WO2019073508A1 - Dc power supply system - Google Patents

Dc power supply system Download PDF

Info

Publication number
WO2019073508A1
WO2019073508A1 PCT/JP2017/036591 JP2017036591W WO2019073508A1 WO 2019073508 A1 WO2019073508 A1 WO 2019073508A1 JP 2017036591 W JP2017036591 W JP 2017036591W WO 2019073508 A1 WO2019073508 A1 WO 2019073508A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
temperature
bus
voltage
Prior art date
Application number
PCT/JP2017/036591
Other languages
French (fr)
Japanese (ja)
Inventor
琢真 光永
克夫 直井
鈴木 真吾
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2017/036591 priority Critical patent/WO2019073508A1/en
Publication of WO2019073508A1 publication Critical patent/WO2019073508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a stand-alone DC power supply system not connected to a commercial power supply.
  • the DC power supply system includes a distributed power supply (for example, a device such as a solar power generator, a wind power generator, and a fuel cell), a DC bus connecting the distributed power supply to a load, and a plurality of DC power supplies (including storage batteries). And a converter (for example, a bidirectional DC / DC converter) for connecting a plurality of DC power devices to a DC bus, and a controller for controlling the plurality of converters.
  • a distributed power supply for example, a device such as a solar power generator, a wind power generator, and a fuel cell
  • a DC bus connecting the distributed power supply to a load
  • a plurality of DC power supplies including storage batteries
  • a converter for example, a bidirectional DC / DC converter
  • the controller supplies power from one DC power supply device to the DC bus by at least one converter when the voltage supplied from the distributed power supply device to the DC bus differs from a predetermined value. At least one converter is controlled to supply DC power from the DC bus to the other DC power supply device so as to keep the voltage of the DC bus at a predetermined value.
  • the load (DC voltage) connected to the DC bus can be stabilized because the DC bus voltage (DC voltage) can be stabilized even if the DC voltage output from the distributed power supply to the DC bus is large. It is possible to supply a stable output voltage (DC voltage) to
  • the degree of progress of the deterioration of the storage battery is greatly influenced by the current value of the charge and discharge current and the temperature (the deterioration progresses faster when the charge and discharge are repeated at a high current value under high temperature environment) . Therefore, in this DC power feeding system, the deterioration of the storage battery due to the current value of the charge / discharge current and the temperature is not considered. Therefore, in this direct current feed system, there is a problem to be solved that the deterioration of the storage battery may progress quickly.
  • This invention is made in view of the said subject, and it aims at providing the direct current
  • a direct current bus serving as a bus bar of direct current feed, a power generation device, a first converter for supplying generated power of the power generation device to the direct current bus, and the direct current It is connected between a second converter that converts DC voltage supplied to the bus into DC voltage and supplies it to the load device, a plurality of storage batteries, each of the plurality of storage batteries, and the DC bus, and the DC bus
  • a bidirectional converter which bi-directionally converts the DC voltage supplied to the battery and the DC voltage of the storage battery from the DC bus to the storage battery or the storage battery to the DC bus;
  • the control unit is configured to supply the generated power from the power generation apparatus and the second converter to the load device.
  • the direct current is supplied to the storage battery based on the DC voltage of the DC bus to the bi-directional converter, and the battery is compared with the load power being stored.
  • a direct current feed system for charging a storage battery and supplying a direct current to the DC bus based on the direct current voltage of the storage battery to the bi-directional converter when the generated power is less than the load power and discharging the storage battery
  • a temperature measurement unit for measuring the temperature of the storage battery, the control unit compares the temperature measured by the temperature measurement unit with a predetermined reference temperature, and When the measured temperature exceeds the reference temperature, the absolute value of the difference between the generated power and the load power is equal to or less than a predetermined power.
  • the storage battery when the temperature of the storage battery exceeds the reference temperature (when high temperature), the storage battery is charged with a large charging current (a charging current of a current value exceeding the maximum current value at battery temperature). It is possible to avoid the occurrence of a situation where the storage battery is discharged by a large discharge current (a discharge current of a current value exceeding the maximum current value at the battery temperature) at high temperatures, and thus deterioration of the storage battery Can slow down the progress of the battery, that is, extend the battery life.
  • a large charging current a charging current of a current value exceeding the maximum current value at battery temperature
  • a DC bus serving as a bus bar for DC power supply, a power generation device, a first converter for supplying the generated power of the power generation device to the DC bus, and DC supplied to the DC bus DC voltage supplied to the DC bus, connected between a second converter that supplies DC voltage and converting the voltage to the load device, a plurality of storage batteries, each of the plurality of storage batteries, and the DC bus And bi-directional converter which bi-directionally converts the voltage of the storage battery and the DC voltage of the storage battery and supplies the voltage from the DC bus to the storage battery or from the storage battery to the DC bus, and a control unit And the control unit is configured to generate the generated power of the power generation apparatus and the load power supplied from the second converter to the load device.
  • direct current is supplied to the storage battery based on the DC voltage of the DC bus to the bidirectional converter to charge the storage battery, and the power generation is performed.
  • a direct current feed system for supplying a direct current to the direct current bus based on the direct current voltage of the storage battery to the bi-directional converter to discharge the storage battery when the power is equal to or less than the load power,
  • a temperature measurement unit that measures a temperature
  • a cooling device that cools the storage battery, the control unit performs a comparison between the temperature measured by the temperature measurement unit and a reference temperature that is defined in advance. When the measured temperature exceeds the reference temperature, the cooling device is operated.
  • the control unit when the temperature of the storage battery exceeds the reference temperature (when the temperature is high), the control unit operates the cooling device (specifically, the temperature of the storage battery becomes equal to or less than the reference temperature) To ensure that the progress of the deterioration of the storage battery is slowed, that is, the battery life is surely extended, because the storage battery can always be charged and discharged in a temperature range which does not affect the lifetime). Can.
  • the relationship between each temperature exceeding the reference temperature of the storage battery, and the upper limit value of the absolute value of the generated power corresponding to the upper limit value of the direct current at each temperature and the differential power of the load power is shown.
  • a storage unit storing a data table is provided, and the control unit calculates the absolute value of the differential power and refers to the data table to specify the temperature when the calculated absolute value is the upper limit value.
  • the cooling device may be operated when the measured temperature exceeds the specified temperature.
  • the cooling device is operated so that the temperature of the storage battery is always equal to or lower than the reference temperature
  • the temperature specified by the absolute value of the differential power between the generated power and the load power and the data table Since it is only necessary to operate the cooling device so that the temperature of the storage battery falls to a high temperature), power consumption in the cooling device can be reduced. The battery life can be extended while increasing the load power to the device.
  • the present invention it is possible to reliably slow the progress of the deterioration of the storage battery, that is, to reliably extend the battery life.
  • direct current feed system is not limited to the following embodiments.
  • components described below include those which can be easily conceived by those skilled in the art, and substantially the same components, and the components can be appropriately combined.
  • the DC power feeding system 1A includes a DC bus 2, one or more power generating devices 3 (two power generating devices 3a and 3b as an example in this example.
  • power generating device 3 when not distinguished from each other, also referred to as "power generating device 3"
  • first converter 4 two power conditioners 4a and 4b described later as an example in this example
  • load devices 71 connected to DC power supply system 1A two load devices as an example in this example
  • 71a, 71b hereinafter also referred to as "load device 71" when not distinguished
  • the second converters 5 in this example, two second converters 5a, 5b described later as an example
  • second converter 5" a plurality of direct-current power supply 6 (DC power supply device 6 1, 6 2, ⁇ ⁇ ⁇ , 6 n), the third converter 7, the temperature measuring unit 8 Contact
  • DC power supply device 6 1, 6 2, ⁇ ⁇ ⁇ , 6 n DC power supply device 6 1, 6 2, ⁇ ⁇ ⁇ , 6 n
  • the third converter 7 the temperature measuring unit 8
  • a stand-alone DC power supply system that includes a power management device 9 and generates a DC voltage based on the power generated by the power generation device 3 to supply one or more load devices 71 (DC power supply system) not connected to the power supply).
  • the DC bus 2 is laid over the installation place of the power generation device 3, the installation place of each DC power supply 6, and the installation place of the load device 71, and functions as a bus bar of DC power supply. Further, DC bus 2 has a predetermined voltage range including a nominal bus voltage by controlling the charge / discharge operation of a bidirectional DC / DC converter 14 described later in multiple DC power supply devices 6 by power management device 9.
  • the bus voltage Vbs is defined (for example, in a voltage range of DC 350 V or more and DC 400 V or less including DC 370 V as a nominal bus voltage).
  • the power generation device 3 is configured of a distributed power supply device.
  • the distributed power supply device can be configured as a power generation device using natural renewable energy such as a solar power generation device or a wind power generation device, or an engine type power generation device using fossil energy such as light oil and gasoline It is.
  • it is configured by one engine type power generation device 3a and one power generation device 3b using natural regenerated energy.
  • the power generation device 3a is started and stopped by an operation (manually) by the operator, and generates and outputs an AC voltage V1 of a predetermined voltage value in an operation state.
  • the power generation device 3a is included in the plurality of DC power supply devices 6, such as at the time of the first startup of the DC power supply system 1A, and at the time of restart after the DC power supply system 1A stops for a long period. It is started when a large amount of charging power is temporarily required to charge the storage battery 11. Therefore, as an example in this example, the power generation device 3a is configured to be able to generate power sufficient to charge the storage battery 11 while supplying load power to the load device 71.
  • the power generation device 3b is configured of, for example, one or more solar power generation devices, generates power automatically during the daytime, and generates and outputs a DC voltage V2 of a predetermined voltage value.
  • the first converter 4 is composed of two power conditioners 4a and 4b arranged corresponding to the two power generation devices 3a and 3b in this example.
  • power conditioner 4a is configured to include an AC / DC converter, and is disposed corresponding to power generation device 3a.
  • the power conditioner 4a operates with the DC voltage internally generated based on the AC voltage V1, and is controlled by the power management device 9 to generate the AC voltage V1 as the generated power output from the power generation device 3a as a bus.
  • the voltage is converted into a voltage Vbs and supplied to the DC bus 2.
  • the power conditioner 4a measures the generated power W1 supplied from the power generation device 3a to the DC bus 2 (measured at a predetermined cycle T (for example, every few seconds)) and outputs it to the power management unit 9 It has a measurement function.
  • Power conditioner 4b includes a DC / DC converter as an example, and is disposed corresponding to power generation device 3b.
  • the power conditioner 4b operates with the DC voltage internally generated based on the DC voltage V2, and is controlled by the power management device 9 to control the power generation operation of the corresponding power generation device 3b to generate generated power. While being configured to be controllable, the DC voltage V2 as the generated power output from the power generation device 3b is converted to the bus voltage Vbs and supplied to the DC bus 2. Further, the power conditioner 4b has a power measurement function of measuring the generated power W2 supplied from the power generation device 3b to the DC bus 2 (for example, by measuring in a cycle T) and outputting it to the power management device 9. There is.
  • the second converter 5 is configured of, for example, a DC / DC converter that operates with a DC voltage generated internally based on the bus voltage Vbs.
  • the load devices 71 DC loads
  • the second converter 5 is a load device 71a.
  • a second converter 5b also referred to as a DC / DC converter 5b
  • the DC / DC converter 5a is controlled by the power management device 9 to convert the bus voltage Vbs into a load voltage VLa which is a DC voltage used by the load device 71a (DC voltage conversion).
  • the DC / DC converter 5a also has a current limiting function of limiting the load current supplied from the DC bus 2 to the load device 71a with the upper limit current value set from the power management unit 9. Further, the DC / DC converter 5a measures the load power WLa supplied from the DC bus 2 to the load device 71a based on the load voltage VLa and the load current (for example, by measuring in a cycle T) It has a power measurement function to be output to the device 9.
  • the DC / DC converter 5b is controlled by the power management device 9 to convert the bus voltage Vbs into a load voltage VLb which is a DC voltage used by the load device 71b (DC voltage conversion), and supplies the load voltage 71b to the load device 71b. . Further, the DC / DC converter 5 b has a current limiting function of limiting the load current supplied from the DC bus 2 to the load device 71 b with the upper limit current value set from the power management device 9. Further, based on the load voltage VLb and the load current, the DC / DC converter 5b measures the load power WLb supplied from the DC bus 2 to the load device 71b (for example, by measuring in a cycle T) It has a power measurement function to be output to the device 9.
  • the load devices 71a and 71b are DC loads that operate by receiving the load voltages VLa and VLb (hereinafter, referred to as load voltage VL unless otherwise specified), which are DC voltages, and are, for example, DC voltages. It consists of lighting devices that operate, household appliances such as televisions and refrigerators that operate with DC voltage, and information devices such as personal computers and mobile terminals that operate with DC voltage.
  • DC power supply device 6 includes a DC power supply device 6 1, 6 2, ⁇ ⁇ ⁇ , n-number of 6 n (n is an integer of 2 or more. Or less, particularly when no distinction is also referred to as a DC power supply device 6) is disposed There is.
  • Each DC power supply device 6 is configured to include a storage battery 11, a battery management unit (BMU (Battery Management Unit)) 12, a contactor 13 and a bidirectional DC / DC converter 14, respectively.
  • the storage batteries 11 1 , 11 2 ,..., 11 n (hereinafter, also referred to as the storage battery 11 when not distinguished in particular) are formed of lithium ion batteries as an example, but are not limited thereto.
  • Each storage battery 11 has a prescribed power capacity (nominal capacity), and is configured to be capable of charge operation and discharge operation within a predetermined working voltage range including a nominal voltage.
  • one of the storage batteries 11 (in the example, the storage battery 11 1 in the example) is also used for supplying power to the DC bus 2, the BMU 12 of each of the DC power supply devices 6 1 to 6 n
  • the battery mainly functions as a storage battery for supplying power (operation voltage Vop) for the operation of the contactor 13, the temperature measurement unit 8, and the power management device 9.
  • the storage battery 11 1 is described below sleep, and in other operating states, except the two states of the state where the contactor 13 1 shifts to the disconnected state corresponding to the storage battery 11 1, as described later, the charge The power management device 9 performs charge / discharge control so that the voltage Vba is less than the upper limit value of the working voltage range and equal to or higher than a predetermined voltage threshold value exceeding the lower limit value.
  • each storage battery 11 1, 11 2 corresponding, ..., are respectively disposed 11 n, later Operate with the operating voltage Vop.
  • each BMU 12 measures the charge voltage Vba of the storage battery 11 as an example, and calculates the SOC (State of charge) by measuring the current value of the charge / discharge current of the storage battery 11 in the operating state. And a function of outputting information including the measured charging voltage Vba, the current value of the charging / discharging current, and the calculated SOC to the power management apparatus 9 at a predetermined cycle T as battery information.
  • the BMU 12 executes the control contents indicated by the contactor control information to the contactor 13 (when the control content is a cutoff instruction, the contactor 13 shifts to the cutoff state).
  • the control content is a connection instruction
  • the contactor 13 is also brought into a connected state.
  • Contactor 13 1, 13 2, ..., 13 n (hereinafter, when not particularly distinguished, also referred to as contactor 13), the corresponding storage battery 11 1, 11 2, ..., and positive and negative 11 n, corresponding .., 14 n are disposed between the storage batteries 11 1 , 11 2 ,..., 11 n on the side of the storage batteries 11 1 , 14 2 ,. Operate with the operating voltage Vop.
  • Each contactor 13 is controlled by the corresponding BMU 12 to shift to any one of the blocking state and the coupling state, and in the blocking state, the positive electrode and the negative electrode, and the pair of input / output terminals Are cut off (disconnected), and in the connected state, the positive electrode and the negative electrode are connected to the pair of input / output terminals.
  • the bi-directional DC / DC converters 14 1 , 14 2 ,..., 14 n are a pair of input / output of the storage battery 11 side as described above.
  • the terminals (one pair of input / output terminals) are connected to the storage battery 11 via the contactor 13 and the other pair of input / output terminals are connected to the DC bus 2 so that the storage battery 11 and the DC bus 2 It is connected (arranged) between.
  • the bidirectional DC / DC converter 14 performs CV operation (constant voltage charging / discharging operation) with a DC voltage generated internally based on the bus voltage Vbs, and is operation controlled by the power management device 9.
  • bi-directional DC / DC converter 14 boosts or reduces (voltage conversion) bus voltage Vbs input from the other pair of input / output terminals.
  • the storage battery 11 is charged by performing output from one of the pair of input / output terminals to the storage battery 11 (performing a charging operation). Thereby, the bus voltage Vbs of the DC bus 2 is lowered.
  • bidirectional DC / DC converter 14 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 input from one pair of input / output terminals to set the other pair.
  • the storage battery 11 is discharged by performing output to the DC bus 2 from the input / output terminal of (the discharge operation is performed).
  • the bus voltage Vbs of the DC bus 2 is raised.
  • the bi-directional DC / DC converter 14 can be configured by, for example, a known bi-directional DC / DC converter disclosed in JP-A-2016-152641.
  • the bidirectional DC / DC converter 14 shifts to a sleep state in which its operation is stopped to reduce power consumption.
  • the bi-directional DC / DC converter 14 receives a charge instruction or a discharge instruction as control information in the sleep state, the bi-directional DC / DC converter 14 leaves the sleep state and executes the charge operation or the discharge operation.
  • the bidirectional DC / DC converter 14 sets each current value of the charging current supplied to the storage battery 11 and the discharge current discharged from the storage battery 11 to the maximum current value of the storage battery 11 (in this example, 45 A as an example described below) Have a current limiting function to limit the
  • the third converter 7 is configured of a DC / DC converter (hereinafter, also referred to as a DC / DC converter 7). Further, DC / DC converter 7, the positive electrode and the negative electrode thereof a pair of input terminals of the storage battery 11 1 of the DC power supply device 61, and is connected without passing through the contactor 13 1, the charging voltage Vba of the battery 11 1 Operate. In addition, DC / DC converter 7 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 in the operating state, whereby BMU 12 and contactor 13 of each DC power supply device 6, and temperature measurement unit 8; An operation voltage Vop used with the power management apparatus 9 is generated and output.
  • a DC / DC converter hereinafter, also referred to as a DC / DC converter 7
  • DC / DC converter 7 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 in the operating state, whereby BMU 12 and contactor 13 of each DC power supply device 6, and temperature measurement unit 8; An
  • the temperature measurement unit 8 operates at the operation voltage Vop to measure the temperature of the storage battery 11 of each DC power supply 6 (measure at a predetermined cycle T) and manage temperature information indicating the measured temperature. Output to the device 9
  • the BMU 12 disposed in the storage battery 11 of each DC power supply device 6 has a function of monitoring the temperature of the corresponding storage battery 11 and transmitting the temperature to the power management device 9 as one of battery information. At times, the BMU 12 can also function as a temperature measurement unit. Therefore, when adopting this configuration, it is possible to have a configuration in which the temperature measurement unit separate from BMU 12 is not provided.
  • the power management device 9 is configured by a computer operating at the operation voltage Vop and functions as a control unit.
  • the power management device 9 performs charge / discharge control processing for each DC power supply device 6, and power generation control for the power generation device 3 (other power generation devices 3 other than the power generation device 3a manually operated and controlled.
  • power generation device 3b Processing and power control processing for the second converter 5 are executed.
  • the power management device 9 also executes a voltage measurement process of measuring the bus voltage Vbs. In this case, the power management apparatus 9 can adopt a configuration in which the bus voltage Vbs is directly measured.
  • the first converter 4 (at least one of the power conditioners 4a and 4b)
  • a configuration in which the power management apparatus 9 indirectly measures the bus voltage Vbs via the first converter 4 may be employed so that the bus voltage Vbs is measured and output to the power management apparatus 9.
  • the power management apparatus 9 includes a storage unit (not shown) in which a data table described later indicating the relationship between the maximum absolute value (upper limit value) of differential power described later and the temperature of the storage battery 11 is stored in advance.
  • the operation of the DC power feeding system 1A shown in FIG. 1 will be described.
  • the storage battery 11 since those used to power components, such as power management device 9, the charging voltage Vba is less than the upper limit of the voltage range, and more voltage threshold It shall be charged beforehand so that it may become. Also, each contactor 13 is initially in the disconnected state.
  • the DC power supply system 1A for example, initial startup or the DC power supply system 1A, the DC power supply system 1A, such as reboot after prolonged stoppage of the other battery 11 2 to 11 except for the storage battery 11 1 n
  • the power generation device 3a is operated for a certain period to output the AC voltage V1.
  • the power conditioner 4a operates by receiving the supply of the AC voltage V1, converts the AC voltage V1 into the bus voltage Vbs, and supplies the bus voltage Vbs to the DC bus 2.
  • the bus voltage Vbs of the DC bus 2 rises within a predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less). Further, the power conditioner 4 a measures the generated power W 1 supplied from the power generation device 3 a to the DC bus 2 and outputs the generated power W 1 to the power management device 9.
  • the power generation device 3b automatically generates power and outputs the DC voltage V2.
  • the power conditioner 4b operates by receiving the supply of the DC voltage V2, converts the DC voltage V2 into the bus voltage Vbs, and supplies the bus voltage Vbs to the DC bus 2. Therefore, the bus voltage Vbs of the DC bus 2 rises to the above-described predetermined voltage range in a shorter time than when only the power generation device 3a operates. Further, the power conditioner 4 b measures the generated power W 2 supplied from the power generation device 3 b to the DC bus 2 and outputs it to the power management device 9.
  • DC / DC converter 7 from the storage battery 11 1 and is supplied with a charging voltage Vba is operated, the BMU12 and contactor 13 of each DC power supply device 6, a temperature measuring unit 8, the power management The operation voltage Vop is output (supplied) to the device 9. Therefore, the BMU 12 and the contactors 13, the temperature measuring unit 8 and the power management device 9 of each DC power supply 6 are in operation.
  • BMUs 12 1 to 12 n of each of DC power supply devices 6 1 to 6 n measure the charging voltage Vba or the like for corresponding storage batteries 11 1 to 11 n at period T, and each time they are measured, as battery information It is output to the power management unit 9.
  • the temperature measuring unit 8 in the operating state measures the temperature of the storage battery 11 of each DC power supply device 6 in the cycle T, and outputs the temperature information indicating the temperature to the power management unit 9 each time it is measured.
  • the power management device 9 in the operating state is executing the charge and discharge control process.
  • the power management device 9 acquires new generated power W1 from the power conditioner 4a on the power generation device 3a side (when the power generation device 3b is generating power, the power management device 9 Every time a new generated power W2 is obtained from the power conditioner 4b), the total generated power (W1 + W2) is calculated.
  • the power management device 9 determines that the power can be supplied to the load device 71, and transmits power to the DC / DC converters 5a and 5b. Then, control is performed to convert and output the bus voltage Vbs so as to obtain the load voltages VLa and VLb used by the corresponding load devices 71a and 71b.
  • the power generation device 3a is configured to be able to generate power that can simultaneously execute the supply of power to the load device 71 and the charging of the storage battery 11, the total generated power (W1 + W2) Is above the reference power.
  • the power management apparatus 9 converts the bus voltage Vbs to the load voltages VLa and VLb used by the corresponding load devices 71a and 71b and outputs the bus voltages Vbs to the DC / DC converters 5a and 5b. Execute control. Thereby, the DC / DC converters 5a and 5b execute the supply of load power to the corresponding load devices 71a and 71b. Further, each DC / DC converter 5 a, 5 b measures the load power WLa, WLb supplied to the corresponding load device 71 a, 71 b and outputs it to the power management unit 9. The power management apparatus 9 calculates the total load power (WLa + WLb) each time it obtains new load powers WLa and WLb.
  • the power management device 9 compares the calculated total generated power (W1 + W2) with the total load power (WLa + WLb), and when the total generated power (W1 + W2) is larger than the total load power (WLa + WLb), each DC power supply device 6 It is determined that the storage battery 11 of can be charged. Since the power generation device 3a of this example is configured to be able to generate power capable of simultaneously supplying power to the load device 71 and charging the storage battery 11, the total generated power (W1 + W2) is generated from the total load power (WLa + WLb) Since the power management device 9 also becomes large, the power management device 9 determines that the storage battery 11 of each DC power supply device 6 can be charged.
  • the power management device 9 has a DC battery having a rechargeable storage battery 11 (storage battery 11 in which the charging voltage Vba has not reached the upper limit value of the working voltage range) chargeable based on the battery information acquired from the BMU 12 of each DC power supply device 6 While specifying the power supply device 6, contact control information indicating a connection instruction is output to the BMU 12 of the specified DC power supply device 6, and a charging instruction is issued to the bidirectional DC / DC converter 14 of the DC power supply device 6. The control information shown is output (the charging operation is performed).
  • the power management apparatus 9 does not fully charge all the storage batteries 11 based on the charging voltage Vba of each storage battery 11 (may be the SOC of each storage battery 11 included in the battery information) included in the battery information (that is, Detect that charging is possible).
  • the power management apparatus 9 outputs a contact control information showing the connection instruction to the BMU12 1 ⁇ 12 n for all of the DC power supply device 6 1 ⁇ 6 n, and all of the DC power supply device 6 1 ⁇ 6 n Control information indicating a charging instruction to the bi-directional DC / DC converters 14 1 to 14 n .
  • each DC power supply 6 since each contactor 13 is shifted to the connected state, the storage battery 11 is connected to the bi-directional DC / DC converter 14 for charging operation via the contactor 13 in the connected state. Charging of each storage battery 11 is performed.
  • the power management apparatus 9 determines whether or not the charging voltage Vba included in the battery information output in a cycle T from the BMU 12 of each DC power supply device 6 has reached the upper limit value of the working voltage range (or Whether or not the included SOC has reached the nominal capacity, that is, whether or not the storage battery 11 is fully charged is determined, and when it is determined that the fully charged state is reached, the DC power supply 6 including the storage battery 11
  • the storage battery 11 is disconnected from the bi-directional DC / DC converter 14 by outputting contact control information indicating a cutoff instruction to the BMU 12 of FIG.
  • the power management unit 9 upon charging of each battery 11 1 ⁇ 11 n, which perform the charging of the battery 11 1 for outputting a charging voltage Vba to be used in generating operating voltage Vop preferentially.
  • the storage battery 11 1 the charging voltage Vba is always charged to be the upper limit vicinity of the voltage range.
  • the bidirectional DC / DC converter 14 of this example is configured to perform CV operation, when the absolute value of the difference power between the total generated power (W1 + W2) and the total load power (WLa + WLb) is large, The power allocated to charging the storage battery 11 (and discharging from the storage battery 11) also increases, and the charging current (and discharge current) to the storage battery 11 also increases.
  • the maximum current value of the current that can be supplied to the storage battery 11 during charging and discharging is 45 A as an example, and the reference temperature is 40 ° C.
  • the maximum temperature is 70 ° C.
  • the maximum current value decreases linearly with the increase in temperature between the reference temperature 40 ° C. and the maximum temperature 70 ° C., this is merely an example, and regarding these numerical values, , And change according to the type of the storage battery 11.
  • the magnitude of the absolute value of the above-mentioned differential power represents the charging current (and the maximum current value).
  • power management device 9 charges and discharges storage battery 11 at a temperature and a current value (a temperature and a current value included in second region AR2 in FIG. 3) that affect the lifetime of storage battery 11 as described above.
  • the temperature (battery temperature) of the storage battery 11 acquired from the temperature measurement unit 8 of each DC power supply 6 is compared with this reference temperature, and when the battery temperature exceeds this reference temperature, the above data
  • the maximum absolute value of the differential power at this battery temperature is determined with reference to the table, and the absolute value of the differential power between the total generated power (W1 + W2) and the total load power (WLa + WLb) is this maximum absolute value (prescribed Control to reduce the total generated power (W1 + W2) so that the power consumption does not exceed (so that the current value of the charging current or the discharging current is below the maximum current value at this battery temperature). Executing at least one control of (the power generation control processing) and control for increasing the total load power (WLa + WLb) (power control process).
  • the power management device 9 controls the power conditioner 4b corresponding to the power generation device 3b to generate the power generation device By reducing the power generation in 3b, the power generation control process is executed to make the absolute value of the above-mentioned differential power less than the above-mentioned maximum absolute value. Further, the power management apparatus 9 changes the upper limit current value to be set for the second converter 5 (in this example, at least one of the DC / DC converters 5a and 5b) (in this case, the upper limit current value is increased). Power control processing for reducing the absolute value of the differential power to the maximum absolute value or less by increasing the total load power (WLa + WLb) together with or in place of the power generation control processing. You can also.
  • the power management device 9 can not reduce the power generation. .
  • the power management apparatus 9 executes the above-described power control processing to increase the total load power (WLa + WLb), thereby making the absolute value of the above-mentioned differential power less than or equal to the above-mentioned maximum absolute value.
  • the power generation device 3a is operated for a certain period of time and the generated power W1 is supplied to the DC bus 2 at the time of the first start or restart after a long stop. Therefore, in this fixed period, while supplying load voltages VLa and Vlb with sufficient power from DC bus 2 to each of load devices 71a and 71b, storage battery 11 included in each DC power supply device 6 is sufficiently It is possible to charge (charge to a state in which the charge voltage Vba is at the upper limit value of the working voltage range (full charge state)).
  • the power management device 9 performs the above-described power control process By executing the converter 5, the total load power (WLa + WLb) may be further increased, and the power allocated for charging the storage battery 11 may be diverted to the load device 71, or A display or the like may be provided to notify the operator at the installation place of the power generation device 3a that all the storage batteries 11 have been sufficiently charged, to urge stop of the power generation device 3a.
  • the power generation device 3a When the fixed period ends, the power generation device 3a is stopped. As a result, after the end of the fixed period, the DC power supply system 1A shifts to the normal operation state in which only the power generation device 3b automatically operates and generates power according to the natural state.
  • the power management device 9 executes the following charge / discharge control processing.
  • the power management device 9 First, in the charge / discharge control process when the power generation device 3b is in a power generation state (in this example, since the power generation device 3b is a solar power generation device in the daytime), the power management device 9 First, new power generation W2 is obtained from power conditioner 4b of power generation device 3b, and new load power WLa, WLb is obtained from DC / DC converters 5a, 5b of load devices 71a, 71b. Each time, the total generated power (in this case, only the generated power W2) and the total load power (WLa + WLb) are calculated.
  • the power management apparatus 9 compares the calculated total generated power (W2) with the total load power (WLa + WLb), and when the total generated power (W2) is larger than the total load power (WLa + WLb) (for example, sunshine) Since the amount is large, surplus power is generated when the generated power W2 of the power generation device 3b is large), so it is determined that the storage battery 11 of each DC power supply device 6 can be charged.
  • the power management device 9 has a DC battery having a rechargeable storage battery 11 (storage battery 11 in which the charging voltage Vba has not reached the upper limit value of the working voltage range) chargeable based on the battery information acquired from the BMU 12 of each DC power supply device 6 While specifying the power supply device 6, contact control information indicating a connection instruction is output to the BMU 12 of the specified DC power supply device 6, and a charging instruction is issued to the bidirectional DC / DC converter 14 of the DC power supply device 6. The control information shown is output (the charging operation is performed).
  • the storage battery 11 is connected to the bidirectional DC / DC converter 14 via the contactor 13 shifted to the connection state, and the bidirectional DC / DC converter 14 is charged By operating, the storage battery 11 is charged.
  • the power management apparatus 9 performs the charging operation so that the charging operation is performed such that the measured bus voltage Vbs is maintained within the above-described predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less).
  • the charging power supplied from the DC bus 2 to each DC power supply device 6 is controlled.
  • power management device 9 determines whether or not charging voltage Vba included in the battery information output in a cycle T from BMU 12 of DC power supply device 6 in charge operation has reached the upper limit value of the working voltage range (or If it is determined that the SOC included in the information has reached the nominal capacity (that is, whether the storage battery 11 is fully charged) and it is determined that the storage battery 11 is fully charged, the DC power supply including the storage battery 11
  • the contact control information indicating a shutoff instruction is output to the BMU 12 of the device 6, and the storage battery 11 is separated from the bidirectional DC / DC converter 14 by shifting the contactor 13 to the shutoff state. Thereby, overcharging of the storage battery 11 is prevented.
  • the DC power supply system 1A the storage battery 11 1, the charging voltage Vba is always such that the upper limit voltage near the voltage range (to be substantially fully charged) is charged. Therefore, the charging voltage in a state where the contactor 13 1 shifts to the disconnected state (a state where the storage battery 11 1 is disconnected from the bidirectional DC / DC converter 14 1), DC / DC converter 7, which is output from the battery 11 1 Based on Vba, it is possible to continuously generate the operation voltage Vop for a longer time.
  • power management device 9 compares the battery temperature obtained from temperature measuring unit 8 with the reference temperature, and the battery temperature exceeds this reference temperature. In order to ensure that charging with a large charging current is not performed on storage battery 11, the total generated power (W2) is reduced so that the absolute value of the above differential power is less than or equal to the above maximum absolute value. At least one of control (generation control processing) and control (power control processing) for increasing the total load power (WLa + WLb) is executed.
  • the power management device 9 controls the power conditioner 4b corresponding to the power generation device 3b to reduce the generated power in the power generation device 3b, whereby the above-described differential power can be obtained. Make the absolute value less than or equal to the maximum absolute value above. Further, in the power control process, the power management apparatus 9 changes the upper limit current value set for the second converter 5 (in this example, at least one of the DC / DC converters 5a and 5b) (in this case, the upper limit). The total load power (WLa + WLb) is increased by increasing the current value).
  • the power management apparatus 9 Since the amount of electric power W2 generated by the power generation device 3b is small, insufficient electric power is generated, so it is determined that the storage battery 11 of each DC power supply device 6 needs to be discharged.
  • the power management device 9 identifies the DC power supply device 6 having the dischargeable storage battery 11 based on the battery information acquired from the BMU 12 of each DC power supply device 6 and applies to the BMU 12 of the identified DC power supply device 6. It outputs contact control information indicating a connection instruction, and outputs control information indicating a discharge instruction to the bidirectional DC / DC converter 14 of the DC power supply 6 (performs a discharge operation).
  • the DC power supply system 1A the above-mentioned manner battery 11 1 is always its charging voltage Vba, due to the configuration that is charged to be the upper limit voltage near the voltage range, the power management device 9, always identify DC power supply device 61 as a DC power supply device 6 having a dischargeable storage battery 11. Further, when the DC power supply device 6 of any one of the DC power supply devices 6 2 to 6 n corresponds to the DC power supply device 6 having the rechargeable battery 11, the power management device 9 is used as the DC power supply device 6. It identifies as the direct-current power supply 6 which has the storage battery 11 which can be discharged.
  • the power management apparatus 9 includes a DC power supply 61 other than the DC power supply device 6 (DC power supply device 6 of any of the DC power supply device 6 2 ⁇ 6 n) in the DC power supply device 6 identified When it is set, any one of the DC power supply devices 6 is preferentially discharged.
  • a DC power supply 61 other than the DC power supply device 6 DC power supply device 6 of any of the DC power supply device 6 2 ⁇ 6 n
  • any one of the DC power supply devices 6 is preferentially discharged.
  • it will be explained using an example that contains the DC power supply device 6 other than the DC power supply device 61 into the DC power supply device 6 identified.
  • the power management device 9 causes the discharge operation to be performed to any of the above-described DC power supply devices 6 (one of the specified DC power supply devices 6 of the DC power supply devices 6 2 to 6 n ). Therefore, contact control information indicating a connection instruction is output to the BMU 12 of the DC power supply device 6, and control information indicating a discharge instruction is output to the bidirectional DC / DC converter 14.
  • the BMU 12 connects the storage battery 11 to the bidirectional DC / DC converter 14 by causing the contactor 13 to shift to the connected state based on the contact control information indicating the connection instruction acquired from the power management device 9.
  • bidirectional DC / DC converter 14 performing discharge operation based on the control information indicating the discharge instruction acquired from power management device 9 boosts or lowers (converts) the charging voltage Vba of storage battery 11 to generate a DC bus. It outputs to 2 (discharges storage battery 11).
  • the power management apparatus 9 performs the discharging operation so that the measured bus voltage Vbs is maintained within the above-described predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less).
  • the discharge power supplied from the DC power supply 6 to the DC bus 2 is controlled by controlling the number and the time for performing the discharge operation.
  • the power management device 9 compares the battery temperature obtained from the temperature measurement unit 8 with the reference temperature, and the battery temperature exceeds the reference temperature. In order to prevent discharge with a large discharge current from being performed on storage battery 11, the total generated power (W2) is increased so that the absolute value of the above differential power is less than or equal to the above maximum absolute value. At least one of control (generation control processing) and control (power control processing) for reducing the total load power (WLa + WLb) is executed.
  • the power management unit 9 this one of the DC power supply device 6 (DC power supply units 61 other than the DC power supply device 6) results in which the discharge operation is executed continuously in the charging voltage Vba is use of the storage battery 11
  • the lower limit value of the voltage range is detected based on the battery information acquired from the BMU 12
  • contact control information indicating a cutoff instruction is output to the BMU 12 of the DC power supply device 6.
  • the storage battery 11 is disconnected from the bidirectional DC / DC converter 14 (the discharging operation is stopped) by causing the contactor 13 to shift to the disconnection state by the BMU 12. Therefore, overdischarge of storage battery 11 is prevented.
  • the power management apparatus 9 at the time of stopping the discharge operation for all of the DC power supply device 6 other than the DC power supply device 61 of the DC power supply device 6 that is identified, then, discharged to the DC power supply device 61 Run the action.
  • the power management apparatus 9 outputs a contact control information showing the connection instruction to BMU12 1 of the DC power supply device 61, and the control information indicating the discharge instruction to the bidirectional DC / DC converter 14 1 Output.
  • BMU12 1 is, by shifting the contactor 13 1 to the connection state based on the contact control information showing the connection instruction acquired from the power management device 9, the bidirectional DC / DC converter storage battery 11 1 14 Connect to 1 Furthermore, the bidirectional DC / DC converter 14 1 that the discharging operation based on control information indicating the discharge instruction acquired from the power management device 9 is raised or lowered the charged voltage Vba of the battery 11 1 (voltage conversion) to and outputs to the DC bus 2 (discharging the storage battery 11 1).
  • the power management apparatus 9 so that bus voltage Vbs which are measured is maintained within a predetermined voltage range described above (DC 400V or less of the voltage range of DC350V), with respect to the DC power supply device 61
  • the time for which the discharge operation is performed is controlled to control the discharge power supplied from the DC power supply 6 to the DC bus 2.
  • the power management unit 9 includes a DC power supply device 61 results above discharge operation is executed continuously in, it reaches the voltage threshold to which the storage battery 11 1 of the charging voltage Vba is defined within the operating voltage range decreases things, upon detection based on the acquired battery information from BMU12 1 outputs a contact control information indicating shutoff instruction to BMU12 1 of the DC power supply device 61.
  • the DC power supply device 61 by the contactor 13 1 is caused to transition to the cutoff state by the BMU12 1, the storage battery 11 1 is disconnected from the bidirectional DC / DC converter 14 (discharging operation is stopped).
  • DC / DC converter 7 is based on the storage battery 11 1 of the charging voltage Vba, operating voltage over a sufficiently long period It is possible to generate and output Vop.
  • DC power feeding system 1A when DC / DC converters 5a and 5b continue the above operation with total generated power (W2) smaller than total load power (WLa + WLb), bus voltage Vbs is lowered, and predetermined There is a possibility that it may fall below the lower limit voltage value (DC 350 V) of the voltage range (in this example, the range of DC 350 V or more and DC 400 V or less). For this reason, the power management apparatus 9 uses the second converter 5 (in this example, DC) so that the measured bus voltage Vbs is maintained within the above-described predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less). Power control process of reducing the total load power (WLa + WLb) by increasing the upper limit current value set for at least one of / DC converters 5a and 5b) (increasing when generated power W2 increases) .
  • the power management apparatus 9 performs the same operation as when the total generated power (W2) is smaller than the total load power (WLa + WLb). Run. Therefore, when the power management device 9 first detects whether or not the DC power supply device 6 having the rechargeable storage battery 11 exists based on the battery information acquired from the BMU 12 of each DC power supply device 6, By specifying and discharging the DC power supply 6, the DC / DC converters 5a and 5b can generate the load voltages VLa and Vlb to the corresponding load devices 71a and 71b.
  • the power management apparatus 9 compares the battery temperature obtained from the temperature measurement unit 8 with the reference temperature, and the battery temperature becomes the reference temperature. When it is higher, the total generated power (W2) is set so that the absolute value of the above-mentioned differential power is less than the above-mentioned maximum absolute value so that discharge with a large discharge current is not performed to the storage battery 11. At least one of control to increase (power generation control processing) and control to reduce total load power (WLa + WLb) (power control processing) is executed. In this case, since the total generated power (W2) can not be increased at night, the power management apparatus 9 executes control (power control processing) to reduce the total load power (WLa + WLb).
  • the DC power supply device 61 when the storage battery 11 1 of the charging voltage Vba reaches a voltage threshold, and the DC power supply device 6 other than the direct-current power supply 61, the charging voltage Vba is working voltage of the battery 11
  • the discharge operation is stopped by shifting each of the contactors 13 to the cutoff state based on the contact control information indicating the cutoff instruction from the power management device 9.
  • the power management apparatus 9 sends control information indicating a stop instruction to the bidirectional DC / DC converters 14 of all the DC power supply devices 6.
  • the DC power supply system 1A is put to a sleep state by stopping the operation of the bidirectional DC / DC converter 14 (a state where the consumption of the power charged in each storage battery 11 in the DC power supply system 1A is minimized).
  • the contactor 13 is disposed between the storage battery 11 and the bi-directional DC / DC converter 14 in all the DC power supply devices 6 to connect to the DC bus 2 as described above.
  • a configuration is adopted in which all the contactors 13 are switched to the disconnection state to disconnect (separate) the storage battery 11 and the bidirectional DC / DC converter 14. Therefore, in the DC power supply system 1A of this embodiment, the above-mentioned sleep state is substantially achieved when all the contactors 13 are shifted to the shut-off state without stopping the operation of the bidirectional DC / DC converter 14 further.
  • a direct current power supply device without the contactor 13 (a direct current power supply device with a configuration in which the storage battery 11 and the bidirectional DC / DC converter 14 are directly coupled) may be considered.
  • the operation of the bidirectional DC / DC converter 14 is stopped to shift to the sleep state.
  • the storage battery 11 1 and bidirectional DC / DC converter 14 1 is in the blocked (disconnected) state contactor 13 1, also in the DC power supply system provided with a DC power supply device of the structure without the contactor 13 as described above, since the two-way DC / DC converter 14 1 connected to the battery 11 1 is stopped, the storage battery 11 1 of the charging power Is configured to be supplied only to the DC / DC converter 7 which generates and outputs the operation voltage Vop.
  • the conversion efficiency from charging voltage Vba in DC / DC converter 7 to operation voltage Vop is good, and BMU12 and contactor 13 of each DC power supply 6 to maintain the operating state by being supplied with operating voltage Vop, when the temperature measuring unit 8, and the power consumption in the power management device 9 is small both, the storage battery 11 1 Sufficient time for the charge voltage Vba to decrease from the voltage threshold to the lower limit of the working voltage range (that is, the operation time of the BMU 12, the contactor 13, the temperature measurement unit 8, and the power management device 9) It can be long.
  • DC power supply system including DC power supply system 1A
  • BMU 12 and contactor 13, temperature measurement unit 8, and power management device 9 of each DC power supply device 6 operate until power generation device 3b resumes power generation. Since it can be maintained in the state, the power management device 9 operates as described above at the time of resumption of power generation by the power generation device 3b, charging operation to each storage battery 11 and load voltage to each load device 71a, 71b. The supply operation of VLa and VLb is possible.
  • the power management device 9 when the temperature of the storage battery 11 exceeds the reference temperature in the charging state of the storage battery 11 (when the temperature is high), the power management device 9 generates the generated power W1, W2 (specifically Specifically, the absolute value of the difference power between the total generated power (W1 + W2) and the load powers WLa and WLb (specifically, the total load power (WLa + WLb)) is predefined power (in the above example, the difference power At least one of control for reducing the generated power (total generated power (W1 + W2)) and control for increasing the load power (total load power (WLa + WLb)) to be less than the maximum absolute value is executed.
  • the power management device 9 predetermines the absolute value of the above-mentioned difference power (the above In the example, at least one of the control for increasing the generated power (total generated power (W1 + W2)) to be equal to or less than the maximum absolute value of the differential power and the control for reducing the load power (total load power (WLa + WLb)) Run.
  • the storage battery 11 is charged with a charging current having a large current value (a charging current having a current value exceeding the maximum current value at the battery temperature) at high temperatures, or a current value at high temperatures.
  • a charging current having a large current value a charging current having a current value exceeding the maximum current value at the battery temperature
  • a current value at high temperatures a charging current having a current value exceeding the maximum current value at battery temperature
  • the progress of the deterioration of the storage battery 11 can be delayed also in the direct current feed system 1B having the configuration shown in FIG.
  • the DC power supply system 1B will be described.
  • the same components as those of the DC power feeding system 1A will be assigned the same reference numerals and redundant explanations will be omitted, and different components will be mainly described.
  • the DC power feeding system 1B is connected to a DC bus 2, one or more power generating devices 3 and a first converter 4 provided corresponding to the power generating device 3, and a DC power feeding system 1A.
  • the plurality of DC power supply devices 6, the third converter 7, the temperature measuring unit 8 and the power management device 9 arranged corresponding to the load device 71 A device 21 and a fourth converter 22 that generates and outputs a DC voltage VLc for operating the cooling device 21 based on the bus voltage Vbs.
  • the cooling device 21 is, as an example in the present example, disposed in the interior of each building in which the DC power supply device 6 is housed, and a plurality of air that can individually cool the inside of each building (that is, each storage battery 11). It consists of a conditioner.
  • the cooling device 21 operates by receiving the supply of a DC voltage VLc described later from the fourth converter 22.
  • the cooling device 21 is controlled by the power management device 9 to operate and stop.
  • the cooling device 21 is not limited to the above configuration, and for example, from a single unit installed in one place, cold air is provided via a duct or the like inside each building in which the DC power supply device 6 is housed. Can be adopted (that is, a configuration for collectively cooling each storage battery 11).
  • the fourth converter 22 is configured of, for example, a DC / DC converter (also referred to as a DC / DC converter 22) that operates with a DC voltage generated internally based on the bus voltage Vbs.
  • the DC / DC converter 22 is controlled by the power management device 9 to convert the bus voltage Vbs into a DC voltage VLc used by the cooling device 21 (DC voltage conversion), and supplies the DC voltage to the cooling device 21.
  • the cooling device 21 operating with the DC voltage VLc generated based on the bus voltage Vbs is one of the load devices similar to the load device 71.
  • Power management device 9 executes the operation control for cooling device 21 instead of the power generation control process for power generation device 3 in comparison with the configuration of power management device 9 of DC power feeding system 1A described above, thereby Although different in the configuration of executing the temperature control process to be controlled, other configurations such as executing control on each DC power supply 6 are the same.
  • the temperature of storage battery 11 is high (the temperature of storage battery 11 is In order not to execute charging with a large charging current (charging to shorten the battery life) or discharging with a large discharging current (charging to shorten the battery life) when the temperature is exceeded.
  • the cooling device 21 is operated to lower the temperature of the storage battery 11, thereby shortening the battery life, and for charging and discharging the storage battery 11 Execution is being avoided.
  • the power management device 9 causes the DC power supply device 6 to perform a charge operation (charges the storage battery 11), and the power management device 9 causes the DC power supply device 6 to perform a discharge operation (discharges the storage battery 11).
  • the charge and discharge control process will be separately described.
  • the power management apparatus 9 determines that the calculated total generated power (W1 + W2 or W2) is larger than the total load power (WLa + WLb). Based on the battery information acquired from the BMU 12 of the power supply device 6, the DC power supply device 6 having the rechargeable storage battery 11 is identified, and contact control information indicating a connection instruction is output to the BMU 12 of the identified DC power supply device 6. Further, the control information indicating the charging instruction is output to the bidirectional DC / DC converter 14 of the DC power supply device 6 (the charging operation is performed).
  • the power management apparatus 9 compares the battery temperature obtained from the temperature measurement unit 8 with the reference temperature, and when the battery temperature exceeds the reference temperature, the power management device 9 uses a large charging current. Control is performed on the DC / DC converter 22 so that the DC voltage VLc is output so that the charging of the battery 11 is not performed on the storage battery 11, and the control to operate the cooling device 21 is performed. Reduce the temperature of 11.
  • the battery temperature drops below the reference temperature (40 ° C. in the example of FIG. 3) regardless of whether the current value of the charging current or the discharging current is less than the maximum current value of the storage battery 11.
  • the power management device 9 operates the cooling device 21 so that the battery temperature becomes equal to or lower than the reference temperature while comparing the battery temperature obtained from the temperature measurement unit 8 with the reference temperature in the charge / discharge control process. By doing this, the DC power supply 6 is made to charge the storage battery 11 at a temperature that does not affect the battery life.
  • the power management apparatus 9 determines that the calculated total generated power (W1 + W2 or W2) is smaller than the total load power (WLa + WLb). Based on the battery information acquired from the BMU 12 of the DC power supply device 6, the DC power supply device 6 having the rechargeable storage battery 11 is identified, and contact control information indicating a connection instruction is output to the BMU 12 of the identified DC power supply device 6. And outputs control information indicating a discharge instruction to the bidirectional DC / DC converter 14 of the DC power supply device 6 (performs a discharge operation).
  • the power management apparatus 9 compares the battery temperature obtained from the temperature measurement unit 8 with the reference temperature, and when the battery temperature exceeds the reference temperature, the power management device 9 uses a large charging current. Control is performed on the DC / DC converter 22 so that the DC voltage VLc is output so that the discharge of the battery 11 is not performed on the storage battery 11, and the control to operate the cooling device 21 is performed. Reduce the temperature of 11.
  • the power management apparatus 9 compares the battery temperature acquired from the temperature measuring unit 8 with the reference temperature in the charge / discharge control process, as in the case of the charge described above, and the battery temperature is the reference temperature
  • the DC power supply 6 is made to discharge the storage battery 11 at a temperature that does not affect the battery life.
  • the cooling device 21 operating with the DC voltage VLc generated based on the bus voltage Vbs is one of the load devices similar to the load device 71.
  • the DC / DC converter 22 is provided with a power measurement function that measures the load power WLc supplied from the DC bus 2 to the cooling device 21 (for example, by measuring in a cycle T) and outputs it to the power management device 9
  • the power management apparatus 9 calculates the total load power (WLa + WLb + WLc) to which the load power WLc is added, and the total generated power Whether the charging operation or the discharging operation of the DC power supply 6 is to be performed may be determined by comparing with (W1 + W2 or W2).
  • the DC / DC converter 22 is not provided with the above power measurement function, and the DC power supply 6 takes into account the known load power WLc.
  • the power (WLa + WLb + WLc) can also be calculated.
  • the power management device 9 operates the cooling device 21 (specifically, In order to operate the cooling device 21 so that the battery temperature becomes lower than the reference temperature), the storage battery 11 can always be charged and discharged in a temperature range that does not affect the life, so that the storage battery 11 is progressed with certainty Slowing down, that is, prolonging the battery life.
  • the DC power feeding system 1B configured to operate the cooling device 21 to lower the battery temperature to the reference temperature or less when the battery temperature exceeds the reference temperature is described above, the DC power feeding system 1B is limited to this configuration. I will not.
  • the maximum current at or below the reference temperature is the current value (the current value of the charging current or the discharging current) If it is smaller than the value, charging or discharging without affecting the battery life is possible without lowering the temperature (battery temperature) below the reference temperature.
  • the current value is 30 A
  • the battery temperature is lowered to 50.degree. Since the temperature is included in the range AR1, the battery can be charged or discharged without affecting the battery life.
  • the cooling device 21 is operated when the temperature of the storage battery 11 is higher than the specified temperature, and the temperature of the storage battery 11 is reduced to the specified temperature or less. it can.
  • the power management apparatus 9 First, referring to the data table, as shown in FIG. 3, the temperature X3 [° C.] at the maximum absolute value of the differential power corresponding to X1 [A] is specified. Next, as shown in FIG. 3, when the temperature X 2 [° C.] of the storage battery 11 exceeds the specified temperature X 3 [° C.], the power management device 9 operates the cooling device 21 to set the temperature of the storage battery 11. Is lowered to the specified temperature X3 [.degree. C.] or less, and charging / discharging of the storage battery 11 is executed in this state.
  • the power management apparatus 9 determines that cooling of the storage battery 11 is unnecessary when the temperature X2 [° C.] of the storage battery 11 is lower than the specified temperature X3 [° C.], and operates the cooling device 21. Without charging and discharging the storage battery 11.
  • the DC power supply system 1B of this configuration unlike the configuration in which the cooling device 21 is operated such that the temperature of the storage battery 11 is always equal to or lower than the reference temperature, the total generated power (W1 + W2 or W2) and the total load power (WLa + WLb) Or, it is sufficient to operate the cooling device 21 so that the temperature of the storage battery 11 falls to a temperature (a temperature higher than the reference temperature) specified by the absolute value of the differential power of WLa + WLb + WLc) and the above data table. Since the power consumption of the cooling device 21 can be reduced, the battery life can be extended while the charging power to the storage battery 11 is increased or the load power to the load device 71 is increased accordingly.
  • the bus voltage Vbs of the DC bus 2 is sufficiently set within a predetermined voltage range (voltage range of 350 V or more and 400 V or less of DC) by the DC power supply 6 after the power generation device 3b stops power generation and resumes power generation.
  • BMU 12 and contactor 13 are configured such that the capacity of each storage battery 11 is sufficiently large and charging voltage Vba does not exceed the lower limit value of the working voltage range.
  • the DC / DC converter operates as the charging voltage Vba of the corresponding storage battery 11, and the temperature measuring unit 8 and the power management device 9 operate with the charging voltage Vba of at least one of the storage batteries 11.
  • the arrangement of 7 can be omitted.
  • the present invention since the progress of deterioration of the storage battery can be delayed, the present invention can be widely applied to a stand-alone DC power supply system in which the storage battery is essential.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention provides a DC power supply system capable of delaying the gradual deterioration of a storage battery. The DC power supply system includes a temperature measurement unit 8 for measuring the temperature of storage batteries 111-11n. A power control device 9 compares a temperature measured by the temperature measurement unit 8 with a reference temperature. When the temperature of the storage batteries 111-11n in a charged state exceeds the reference temperature, the power control device decreases the power to be generated and/or increases the load power so that the absolute value of the differential power between the power generated by generators 3a, 3b and the load power applied to load devices 71a, 71b is less than or equal to a predetermined power, and when the temperature of the storage batteries 111-11n in a discharged state exceeds the reference temperature, the power control device increases the power to be generated and/or decreases the load power so that the absolute value of the differential power is less than or equal to the predetermined power.

Description

直流給電システムDC power supply system
 本発明は、商用電源に接続されない独立型の直流給電システムに関するものである。 The present invention relates to a stand-alone DC power supply system not connected to a commercial power supply.
 この種の直流給電システムとして、下記の特許文献1に開示された直流給電システムが知られている。この直流給電システムは、分散電源装置(例えば、太陽光発電装置、風力発電装置および燃料電池などの装置)と、分散電源装置を負荷に接続する直流バスと、 複数の直流電源装置(蓄電池を含み、充放電可能な電源装置)と、直流バスに複数の直流電源装置をそれぞれ接続するコンバータ(例えば双方向DC/DCコンバータ)と、これらの複数のコンバータを制御する制御器とを備えている。また、この直流給電システムでは、エアコン、テレビおよび照明装置などの家電機器や、パソコンなどの情報機器が負荷として直流バスに接続されて、直流バスから直流電力(直流電圧)の供給を受けて動作する。また、この直流給電システムでは、制御器は、分散電源装置より直流バスに供給される電圧が所定値と異なるとき、少なくとも1つのコンバータによって1つの直流電源装置から直流バスへ電力供給し、他の少なくとも1つのコンバータによって、直流バスの電圧を所定値に保つように直流バスから他の直流電源装置へ直流電力を供給するように制御する。 As a direct current feed system of this type, a direct current feed system disclosed in Patent Document 1 below is known. The DC power supply system includes a distributed power supply (for example, a device such as a solar power generator, a wind power generator, and a fuel cell), a DC bus connecting the distributed power supply to a load, and a plurality of DC power supplies (including storage batteries). And a converter (for example, a bidirectional DC / DC converter) for connecting a plurality of DC power devices to a DC bus, and a controller for controlling the plurality of converters. Also, in this DC power supply system, home appliances such as air conditioners, TVs and lighting devices, and information devices such as personal computers are connected to the DC bus as a load, and operate by receiving DC power (DC voltage) supplied from the DC bus. Do. Also, in this DC power supply system, the controller supplies power from one DC power supply device to the DC bus by at least one converter when the voltage supplied from the distributed power supply device to the DC bus differs from a predetermined value. At least one converter is controlled to supply DC power from the DC bus to the other DC power supply device so as to keep the voltage of the DC bus at a predetermined value.
 この直流給電システムによれば、分散電源装置から直流バスに出力される直流電圧の変動が大きくても、直流バスの電圧(直流電圧)を安定させることができることから、直流バスに接続された負荷に対して安定な出力電圧(直流電圧)を供給することが可能となっている。 According to this DC power supply system, the load (DC voltage) connected to the DC bus can be stabilized because the DC bus voltage (DC voltage) can be stabilized even if the DC voltage output from the distributed power supply to the DC bus is large. It is possible to supply a stable output voltage (DC voltage) to
国際公開第2012/057032号(第3-4頁、第1図)WO 2012/057032 (pages 3-4, FIG. 1)
 しかしながら、上記した従来の直流給電システムを含む公知の直流給電システムには、以下の課題が存在する。具体的には、この公知の直流給電システムでは、複数の直流電源装置としての蓄電池と直流バスとの間に接続されるコンバータ(双方向DC/DCコンバータ)がCV型(定電圧(constantvoltage )充電型)であることから、コンバータを介して流れる充放電電流の電流値は、このコンバータに接続されている蓄電池の直流電圧と直流バスの直流電圧との差電圧に応じて変動するものとなっている。一方、蓄電池の劣化の進み具合は充放電電流の電流値および温度の影響を大きく受けること(高い温度環境下において高電流値で充放電を繰り返すと、劣化が早く進むこと)が知られている。このため、この直流給電システムでは、この充放電電流の電流値および温度に起因する蓄電池の劣化については考慮されていない構成となっている。したがって、この直流給電システムには、蓄電池の劣化が早く進むおそれがあるという改善すべき課題が存在している。 However, the following problems exist in the known DC feeding system including the above-described conventional DC feeding system. Specifically, in this known DC power supply system, a converter (bidirectional DC / DC converter) connected between storage batteries as a plurality of DC power supply devices and a DC bus is of CV type (constant voltage) charging Type, the current value of the charge / discharge current flowing through the converter fluctuates according to the difference voltage between the DC voltage of the storage battery connected to this converter and the DC voltage of the DC bus. There is. On the other hand, it is known that the degree of progress of the deterioration of the storage battery is greatly influenced by the current value of the charge and discharge current and the temperature (the deterioration progresses faster when the charge and discharge are repeated at a high current value under high temperature environment) . Therefore, in this DC power feeding system, the deterioration of the storage battery due to the current value of the charge / discharge current and the temperature is not considered. Therefore, in this direct current feed system, there is a problem to be solved that the deterioration of the storage battery may progress quickly.
 本発明は、上記課題に鑑みてなされたものであり、蓄電池の劣化の進行を遅くし得る直流給電システムを提供することを目的とする。 This invention is made in view of the said subject, and it aims at providing the direct current | flow electric power feeding system which can slow progress of deterioration of a storage battery.
 上記目的を達成すべく、本発明に係る直流給電システムでは、直流給電の母線となる直流バスと、発電装置と、前記発電装置の発電電力を前記直流バスに供給する第1コンバータと、前記直流バスに供給されている直流電圧を直流電圧変換して負荷機器に供給する第2コンバータと、複数の蓄電池と、前記複数の蓄電池の各々と前記直流バスとの間に接続されて、当該直流バスに供給されている直流電圧と当該蓄電池の直流電圧とを双方向に電圧変換して、当該直流バスから当該蓄電池へ、または当該蓄電池から当該直流バスへ供給する双方向コンバータと、制御部とを備えて、商用電源に接続されない独立型の直流給電システムとして構成され、前記制御部は、前記発電装置での前記発電電力と前記第2コンバータから前記負荷機器に供給されている負荷電力とを比較して、当該発電電力が当該負荷電力よりも大きいときには、前記双方向コンバータに対して前記直流バスの前記直流電圧に基づいて直流電流を前記蓄電池に供給させて当該蓄電池を充電させ、当該発電電力が当該負荷電力以下のときには、前記双方向コンバータに対して前記蓄電池の前記直流電圧に基づいて直流電流を前記直流バスに供給させて当該蓄電池を放電させる直流給電システムであって、前記蓄電池の温度を計測する温度計測部を備え、前記制御部は、前記温度計測部によって計測された温度と予め規定された基準温度とを比較し、前記蓄電池の充電状態において前記計測された温度が前記基準温度を上回ったときには、前記発電電力と前記負荷電力の差分電力の絶対値が予め規定された電力以下となるように前記発電電力を減少させる制御および前記負荷電力を増加させる制御のうちの少なくとも一方の制御を実行し、前記蓄電池の放電状態において前記計測された温度が前記基準温度を上回ったときには、前記差分電力の絶対値が前記予め規定された電力以下となるように前記発電電力を増加させる制御および前記負荷電力を減少させる制御のうちの少なくとも一方の制御を実行する。 In order to achieve the above object, in the direct current feed system according to the present invention, a direct current bus serving as a bus bar of direct current feed, a power generation device, a first converter for supplying generated power of the power generation device to the direct current bus, and the direct current It is connected between a second converter that converts DC voltage supplied to the bus into DC voltage and supplies it to the load device, a plurality of storage batteries, each of the plurality of storage batteries, and the DC bus, and the DC bus A bidirectional converter which bi-directionally converts the DC voltage supplied to the battery and the DC voltage of the storage battery from the DC bus to the storage battery or the storage battery to the DC bus; And the control unit is configured to supply the generated power from the power generation apparatus and the second converter to the load device. When the generated power is larger than the load power, the direct current is supplied to the storage battery based on the DC voltage of the DC bus to the bi-directional converter, and the battery is compared with the load power being stored. A direct current feed system for charging a storage battery and supplying a direct current to the DC bus based on the direct current voltage of the storage battery to the bi-directional converter when the generated power is less than the load power and discharging the storage battery A temperature measurement unit for measuring the temperature of the storage battery, the control unit compares the temperature measured by the temperature measurement unit with a predetermined reference temperature, and When the measured temperature exceeds the reference temperature, the absolute value of the difference between the generated power and the load power is equal to or less than a predetermined power. Control to decrease the generated power and to increase the load power, and the measured temperature exceeds the reference temperature in the discharge state of the storage battery. At least one of control for increasing the generated power and control for reducing the load power is performed such that the absolute value of the differential power is less than or equal to the predetermined power.
 本発明によれば、蓄電池の温度が基準温度を上回っているとき(高温のとき)において、電流値の大きな充電電流(電池温度での最大電流値を超える電流値の充電電流)で蓄電池を充電したり、また高温時において電流値の大きな放電電流(電池温度での最大電流値を超える電流値の放電電流)で蓄電池を放電したりする事態の発生を回避することができるため、蓄電池の劣化の進行を遅くすること、つまり電池寿命を延ばすことができる。 According to the present invention, when the temperature of the storage battery exceeds the reference temperature (when high temperature), the storage battery is charged with a large charging current (a charging current of a current value exceeding the maximum current value at battery temperature). It is possible to avoid the occurrence of a situation where the storage battery is discharged by a large discharge current (a discharge current of a current value exceeding the maximum current value at the battery temperature) at high temperatures, and thus deterioration of the storage battery Can slow down the progress of the battery, that is, extend the battery life.
 本発明に係る直流給電システムでは、直流給電の母線となる直流バスと、発電装置と、前記発電装置の発電電力を前記直流バスに供給する第1コンバータと、前記直流バスに供給されている直流電圧を直流電圧変換して負荷機器に供給する第2コンバータと、複数の蓄電池と、前記複数の蓄電池の各々と前記直流バスとの間に接続されて、当該直流バスに供給されている直流電圧と当該蓄電池の直流電圧とを双方向に電圧変換して、当該直流バスから当該蓄電池へ、または当該蓄電池から当該直流バスへ供給する双方向コンバータと、制御部とを備えて、商用電源に接続されない独立型の直流給電システムとして構成され、前記制御部は、前記発電装置での前記発電電力と前記第2コンバータから前記負荷機器に供給されている負荷電力とを比較して、当該発電電力が当該負荷電力よりも大きいときには、前記双方向コンバータに対して前記直流バスの前記直流電圧に基づいて直流電流を前記蓄電池に供給させて当該蓄電池を充電させ、当該発電電力が当該負荷電力以下のときには、前記双方向コンバータに対して前記蓄電池の前記直流電圧に基づいて直流電流を前記直流バスに供給させて当該蓄電池を放電させる直流給電システムであって、前記蓄電池の温度を計測する温度計測部と、前記蓄電池を冷却する冷却装置とを備え、前記制御部は、前記温度計測部で計測された温度と予め規定された基準温度との比較を実行しつつ、当該計測された温度が当該基準温度を上回ったときには、前記冷却装置を動作させる。 In the DC power supply system according to the present invention, a DC bus serving as a bus bar for DC power supply, a power generation device, a first converter for supplying the generated power of the power generation device to the DC bus, and DC supplied to the DC bus DC voltage supplied to the DC bus, connected between a second converter that supplies DC voltage and converting the voltage to the load device, a plurality of storage batteries, each of the plurality of storage batteries, and the DC bus And bi-directional converter which bi-directionally converts the voltage of the storage battery and the DC voltage of the storage battery and supplies the voltage from the DC bus to the storage battery or from the storage battery to the DC bus, and a control unit And the control unit is configured to generate the generated power of the power generation apparatus and the load power supplied from the second converter to the load device. In comparison, when the generated power is larger than the load power, direct current is supplied to the storage battery based on the DC voltage of the DC bus to the bidirectional converter to charge the storage battery, and the power generation is performed. A direct current feed system for supplying a direct current to the direct current bus based on the direct current voltage of the storage battery to the bi-directional converter to discharge the storage battery when the power is equal to or less than the load power, A temperature measurement unit that measures a temperature, and a cooling device that cools the storage battery, the control unit performs a comparison between the temperature measured by the temperature measurement unit and a reference temperature that is defined in advance. When the measured temperature exceeds the reference temperature, the cooling device is operated.
 本発明によれば、蓄電池の温度が基準温度を上回っているとき(高温のとき)に、制御部が冷却装置を動作させるため(具体的には、蓄電池の温度が基準温度以下となるように冷却装置を動作させるため)、寿命に影響を与えない温度範囲で常に蓄電池に対して充電・放電を実行できることから、蓄電池の劣化の進行を確実に遅くすること、つまり電池寿命を確実に延ばすことができる。 According to the present invention, when the temperature of the storage battery exceeds the reference temperature (when the temperature is high), the control unit operates the cooling device (specifically, the temperature of the storage battery becomes equal to or less than the reference temperature) To ensure that the progress of the deterioration of the storage battery is slowed, that is, the battery life is surely extended, because the storage battery can always be charged and discharged in a temperature range which does not affect the lifetime). Can.
 好ましくは、前記蓄電池の前記基準温度を上回る各温度と、当該各温度での前記直流電流の上限値に対応する前記発電電力および前記負荷電力の差分電力の絶対値の上限値との関係を示すデータテーブルを記憶する記憶部を備え、前記制御部は、前記差分電力の前記絶対値を算出すると共に前記データテーブルを参照して、当該算出した絶対値が前記上限値のときの前記温度を特定し、前記計測された温度が当該特定した温度を超えたときに、前記冷却装置を動作させるとよい。この場合、蓄電池の温度が常に基準温度以下となるように冷却装置を動作させる構成とは異なり、発電電力と負荷電力の差分電力の絶対値とデータテーブルとによって特定される温度(基準温度よりも高い温度)まで蓄電池の温度が低下するように冷却装置を動作させるだけでよいことから、冷却装置での消費電力を少なくすることができるため、その分、蓄電池への充電電力を増やしたり、負荷機器への負荷電力を増やしたりしつつ、電池寿命を延ばすことができる。 Preferably, the relationship between each temperature exceeding the reference temperature of the storage battery, and the upper limit value of the absolute value of the generated power corresponding to the upper limit value of the direct current at each temperature and the differential power of the load power is shown. A storage unit storing a data table is provided, and the control unit calculates the absolute value of the differential power and refers to the data table to specify the temperature when the calculated absolute value is the upper limit value. The cooling device may be operated when the measured temperature exceeds the specified temperature. In this case, unlike the configuration in which the cooling device is operated so that the temperature of the storage battery is always equal to or lower than the reference temperature, the temperature specified by the absolute value of the differential power between the generated power and the load power and the data table Since it is only necessary to operate the cooling device so that the temperature of the storage battery falls to a high temperature), power consumption in the cooling device can be reduced. The battery life can be extended while increasing the load power to the device.
 本発明によれば、蓄電池の劣化の進行を確実に遅くすること、つまり電池寿命を確実に延ばすことができる。 According to the present invention, it is possible to reliably slow the progress of the deterioration of the storage battery, that is, to reliably extend the battery life.
直流給電システム1Aの構成図である。It is a block diagram of direct-current feed system 1A. 直流給電システム1Bの構成図である。It is a block diagram of direct-current feeding system 1B. 充電・放電時の電流の電流値および温度(電池温度)の蓄電池11の電池寿命への影響を説明するための説明図である。It is an explanatory view for explaining the influence on the battery life of storage battery 11 of current value of current at the time of charge and discharge and temperature (battery temperature).
 以下、直流給電システムの実施の形態について、添付図面を参照して説明する。なお、直流給電システムは以下の実施形態に限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれると共に、その構成要素は、適宜組み合わせることが可能である。 Hereinafter, an embodiment of a direct current feed system will be described with reference to the attached drawings. The direct current feed system is not limited to the following embodiments. Further, the components described below include those which can be easily conceived by those skilled in the art, and substantially the same components, and the components can be appropriately combined.
 最初に、直流給電システムとしての直流給電システム1Aの構成について説明する。 First, the configuration of a direct current feed system 1A as a direct current feed system will be described.
 直流給電システム1Aは、直流バス2、1または2以上の発電装置3(本例では一例として2つの発電装置3a,3b。以下、区別しないときには「発電装置3」ともいう)、発電装置3に対応して配設された第1コンバータ4(本例では一例として後述する2つのパワーコンディショナ4a,4b)、直流給電システム1Aに接続される負荷機器71(本例では一例として2つの負荷機器71a,71b。以下、区別しないときには「負荷機器71」ともいう)に対応して配設された第2コンバータ5(本例では一例として後述する2つの第2コンバータ5a,5b。以下、区別しないときには「第2コンバータ5」ともいう)、複数の直流電源装置6(直流電源装置6,6,・・・,6)、第3コンバータ7、温度計測部8および電力管理装置9を備え、発電装置3で発電された電力に基づいて直流電圧を生成して、1または2以上の負荷機器71に供給可能な独立型の直流給電システム(商用電源(商用交流電源)に接続されない直流給電システム)として構成されている。 The DC power feeding system 1A includes a DC bus 2, one or more power generating devices 3 (two power generating devices 3a and 3b as an example in this example. Hereinafter, when not distinguished from each other, also referred to as "power generating device 3") Correspondingly arranged first converter 4 (two power conditioners 4a and 4b described later as an example in this example), load devices 71 connected to DC power supply system 1A (two load devices as an example in this example) 71a, 71b (hereinafter also referred to as "load device 71" when not distinguished) The second converters 5 (in this example, two second converters 5a, 5b described later as an example) are disposed correspondingly. sometimes also referred to as "second converter 5"), a plurality of direct-current power supply 6 (DC power supply device 6 1, 6 2, · · ·, 6 n), the third converter 7, the temperature measuring unit 8 Contact A stand-alone DC power supply system that includes a power management device 9 and generates a DC voltage based on the power generated by the power generation device 3 to supply one or more load devices 71 (DC power supply system) not connected to the power supply).
 直流バス2は、発電装置3の設置場所、各直流電源装置6の設置場所および負荷機器71の設置場所に亘って敷設されて、直流給電の母線として機能する。また、直流バス2は、複数の直流電源装置6内の後述する双方向DC/DCコンバータ14の充放電動作が電力管理装置9によって制御されることにより、公称バス電圧を含む所定の電圧範囲内(例えば、公称バス電圧としてのDC370Vを含むDC350V以上DC400V以下の電圧範囲内)にバス電圧Vbsが規定される。 The DC bus 2 is laid over the installation place of the power generation device 3, the installation place of each DC power supply 6, and the installation place of the load device 71, and functions as a bus bar of DC power supply. Further, DC bus 2 has a predetermined voltage range including a nominal bus voltage by controlling the charge / discharge operation of a bidirectional DC / DC converter 14 described later in multiple DC power supply devices 6 by power management device 9. The bus voltage Vbs is defined (for example, in a voltage range of DC 350 V or more and DC 400 V or less including DC 370 V as a nominal bus voltage).
 発電装置3は、分散型電源装置で構成されている。この場合、分散型電源装置は、太陽光発電装置および風力発電装置などの自然再生エネルギーを利用した発電装置や、軽油およびガソリンなどの化石エネルギーを利用したエンジン方式の発電装置で構成することが可能である。本例では、理解の容易のため、一例として、エンジン方式の1つの発電装置3aと、自然再生エネルギーを利用した1つの発電装置3bとで構成されている。発電装置3aは、オペレータによる操作(手動)によって起動・停止が行われて、動作状態において、所定の電圧値の交流電圧V1を生成して出力する。また、発電装置3aは、直流給電システム1Aの最初の起動時や、直流給電システム1Aの長期停止後の再起動時などのときのように、複数の直流電源装置6に含まれている後述の蓄電池11に対する充電のために多くの充電電力が一時的に必要なときに起動される。このため、本例では一例として、発電装置3aは、負荷機器71に対して負荷電力を供給しつつ、蓄電池11を十分に充電可能な電力を発電可能に構成されているものとする。また、発電装置3bは、一例として1または2以上の太陽光発電装置で構成されて、昼間には自動的に発電して、所定の電圧値の直流電圧V2を生成して出力する。 The power generation device 3 is configured of a distributed power supply device. In this case, the distributed power supply device can be configured as a power generation device using natural renewable energy such as a solar power generation device or a wind power generation device, or an engine type power generation device using fossil energy such as light oil and gasoline It is. In this example, for easy understanding, as one example, it is configured by one engine type power generation device 3a and one power generation device 3b using natural regenerated energy. The power generation device 3a is started and stopped by an operation (manually) by the operator, and generates and outputs an AC voltage V1 of a predetermined voltage value in an operation state. In addition, the power generation device 3a is included in the plurality of DC power supply devices 6, such as at the time of the first startup of the DC power supply system 1A, and at the time of restart after the DC power supply system 1A stops for a long period. It is started when a large amount of charging power is temporarily required to charge the storage battery 11. Therefore, as an example in this example, the power generation device 3a is configured to be able to generate power sufficient to charge the storage battery 11 while supplying load power to the load device 71. In addition, the power generation device 3b is configured of, for example, one or more solar power generation devices, generates power automatically during the daytime, and generates and outputs a DC voltage V2 of a predetermined voltage value.
 第1コンバータ4は、本例では2つの発電装置3a,3bに対応して配設された2つのパワーコンディショナ4a,4bで構成されている。本例では一例として、パワーコンディショナ4aは、AC/DCコンバータを含んで構成されて、発電装置3aに対応して配設されている。また、パワーコンディショナ4aは、交流電圧V1に基づいて内部で生成した直流電圧で動作すると共に、電力管理装置9によって制御されて、発電装置3aから出力される発電電力としての交流電圧V1をバス電圧Vbsに変換して、直流バス2に供給する。また、パワーコンディショナ4aは、発電装置3aから直流バス2に供給している発電電力W1を計測して(所定の周期T(例えば数秒間隔)で計測して)電力管理装置9に出力する電力計測機能を有している。 The first converter 4 is composed of two power conditioners 4a and 4b arranged corresponding to the two power generation devices 3a and 3b in this example. In the present embodiment, as an example, power conditioner 4a is configured to include an AC / DC converter, and is disposed corresponding to power generation device 3a. The power conditioner 4a operates with the DC voltage internally generated based on the AC voltage V1, and is controlled by the power management device 9 to generate the AC voltage V1 as the generated power output from the power generation device 3a as a bus. The voltage is converted into a voltage Vbs and supplied to the DC bus 2. Further, the power conditioner 4a measures the generated power W1 supplied from the power generation device 3a to the DC bus 2 (measured at a predetermined cycle T (for example, every few seconds)) and outputs it to the power management unit 9 It has a measurement function.
 パワーコンディショナ4bは、一例としてDC/DCコンバータを含んで構成されて、発電装置3bに対応して配設されている。また、パワーコンディショナ4bは、直流電圧V2に基づいて内部で生成した直流電圧で動作すると共に、電力管理装置9によって制御されて、対応する発電装置3bの発電動作を制御することで発電電力を制御可能に構成されると共に、発電装置3bから出力される発電電力としての直流電圧V2をバス電圧Vbsに変換して、直流バス2に供給する。また、パワーコンディショナ4bは、発電装置3bから直流バス2に供給されている発電電力W2を計測して(例えば周期Tで計測して)電力管理装置9に出力する電力計測機能を有している。 Power conditioner 4b includes a DC / DC converter as an example, and is disposed corresponding to power generation device 3b. The power conditioner 4b operates with the DC voltage internally generated based on the DC voltage V2, and is controlled by the power management device 9 to control the power generation operation of the corresponding power generation device 3b to generate generated power. While being configured to be controllable, the DC voltage V2 as the generated power output from the power generation device 3b is converted to the bus voltage Vbs and supplied to the DC bus 2. Further, the power conditioner 4b has a power measurement function of measuring the generated power W2 supplied from the power generation device 3b to the DC bus 2 (for example, by measuring in a cycle T) and outputting it to the power management device 9. There is.
 第2コンバータ5は、例えば、バス電圧Vbsに基づいて内部で生成した直流電圧で動作するDC/DCコンバータで構成されている。本例では、理解の容易のため、一例として、直流給電システム1Aに接続される負荷機器71(直流負荷)は負荷機器71a,71bの2つであるとして、第2コンバータ5は、負荷機器71aに対応する第2コンバータ5a(DC/DCコンバータ5aともいう)と、負荷機器71bに対応する第2コンバータ5b(DC/DCコンバータ5bともいう)の2つで構成されているものとする。この場合、DC/DCコンバータ5aは、電力管理装置9によって制御されて、バス電圧Vbsを負荷機器71aで使用される直流電圧である負荷電圧VLaに変換(直流電圧変換)して、負荷機器71aに供給する。また、DC/DCコンバータ5aは、直流バス2から負荷機器71aに供給される負荷電流について、電力管理装置9から設定された上限電流値で制限する電流制限機能を有している。また、DC/DCコンバータ5aは、この負荷電圧VLaおよび負荷電流とに基づき、直流バス2から負荷機器71aに供給されている負荷電力WLaを計測して(例えば周期Tで計測して)電力管理装置9に出力する電力計測機能を有している。 The second converter 5 is configured of, for example, a DC / DC converter that operates with a DC voltage generated internally based on the bus voltage Vbs. In this example, for easy understanding, it is assumed that the load devices 71 (DC loads) connected to the DC power supply system 1A are two load devices 71a and 71b, and the second converter 5 is a load device 71a. And a second converter 5b (also referred to as a DC / DC converter 5b) corresponding to the load device 71b. In this case, the DC / DC converter 5a is controlled by the power management device 9 to convert the bus voltage Vbs into a load voltage VLa which is a DC voltage used by the load device 71a (DC voltage conversion). Supply to The DC / DC converter 5a also has a current limiting function of limiting the load current supplied from the DC bus 2 to the load device 71a with the upper limit current value set from the power management unit 9. Further, the DC / DC converter 5a measures the load power WLa supplied from the DC bus 2 to the load device 71a based on the load voltage VLa and the load current (for example, by measuring in a cycle T) It has a power measurement function to be output to the device 9.
 DC/DCコンバータ5bは、電力管理装置9によって制御されて、バス電圧Vbsを負荷機器71bで使用される直流電圧である負荷電圧VLbに変換(直流電圧変換)して、負荷機器71bに供給する。また、DC/DCコンバータ5bは、直流バス2から負荷機器71bに供給される負荷電流について、電力管理装置9から設定された上限電流値で制限する電流制限機能を有している。また、DC/DCコンバータ5bは、この負荷電圧VLbおよび負荷電流とに基づき、直流バス2から負荷機器71bに供給されている負荷電力WLbを計測して(例えば周期Tで計測して)電力管理装置9に出力する電力計測機能を有している。 The DC / DC converter 5b is controlled by the power management device 9 to convert the bus voltage Vbs into a load voltage VLb which is a DC voltage used by the load device 71b (DC voltage conversion), and supplies the load voltage 71b to the load device 71b. . Further, the DC / DC converter 5 b has a current limiting function of limiting the load current supplied from the DC bus 2 to the load device 71 b with the upper limit current value set from the power management device 9. Further, based on the load voltage VLb and the load current, the DC / DC converter 5b measures the load power WLb supplied from the DC bus 2 to the load device 71b (for example, by measuring in a cycle T) It has a power measurement function to be output to the device 9.
 なお、負荷機器71a,71bは、直流電圧である負荷電圧VLa,VLb(以下、特に区別しないときには、負荷電圧VLともいう)の供給を受けて動作する直流負荷であって、例えば、直流電圧で動作する照明機器、直流電圧で動作するテレビおよび冷蔵庫などの家電製品、並びに直流電圧で動作するパソコンや携帯端末などの情報機器などで構成される。 The load devices 71a and 71b are DC loads that operate by receiving the load voltages VLa and VLb (hereinafter, referred to as load voltage VL unless otherwise specified), which are DC voltages, and are, for example, DC voltages. It consists of lighting devices that operate, household appliances such as televisions and refrigerators that operate with DC voltage, and information devices such as personal computers and mobile terminals that operate with DC voltage.
 直流電源装置6は、直流電源装置6,6,・・・,6のn個(nは2以上の整数。以下、特に区別しないときには、直流電源装置6ともいう)配設されている。各直流電源装置6は、蓄電池11、電池管理装置(BMU(Battery Management Unit))12、コンタクタ13および双方向DC/DCコンバータ14をそれぞれ備えて構成されている。蓄電池11,11,・・・,11(以下、特に区別しないときには、蓄電池11ともいう)は、一例としてリチウムイオン電池で構成されているが、これに限定されず、鉛蓄電池、ニッケル水素電池およびNAS電池(ナトリウム硫黄電池)などで構成することもできる。また、各蓄電池11は、規定の電力容量(公称容量)をそれぞれ有して、公称電圧を含む所定の使用電圧範囲内で、充電動作および放電動作が可能に構成されている。 DC power supply device 6 includes a DC power supply device 6 1, 6 2, · · ·, n-number of 6 n (n is an integer of 2 or more. Or less, particularly when no distinction is also referred to as a DC power supply device 6) is disposed There is. Each DC power supply device 6 is configured to include a storage battery 11, a battery management unit (BMU (Battery Management Unit)) 12, a contactor 13 and a bidirectional DC / DC converter 14, respectively. The storage batteries 11 1 , 11 2 ,..., 11 n (hereinafter, also referred to as the storage battery 11 when not distinguished in particular) are formed of lithium ion batteries as an example, but are not limited thereto. It can also be configured with a hydrogen battery and a NAS battery (sodium-sulfur battery). Each storage battery 11 has a prescribed power capacity (nominal capacity), and is configured to be capable of charge operation and discharge operation within a predetermined working voltage range including a nominal voltage.
 また、蓄電池11のうちの1つ(一例として本例では、蓄電池11)は、直流バス2への電力の供給のためにも使用されるものの、各直流電源装置6~6のBMU12およびコンタクタ13と、温度計測部8と、電力管理装置9との動作のための電力(動作用電圧Vop)の供給を行う蓄電池として主として機能する。このため、この蓄電池11は、後述するスリープ状態、および蓄電池11に対応するコンタクタ13が遮断状態に移行した状態の2つの状態を除く他の動作状態において、後述するように、その充電電圧Vbaがその使用電圧範囲の上限値未満で、かつ下限値を上回る予め規定された電圧閾値以上となるように、電力管理装置9によって充放電制御される。 Further, although one of the storage batteries 11 (in the example, the storage battery 11 1 in the example) is also used for supplying power to the DC bus 2, the BMU 12 of each of the DC power supply devices 6 1 to 6 n The battery mainly functions as a storage battery for supplying power (operation voltage Vop) for the operation of the contactor 13, the temperature measurement unit 8, and the power management device 9. Therefore, the storage battery 11 1 is described below sleep, and in other operating states, except the two states of the state where the contactor 13 1 shifts to the disconnected state corresponding to the storage battery 11 1, as described later, the charge The power management device 9 performs charge / discharge control so that the voltage Vba is less than the upper limit value of the working voltage range and equal to or higher than a predetermined voltage threshold value exceeding the lower limit value.
 BMU12,12,・・・,12(以下、特に区別しないときには、BMU12ともいう)は、対応する各蓄電池11,11,・・・,11にそれぞれ配設されて、後述する動作用電圧Vopで動作する。また、各BMU12は、動作状態において、一例として蓄電池11の充電電圧Vbaを計測する機能と、蓄電池11の充放電電流の電流値を計測してSOC(State of charge:残容量 )を演算する機能と、計測した充電電圧Vbaや充放電電流の電流値や算出したSOCを含む情報を電池情報として所定の周期Tで電力管理装置9に出力する機能とを有している。また、BMU12は、電力管理装置9からコンタクタ制御情報を入力したときには、このコンタクタ制御情報で示される制御内容をコンタクタ13に対して実行する(制御内容が遮断指示のときにはコンタクタ13を遮断状態に移行させ、制御内容が連結指示のときにはコンタクタ13を連結状態に移行させる)機能も有している。 BMU12 1, 12 2, ···, 12 n ( hereinafter, especially when no distinction is also referred to as BMU12), each storage battery 11 1, 11 2 corresponding, ..., are respectively disposed 11 n, later Operate with the operating voltage Vop. In addition, each BMU 12 measures the charge voltage Vba of the storage battery 11 as an example, and calculates the SOC (State of charge) by measuring the current value of the charge / discharge current of the storage battery 11 in the operating state. And a function of outputting information including the measured charging voltage Vba, the current value of the charging / discharging current, and the calculated SOC to the power management apparatus 9 at a predetermined cycle T as battery information. Further, when the BMU 12 receives the contactor control information from the power management apparatus 9, the BMU 12 executes the control contents indicated by the contactor control information to the contactor 13 (when the control content is a cutoff instruction, the contactor 13 shifts to the cutoff state). When the control content is a connection instruction, the contactor 13 is also brought into a connected state.
 コンタクタ13,13,・・・,13(以下、特に区別しないときには、コンタクタ13ともいう)は、対応する蓄電池11,11,・・・,11の正極および負極と、対応する双方向DC/DCコンバータ14,14,・・・,14における蓄電池11,11,・・・,11側の一対の入出力端子との間に配設されて、後述する動作用電圧Vopで動作する。また、各コンタクタ13は、対応するBMU12によって制御されて、遮断状態および連結状態のうちの任意の一方の状態に移行し、遮断状態のときには、この正極および負極と、この一対の入出力端子とを遮断し(切り離し)、連結状態のときには、この正極および負極と、この一対の入出力端子とを連結する。 Contactor 13 1, 13 2, ..., 13 n (hereinafter, when not particularly distinguished, also referred to as contactor 13), the corresponding storage battery 11 1, 11 2, ..., and positive and negative 11 n, corresponding .., 14 n are disposed between the storage batteries 11 1 , 11 2 ,..., 11 n on the side of the storage batteries 11 1 , 14 2 ,. Operate with the operating voltage Vop. Each contactor 13 is controlled by the corresponding BMU 12 to shift to any one of the blocking state and the coupling state, and in the blocking state, the positive electrode and the negative electrode, and the pair of input / output terminals Are cut off (disconnected), and in the connected state, the positive electrode and the negative electrode are connected to the pair of input / output terminals.
 双方向DC/DCコンバータ14,14,・・・,14(以下、特に区別しないときには、双方向DC/DCコンバータ14ともいう)は、上記したように蓄電池11側の一対の入出力端子(一方の一対の入出力端子)がコンタクタ13を介して蓄電池11に接続されると共に、他方の一対の入出力端子が直流バス2に接続されることで、蓄電池11と直流バス2との間に接続(配設)されている。また、双方向DC/DCコンバータ14は、バス電圧Vbsに基づいて内部で生成した直流電圧でCV動作(定電圧充電・放電動作)すると共に、電力管理装置9によって動作制御される。具体的には、双方向DC/DCコンバータ14は、電力管理装置9から受信した制御情報が充電指示のときには、他方の一対の入出力端子から入力したバス電圧Vbsを昇圧または降圧(電圧変換)して一方の一対の入出力端子から蓄電池11に出力することにより、蓄電池11を充電する(充電動作を実行する)。これにより、直流バス2のバス電圧Vbsが低下させられる。一方、双方向DC/DCコンバータ14は、受信した制御情報が放電指示のときには、一方の一対の入出力端子から入力した蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)して他方の一対の入出力端子から直流バス2に出力することにより、蓄電池11を放電させる(放電動作を実行する)。これにより、直流バス2のバス電圧Vbsが上昇させられる。双方向DC/DCコンバータ14としては、例えば特開2016-152641号公報に開示の公知の双方向DC/DCコンバータで構成することができる。 The bi-directional DC / DC converters 14 1 , 14 2 ,..., 14 n (hereinafter also referred to as bi-directional DC / DC converter 14 when not particularly distinguished) are a pair of input / output of the storage battery 11 side as described above. The terminals (one pair of input / output terminals) are connected to the storage battery 11 via the contactor 13 and the other pair of input / output terminals are connected to the DC bus 2 so that the storage battery 11 and the DC bus 2 It is connected (arranged) between. In addition, the bidirectional DC / DC converter 14 performs CV operation (constant voltage charging / discharging operation) with a DC voltage generated internally based on the bus voltage Vbs, and is operation controlled by the power management device 9. Specifically, when the control information received from power management device 9 indicates a charge instruction, bi-directional DC / DC converter 14 boosts or reduces (voltage conversion) bus voltage Vbs input from the other pair of input / output terminals. The storage battery 11 is charged by performing output from one of the pair of input / output terminals to the storage battery 11 (performing a charging operation). Thereby, the bus voltage Vbs of the DC bus 2 is lowered. On the other hand, when the received control information is a discharge instruction, bidirectional DC / DC converter 14 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 input from one pair of input / output terminals to set the other pair. The storage battery 11 is discharged by performing output to the DC bus 2 from the input / output terminal of (the discharge operation is performed). Thus, the bus voltage Vbs of the DC bus 2 is raised. The bi-directional DC / DC converter 14 can be configured by, for example, a known bi-directional DC / DC converter disclosed in JP-A-2016-152641.
 また、双方向DC/DCコンバータ14は、制御情報が停止指示のときには、自身の動作を停止させて消費電力を低減させるスリープ状態に移行する。また、双方向DC/DCコンバータ14は、スリープ状態において制御情報として充電指示または放電指示を受信したときには、スリープ状態から脱して、充電動作または放電動作を実行する。また、双方向DC/DCコンバータ14は、蓄電池11に供給する充電電流および蓄電池11から放電する放電電流の各電流値を蓄電池11の最大電流値(本例では後述するように一例として45A)以下に制限する電流制限機能を有している。 Further, when the control information is a stop instruction, the bidirectional DC / DC converter 14 shifts to a sleep state in which its operation is stopped to reduce power consumption. In addition, when the bi-directional DC / DC converter 14 receives a charge instruction or a discharge instruction as control information in the sleep state, the bi-directional DC / DC converter 14 leaves the sleep state and executes the charge operation or the discharge operation. In addition, the bidirectional DC / DC converter 14 sets each current value of the charging current supplied to the storage battery 11 and the discharge current discharged from the storage battery 11 to the maximum current value of the storage battery 11 (in this example, 45 A as an example described below) Have a current limiting function to limit the
 第3コンバータ7は、DC/DCコンバータで構成されている(以下、DC/DCコンバータ7ともいう)。また、DC/DCコンバータ7は、その一対の入力端子が直流電源装置6の蓄電池11における正極および負極に、コンタクタ13を介することなく接続されて、この蓄電池11の充電電圧Vbaで動作する。また、DC/DCコンバータ7は、動作状態において、この蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)することにより、各直流電源装置6のBMU12およびコンタクタ13と、温度計測部8と、電力管理装置9とで使用される動作用電圧Vopを生成して出力する。 The third converter 7 is configured of a DC / DC converter (hereinafter, also referred to as a DC / DC converter 7). Further, DC / DC converter 7, the positive electrode and the negative electrode thereof a pair of input terminals of the storage battery 11 1 of the DC power supply device 61, and is connected without passing through the contactor 13 1, the charging voltage Vba of the battery 11 1 Operate. In addition, DC / DC converter 7 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 in the operating state, whereby BMU 12 and contactor 13 of each DC power supply device 6, and temperature measurement unit 8; An operation voltage Vop used with the power management apparatus 9 is generated and output.
 温度計測部8は、動作用電圧Vopで動作して、各直流電源装置6の蓄電池11についての温度を計測する(所定の周期Tで計測する)と共に、計測した温度を示す温度情報を電力管理装置9に出力する。なお、各直流電源装置6の蓄電池11に配設されたBMU12が対応する蓄電池11の温度を監視して、この温度を電池情報の1つとして電力管理装置9に送信する機能を有しているときには、BMU12を温度計測部として機能させることもできる。このため、この構成を採用するときには、BMU12とは別体の温度計測部を設けない構成にすることができる。 The temperature measurement unit 8 operates at the operation voltage Vop to measure the temperature of the storage battery 11 of each DC power supply 6 (measure at a predetermined cycle T) and manage temperature information indicating the measured temperature. Output to the device 9 The BMU 12 disposed in the storage battery 11 of each DC power supply device 6 has a function of monitoring the temperature of the corresponding storage battery 11 and transmitting the temperature to the power management device 9 as one of battery information. At times, the BMU 12 can also function as a temperature measurement unit. Therefore, when adopting this configuration, it is possible to have a configuration in which the temperature measurement unit separate from BMU 12 is not provided.
 電力管理装置9は、動作用電圧Vopで動作するコンピュータで構成されて、制御部として機能する。この電力管理装置9は、各直流電源装置6に対する充放電制御処理、発電装置3(手動で動作制御される発電装置3aを除く他の発電装置3。本例では、発電装置3b)に対する発電制御処理、および第2コンバータ5に対する電力制御処理を実行する。また、電力管理装置9は、バス電圧Vbsを計測する電圧計測処理を実行する。この場合、電力管理装置9は、バス電圧Vbsを直接的に計測する構成を採用することもできるし、例えば、第1コンバータ4(パワーコンディショナ4a,4bのうちの少なくとも一方)が発電電力と共にバス電圧Vbsを計測して電力管理装置9に出力する機能を有するようにして、電力管理装置9が第1コンバータ4を介してバス電圧Vbsを間接的に計測する構成を採用することもできる。また、電力管理装置9は、後述する差分電力の最大絶対値(上限値)と蓄電池11の温度との関係を示す後述のデータテーブルが予め記憶された不図示の記憶部を備えている。 The power management device 9 is configured by a computer operating at the operation voltage Vop and functions as a control unit. The power management device 9 performs charge / discharge control processing for each DC power supply device 6, and power generation control for the power generation device 3 (other power generation devices 3 other than the power generation device 3a manually operated and controlled. In this example, power generation device 3b) Processing and power control processing for the second converter 5 are executed. The power management device 9 also executes a voltage measurement process of measuring the bus voltage Vbs. In this case, the power management apparatus 9 can adopt a configuration in which the bus voltage Vbs is directly measured. For example, the first converter 4 (at least one of the power conditioners 4a and 4b) A configuration in which the power management apparatus 9 indirectly measures the bus voltage Vbs via the first converter 4 may be employed so that the bus voltage Vbs is measured and output to the power management apparatus 9. Further, the power management apparatus 9 includes a storage unit (not shown) in which a data table described later indicating the relationship between the maximum absolute value (upper limit value) of differential power described later and the temperature of the storage battery 11 is stored in advance.
 次に、図1に示した直流給電システム1Aの動作について説明する。なお、蓄電池11については、上記したように、電力管理装置9等の構成要素への電力供給に用いられるものであるため、充電電圧Vbaが使用電圧範囲の上限値未満で、かつ電圧閾値以上となるように予め充電されているものとする。また、各コンタクタ13は、当初、遮断状態にあるものとする。 Next, the operation of the DC power feeding system 1A shown in FIG. 1 will be described. Note that the storage battery 11 1, as described above, since those used to power components, such as power management device 9, the charging voltage Vba is less than the upper limit of the voltage range, and more voltage threshold It shall be charged beforehand so that it may become. Also, each contactor 13 is initially in the disconnected state.
 この直流給電システム1Aでは、例えば、直流給電システム1Aの最初の起動時や、直流給電システム1Aの長期停止後の再起動時などのように、蓄電池11を除く他の蓄電池11~11が過放電状態(充電電圧Vbaが使用電圧範囲の下限値を下回る状態)であると想定されるときには、まず、発電装置3aを一定期間だけ動作させて、交流電圧V1を出力させる。これにより、パワーコンディショナ4aが、交流電圧V1の供給を受けて動作して、この交流電圧V1をバス電圧Vbsに変換して直流バス2に供給する。したがって、直流バス2のバス電圧Vbsが所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に上昇する。また、パワーコンディショナ4aは、発電装置3aから直流バス2に供給されている発電電力W1を計測して電力管理装置9に出力する。 In the DC power supply system 1A, for example, initial startup or the DC power supply system 1A, the DC power supply system 1A, such as reboot after prolonged stoppage of the other battery 11 2 to 11 except for the storage battery 11 1 n When it is assumed that the battery is in the overdischarged state (the state where the charging voltage Vba falls below the lower limit value of the working voltage range), first, the power generation device 3a is operated for a certain period to output the AC voltage V1. As a result, the power conditioner 4a operates by receiving the supply of the AC voltage V1, converts the AC voltage V1 into the bus voltage Vbs, and supplies the bus voltage Vbs to the DC bus 2. Therefore, the bus voltage Vbs of the DC bus 2 rises within a predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less). Further, the power conditioner 4 a measures the generated power W 1 supplied from the power generation device 3 a to the DC bus 2 and outputs the generated power W 1 to the power management device 9.
 また、昼間であれば、発電装置3bが自動的に発電して、直流電圧V2を出力している。これにより、パワーコンディショナ4bが、直流電圧V2の供給を受けて動作して、この直流電圧V2をバス電圧Vbsに変換して直流バス2に供給する。したがって、発電装置3aだけが動作する場合と比べて、直流バス2のバス電圧Vbsはより短時間に上記した所定の電圧範囲内に上昇する。また、パワーコンディショナ4bは、発電装置3bから直流バス2に供給されている発電電力W2を計測して電力管理装置9に出力する。 In the daytime, the power generation device 3b automatically generates power and outputs the DC voltage V2. Thus, the power conditioner 4b operates by receiving the supply of the DC voltage V2, converts the DC voltage V2 into the bus voltage Vbs, and supplies the bus voltage Vbs to the DC bus 2. Therefore, the bus voltage Vbs of the DC bus 2 rises to the above-described predetermined voltage range in a shorter time than when only the power generation device 3a operates. Further, the power conditioner 4 b measures the generated power W 2 supplied from the power generation device 3 b to the DC bus 2 and outputs it to the power management device 9.
 この直流給電システム1Aでは、蓄電池11から充電電圧Vbaの供給を受けているDC/DCコンバータ7が動作して、各直流電源装置6のBMU12およびコンタクタ13と、温度計測部8と、電力管理装置9とに動作用電圧Vopを出力(供給)している。このため、各直流電源装置6のBMU12およびコンタクタ13と、温度計測部8と、電力管理装置9はそれぞれ動作状態にある。 In the DC power supply system 1A, DC / DC converter 7 from the storage battery 11 1 and is supplied with a charging voltage Vba is operated, the BMU12 and contactor 13 of each DC power supply device 6, a temperature measuring unit 8, the power management The operation voltage Vop is output (supplied) to the device 9. Therefore, the BMU 12 and the contactors 13, the temperature measuring unit 8 and the power management device 9 of each DC power supply 6 are in operation.
 したがって、各直流電源装置6~6のBMU12~12は、対応する蓄電池11~11についての充電電圧Vba等を周期Tで計測すると共に、これらを計測する都度、電池情報として電力管理装置9に出力している。 Therefore, BMUs 12 1 to 12 n of each of DC power supply devices 6 1 to 6 n measure the charging voltage Vba or the like for corresponding storage batteries 11 1 to 11 n at period T, and each time they are measured, as battery information It is output to the power management unit 9.
 また、動作状態にある温度計測部8は、各直流電源装置6の蓄電池11についての温度を周期Tで計測すると共に、計測する都度、温度を示す温度情報を電力管理装置9に出力している。また、動作状態にある電力管理装置9は、充放電制御処理を実行している。 Further, the temperature measuring unit 8 in the operating state measures the temperature of the storage battery 11 of each DC power supply device 6 in the cycle T, and outputs the temperature information indicating the temperature to the power management unit 9 each time it is measured. . In addition, the power management device 9 in the operating state is executing the charge and discharge control process.
 このときの充放電制御処理では、電力管理装置9は、発電装置3a側のパワーコンディショナ4aから新たな発電電力W1を取得する都度(発電装置3bが発電しているときには、発電装置3b側のパワーコンディショナ4bから新たな発電電力W2を取得する都度)、総発電電力(W1+W2)を算出する。 In the charge / discharge control process at this time, whenever the power management device 9 acquires new generated power W1 from the power conditioner 4a on the power generation device 3a side (when the power generation device 3b is generating power, the power management device 9 Every time a new generated power W2 is obtained from the power conditioner 4b), the total generated power (W1 + W2) is calculated.
 また、電力管理装置9は、この総発電電力(W1+W2)が予め規定された基準電力以上のときには、負荷機器71への電力供給が可能と判別して、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させる制御を実行する。本例では発電装置3aは、上記したように、負荷機器71への電力供給と、蓄電池11に対する充電とを同時に実行し得る電力を発電可能に構成されていることから、総発電電力(W1+W2)は基準電力以上となっている。このため、電力管理装置9は、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させる制御を実行する。これにより、DC/DCコンバータ5a,5bは、対応する負荷機器71a,71bに対して負荷電力の供給を実行する。また、各DC/DCコンバータ5a,5bは、対応する負荷機器71a,71bに供給されている負荷電力WLa,WLbを計測して電力管理装置9に出力する。電力管理装置9は、新たな負荷電力WLa,WLbを取得する都度、総負荷電力(WLa+WLb)を算出する。 Further, when the total generated power (W1 + W2) is equal to or greater than a predetermined reference power, the power management device 9 determines that the power can be supplied to the load device 71, and transmits power to the DC / DC converters 5a and 5b. Then, control is performed to convert and output the bus voltage Vbs so as to obtain the load voltages VLa and VLb used by the corresponding load devices 71a and 71b. In this example, as described above, since the power generation device 3a is configured to be able to generate power that can simultaneously execute the supply of power to the load device 71 and the charging of the storage battery 11, the total generated power (W1 + W2) Is above the reference power. Therefore, the power management apparatus 9 converts the bus voltage Vbs to the load voltages VLa and VLb used by the corresponding load devices 71a and 71b and outputs the bus voltages Vbs to the DC / DC converters 5a and 5b. Execute control. Thereby, the DC / DC converters 5a and 5b execute the supply of load power to the corresponding load devices 71a and 71b. Further, each DC / DC converter 5 a, 5 b measures the load power WLa, WLb supplied to the corresponding load device 71 a, 71 b and outputs it to the power management unit 9. The power management apparatus 9 calculates the total load power (WLa + WLb) each time it obtains new load powers WLa and WLb.
 電力管理装置9は、算出した総発電電力(W1+W2)と総負荷電力(WLa+WLb)とを比較して、総発電電力(W1+W2)が総負荷電力(WLa+WLb)よりも大きいときには、各直流電源装置6の蓄電池11への充電が可能な状態にあると判別する。本例の発電装置3aは、負荷機器71への電力供給と、蓄電池11に対する充電とを同時に実行可能な電力を発電可能な構成のため、総発電電力(W1+W2)は総負荷電力(WLa+WLb)よりも大きくなることから、電力管理装置9は、各直流電源装置6の蓄電池11への充電が可能な状態にあると判別する。 The power management device 9 compares the calculated total generated power (W1 + W2) with the total load power (WLa + WLb), and when the total generated power (W1 + W2) is larger than the total load power (WLa + WLb), each DC power supply device 6 It is determined that the storage battery 11 of can be charged. Since the power generation device 3a of this example is configured to be able to generate power capable of simultaneously supplying power to the load device 71 and charging the storage battery 11, the total generated power (W1 + W2) is generated from the total load power (WLa + WLb) Since the power management device 9 also becomes large, the power management device 9 determines that the storage battery 11 of each DC power supply device 6 can be charged.
 この場合、電力管理装置9は、各直流電源装置6のBMU12から取得した電池情報に基づいて充電可能な蓄電池11(充電電圧Vbaが使用電圧範囲の上限値に達していない蓄電池11)を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して充電指示を示す制御情報を出力する(充電動作を実行する)。 In this case, the power management device 9 has a DC battery having a rechargeable storage battery 11 (storage battery 11 in which the charging voltage Vba has not reached the upper limit value of the working voltage range) chargeable based on the battery information acquired from the BMU 12 of each DC power supply device 6 While specifying the power supply device 6, contact control information indicating a connection instruction is output to the BMU 12 of the specified DC power supply device 6, and a charging instruction is issued to the bidirectional DC / DC converter 14 of the DC power supply device 6. The control information shown is output (the charging operation is performed).
 本例において、この現時点では、蓄電池11を除く他の蓄電池11~11が過放電状態であり、また蓄電池11についてもその充電電圧Vbaが使用電圧範囲の上限値未満であることから、電力管理装置9は、電池情報に含まれる各蓄電池11の充電電圧Vba(電池情報に含まれる各蓄電池11のSOCであってもよい)に基づいてすべての蓄電池11が満充電ではない(つまり、充電が可能な状態)ことを検出する。このため、電力管理装置9は、すべての直流電源装置6~6のBMU12~12に対して連結指示を示すコンタクト制御情報を出力し、かつすべての直流電源装置6~6の双方向DC/DCコンバータ14~14に対して充電指示を示す制御情報を出力する。 In this example, in this moment, since the other battery 11 2 ~ 11 n excluding battery 11 1 it is over-discharged, also is less than the upper limit value of the charging voltage Vba is voltage range also battery 11 1 The power management apparatus 9 does not fully charge all the storage batteries 11 based on the charging voltage Vba of each storage battery 11 (may be the SOC of each storage battery 11 included in the battery information) included in the battery information (that is, Detect that charging is possible). Therefore, the power management apparatus 9 outputs a contact control information showing the connection instruction to the BMU12 1 ~ 12 n for all of the DC power supply device 6 1 ~ 6 n, and all of the DC power supply device 6 1 ~ 6 n Control information indicating a charging instruction to the bi-directional DC / DC converters 14 1 to 14 n .
 これにより、各直流電源装置6では、各コンタクタ13が連結状態に移行することから、各蓄電池11が充電動作する双方向DC/DCコンバータ14に連結状態のコンタクタ13を介して接続されるため、各蓄電池11に対する充電が実行される。この場合、電力管理装置9は、各直流電源装置6のBMU12から周期Tで出力される電池情報に含まれる充電電圧Vbaが使用電圧範囲の上限値に達したか否か(または、電池情報に含まれるSOCが公称容量に達しか否か。つまり、蓄電池11が満充電状態になったか否か)を検出しつつ、満充電状態になったと判別したときには、その蓄電池11を含む直流電源装置6のBMU12に対して遮断指示を示すコンタクト制御情報を出力して、コンタクタ13を遮断状態に移行させることでこの蓄電池11を双方向DC/DCコンバータ14から切り離す。これにより、蓄電池11に対する過充電が防止される。また、電力管理装置9は、各蓄電池11~11に対する充電に際して、動作用電圧Vopの生成に用いられる充電電圧Vbaを出力する蓄電池11に対する充電を優先的に実行する。これにより、蓄電池11は、その充電電圧Vbaが使用電圧範囲の上限値近傍になるように常時充電される。 Thereby, in each DC power supply 6, since each contactor 13 is shifted to the connected state, the storage battery 11 is connected to the bi-directional DC / DC converter 14 for charging operation via the contactor 13 in the connected state. Charging of each storage battery 11 is performed. In this case, the power management apparatus 9 determines whether or not the charging voltage Vba included in the battery information output in a cycle T from the BMU 12 of each DC power supply device 6 has reached the upper limit value of the working voltage range (or Whether or not the included SOC has reached the nominal capacity, that is, whether or not the storage battery 11 is fully charged is determined, and when it is determined that the fully charged state is reached, the DC power supply 6 including the storage battery 11 The storage battery 11 is disconnected from the bi-directional DC / DC converter 14 by outputting contact control information indicating a cutoff instruction to the BMU 12 of FIG. Thereby, overcharging of the storage battery 11 is prevented. The power management unit 9, upon charging of each battery 11 1 ~ 11 n, which perform the charging of the battery 11 1 for outputting a charging voltage Vba to be used in generating operating voltage Vop preferentially. Thus, the storage battery 11 1, the charging voltage Vba is always charged to be the upper limit vicinity of the voltage range.
 ところで、本例の双方向DC/DCコンバータ14は、CV動作する構成のため、総発電電力(W1+W2)と総負荷電力(WLa+WLb)の差分電力の絶対値が大きいときには、各直流電源装置6の蓄電池11への充電(および蓄電池11からの放電)に割り当てられる電力も大きくなり、蓄電池11への充電電流(および放電電流)も大きくなる。 By the way, since the bidirectional DC / DC converter 14 of this example is configured to perform CV operation, when the absolute value of the difference power between the total generated power (W1 + W2) and the total load power (WLa + WLb) is large, The power allocated to charging the storage battery 11 (and discharging from the storage battery 11) also increases, and the charging current (and discharge current) to the storage battery 11 also increases.
 一方、蓄電池11については、充電・放電時の電流の電流値および温度(電池温度)の電池寿命への影響に関して図3に示すような関係が一般的に成り立つことが公知となっている。つまり、幅の広いハッチングを付した範囲AR1(以下、第1の範囲AR1)に含まれる温度および電流値の組み合わせによる充電・放電は、蓄電池11の寿命に悪影響を与えることは無く、幅の狭いハッチングを付した範囲AR2(以下、第2の範囲AR2)に含まれる温度および電流値の組み合わせによる充電・放電は、蓄電池11の寿命に悪影響を与える、という関係が成り立つことが公知となっている。なお、理解の容易のため、図3では、充電・放電時に蓄電池11に流し得る電流の最大電流値を一例として45Aとし、基準温度を40℃とし、充電・放電時において許容し得る蓄電池11の最高温度を70℃とし、かつ基準温度40℃から最高温度70℃までの間において最大電流値が温度の上昇に伴い直線的に低下するものとしているが、あくまでも一例であり、これらの数値に関しては、蓄電池11の種類に応じて変化するものである。 On the other hand, for the storage battery 11, it is known that the relationship as shown in FIG. 3 generally holds regarding the influence of the current value of the current at the time of charge and discharge and the temperature (battery temperature) on the battery life. That is, charging / discharging by the combination of the temperature and the current value included in the wide hatched range AR1 (hereinafter, the first range AR1) does not adversely affect the life of the storage battery 11, and the width is narrow. It is known that the charge / discharge by combination of the temperature and the current value included in the hatched range AR2 (hereinafter, the second range AR2) adversely affects the life of the storage battery 11 . For ease of understanding, in FIG. 3, the maximum current value of the current that can be supplied to the storage battery 11 during charging and discharging is 45 A as an example, and the reference temperature is 40 ° C. Although the maximum temperature is 70 ° C., and the maximum current value decreases linearly with the increase in temperature between the reference temperature 40 ° C. and the maximum temperature 70 ° C., this is merely an example, and regarding these numerical values, , And change according to the type of the storage battery 11.
 このため、蓄電池11では、蓄電池11の温度が基準温度を上回っているときには、基準温度以下のときに許容される電流値(図3では45A以下の電流値)で充電や放電を実行したとしても、温度によっては蓄電池11の寿命に悪影響を与える(電池寿命を短くする)ことがある。 Therefore, even if storage battery 11 performs charging or discharging at a current value (a current value of 45 A or less in FIG. 3) that is allowed when the temperature of storage battery 11 is above the reference temperature, the temperature of storage battery 11 is lower than the reference temperature. Depending on the temperature, the life of the storage battery 11 may be adversely affected (the battery life may be shortened).
 したがって、図3に示される基準温度を上回る各温度と、この各温度での最大電流値との関係を元に、この最大電流値を、上記した差分電力の絶対値の大小が充電電流(および放電電流)の大小に対応することを考慮して差分電力の絶対値についての最大絶対値(上限値)に置き換えることで温度と差分電力の最大絶対値(上限値)との関係を示すデータテーブルが予め作成されて、直流給電システム1Aでは、電力管理装置9の記憶部にこのデータテーブルが記憶されている。 Therefore, based on the relationship between each temperature exceeding the reference temperature shown in FIG. 3 and the maximum current value at each temperature, the magnitude of the absolute value of the above-mentioned differential power represents the charging current (and the maximum current value). A data table showing the relationship between temperature and the maximum absolute value (upper limit) of differential power by replacing the absolute value of differential power with the maximum absolute value (upper limit) taking into account the fact that it corresponds to the magnitude of discharge current Is created in advance, and in the DC power feeding system 1A, the data table is stored in the storage unit of the power management apparatus 9.
 そして、電力管理装置9では、上記したような蓄電池11の寿命に影響を与える温度および電流値(図3の第2の領域AR2に含まれる温度および電流値)での蓄電池11に対する充電や放電を回避するため、各直流電源装置6の温度計測部8から取得した蓄電池11の温度(電池温度)とこの基準温度とを比較して、電池温度がこの基準温度を上回っているときには、上記のデータテーブルを参照してこの電池温度での差分電力の最大絶対値を求め、総発電電力(W1+W2)と総負荷電力(WLa+WLb)の差分電力の絶対値がこの求めた最大絶対値(予め規定された電力)以下となるように(結果として、充電電流や放電電流の電流値がこの電池温度での最大電流値以下となるように)、総発電電力(W1+W2)を減少させる制御(発電制御処理)および総負荷電力(WLa+WLb)を増加させる制御(電力制御処理)のうちの少なくとも一方の制御を実行する。 Then, power management device 9 charges and discharges storage battery 11 at a temperature and a current value (a temperature and a current value included in second region AR2 in FIG. 3) that affect the lifetime of storage battery 11 as described above. In order to avoid this, the temperature (battery temperature) of the storage battery 11 acquired from the temperature measurement unit 8 of each DC power supply 6 is compared with this reference temperature, and when the battery temperature exceeds this reference temperature, the above data The maximum absolute value of the differential power at this battery temperature is determined with reference to the table, and the absolute value of the differential power between the total generated power (W1 + W2) and the total load power (WLa + WLb) is this maximum absolute value (prescribed Control to reduce the total generated power (W1 + W2) so that the power consumption does not exceed (so that the current value of the charging current or the discharging current is below the maximum current value at this battery temperature). Executing at least one control of (the power generation control processing) and control for increasing the total load power (WLa + WLb) (power control process).
 具体的には、総発電電力(W1+W2)に発電装置3bの発電電力W2が含まれているときには、電力管理装置9は、発電装置3bに対応するパワーコンディショナ4bに対する制御を行って、発電装置3bでの発電を減少させることで、上記した差分電力の絶対値を上記の最大絶対値以下にする発電制御処理を実行する。また、電力管理装置9は、第2コンバータ5(本例では、DC/DCコンバータ5a,5bの少なくとも一方)に対して設定する上限電流値を変更して(この場合、上限電流値を上げて)、総負荷電力(WLa+WLb)を増加させることで、上記した差分電力の絶対値を上記の最大絶対値以下にする電力制御処理を、発電制御処理と共に、または発電制御処理に代えて実行することもできる。 Specifically, when the generated power W2 of the power generation device 3b is included in the total generated power (W1 + W2), the power management device 9 controls the power conditioner 4b corresponding to the power generation device 3b to generate the power generation device By reducing the power generation in 3b, the power generation control process is executed to make the absolute value of the above-mentioned differential power less than the above-mentioned maximum absolute value. Further, the power management apparatus 9 changes the upper limit current value to be set for the second converter 5 (in this example, at least one of the DC / DC converters 5a and 5b) (in this case, the upper limit current value is increased). Power control processing for reducing the absolute value of the differential power to the maximum absolute value or less by increasing the total load power (WLa + WLb) together with or in place of the power generation control processing. You can also.
 また、総発電電力(W1+W2)に発電装置3bの発電電力W2が含まれていないとき(発電装置3aの発電電力W1だけのとき)には、電力管理装置9は、発電を減少させることはできない。この場合、電力管理装置9は、上記の電力制御処理を実行して、総負荷電力(WLa+WLb)を増加させることで、上記した差分電力の絶対値を上記の最大絶対値以下にする。 In addition, when the generated power W2 of the power generation device 3b is not included in the total generated power (W1 + W2) (when only the generated power W1 of the power generation device 3a), the power management device 9 can not reduce the power generation. . In this case, the power management apparatus 9 executes the above-described power control processing to increase the total load power (WLa + WLb), thereby making the absolute value of the above-mentioned differential power less than or equal to the above-mentioned maximum absolute value.
 上記したようにして、この直流給電システム1Aでは、最初の起動時や長期停止後の再起動時などにおいて、発電装置3aを一定期間だけ動作させてその発電電力W1を直流バス2に供給する構成のため、この一定期間において、直流バス2から各負荷機器71a,71bに対して十分な電力で負荷電圧VLa,Vlbを供給しつつ、各直流電源装置6に含まれている蓄電池11を十分に充電(充電電圧Vbaが使用電圧範囲の上限値となる状態(満充電状態)に充電)することが可能となっている。なお、発電装置3aを動作させているこの一定期間が終了する前に、各直流電源装置6の蓄電池11がすべて十分に充電されたときには、電力管理装置9は、上記の電力制御処理を第2コンバータ5に対して実行することで、総負荷電力(WLa+WLb)をより増加させ得る状態にして、蓄電池11の充電に割り当てられていた電力を負荷機器71に振り向けるようにしてもよいし、またすべての蓄電池11が十分に充電されたことを発電装置3aの設置場所に居るオペレータに報知する表示器などを設けて発電装置3aの停止を促すようにしてもよい。 As described above, in the DC power feeding system 1A, the power generation device 3a is operated for a certain period of time and the generated power W1 is supplied to the DC bus 2 at the time of the first start or restart after a long stop. Therefore, in this fixed period, while supplying load voltages VLa and Vlb with sufficient power from DC bus 2 to each of load devices 71a and 71b, storage battery 11 included in each DC power supply device 6 is sufficiently It is possible to charge (charge to a state in which the charge voltage Vba is at the upper limit value of the working voltage range (full charge state)). When all the storage batteries 11 of the DC power supply devices 6 are fully charged before this fixed period of operation of the power generation device 3a ends, the power management device 9 performs the above-described power control process By executing the converter 5, the total load power (WLa + WLb) may be further increased, and the power allocated for charging the storage battery 11 may be diverted to the load device 71, or A display or the like may be provided to notify the operator at the installation place of the power generation device 3a that all the storage batteries 11 have been sufficiently charged, to urge stop of the power generation device 3a.
 一定期間が終了した時点で、発電装置3aは停止される。これにより、この一定期間の終了後は、直流給電システム1Aは、発電装置3bだけが自然状態に応じて自動的に動作して発電する通常動作状態に移行する。 When the fixed period ends, the power generation device 3a is stopped. As a result, after the end of the fixed period, the DC power supply system 1A shifts to the normal operation state in which only the power generation device 3b automatically operates and generates power according to the natural state.
 この通常動作状態において直流給電システム1Aでは、電力管理装置9は、次のような充放電制御処理を実行している。 In the DC power supply system 1A in this normal operation state, the power management device 9 executes the following charge / discharge control processing.
 まず、発電装置3bが発電状態となる自然状態のとき(本例では、発電装置3bが太陽光発電装置で構成されているため、昼間のとき)の充放電制御処理では、電力管理装置9は、まず、発電装置3bのパワーコンディショナ4bから新たな発電電力W2を取得したり、また負荷機器71a,71bの各DC/DCコンバータ5a,5bから新たな負荷電力WLa,WLbを取得したりする都度、総発電電力(この場合、発電電力W2のみである)および総負荷電力(WLa+WLb)を算出する。 First, in the charge / discharge control process when the power generation device 3b is in a power generation state (in this example, since the power generation device 3b is a solar power generation device in the daytime), the power management device 9 First, new power generation W2 is obtained from power conditioner 4b of power generation device 3b, and new load power WLa, WLb is obtained from DC / DC converters 5a, 5b of load devices 71a, 71b. Each time, the total generated power (in this case, only the generated power W2) and the total load power (WLa + WLb) are calculated.
 次いで、電力管理装置9は、算出した総発電電力(W2)と総負荷電力(WLa+WLb)とを比較して、総発電電力(W2)が総負荷電力(WLa+WLb)よりも大きいとき(例えば、日照量が多いため、発電装置3bの発電電力W2が大きいとき)には、余剰電力が生じるため、各直流電源装置6の蓄電池11への充電が可能な状態にあると判別する。この場合、電力管理装置9は、各直流電源装置6のBMU12から取得した電池情報に基づいて充電可能な蓄電池11(充電電圧Vbaが使用電圧範囲の上限値に達していない蓄電池11)を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して充電指示を示す制御情報を出力する(充電動作を実行させる)。 Next, the power management apparatus 9 compares the calculated total generated power (W2) with the total load power (WLa + WLb), and when the total generated power (W2) is larger than the total load power (WLa + WLb) (for example, sunshine) Since the amount is large, surplus power is generated when the generated power W2 of the power generation device 3b is large), so it is determined that the storage battery 11 of each DC power supply device 6 can be charged. In this case, the power management device 9 has a DC battery having a rechargeable storage battery 11 (storage battery 11 in which the charging voltage Vba has not reached the upper limit value of the working voltage range) chargeable based on the battery information acquired from the BMU 12 of each DC power supply device 6 While specifying the power supply device 6, contact control information indicating a connection instruction is output to the BMU 12 of the specified DC power supply device 6, and a charging instruction is issued to the bidirectional DC / DC converter 14 of the DC power supply device 6. The control information shown is output (the charging operation is performed).
 これにより、充電可能な蓄電池11を有する直流電源装置6では、連結状態に移行したコンタクタ13を介して蓄電池11が双方向DC/DCコンバータ14に接続され、かつ双方向DC/DCコンバータ14が充電動作することにより、蓄電池11に対する充電が実行される。この場合、電力管理装置9は、計測しているバス電圧Vbsが上記した所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に維持されるように、充電動作を実行させる直流電源装置6の数や、充電動作を実行させる時間を制御して、直流バス2から各直流電源装置6に供給される充電電力を制御する。 Thereby, in the DC power supply 6 having the rechargeable storage battery 11, the storage battery 11 is connected to the bidirectional DC / DC converter 14 via the contactor 13 shifted to the connection state, and the bidirectional DC / DC converter 14 is charged By operating, the storage battery 11 is charged. In this case, the power management apparatus 9 performs the charging operation so that the charging operation is performed such that the measured bus voltage Vbs is maintained within the above-described predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less). By controlling the number and the time for executing the charging operation, the charging power supplied from the DC bus 2 to each DC power supply device 6 is controlled.
 また、電力管理装置9は、充電動作中の直流電源装置6のBMU12から周期Tで出力される電池情報に含まれる充電電圧Vbaが使用電圧範囲の上限値に達したか否か(または、電池情報に含まれるSOCが公称容量に達しか否か。つまり、蓄電池11が満充電状態になったか否か)を検出しつつ、満充電状態になったと判別したときには、その蓄電池11を含む直流電源装置6のBMU12に対して遮断指示を示すコンタクト制御情報を出力して、コンタクタ13を遮断状態に移行させることでこの蓄電池11を双方向DC/DCコンバータ14から切り離す。これにより、蓄電池11に対する過充電が防止される。 In addition, power management device 9 determines whether or not charging voltage Vba included in the battery information output in a cycle T from BMU 12 of DC power supply device 6 in charge operation has reached the upper limit value of the working voltage range (or If it is determined that the SOC included in the information has reached the nominal capacity (that is, whether the storage battery 11 is fully charged) and it is determined that the storage battery 11 is fully charged, the DC power supply including the storage battery 11 The contact control information indicating a shutoff instruction is output to the BMU 12 of the device 6, and the storage battery 11 is separated from the bidirectional DC / DC converter 14 by shifting the contactor 13 to the shutoff state. Thereby, overcharging of the storage battery 11 is prevented.
 また、電力管理装置9は、各蓄電池11~11に対する充電に際して、動作用電圧Vopの生成に用いられる充電電圧Vbaを出力する蓄電池11に対する充電を優先的に実行する。これにより、直流給電システム1Aでは、蓄電池11は、その充電電圧Vbaが常時、使用電圧範囲の上限値近傍の電圧となるように(ほぼ満充電となるように)充電される。このため、コンタクタ13が遮断状態に移行した状態(蓄電池11が双方向DC/DCコンバータ14から切り離された状態)において、DC/DCコンバータ7が、蓄電池11から出力される充電電圧Vbaに基づいて、動作用電圧Vopをより長い時間継続して生成することが可能となっている。 The power management unit 9, upon charging of each battery 11 1 ~ 11 n, which perform the charging of the battery 11 1 for outputting a charging voltage Vba to be used in generating operating voltage Vop preferentially. Thus, the DC power supply system 1A, the storage battery 11 1, the charging voltage Vba is always such that the upper limit voltage near the voltage range (to be substantially fully charged) is charged. Therefore, the charging voltage in a state where the contactor 13 1 shifts to the disconnected state (a state where the storage battery 11 1 is disconnected from the bidirectional DC / DC converter 14 1), DC / DC converter 7, which is output from the battery 11 1 Based on Vba, it is possible to continuously generate the operation voltage Vop for a longer time.
 また、この通常動作状態において、蓄電池11を充電させる際にも、電力管理装置9は、温度計測部8から取得した電池温度とこの基準温度とを比較して、電池温度がこの基準温度を上回っているときには、大きな充電電流での充電が蓄電池11に対して実行されないようにすべく、上記の差分電力の絶対値が上記の最大絶対値以下になるように、総発電電力(W2)を減少させる制御(発電制御処理)および総負荷電力(WLa+WLb)を増加させる制御(電力制御処理)のうちの少なくとも一方の制御を実行する。 Further, even in the normal operation state, when charging storage battery 11, power management device 9 compares the battery temperature obtained from temperature measuring unit 8 with the reference temperature, and the battery temperature exceeds this reference temperature. In order to ensure that charging with a large charging current is not performed on storage battery 11, the total generated power (W2) is reduced so that the absolute value of the above differential power is less than or equal to the above maximum absolute value. At least one of control (generation control processing) and control (power control processing) for increasing the total load power (WLa + WLb) is executed.
 具体的には、発電制御処理では、電力管理装置9は、発電装置3bに対応するパワーコンディショナ4bに対する制御を行って、発電装置3bでの発電電力を減少させることで、上記した差分電力の絶対値を上記の最大絶対値以下にする。また、電力制御処理では、電力管理装置9は、第2コンバータ5(本例では、DC/DCコンバータ5a,5bの少なくとも一方)に対して設定する上限電流値を変更すること(この場合、上限電流値を上げること)で、総負荷電力(WLa+WLb)を増加させる。 Specifically, in the power generation control process, the power management device 9 controls the power conditioner 4b corresponding to the power generation device 3b to reduce the generated power in the power generation device 3b, whereby the above-described differential power can be obtained. Make the absolute value less than or equal to the maximum absolute value above. Further, in the power control process, the power management apparatus 9 changes the upper limit current value set for the second converter 5 (in this example, at least one of the DC / DC converters 5a and 5b) (in this case, the upper limit). The total load power (WLa + WLb) is increased by increasing the current value).
 一方、電力管理装置9は、総発電電力(W2)と総負荷電力(WLa+WLb)との比較の結果、総発電電力(W2)が総負荷電力(WLa+WLb)よりも小さいとき(例えば、日照量が少ないため、発電装置3bの発電電力W2が小さいとき)には、不足電力が生じるため、各直流電源装置6の蓄電池11からの放電が必要な状態にあると判別する。この場合、電力管理装置9は、各直流電源装置6のBMU12から取得した電池情報に基づいて放電可能な蓄電池11を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して放電指示を示す制御情報を出力する(放電動作を実行させる)。 On the other hand, when the total generated power (W2) is smaller than the total load power (WLa + WLb) as a result of comparison between the total generated power (W2) and the total load power (WLa + WLb), the power management apparatus 9 Since the amount of electric power W2 generated by the power generation device 3b is small, insufficient electric power is generated, so it is determined that the storage battery 11 of each DC power supply device 6 needs to be discharged. In this case, the power management device 9 identifies the DC power supply device 6 having the dischargeable storage battery 11 based on the battery information acquired from the BMU 12 of each DC power supply device 6 and applies to the BMU 12 of the identified DC power supply device 6. It outputs contact control information indicating a connection instruction, and outputs control information indicating a discharge instruction to the bidirectional DC / DC converter 14 of the DC power supply 6 (performs a discharge operation).
 この場合、直流給電システム1Aでは、上記したように蓄電池11はその充電電圧Vbaが常時、使用電圧範囲の上限値近傍の電圧となるように充電される構成のため、電力管理装置9は、放電可能な蓄電池11を有する直流電源装置6として直流電源装置6を常に特定する。また、電力管理装置9は、放電可能な蓄電池11を有する直流電源装置6として、直流電源装置6~6のうちのいずれかの直流電源装置6が該当するときには、この直流電源装置6を放電可能な蓄電池11を有する直流電源装置6として特定する。また、電力管理装置9は、特定した直流電源装置6の中に直流電源装置6以外の直流電源装置6(直流電源装置6~6のうちのいずれかの直流電源装置6)が含まれているときには、このいずれかの直流電源装置6を優先的に放電動作させる。以下、特定した直流電源装置6の中に直流電源装置6以外の直流電源装置6が含まれている例を挙げて説明する。 In this case, the DC power supply system 1A, the above-mentioned manner battery 11 1 is always its charging voltage Vba, due to the configuration that is charged to be the upper limit voltage near the voltage range, the power management device 9, always identify DC power supply device 61 as a DC power supply device 6 having a dischargeable storage battery 11. Further, when the DC power supply device 6 of any one of the DC power supply devices 6 2 to 6 n corresponds to the DC power supply device 6 having the rechargeable battery 11, the power management device 9 is used as the DC power supply device 6. It identifies as the direct-current power supply 6 which has the storage battery 11 which can be discharged. The power management apparatus 9 includes a DC power supply 61 other than the DC power supply device 6 (DC power supply device 6 of any of the DC power supply device 6 2 ~ 6 n) in the DC power supply device 6 identified When it is set, any one of the DC power supply devices 6 is preferentially discharged. Hereinafter, it will be explained using an example that contains the DC power supply device 6 other than the DC power supply device 61 into the DC power supply device 6 identified.
 この例では、電力管理装置9は、まず、上記のいずれかの直流電源装置6(直流電源装置6~6のうちの特定されたいずれかの直流電源装置6)に放電動作を実行させるために、この直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつ双方向DC/DCコンバータ14に対して放電指示を示す制御情報を出力する。この直流電源装置6では、BMU12が、電力管理装置9から取得した連結指示を示すコンタクト制御情報に基づいてコンタクタ13を連結状態に移行させることで、蓄電池11を双方向DC/DCコンバータ14に接続させる。また、電力管理装置9から取得した放電指示を示す制御情報に基づいて放電動作している双方向DC/DCコンバータ14は、蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)して直流バス2に出力する(蓄電池11を放電する)。 In this example, first, the power management device 9 causes the discharge operation to be performed to any of the above-described DC power supply devices 6 (one of the specified DC power supply devices 6 of the DC power supply devices 6 2 to 6 n ). Therefore, contact control information indicating a connection instruction is output to the BMU 12 of the DC power supply device 6, and control information indicating a discharge instruction is output to the bidirectional DC / DC converter 14. In this direct-current power supply device 6, the BMU 12 connects the storage battery 11 to the bidirectional DC / DC converter 14 by causing the contactor 13 to shift to the connected state based on the contact control information indicating the connection instruction acquired from the power management device 9. Let In addition, bidirectional DC / DC converter 14 performing discharge operation based on the control information indicating the discharge instruction acquired from power management device 9 boosts or lowers (converts) the charging voltage Vba of storage battery 11 to generate a DC bus. It outputs to 2 (discharges storage battery 11).
 この場合、電力管理装置9は、計測しているバス電圧Vbsが上記した所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に維持されるように、放電動作を実行させる直流電源装置6の数や、放電動作を実行させる時間を制御して、直流電源装置6から直流バス2に供給される放電電力を制御する。 In this case, the power management apparatus 9 performs the discharging operation so that the measured bus voltage Vbs is maintained within the above-described predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less). The discharge power supplied from the DC power supply 6 to the DC bus 2 is controlled by controlling the number and the time for performing the discharge operation.
 また、この通常動作状態において、蓄電池11を放電させる際にも、電力管理装置9は、温度計測部8から取得した電池温度とこの基準温度とを比較して、電池温度がこの基準温度を上回っているときには、大きな放電電流での放電が蓄電池11に対して実行されないようにすべく、上記の差分電力の絶対値が上記の最大絶対値以下になるように、総発電電力(W2)を増加させる制御(発電制御処理)および総負荷電力(WLa+WLb)を減少させる制御(電力制御処理)のうちの少なくとも一方の制御を実行する。 Further, even in the normal operation state, even when the storage battery 11 is discharged, the power management device 9 compares the battery temperature obtained from the temperature measurement unit 8 with the reference temperature, and the battery temperature exceeds the reference temperature. In order to prevent discharge with a large discharge current from being performed on storage battery 11, the total generated power (W2) is increased so that the absolute value of the above differential power is less than or equal to the above maximum absolute value. At least one of control (generation control processing) and control (power control processing) for reducing the total load power (WLa + WLb) is executed.
 電力管理装置9は、このいずれかの直流電源装置6(直流電源装置6以外の直流電源装置6)において上記の放電動作が継続して実行された結果、その蓄電池11の充電電圧Vbaが使用電圧範囲の下限値に達したことを、そのBMU12から取得した電池情報に基づいて検出したときには、この直流電源装置6のBMU12に対して遮断指示を示すコンタクト制御情報を出力する。これにより、この直流電源装置6では、BMU12によってコンタクタ13が遮断状態に移行させられることで、蓄電池11が双方向DC/DCコンバータ14から切り離される(放電動作が停止させられる)。このため、蓄電池11に対する過放電が防止される。 The power management unit 9, this one of the DC power supply device 6 (DC power supply units 61 other than the DC power supply device 6) results in which the discharge operation is executed continuously in the charging voltage Vba is use of the storage battery 11 When the lower limit value of the voltage range is detected based on the battery information acquired from the BMU 12, contact control information indicating a cutoff instruction is output to the BMU 12 of the DC power supply device 6. As a result, in the DC power supply device 6, the storage battery 11 is disconnected from the bidirectional DC / DC converter 14 (the discharging operation is stopped) by causing the contactor 13 to shift to the disconnection state by the BMU 12. Therefore, overdischarge of storage battery 11 is prevented.
 電力管理装置9は、特定された直流電源装置6のうちの直流電源装置6以外のすべての直流電源装置6に対して放電動作を停止させたときには、次に、直流電源装置6に放電動作を実行させる。この場合、電力管理装置9は、直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつ双方向DC/DCコンバータ14に対して放電指示を示す制御情報を出力する。直流電源装置6では、BMU12が、電力管理装置9から取得した連結指示を示すコンタクト制御情報に基づいてコンタクタ13を連結状態に移行させることで、蓄電池11を双方向DC/DCコンバータ14に接続させる。また、電力管理装置9から取得した放電指示を示す制御情報に基づいて放電動作している双方向DC/DCコンバータ14は、蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)して直流バス2に出力する(蓄電池11を放電する)。 The power management apparatus 9, at the time of stopping the discharge operation for all of the DC power supply device 6 other than the DC power supply device 61 of the DC power supply device 6 that is identified, then, discharged to the DC power supply device 61 Run the action. In this case, the power management apparatus 9 outputs a contact control information showing the connection instruction to BMU12 1 of the DC power supply device 61, and the control information indicating the discharge instruction to the bidirectional DC / DC converter 14 1 Output. In the DC power supply device 6 1, BMU12 1 is, by shifting the contactor 13 1 to the connection state based on the contact control information showing the connection instruction acquired from the power management device 9, the bidirectional DC / DC converter storage battery 11 1 14 Connect to 1 Furthermore, the bidirectional DC / DC converter 14 1 that the discharging operation based on control information indicating the discharge instruction acquired from the power management device 9 is raised or lowered the charged voltage Vba of the battery 11 1 (voltage conversion) to and outputs to the DC bus 2 (discharging the storage battery 11 1).
 この場合においても、電力管理装置9は、計測しているバス電圧Vbsが上記した所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に維持されるように、直流電源装置6に対して放電動作を実行させる時間を制御して、直流電源装置6から直流バス2に供給される放電電力を制御する。 In this case, the power management apparatus 9, so that bus voltage Vbs which are measured is maintained within a predetermined voltage range described above (DC 400V or less of the voltage range of DC350V), with respect to the DC power supply device 61 The time for which the discharge operation is performed is controlled to control the discharge power supplied from the DC power supply 6 to the DC bus 2.
 電力管理装置9は、直流電源装置6において上記の放電動作が継続して実行された結果、その蓄電池11の充電電圧Vbaが低下して使用電圧範囲内に規定された電圧閾値に達したことを、BMU12から取得した電池情報に基づいて検出したときには、直流電源装置6のBMU12に対して遮断指示を示すコンタクト制御情報を出力する。これにより、直流電源装置6では、BMU12によってコンタクタ13が遮断状態に移行させられることで、蓄電池11が双方向DC/DCコンバータ14から切り離される(放電動作が停止させられる)。このため、蓄電池11の充電電圧Vbaが電圧閾値を下回る事態が防止されて、DC/DCコンバータ7が、この蓄電池11の充電電圧Vbaに基づいて、十分に長い期間に亘って動作用電圧Vopを生成して出力することが可能となっている。 The power management unit 9 includes a DC power supply device 61 results above discharge operation is executed continuously in, it reaches the voltage threshold to which the storage battery 11 1 of the charging voltage Vba is defined within the operating voltage range decreases things, upon detection based on the acquired battery information from BMU12 1 outputs a contact control information indicating shutoff instruction to BMU12 1 of the DC power supply device 61. Thus, the DC power supply device 61, by the contactor 13 1 is caused to transition to the cutoff state by the BMU12 1, the storage battery 11 1 is disconnected from the bidirectional DC / DC converter 14 (discharging operation is stopped). Therefore, a situation where the storage battery 11 1 of the charging voltage Vba is below the voltage threshold is prevented, DC / DC converter 7 is based on the storage battery 11 1 of the charging voltage Vba, operating voltage over a sufficiently long period It is possible to generate and output Vop.
 これにより、直流電源装置6から直流バス2への電力供給がすべて停止される。直流給電システム1Aでは、総発電電力(W2)が総負荷電力(WLa+WLb)よりも小さい状態で、DC/DCコンバータ5a,5bが上記動作をそのまま継続したときには、バス電圧Vbsが低下して、所定の電圧範囲(本例ではDC350V以上DC400V以下の範囲)の下限電圧値(DC350V)を下回る恐れがある。このため、電力管理装置9は、計測しているバス電圧Vbsが上記した所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に維持されるように、第2コンバータ5(本例では、DC/DCコンバータ5a,5bの少なくとも一方)に対して設定する上限電流値を変更して、総負荷電力(WLa+WLb)を減少させる(発電電力W2が増加したときには、増加させる)電力制御処理を実行する。 Thus, all the power supply from the DC power supply 6 to the DC bus 2 is stopped. In DC power feeding system 1A, when DC / DC converters 5a and 5b continue the above operation with total generated power (W2) smaller than total load power (WLa + WLb), bus voltage Vbs is lowered, and predetermined There is a possibility that it may fall below the lower limit voltage value (DC 350 V) of the voltage range (in this example, the range of DC 350 V or more and DC 400 V or less). For this reason, the power management apparatus 9 uses the second converter 5 (in this example, DC) so that the measured bus voltage Vbs is maintained within the above-described predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less). Power control process of reducing the total load power (WLa + WLb) by increasing the upper limit current value set for at least one of / DC converters 5a and 5b) (increasing when generated power W2 increases) .
 次に、発電装置3bが非発電状態(発電停止状態)となる自然状態のとき(本例では、発電装置3bが太陽光発電装置で構成されているため、夜間のとき)の充放電制御処理について説明する。 Next, charge / discharge control processing when the power generation device 3b is in a non-power generation state (power generation stop state) in a natural state (in this example, since the power generation device 3b is configured by a solar power generation device, it is at night) Will be explained.
 この充放電制御処理では、総発電電力(W2)はほぼゼロであることから、電力管理装置9は、上記した総発電電力(W2)が総負荷電力(WLa+WLb)よりも小さいときと同じ動作を実行する。したがって、電力管理装置9は、まず、各直流電源装置6のBMU12から取得した電池情報に基づいて放電可能な蓄電池11を有する直流電源装置6が存在するか否かを検出して、存在するときには、この直流電源装置6を特定して放電動作させることにより、DC/DCコンバータ5a,5bにおいて対応する負荷機器71a,71bへの負荷電圧VLa,Vlbを生成可能な状態とする。 In this charge / discharge control process, since the total generated power (W2) is almost zero, the power management apparatus 9 performs the same operation as when the total generated power (W2) is smaller than the total load power (WLa + WLb). Run. Therefore, when the power management device 9 first detects whether or not the DC power supply device 6 having the rechargeable storage battery 11 exists based on the battery information acquired from the BMU 12 of each DC power supply device 6, By specifying and discharging the DC power supply 6, the DC / DC converters 5a and 5b can generate the load voltages VLa and Vlb to the corresponding load devices 71a and 71b.
 また、この充放電制御処理において、蓄電池11を放電させる際にも、電力管理装置9は、温度計測部8から取得した電池温度とこの基準温度とを比較して、電池温度がこの基準温度を上回っているときには、大きな放電電流での放電が蓄電池11に対して実行されないようにすべく、上記の差分電力の絶対値が上記の最大絶対値以下になるように、総発電電力(W2)を増加させる制御(発電制御処理)および総負荷電力(WLa+WLb)を減少させる制御(電力制御処理)のうちの少なくとも一方の制御を実行する。この場合、夜間であって総発電電力(W2)を増加させることができないため、電力管理装置9は、総負荷電力(WLa+WLb)を減少させる制御(電力制御処理)を実行する。 Further, even in the charge / discharge control process, even when the storage battery 11 is discharged, the power management apparatus 9 compares the battery temperature obtained from the temperature measurement unit 8 with the reference temperature, and the battery temperature becomes the reference temperature. When it is higher, the total generated power (W2) is set so that the absolute value of the above-mentioned differential power is less than the above-mentioned maximum absolute value so that discharge with a large discharge current is not performed to the storage battery 11. At least one of control to increase (power generation control processing) and control to reduce total load power (WLa + WLb) (power control processing) is executed. In this case, since the total generated power (W2) can not be increased at night, the power management apparatus 9 executes control (power control processing) to reduce the total load power (WLa + WLb).
 その後、直流電源装置6は、その蓄電池11の充電電圧Vbaが電圧閾値に達したときに、また直流電源装置6以外の直流電源装置6は、その蓄電池11の充電電圧Vbaが使用電圧範囲の下限値に達したときに、電力管理装置9からの遮断指示を示すコンタクト制御情報に基づいてそれぞれのコンタクタ13を遮断状態に移行させることで、放電動作を停止する。この場合、直流バス2への電力の供給源が存在しない状態になるため、電力管理装置9は、すべての直流電源装置6の双方向DC/DCコンバータ14に対して停止指示を示す制御情報を出力して、双方向DC/DCコンバータ14の動作を停止させることで、直流給電システム1Aをスリープ状態(各蓄電池11に充電されている電力の直流給電システム1A内での消費が最も少ない状態)に移行させる。 Thereafter, the DC power supply device 61, when the storage battery 11 1 of the charging voltage Vba reaches a voltage threshold, and the DC power supply device 6 other than the direct-current power supply 61, the charging voltage Vba is working voltage of the battery 11 When the lower limit value of the range is reached, the discharge operation is stopped by shifting each of the contactors 13 to the cutoff state based on the contact control information indicating the cutoff instruction from the power management device 9. In this case, since the power supply source to the DC bus 2 does not exist, the power management apparatus 9 sends control information indicating a stop instruction to the bidirectional DC / DC converters 14 of all the DC power supply devices 6. The DC power supply system 1A is put to a sleep state by stopping the operation of the bidirectional DC / DC converter 14 (a state where the consumption of the power charged in each storage battery 11 in the DC power supply system 1A is minimized). Migrate to
 なお、本例の直流給電システム1Aでは、すべての直流電源装置6において、蓄電池11と双方向DC/DCコンバータ14との間にコンタクタ13が配設されて、上記のような直流バス2への電力の供給源が存在しない状態になったときには、すべてのコンタクタ13を遮断状態に移行させて、蓄電池11と双方向DC/DCコンバータ14とを遮断する(切り離す)構成が採用されている。このため、本例の直流給電システム1Aでは、さらに双方向DC/DCコンバータ14の動作を停止させるまでもなく、すべてのコンタクタ13を遮断状態に移行させた時点で、実質的に上記のスリープ状態に移行する。ただし、コンタクタ13の無い構成の直流電源装置(蓄電池11と双方向DC/DCコンバータ14とが直結された構成の直流電源装置)も考えられ、この構成の直流電源装置を備えた直流給電システムでは、双方向DC/DCコンバータ14の動作を停止させることで、スリープ状態に移行させる。 In the DC power supply system 1A of this example, the contactor 13 is disposed between the storage battery 11 and the bi-directional DC / DC converter 14 in all the DC power supply devices 6 to connect to the DC bus 2 as described above. When the power supply source is not present, a configuration is adopted in which all the contactors 13 are switched to the disconnection state to disconnect (separate) the storage battery 11 and the bidirectional DC / DC converter 14. Therefore, in the DC power supply system 1A of this embodiment, the above-mentioned sleep state is substantially achieved when all the contactors 13 are shifted to the shut-off state without stopping the operation of the bidirectional DC / DC converter 14 further. Migrate to However, a direct current power supply device without the contactor 13 (a direct current power supply device with a configuration in which the storage battery 11 and the bidirectional DC / DC converter 14 are directly coupled) may be considered. The operation of the bidirectional DC / DC converter 14 is stopped to shift to the sleep state.
 このスリープ状態への移行後において、この直流給電システム1Aでは、蓄電池11と双方向DC/DCコンバータ14とがコンタクタ13で遮断された(切り離された)状態となっているため、また、上記したコンタクタ13の無い構成の直流電源装置を備えた直流給電システムでは、蓄電池11に接続されている双方向DC/DCコンバータ14が停止させられているため、蓄電池11の充電電力は、動作用電圧Vopを生成して出力しているDC/DCコンバータ7だけに供給される構成となっている。 After this transition to the sleep state, in the DC power supply system 1A, since the storage battery 11 1 and bidirectional DC / DC converter 14 1 is in the blocked (disconnected) state contactor 13 1, also in the DC power supply system provided with a DC power supply device of the structure without the contactor 13 as described above, since the two-way DC / DC converter 14 1 connected to the battery 11 1 is stopped, the storage battery 11 1 of the charging power Is configured to be supplied only to the DC / DC converter 7 which generates and outputs the operation voltage Vop.
 したがって、このようにしてスリープ状態への移行が可能な直流給電システム(直流給電システム1Aを含む)では、DC/DCコンバータ7での充電電圧Vbaから動作用電圧Vopへの変換効率が良好で、かつ動作用電圧Vopの供給を受けて動作状態を維持する各直流電源装置6のBMU12およびコンタクタ13、温度計測部8、並びに電力管理装置9での消費電力がいずれも小さいときには、蓄電池11の充電電力が消費されることによって充電電圧Vbaが電圧閾値から使用電圧範囲の下限値まで低下するまでの時間(つまり、BMU12、コンタクタ13、温度計測部8および電力管理装置9の動作時間)を十分に長くすることができる。これにより、この直流給電システム(直流給電システム1Aを含む)では、発電装置3bが発電を再開するまで、各直流電源装置6のBMU12およびコンタクタ13、温度計測部8、並びに電力管理装置9を動作状態に維持し得ることから、発電装置3bによる発電の再開時において、上記したように電力管理装置9などが動作して、各蓄電池11への充電動作および各負荷機器71a,71bへの負荷電圧VLa,VLbの供給動作が可能となっている。 Therefore, in the DC power supply system (including DC power supply system 1A) capable of shifting to the sleep state in this manner, the conversion efficiency from charging voltage Vba in DC / DC converter 7 to operation voltage Vop is good, and BMU12 and contactor 13 of each DC power supply 6 to maintain the operating state by being supplied with operating voltage Vop, when the temperature measuring unit 8, and the power consumption in the power management device 9 is small both, the storage battery 11 1 Sufficient time for the charge voltage Vba to decrease from the voltage threshold to the lower limit of the working voltage range (that is, the operation time of the BMU 12, the contactor 13, the temperature measurement unit 8, and the power management device 9) It can be long. Thus, in this DC power supply system (including DC power supply system 1A), BMU 12 and contactor 13, temperature measurement unit 8, and power management device 9 of each DC power supply device 6 operate until power generation device 3b resumes power generation. Since it can be maintained in the state, the power management device 9 operates as described above at the time of resumption of power generation by the power generation device 3b, charging operation to each storage battery 11 and load voltage to each load device 71a, 71b. The supply operation of VLa and VLb is possible.
 このように、この直流給電システム1Aでは、電力管理装置9は、蓄電池11の充電状態において蓄電池11の温度が基準温度を上回っているとき(高温のとき)には、発電電力W1,W2(具体的には、総発電電力(W1+W2))と負荷電力WLa,WLb(具体的には、総負荷電力(WLa+WLb))の差分電力の絶対値が予め規定された電力(上記の例では差分電力の最大絶対値)以下となるように発電電力(総発電電力(W1+W2))を減少させる制御および負荷電力(総負荷電力(WLa+WLb))を増加させる制御のうちの少なくとも一方の制御を実行する。また、電力管理装置9は、蓄電池11の放電状態において蓄電池11の温度が基準温度を上回っているとき(高温のとき)には、上記の差分電力の絶対値が予め規定された電力(上記の例では差分電力の最大絶対値)以下となるように発電電力(総発電電力(W1+W2))を増加させる制御および負荷電力(総負荷電力(WLa+WLb))を減少させる制御のうちの少なくとも一方の制御を実行する。 As described above, in the DC power feeding system 1A, when the temperature of the storage battery 11 exceeds the reference temperature in the charging state of the storage battery 11 (when the temperature is high), the power management device 9 generates the generated power W1, W2 (specifically Specifically, the absolute value of the difference power between the total generated power (W1 + W2) and the load powers WLa and WLb (specifically, the total load power (WLa + WLb)) is predefined power (in the above example, the difference power At least one of control for reducing the generated power (total generated power (W1 + W2)) and control for increasing the load power (total load power (WLa + WLb)) to be less than the maximum absolute value is executed. Further, when the temperature of the storage battery 11 exceeds the reference temperature in the discharged state of the storage battery 11 (when the temperature is high), the power management device 9 predetermines the absolute value of the above-mentioned difference power (the above In the example, at least one of the control for increasing the generated power (total generated power (W1 + W2)) to be equal to or less than the maximum absolute value of the differential power and the control for reducing the load power (total load power (WLa + WLb)) Run.
 したがって、この直流給電システム1Aによれば、高温時において電流値の大きな充電電流(電池温度での最大電流値を超える電流値の充電電流)で蓄電池11を充電したり、また高温時において電流値の大きな放電電流(電池温度での最大電流値を超える電流値の放電電流)で蓄電池11を放電したりする事態の発生を回避することができるため、蓄電池11の劣化の進行を遅くすること、つまり電池寿命を延ばすことができる。 Therefore, according to this DC power supply system 1A, the storage battery 11 is charged with a charging current having a large current value (a charging current having a current value exceeding the maximum current value at the battery temperature) at high temperatures, or a current value at high temperatures To delay the progress of the deterioration of the storage battery 11 because it is possible to avoid the occurrence of a situation in which the storage battery 11 is discharged by a large discharge current (a discharge current having a current value exceeding the maximum current value at battery temperature). That is, the battery life can be extended.
 なお、上記した直流給電システム1Aだけでなく、図2に示す構成の直流給電システム1Bにおいても、蓄電池11の劣化の進行を遅くすることができる。以下、直流給電システム1Bについて説明する。なお、直流給電システム1Aと同一の構成については同一の符号を付して重複する説明を省略し、相違する構成を主に説明する。 In addition to the direct current feed system 1A described above, the progress of the deterioration of the storage battery 11 can be delayed also in the direct current feed system 1B having the configuration shown in FIG. Hereinafter, the DC power supply system 1B will be described. The same components as those of the DC power feeding system 1A will be assigned the same reference numerals and redundant explanations will be omitted, and different components will be mainly described.
 最初に、直流給電システムとしての直流給電システム1Bの構成について説明する。 First, the configuration of a direct current feed system 1B as a direct current feed system will be described.
 直流給電システム1Bは、図2に示すように、直流バス2、1または2以上の発電装置3、発電装置3に対応して配設された第1コンバータ4、直流給電システム1Aに接続される負荷機器71に対応して配設された第2コンバータ5、複数の直流電源装置6、第3コンバータ7、温度計測部8および電力管理装置9の直流給電システム1Aと同じ構成に加えて、冷却装置21と、このバス電圧Vbsに基づいて冷却装置21を動作させるための直流電圧VLcを生成して出力する第4コンバータ22とを備えている。 As shown in FIG. 2, the DC power feeding system 1B is connected to a DC bus 2, one or more power generating devices 3 and a first converter 4 provided corresponding to the power generating device 3, and a DC power feeding system 1A. In addition to the same configuration as the DC power feeding system 1A of the second converter 5, the plurality of DC power supply devices 6, the third converter 7, the temperature measuring unit 8 and the power management device 9 arranged corresponding to the load device 71 A device 21 and a fourth converter 22 that generates and outputs a DC voltage VLc for operating the cooling device 21 based on the bus voltage Vbs.
 冷却装置21は、本例では一例として、直流電源装置6が収容された各建物の内部にそれぞれ配設されて、各建物の内部(つまり、各蓄電池11)を個別に冷却可能な複数のエアコンディショナーで構成されている。冷却装置21は、第4コンバータ22から後述の直流電圧VLcの供給を受けて動作する。また、冷却装置21は、動作・停止が電力管理装置9によって制御される。なお、冷却装置21は、上記の構成に限定されるものではなく、例えば、1つの場所に設置された1台から、直流電源装置6が収容された各建物の内部にダクトなどを介して冷気を供給する構成(つまり、各蓄電池11を一括して冷却する構成)を採用することもできる。 The cooling device 21 is, as an example in the present example, disposed in the interior of each building in which the DC power supply device 6 is housed, and a plurality of air that can individually cool the inside of each building (that is, each storage battery 11). It consists of a conditioner. The cooling device 21 operates by receiving the supply of a DC voltage VLc described later from the fourth converter 22. In addition, the cooling device 21 is controlled by the power management device 9 to operate and stop. Note that the cooling device 21 is not limited to the above configuration, and for example, from a single unit installed in one place, cold air is provided via a duct or the like inside each building in which the DC power supply device 6 is housed. Can be adopted (that is, a configuration for collectively cooling each storage battery 11).
 第4コンバータ22は、例えば、バス電圧Vbsに基づいて内部で生成した直流電圧で動作するDC/DCコンバータ(DC/DCコンバータ22ともいう)で構成されている。DC/DCコンバータ22は、電力管理装置9によって制御されて、バス電圧Vbsを冷却装置21で使用される直流電圧VLcに変換(直流電圧変換)して、冷却装置21に供給する。このようにして、バス電圧Vbsに基づいて生成された直流電圧VLcで動作する冷却装置21は、負荷機器71と同様の負荷機器の1つとなっている。 The fourth converter 22 is configured of, for example, a DC / DC converter (also referred to as a DC / DC converter 22) that operates with a DC voltage generated internally based on the bus voltage Vbs. The DC / DC converter 22 is controlled by the power management device 9 to convert the bus voltage Vbs into a DC voltage VLc used by the cooling device 21 (DC voltage conversion), and supplies the DC voltage to the cooling device 21. Thus, the cooling device 21 operating with the DC voltage VLc generated based on the bus voltage Vbs is one of the load devices similar to the load device 71.
 電力管理装置9は、上記した直流給電システム1Aの電力管理装置9の構成と比較して、発電装置3に対する発電制御処理に代えて、冷却装置21に対する動作制御を実行して蓄電池11の温度を制御する温度制御処理を実行するという構成において相違するものの、各直流電源装置6に対する制御を実行するなどの他の構成は同一である。 Power management device 9 executes the operation control for cooling device 21 instead of the power generation control process for power generation device 3 in comparison with the configuration of power management device 9 of DC power feeding system 1A described above, thereby Although different in the configuration of executing the temperature control process to be controlled, other configurations such as executing control on each DC power supply 6 are the same.
 次に、図2に示した直流給電システム1Bの動作について説明する。なお、直流給電システム1Aの動作と同じ動作については詳細な説明を省略し、相違する動作について直流給電システム1Aの動作と対比しつつ説明する。 Next, the operation of the DC power feeding system 1B shown in FIG. 2 will be described. A detailed description of the same operation as that of the DC power supply system 1A will be omitted, and a different operation will be described in comparison with the operation of the DC power supply system 1A.
 上記した直流給電システム1Aでは、電力管理装置9が各蓄電池11を充電したり放電したりする充放電制御処理において、上記したように、蓄電池11に対して高温下で(蓄電池11の温度が基準温度を上回っているときに)大きな充電電流での充電(電池寿命を短くするような充電)や大きな放電電流での放電(電池寿命を短くするような充電)を実行しないようにするため、総発電電力(W1+W2)と総負荷電力(WLa+WLb)の差分電力の絶対値が上記の最大絶対値以下になるように、総発電電力(W1+W2)を減少させたり増加させたりする制御(発電制御処理)および総負荷電力(WLa+WLb)を増加させたり減少させたりする制御(電力制御処理)のうちの少なくとも一方の制御を実行することで、高温下であっても充電電流を小さくすることで、電池寿命を短くするような蓄電池11に対する充電・放電の実行を回避していた。 In the above-described DC power feeding system 1A, in the charge / discharge control process in which the power management device 9 charges and discharges each storage battery 11, as described above, the temperature of storage battery 11 is high (the temperature of storage battery 11 is In order not to execute charging with a large charging current (charging to shorten the battery life) or discharging with a large discharging current (charging to shorten the battery life) when the temperature is exceeded. Control to decrease or increase the total generated power (W1 + W2) so that the absolute value of the difference between the generated power (W1 + W2) and the total load power (WLa + WLb) becomes less than the above-mentioned maximum absolute value (generation control process) And / or control to increase or decrease the total load power (WLa + WLb) (power control processing) to achieve high temperature operation. Also by decreasing the charge current, it was avoid performing charging and discharging of the storage battery 11 so as to shorten the battery life.
 これに対して、直流給電システム1Bでは、電力管理装置9は、各蓄電池11を充電したり放電したりする充放電制御処理において、計測された蓄電池11の温度が基準温度を上回っているときには、上記の直流給電システム1Aのような充電電流を小さくする構成に代えて、冷却装置21を動作させて蓄電池11の温度を低下させることにより、電池寿命を短くするような蓄電池11に対する充電・放電の実行が回避されている。 On the other hand, in the direct-current power supply system 1B, when the power management apparatus 9 charges or discharges each storage battery 11 and the measured temperature of the storage battery 11 exceeds the reference temperature in the charge / discharge control process, Instead of reducing the charging current as in the DC power feeding system 1A described above, the cooling device 21 is operated to lower the temperature of the storage battery 11, thereby shortening the battery life, and for charging and discharging the storage battery 11 Execution is being avoided.
 具体的に、電力管理装置9が直流電源装置6に充電動作させる(蓄電池11を充電する)充放電制御処理と、電力管理装置9が直流電源装置6に放電動作させる(蓄電池11を放電する)充放電制御処理とに分けて説明する。 Specifically, the power management device 9 causes the DC power supply device 6 to perform a charge operation (charges the storage battery 11), and the power management device 9 causes the DC power supply device 6 to perform a discharge operation (discharges the storage battery 11). The charge and discharge control process will be separately described.
 まず、直流電源装置6に充電動作させる充放電制御処理では、電力管理装置9は、算出した総発電電力(W1+W2、またはW2)が総負荷電力(WLa+WLb)よりも大きいと判別して、各直流電源装置6のBMU12から取得した電池情報に基づいて充電可能な蓄電池11を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して充電指示を示す制御情報を出力する(充電動作を実行させる)。 First, in the charge / discharge control processing for causing the DC power supply 6 to operate, the power management apparatus 9 determines that the calculated total generated power (W1 + W2 or W2) is larger than the total load power (WLa + WLb). Based on the battery information acquired from the BMU 12 of the power supply device 6, the DC power supply device 6 having the rechargeable storage battery 11 is identified, and contact control information indicating a connection instruction is output to the BMU 12 of the identified DC power supply device 6. Further, the control information indicating the charging instruction is output to the bidirectional DC / DC converter 14 of the DC power supply device 6 (the charging operation is performed).
 また、この充放電制御処理において、電力管理装置9は、温度計測部8から取得した電池温度とこの基準温度とを比較して、電池温度がこの基準温度を上回っているときには、大きな充電電流での充電が蓄電池11に対して実行されないようにすべく、直流電圧VLcを出力させる制御をDC/DCコンバータ22に対して実行し、かつ動作させる制御を冷却装置21に対して実行して、蓄電池11の温度を低下させる。 Further, in the charge / discharge control process, the power management apparatus 9 compares the battery temperature obtained from the temperature measurement unit 8 with the reference temperature, and when the battery temperature exceeds the reference temperature, the power management device 9 uses a large charging current. Control is performed on the DC / DC converter 22 so that the DC voltage VLc is output so that the charging of the battery 11 is not performed on the storage battery 11, and the control to operate the cooling device 21 is performed. Reduce the temperature of 11.
 この場合、図3に示すように、充電電流や放電電流の電流値が蓄電池11の最大電流値以下のいずれであっても、電池温度を基準温度(図3の例では40℃)以下に低下させることで、電池寿命を短くするような蓄電池11に対する充電・放電の実行を常に回避することが可能となる。このため、電力管理装置9は、この充放電制御処理において、温度計測部8から取得した電池温度とこの基準温度とを比較しつつ、電池温度が基準温度以下になるように冷却装置21を動作させることにより、直流電源装置6に対して電池寿命に影響を与えない温度での蓄電池11に対する充電を実行させる。 In this case, as shown in FIG. 3, the battery temperature drops below the reference temperature (40 ° C. in the example of FIG. 3) regardless of whether the current value of the charging current or the discharging current is less than the maximum current value of the storage battery 11. By doing this, it is possible to always avoid the execution of charging / discharging of the storage battery 11 that shortens the battery life. Therefore, the power management device 9 operates the cooling device 21 so that the battery temperature becomes equal to or lower than the reference temperature while comparing the battery temperature obtained from the temperature measurement unit 8 with the reference temperature in the charge / discharge control process. By doing this, the DC power supply 6 is made to charge the storage battery 11 at a temperature that does not affect the battery life.
 次に、直流電源装置6に放電動作させる充放電制御処理では、電力管理装置9は、算出した総発電電力(W1+W2、またはW2)が総負荷電力(WLa+WLb)よりも小さいと判別して、各直流電源装置6のBMU12から取得した電池情報に基づいて放電可能な蓄電池11を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して放電指示を示す制御情報を出力する(放電動作を実行させる)。 Next, in charge / discharge control processing for causing the DC power supply 6 to perform a discharge operation, the power management apparatus 9 determines that the calculated total generated power (W1 + W2 or W2) is smaller than the total load power (WLa + WLb). Based on the battery information acquired from the BMU 12 of the DC power supply device 6, the DC power supply device 6 having the rechargeable storage battery 11 is identified, and contact control information indicating a connection instruction is output to the BMU 12 of the identified DC power supply device 6. And outputs control information indicating a discharge instruction to the bidirectional DC / DC converter 14 of the DC power supply device 6 (performs a discharge operation).
 また、この充放電制御処理において、電力管理装置9は、温度計測部8から取得した電池温度とこの基準温度とを比較して、電池温度がこの基準温度を上回っているときには、大きな充電電流での放電が蓄電池11に対して実行されないようにすべく、直流電圧VLcを出力させる制御をDC/DCコンバータ22に対して実行し、かつ動作させる制御を冷却装置21に対して実行して、蓄電池11の温度を低下させる。 Further, in the charge / discharge control process, the power management apparatus 9 compares the battery temperature obtained from the temperature measurement unit 8 with the reference temperature, and when the battery temperature exceeds the reference temperature, the power management device 9 uses a large charging current. Control is performed on the DC / DC converter 22 so that the DC voltage VLc is output so that the discharge of the battery 11 is not performed on the storage battery 11, and the control to operate the cooling device 21 is performed. Reduce the temperature of 11.
 この場合も、上記した充電のときと同様に、電力管理装置9は、この充放電制御処理において、温度計測部8から取得した電池温度とこの基準温度とを比較しつつ、電池温度が基準温度以下になるように冷却装置21を動作させることにより、直流電源装置6に対して電池寿命に影響を与えない温度での蓄電池11に対する放電を実行させる。 Also in this case, the power management apparatus 9 compares the battery temperature acquired from the temperature measuring unit 8 with the reference temperature in the charge / discharge control process, as in the case of the charge described above, and the battery temperature is the reference temperature By operating the cooling device 21 as follows, the DC power supply 6 is made to discharge the storage battery 11 at a temperature that does not affect the battery life.
 また、上記したように、バス電圧Vbsに基づいて生成された直流電圧VLcで動作する冷却装置21は負荷機器71と同様の負荷機器の1つとなる。このため、直流バス2から冷却装置21に供給されている負荷電力WLcを計測して(例えば周期Tで計測して)電力管理装置9に出力する電力計測機能をDC/DCコンバータ22に設けて、電池温度が基準温度を上回っているとき(つまり、冷却装置21を動作させるとき)には、電力管理装置9が、負荷電力WLcを加えた総負荷電力(WLa+WLb+WLc)を算出して総発電電力(W1+W2、またはW2)と比較することで、直流電源装置6に対して充電動作させるか放電動作させるかを判別する、というように構成してもよい。また、冷却装置21の動作時における負荷電力WLcが既知のときには、DC/DCコンバータ22に上記の電力計測機能を設けることなく、直流電源装置6がこの既知の負荷電力WLcを加味して総負荷電力(WLa+WLb+WLc)を算出することもできる。 Further, as described above, the cooling device 21 operating with the DC voltage VLc generated based on the bus voltage Vbs is one of the load devices similar to the load device 71. For this reason, the DC / DC converter 22 is provided with a power measurement function that measures the load power WLc supplied from the DC bus 2 to the cooling device 21 (for example, by measuring in a cycle T) and outputs it to the power management device 9 When the battery temperature exceeds the reference temperature (that is, when operating the cooling device 21), the power management apparatus 9 calculates the total load power (WLa + WLb + WLc) to which the load power WLc is added, and the total generated power Whether the charging operation or the discharging operation of the DC power supply 6 is to be performed may be determined by comparing with (W1 + W2 or W2). Further, when the load power WLc at the time of operation of the cooling device 21 is known, the DC / DC converter 22 is not provided with the above power measurement function, and the DC power supply 6 takes into account the known load power WLc. The power (WLa + WLb + WLc) can also be calculated.
 このように、この直流給電システム1Bによれば、蓄電池11の温度が基準温度を上回っているとき(高温のとき)に、電力管理装置9が冷却装置21を動作させるため(具体的には、電池温度が基準温度以下となるように冷却装置21を動作させるため)、寿命に影響を与えない温度範囲で常に蓄電池11に対して充電・放電を実行できることから、蓄電池11の劣化の進行を確実に遅くすること、つまり電池寿命を確実に延ばすことができる。 Thus, according to this DC power supply system 1B, when the temperature of the storage battery 11 exceeds the reference temperature (when it is high temperature), the power management device 9 operates the cooling device 21 (specifically, In order to operate the cooling device 21 so that the battery temperature becomes lower than the reference temperature), the storage battery 11 can always be charged and discharged in a temperature range that does not affect the life, so that the storage battery 11 is progressed with certainty Slowing down, that is, prolonging the battery life.
 なお、電池温度が基準温度を上回っているときに、冷却装置21を動作させて電池温度を基準温度以下に低下させる構成の直流給電システム1Bについて上記したが、直流給電システム1Bはこの構成に限定されない。 Although the DC power feeding system 1B configured to operate the cooling device 21 to lower the battery temperature to the reference temperature or less when the battery temperature exceeds the reference temperature is described above, the DC power feeding system 1B is limited to this configuration. I will not.
 具体的には、図3に示すように、温度(電池温度)が基準温度を上回っているときであっても、電流値(充電電流や放電電流の電流値)が基準温度以下での最大電流値よりも小さければ、温度(電池温度)を基準温度以下に低下させなくても、電池寿命に影響を与えない充電や放電が可能である。一例として、図3に示すように、電流値が30Aのときには、電池温度が当初40℃を超えて第2の範囲AR2に含まれる温度であったとしても、50℃まで下げることで、第1の範囲AR1に含まれる温度になることから、電池寿命に影響を与えない充電や放電が可能となる。 Specifically, as shown in FIG. 3, even when the temperature (battery temperature) exceeds the reference temperature, the maximum current at or below the reference temperature is the current value (the current value of the charging current or the discharging current) If it is smaller than the value, charging or discharging without affecting the battery life is possible without lowering the temperature (battery temperature) below the reference temperature. As an example, as shown in FIG. 3, when the current value is 30 A, even if the battery temperature is initially higher than 40.degree. C. and included in the second range AR2, the battery temperature is lowered to 50.degree. Since the temperature is included in the range AR1, the battery can be charged or discharged without affecting the battery life.
 このため、直流給電システム1Bでは、電力管理装置9が、温度(電池温度)が基準温度を上回っているときに、総発電電力(W1+W2、またはW2)と総負荷電力(WLa+WLb、またはWLa+WLb+WLc)の差分電力の絶対値を算出すると共に、記憶部に記憶されている上記のデータテーブル(温度と差分電力の最大絶対値との関係を示すデータテーブル)を参照して、算出した差分電力の絶対値に対応する温度を特定し、蓄電池11の温度がこの特定した温度を上回っているときに冷却装置21を動作させて、蓄電池11の温度をこの特定した温度以下に低下させる構成を採用することもできる。 Therefore, in the DC power feeding system 1B, when the temperature (battery temperature) of the power management apparatus 9 exceeds the reference temperature, the total generated power (W1 + W2 or W2) and the total load power (WLa + WLb or WLa + WLb + WLc) The absolute value of differential power calculated with reference to the above data table (data table indicating the relationship between the temperature and the maximum absolute value of differential power) stored in the storage unit while calculating the absolute value of differential power And the cooling device 21 is operated when the temperature of the storage battery 11 is higher than the specified temperature, and the temperature of the storage battery 11 is reduced to the specified temperature or less. it can.
 例えば、算出した差分電力の絶対値が、図3に示すX1[A]に対応するものであって、計測された電池温度が基準温度を上回るX2[℃]のときには、電力管理装置9は、まず、データテーブルを参照することにより、図3に示すように、X1[A]に対応する差分電力の最大絶対値での温度X3[℃]を特定する。次いで、電力管理装置9は、図3に示すように、蓄電池11の温度X2[℃]がこの特定した温度X3[℃]を上回っているときには、冷却装置21を動作させて、蓄電池11の温度をこの特定した温度X3[℃]以下に低下させ、この状態において蓄電池11に対する充放電を実行する。一方、電力管理装置9は、図示はしないが、蓄電池11の温度X2[℃]がこの特定した温度X3[℃]以下のときには蓄電池11の冷却は不要と判別して、冷却装置21を動作させることなく、蓄電池11に対する充放電を実行する。 For example, when the absolute value of the calculated differential power corresponds to X1 [A] shown in FIG. 3 and the measured battery temperature is X2 [° C.] exceeding the reference temperature, the power management apparatus 9 First, referring to the data table, as shown in FIG. 3, the temperature X3 [° C.] at the maximum absolute value of the differential power corresponding to X1 [A] is specified. Next, as shown in FIG. 3, when the temperature X 2 [° C.] of the storage battery 11 exceeds the specified temperature X 3 [° C.], the power management device 9 operates the cooling device 21 to set the temperature of the storage battery 11. Is lowered to the specified temperature X3 [.degree. C.] or less, and charging / discharging of the storage battery 11 is executed in this state. On the other hand, although not shown, the power management apparatus 9 determines that cooling of the storage battery 11 is unnecessary when the temperature X2 [° C.] of the storage battery 11 is lower than the specified temperature X3 [° C.], and operates the cooling device 21. Without charging and discharging the storage battery 11.
 この構成の直流給電システム1Bによれば、蓄電池11の温度が常に基準温度以下となるように冷却装置21を動作させる構成とは異なり、総発電電力(W1+W2、またはW2)と総負荷電力(WLa+WLb、またはWLa+WLb+WLc)の差分電力の絶対値と上記のデータテーブルとによって特定される温度(基準温度よりも高い温度)まで蓄電池11の温度が低下するように冷却装置21を動作させるだけでよいことから、冷却装置21での消費電力を少なくすることができるため、その分、蓄電池11への充電電力を増やしたり、負荷機器71への負荷電力を増やしたりしつつ、電池寿命を延ばすことができる。 According to the DC power supply system 1B of this configuration, unlike the configuration in which the cooling device 21 is operated such that the temperature of the storage battery 11 is always equal to or lower than the reference temperature, the total generated power (W1 + W2 or W2) and the total load power (WLa + WLb) Or, it is sufficient to operate the cooling device 21 so that the temperature of the storage battery 11 falls to a temperature (a temperature higher than the reference temperature) specified by the absolute value of the differential power of WLa + WLb + WLc) and the above data table. Since the power consumption of the cooling device 21 can be reduced, the battery life can be extended while the charging power to the storage battery 11 is increased or the load power to the load device 71 is increased accordingly.
 また、上記の直流給電システム1A,1Bでは、蓄電池11の充電電力に基づいて動作して、BMU12、コンタクタ13、温度計測部8および電力管理装置9へ動作用電圧Vopを供給するDC/DCコンバータ7を備える構成を採用しているが、これに限定されるものではない。例えば、発電装置3bが発電を停止してから発電を再開するまでの間に、直流電源装置6によって直流バス2のバス電圧Vbsを所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に十分に維持し得る構成のとき(具体的には、各蓄電池11の容量が十分に大きく、充電電圧Vbaが使用電圧範囲の下限値を上回ることのない構成のとき)には、BMU12およびコンタクタ13は、対応する蓄電池11の充電電圧Vbaで動作し、また温度計測部8および電力管理装置9は、各蓄電池11のうちの少なくとも1つの蓄電池11の充電電圧Vbaで動作する構成として、DC/DCコンバータ7の配設を省略することもできる。 Further, in the above-described direct-current power supply system 1A, 1B, and operates based on the charge power of the battery 11 1, BMU12, contactors 13, and supplies the operating voltage Vop to the temperature measuring device 8 and the power management apparatus 9 DC / DC Although the structure provided with the converter 7 is employ | adopted, it is not limited to this. For example, the bus voltage Vbs of the DC bus 2 is sufficiently set within a predetermined voltage range (voltage range of 350 V or more and 400 V or less of DC) by the DC power supply 6 after the power generation device 3b stops power generation and resumes power generation. BMU 12 and contactor 13 are configured such that the capacity of each storage battery 11 is sufficiently large and charging voltage Vba does not exceed the lower limit value of the working voltage range. The DC / DC converter operates as the charging voltage Vba of the corresponding storage battery 11, and the temperature measuring unit 8 and the power management device 9 operate with the charging voltage Vba of at least one of the storage batteries 11. The arrangement of 7 can be omitted.
 本願発明によれば、蓄電池の劣化の進行を遅くすることができるため、本発明は、蓄電池を必須とする独立型の直流給電システムに広く適用することができる。 According to the present invention, since the progress of deterioration of the storage battery can be delayed, the present invention can be widely applied to a stand-alone DC power supply system in which the storage battery is essential.
   1A,1B  直流給電システム
    2 直流バス
    3 発電装置
    4 第1コンバータ
    5 第2コンバータ
    8 温度計測部
    9 電力管理装置
   11 蓄電池
   14 双方向DC/DCコンバータ
   71 負荷機器
  VLa,VLb 負荷電圧
1A, 1B DC power supply system 2 DC bus 3 power generator 4 first converter 5 second converter 8 temperature measurement unit 9 power management device 11 storage battery 14 bi-directional DC / DC converter 71 load device VLa, VLb load voltage

Claims (3)

  1.  直流給電の母線となる直流バスと、
     発電装置と、
     前記発電装置の発電電力を前記直流バスに供給する第1コンバータと、
     前記直流バスに供給されている直流電圧を直流電圧変換して負荷機器に供給する第2コンバータと、
     複数の蓄電池と、
     前記複数の蓄電池の各々と前記直流バスとの間に接続されて、当該直流バスに供給されている直流電圧と当該蓄電池の直流電圧とを双方向に電圧変換して、当該直流バスから当該蓄電池へ、または当該蓄電池から当該直流バスへ供給する双方向コンバータと、
     制御部とを備えて、商用電源に接続されない独立型の直流給電システムとして構成され、
     前記制御部は、前記発電装置での前記発電電力と前記第2コンバータから前記負荷機器に供給されている負荷電力とを比較して、当該発電電力が当該負荷電力よりも大きいときには、前記双方向コンバータに対して前記直流バスの前記直流電圧に基づいて直流電流を前記蓄電池に供給させて当該蓄電池を充電させ、当該発電電力が当該負荷電力以下のときには、前記双方向コンバータに対して前記蓄電池の前記直流電圧に基づいて直流電流を前記直流バスに供給させて当該蓄電池を放電させる直流給電システムであって、
     前記蓄電池の温度を計測する温度計測部を備え、
     前記制御部は、前記温度計測部によって計測された温度と予め規定された基準温度とを比較し、
     前記蓄電池の充電状態において前記計測された温度が前記基準温度を上回ったときには、前記発電電力と前記負荷電力の差分電力の絶対値が予め規定された電力以下となるように前記発電電力を減少させる制御および前記負荷電力を増加させる制御のうちの少なくとも一方の制御を実行し、
     前記蓄電池の放電状態において前記計測された温度が前記基準温度を上回ったときには、前記差分電力の絶対値が前記予め規定された電力以下となるように前記発電電力を増加させる制御および前記負荷電力を減少させる制御のうちの少なくとも一方の制御を実行する直流給電システム。
    A DC bus which is a bus bar of DC power supply,
    A power generator,
    A first converter for supplying power generated by the power generation device to the DC bus;
    A second converter for DC voltage conversion of the DC voltage supplied to the DC bus to supply the load device;
    With multiple storage batteries,
    It is connected between each of the plurality of storage batteries and the DC bus, and bi-directionally converts the DC voltage supplied to the DC bus and the DC voltage of the storage battery from the DC bus to the storage battery Or a bi-directional converter that supplies from the storage battery to the DC bus,
    A control unit and configured as a stand-alone DC power supply system not connected to a commercial power supply,
    The control unit compares the generated power of the power generation apparatus with the load power supplied from the second converter to the load device, and when the generated power is larger than the load power, the bidirectional A direct current is supplied to the storage battery based on the DC voltage of the DC bus to the converter to charge the storage battery, and when the generated power is less than the load power, the storage battery is A DC power supply system for supplying a DC current to the DC bus based on the DC voltage to discharge the storage battery,
    A temperature measurement unit that measures the temperature of the storage battery;
    The control unit compares the temperature measured by the temperature measurement unit with a predetermined reference temperature.
    When the measured temperature exceeds the reference temperature in the state of charge of the storage battery, the generated power is decreased so that the absolute value of the difference power between the generated power and the load power is less than or equal to a predetermined power. Executing at least one of control and control to increase the load power;
    Controlling the load power to increase the generated power such that the absolute value of the differential power is less than the predetermined power when the measured temperature exceeds the reference temperature in the discharged state of the storage battery A DC feed system that performs at least one control of the control to be reduced.
  2.  直流給電の母線となる直流バスと、
     発電装置と、
     前記発電装置の発電電力を前記直流バスに供給する第1コンバータと、
     前記直流バスに供給されている直流電圧を直流電圧変換して負荷機器に供給する第2コンバータと、
     複数の蓄電池と、
     前記複数の蓄電池の各々と前記直流バスとの間に接続されて、当該直流バスに供給されている直流電圧と当該蓄電池の直流電圧とを双方向に電圧変換して、当該直流バスから当該蓄電池へ、または当該蓄電池から当該直流バスへ供給する双方向コンバータと、
     制御部とを備えて、商用電源に接続されない独立型の直流給電システムとして構成され、
     前記制御部は、前記発電装置での前記発電電力と前記第2コンバータから前記負荷機器に供給されている負荷電力とを比較して、当該発電電力が当該負荷電力よりも大きいときには、前記双方向コンバータに対して前記直流バスの前記直流電圧に基づいて直流電流を前記蓄電池に供給させて当該蓄電池を充電させ、当該発電電力が当該負荷電力以下のときには、前記双方向コンバータに対して前記蓄電池の前記直流電圧に基づいて直流電流を前記直流バスに供給させて当該蓄電池を放電させる直流給電システムであって、
     前記蓄電池の温度を計測する温度計測部と、
     前記蓄電池を冷却する冷却装置とを備え、
     前記制御部は、前記温度計測部で計測された温度と予め規定された基準温度との比較を実行しつつ、当該計測された温度が当該基準温度を上回ったときには、前記冷却装置を動作させる直流給電システム。
    A DC bus which is a bus bar of DC power supply,
    A power generator,
    A first converter for supplying power generated by the power generation device to the DC bus;
    A second converter for DC voltage conversion of the DC voltage supplied to the DC bus to supply the load device;
    With multiple storage batteries,
    It is connected between each of the plurality of storage batteries and the DC bus, and bi-directionally converts the DC voltage supplied to the DC bus and the DC voltage of the storage battery from the DC bus to the storage battery Or a bi-directional converter that supplies from the storage battery to the DC bus,
    A control unit and configured as a stand-alone DC power supply system not connected to a commercial power supply,
    The control unit compares the generated power of the power generation apparatus with the load power supplied from the second converter to the load device, and when the generated power is larger than the load power, the bidirectional A direct current is supplied to the storage battery based on the DC voltage of the DC bus to the converter to charge the storage battery, and when the generated power is less than the load power, the storage battery is A DC power supply system for supplying a DC current to the DC bus based on the DC voltage to discharge the storage battery,
    A temperature measurement unit that measures the temperature of the storage battery;
    And a cooling device for cooling the storage battery,
    The control unit performs a comparison between the temperature measured by the temperature measurement unit and a reference temperature defined in advance, and operates the cooling device when the measured temperature exceeds the reference temperature. Power supply system.
  3.  前記蓄電池の前記基準温度を上回る各温度と、当該各温度での前記直流電流の上限値に対応する前記発電電力および前記負荷電力の差分電力の絶対値の上限値との関係を示すデータテーブルを記憶する記憶部を備え、
     前記制御部は、前記差分電力の前記絶対値を算出すると共に前記データテーブルを参照して、当該算出した絶対値が前記上限値のときの前記温度を特定し、前記計測された温度が当該特定した温度を超えたときに、前記冷却装置を動作させる請求項2記載の直流給電システム。
    A data table showing a relationship between each temperature exceeding the reference temperature of the storage battery, and the upper limit value of the absolute value of the generated power corresponding to the upper limit value of the direct current at each temperature and the differential power of the load power. It has a storage unit to store
    The control unit calculates the absolute value of the differential power and refers to the data table to specify the temperature when the calculated absolute value is the upper limit value, and the measured temperature corresponds to the specific value. The DC power supply system according to claim 2, wherein the cooling device is operated when the temperature exceeds the predetermined temperature.
PCT/JP2017/036591 2017-10-10 2017-10-10 Dc power supply system WO2019073508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036591 WO2019073508A1 (en) 2017-10-10 2017-10-10 Dc power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036591 WO2019073508A1 (en) 2017-10-10 2017-10-10 Dc power supply system

Publications (1)

Publication Number Publication Date
WO2019073508A1 true WO2019073508A1 (en) 2019-04-18

Family

ID=66100638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036591 WO2019073508A1 (en) 2017-10-10 2017-10-10 Dc power supply system

Country Status (1)

Country Link
WO (1) WO2019073508A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087993A (en) * 2001-09-17 2003-03-20 Nishimu Electronics Industries Co Ltd Control method for surplus power in power supply system
WO2014042224A1 (en) * 2012-09-13 2014-03-20 日本電気株式会社 Power supply system, charging control method and charging control program
WO2014087580A1 (en) * 2012-12-05 2014-06-12 パナソニック株式会社 Charge-discharge management device, power conditioner, power storage device, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087993A (en) * 2001-09-17 2003-03-20 Nishimu Electronics Industries Co Ltd Control method for surplus power in power supply system
WO2014042224A1 (en) * 2012-09-13 2014-03-20 日本電気株式会社 Power supply system, charging control method and charging control program
WO2014087580A1 (en) * 2012-12-05 2014-06-12 パナソニック株式会社 Charge-discharge management device, power conditioner, power storage device, and program

Similar Documents

Publication Publication Date Title
WO2019145999A1 (en) Dc feeding system
JP5857247B2 (en) Power management system
KR101156533B1 (en) Energy storage system and method for controlling thereof
EP2587623B1 (en) Dc power distribution system
US11594883B2 (en) Direct current power supplying system
US9641005B2 (en) Electric power supply system
JP6261866B2 (en) Power generation system including power generation facility and power storage device, control method thereof, and program
WO2019155507A1 (en) Dc power supply system
WO2011068133A1 (en) Charge/discharge system, power generation system, and charge/discharge controller
CN107370168B (en) Electrical energy storage device
KR101380530B1 (en) Grid-connected energy storaging system
JP2016039685A (en) Controller, power storage system comprising the same, and control method and control program for the same
JP2012088086A (en) Power management system
JP2013126300A (en) Power supply system
WO2019163008A1 (en) Dc feeding system
JP2015122841A (en) Power storage system and power generation system
WO2016117315A1 (en) Electric power supply device
JP2014050265A (en) Power supply system and power supply control method
WO2019102565A1 (en) Direct current power supply system
WO2018155442A1 (en) Dc power supply system
JP2020031484A (en) Power storage system and power conditioner
WO2019073508A1 (en) Dc power supply system
WO2012049973A1 (en) Power management system
WO2019077644A1 (en) Dc power feeding system
KR20200125094A (en) Hybrid charge/discharge system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP