WO2019073579A1 - Permanent magnet motor, permanent magnet motor manufacturing method, and compressor - Google Patents

Permanent magnet motor, permanent magnet motor manufacturing method, and compressor Download PDF

Info

Publication number
WO2019073579A1
WO2019073579A1 PCT/JP2017/037028 JP2017037028W WO2019073579A1 WO 2019073579 A1 WO2019073579 A1 WO 2019073579A1 JP 2017037028 W JP2017037028 W JP 2017037028W WO 2019073579 A1 WO2019073579 A1 WO 2019073579A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
rotor core
type motor
skew
Prior art date
Application number
PCT/JP2017/037028
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 田村
隆徳 渡邉
増本 浩二
昇嗣朗 堂本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019547865A priority Critical patent/JP6854910B2/en
Priority to PCT/JP2017/037028 priority patent/WO2019073579A1/en
Publication of WO2019073579A1 publication Critical patent/WO2019073579A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a permanent magnet motor in which a permanent magnet is provided on a rotor, a method of manufacturing the permanent magnet motor, and a compressor including the permanent magnet motor.
  • a permanent magnet type motor comprising a rotor having a rotor core fixed to the outer periphery of a rotating shaft and a permanent magnet embedded in the rotor core, and a stator having a coil facing the permanent magnet is there.
  • a permanent magnet since a permanent magnet is used, a suction force works with the coil and a cogging torque is generated.
  • a skew structure is well known as a method for reducing the cogging torque.
  • the skew structure is a structure in which the rotor is formed of a plurality of stages of rotor structures axially aligned, and the rotor structures of each stage are shifted in the circumferential direction and coupled.
  • breakage of a permanent magnet may occur in the permanent magnet when the rotor is skewed, and a manufacturing method that does not cause such a failure is required.
  • the present invention has been made in view of such a point, and a permanent magnet type motor capable of reducing the cogging torque and reducing the harmonic component of the induced voltage while suppressing the reduction of the induced voltage accompanying the skew, and manufacturing It is an object of the present invention to provide a manufacturing method and a compressor of a permanent magnet type motor capable of preventing damage to a permanent magnet of when.
  • a permanent magnet type motor includes a rotor having a plurality of permanent magnets constituting magnetic poles, a rotary shaft of the rotor, and a stator disposed on the outer peripheral side of the rotor, and is formed on the stator
  • the number of slots S and the number of poles P of the rotor satisfy S> P, and in the rotor, the rotor structure of each stage aligned in the axial direction of the rotation axis is offset in the circumferential direction
  • the skew angle ⁇ skew between the uppermost stage rotor structure and the lowermost stage rotor structure has a multistage skew structure disposed, and ⁇ s is 360 ° / (the least common multiple of S and P), ⁇ p_ MAX the 360 ° / (2 ⁇ P) and the time, and satisfies a relationship ⁇ s- ( ⁇ p_ MAX - ⁇ s) ⁇ skew ⁇ ⁇ s + ( ⁇ p_ MAX - ⁇ s).
  • a method of manufacturing a permanent magnet type motor according to the present invention includes a rotor core including a plurality of laminated magnetic steel sheets and a plurality of permanent magnets disposed on the rotor core and constituting magnetic poles.
  • a compressor according to the present invention includes the above-described permanent magnet type motor, and a compression mechanism unit connected to the permanent magnet type motor via a rotary shaft and compressing a refrigerant by a driving force transmitted via the rotary shaft. Is provided.
  • both end portions in the axial direction are chamfered on each of the front end surface and the rear end surface in the circumferential direction of the permanent magnet. For this reason, when the rotor core moves in the circumferential direction, the chamfered portion of the permanent magnet contacts the rotor core of the adjacent step so that the permanent magnet moves in the axial direction in the magnet insertion hole and the circumferential direction moves. Since the rotor structure moves in the circumferential direction, it is possible to prevent the permanent magnet from being broken.
  • FIG. 10 is a characteristic diagram showing a change in motor characteristics when the number of stages N is increased to 2 and 3 at an arbitrary skew angle. It is the cross-sectional view which showed the positional relationship of the permanent magnet of each step
  • FIG. 9 is a longitudinal cross-sectional view of the rotor before the skew angle is added in the enclosed scroll compressor according to Embodiment 2 of the present invention, which is a cross section taken along a line DD in FIG.
  • FIG. 10 is a longitudinal cross-sectional view of a rotor before skew angle is applied in a conventional permanent magnet type motor, taken along a line DD in FIG. 9; It is a figure which shows the modification of the rivet penetration hole provided in the rotor core in the permanent-magnet type
  • FIG. 1 is a longitudinal sectional view of a hermetic scroll compressor provided with a permanent magnet motor according to a first embodiment of the present invention.
  • FIG. 1 hatching indicating a cross section is partially omitted.
  • the sealed scroll compressor 100 of FIG. 1 compresses and discharges a working gas such as a refrigerant, for example.
  • the closed scroll compressor 100 includes a closed container 108 in which lubricating oil is stored at the bottom and which constitutes the outer shell of the closed scroll compressor 100.
  • a permanent magnet type motor 104 and a permanent magnet type motor 104 are connected via a rotary shaft 107, and a compression mechanism portion that compresses a refrigerant by a driving force transmitted via the rotary shaft 107. 101 and an oil pump 112 are accommodated.
  • the closed container 108 is formed, for example, in a cylindrical shape, and has pressure resistance.
  • a suction pipe 109 for taking in the working gas into the sealed container 108 is connected to the side surface of the sealed container 108.
  • a discharge pipe 110 Connected to the upper portion of the closed vessel 108 is a discharge pipe 110 that discharges the compressed working gas from the closed vessel 108 to the outside.
  • the compression mechanism portion 101 compresses the fluid drawn into the closed container 108 from the suction pipe 109, and includes a swing scroll 103 and a fixed scroll 102.
  • a compression chamber is formed between the spiral portion of the oscillating scroll 103 and the spiral portion of the fixed scroll 102, and the fluid is compressed in the compression chamber.
  • a refrigerant or air is used as the fluid.
  • the refrigerant for example, a single refrigerant consisting of HFO-1123 or a mixed refrigerant containing HFO-1123 is used.
  • the permanent magnet type motor 104 rotationally drives the rotating shaft 107 and has a stator 105 and a rotor 106 to generate a rotational force.
  • the rotor 106 is fixed to the rotating shaft 107 by shrink fitting or the like, and the stator 105 is fixed to the closed container 108 by shrink fitting or the like.
  • a lead wire 113 is connected to the stator 105, and the lead wire 113 is connected to a sealing terminal 111 provided on the hermetic container 108 in order to receive power supply from the outside of the hermetic container 108.
  • An oil supply passage 107 a extending in the axial direction of the rotary shaft 107 is formed inside the rotary shaft 107, and an oil pump 112 is connected to the lower end of the rotary shaft 107.
  • the oil pump 112 sucks the lubricating oil stored at the bottom of the closed container 108 and supplies it to the oil supply passage 107 a in the rotating shaft 107.
  • the oil supplied to the oil supply passage 107 a is supplied to each sliding portion of the compression mechanism section 101.
  • An eccentric shaft portion is installed at the upper end of the rotating shaft 107, and is engaged with a swing bearing formed in a boss portion of the swing scroll 103.
  • FIG. 2 is a schematic vertical sectional view showing the permanent magnet type motor according to the first embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing a permanent magnet type motor according to Embodiment 1 of the present invention.
  • the rotor 106 is disposed inside the stator 105, and is an annular rotor formed by axially laminating a plurality of electromagnetic steel plates made of a high magnetic permeability material such as iron. It has a core 31.
  • magnet insertion holes 32 equal in number to the magnetic poles are formed at intervals in the circumferential direction, and flat permanent magnets 33 constituting the magnetic poles are embedded in each of the magnet insertion holes 32.
  • the permanent magnet 33 is made of, for example, a neodymium magnet or a rare earth magnet.
  • the rotor 106 also has end plates 34 made of nonmagnetic material on both sides in the axial direction of the rotor core 31.
  • the end plate z34 and the rotor core 31 are formed with a rivet insertion hole 37 penetrating both in the axial direction, and the rivet 36 is inserted into the rivet insertion hole 37 and the whole is fastened in the axial direction.
  • a balance weight 35 is disposed at one end of the rotor core 31 in the axial direction and outside the end plate 34, and the balance weight 35 is crimped by rivets 36 together with the end plate 34 and the rotor core 31. ing.
  • FIG. 2 shows an example in which the balance weight 35 is arranged at one end of the rotor core 31 in the axial direction, it may be arranged at both ends.
  • the stator 105 includes a plurality of teeth 41 formed in the stator core 105a and a plurality of slots 42 formed between the teeth 41, and a conductor wire is wound in a concentrated winding around each of the plurality of teeth 41 to form a coil. 43 has a formed structure.
  • the permanent magnet type motor 104 is a concentrated winding motor in which the number of slots S of the stator 105 and the number of poles P of the rotor 106 satisfy the relationship of S> P. It consists of a DC motor.
  • FIG. 4 is a schematic vertical cross-sectional view showing the rotor fixed to the rotary shaft of the compressor according to Embodiment 1 of the present invention.
  • FIG. 5 is the figure which put together the schematic cross section of the rotor structure of each step
  • (a) is an AA cross section of FIG. 4
  • (b) is a BB cross section of FIG. 4
  • (c) is a CC cross section of FIG.
  • components other than the rotor core 31 and the permanent magnet 33 are not shown for the sake of easy understanding.
  • the rotor 106 has a three-stage skew structure in which three rotor structures 106a, a rotor structure 106b and a rotor structure 106c are axially aligned.
  • the rotor structure 106a includes a rotor core 31a and a permanent magnet 33a.
  • the rotor structure 106b includes a rotor core 31b and a permanent magnet 33b.
  • the rotor structure 106c includes a rotor core 31c and a permanent magnet 33c.
  • the rotor structure 106a, the rotor structure 106b, and the rotor structure 106c are disposed at positions mutually offset in the rotational angle direction. This angle is called skew angle ⁇ .
  • the position of the rotor structure 106a is referred to as 0 °
  • the skew angle ⁇ of the rotor structure 106b is referred to as a skew angle ⁇ 1
  • the skew angle ⁇ of the rotor structure 106c is referred to as a skew angle ⁇ 2.
  • the skew angle of the entire rotor between the uppermost stage rotor structure 106a and the lowermost rotor structure 106c is referred to as a skew angle ⁇ skew.
  • FIGS. 4 and 5 show a configuration example in which the skew angle ⁇ 1 of the rotor structure 106b is 10 °, the skew angle ⁇ 2 of the rotor structure 106c is 20 °, and the skew angle ⁇ skew is 20 °.
  • the range of the skew angle ⁇ skew capable of reducing the cogging torque and reducing the harmonic component of the induced voltage while suppressing the reduction of the induced voltage accompanying the skew is the following (1) It is in the definition of the scope.
  • the number of stages of the skew structure is not limited to three, and may be a multistage skew structure in which a plurality of three or more stages are arranged.
  • the range of the skew angle ⁇ skew is set in consideration of the motor characteristics which change according to the skew angle ⁇ skew.
  • Motor characteristics include cogging torque, harmonic components of induced voltage and induced voltage.
  • the permanent magnet motor 104 As an example of the permanent magnet motor 104, a permanent magnet motor 104 in which the number of slots S of the stator 105 is 9 and the number of poles of the rotor 106 is 6 is used. The variation of the motor characteristics according to the skew angle ⁇ skew will be described with reference to FIG. 6 by taking the 6-pole 9-slot concentrated winding permanent magnet type motor 104 as an example.
  • FIG. 6 is a characteristic diagram showing changes in motor characteristics for each skew angle ⁇ skew in the permanent magnet type motor according to Embodiment 1 of the present invention.
  • the horizontal axis indicates the skew angle ⁇ skew.
  • the vertical axis represents the change rate of each motor characteristic when the skew angle ⁇ skew is increased with the motor characteristic at the skew angle ⁇ skew of 0 ° as 100% of the reference.
  • the number of skew stages is three, which is the case of a concentrated winding motor with 6 poles and 9 slots.
  • (a) cogging torque, (b) high frequency component of induced voltage and (c) induced voltage are shown as each motor characteristic.
  • paragraphs, the high frequency component of induced voltage, and the change rate of induced voltage are also shown for comparison.
  • the cogging torque starts to decrease and increase near the skew angle of 30 °.
  • the following can be considered as the reason. That is, because of the configuration of six poles, the permanent magnets 33 embedded in the rotor 106 are arranged at a pitch of 60 ° in the circumferential direction. For this reason, in the case where a skew angle ⁇ skew of more than 30 ° which is half thereof is given, it overlaps with the permanent magnet 33 of the opposite pole disposed next to it in the circumferential direction by more than half. Therefore, it is considered that the effect of reducing the cogging torque is lost and only the induced voltage is reduced.
  • the skew angle ⁇ skew so that the range in which the permanent magnet 33 of the opposite pole arranged in the circumferential direction overlaps in the circumferential direction is not more than half the arrangement pitch of the permanent magnets 33 in the circumferential direction.
  • Skew angle ⁇ p is, since "360 ° / (2 ⁇ P)" is preferably at most, in other words, the preferred maximum value Shitapi_ MAX of the skew angle ⁇ p is "360 ° / (2 ⁇ P)".
  • the number P 6 pole, comprising skew angle Shitapi_ MAX 30 ⁇ Ga 30 °.
  • the harmonic component of the induced voltage has a downward convex characteristic as shown in FIG. 6 (b), and has the characteristic with the inflection point of the characteristic as the optimum value. Then, the skew angle of around 20 ° is the optimum value. Therefore, when the skew angle ⁇ skew is set to about 20 °, harmonic components of the induced voltage can be reduced, which is effective in reducing vibration and noise.
  • “360 ° / (the least common multiple of S and P)” is conventionally used as the optimal value of the skew angle for the purpose of reducing the cogging torque.
  • the number of slots S is 9
  • the number of poles P is 6, the least common multiple of S and P is 18, and the optimum value is 20 °.
  • skew angle ⁇ skew is set to “360 ° / (the least common multiple of S and P)”.
  • the “skew angle ⁇ skew for improving the vibration and noise due to the harmonic component of the induced voltage” in the skew angle ⁇ skew is hereinafter referred to as “skew angle ⁇ s”.
  • the harmonic component of the induced voltage has a downward convex characteristic as described above, it is possible to reduce the harmonic component of the induced voltage in a range having a width centered on the skew angle ⁇ s.
  • the permanent magnet type motor 104 of the first embodiment since it satisfies the relationship of S> P, a skew angle ⁇ p_ MAX> skew angle [theta] s.
  • the maximum value side the difference between Shitapi_ MAX and [theta] s, using a value obtained by adding to a central [theta] s to " ⁇ s + ( ⁇ p_ MAX - ⁇ s)" It can be set.
  • the range of the skew angle ⁇ skew which can reduce the cogging torque and the harmonic components of the induced voltage without unnecessarily reducing the induced voltage is the range of the above (1).
  • the three-stage skew can reduce the cogging torque and the harmonic components of the induced voltage without unnecessarily reducing the induced voltage.
  • a permanent magnet type motor 104 of a structure can be obtained.
  • the range of the skew angle ⁇ skew is given with a width centered on “360 ° / (the least common multiple of S and P)” which is the optimum value of the skew angle ⁇ s, as described above.
  • the range of (3) may be used. 360 ° / (the least common multiple of the S and P) ⁇ skew ⁇ ⁇ s + ( ⁇ p_ MAX - ⁇ s) ... (3)
  • the lower limit side of the range of the skew angle ⁇ skew may not have a width, and “360 ° / (the least common multiple of S and P)” itself which is the optimum value of the skew angle ⁇ s may be set as the lower limit.
  • the range of (3) is 20 ° ⁇ skew ⁇ 30 ° in the example of 6 poles and 9 slots.
  • FIG. 7 is a characteristic diagram showing a change in motor characteristics when the number of stages N is increased to 2 and 3 at an arbitrary skew angle.
  • the horizontal axis is the number of skew stages.
  • the vertical axis represents a change rate of each motor characteristic when the number of skew stages is increased with the number of skew stages being one as 100% of the reference.
  • as each motor characteristic (a) cogging torque, (b) high frequency component of induced voltage, and (c) induced voltage are shown.
  • the harmonic component of the induced voltage slightly increases with the number of stages 2, and thereafter the reduction effect increases.
  • the induced voltage is substantially halved in the case of the stage number 1 in the case of the stage number 2, and the decrease can be suppressed as the stage number N is increased.
  • the cogging torque is reduced and the harmonics of the induced voltage are suppressed while the decrease in the induced voltage is suppressed.
  • the component reduction effect can be obtained.
  • the second embodiment relates to a method of manufacturing a rotor having a skew structure.
  • FIG. 8 is a cross-sectional view showing the positional relationship between the permanent magnet of each step and the rivet insertion hole and the shape of the rivet insertion hole in the rotor of the permanent magnet type motor according to Embodiment 2 of the present invention .
  • FIG. 9 is a cross-sectional view showing the positional relationship between the permanent magnet of each step and the rivet insertion hole and the shape of the rivet insertion hole in a conventional skew rotor as a comparative example.
  • FIGS. 8 and 9 show a configuration example in which four rivets are used for fastening.
  • the position of the rivet insertion hole 370 into which the rivet 360 is inserted in each of the rotor cores 310a, 310b and 310c of each stage constituting the rotor core 310 are the positions shown at positions 370a, 370b and 370c.
  • the positions of the rivet insertion holes 370 in the respective stages differ from each other in the positional relationship with the permanent magnet 33, and hence the shapes of the rotor cores in the respective stages are different for each stage. Therefore, in the multistage skew rotor of the comparative example, it is necessary to prepare rotor cores for the number N of stages having different shapes. As a result, in order to punch a plurality of core shapes having different positions of the rivet insertion holes 370, core press molds having the same number as the number N of stages or core press molds having a control mechanism capable of selectively pressing a plurality of types must be prepared. It led to cost increase.
  • the rivet insertion hole 37 has an elongated hole shape along the circumferential direction around the rotation axis 107. Furthermore, the circle of the same diameter as the rivet 36 is slightly larger than the outer shape of the locus formed by moving in the circumferential direction about the rotation axis 107.
  • the angular width ⁇ r of the rivet insertion hole 37 is in the range of (4) below.
  • ⁇ skew ⁇ ⁇ r ⁇ ⁇ p_ MAX 360 ° / (2 ⁇ P) ⁇ (4)
  • a method of assembling the rotor 106 will be described. First, a plurality of electromagnetic steel plates are stacked to form the rotor core 31. Then, the permanent magnet 33 is disposed in the magnet insertion hole 32 of the rotor core 31. Next, the rivets 36 are passed through the rivet insertion holes 37 of the rotor core 31. Thereafter, in the rotor core 31, an arbitrary thickness is shifted in the circumferential direction by the skew angle ⁇ .
  • any desired laminated thickness which is finally distinguished as the rotor core 31a, the rotor core 31b and the rotor core 31c
  • the laminated rotor cores 31a, the rotor cores 31b and the rotor cores 31c are shifted in the circumferential direction by the skew angle ⁇ obtained respectively.
  • the rotor cores 31 of the other stages may be moved in the circumferential direction with reference to the rotor core 31 of one of the stages.
  • the middle stage rotor core 31 b and the lower stage rotor core 31 c are moved in the circumferential direction based on the upper stage rotor core 31 a.
  • the middle stage rotor core 31b is moved in the circumferential direction together with the permanent magnet 33b.
  • the rivet insertion hole 37 has the above-described elongated hole shape, and by the rivet 36 sliding in the rivet insertion hole 37, the rotor core 31b can be moved.
  • the lower rotor core 31c is moved in the circumferential direction together with the permanent magnet 33c.
  • the outer diameter portion is gripped for each rotor core 31 of each stage, and the rotor cores 31 of the other stages are referenced based on the rotor core 31 of one of the stages. Can be moved in the circumferential direction, which can be realized by a relatively simple device.
  • the rivet 36 is crimped to form the rotor 106 having a skew structure.
  • the axial fastening force of the rivet 36 alone is weak against the rotational force applied to the rotor core 31 during operation, and is not sufficient to maintain the skew angle ⁇ .
  • the holding of the skew angle ⁇ is established by the fixing force by the gap fitting and the shrink fitting when fixing the rotor 106 to the rotating shaft 107. Therefore, the fastening force with the rivet 36 is only required to maintain the strength sufficient to hold the skew angle ⁇ until the rotor 106 is fixed to the rotating shaft 107. There is no need to improve the fastening power of 36.
  • the rivets 36 may be caulked and fastened after skewing as described above, the rivets 36 are caulked and fastened using caustic fastening force in the axial direction of the rivets 36 and then skewed.
  • the rotor 106 having a skew structure may be formed.
  • the permanent magnet 33 disposed in the rotor core 31 does not have a magnetic force, that is, so-called unmagnetized magnetization
  • magnetization may be performed by applying a magnetic force to the permanent magnets 33 disposed in the rotor core 31 with a magnetization yoke or the like, and then skewing may be performed. By doing this, it is possible to easily achieve the magnetization of the skew rotor and the arrangement of the permanent magnet 33 in the magnet insertion hole 32.
  • the following effects can be obtained by setting the laminated thickness of the rotor core 31a, the rotor core 31b and the rotor core 31c of each stage to the same thickness. That is, there is no need to worry about the stacking order at the time of assembly, and erroneous assembly can be prevented. Further, since all the permanent magnets 33 embedded in the rotor core 31 of each stage can be formed into the same shape, cost merits can be obtained by sharing the parts, and also in terms of reduction of management costs of different parts. You can get the benefits.
  • FIG. 10 is a longitudinal cross-sectional view of a rotor before forming a skew angle in a hermetic scroll compressor according to a second embodiment of the present invention, and is a DD cross section of FIG.
  • FIG. 11 is a longitudinal cross-sectional view of the rotor of the conventional permanent magnet type motor before the skew angle is given, which is a DD cross section of FIG.
  • the rotor core 31 contracts in the axial direction. For this reason, the permanent magnet 33 embedded in the rotor core 31 may be compressed in the axial direction to generate a crack or chip.
  • the axial dimension h1 of the state in which the permanent magnets 33 are stacked for the number of steps is the axial dimension of the rotor core 31 (hereinafter referred to as the laminated thickness)
  • the laminated thickness A configuration is known in which the length is set shorter than h2. In this configuration, the lower end portion of the permanent magnet 33a of the upper rotor core 31a is inserted into the middle rotor core 31b.
  • the lower end portion of the permanent magnet 33b of the middle stage rotor core 31b enters the lower stage rotor core 31c.
  • a part of each permanent magnet 33 enters the rotor core 31 different from the rotor core 31 to be originally inserted.
  • the permanent magnet 33 is pressed in the circumferential direction in the rotor core 31, and there is a problem that a crack or chipping occurs.
  • a crack or chipping may occur in the permanent magnet 33a in the area D and a crack or chipping may occur in the permanent magnet 33b in the area E.
  • the middle stage rotor structure 106b is moved in the circumferential direction as indicated by the arrows in FIG.
  • the chamfered 50 portion of the middle stage permanent magnet 33b contacts the lower stage rotor core 31c so that the permanent magnet 33b is in the magnet insertion hole 32. Is pushed upward in the axial direction.
  • the permanent magnet 33a is also pushed up.
  • the permanent magnet 33b is positioned in the rotor core 31b, and the permanent magnet 33a is positioned in the rotor core 31a.
  • the rotor construction 106b can be moved in the circumferential direction to give a skew angle ⁇ without causing damage to the permanent magnet 33a and the permanent magnet 33b in the area D and the area E.
  • the portion to be chamfered 50 may be at least the following position. That is, in each of the permanent magnets 33, it may be provided at both axial end portions of the front end surface 51 and the rear end surface 52 in the moving direction.
  • the chamfering dimension C may be set, for example, as follows. It is assumed that the number of stages is N and the axial dimensional difference between the rotor core 31 of each stage and the permanent magnet 33 of each stage is ⁇ (see FIG. 10). At this time, the axial dimension in which the uppermost stage permanent magnet 33a enters the rotor core 31b immediately below it is N / (N-1) ⁇ ⁇ . Therefore, the chamfering dimension C may be set to CCN / (N ⁇ 1) ⁇ ⁇ .
  • the chamfering shape may be a corner or a circle as long as the chamfering dimension C secures the above-mentioned range of dimensions.
  • the rivet insertion holes 37 as elongated holes extending in the circumferential direction, the rivet insertion holes can be provided at individual positions adjusted to an arbitrary skew angle ⁇ for each step.
  • the need to provide 37 can be eliminated. Therefore, the core shape required for the skew structure can be made common to each step, and a plurality of dies or a complicated press die capable of punching a plurality of core shapes can be dispensed with, and the cost of the press can be suppressed. The effect is obtained.
  • the shape of the rivet insertion hole 37 is not limited to the shape shown in FIG. 8, and may be the shape shown in FIG.
  • FIG. 12 is a view showing a modification of the rivet insertion hole provided in the rotor core in the permanent magnet type motor according to Embodiment 2 of the present invention.
  • the rivet insertion hole 37 in FIG. 12 has a shape obtained by smoothly connecting the outer shape of the shape obtained by shifting a circle having the same diameter as the rivet 36 in the circumferential direction by skew angle ⁇ of the rotor structure of each stage. Have.
  • the rivet insertion hole 37 functions as a positioning hole by forming the rivet insertion hole 37 into a shape having a contour of three circles in this case, and the rotor core 31 of each stage is accurately measured by the skew angle. It can be shifted.
  • the rivet insertion hole 37 has the above-mentioned long hole shape
  • the outline portion of each circle in the rivet insertion hole 37 is shifted by a predetermined skew angle ⁇ It is possible to carry out the lamination in As a result, it is possible to eliminate the need for a device for shifting the rotor core 31 by the skew angle ⁇ after the lamination, which is necessary when forming an elongated hole without a circular outline.
  • the configuration of the hexagonal flat plate arrangement in which the flat permanent magnets 33 are installed at six places of the rotor 106 is selected from the ease of description. It is not limited to this installation.
  • the arrangement configuration of the magnets in the rotor 106 may be appropriately determined, such as an eight-sided flat plate arrangement or a four-way bathtub arrangement, according to the number of magnetic poles.
  • the same applies to the stator 105, and the number of slots and the like may be appropriately determined according to the number of magnetic poles.
  • the optimum range of the skew angle ⁇ provided by the present invention can be applied.
  • the effect obtained by the skew naturally differs depending on the circumferential distance between the permanent magnets 33 embedded in the rotor 106 or the radial position of the permanent magnets 33.
  • it goes without saying that it is necessary to set the skew angle ⁇ skew within the optimum range of the skew angle ⁇ skew provided in the present invention in consideration of the following. That is, it is set in consideration of an allowable performance reduction including the number of stages and an improvement rate of vibration and noise required for the device on which the permanent magnet type motor 104 is mounted.
  • the reduction in induced voltage may be confirmed by analysis or actual machine verification.
  • each rate of reduction of the cogging torque and the harmonic component of the induced voltage may be confirmed by analysis or actual machine verification. Then, an appropriate skew angle ⁇ skew may be derived using these confirmation results.
  • the configuration in which four rivets 36 are fastened is illustrated and described.
  • the rivets 36 may be configured as two, three, or five or more.
  • the manufacturing method has been described using a diagram without the balance weight 35, the present invention is not limited to this.
  • the balance weight 35 is configured to be fastened together with the rotor core and the end plate 34 by the rivets 36
  • the rivet insertion holes 37 of the balance weight 35 may be formed in the same elongated shape.
  • the rivet insertion holes 37 of the end plate 34 and the balance weight 35 may be as follows, on the assumption that the bearing surface is a contact area that can ensure the axial fastening force with the rivet 36.
  • the end plate 34 and the rivet insertion hole 37 of the balance weight 35 may be a long hole larger than the rivet insertion hole 37 of the rotor core 31 or a round hole in which the entire long hole of the rotor core 31 is accommodated. Further, only one of the balance weight 35 and the end plate 34 may have the above configuration.
  • the present invention has been described by way of example of the closed scroll compressor provided with the scroll type compression mechanism, but the closed magnet type motor according to the present invention is used for sealing
  • the compression mechanism part of the mold compressor is not limited to the scroll type.
  • the permanent magnet type motor of the present invention may of course be mounted on a hermetic type compressor using various compression mechanism parts, such as a rotary type, a vane type or a screw type.
  • the compressor provided with the permanent magnet type motor of the present invention is particularly applicable to the compression of an air conditioner, a refrigerator, a freezer and the like.
  • Reference Signs List 31 rotor core, 31a rotor core, 31b rotor core, 31c rotor core, 32 magnet insertion holes, 33 permanent magnets, 33a permanent magnets, 33b permanent magnets, 33c permanent magnets, 34 end plates, 35 balance weights, 36 Rivets, 37 rivet insertion holes, 41 teeth, 42 slots, 43 coils, 50 chamfers, 51 end faces, 52 rear end faces, 100 sealed scroll compressors, 101 compression mechanism parts, 102 fixed scrolls, 103 oscillating scrolls, 104 permanent Magnet type motor, 105 stator, 105a stator core, 106 rotor, 106a rotor structure, 106b rotor structure, 106c rotor structure, 107 rotation shaft, 107a oil supply passage, 108 sealed container, 109 suction pipe , 110 discharge distribution , 111 sealed terminal, 112 an oil pump, 113 lead, 310 rotor core, 310a rotor core, 310b rotor core, 360 rivets, 370 rivet

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

In this permanent magnet motor, the number S of slots formed on the stator and the number P of poles of the rotor satisfy the relationship of S > P. The rotor has a multistage skew structure in which rotor constituent bodies of respective stages arranged in the axial direction of a rotating shaft are disposed by being shifted in the circumferential direction. When θs is given by 360º/(the least common multiple of S and P) and θp_MAX is given by 360º/(2 x P), the skew angle θskew between the rotor constituent bodies at the highest and lowest stages satisfies the relationship of θs – (θp_MAX –θs) < θskew ≤ θs + (θp_MAX – θs). In addition, a method for manufacturing the permanent magnet motor forms a rivet insertion hole formed in a rotor core in an elongated hole shape along the circumferential direction about the rotational axis of the rotor and gives a skew to the rotor core after inserting a rivet into the rivet insertion hole.

Description

永久磁石型モータ、永久磁石型モータの製造方法および圧縮機Permanent magnet type motor, method of manufacturing permanent magnet type motor and compressor
 本発明は、回転子に永久磁石が設けられた永久磁石型モータ、永久磁石型モータの製造方法および永久磁石型モータを備えた圧縮機に関する。 The present invention relates to a permanent magnet motor in which a permanent magnet is provided on a rotor, a method of manufacturing the permanent magnet motor, and a compressor including the permanent magnet motor.
 従来より、回転軸の外周に固定された回転子コアおよび回転子コアに埋設された永久磁石を備えた回転子と、永久磁石に対向するコイルを備えた固定子とからなる永久磁石型モータがある。この種の永久磁石型モータでは、永久磁石を用いるため、コイルとの間で吸引力が働き、コギングトルクが発生する。低騒音で低振動の円滑な回転を図るには、コギングトルクを低減させることが有効であり、コギングトルクを低減する方法として、スキュー構造が良く知られている。 Conventionally, a permanent magnet type motor comprising a rotor having a rotor core fixed to the outer periphery of a rotating shaft and a permanent magnet embedded in the rotor core, and a stator having a coil facing the permanent magnet is there. In this type of permanent magnet type motor, since a permanent magnet is used, a suction force works with the coil and a cogging torque is generated. In order to achieve smooth rotation with low noise and low vibration, it is effective to reduce the cogging torque, and a skew structure is well known as a method for reducing the cogging torque.
 スキュー構造は、回転子を、軸方向に並んだ複数段の回転子構成体で構成し、各段の回転子構成体を周方向にずらして結合した構造である。この種の多段スキュー構造としたモータとして、例えば、特許文献1がある。特許文献1では、各段の周方向のスキュー角θを、スロット数と極数との最小公倍数をAとし、段数をNとした場合にθ=360°/(A×N)とすることで、コギングトルクの低減を図っている。 The skew structure is a structure in which the rotor is formed of a plurality of stages of rotor structures axially aligned, and the rotor structures of each stage are shifted in the circumferential direction and coupled. As a motor having a multistage skew structure of this type, there is, for example, Patent Document 1. In Patent Document 1, assuming that the skew angle θ in the circumferential direction of each stage is A, and the number of stages is N, then θ = 360 ° / (A × N) where A is the least common multiple of the number of slots and the number of poles. To reduce the cogging torque.
特開2004-248422号公報JP 2004-248422 A
 回転子をスキュー構造とすると、騒音および振動の原因となる、誘起電圧の高調波成分を低減できるが、誘起電圧の高調波成分と共に、誘起電圧の基本波成分も低下する。誘起電圧はモータの性能に大きく関わり、誘起電圧が低下すると性能も低下するため、スキュー構造とすることによる誘起電圧の低下率も考慮したスキュー角を設定する必要がある。しかしながら、特許文献1では、コギングトルクの低減のみを考慮してスキュー角を設定している。実際のモータ構成では、スキュー構造としたことによる性能への影響を無視することはできないため、コギングトルクの低減のみを考慮して上記式のようにスキュー角を一意に決定することは難しい。 When the rotor has a skew structure, harmonic components of the induced voltage that cause noise and vibration can be reduced, but in addition to harmonic components of the induced voltage, the fundamental wave component of the induced voltage also decreases. The induced voltage is greatly related to the performance of the motor, and the performance decreases as the induced voltage decreases. Therefore, it is necessary to set the skew angle in consideration of the decreasing rate of the induced voltage due to the skew structure. However, in Patent Document 1, the skew angle is set in consideration of only the reduction of the cogging torque. In an actual motor configuration, it is difficult to ignore the influence on performance due to the skew structure, and it is difficult to uniquely determine the skew angle as in the above equation taking into consideration only the reduction of the cogging torque.
 また、スキュー構造の回転子の製造方法において、回転子にスキューを施す際に永久磁石にワレまたはカケ等の破損が生じることがあり、このような破損が生じない製造方法が求められている。 In addition, in the method of manufacturing a rotor having a skew structure, breakage of a permanent magnet may occur in the permanent magnet when the rotor is skewed, and a manufacturing method that does not cause such a failure is required.
 本発明はこのような点を鑑みなされたもので、スキューに伴う誘起電圧の低下を抑制しつつ、コギングトルクの低減および誘起電圧の高調波成分の低減が可能な永久磁石型モータ、また、製造時の永久磁石の破損を防止可能な永久磁石型モータの製造方法および圧縮機を提供することを目的とする。 The present invention has been made in view of such a point, and a permanent magnet type motor capable of reducing the cogging torque and reducing the harmonic component of the induced voltage while suppressing the reduction of the induced voltage accompanying the skew, and manufacturing It is an object of the present invention to provide a manufacturing method and a compressor of a permanent magnet type motor capable of preventing damage to a permanent magnet of when.
 本発明に係る永久磁石型モータは、磁極を構成する複数の永久磁石を有する回転子と、回転子の回転軸と、回転子の外周側に配置された固定子とを備え、固定子に形成されたスロットの数Sと回転子の極数Pとが、S>Pを満足しており、回転子は、回転軸の軸方向に並んだ各段の回転子構成体が周方向にずれて配置された多段スキュー構造を有し、最上段の回転子構成体と最下段の回転子構成体との間のスキュー角θskewが、θsを360°/(SとPとの最小公倍数)、θp_MAXを360°/(2×P)としたとき、θs-(θp_MAX-θs)<θskew≦θs+(θp_MAX-θs)の関係を満足するものである。 A permanent magnet type motor according to the present invention includes a rotor having a plurality of permanent magnets constituting magnetic poles, a rotary shaft of the rotor, and a stator disposed on the outer peripheral side of the rotor, and is formed on the stator The number of slots S and the number of poles P of the rotor satisfy S> P, and in the rotor, the rotor structure of each stage aligned in the axial direction of the rotation axis is offset in the circumferential direction The skew angle θskew between the uppermost stage rotor structure and the lowermost stage rotor structure has a multistage skew structure disposed, and θs is 360 ° / (the least common multiple of S and P), θp_ MAX the 360 ° / (2 × P) and the time, and satisfies a relationship θs- (θp_ MAX -θs) <θskew ≦ θs + (θp_ MAX -θs).
 また、本発明に係る永久磁石型モータの製造方法は、複数の電磁鋼板が積層された回転子コアと、回転子コアに配置され、磁極を構成する複数の永久磁石とを備えた回転子構成体が軸方向に複数段並び、各段の回転子構成体が周方向にずらして配置されたスキュー構造の回転子を備えた永久磁石型モータの製造方法であって、複数の電磁鋼板を積層して回転子コアを形成する工程と、回転子コアに形成された磁石挿入孔に永久磁石を配置する工程と、回転子コアに形成されたリベット挿通孔にリベットを通し、各段のスキューを施して各段の回転子構成体を形成する工程と、リベットでカシメて締結する工程とを備え、リベット挿通孔は、回転子の回転軸を中心とした周方向に沿う長穴形状であるものである。 A method of manufacturing a permanent magnet type motor according to the present invention includes a rotor core including a plurality of laminated magnetic steel sheets and a plurality of permanent magnets disposed on the rotor core and constituting magnetic poles. A manufacturing method of a permanent magnet type motor provided with a rotor having a skew structure in which a plurality of bodies are arranged axially in the axial direction and rotor constructions in the respective stages are shifted in the circumferential direction, and a plurality of electromagnetic steel plates are laminated. Process the process of forming the rotor core, the process of arranging the permanent magnet in the magnet insertion hole formed in the rotor core, and the rivet through the rivet insertion hole formed in the rotor core to make the skew of each stage Providing a step of forming the rotor structure of each step and a step of caulking and fastening with a rivet, and the rivet insertion hole has an elongated hole shape along the circumferential direction around the rotation axis of the rotor It is.
 また、本発明に係る圧縮機は、上記の永久磁石型モータと、永久磁石型モータに回転軸を介して接続され、回転軸を介して伝達される駆動力によって冷媒を圧縮する圧縮機構部とを備えたものである。 A compressor according to the present invention includes the above-described permanent magnet type motor, and a compression mechanism unit connected to the permanent magnet type motor via a rotary shaft and compressing a refrigerant by a driving force transmitted via the rotary shaft. Is provided.
 本発明の永久磁石型モータおよび圧縮機によれば、スキュー角θskewを適正な範囲に設定することで、スキューに伴う誘起電圧の低下を抑制しつつ、コギングトルクの低減および誘起電圧の高調波成分の低減が可能である。
 また、本発明の製造方法によれば、永久磁石の周方向の先端面および後端面のそれぞれにおいて軸方向の両端部が面取りされている。このため、回転子コアが周方向に移動する際に、永久磁石の面取り部分が、隣接する段の回転子コアに接触することで永久磁石が磁石挿入孔内を軸方向に移動しながら周方向に送られ、回転子構成体が周方向に移動するので、永久磁石の破損を防止することが可能である。
According to the permanent magnet type motor and the compressor of the present invention, the cogging torque is reduced and the harmonic component of the induced voltage while suppressing the drop of the induced voltage accompanying the skew by setting the skew angle θskew within an appropriate range. Can be reduced.
Further, according to the manufacturing method of the present invention, both end portions in the axial direction are chamfered on each of the front end surface and the rear end surface in the circumferential direction of the permanent magnet. For this reason, when the rotor core moves in the circumferential direction, the chamfered portion of the permanent magnet contacts the rotor core of the adjacent step so that the permanent magnet moves in the axial direction in the magnet insertion hole and the circumferential direction moves. Since the rotor structure moves in the circumferential direction, it is possible to prevent the permanent magnet from being broken.
本発明の実施の形態1に係る永久磁石型モータを備えた密閉型スクロール圧縮機の縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view of the airtight type scroll compressor provided with the permanent magnet type motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る永久磁石型モータを示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the permanent-magnet type | mold motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る永久磁石型モータを示す概略平面図である。It is a schematic plan view which shows the permanent magnet type motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る圧縮機の回転軸に固定された回転子を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the rotor fixed to the rotating shaft of the compressor which concerns on Embodiment 1 of this invention. 図4の各段の回転子構成体の概略断面をまとめた図である。It is the figure which put together the schematic cross section of the rotor structure of each stage of FIG. 本発明の実施の形態1に係る永久磁石型モータにおけるスキュー角θskewごとのモータ特性の変化を示す特性図である。It is a characteristic view showing change of a motor characteristic for every skew angle theta skew in a permanent magnet type motor concerning Embodiment 1 of the present invention. ある任意のスキュー角において、段数Nを2、3と増やした場合のモータ特性の変化を示す特性図である。FIG. 10 is a characteristic diagram showing a change in motor characteristics when the number of stages N is increased to 2 and 3 at an arbitrary skew angle. 本発明の実施の形態2に係る永久磁石型モータの回転子における、各段の永久磁石とリベット挿通孔との位置関係、およびリベット挿通孔の形状を示した横断面図である。It is the cross-sectional view which showed the positional relationship of the permanent magnet of each step | level and a rivet penetration hole, and the shape of a rivet penetration hole in the rotor of the permanent magnet type motor which concerns on Embodiment 2 of this invention. 比較例として従来のスキュー回転子における、各段の永久磁石とリベット挿通孔との位置関係、およびリベット挿通孔の形状を示した横断面図である。It is the cross-sectional view which showed the positional relationship of the permanent magnet of each stage and a rivet penetration hole, and the shape of a rivet penetration hole in the conventional skew rotor as a comparative example. 本発明の実施の形態2に係る密閉型スクロール圧縮機における、スキュー角を付ける前の回転子の縦断面図で、図8のD-D断面である。FIG. 9 is a longitudinal cross-sectional view of the rotor before the skew angle is added in the enclosed scroll compressor according to Embodiment 2 of the present invention, which is a cross section taken along a line DD in FIG. 従来の永久磁石型モータにおける、回転子の、スキュー角を付ける前の回転子の縦断面図で、図9のD-D断面である。FIG. 10 is a longitudinal cross-sectional view of a rotor before skew angle is applied in a conventional permanent magnet type motor, taken along a line DD in FIG. 9; 本発明の実施の形態2に係る永久磁石型モータにおける回転子コアに設けたリベット挿通孔の変形例を示す図である。It is a figure which shows the modification of the rivet penetration hole provided in the rotor core in the permanent-magnet type | mold motor which concerns on Embodiment 2 of this invention.
 以下、本発明の実施の形態に係る永久磁石型モータを備えた圧縮機について図面に基づいて説明する。ここでは、圧縮機として、いわゆる縦型の密閉型スクロール圧縮機を例に説明する。 Hereinafter, a compressor provided with a permanent magnet type motor according to an embodiment of the present invention will be described based on the drawings. Here, as a compressor, a so-called vertical sealed scroll compressor will be described as an example.
実施の形態.
[実施の形態1]
 図1は、本発明の実施の形態1に係る永久磁石型モータを備えた密閉型スクロール圧縮機の縦断面図である。なお、図1では、断面を示すハッチングを一部省略している。以下、図1を参照しながら密閉型スクロール圧縮機100の構成について説明する。図1の密閉型スクロール圧縮機100は、例えば冷媒等の作動ガスを圧縮して吐出するものである。密閉型スクロール圧縮機100は、底部に潤滑油が貯留され、密閉型スクロール圧縮機100の外殻を構成する密閉容器108を備えている。そして、密閉容器108内には、永久磁石型モータ104と、永久磁石型モータ104に回転軸107を介して接続され、回転軸107を介して伝達される駆動力によって冷媒を圧縮する圧縮機構部101と、油ポンプ112とが収容されている。
Embodiment.
First Embodiment
FIG. 1 is a longitudinal sectional view of a hermetic scroll compressor provided with a permanent magnet motor according to a first embodiment of the present invention. In FIG. 1, hatching indicating a cross section is partially omitted. Hereinafter, the configuration of the enclosed scroll compressor 100 will be described with reference to FIG. The sealed scroll compressor 100 of FIG. 1 compresses and discharges a working gas such as a refrigerant, for example. The closed scroll compressor 100 includes a closed container 108 in which lubricating oil is stored at the bottom and which constitutes the outer shell of the closed scroll compressor 100. In the sealed container 108, a permanent magnet type motor 104 and a permanent magnet type motor 104 are connected via a rotary shaft 107, and a compression mechanism portion that compresses a refrigerant by a driving force transmitted via the rotary shaft 107. 101 and an oil pump 112 are accommodated.
 密閉容器108は、例えば円筒形状に形成されており、耐圧性を有している。密閉容器108の側面には、作動ガスを密閉容器108内に取り込むための吸入配管109が接続されている。密閉容器108の上部には、圧縮した作動ガスを密閉容器108から外へと放出する吐出配管110が接続されている。 The closed container 108 is formed, for example, in a cylindrical shape, and has pressure resistance. A suction pipe 109 for taking in the working gas into the sealed container 108 is connected to the side surface of the sealed container 108. Connected to the upper portion of the closed vessel 108 is a discharge pipe 110 that discharges the compressed working gas from the closed vessel 108 to the outside.
 圧縮機構部101は、吸入配管109から密閉容器108内に吸入される流体を圧縮するものであり、揺動スクロール103および固定スクロール102を備えている。揺動スクロール103の渦巻部と固定スクロール102の渦巻部との間に圧縮室が形成され、この圧縮室内で流体が圧縮される。流体としては、冷媒または空気が用いられる。冷媒としては、例えばHFO-1123からなる単一冷媒またはHFO-1123を含む混合冷媒等が用いられる。 The compression mechanism portion 101 compresses the fluid drawn into the closed container 108 from the suction pipe 109, and includes a swing scroll 103 and a fixed scroll 102. A compression chamber is formed between the spiral portion of the oscillating scroll 103 and the spiral portion of the fixed scroll 102, and the fluid is compressed in the compression chamber. A refrigerant or air is used as the fluid. As the refrigerant, for example, a single refrigerant consisting of HFO-1123 or a mixed refrigerant containing HFO-1123 is used.
 永久磁石型モータ104は、回転軸107を回転駆動させるものであって、固定子105および回転子106を有して回転力を発生する。回転子106は焼嵌め等により回転軸107に固定されており、固定子105は焼嵌め等により密閉容器108に固定されている。固定子105には、リード線113が接続されており、リード線113は、密閉容器108の外部から電力の供給を受けるために密閉容器108に設けられた密封端子111に接続される。そして、固定子105に電力が供給されたとき、回転軸107および回転子106が固定子105に対して回転する。 The permanent magnet type motor 104 rotationally drives the rotating shaft 107 and has a stator 105 and a rotor 106 to generate a rotational force. The rotor 106 is fixed to the rotating shaft 107 by shrink fitting or the like, and the stator 105 is fixed to the closed container 108 by shrink fitting or the like. A lead wire 113 is connected to the stator 105, and the lead wire 113 is connected to a sealing terminal 111 provided on the hermetic container 108 in order to receive power supply from the outside of the hermetic container 108. When power is supplied to the stator 105, the rotating shaft 107 and the rotor 106 rotate with respect to the stator 105.
 回転軸107の内部には、回転軸107の軸方向に延びる給油路107aが形成されており、回転軸107の下端には油ポンプ112が接続されている。油ポンプ112は、密閉容器108の底部に貯留された潤滑油を吸引して回転軸107内の給油路107aに供給する。給油路107aに供給された油は、圧縮機構部101の各摺動部位に供給される。 An oil supply passage 107 a extending in the axial direction of the rotary shaft 107 is formed inside the rotary shaft 107, and an oil pump 112 is connected to the lower end of the rotary shaft 107. The oil pump 112 sucks the lubricating oil stored at the bottom of the closed container 108 and supplies it to the oil supply passage 107 a in the rotating shaft 107. The oil supplied to the oil supply passage 107 a is supplied to each sliding portion of the compression mechanism section 101.
 回転軸107の上端には、偏心軸部が設置されており、揺動スクロール103のボス部に形成される揺動軸受に係合されている。 An eccentric shaft portion is installed at the upper end of the rotating shaft 107, and is engaged with a swing bearing formed in a boss portion of the swing scroll 103.
 以下、図2および図3を参照しながら永久磁石型モータ104について詳細に説明する。 Hereinafter, the permanent magnet type motor 104 will be described in detail with reference to FIGS. 2 and 3.
 図2は、本発明の実施の形態1に係る永久磁石型モータを示す概略縦断面図である。図3は、本発明の実施の形態1に係る永久磁石型モータを示す概略平面図である。
 永久磁石型モータ104において回転子106は、固定子105の内側に配置されており、鉄等の高透磁率材料からなる複数の電磁鋼鈑を軸方向に積層して構成された環状の回転子コア31を有する。回転子コア31には、周方向に間隔を空けて磁極と同数の磁石挿入孔32が形成されており、これら磁石挿入孔32のそれぞれに、磁極を構成する平板状の永久磁石33が埋設されている。永久磁石33は、例えばネオジム磁石または希土類磁石で構成されている。
FIG. 2 is a schematic vertical sectional view showing the permanent magnet type motor according to the first embodiment of the present invention. FIG. 3 is a schematic plan view showing a permanent magnet type motor according to Embodiment 1 of the present invention.
In the permanent magnet type motor 104, the rotor 106 is disposed inside the stator 105, and is an annular rotor formed by axially laminating a plurality of electromagnetic steel plates made of a high magnetic permeability material such as iron. It has a core 31. In the rotor core 31, magnet insertion holes 32 equal in number to the magnetic poles are formed at intervals in the circumferential direction, and flat permanent magnets 33 constituting the magnetic poles are embedded in each of the magnet insertion holes 32. ing. The permanent magnet 33 is made of, for example, a neodymium magnet or a rare earth magnet.
 また、回転子106は、回転子コア31の軸方向の両側に非磁性体からなる端板34を有している。端板z34および回転子コア31には、両者を軸方向に貫通するリベット挿通孔37が形成されており、リベット挿通孔37にリベット36が挿入されて軸方向に全体が締結されている。なお、回転子コア31の軸方向の一端部であって端板34の外側にはバランスウェイト35が配置されており、端板34および回転子コア31と共にバランスウェイト35がリベット36でカシメ締結されている。なお、図2ではバランスウェイト35が回転子コア31の軸方向の一端部に配置された例を示したが、両端部に配置する構成としてもよい。 The rotor 106 also has end plates 34 made of nonmagnetic material on both sides in the axial direction of the rotor core 31. The end plate z34 and the rotor core 31 are formed with a rivet insertion hole 37 penetrating both in the axial direction, and the rivet 36 is inserted into the rivet insertion hole 37 and the whole is fastened in the axial direction. A balance weight 35 is disposed at one end of the rotor core 31 in the axial direction and outside the end plate 34, and the balance weight 35 is crimped by rivets 36 together with the end plate 34 and the rotor core 31. ing. Although FIG. 2 shows an example in which the balance weight 35 is arranged at one end of the rotor core 31 in the axial direction, it may be arranged at both ends.
 固定子105は、固定子鉄心105aに形成された複数のティース41と、ティース41間に形成された複数のスロット42とを備え、複数のティース41のそれぞれに導体線を集中巻に巻いてコイル43が形成された構成を有する。 The stator 105 includes a plurality of teeth 41 formed in the stator core 105a and a plurality of slots 42 formed between the teeth 41, and a conductor wire is wound in a concentrated winding around each of the plurality of teeth 41 to form a coil. 43 has a formed structure.
 そして、本実施の形態1の永久磁石型モータ104は、固定子105のスロット数Sと、回転子106の極数Pとが、S>Pの関係を満足する集中巻モータであり、例えばブラシレスDCモータからなる。 The permanent magnet type motor 104 according to the first embodiment is a concentrated winding motor in which the number of slots S of the stator 105 and the number of poles P of the rotor 106 satisfy the relationship of S> P. It consists of a DC motor.
 図4は、本発明の実施の形態1に係る圧縮機の回転軸に固定された回転子を示す概略縦断面図である。図5は、図4の各段の回転子構成体の概略断面をまとめた図である。図5において(a)は図4のA-A断面、(b)は図4のB-B断面、(c)は図4のC-C断面である。また、図5については、わかりやすさの為、回転子コア31、永久磁石33以外の構成部品については図示していない。 FIG. 4 is a schematic vertical cross-sectional view showing the rotor fixed to the rotary shaft of the compressor according to Embodiment 1 of the present invention. FIG. 5: is the figure which put together the schematic cross section of the rotor structure of each step | stage of FIG. In FIG. 5, (a) is an AA cross section of FIG. 4, (b) is a BB cross section of FIG. 4, and (c) is a CC cross section of FIG. Further, in FIG. 5, components other than the rotor core 31 and the permanent magnet 33 are not shown for the sake of easy understanding.
 回転子106は、3つの回転子構成体106a、回転子構成体106bおよび回転子構成体106cが軸方向に並んだ3段スキュー構造となっている。回転子構成体106aは、回転子コア31aと永久磁石33aとを備えている。回転子構成体106bは、回転子コア31bと永久磁石33bとを備えている。回転子構成体106cは、回転子コア31cと永久磁石33cとを備えている。 The rotor 106 has a three-stage skew structure in which three rotor structures 106a, a rotor structure 106b and a rotor structure 106c are axially aligned. The rotor structure 106a includes a rotor core 31a and a permanent magnet 33a. The rotor structure 106b includes a rotor core 31b and a permanent magnet 33b. The rotor structure 106c includes a rotor core 31c and a permanent magnet 33c.
 回転子構成体106aと、回転子構成体106bと、回転子構成体106cとは互いに回転角度方向にずれた位置に配置されている。この角度をスキュー角θという。回転子構成体106aの位置を基準の0゜とし、回転子構成体106bのスキュー角θをスキュー角θ1、回転子構成体106cのスキュー角θをスキュー角θ2という。また、最上段の回転子構成体106aと最下段の回転子構成体106cとの間の回転子全体のスキュー角をスキュー角θskewという。図4および図5には、回転子構成体106bのスキュー角θ1を10°、回転子構成体106cのスキュー角θ2を20°とし、スキュー角θskewを20゜とした構成例を示している。 The rotor structure 106a, the rotor structure 106b, and the rotor structure 106c are disposed at positions mutually offset in the rotational angle direction. This angle is called skew angle θ. The position of the rotor structure 106a is referred to as 0 °, the skew angle θ of the rotor structure 106b is referred to as a skew angle θ1, and the skew angle θ of the rotor structure 106c is referred to as a skew angle θ2. Further, the skew angle of the entire rotor between the uppermost stage rotor structure 106a and the lowermost rotor structure 106c is referred to as a skew angle θ skew. FIGS. 4 and 5 show a configuration example in which the skew angle θ1 of the rotor structure 106b is 10 °, the skew angle θ2 of the rotor structure 106c is 20 °, and the skew angle θskew is 20 °.
 そして、本実施の形態1の特徴として、スキューに伴う誘起電圧の低下を抑制しつつ、コギングトルクの低減および誘起電圧の高調波成分の低減を行えるスキュー角θskewの範囲を以下の(1)の範囲に定義したことにある。 Then, as a feature of the first embodiment, the range of the skew angle θskew capable of reducing the cogging torque and reducing the harmonic component of the induced voltage while suppressing the reduction of the induced voltage accompanying the skew is the following (1) It is in the definition of the scope.
 θs-(θp_MAX-θs)<θskew≦θs+(θp_MAX-θs)
                            ・・・(1)
 ここで、
 θs:360°/(SとPとの最小公倍数)
 θp_MAX:360°/(2×P)
θs- (θp_ MAX -θs) <θskew ≦ θs + (θp_ MAX -θs)
... (1)
here,
θs: 360 ° / (the least common multiple of S and P)
θp_ MAX: 360 ° / (2 × P)
 また、各回転子構成体は同じ設計で軸方向の長さも同じとなっており、上下に隣接する回転子構成体間の各スキュー角θは、段数がNのとき、以下の(2)式で表される。
 θ=θskew/(N-1)              ・・・(2)
Further, each rotor structure has the same design and the same axial length, and each skew angle θ between the rotor structures adjacent to the upper and lower sides has the following formula (2) when the number of stages is N: Is represented by
θ = θ skew / (N-1) (2)
 なお、スキュー角θは上記(2)式で得られた角度となるが、誤差の範囲は含むものとする。 Although the skew angle θ is the angle obtained by the equation (2), the range of the error is included.
 次に、上記(1)の範囲にスキュー角θskewを設定する根拠について説明する。ここでは、図4に示した3段のスキュー構造を例に、その根拠について説明する。なお、スキュー構造の段数は3段に限られたものではなく、3段以上の複数段並んだ多段スキュー構造としてもよい。 Next, the ground for setting the skew angle θ skew in the range of the above (1) will be described. Here, the basis of the three-stage skew structure shown in FIG. 4 will be described as an example. The number of stages of the skew structure is not limited to three, and may be a multistage skew structure in which a plurality of three or more stages are arranged.
 スキュー角θskewの範囲は、スキュー角θskewによって変化するモータ特性を考慮して設定される。モータ特性には、コギングトルク、誘起電圧の高調波成分および誘起電圧がある。 The range of the skew angle θskew is set in consideration of the motor characteristics which change according to the skew angle θskew. Motor characteristics include cogging torque, harmonic components of induced voltage and induced voltage.
 ここでは、永久磁石型モータ104の一例として、固定子105のスロット数S=9、回転子106を極数P=6とする永久磁石型モータ104を用いる。この6極9スロットの集中巻きの永久磁石型モータ104を例に、スキュー角θskewに応じた、モータ特性の変化について次の図6を用いて説明する。 Here, as an example of the permanent magnet motor 104, a permanent magnet motor 104 in which the number of slots S of the stator 105 is 9 and the number of poles of the rotor 106 is 6 is used. The variation of the motor characteristics according to the skew angle θ skew will be described with reference to FIG. 6 by taking the 6-pole 9-slot concentrated winding permanent magnet type motor 104 as an example.
 図6は、本発明の実施の形態1に係る永久磁石型モータにおけるスキュー角θskewごとのモータ特性の変化を示す特性図である。図6において横軸はスキュー角θskewを示している。縦軸はスキュー角θskewが0゜の場合のモータ特性を基準の100%とし、スキュー角θskewを増加させていった場合の各モータ特性の変化率を示している。なお、ここでのスキュー段数は3段であり、6極9スロットの集中巻きモータの場合を示している。図6において、各モータ特性として、(a)コギングトルク、(b)誘起電圧の高周波成分および(c)誘起電圧を示している。なお、図6において、比較のため、2段時のコギングトルク、誘起電圧の高周波成分、誘起電圧の変化率も示している。 FIG. 6 is a characteristic diagram showing changes in motor characteristics for each skew angle θ skew in the permanent magnet type motor according to Embodiment 1 of the present invention. In FIG. 6, the horizontal axis indicates the skew angle θ skew. The vertical axis represents the change rate of each motor characteristic when the skew angle θ skew is increased with the motor characteristic at the skew angle θ skew of 0 ° as 100% of the reference. Here, the number of skew stages is three, which is the case of a concentrated winding motor with 6 poles and 9 slots. In FIG. 6, (a) cogging torque, (b) high frequency component of induced voltage and (c) induced voltage are shown as each motor characteristic. In addition, in FIG. 6, the cogging torque at the time of 2 steps | paragraphs, the high frequency component of induced voltage, and the change rate of induced voltage are also shown for comparison.
 6極9スロットの構成では、図6(a)に示すように、コギングトルクが、スキュー角30°付近で減少から増加に転じている。その理由としては、以下が考えられる。すなわち、6極の構成であるため、回転子106に埋設される永久磁石33は、周方向に60°ピッチで配置されている。このため、その半分である30°超のスキュー角θskewを付与した場合には、隣に配置されている逆の極の永久磁石33と周方向で半分超、重なる。よって、コギングトルク低減の効果が失われ、ただ誘起電圧を低下させるだけになっているためと考えられる。よって、隣に配置されている逆の極の永久磁石33と周方向で重なる範囲が、永久磁石33の周方向の配置ピッチの半分以下となるようにスキュー角θskewを設定することが好適である。 In the configuration of six poles and nine slots, as shown in FIG. 6A, the cogging torque starts to decrease and increase near the skew angle of 30 °. The following can be considered as the reason. That is, because of the configuration of six poles, the permanent magnets 33 embedded in the rotor 106 are arranged at a pitch of 60 ° in the circumferential direction. For this reason, in the case where a skew angle θ skew of more than 30 ° which is half thereof is given, it overlaps with the permanent magnet 33 of the opposite pole disposed next to it in the circumferential direction by more than half. Therefore, it is considered that the effect of reducing the cogging torque is lost and only the induced voltage is reduced. Therefore, it is preferable to set the skew angle θskew so that the range in which the permanent magnet 33 of the opposite pole arranged in the circumferential direction overlaps in the circumferential direction is not more than half the arrangement pitch of the permanent magnets 33 in the circumferential direction. .
 以上より、モータ性能に関わる誘起電圧を低下させずに、コギングトルクを低減して振動および騒音を改善するには、スキュー角θskewを「360°/(2×P)」以下とすることが好適である。なお、スキュー角θskewのうち、「コギングトルクを低減して振動および騒音を改善するためのスキュー角θskew」について、以下では「スキュー角θp」という。スキュー角θpは、「360°/(2×P)」以下が好ましいため、言い換えれば、スキュー角θpの好適な最大値θp_MAXは、「360°/(2×P)」となる。ここでは極数P=6であるため、スキュー角θp_MAX30゜が30゜となる。 From the above, it is preferable to set the skew angle θ skew to “360 ° / (2 × P)” or less in order to reduce the cogging torque and improve the vibration and noise without reducing the induced voltage related to the motor performance. It is. Among the skew angles θskew, “skew angle θskew for reducing cogging torque to improve vibration and noise” is hereinafter referred to as “skew angle θp”. Skew angle θp is, since "360 ° / (2 × P)" is preferably at most, in other words, the preferred maximum value Shitapi_ MAX of the skew angle θp is "360 ° / (2 × P)". Here, since the number P = 6 pole, comprising skew angle Shitapi_ MAX 30゜Ga 30 °.
 また、誘起電圧の高調波成分は、図6(b)に示したように下に凸の特性となり、その特性の変曲点を最適値とした特性を持っており、6極9スロットの例では、スキュー角20°付近が最適値である。よって、スキュー角θskewを20°付近に設定すると、誘起電圧の高調波成分を低減できて、振動および騒音の低減に効果的である。ところで、従来、コギングトルク低減を目的としたスキュー角の最適値には、「360°/(SとPとの最小公倍数)」を用いている。ここでは、スロット数Sが9、極数Pが6であり、SとPとの最小公倍数は18であり、最適値は20゜となる。このため、誘起電圧の高調波成分による振動および騒音を改善するには、スキュー角θskewを「360°/(SとPとの最小公倍数)」とすることが好適である。なお、スキュー角θskewのうち、「誘起電圧の高調波成分による振動および騒音を改善するためのスキュー角θskew」について、以下では「スキュー角θs」という。 Also, the harmonic component of the induced voltage has a downward convex characteristic as shown in FIG. 6 (b), and has the characteristic with the inflection point of the characteristic as the optimum value. Then, the skew angle of around 20 ° is the optimum value. Therefore, when the skew angle θ skew is set to about 20 °, harmonic components of the induced voltage can be reduced, which is effective in reducing vibration and noise. By the way, “360 ° / (the least common multiple of S and P)” is conventionally used as the optimal value of the skew angle for the purpose of reducing the cogging torque. Here, the number of slots S is 9, the number of poles P is 6, the least common multiple of S and P is 18, and the optimum value is 20 °. For this reason, in order to improve the vibration and noise due to the harmonic component of the induced voltage, it is preferable to set the skew angle θ skew to “360 ° / (the least common multiple of S and P)”. The “skew angle θ skew for improving the vibration and noise due to the harmonic component of the induced voltage” in the skew angle θ skew is hereinafter referred to as “skew angle θs”.
 よって、スキュー角θpとスキュー角θsとが重なる範囲に、スキュー角θskewを設定することで、誘起電圧を無駄に低下させることなく、コギングトルクおよび誘起電圧の高調波成分を低減可能な構成とすることが可能となる。 Therefore, by setting the skew angle θskew in a range where the skew angle θp and the skew angle θs overlap, it is possible to reduce cogging torque and harmonic components of the induced voltage without unnecessarily reducing the induced voltage. It becomes possible.
 ここで、誘起電圧の高調波成分は上述したように下に凸の特性となることから、スキュー角θsを中心として幅を持たせた範囲において、誘起電圧の高調波成分の低減が可能である。ここで、本実施の形態1の永久磁石型モータ104はS>Pの関係を満足することから、スキュー角θp_MAX>スキュー角θsとなる。よって、スキュー角θsを中心とした範囲を設定するにあたり、最大値側は、θp_MAXとθsとの差分を、中心となるθsに加算した値を用いて「θs+(θp_MAX-θs)」に設定できる。一方、最小値側は、そして、スキュー角θs=20゜を中心とした範囲のうち、最小値側は、θp_MAXとθsとの差分を、中心となるθsから減算した「θs-(θp_MAX-θs)」に設定できる。 Here, since the harmonic component of the induced voltage has a downward convex characteristic as described above, it is possible to reduce the harmonic component of the induced voltage in a range having a width centered on the skew angle θs. . Here, the permanent magnet type motor 104 of the first embodiment since it satisfies the relationship of S> P, a skew angle θp_ MAX> skew angle [theta] s. Therefore, when setting the range around the skew angle [theta] s, the maximum value side, the difference between Shitapi_ MAX and [theta] s, using a value obtained by adding to a central [theta] s to "θs + (θp_ MAX -θs)" It can be set. On the other hand, the minimum value side, and, among the range with a skew angle [theta] s = 20゜Wo center, the minimum value side, Shitapi_ MAX and the difference between [theta] s, and subtracted from the [theta] s at the heart "θs- (θp_ MAX -Θs) can be set.
 以上を整理すると、誘起電圧を無駄に低下させることなく、コギングトルクおよび誘起電圧の高調波成分を低減できるスキュー角θskewの範囲は、上記(1)の範囲となる。6極9スロットの例では、θs=20゜、θp_MAX=30゜であるため、
 20゜-(30゜-20゜)<θskew≦20゜+(30゜-20゜)
であり、
 10゜<θskew≦30゜となる。
To summarize the above, the range of the skew angle θ skew which can reduce the cogging torque and the harmonic components of the induced voltage without unnecessarily reducing the induced voltage is the range of the above (1). In the example of six poles and nine slots, [theta] s = 20 °, since it is θp_ MAX = 30 °,
20 °-(30 ° -20 °) <θ skew ≦ 20 ° + (30 ° -20 °)
And
10 ° <θ skew ≦ 30 °.
 よって、図5において、スキュー角θ1=10゜、スキュー角θ2=20゜とすることで、誘起電圧を無駄に低下させることなく、コギングトルクおよび誘起電圧の高調波成分を低減できる、3段スキュー構造の永久磁石型モータ104を得ることができる。 Therefore, by setting the skew angle θ1 = 10 ° and the skew angle θ2 = 20 ° in FIG. 5, the three-stage skew can reduce the cogging torque and the harmonic components of the induced voltage without unnecessarily reducing the induced voltage. A permanent magnet type motor 104 of a structure can be obtained.
 なお、スキュー角θskewの範囲を設定するにあたり、上記ではスキュー角θsの最適値である「360°/(SとPとの最小公倍数)」を中心として幅を持たせた範囲としたが、以下の(3)の範囲としてもよい。
 360°/(SとPとの最小公倍数)<θskew≦θs+(θp_MAX-θs)
                            ・・・(3)
In setting the range of the skew angle θskew, the range is given with a width centered on “360 ° / (the least common multiple of S and P)” which is the optimum value of the skew angle θs, as described above. The range of (3) may be used.
360 ° / (the least common multiple of the S and P) <θskew ≦ θs + ( θp_ MAX -θs)
... (3)
 つまり、スキュー角θskewの範囲の下限側には幅を持たせず、スキュー角θsの最適値である「360°/(SとPとの最小公倍数)」そのものを下限値としてもよい。上記(3)の範囲は、6極9スロットの例では、20゜<θskew≦30゜となる。 That is, the lower limit side of the range of the skew angle θskew may not have a width, and “360 ° / (the least common multiple of S and P)” itself which is the optimum value of the skew angle θs may be set as the lower limit. The range of (3) is 20 ° <θ skew ≦ 30 ° in the example of 6 poles and 9 slots.
 次に、回転子106の軸方向の段数つまりスキューの効果的な段数について説明する。 Next, the number of axial stages of the rotor 106, that is, the number of effective stages of skew will be described.
 図7は、ある任意のスキュー角において、段数Nを2、3と増やした場合のモータ特性の変化を示す特性図である。図7において横軸はスキュー段数である。縦軸はスキュー段数が1の場合を基準の100%とし、スキュー段数を増加させていった場合の各モータ特性の変化率である。図7において、各モータ特性としては、(a)コギングトルク、(b)誘起電圧の高周波成分および(c)誘起電圧を示している。 FIG. 7 is a characteristic diagram showing a change in motor characteristics when the number of stages N is increased to 2 and 3 at an arbitrary skew angle. In FIG. 7, the horizontal axis is the number of skew stages. The vertical axis represents a change rate of each motor characteristic when the number of skew stages is increased with the number of skew stages being one as 100% of the reference. In FIG. 7, as each motor characteristic, (a) cogging torque, (b) high frequency component of induced voltage, and (c) induced voltage are shown.
 図7に示すように、段数N=2で最もコギングトルクの低減効果が得られ、以降は段数Nを増やすことでコギングトルクは増加し、コギングトルクの低減効果が減少していくことがわかる。逆に誘起電圧の高調波成分は、段数2で若干増加し、以降は低減効果が増加していくことがわかる。また、誘起電圧については段数2では、段数1の場合からほぼ半減してしまうことがわかり、段数Nを増やすほど低下を抑制できていることがわかる。 As shown in FIG. 7, it can be seen that the cogging torque reduction effect is obtained most when the stage number N = 2, and the cogging torque is increased by increasing the stage number N thereafter, and the cogging torque reduction effect is decreased. Conversely, it can be seen that the harmonic component of the induced voltage slightly increases with the number of stages 2, and thereafter the reduction effect increases. In addition, it can be seen that the induced voltage is substantially halved in the case of the stage number 1 in the case of the stage number 2, and the decrease can be suppressed as the stage number N is increased.
 以上から、モータ性能に関連が深い誘起電圧の低下を抑制しながら、コギングトルク、誘起電圧の高調波成分の低減効果を得るための段数Nとしては、N≧3であることが、構成例としては望ましい。 From the above, it is possible that N ≧ 3 as the number of stages N for obtaining the reduction effect of the cogging torque and the harmonic component of the induced voltage while suppressing the reduction of the induced voltage deeply related to the motor performance. Is desirable.
 以上説明したように、本実施の形態1によれば、上記(1)の範囲にスキュー角skewを設定することで、誘起電圧の低下を抑制しながら、コギングトルクの低減および誘起電圧の高調波成分の低減効果を得ることができる。 As described above, according to the first embodiment, by setting the skew angle skew in the range of the above (1), the cogging torque is reduced and the harmonics of the induced voltage are suppressed while the decrease in the induced voltage is suppressed. The component reduction effect can be obtained.
[実施の形態2]
 実施の形態2は、スキュー構造の回転子の製造方法に関する。
Second Embodiment
The second embodiment relates to a method of manufacturing a rotor having a skew structure.
 図8は、本発明の実施の形態2に係る永久磁石型モータの回転子における、各段の永久磁石とリベット挿通孔との位置関係、およびリベット挿通孔の形状を示した横断面図である。図9は、比較例として従来のスキュー回転子における、各段の永久磁石とリベット挿通孔との位置関係、およびリベット挿通孔の形状を示した横断面図である。 FIG. 8 is a cross-sectional view showing the positional relationship between the permanent magnet of each step and the rivet insertion hole and the shape of the rivet insertion hole in the rotor of the permanent magnet type motor according to Embodiment 2 of the present invention . FIG. 9 is a cross-sectional view showing the positional relationship between the permanent magnet of each step and the rivet insertion hole and the shape of the rivet insertion hole in a conventional skew rotor as a comparative example.
 以下、図8および図9を対比しながら、スキュー構造の回転子を構成、製造する上で好適なリベット挿通孔37の形状、配置について説明する。図8および図9には、リベットを4本用いて締結する構成例を示している。
 図9に示す比較例の多段スキュー回転子の場合には、回転子コア310を構成する各段の回転子コア310a、310bおよび310cのそれぞれにおいて、リベット360が挿入されるリベット挿通孔370の位置は、位置370a、370bおよび370cで示す位置である。すなわち、各段のリベット挿通孔370の位置は、永久磁石33との位置関係で互いに異なっており、故に、各段の回転子コアの形状は段毎に異なる構成となる。よって、比較例の多段スキュー回転子では、形状の異なる段数N分の回転子コアを用意しなければならなかった。その結果、リベット挿通孔370の位置が異なる複数のコア形状を打ち抜くために、段数Nと同数のコアプレス型、または、複数種類を選択プレス可能な制御機構を持ったコアプレス型を準備しなければならず、コストアップに繋がっていた。
Hereinafter, the shape and arrangement of the rivet insertion holes 37 suitable for forming and manufacturing a rotor having a skew structure will be described while comparing FIGS. 8 and 9. FIGS. 8 and 9 show a configuration example in which four rivets are used for fastening.
In the case of the multistage skew rotor of the comparative example shown in FIG. 9, the position of the rivet insertion hole 370 into which the rivet 360 is inserted in each of the rotor cores 310a, 310b and 310c of each stage constituting the rotor core 310. Are the positions shown at positions 370a, 370b and 370c. That is, the positions of the rivet insertion holes 370 in the respective stages differ from each other in the positional relationship with the permanent magnet 33, and hence the shapes of the rotor cores in the respective stages are different for each stage. Therefore, in the multistage skew rotor of the comparative example, it is necessary to prepare rotor cores for the number N of stages having different shapes. As a result, in order to punch a plurality of core shapes having different positions of the rivet insertion holes 370, core press molds having the same number as the number N of stages or core press molds having a control mechanism capable of selectively pressing a plurality of types must be prepared. It led to cost increase.
 本実施の形態2では、図8に示すように、リベット挿通孔37を、回転軸107を中心とした周方向に沿った長穴形状としている。さらに言えば、リベット36と同径の円を、回転軸107を中心とした周方向に移動して形成される軌跡の外形形状より僅かに大きい形状としている。リベット挿通孔37を上記の長穴形状とすることで、各段において回転子コア31を個別の形状にする必要がなく、共通の1つの形状とすることができる。理由については後述する。 In the second embodiment, as shown in FIG. 8, the rivet insertion hole 37 has an elongated hole shape along the circumferential direction around the rotation axis 107. Furthermore, the circle of the same diameter as the rivet 36 is slightly larger than the outer shape of the locus formed by moving in the circumferential direction about the rotation axis 107. By making the rivet insertion hole 37 into the above-mentioned elongated hole shape, it is not necessary to make the rotor core 31 into individual shapes in each step, and it is possible to make one common shape. The reason will be described later.
 そして、本実施の形態2では、リベット挿通孔37の角度幅θrを、以下の(4)の範囲としている。なお、図9では、実施の形態1で例に挙げたスキュー角θs=20°とリベット挿通孔37の角度幅θrとを同値とした場合を図示している。
 θskew≦θr≦θp_MAX=360°/(2×P)   ・・・(4)
In the second embodiment, the angular width θr of the rivet insertion hole 37 is in the range of (4) below. Note that FIG. 9 shows the case where the skew angle θs = 20 ° mentioned in the first embodiment and the angle width θr of the rivet insertion hole 37 have the same value.
θskew ≦ θr ≦ θp_ MAX = 360 ° / (2 × P) ··· (4)
 回転子106を回転軸107に固定する際には、回転軸107に対する回転子コア31の径方向のズレが問題となる。しかし、リベット挿通孔37を上記ように径方向の移動幅が小さい形状とすることで、回転子コア31の径方向のズレを抑制しながら、回転子106を周方向に移動させて任意のスキュー角に設定することが可能となる。 When fixing the rotor 106 to the rotating shaft 107, radial displacement of the rotor core 31 with respect to the rotating shaft 107 becomes a problem. However, by setting the rivet insertion holes 37 to have a small radial movement width as described above, it is possible to move the rotor 106 in the circumferential direction and suppress any skew while suppressing radial deviation of the rotor core 31. It becomes possible to set to the corner.
 次に、回転子106の組立方法について説明する。
 まず、複数の電磁鋼板を積層して回転子コア31を形成する。そして、回転子コア31の磁石挿入孔32に永久磁石33を配置する。次に、回転子コア31のリベット挿通孔37にリベット36を通す。その後、回転子コア31において任意の積厚をスキュー角θ分だけ周方向にずらす。ここで、複数の電磁鋼板を積層して回転子コア31を形成する際には、最終的に回転子コア31a、回転子コア31bおよび回転子コア31cとして区別される、それぞれの任意の積厚毎に、軸方向にVカシメ等で一体化しておくことが望ましい。そして、それぞれ一体化された各段の回転子コアを積層すればよい。
Next, a method of assembling the rotor 106 will be described.
First, a plurality of electromagnetic steel plates are stacked to form the rotor core 31. Then, the permanent magnet 33 is disposed in the magnet insertion hole 32 of the rotor core 31. Next, the rivets 36 are passed through the rivet insertion holes 37 of the rotor core 31. Thereafter, in the rotor core 31, an arbitrary thickness is shifted in the circumferential direction by the skew angle θ. Here, when forming the rotor core 31 by laminating a plurality of electromagnetic steel plates, any desired laminated thickness which is finally distinguished as the rotor core 31a, the rotor core 31b and the rotor core 31c In each case, it is desirable to integrate in the axial direction by V caulking or the like. Then, the rotor cores of the respective stages integrated respectively may be stacked.
 次に、積層された各回転子コア31a、回転子コア31bおよび回転子コア31cを、それぞれに求められるスキュー角θ分だけ周方向にずらす。ここで、スキュー角θだけずらす方法としては、いずれかの段の回転子コア31を基準に、他の段の回転子コア31を周方向に移動させればよい。 Next, the laminated rotor cores 31a, the rotor cores 31b and the rotor cores 31c are shifted in the circumferential direction by the skew angle θ obtained respectively. Here, as a method of shifting by the skew angle θ, the rotor cores 31 of the other stages may be moved in the circumferential direction with reference to the rotor core 31 of one of the stages.
 ここでは、上段の回転子コア31aを基準に、中段の回転子コア31bおよび下段の回転子コア31cを周方向に移動させるものとする。この場合、上段の回転子コア31aの位置を固定したまま、中段の回転子コア31bを永久磁石33bと共に周方向に移動させる。この際、リベット挿通孔37を上記の長穴形状としており、リベット36がリベット挿通孔37内をスライドすることで、回転子コア31bを移動させることができる。同様にして、下段の回転子コア31cを永久磁石33cと共に周方向に移動させる。 Here, the middle stage rotor core 31 b and the lower stage rotor core 31 c are moved in the circumferential direction based on the upper stage rotor core 31 a. In this case, with the position of the upper stage rotor core 31a fixed, the middle stage rotor core 31b is moved in the circumferential direction together with the permanent magnet 33b. At this time, the rivet insertion hole 37 has the above-described elongated hole shape, and by the rivet 36 sliding in the rivet insertion hole 37, the rotor core 31b can be moved. Similarly, the lower rotor core 31c is moved in the circumferential direction together with the permanent magnet 33c.
 各回転子コアに対するスキュー角θの付与に際しては、各段の回転子コア31ごとに外径部を把持し、いずれかの段の回転子コア31を基準に、他の段の回転子コア31を周方向に移動させればよく、比較的簡易な装置で実現可能である。 In applying the skew angle θ to each rotor core, the outer diameter portion is gripped for each rotor core 31 of each stage, and the rotor cores 31 of the other stages are referenced based on the rotor core 31 of one of the stages. Can be moved in the circumferential direction, which can be realized by a relatively simple device.
 以上のようにして回転子コア31bおよび回転子コア31cのそれぞれにスキューを施した後、リベット36をカシメ締結することで、スキュー構造の回転子106が形成される。 After skewing is applied to each of the rotor core 31 b and the rotor core 31 c as described above, the rivet 36 is crimped to form the rotor 106 having a skew structure.
 ここで、リベット36単独の軸方向の締結力は、運転中に回転子コア31にかかる回転方向の力に対しては弱く、スキュー角θを保持するに足りるものではない。しかし、回転子コア31にかかる回転方向の力に対しては、回転軸107に回転子106を固定する際の隙間嵌めおよび焼嵌めによる固着力によって、スキュー角θの保持を成立させている。したがって、リベット36での締結力は、回転軸107に回転子106を固定するまでの間、スキュー角θを保持できるだけの強度を保っていれば良いことから、本構成の実施にあたっては特段のリベット36の締結力の向上は必要としない。 Here, the axial fastening force of the rivet 36 alone is weak against the rotational force applied to the rotor core 31 during operation, and is not sufficient to maintain the skew angle θ. However, with respect to the force in the rotational direction applied to the rotor core 31, the holding of the skew angle θ is established by the fixing force by the gap fitting and the shrink fitting when fixing the rotor 106 to the rotating shaft 107. Therefore, the fastening force with the rivet 36 is only required to maintain the strength sufficient to hold the skew angle θ until the rotor 106 is fixed to the rotating shaft 107. There is no need to improve the fastening power of 36.
 なお、上記のようにスキューを施した後に、リベット36をカシメ締結してもよいが、リベット36の軸方向の締結力が弱いことを利用して、リベット36をカシメ締結した後に、スキューを施すことで、スキュー構造の回転子106を形成してもよい。 Although the rivets 36 may be caulked and fastened after skewing as described above, the rivets 36 are caulked and fastened using caustic fastening force in the axial direction of the rivets 36 and then skewed. Thus, the rotor 106 having a skew structure may be formed.
 さらに、回転子コア31内に配置される永久磁石33が磁力を帯びていない、いわゆる未着磁であった場合に限定されるが、以下のようにしてもよい。すなわち、リベット36をカシメ締結した後に、回転子コア31内に配置した永久磁石33に着磁ヨーク等により磁力を付与する、いわゆる着磁を実施し、その後にスキューを施してもよい。こうすることで、スキュー回転子の着磁および永久磁石33の磁石挿入孔32への配置を簡易に達成できるというメリットが得られる。 Furthermore, although it is limited to the case where the permanent magnet 33 disposed in the rotor core 31 does not have a magnetic force, that is, so-called unmagnetized magnetization, it may be performed as follows. That is, after the rivets 36 are crimped, so-called magnetization may be performed by applying a magnetic force to the permanent magnets 33 disposed in the rotor core 31 with a magnetization yoke or the like, and then skewing may be performed. By doing this, it is possible to easily achieve the magnetization of the skew rotor and the arrangement of the permanent magnet 33 in the magnet insertion hole 32.
 なお、上記の組立方法において、各段の回転子コア31a、回転子コア31bおよび回転子コア31cの積厚を互いに同じ厚みの構成としておくことで、以下の効果がある。すなわち、組立時に積層順序を気にする必要がなく、誤った組立を防止できる。また、各段の回転子コア31内に埋設する永久磁石33を全て同形状とすることができるため、部品の共通化によるコストメリットが得られ、また、異なる部品の管理コストの削減という面でもメリットを得ることができる。 In the above assembling method, the following effects can be obtained by setting the laminated thickness of the rotor core 31a, the rotor core 31b and the rotor core 31c of each stage to the same thickness. That is, there is no need to worry about the stacking order at the time of assembly, and erroneous assembly can be prevented. Further, since all the permanent magnets 33 embedded in the rotor core 31 of each stage can be formed into the same shape, cost merits can be obtained by sharing the parts, and also in terms of reduction of management costs of different parts. You can get the benefits.
 次に、各段の回転子コア31bおよび回転子コア31cを、それぞれに求められるスキュー角θ1およびスキュー角θ2分だけ周方向にずらす工程で想定される問題点とその解決策について例を挙げておく。 Next, an example will be given as to problems and solutions assumed in the process of circumferentially shifting the rotor core 31b and the rotor core 31c of each stage by the skew angle θ1 and the skew angle θ2 respectively required. deep.
 図10は、本発明の実施の形態2に係る密閉型スクロール圧縮機における、スキュー角を付ける前の回転子の縦断面図で、図8のD-D断面である。図11は、従来の永久磁石型モータにおける、回転子の、スキュー角を付ける前の回転子の縦断面図で、図9のD-D断面である。 FIG. 10 is a longitudinal cross-sectional view of a rotor before forming a skew angle in a hermetic scroll compressor according to a second embodiment of the present invention, and is a DD cross section of FIG. FIG. 11 is a longitudinal cross-sectional view of the rotor of the conventional permanent magnet type motor before the skew angle is given, which is a DD cross section of FIG.
 リベット締結時、回転子コア31が軸方向に収縮する。このため、回転子コア31内に埋設されている永久磁石33が軸方向に圧縮され、ワレまたはカケを発生させることがある。これを懸念して、従来より、図11に示すように、永久磁石33を段数分、重ねた状態の軸方向の寸法h1を、回転子コア31の軸方向の寸法(以下、積厚という)h2に対して短く設定する構成が知られている。この構成の場合、上段の回転子コア31aの永久磁石33aの下端部が、中段の回転子コア31bに入り込む。また、中段の回転子コア31bの永久磁石33bの下端部が、下段の回転子コア31cに入り込む。このように、各永久磁石33の一部が、本来入り込むべき回転子コア31とは異なる回転子コア31に入り込んだ状態となる。このような状態でスキューを施すと、永久磁石33が回転子コア31内で周方向に押圧され、ワレまたはカケが発生する課題がある。 At the time of rivet setting, the rotor core 31 contracts in the axial direction. For this reason, the permanent magnet 33 embedded in the rotor core 31 may be compressed in the axial direction to generate a crack or chip. Concerned about this, conventionally, as shown in FIG. 11, the axial dimension h1 of the state in which the permanent magnets 33 are stacked for the number of steps is the axial dimension of the rotor core 31 (hereinafter referred to as the laminated thickness) A configuration is known in which the length is set shorter than h2. In this configuration, the lower end portion of the permanent magnet 33a of the upper rotor core 31a is inserted into the middle rotor core 31b. In addition, the lower end portion of the permanent magnet 33b of the middle stage rotor core 31b enters the lower stage rotor core 31c. As described above, a part of each permanent magnet 33 enters the rotor core 31 different from the rotor core 31 to be originally inserted. When skewing is performed in such a state, the permanent magnet 33 is pressed in the circumferential direction in the rotor core 31, and there is a problem that a crack or chipping occurs.
 具体的には例えば、回転子コア31bをスキュー角θ、ずらす際、領域Dにおいて永久磁石33aにワレまたはカケが発生し、領域Eにおいて永久磁石33bにワレまたはカケが発生する可能性がある。 Specifically, for example, when the rotor core 31b is shifted at the skew angle θ, a crack or chipping may occur in the permanent magnet 33a in the area D and a crack or chipping may occur in the permanent magnet 33b in the area E.
 これに対して、本実施の形態2では、このような永久磁石33の破損防止を目的とした製造方法について以下に説明する。 On the other hand, in the second embodiment, a manufacturing method for preventing such damage to the permanent magnet 33 will be described below.
 本実施の形態2では、図10に示すように、永久磁石33の外周縁部に面取り50を設けることで、永久磁石33の回転子コア31への引かかりを簡易に回避可能としている。 In the second embodiment, as shown in FIG. 10, by providing a chamfer 50 at the outer peripheral edge of the permanent magnet 33, it is possible to easily prevent the permanent magnet 33 from coming in contact with the rotor core 31.
 ここで、中段の回転子構成体106bを図10の矢印に示すように周方向に移動する場合について考える。中段の回転子構成体106bの回転子コア31bが周方向に移動すると、中段の永久磁石33bの面取り50部分が、下段の回転子コア31cに接触することで永久磁石33bが磁石挿入孔32内で軸方向上側に押し上げられる。永久磁石33bの軸方向上側への押し上げに伴い、永久磁石33aも同様に押し上げられる。これにより、永久磁石33bが回転子コア31b内に位置し、また、永久磁石33aが回転子コア31a内に位置した状態となる。これにより、領域Dおよび領域Eにおける永久磁石33aおよび永久磁石33bの破損を招くこと無く、回転子構成体106bを周方向に移動させてスキュー角θを付与することができる。 Here, a case is considered in which the middle stage rotor structure 106b is moved in the circumferential direction as indicated by the arrows in FIG. When the rotor core 31b of the middle stage rotor structure 106b moves in the circumferential direction, the chamfered 50 portion of the middle stage permanent magnet 33b contacts the lower stage rotor core 31c so that the permanent magnet 33b is in the magnet insertion hole 32. Is pushed upward in the axial direction. As the permanent magnet 33b is pushed upward in the axial direction, the permanent magnet 33a is also pushed up. As a result, the permanent magnet 33b is positioned in the rotor core 31b, and the permanent magnet 33a is positioned in the rotor core 31a. As a result, the rotor construction 106b can be moved in the circumferential direction to give a skew angle θ without causing damage to the permanent magnet 33a and the permanent magnet 33b in the area D and the area E.
 ここで、各永久磁石33のそれぞれの外周縁部のうち、面取り50を行う箇所は、少なくとも以下の位置であればよい。すなわち、各永久磁石33のそれぞれにおいて、移動方向の先端面51および後端面52のそれぞれの軸方向の両端部に設けられていればよい。 Here, among the outer peripheral edge portions of the respective permanent magnets 33, the portion to be chamfered 50 may be at least the following position. That is, in each of the permanent magnets 33, it may be provided at both axial end portions of the front end surface 51 and the rear end surface 52 in the moving direction.
 また、面取りの寸法Cは、例えば以下の様にすればよい。段数がNであり、各段の回転子コア31と各段の永久磁石33との軸方向の寸法差がΔ(図10参照)であるとする。このとき、最上段の永久磁石33aがその一段下の回転子コア31bに入り込む軸方向の寸法は、N/(N-1)×Δである。よって、面取りの寸法Cを、C≧N/(N-1)×Δとすればよい。面取りの寸法Cが上記寸法範囲を確保していれば、面取り形状は角でも丸でもよい。 The chamfering dimension C may be set, for example, as follows. It is assumed that the number of stages is N and the axial dimensional difference between the rotor core 31 of each stage and the permanent magnet 33 of each stage is Δ (see FIG. 10). At this time, the axial dimension in which the uppermost stage permanent magnet 33a enters the rotor core 31b immediately below it is N / (N-1) × Δ. Therefore, the chamfering dimension C may be set to CCN / (N−1) × Δ. The chamfering shape may be a corner or a circle as long as the chamfering dimension C secures the above-mentioned range of dimensions.
 以上説明したように、本実施の形態2によれば、リベット挿通孔37を周方向に延びる長穴とすることで、各段ごとに任意のスキュー角θに合わせた個々の位置にリベット挿通孔37を設ける必要をなくすことができる。よって、スキュー構造に必要なコア形状を各段で共通にすることができ、複数の金型、もしくは複数のコア形状が打ち抜き可能な複雑なプレス金型を不要とし、プレスに係る費用を抑制できるという効果が得られる。 As described above, according to the second embodiment, by setting the rivet insertion holes 37 as elongated holes extending in the circumferential direction, the rivet insertion holes can be provided at individual positions adjusted to an arbitrary skew angle θ for each step. The need to provide 37 can be eliminated. Therefore, the core shape required for the skew structure can be made common to each step, and a plurality of dies or a complicated press die capable of punching a plurality of core shapes can be dispensed with, and the cost of the press can be suppressed. The effect is obtained.
 なお、リベット挿通孔37の形状は、図8に示した形状に限られず、次の図12に示す形状としてもよい。 The shape of the rivet insertion hole 37 is not limited to the shape shown in FIG. 8, and may be the shape shown in FIG.
 図12は、本発明の実施の形態2に係る永久磁石型モータにおける回転子コアに設けたリベット挿通孔の変形例を示す図である。
 図12のリベット挿通孔37は、リベット36と同径の円を、各段の回転子構成体のスキュー角θずつ周方向にずらして配置して得られる形状の外形を滑らかに繋いだ形状を有する。このようにリベット挿通孔37が、ここでは3つの円の輪郭を有する形状とすることで、リベット挿通孔37が位置決め孔として作用し、各段の回転子コア31を、スキュー角分、精度よくずらすことができる。
FIG. 12 is a view showing a modification of the rivet insertion hole provided in the rotor core in the permanent magnet type motor according to Embodiment 2 of the present invention.
The rivet insertion hole 37 in FIG. 12 has a shape obtained by smoothly connecting the outer shape of the shape obtained by shifting a circle having the same diameter as the rivet 36 in the circumferential direction by skew angle θ of the rotor structure of each stage. Have. Thus, the rivet insertion hole 37 functions as a positioning hole by forming the rivet insertion hole 37 into a shape having a contour of three circles in this case, and the rotor core 31 of each stage is accurately measured by the skew angle. It can be shifted.
 また、リベット挿通孔37を上記長穴形状としておけば、回転子コア31にリベット36を通す時点で、リベット挿通孔37における各円の輪郭部分をガイドに、所定のスキュー角θ分ずらした状態で積層を実施することが可能となる。これにより円の輪郭部分が無い長穴形状とした場合に必要であった、回転子コア31を積層後にスキュー角θ分、ずらすための装置を不要とすることもできる。 In addition, when the rivet insertion hole 37 has the above-mentioned long hole shape, when the rivet 36 is passed through the rotor core 31, the outline portion of each circle in the rivet insertion hole 37 is shifted by a predetermined skew angle θ It is possible to carry out the lamination in As a result, it is possible to eliminate the need for a device for shifting the rotor core 31 by the skew angle θ after the lamination, which is necessary when forming an elongated hole without a circular outline.
 また、上記の実施の形態1~実施の形態2では、回転子106の6箇所に平板状の永久磁石33を設置する六方平板配置の構成としたが、これは説明のし易さから選択したものであり、この設置に限られない。他に例えば、回転子106における磁石の配置構成は、磁極の数に応じて八方平板配置または四方バスタブ配置等、適宜決定すればよい。またこれは固定子105についても同様に、スロット数等は磁極の数に応じて適宜決定すればよい。しかしこれらのいずれの配置においても、本発明が提供するスキュー角θの最適範囲を適用できる。 Further, in the above-described first to second embodiments, the configuration of the hexagonal flat plate arrangement in which the flat permanent magnets 33 are installed at six places of the rotor 106 is selected from the ease of description. It is not limited to this installation. In addition, for example, the arrangement configuration of the magnets in the rotor 106 may be appropriately determined, such as an eight-sided flat plate arrangement or a four-way bathtub arrangement, according to the number of magnetic poles. The same applies to the stator 105, and the number of slots and the like may be appropriately determined according to the number of magnetic poles. However, in any of these arrangements, the optimum range of the skew angle θ provided by the present invention can be applied.
 なお、スキューにより得られる効果は、回転子106内に埋設される永久磁石33同士の周方向の距離、または、永久磁石33の径方向の位置によって当然異なる。このため、本発明にて提供するスキュー角θskewの最適範囲内のいずれにスキュー角θskewを設定するかは、以下を考慮して設定される必要があることは言うまでもない。すなわち、段数を含め許容可能な性能低下と、永久磁石型モータ104が搭載される機器に求められる振動および騒音の改善率とを考慮して設定される。許容可能な性能低下については誘起電圧の低下を解析または実機検証によって確認すればよい。また、振動および騒音の改善率については、コギングトルクと誘起電圧の高調波性成分とのそれぞれの低減率を解析または実機検証によって確認すればよい。そして、これらの確認結果を用いて、適切なスキュー角θskewを導出すればよい。 The effect obtained by the skew naturally differs depending on the circumferential distance between the permanent magnets 33 embedded in the rotor 106 or the radial position of the permanent magnets 33. For this reason, it goes without saying that it is necessary to set the skew angle θskew within the optimum range of the skew angle θskew provided in the present invention in consideration of the following. That is, it is set in consideration of an allowable performance reduction including the number of stages and an improvement rate of vibration and noise required for the device on which the permanent magnet type motor 104 is mounted. For acceptable performance degradation, the reduction in induced voltage may be confirmed by analysis or actual machine verification. Further, with regard to the rate of improvement of vibration and noise, each rate of reduction of the cogging torque and the harmonic component of the induced voltage may be confirmed by analysis or actual machine verification. Then, an appropriate skew angle θ skew may be derived using these confirmation results.
 また、上記の実施の形態1~実施の形態2では、固定子スロット数S=9、回転子極数P=6であり、S:P=3:2の構成としたが、これに限るものではない。S>Pの関係を満足していればよく、例えば、S=12、P=10といった、S:P=3:2以外の構成であっても良い。 In the above-described first to second embodiments, the number of stator slots is S = 9, the number of rotor poles is P = 6, and the configuration is S: P = 3: 2, but the present invention is limited thereto. is not. It is sufficient that the relationship of S> P is satisfied, for example, a configuration other than S: P = 3: 2, such as S = 12, P = 10, may be used.
 また、上記の実施の形態1~実施の形態2では、リベット36を4本用いて締結する構成を図示して説明したが、これに限るものではない。リベット36を2本もしくは3本、または5本以上の構成としても良い。 In the first to second embodiments described above, the configuration in which four rivets 36 are fastened is illustrated and described. However, the present invention is not limited to this. The rivets 36 may be configured as two, three, or five or more.
 上記の実施の形態2では、バランスウェイト35がない図を用いて製造方法を説明したが、これに限るものではない。バランスウェイト35をリベット36で回転子コアおよび端板34と共に締結する構成とする場合は、バランスウェイト35のリベット挿通孔37についても同様の長穴形状とすればよい。端板34およびバランスウェイト35のリベット挿通孔37については、リベット36との軸方向の締結力が確保可能な接触面積である座面を取れることを前提に次のようにしても良い。すなわち、端板34およびバランスウェイト35のリベット挿通孔37を、回転子コア31のリベット挿通孔37よりも大きな長穴、もしくは回転子コア31の長穴全体が収まる丸孔としても良い。また、バランスウェイト35および端板34のいずれか一方だけ、上記の構成をとっても良い。 In the second embodiment described above, although the manufacturing method has been described using a diagram without the balance weight 35, the present invention is not limited to this. When the balance weight 35 is configured to be fastened together with the rotor core and the end plate 34 by the rivets 36, the rivet insertion holes 37 of the balance weight 35 may be formed in the same elongated shape. The rivet insertion holes 37 of the end plate 34 and the balance weight 35 may be as follows, on the assumption that the bearing surface is a contact area that can ensure the axial fastening force with the rivet 36. That is, the end plate 34 and the rivet insertion hole 37 of the balance weight 35 may be a long hole larger than the rivet insertion hole 37 of the rotor core 31 or a round hole in which the entire long hole of the rotor core 31 is accommodated. Further, only one of the balance weight 35 and the end plate 34 may have the above configuration.
 また、上記の実施の形態1~実施の形態2では、スクロール型の圧縮機構部を備えた密閉型スクロール圧縮機を例に本発明を説明したが、本発明の永久磁石型モータが用いられる密閉型圧縮機の圧縮機構部は、スクロール型に限定されない。他に例えば、ロータリー型、ベーン型またはスクリュー型等、種々の圧縮機構部を用いた密閉型圧縮機にも本発明の永久磁石型モータを搭載しても、勿論よい。 In the first to second embodiments described above, the present invention has been described by way of example of the closed scroll compressor provided with the scroll type compression mechanism, but the closed magnet type motor according to the present invention is used for sealing The compression mechanism part of the mold compressor is not limited to the scroll type. Besides, the permanent magnet type motor of the present invention may of course be mounted on a hermetic type compressor using various compression mechanism parts, such as a rotary type, a vane type or a screw type.
 また、本発明の永久磁石型モータを備えた圧縮機は、特に、空気調和機、冷蔵庫および冷凍庫等の圧縮に適用できる。 Moreover, the compressor provided with the permanent magnet type motor of the present invention is particularly applicable to the compression of an air conditioner, a refrigerator, a freezer and the like.
 31 回転子コア、31a 回転子コア、31b 回転子コア、31c 回転子コア、32 磁石挿入孔、33 永久磁石、33a 永久磁石、33b 永久磁石、33c 永久磁石、34 端板、35 バランスウェイト、36 リベット、37 リベット挿通孔、41 ティース、42 スロット、43 コイル、50 面取り、51 先端面、52 後端面、100 密閉型スクロール圧縮機、101 圧縮機構部、102 固定スクロール、103 揺動スクロール、104 永久磁石型モータ、105 固定子、105a 固定子鉄心、106 回転子、106a 回転子構成体、106b 回転子構成体、106c 回転子構成体、107 回転軸、107a 給油路、108 密閉容器、109 吸入配管、110 吐出配管、111 密封端子、112 油ポンプ、113 リード線、310 回転子コア、310a 回転子コア、310b 回転子コア、360 リベット、370 リベット挿通孔。 Reference Signs List 31 rotor core, 31a rotor core, 31b rotor core, 31c rotor core, 32 magnet insertion holes, 33 permanent magnets, 33a permanent magnets, 33b permanent magnets, 33c permanent magnets, 34 end plates, 35 balance weights, 36 Rivets, 37 rivet insertion holes, 41 teeth, 42 slots, 43 coils, 50 chamfers, 51 end faces, 52 rear end faces, 100 sealed scroll compressors, 101 compression mechanism parts, 102 fixed scrolls, 103 oscillating scrolls, 104 permanent Magnet type motor, 105 stator, 105a stator core, 106 rotor, 106a rotor structure, 106b rotor structure, 106c rotor structure, 107 rotation shaft, 107a oil supply passage, 108 sealed container, 109 suction pipe , 110 discharge distribution , 111 sealed terminal, 112 an oil pump, 113 lead, 310 rotor core, 310a rotor core, 310b rotor core, 360 rivets, 370 rivet insertion hole.

Claims (19)

  1.  磁極を構成する複数の永久磁石を有する回転子と、
     前記回転子の回転軸と、
     前記回転子の外周側に配置された固定子とを備え、
     前記固定子に形成されたスロットの数Sと前記回転子の極数Pとが、S>Pを満足しており、
     前記回転子は、前記回転軸の軸方向に並んだ各段の回転子構成体が周方向にずれて配置された多段スキュー構造を有し、最上段の前記回転子構成体と最下段の前記回転子構成体との間のスキュー角θskewが、θsを360°/(SとPとの最小公倍数)、θp_MAXを360°/(2×P)としたとき、
     θs-(θp_MAX-θs)<θskew≦θs+(θp_MAX-θs)
    の関係を満足する永久磁石型モータ。
    A rotor having a plurality of permanent magnets constituting a magnetic pole;
    The rotational axis of the rotor,
    A stator disposed on an outer peripheral side of the rotor;
    The number S of slots formed in the stator and the number P of poles of the rotor satisfy S> P,
    The rotor has a multistage skew structure in which rotor structures of respective stages aligned in the axial direction of the rotation axis are offset in a circumferential direction, and the uppermost stage rotor structure and the lowermost stage skew angle θskew between the rotor structure is, (least common multiple of the S and P) 360 ° / a [theta] s, when the Shitapi_ MAX of 360 ° / (2 × P) ,
    θs- (θp_ MAX -θs) <θskew ≦ θs + (θp_ MAX -θs)
    A permanent magnet type motor that satisfies the relationship of
  2.  前記スキュー角θskewが、
     360°/(SとPとの最小公倍数)<θskew≦θs+(θp_MAX-θs)
    の関係を満足する請求項1記載の永久磁石型モータ。
    The skew angle θ skew is
    360 ° / (the least common multiple of the S and P) <θskew ≦ θs + ( θp_ MAX -θs)
    The permanent magnet type motor according to claim 1, which satisfies the following relationship:
  3.  前記各段の前記回転子構成体のスキュー角θは、段数をNとしたとき
     θ=θskew/(N-1)である
    請求項1または請求項2記載の永久磁石型モータ。
    The permanent magnet type motor according to claim 1 or 2, wherein a skew angle θ of the rotor structure of each of the stages is θ = θskew / (N-1), where N is the number of stages.
  4.  前記各段の段数は3段以上である
    請求項1~請求項3のいずれか一項に記載の永久磁石型モータ。
    The permanent magnet motor according to any one of claims 1 to 3, wherein the number of stages of each stage is three or more.
  5.  各段の前記回転子構成体のそれぞれの軸方向の厚みが同じである
    請求項1~請求項4のいずれか一項に記載の永久磁石型モータ。
    The permanent magnet type motor according to any one of claims 1 to 4, wherein respective axial thicknesses of the rotor constructions of the respective stages are the same.
  6.  前記回転子に形成されたリベット挿通孔に挿通され、前記回転子を軸方向に締結したリベットを更に備え、
     前記リベット挿通孔は、前記回転子の回転軸を中心とした周方向に沿う長穴形状である
    請求項1~請求項5のいずれか一項に記載の永久磁石型モータ。
    The rivet further includes a rivet inserted through a rivet insertion hole formed in the rotor and axially fastening the rotor.
    The permanent magnet type motor according to any one of claims 1 to 5, wherein the rivet insertion hole has an elongated hole shape along a circumferential direction around a rotation axis of the rotor.
  7.  前記永久磁石はネオジム磁石である
    請求項1~請求項6のいずれか一項に記載の永久磁石型モータ。
    The permanent magnet motor according to any one of claims 1 to 6, wherein the permanent magnet is a neodymium magnet.
  8.  前記固定子は、導体線を集中巻に巻いて構成されたコイルを有する
    請求項1~請求項7のいずれか一項に記載の永久磁石型モータ。
    The permanent magnet type motor according to any one of claims 1 to 7, wherein the stator includes a coil configured by winding a conductor wire in a concentrated winding.
  9.  複数の電磁鋼板が積層された回転子コアと、前記回転子コアに配置され、磁極を構成する複数の永久磁石とを備えた回転子構成体が軸方向に複数段並び、各段の前記回転子構成体が周方向にずらして配置されたスキュー構造の回転子を備えた永久磁石型モータの製造方法であって、
     前記複数の電磁鋼板を積層して前記回転子コアを形成する工程と、
     前記回転子コアに形成された磁石挿入孔に前記永久磁石を配置する工程と、
     前記回転子コアに形成されたリベット挿通孔にリベットを通し、前記各段のスキューを施して各段の前記回転子構成体を形成する工程と、
     前記リベットでカシメて締結する工程とを備え、
     最上段の前記回転子構成体と最下段の前記回転子構成体との間のスキュー角θskewが、θsを360°/(SとPとの最小公倍数)、θp_MAXを360°/(2×P)としたとき、
     θs-(θp_MAX-θs)<θskew≦θs+(θp_MAX-θs)
    の関係を満足する
    永久磁石型モータの製造方法。
    A rotor structure including a rotor core in which a plurality of electromagnetic steel sheets are stacked and a plurality of permanent magnets disposed on the rotor core and constituting a magnetic pole is axially aligned in a plurality of stages, and the rotation of each stage A manufacturing method of a permanent magnet type motor provided with a rotor of a skew structure in which a child structure is disposed circumferentially offset,
    Laminating the plurality of electromagnetic steel sheets to form the rotor core;
    Placing the permanent magnet in a magnet insertion hole formed in the rotor core;
    Passing a rivet through the rivet insertion hole formed in the rotor core, and skewing the steps to form the rotor structure of each step;
    And a process of caulking and fastening with the rivets,
    Skew angle θskew between the rotor structure and the bottom of the rotor structure of the uppermost stage, (least common multiple of the S and P) 360 ° / the θs, θp_ MAX to 360 ° / (2 × When P),
    θs- (θp_ MAX -θs) <θskew ≦ θs + (θp_ MAX -θs)
    A method of manufacturing a permanent magnet type motor satisfying the relationship of
  10.  前記リベット挿通孔は、前記回転子の回転軸を中心とした周方向に沿う長穴形状である請求項9記載の永久磁石型モータの製造方法。 10. The method for manufacturing a permanent magnet type motor according to claim 9, wherein the rivet insertion hole has an elongated hole shape along a circumferential direction centering on a rotation axis of the rotor.
  11.  複数の電磁鋼板が積層された回転子コアと、前記回転子コアに配置され、磁極を構成する複数の永久磁石とを備えた回転子構成体が軸方向に複数段並び、各段の前記回転子構成体が周方向にずらして配置されたスキュー構造の回転子を備えた永久磁石型モータの製造方法であって、
     前記複数の電磁鋼板を積層して前記回転子コアを形成する工程と、
     前記回転子コアに形成された磁石挿入孔に前記永久磁石を配置する工程と、
     前記回転子コアに形成されたリベット挿通孔にリベットを通し、前記各段のスキューを施して各段の前記回転子構成体を形成する工程と、
     前記リベットでカシメて締結する工程とを備え、
     前記リベット挿通孔は、前記回転子の回転軸を中心とした周方向に沿う長穴形状である永久磁石型モータの製造方法。
    A rotor structure including a rotor core in which a plurality of electromagnetic steel sheets are stacked and a plurality of permanent magnets disposed on the rotor core and constituting a magnetic pole is axially aligned in a plurality of stages, and the rotation of each stage A manufacturing method of a permanent magnet type motor provided with a rotor of a skew structure in which a child structure is disposed circumferentially offset,
    Laminating the plurality of electromagnetic steel sheets to form the rotor core;
    Placing the permanent magnet in a magnet insertion hole formed in the rotor core;
    Passing a rivet through the rivet insertion hole formed in the rotor core, and skewing the steps to form the rotor structure of each step;
    And a process of caulking and fastening with the rivets,
    The method of manufacturing a permanent magnet type motor, wherein the rivet insertion hole is an elongated hole along a circumferential direction around a rotation axis of the rotor.
  12.  前記リベット挿通孔の前記長穴形状が、前記リベットと同径の円を前記周方向に移動させて形成される軌跡の外形形状より僅かに大きい形状を有する
    請求項10または請求項11記載の永久磁石型モータの製造方法。
    The permanent magnet according to claim 10 or 11, wherein the elongated hole shape of the rivet insertion hole has a shape slightly larger than an outer shape of a locus formed by moving a circle having the same diameter as the rivet in the circumferential direction. Manufacturing method of magnet type motor.
  13.  前記リベット挿通孔の前記長穴形状が、前記リベットと同径の円を、各段の前記回転子構成体のスキュー角ずつ前記周方向にずらして配置して得られる形状の外形を繋いだ形状を有する請求項10または請求項11記載の永久磁石型モータの製造方法。 A shape obtained by connecting the outer shape of the shape obtained by displacing and arranging the circle having the same diameter as the rivet in the circumferential direction of the rotor structure of each stage by the skew angle of the rotor construction body of each stage. A method of manufacturing a permanent magnet type motor according to claim 10 or 11, wherein
  14.  前記回転軸を中心とした前記リベット挿通孔の角度幅θrが、
     θskew≦θr≦360°/(2×P)
    の関係を満足する請求項10~請求項13のいずれか一項に記載の永久磁石型モータの製造方法。
    The angular width θr of the rivet insertion hole around the rotation axis is
    θ skew ≦ θ r ≦ 360 ° / (2 × P)
    The method of manufacturing a permanent magnet type motor according to any one of claims 10 to 13, wherein the following relationship is satisfied.
  15.  前記磁石挿入孔に挿入された前記永久磁石に磁力を付与する着磁工程を備え、
     前記着磁工程を実行した後に、前記各段のスキューを施して各段の前記回転子構成体を形成する工程を実行する請求項9~請求項14のいずれか一項に記載の永久磁石型モータの製造方法。
    And a magnetizing step of applying a magnetic force to the permanent magnet inserted into the magnet insertion hole,
    The permanent magnet type according to any one of claims 9 to 14, wherein after the magnetizing step is carried out, the step of skewing of each step is performed to form the rotor structure of each step. Motor manufacturing method.
  16.  前記永久磁石を複数段、並べた状態の前記軸方向の寸法は、前記リベットで締結する前の前記回転子コアの前記軸方向の寸法よりも短く設定されており、前記回転子コアに前記永久磁石を配置した状態で、前記各段の前記永久磁石の一部が、隣接する他の段の前記回転子コアに入り込んだ状態となっており、
     前記永久磁石は、前記周方向の先端面および後端面のそれぞれにおいて前記軸方向の両端部が面取りされており、前記回転子構成体にスキューを施すにあたって前記回転子コアを前記周方向に移動する際に、前記永久磁石の前記面取り部分が、隣接する段の前記回転子コアに接触することで前記永久磁石が前記磁石挿入孔内を前記軸方向に移動しながら前記周方向に送られ、前記回転子構成体が前記周方向に移動する請求項9~請求項15のいずれか一項に記載の永久磁石型モータの製造方法。
    The axial dimension of the state in which the permanent magnets are arranged in a plurality of stages is set to be shorter than the axial dimension of the rotor core before fastening with the rivet, and the permanent magnet is fixed to the rotor core With the magnets disposed, a part of the permanent magnet of each stage is in a state of having entered into the rotor core of another adjacent stage,
    The permanent magnet is chamfered at both end portions in the axial direction at each of the tip end surface and the rear end surface in the circumferential direction, and moves the rotor core in the circumferential direction in order to skew the rotor structure. When the chamfered portion of the permanent magnet contacts the rotor core of the adjacent step, the permanent magnet is fed in the circumferential direction while moving in the axial direction in the magnet insertion hole, A method of manufacturing a permanent magnet type motor according to any one of claims 9 to 15, wherein a rotor structure moves in the circumferential direction.
  17.  前記面取りの寸法Cは、段数がN、各段の前記回転子構成体と前記各段の前記永久磁石との前記軸方向の寸法差がΔであるとき、
     C≧N/(N-1)×Δ
    である
    請求項16記載の永久磁石型モータの製造方法。
    The dimension C of the chamfering is such that when the number of stages is N and the axial dimensional difference between the rotor structure of each stage and the permanent magnet of each stage is Δ,
    C ≧ N / (N-1) × Δ
    The method of manufacturing a permanent magnet type motor according to claim 16, which is
  18.  各段の前記回転子コアのそれぞれは、前記複数の電磁鋼板を積層して前記回転子コアを形成する工程の前に、前記軸方向に一体に形成されている
    請求項9~請求項17のいずれか一項に記載の永久磁石型モータの製造方法。
    18. The rotor core according to claim 9, wherein each of the rotor cores in each stage is integrally formed in the axial direction before the step of laminating the plurality of electromagnetic steel sheets to form the rotor core. A manufacturing method of a permanent magnet type motor given in any 1 paragraph.
  19.  請求項1~請求項8のいずれか一項に記載の永久磁石型モータと、
     前記永久磁石型モータに前記回転軸を介して接続され、前記回転軸を介して伝達される駆動力によって冷媒を圧縮する圧縮機構部と、
    を備えた圧縮機。
    A permanent magnet type motor according to any one of claims 1 to 8.
    A compression mechanism unit connected to the permanent magnet type motor via the rotating shaft and compressing a refrigerant by a driving force transmitted via the rotating shaft;
    With a compressor.
PCT/JP2017/037028 2017-10-12 2017-10-12 Permanent magnet motor, permanent magnet motor manufacturing method, and compressor WO2019073579A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019547865A JP6854910B2 (en) 2017-10-12 2017-10-12 Manufacturing method of permanent magnet type motor
PCT/JP2017/037028 WO2019073579A1 (en) 2017-10-12 2017-10-12 Permanent magnet motor, permanent magnet motor manufacturing method, and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037028 WO2019073579A1 (en) 2017-10-12 2017-10-12 Permanent magnet motor, permanent magnet motor manufacturing method, and compressor

Publications (1)

Publication Number Publication Date
WO2019073579A1 true WO2019073579A1 (en) 2019-04-18

Family

ID=66100551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037028 WO2019073579A1 (en) 2017-10-12 2017-10-12 Permanent magnet motor, permanent magnet motor manufacturing method, and compressor

Country Status (2)

Country Link
JP (1) JP6854910B2 (en)
WO (1) WO2019073579A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021127531A1 (en) 2021-10-22 2023-04-27 Schaeffler Technologies AG & Co. KG Rotor and rotary electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315285A (en) * 2001-04-11 2002-10-25 Sawafuji Electric Co Ltd Brushless alternator
JP2005057942A (en) * 2003-08-07 2005-03-03 Mitsubishi Electric Corp Rotary electric machine
JP2010207090A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Rotor for permanent magnet embedded motors
WO2015104956A1 (en) * 2014-01-08 2015-07-16 三菱電機株式会社 Rotary electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140956A1 (en) * 2014-03-19 2015-09-24 堺ディスプレイプロダクト株式会社 Display device and three-dimensional image display system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315285A (en) * 2001-04-11 2002-10-25 Sawafuji Electric Co Ltd Brushless alternator
JP2005057942A (en) * 2003-08-07 2005-03-03 Mitsubishi Electric Corp Rotary electric machine
JP2010207090A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Rotor for permanent magnet embedded motors
WO2015104956A1 (en) * 2014-01-08 2015-07-16 三菱電機株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JPWO2019073579A1 (en) 2020-04-02
JP6854910B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US11277045B2 (en) Radially embedded permanent magnet rotor and methods thereof
JP6422595B2 (en) Electric motor and air conditioner
US8659195B2 (en) Motor rotor and compressor provided with the same
US9099905B2 (en) Radially embedded permanent magnet rotor and methods thereof
JP4838347B2 (en) Permanent magnet synchronous motor and hermetic compressor
US9362792B2 (en) Radially embedded permanent magnet rotor having magnet retention features and methods thereof
EP2012410B1 (en) Buried magnet rotor, motor using this rotor, and compressor using this motor
US9831727B2 (en) Permanent magnet rotor and methods thereof
US9882440B2 (en) Radially embedded permanent magnet rotor and methods thereof
JP5478461B2 (en) Electric motor and compressor
KR100624381B1 (en) Rotor for interior permanent magnet synchronous motor and method for manufacturing the rotor
US20070284961A1 (en) Permanent Magnet Synchronous Motor, Rotor of the Same, and Compressor Using the Same
US20140103772A1 (en) Radially embedded permanent magnet rotor and methods thereof
CN102487224A (en) Magnet embedded rotor, electric motor, and assembly method of electric motor
JP2005210826A (en) Electric motor
CN106602762B (en) Magnetic steel rotor and permanent magnet synchronous motor
JP2012196034A (en) Reluctance motor for electric compressor
KR20170044934A (en) Rotor of having W type&#39;s magnet and motor having this
JP6854910B2 (en) Manufacturing method of permanent magnet type motor
JP4253574B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2018074715A (en) Electric rotor and electric compressor
JP2016195490A (en) Permanent magnet motor and compressor
JP2007097293A (en) Rotor for motor
WO2016174768A1 (en) Rotary motor and compressor
CN113162262A (en) Stator core unit, stator core, motor and compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928749

Country of ref document: EP

Kind code of ref document: A1