLL回路51cの演算結果であるモータMの回転速度ωの2乗を演算する。他方の乗算器513tは、比例ゲイン演算部511tの演算結果と、前記した乗算器512tの演算結果と、の乗算によって、トルク脈動成分ΔTを算出する。このトルク脈動成分ΔTは、次に説明する速度変動抑制制御部51Ag(図11参照)に入力される。 The multiplier 512t calculates the square of the rotational speed ω r of the motor M, which is the calculation result of the PLL circuit 51c. The other multiplier 513t calculates a torque pulsation component ΔT m by multiplying the calculation result of the proportional gain calculation unit 511t and the calculation result of the multiplier 512t. The torque pulsation component ΔT m is input to a speed fluctuation suppression control unit 51Ag (see FIG. 11) to be described next.
 図11は、モータ駆動装置の制御部51Aが備える速度変動抑制制御部51Agの説明図である。
 図11に示すように、速度変動抑制制御部51Agは、信号発生部g1と、フーリエ変換部g2と、積分補償器g3と、フーリエ逆変換部g4と、を備えている。
FIG. 11 is an explanatory diagram of the speed fluctuation suppression control unit 51Ag provided in the control unit 51A of the motor drive device.
As shown in FIG. 11, the speed variation suppression control unit 51Ag includes a signal generation unit g1, a Fourier transform unit g2, an integral compensator g3, and a Fourier inverse transform unit g4.
 信号発生部g1は、回転速度指令ω のsin成分及びcos成分の信号を発生させる。
 フーリエ変換部g2は、トルク脈動成分ΔTを入力とし、フーリエ変換によって、そのsin成分及びcos成分(1次成分)をそれぞれ抽出する。
 積分補償器g3は、フーリエ変換部g2によって抽出されたトルク脈動成分ΔTの周波数成分をゼロにするための所定のsin成分及びcos成分を演算する積分器である。
The signal generator g1 generates signals of sin component and cos component of the rotational speed command ω r * .
The Fourier transform unit g2 receives the torque pulsation component ΔT m and extracts the sin component and the cos component (first-order component) by Fourier transformation.
The integral compensator g3 is an integrator that calculates a predetermined sin component and cos component for zeroing the frequency component of the torque pulsation component ΔT m extracted by the Fourier transform unit g2.
 フーリエ逆変換部g4は、フーリエ逆変換によって、積分補償器g3の演算結果(sin成分、cos成分)を脈動トルク電流指令Iqsin に変換する。この脈動トルク電流指令Iqsin は、加算器51h(図9参照)によるトルク電流指令I (=Iq0 +Iqsin )の演算に用いられる。 The inverse Fourier transform unit g4 converts the calculation result (sin component and cos component) of the integral compensator g3 into a pulsation torque current command I qsin * by inverse Fourier transform. The pulsating torque current command I qsin * is used to calculate the torque current command I q * (= I q0 * + I q sin * ) by the adder 51 h (see FIG. 9).
 このような速度変動抑制制御部51Agやトルク脈動推定部51t(図10参照)を備える構成でも、第1実施形態と同様に、圧縮機11の振動の抑制と、モータM等の損失の低減と、を両立できる。 Even in the configuration including the speed fluctuation suppression control unit 51Ag and the torque pulsation estimation unit 51t (see FIG. 10), the suppression of the vibration of the compressor 11 and the reduction of the loss of the motor M and the like are the same as in the first embodiment. Can be compatible.
<効果>
 第2実施形態によれば、第1実施形態に比べて構成は複雑化するものの、トルク制御の効き具合を最大化しつつ、モータM等の損失を最小化できる。
<Effect>
According to the second embodiment, although the configuration is complicated compared to the first embodiment, the loss of the motor M and the like can be minimized while maximizing the effectiveness of the torque control.
≪変形例≫
 以上、本発明に係るモータ駆動装置50等について各実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、モータ電流に伴って、モータMのインダクタンスが変化する場合には、q軸インダクタンスL及びd軸インダクタンスLのうち少なくとも一方を、モータ電流に基づいて可変にしてもよい。このような処理について、図12A、図12Bを用いて説明する。
«Modification»
As mentioned above, although motor drive device 50 grade | etc., Which concerns on this invention was demonstrated by each embodiment, this invention is not limited to these description, A various change can be made.
For example, when the inductance of the motor M changes with the motor current, at least one of the q-axis inductance L q and the d-axis inductance L d may be variable based on the motor current. Such processing will be described using FIGS. 12A and 12B.
 図12Aは、モータMのトルク電流iとq軸インダクタンスLとの関係を示す説明図である。
 図12Aの横軸はトルク電流iであり、縦軸はq軸インダクタンスLである。図12Aに示す例では、モータMのトルク電流iが大きくなるにつれて、q軸インダクタンスLが小さくなっている。このような関係を示す計算式又はデータテーブルを制御部51に予め記憶させ、時々刻々のトルク電流iに基づいて、制御部51がq軸インダクタンスLを算出するようにしてもよい。これによって、前記した式(1)の軸誤差Δθをさらに高精度に算出できる。
 特に、q軸インダクタンスLは、d軸インダクタンスLに比べて、モータ電流に伴う変動が大きいため、軸誤差Δθの精度に与える影響が大きい。このように制御部51は、トルク電流iに基づいて、モータMの時々刻々のq軸インダクタンスLを推定し、このq軸インダクタンスLに基づいて、軸誤差Δθを推定する。
Figure 12A is an explanatory diagram showing a relationship between a torque current i q and the q-axis inductance L q of the motor M.
The horizontal axis in FIG. 12A is the torque current iq , and the vertical axis is the q-axis inductance Lq . In the example shown in FIG. 12A, as the torque current i q of the motor M increases, q-axis inductance L q is small. A calculation formula or data table indicating such a relationship may be stored in advance in the control unit 51, and the control unit 51 may calculate the q-axis inductance L q based on the momentary torque current i q . By this, it is possible to calculate the axis error Δθ of the above-mentioned equation (1) with higher accuracy.
In particular, the q-axis inductance L q has a large fluctuation with the motor current as compared with the d-axis inductance L d, and therefore the influence on the accuracy of the axis error Δθ is large. Thus the control unit 51 based on the torque current i q, estimated every moment of the q-axis inductance L q of the motor M, based on the q-axis inductance L q, estimates the axis error [Delta] [theta].
 図12Bは、モータMの励磁電流iとd軸インダクタンスLとの関係を示す説明図である。
 図12Bの横軸は、負の値である励磁電流iに(-1)を乗算してなる(-i)であり、縦軸はd軸インダクタンスLである。図12Bに示す例では、モータMの励磁電流iの絶対値がゼロに近づくにつれて、d軸インダクタンスLが徐々に大きくなっている。このような関係を示す計算式又はデータテーブルを制御部51に予め記憶させ、時々刻々の励磁電流iに基づいて、制御部51がd軸インダクタンスLを算出するようにしてもよい。これによって、前記した式(1)の軸誤差Δθをさらに高精度に算出できる。
 なお、制御部51が、前記したq軸インダクタンスL及びd軸インダクタンスLの両方を推定するようにしてもよいし、また、一方を推定するようにしてもよい。
12B is an explanatory diagram showing the relationship between the excitation current i d and the d-axis inductance L d of the motor M.
The horizontal axis in FIG. 12B is the excitation current i d is a negative value is obtained by multiplying the (-1) (-i d), the vertical axis represents the d-axis inductance L d. In the example shown in FIG. 12B, as the absolute value of the excitation current i d of the motor M approaches zero, d-axis inductance L d is gradually increased. Such a formula or data table showing the relationship previously was stored in the control unit 51, based on the excitation current i d momentary, the control unit 51 may calculate the d-axis inductance L d. By this, it is possible to calculate the axis error Δθ of the above-mentioned equation (1) with higher accuracy.
The control unit 51 may estimate both the q-axis inductance L q and the d-axis inductance L d , or may estimate one of them.
 また、制御部51が、トルク電流iに含まれるN次成分(つまり、フーリエ解析におけるN次成分)の変化に応じて、励磁電流iを変化させるようにしてもよい。ここで、Nは自然数である。これによって、圧縮機11の振動を効果的に抑制できる。 The control unit 51, N order component included in the torque current i q (i.e., N order components in the Fourier analysis) in response to changes in, may be to vary the excitation current i d. Here, N is a natural number. Thereby, the vibration of the compressor 11 can be effectively suppressed.
 また、例えば、トルク電流iに含まれる3次成分及び5次成分に基づいて、制御部51が励磁電流iを変化させるようにしてもよい。つまり、トルク電流iにおいて、次数が異なる高周波成分のそれぞれの抽出結果に基づいて、制御部51が励磁電流iを変化させるようにしてもよい。これによって、圧縮機11の振動をさらに効果的に抑制できる。 Further, for example, on the basis of the third order component and the fifth-order component included in the torque current i q, the control unit 51 may be changed excitation current i d. That is, in the torque current i q, orders based on the respective extraction result of different frequency components, the control unit 51 may be changed excitation current i d. By this, the vibration of the compressor 11 can be suppressed more effectively.
 また、第1実施形態では,制御部51(図5参照)が、回転速度偏差Δω等に基づいてモータMを制御する構成について説明したが、これに限らない。すなわち、圧縮機11やモータMの振動に関係する値(例えば、モータMの振動加速度)や軸誤差Δθの変動幅等を用いても、同様の制御を行うことが可能である。なお、第2実施形態についても同様のことがいえる。 Further, in the first embodiment, the configuration in which the control unit 51 (see FIG. 5) controls the motor M based on the rotational speed deviation Δω r or the like has been described, but the present invention is not limited thereto. That is, the same control can be performed by using a value related to the vibration of the compressor 11 or the motor M (for example, the vibration acceleration of the motor M) or the fluctuation range of the axis error Δθ. The same applies to the second embodiment.
 また、各実施形態では、前記した式(1)を用いて軸誤差Δθを算出する処理について説明したが、これに限らない。例えば、式(1)に代えて、式(2)を用いてもよい。これによって、計算が多少複雑になるものの、軸誤差Δθをさらに高精度に算出できる。また、式(1)に代えて、式(3)を用いてもよい。式(3)を用いると、若干の誤差(軸誤差Δθ自体の誤差)がでるものの、各実施形態と同様の効果が奏される。 Moreover, although each embodiment demonstrated the process which calculates axial difference | error (DELTA) (theta) using Formula (1) mentioned above, it does not restrict to this. For example, equation (2) may be used instead of equation (1). Although this makes the calculation somewhat complicated, the axis error Δθ can be calculated with higher accuracy. Moreover, you may use Formula (3) instead of Formula (1). Using the equation (3), although a slight error (error of the axis error Δθ itself) occurs, the same effect as each embodiment can be obtained.
 また、第1実施形態では、モータ駆動装置50が備える制御部51として、図5の構成を例示したが、これに限らない。すなわち、制御部51の構成として、位置センサレスのベクトル制御に関する他の周知の構成を用いてもよい。 Moreover, although the structure of FIG. 5 was illustrated as the control part 51 with which the motor drive device 50 is equipped in 1st Embodiment, it does not restrict to this. That is, as the configuration of the control unit 51, another known configuration regarding position sensorless vector control may be used.
 また、各実施形態では、モータMを位置センサレスで制御する構成について説明したが、これに限らない。例えば、センサ(図示せず)によってモータMの回転位置を検出する構成にも各実施形態を適用できる。このようなセンサを設ける場合には、前記した軸誤差Δθの演算が不要になる。 Moreover, although each embodiment demonstrated the structure which controls the motor M by a position sensor-less, it does not restrict to this. For example, each embodiment can be applied to a configuration in which the rotational position of the motor M is detected by a sensor (not shown). When such a sensor is provided, it is not necessary to calculate the axis error Δθ.
 また、各実施形態では、空気調和機100の圧縮機11をモータMで駆動する構成について説明したが、これに限らない。例えば、冷蔵庫といった冷凍サイクル装置等、周期的なトルク変動が生じ得る圧縮機(負荷)をモータMで駆動する構成にも、各実施形態を適用できる。 Moreover, although each embodiment demonstrated the structure which drives the compressor 11 of the air conditioner 100 by the motor M, it does not restrict to this. For example, each embodiment can be applied to a configuration in which a motor (M) drives a compressor (load) that may cause periodic torque fluctuations, such as a refrigeration cycle apparatus such as a refrigerator.
 また、各実施形態では、モータMの機械角1回転において1回のトルク変動が生じる圧縮機11について説明したが、これに限らない。例えば、ツインロータリ圧縮機の他、冷蔵庫等の冷凍サイクル装置に広く用いられているレシプロ圧縮機にも、各実施形態を適用できる。 Further, in each embodiment, the compressor 11 in which one torque fluctuation occurs in one mechanical angle rotation of the motor M has been described, but the present invention is not limited thereto. For example, each embodiment can be applied to a reciprocating compressor widely used in a refrigeration cycle apparatus such as a refrigerator as well as a twin rotary compressor.
 なお、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現しても良い。また、機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
In addition, each configuration, function, processing unit, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit. Further, the mechanisms and configurations indicate what is considered to be necessary for the description, and not all the mechanisms and configurations are necessarily shown on the product.
 100 空気調和機(冷凍サイクル装置)
 10  冷媒回路
 11  圧縮機
 12  四方弁
 13  室外熱交換器(凝縮器、蒸発器)
 14  室内熱交換器(蒸発器、凝縮器)
 15  膨張弁
 20  コンバータ
 30  インバータ
 40  電流検出器
 50  モータ駆動装置
 51,51A  制御部
 51a 2軸変換部
 51b 軸誤差演算部
 51c PLL回路
 51d 積分器
 51e 減算器
 51f 速度制御部
 51g,51Ag 速度変動抑制制御部
 51h 加算器
 51i 減算器
 51j 最適位相制御部
 51k 減算器
 51m 電流制御部
 51n 電圧指令演算部
 51r 3相変換部
 51s PWM信号生成部
 51t トルク脈動推定部
100 Air Conditioner (Refrigeration Cycle Equipment)
10 Refrigerant circuit 11 Compressor 12 Four-way valve 13 Outdoor heat exchanger (condenser, evaporator)
14 Indoor heat exchanger (evaporator, condenser)
DESCRIPTION OF SYMBOLS 15 Expansion valve 20 Converter 30 Inverter 40 Current detector 50 Motor drive device 51, 51A Control part 51a 2 axis conversion part 51b Axis | shaft error calculating part 51c PLL circuit 51d Integrator 51e Subtractor 51f Speed control part 51g, 51Ag Speed fluctuation suppression control Unit 51h Adder 51i Subtractor 51j Optimal phase control unit 51k Subtractor 51m Current control unit 51n Voltage command calculation unit 51r 3-phase converter 51s PWM signal generator 51t Torque ripple estimation unit

Claims (9)

  1.  モータの回転座標系におけるq軸のトルク電流の変化に応じて、d軸の励磁電流を変化させる制御部を備えること
     を特徴とするモータ駆動装置。
    What is claimed is: 1. A motor driving apparatus comprising: a control unit that changes a d-axis excitation current according to a change in q-axis torque current in a rotational coordinate system of the motor.
  2.  前記制御部は、
     前記トルク電流を正側の領域で周期的に変化させるとともに、前記励磁電流を負側の領域で周期的に変化させ、
     前記トルク電流の絶対値が小さいほど、前記励磁電流の絶対値も小さくなるようにすること
     を特徴とする請求項1に記載のモータ駆動装置。
    The control unit
    The torque current is periodically changed in the positive side region, and the excitation current is periodically changed in the negative side region,
    The motor drive device according to claim 1, wherein the absolute value of the excitation current is made smaller as the absolute value of the torque current is smaller.
  3.  前記制御部は、正弦波状の前記トルク電流に対して逆位相となるように、前記励磁電流を正弦波状に変化させること
     を特徴とする請求項1に記載のモータ駆動装置。
    The motor drive device according to claim 1, wherein the control unit sinusoidally changes the excitation current so as to be in reverse phase to the sinusoidal torque current.
  4.  前記制御部は、
     前記モータの磁石磁束に関する実軸と制御軸との間の軸誤差を推定し、前記軸誤差に基づいて、前記モータを位置センサレスで制御し、
     前記トルク電流の瞬時値、及び、前記励磁電流の瞬時値に基づいて、時々刻々の前記軸誤差を推定すること
     を特徴とする請求項1に記載のモータ駆動装置。
    The control unit
    An axis error between a real axis and a control axis regarding a magnet flux of the motor is estimated, and the motor is controlled without a position sensor based on the axis error,
    The motor drive device according to claim 1, wherein the axis error is momentarily estimated based on an instantaneous value of the torque current and an instantaneous value of the excitation current.
  5.  前記制御部は、
     前記トルク電流に基づいて、前記モータの時々刻々のq軸インダクタンスを推定し、前記q軸インダクタンスに基づいて、前記軸誤差を推定すること
     を特徴とする請求項4に記載のモータ駆動装置。
    The control unit
    The motor drive device according to claim 4, wherein an instantaneous q-axis inductance of the motor is estimated based on the torque current, and the axial error is estimated based on the q-axis inductance.
  6.  前記制御部は、前記トルク電流に含まれるN次成分の変化に応じて、前記励磁電流を変化させること
     を特徴とする請求項1に記載のモータ駆動装置。
     ここで、Nは自然数である。
    The motor drive device according to claim 1, wherein the control unit changes the excitation current according to a change in an N-order component included in the torque current.
    Here, N is a natural number.
  7.  前記モータは、突極機であること
     を特徴とする請求項1から請求項6のいずれか一項に記載のモータ駆動装置。
    The motor drive device according to any one of claims 1 to 6, wherein the motor is a salient pole machine.
  8.  圧縮機と、凝縮器と、膨張弁と、蒸発器と、が環状に順次接続され、冷凍サイクルで冷媒が循環する冷媒回路と、
     前記圧縮機に連結されたモータを駆動するモータ駆動装置と、を備え、
     前記モータ駆動装置は、前記モータの回転座標系におけるq軸のトルク電流の変化に応じて、d軸の励磁電流を変化させること
     を特徴とする冷凍サイクル装置。
    A refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular shape, and refrigerant is circulated in the refrigeration cycle;
    A motor driving device for driving a motor connected to the compressor;
    The refrigeration cycle apparatus according to claim 1, wherein the motor drive device changes the excitation current of the d axis in accordance with a change of a torque current of the q axis in a rotational coordinate system of the motor.
  9.  モータの回転座標系におけるq軸のトルク電流の変化に応じて、d軸の励磁電流を変化させること
     を特徴とするモータ駆動方法。
    What is claimed is: 1. A motor driving method comprising: changing a d-axis excitation current according to a change in q-axis torque current in a rotational coordinate system of the motor.
PCT/JP2017/037212 2017-10-13 2017-10-13 Motor drive device, refrigeration cycle device equipped with same, and motor drive method WO2019073599A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/037212 WO2019073599A1 (en) 2017-10-13 2017-10-13 Motor drive device, refrigeration cycle device equipped with same, and motor drive method
TW106145904A TWI662782B (en) 2017-10-13 2017-12-27 Motor driving device, refrigeration cycle device including the same, and motor driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037212 WO2019073599A1 (en) 2017-10-13 2017-10-13 Motor drive device, refrigeration cycle device equipped with same, and motor drive method

Publications (1)

Publication Number Publication Date
WO2019073599A1 true WO2019073599A1 (en) 2019-04-18

Family

ID=66100472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037212 WO2019073599A1 (en) 2017-10-13 2017-10-13 Motor drive device, refrigeration cycle device equipped with same, and motor drive method

Country Status (2)

Country Link
TW (1) TWI662782B (en)
WO (1) WO2019073599A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278982A (en) * 1999-03-24 2000-10-06 Hitachi Ltd Method for controlling permanent-magnet synchronous motor
JP2007259686A (en) * 2005-08-26 2007-10-04 Sanyo Electric Co Ltd Motor control unit
JP2010057217A (en) * 2008-08-26 2010-03-11 Meidensha Corp Torque pulsation suppression device of electric motor, and suppression method
JP2012016276A (en) * 2006-04-11 2012-01-19 Nsk Ltd Motor drive control apparatus and electric power steering apparatus using the same
WO2015129042A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Permanent magnet rotating electric machine control device
JP2016082637A (en) * 2014-10-14 2016-05-16 日立アプライアンス株式会社 Motor controller, compressor, air-conditioner, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481262B2 (en) * 2006-03-17 2010-06-16 日本電産サーボ株式会社 Stepping motor control device
JP5462906B2 (en) * 2012-04-16 2014-04-02 山洋電気株式会社 Motor control device
JP5791848B2 (en) * 2013-04-10 2015-10-07 三菱電機株式会社 Control device for permanent magnet motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278982A (en) * 1999-03-24 2000-10-06 Hitachi Ltd Method for controlling permanent-magnet synchronous motor
JP2007259686A (en) * 2005-08-26 2007-10-04 Sanyo Electric Co Ltd Motor control unit
JP2012016276A (en) * 2006-04-11 2012-01-19 Nsk Ltd Motor drive control apparatus and electric power steering apparatus using the same
JP2010057217A (en) * 2008-08-26 2010-03-11 Meidensha Corp Torque pulsation suppression device of electric motor, and suppression method
WO2015129042A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Permanent magnet rotating electric machine control device
JP2016082637A (en) * 2014-10-14 2016-05-16 日立アプライアンス株式会社 Motor controller, compressor, air-conditioner, and program

Also Published As

Publication number Publication date
TW201916573A (en) 2019-04-16
TWI662782B (en) 2019-06-11

Similar Documents

Publication Publication Date Title
JP6343037B1 (en) Motor drive device and refrigeration equipment
US8536812B2 (en) Motor control device and electrical equipment with motor controlled thereby
JP6877592B2 (en) Drive device, fluid utilization device and air conditioner
CN109314477B (en) Motor driving device, refrigeration cycle device, and motor driving method
JP2017017817A (en) Power converter and motor drive device, freezer unit
US11711040B2 (en) Motor driving apparatus and refrigeration cycle equipment
JP4744505B2 (en) Motor drive control device, motor drive control method and coordinate conversion method, ventilation fan, liquid pump, blower, refrigerant compressor, air conditioner, and refrigerator
JP4818176B2 (en) Motor drive control device and ventilation fan, liquid pump, refrigerant compressor, blower, air conditioner and refrigerator
JP6450016B2 (en) Power conversion device and heat pump device
JP6833071B2 (en) Drive device, fluid utilization device and air conditioner
JP2015042010A (en) Motor drive, motor drive module, compressor and refrigeration unit including the same
JP2018182975A (en) Compressor motor drive device
JP2008109826A (en) Motor controller and freezing and air-conditioning apparatus
JP2008295204A (en) Apparatus and method for motor control
WO2019073599A1 (en) Motor drive device, refrigeration cycle device equipped with same, and motor drive method
JP6286669B2 (en) Inverter control device
JP6846939B2 (en) Motor control device, rotary compressor system and motor control method
JP7118274B2 (en) Drive device, fluid utilization device and air conditioner
JP7217833B1 (en) Motor drive device, electrical constant measurement method and refrigeration equipment
WO2024075210A1 (en) Power conversion device, motor drive device, and refrigeration cycle application device
JP7250995B1 (en) Motor drive control device, motor device, refrigerating air conditioner, fan device, and drive control method
JP7308949B2 (en) Motor drive device and refrigeration cycle application equipment
WO2024069704A1 (en) Electric power conversion device, motor drive device, and refrigeration cycle application device
JP7237746B2 (en) Open winding motor drive device and refrigeration cycle device
WO2023157045A1 (en) Power conversion device and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP