WO2019073507A1 - Plexin a1 antagonist-containing medicinal composition for preventing and/or treating amyotrophic lateral sclerosis - Google Patents

Plexin a1 antagonist-containing medicinal composition for preventing and/or treating amyotrophic lateral sclerosis Download PDF

Info

Publication number
WO2019073507A1
WO2019073507A1 PCT/JP2017/036585 JP2017036585W WO2019073507A1 WO 2019073507 A1 WO2019073507 A1 WO 2019073507A1 JP 2017036585 W JP2017036585 W JP 2017036585W WO 2019073507 A1 WO2019073507 A1 WO 2019073507A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
antibody
plexin
human
variable region
Prior art date
Application number
PCT/JP2017/036585
Other languages
French (fr)
Japanese (ja)
Inventor
淳 熊ノ郷
龍禎 奥野
隆祐 大宮
佑理 寺西
慎也 石井
Original Assignee
国立大学法人大阪大学
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 中外製薬株式会社 filed Critical 国立大学法人大阪大学
Priority to PCT/JP2017/036585 priority Critical patent/WO2019073507A1/en
Publication of WO2019073507A1 publication Critical patent/WO2019073507A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Definitions

  • the present invention relates to a pharmaceutical composition for preventing and / or treating myotonic side sclerosis, which comprises a plexin A1 antagonist.
  • Semaphorin was discovered in the early 1990's as a repulsive molecule for nerve growth cones (Non-patent Documents 1 and 2). Semaphorin has more than 20 members identified to date. Semaphorin is characterized by sharing and saving a region consisting of about 500 amino acids called Sema domain outside the cell. Semaphorin is classified into eight subclasses (Sema1-7, V) from the difference in the C-terminal structure following the Sema domain.
  • the receptors responsible for semaphorin activity are mainly plexins (plexin A1 / A2 / A3 / A4, plexin B1 / B2 / B3, plexin C1, plexin D1) and neuropilins (Nrp-1 and Nrp-2). It is done. Semaphorin is also known to bind to integrins, CD72 and Tim-2 (Non-patent Document 3). It is also known that plexin, which is a semaphorin receptor, associates with various co-receptors such as VEGFR-2, c-Met and Trem2 / DAP12. Plexin reflects the diverse functions of semaphorins or constructs complex ligand-receptor relationships.
  • the biological activity of semaphorin is diverse, such as blood vessel and angiogenesis, cancer metastasis / invasion, bone metabolism regulation, retinal homeostasis maintenance, and immune regulation.
  • Involvement of semaphorin in various diseases such as allergic diseases, autoimmune diseases, bone metabolic diseases, neurodegenerative diseases, retinitis pigmentosa, sudden death of the heart, metastasis / invasion of cancer, etc. has been reported sequentially in recent years (Non-Patent Document 3).
  • Non-Patent Document 3 In connection with the biological activity of semaphorin, research aimed at development of a method for diagnosis and treatment of human diseases is currently being vigorously carried out.
  • Plexin A1 is a receptor for class III and class VI semaphorins. Plexin A1 forms a receptor with VEGF receptor and Off-Track during cardiac morphogenesis of chicken, and also forms a receptor for class III semaphorin with Nrp-1 to act as a receptor for neural repulsion factor It has been reported. Furthermore, plexin A1 also acts as a receptor for class VI semaphorins Sema6C and Sema6D, and is also reported to be involved in axonal guidance and cardiac organogenesis.
  • Non-patent Document 4 plexin A1 signal analysis in dendritic cells and osteoclasts confirmed that in these cells plexin A1 forms a heteroreceptor with Trem-2 and DAP-12. Furthermore, stimulation of recombinant soluble Sema6D protein promotes expression of inflammatory cytokines such as IL-12 from dendritic cells and osteoclast differentiation from precursor cells, Sema6D wild type dendritic cells It was shown that while binding to cells, it could hardly bind to dendritic cells of plexin A1-deficient mice.
  • inflammatory cytokines such as IL-12 from dendritic cells and osteoclast differentiation from precursor cells
  • Non-patent Document 5 Plexin A1 inhibition by plexin A1 by shRNA using mouse dendritic cells controls plexin A localization to the immune synapse of dendritic cells and T cells through activation of signal transduction factor Rho (Non-patent document 6).
  • plexin A1 has been reported to be involved in dendritic cell migration to lymph nodes and in antigen-specific T cell responses. Furthermore, expression of Sema3A but not Sema6C or Sema6D is required for dendritic cell migration as it passes through lymphatic endothelial cells, where Sema3A stimulates myosin-II activity to induce actomyosin contraction has been reported (Patent Document 1).
  • Non-Patent Document 8 cites the above-mentioned Non-Patent Document 7 and introduces the structure of a ternary complex of “Sema3A-plexin A1-Nrp-1”. However, Non-Patent Document 7 does not disclose the structure of the “Sema3A-plexin A1-Nrp-1” ternary complex.
  • Sema3A transmits a signal through Nrp-1 / plexin A1, but does not bind to plexin A1, but only to Nrp-1.
  • Sema3A neutralizing antibody, Nrp-1 neutralizing antibody, soluble Nrp-1 disclosed as substances that inhibit the binding of Nrp-1 / plexin A1 heteroreceptor to Sema 3A and therapeutic agents for cellular immune diseases It has been suggested that it could be (Patent Document 1).
  • Patent Document 9 it has been reported that enhanced expression of Sema3A is found in the motor cortex and spinal cord of the brain of ALS patients.
  • Non-patent Document 10 results of the effect of an anti-Nrp-1 antibody in ALS model mice (Non-patent Document 10) and the Rotarod test in ALS model mice knocked out of Nrp-1 have been reported (Non-patent document 11).
  • a plexin A1 antagonist for example, an anti-plexin A1 antibody
  • ALS amyotrophic lateral sclerosis
  • the present invention has been made in view of the above situation, and provides a pharmaceutical composition for preventing and / or treating amyotrophic lateral sclerosis (ALS) containing a plexin A1 antagonist, and a kit comprising the pharmaceutical composition.
  • An object of the present invention is to provide an anti-plexin A1 antibody, a pharmaceutical composition used for the prevention and / or treatment of a disease associated with the biological activity of 3A.
  • ALS amyotrophic lateral sclerosis
  • plexin A1 antagonists exhibit efficacy in the ALS model.
  • the present inventors succeeded in obtaining an anti-plexin A1 antibody that inhibits the biological activity of semaphorin 3A.
  • the present invention is based on such findings, and relates to [1] to [11] below.
  • a pharmaceutical composition for the prevention and / or treatment of myotrophic lateral sclerosis which comprises a plexin A1 antagonist.
  • the antagonist is selected from the group consisting of anti-plexin A1 antibody or antibody fragment thereof, antisense to plexin A1, double stranded RNA (dsRNA), siRNA, miRNA, short hairpin RNA, RNA aptamer and ribozyme
  • the pharmaceutical composition according to any one of [1] to [3].
  • [5] The pharmaceutical composition of any one of [1] to [4], wherein the antagonist is an anti-plexin A1 antibody or an antibody fragment thereof.
  • [6] The pharmaceutical composition of [4] or [5], wherein the antibody or the antibody fragment thereof is an anti-human mouse cross plexin A1 antibody.
  • a kit comprising the pharmaceutical composition of any one of [1] to [7].
  • a pharmaceutical composition for suppressing muscle weakness or muscle atrophy comprising a plexin A1 antagonist.
  • the present invention also relates to the following [12] to [18].
  • An anti-plexin A1 antibody or an antibody fragment thereof according to any one of the following (1) to (4): (1) H chain variable region comprising CDR1 set forth in SEQ ID NO: 1, CDR2 set forth in SEQ ID NO: 2, and CDR3 set forth in SEQ ID NO: 3, and CDR1 set forth in SEQ ID NO: 4, SEQ ID NO: 4 An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 of 5: and CDR3 of SEQ ID NO: 6; (2) H chain variable region comprising CDR1 of SEQ ID NO: 7, CDR2 of SEQ ID NO: 8, and CDR3 of SEQ ID NO: 9, and CDR1 of SEQ ID NO: 10, SEQ ID NO: An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 of SEQ ID NO: 11 and CDR3 of SEQ ID NO: 12; (3) H chain variable region comprising CDR1 of SEQ ID NO: 13, CDR2
  • a method for the prophylaxis and / or treatment of ALS which comprises the step of administering a plexin A1 antagonist to a patient.
  • a pharmaceutical composition for preventing and / or treating amyotrophic lateral sclerosis (ALS) containing a plexin A1 antagonist a kit comprising the pharmaceutical composition, muscle weakness or muscle atrophy comprising the plexin A1 antagonist
  • a pharmaceutical composition for suppressing degeneration or loss of the motor nerve containing the plexin A1 antagonist a pharmaceutical composition for suppressing degeneration or loss of the motor nerve containing the plexin A1 antagonist, prevention of a disease associated with biological activity of semaphorin 3A containing the plexin A1 antagonist and /
  • a pharmaceutical composition for use in therapy an anti-plexin A1 antibody.
  • a pharmaceutical composition for preventing and / or treating amyotrophic lateral sclerosis (ALS) containing an anti-plexin A1 antibody, and an anti-plexin A1 antibody that inhibits the biological activity of semaphorin 3A were provided.
  • FIG. 5 shows antagonist activity of anti-human mouse cross Plexin A1 antibody against human semaphorin 3A. It is a figure which shows the antagonist activity with respect to mouse semaphorin 3A of an anti-human mouse cross Plexin A1 antibody.
  • FIG. 6 is a graph showing relative survival time when a control antibody or anti-PlexinA1 antagonist antibody hPASK # 188 is administered to G93A mutant SOD1 transgenic mice, and a relative value of a change in time until the mouse falls in the rotarod test.
  • Anti-PlexinA1 antagonist antibody hPASK # 188 has a survival time (P ⁇ 0.005, log rank test), time to drop of mouse in Rotarod test (P ⁇ 0.05 at 18 and 19 weeks in comparison with control antibody) , Wilcoxon rank sum test, one-tailed test) was significantly extended.
  • the present invention relates to a pharmaceutical composition for the prevention and / or treatment of muscle atrophy lateral sclerosis (ALS) containing a plexin A1 antagonist.
  • plexin A1 for example, human or mouse plexin A1 can be used, but it is not particularly limited thereto.
  • the amino acid sequence and nucleotide sequence of mouse plexin A1 are described, for example, in Kameyama T et al. "Biochemical and biophysical research communications.” Biochem Biophys Res Commun. 1996, 226 (2), 524-9, Accession No. D 86948 of Genbank, NCBI. It is published in Reference Sequence NP_032907.1.
  • plexin A1 amino acid sequence and nucleotide sequence of human plexin A1 are disclosed in, for example, Tamagnone L et al. Cell. 1999, 99 (1), 71-80, Genbank Accession No. X87832, NCBI Reference Sequence NP_115618, NCBI Reference Sequence NM_032242 ing.
  • Plexin A1 can be easily cloned based on these sequence information.
  • the amino acid sequence or base sequence of plexin A1 can be appropriately modified and used within the intended range of use.
  • the amino acid sequence of plexin A1 is well conserved between human and mouse.
  • the plexin A1 antagonist means, for example, a compound that specifically binds to plexin A1 protein and prevents or reduces its signal transduction activity, for example, an antibody (the antibody is an anti-plexin A1 antibody, an antibody against anti-plexin A1) And aptamers.
  • Another plexin A1 antagonist refers to a compound that prevents or reduces expression of plexin A1 protein, and includes, for example, antisense nucleic acid, ribozyme nucleic acid, and nucleic acid having RNAi activity.
  • the plexin A1 antagonists include anti-plexin A1 antibodies.
  • plexin A1 antagonists include plexin A1 antagonists that inhibit the biological activity of semaphorin 3A, and plexin A1 antagonists that inhibit the regression of cell forms.
  • plexin A1 antagonists include anti-plexin A1 antibodies that inhibit the biological activity of semaphorin 3A, and anti-plexin A1 antibodies that inhibit the regression of cell forms. More specifically, examples of the anti-plexin A1 antibody include the antibodies described later.
  • Semaphorin 3A may be, for example, human or mouse semaphorin 3A, but is not particularly limited thereto.
  • the amino acid sequence of human semaphorin 3A is published, for example, in NCBI Reference Sequence NP — 006071.1.
  • the amino acid sequence of mouse semaphorin 3A is disclosed, for example, in NCBI Reference Sequence NM_009152.
  • Semaphorin 3A can be easily cloned based on these sequence information.
  • the amino acid sequence of semaphorin 3A can be appropriately modified and used within the scope of the purpose of use. In the present specification, semaphorin 3A is also described as Sema 3A.
  • the biological activity of semaphorin 3A refers to an activity that semaphorin 3A can exert in vitro or in vivo, and means, for example, the following activities.
  • Activity to retract cell morphology eg dendritic cell morphology
  • activity to promote migration of dendritic cells to regional lymph nodes US Patent Publication 2012/0322085
  • inhibit osteoclast differentiation include activity, activity to promote osteoblast differentiation (Hayashi M et al. Nature 2012, 485, 69-74), and nerve extension inhibitory activity (US Pat. No. 7,642,362).
  • the antagonist of the present invention is only required to inhibit at least one of the biological activities of semaphorin 3A, preferably to inhibit the regression of cell form, and more preferably the regression of cell form of dendritic cell Inhibit.
  • Dendritic cells may be derived, for example, from bone marrow or monocytes.
  • Diseases associated with biological activity of semaphorin 3A include, for example, amyotrophic lateral sclerosis (ALS).
  • ALS amyotrophic lateral sclerosis
  • SOD1 gene has been reported as the causative gene for familial amyotrophic lateral sclerosis (familial ALS), and G37R, H46R, G85R, G93A, etc. are known as gene mutations.
  • Transgenic mice having these mutations develop symptoms similar to ALS, and are widely used for research and development of therapeutic agents for ALS as ALS model animals.
  • SOD1 transgenic mice carrying the G93A mutation can be used to confirm the effect of ALS therapeutics, but SOD1 transgenic mice carrying other mutations can also be used.
  • inhibitors of the biological activity of semaphorin 3A means that the biological activity of semaphorin 3A is reduced by 5% or more in the presence of the antagonist of the present invention as compared to the absence, preferably 10% or more, 20 % Or more, 30% or more, 50% or more, 75% or more, 80% or more, 90% or more, or 95% or more.
  • Sema3A induces dendritic cell migration by retracting nerve growth cones of neurons and suppressing axonal outgrowth, or inducing regression of dendritic cell morphology in the process of dendritic cells passing through micro lymphatics. It controls a variety of biological reactions including neural network formation and immune reaction by showing the reductive activity to various cells, such as controlling
  • Methods known to those skilled in the art can be appropriately used as a method for measuring the regression of the cell form, for example, a method of directly analyzing the cell form, changes in cell form and adhesion, xCELLigence (registered trademark) And so on), but it is not limited thereto.
  • Cells such as various tumor cells, endothelial cells including HUVEC, dorsal root ganglion (DRG) neurons and dendritic cells are seeded on a 96 well cell culture plate and cultured for several hours to 1 day to allow the cells to adhere.
  • Sema3A is added, and culture is further performed for 30 minutes to several hours at 37 ° C. in a 5% CO 2 incubator. At this time, a well to which Sema3A is not added is set as a comparison control.
  • cell morphology is photographed using a cell image analyzer for high content screening such as microscopic observation or ArrayScan (registered trademark), and changes in the cell morphology are quantified by image analysis software (Cellomics-vHCSTM: Scan etc.).
  • a cell image analyzer for high content screening such as microscopic observation or ArrayScan (registered trademark)
  • Change in the cell morphology are quantified by image analysis software (Cellomics-vHCSTM: Scan etc.).
  • an index used in quantifying cell shape change for example, a method using an index "% High Object Convex Hull Area ratio" can be mentioned. This is a calculation of the ratio of the area of the cell itself to the area of the convex hull to calculate the percentage of cells above a certain threshold, and this number is compared between when Sema3A is not added and when it is added.
  • Regression of the cell form means that the above value decreased by 5% or more when Sema3A is added compared to when Sema3A is not added, preferably 10% or more, 20% or more, 30% or more, 50% or more, 75 % Or more, 80% or more, 90% or more, or 95% or more.
  • Average neurite outgrowth / neuron by using neurite outgrowth application of image analysis software (Cellomics-vHCSTM: Scan etc.) as an example of an index used in quantifying another cell shape change
  • the index quantified as / well can be used.
  • Regression of the cell form means that the above value decreased by 5% or more when Sema3A is added compared to when Sema3A is not added, preferably 10% or more, 20% or more, 30% or more, 50% or more, 75 % Or more, 80% or more, 90% or more, or 95% or more.
  • a method of calculating the area of cells from the captured image and determining that the cells smaller than a certain threshold value are determined to be regressed can also be used.
  • Cells such as various tumor cells, endothelial cells including HUVEC, dorsal root ganglion (DRG) neurons and dendritic cells are seeded on tissue culture E-plates with electrodes accumulated on the bottom of the wells, and can be performed for several hours to 1 day Adhere cells by culturing.
  • Sema3A is added, and the cells are cultured in an incubator at 37 ° C., 5% CO 2 for about one more hour. At this time, a well to which Sema3A is not added is set as a comparison control.
  • Changes in cell morphology and adhesion are detected as electrical impedance using xCELLigence®.
  • This electrical impedance is detected using RTCA software (registered trademark), which is analysis software for xCELLigence (registered trademark), and changes relative to the current cell condition as a unitless parameter called cell index (CI). It is created from The cell shape regression-inducing activity of Sema3A is measured by comparing Sema3A with and without this CI value.
  • Regression of the cell form means that the CI value decreased by 5% or more when Sema3A was added compared to when Sema3A was not added, and preferably 10% or more, 20% or more, 30% or more, 50% or more, 75 % Or more, 80% or more, 90% or more, or 95% or more.
  • Sema3A acts on the heteroreceptor complex of Plexin-A1 and Neuropilin-1 on dendritic cells and shows activity to induce actomyosin contraction, and induces changes in cell morphology to pass through the microlymphatic cell gap I have control.
  • a method of measuring the activity methods known to those skilled in the art can be used as appropriate, for example, a method of measuring using a cell migration assay using a Boyden chamber in vitro, It is not limited to these.
  • transwells (Corning) are placed in a 24-well plate containing 0.6 mL of 0.1% BSA in RPMI 1640 containing chemokines such as CCL21 and CXCL12. Dendritic cells are added to the upper chamber of the transwell and incubated at 37 ° C. for 1-3 hours. The cells in the lower chamber are then counted.
  • lymphatic endothelial cells and vascular endothelial cells are overlaid on the upper chamber. Briefly, cells of SVEC 4-10 or HMVEC-dLy are seeded at the top or bottom of a 2 ⁇ g / mL fibronectin coated transwell insert.
  • transendothelial cell migration assay is performed according to the same method as the cell migration assay described above. In performing these assays, add Sema 3A with dendritic cells to the upper chamber of the transwell and compare the migration results of dendritic cells to the lower chamber with wells without Sema 3A. The promoting activity of cell migration is measured.
  • the activity to promote migration of dendritic cells to regional lymph nodes was an increase in migration counts of dendritic cells to the lower chamber by at least 5% in wells to which Sema3A was added as compared to wells to which Sema3A was not added. It means that the increase is preferably 10% or more, 20% or more, 30% or more, 50% or more, 75% or more, 80% or more, 90% or more, 95% or more.
  • Sema3A exerts an osteoprotective activity by acting on the activation of osteoblasts as well as suppressing the differentiation of osteoclasts through receptors expressed on osteoclasts and osteoblasts. It has been reported.
  • Osteoclast differentiation inhibitory activity There are various methods for measuring the activity, and it is evaluated by, for example, tartrate-resistant acid phosphatase (TRAP) staining as one example.
  • bone marrow cells are cultured in ⁇ -MEM medium containing M-CSF for 48 hours or more to prepare myeloid monocyte / macrophage precursor cells.
  • the medium is changed to a medium supplemented with RANKL and culture is continued for several days.
  • Sema3A the medium is changed to the medium to which Sema3A is added, and after 10 to 12 hours, RANKL is added and culture is continued for several days.
  • the medium is changed every few days, and when osteoclast formation is confirmed, TRAP staining and nuclear staining are performed.
  • TRAP staining and nuclear staining are performed.
  • Measure osteoclast differentiation inhibitory activity Specifically, the number of TRAP positive cells per well, or the number of TRAP positive and multinucleated cells are counted and compared.
  • the osteoclast differentiation inhibitory activity means that the number of TRAP-positive cells or the number of TRAP-positive and multinucleated cells is reduced by 5% or more in the wells to which Sema3A is added, as compared to the wells to which Sema3A is not added. Means a decrease of 10% or more, 20% or more, 30% or more, 50% or more, 75% or more, 80% or more, 90% or more, 95% or more.
  • Osteoblast activation activity There are various methods for measuring the activity, and for example, evaluation is made by, for example, alkaline phosphatase (ALP) staining, ALP activity measurement, and detection of calcification.
  • ALP alkaline phosphatase
  • calvarial cells and MC3T3-E1 cells are seeded on a collagen-coated plate and cultured in ⁇ -MEM medium containing ascorbic acid and ⁇ -glycerophosphate.
  • Sema3A culture is performed by adding Sema3A to the medium. The medium is changed every few days, and after completion of culture, ALP staining is performed to obtain an image by a microscope, or its ALP activity is measured using absorbance method.
  • Alizarin red staining is performed to detect calcification.
  • the stained image of cells to which Sema3A is added is obtained using a microscope, and the osteoblast activating action of Sema3A is evaluated by comparing with the stained image of cells to which Sema3A is not added. Specifically, cells after staining are photographed with a microscope, and the intensity of ALP staining and Alizarin red staining is visually compared to determine the presence or absence of activity.
  • the osteoblast activation activity means that the absorbance of ALP activity or the intensity of Alizarin Red staining is increased by 5% or more in the wells to which Sema 3A is added as compared with the wells to which Sema 3A is not added, preferably 10% or more 20% or more, 30% or more, 50% or more, 75% or more, 80% or more, 90% or more, 95% or more.
  • the term “antibody” is used in the broadest sense and, as long as it exhibits the desired antigen binding activity, it is not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. It includes various antibody structures, including bispecific antibodies) and antibody fragments.
  • the antibodies may be murine, human, humanized, chimeric or derived from other species.
  • the antibodies disclosed herein can be of any type (eg, IgG, IgE, IgM, IgD and IgA), class (eg, IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule It can be.
  • the immunoglobulin may be from any species (eg, human, mouse or rabbit).
  • the terms “antibody”, “immunoglobulin” and “immunoglobulin” are used interchangeably in a broad sense.
  • antibody fragment refers to a molecule other than the complete antibody that comprises the portion of the complete antibody that binds to the antigen to which the complete antibody binds.
  • antibody fragments include, but are not limited to, Fv, Fab, Fab ', Fab'-SH, F (ab') 2, diabodies, linear antibodies, single chain antibody molecules (eg, scFv) And multispecific antibodies formed from antibody fragments.
  • Cross-over antibody is also referred to as cross-over antibody or cross-reacting antibody, and refers to an antibody that recognizes the same or similar epitopes in multiple antigens.
  • the plurality of antigens may be, for example, antigens of the same species, or antigens of different species.
  • the antibody in the present invention is preferably a recombinant antibody produced using genetic recombination technology.
  • the recombinant antibody may be cloned from antibody-producing cells such as hybridomas or sensitized lymphocytes producing the antibody, and then incorporated into a vector and introduced into a host (host cell) for production. It can be obtained by
  • the antibody of the present invention is not limited in its origin, such as human antibody, mouse antibody, rat antibody and the like.
  • genetically modified antibodies such as chimeric antibodies and humanized antibodies may be used.
  • a chimeric antibody is an antibody comprising the H chain and L chain variable regions of the antibody of the immunized animal and the H chain and L chain constant regions of a human antibody.
  • a chimeric antibody can be obtained by linking DNA encoding the variable region of an antibody derived from an immunized animal with DNA encoding the constant region of a human antibody, and incorporating this into an expression vector to introduce it into a host for production. .
  • a human antibody of interest can be obtained by immunizing a transgenic animal having a full repertoire of human antibody genes with an antigen of interest (WO 93 See WO / 12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, WO 96/33735).
  • human antibodies can be produced by hybridoma-based methods.
  • Human myeloma and mouse-human hetero cell lines for the production of human monoclonal antibodies are available (Kozbor J. Immunol., 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp 51-63. (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol., 147: 86 (1991)).
  • Human antibodies generated through human B cell hybridoma technology are also known (see Li et al., Proc. Natl. Acad. Sci. USA, 103: 3557-3562 (2006)).
  • Trioma technology Human hybridoma technology (trioma technology) is also available (Vallmers and Brandlein, Histology and Histopathology, 20 (3): 927-937 (2005) and Vallmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27 (3) ): 185-91 (2005)).
  • Human antibodies can also be generated by isolating Fv clone variable domain sequences selected from phage display libraries of human origin. Such variable domain sequences may be combined with the desired human constant domain. Techniques for selecting human antibodies from antibody libraries are described below. The present technology is not limited to human antibodies.
  • variable region of a human antibody can be expressed as a single chain antibody (scFv) on the surface of phage by phage display method, and phage that bind to an antigen can be selected.
  • scFv single chain antibody
  • phage that bind to an antigen can be selected.
  • the DNA sequence encoding the variable region of a human antibody that binds to the antigen is clarified, an appropriate expression vector can be produced based on the sequence and a human antibody can be obtained.
  • Antibodies or antibody fragments isolated from human antibody libraries are considered herein as human antibodies or fragments of human antibodies.
  • Humanized antibodies are modified antibodies, also referred to as reshaped human antibodies. Humanized antibodies are constructed by grafting the CDRs of the antibody derived from the immunized animal into the complementarity determining regions of human antibodies. The general genetic recombination method is also known (European Patent Application Publication No. 239400, WO 96/02576, Sato K et al, Cancer Research 1993, 53: 851-856, WO 99 / 51743).
  • the anti-plexin A1 antibody is an antibody described in any of the following (1) to (4) or an antibody fragment thereof, and can be used, for example, for the prophylaxis and / or treatment of ALS.
  • SEQ ID NO: 4 An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 of 5: and CDR3 of SEQ ID NO: 6;
  • H chain variable region comprising CDR1 of SEQ ID NO: 7, CDR2 of SEQ ID NO: 8, and CDR3 of SEQ ID NO: 9, and CDR1 of SEQ ID NO: 10
  • the anti-plexin A1 antibody is the antibody or antibody fragment thereof according to any one of the following (5) to (8).
  • An antibody or antibody fragment thereof comprising the H chain variable region described in SEQ ID NO: 25 and the L chain variable region described in SEQ ID NO: 26;
  • An antibody or antibody fragment thereof comprising the H chain variable region of SEQ ID NO: 27 and the L chain variable region of SEQ ID NO: 28;
  • An antibody or antibody fragment thereof comprising the H chain variable region described in SEQ ID NO: 29 and the L chain variable region described in SEQ ID NO: 30;
  • An antibody or antibody fragment thereof comprising the H chain variable region shown in SEQ ID NO: 31 and the L chain variable region shown in SEQ ID NO: 32.
  • the anti-plexin A1 antibody is the antibody or antibody fragment thereof according to any of the following (9) to (12).
  • amino acid modifications known to those skilled in the art can be added to the aforementioned antibody or antibody fragment thereof as appropriate.
  • the amino acid contained in the amino acid sequence of the antibody or its antibody fragment may also be post-translationally modified (eg, modification to pyroglutamic acid by pyroglutamylation of N-terminal glutamine is a modification well known to those skilled in the art).
  • modification to pyroglutamic acid by pyroglutamylation of N-terminal glutamine is a modification well known to those skilled in the art.
  • an antibody or an antibody fragment thereof is naturally included in the antibody or an antibody fragment thereof.
  • the antibody or antibody fragment thereof is an antibody or antibody fragment thereof that inhibits the biological activity of semaphorin 3A. In a particular aspect, the antibody or antibody fragment thereof is an antibody or antibody fragment thereof that inhibits the regression of cell morphology.
  • the antibody or antibody fragment thereof is an anti-human mouse cross plexin A1 antibody.
  • the term "monoclonal antibody” refers to a population of substantially homogeneous antibodies, ie, the individual antibodies that make up the population are homogeneous except for small naturally occurring variants that may occur in nature. Refers to an antibody obtained from an antibody population. Monoclonal antibodies are highly specific, generally acting against a single antigenic site. In addition, monoclonal antibodies are directed to a single antigenic determinant on an antigen, as compared to conventional polyclonal antibody preparations that typically include different antibodies to different antigenic determinants (epitopes). In addition to their specificity, monoclonal antibodies are advantageous in that they are synthesized by hybridoma cultures etc. that are not contaminated with other antibodies.
  • the modifier "monoclonal” indicates the properties of the antibody obtained from a substantially homogeneous population of antibodies, and does not require that the antibody be produced by a particular method.
  • the monoclonal antibodies used in the present invention may be produced, for example, by the hybridoma method (e.g. Kohler and Milstein, Nature 256: 495 (1975)), or by a recombinant method (e.g. U.S. Pat. No. 4,816,567). .
  • the monoclonal antibodies used in the present invention may also be isolated from phage antibody libraries (e.g. Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222). : 581-597 (1991)).
  • the antibodies of the present invention can be produced by methods known to those skilled in the art. Specifically, DNA encoding a target antibody is incorporated into an expression vector. At that time, it is incorporated into an expression vector to be expressed under the control of an expression control region, such as an enhancer or a promoter. Next, host cells are transformed with this expression vector to express an antibody. At that time, a combination of appropriate host and expression vector can be used.
  • an expression control region such as an enhancer or a promoter.
  • vectors examples include M13 vectors, pUC vectors, pBR322, pBluescript, pCR-Script and the like.
  • pGEM-T for the purpose of subcloning and excision of cDNA, for example, pGEM-T, pDIRECT, pT7 and the like can be used in addition to the above vectors.
  • expression vectors are useful when using vectors to produce antibodies.
  • an expression vector for example, when the host is E. coli such as JM109, DH5 ⁇ , HB101, XL1-Blue, a promoter that can be efficiently expressed in E. coli, for example, lacZ promoter (Ward et al., Nature (1989) 341) , 542-546; FASEB J. (1992) 6, 2422-2427), araB promoter (Better et al., Science (1988) 240, 1041-1043), or having a T7 promoter or the like is essential.
  • pGEX-5X-1 manufactured by Pharmacia
  • QIAexpress system manufactured by QIAGEN
  • pEGFP pEGFP
  • pET in this case, the host expresses T7 RNA polymerase
  • the vector may also contain a signal sequence for polypeptide secretion.
  • a signal sequence for polypeptide secretion for example, pelB signal sequence (Lei, SP et al J. Bacteriol. (1987) 169, 4397) may be used when producing in the periplasm of E. coli.
  • the introduction of the vector into host cells can be performed, for example, using the calcium chloride method or electroporation.
  • vectors for producing the antibody of the present invention other than E. coli expression vectors include, for example, mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen) and pEGF-BOS (Nucleic Acids. Res. 1990, 18).
  • mammalian-derived expression vectors for example, pcDNA3 (manufactured by Invitrogen) and pEGF-BOS (Nucleic Acids. Res. 1990, 18).
  • a promoter necessary for intracellular expression for example, the SV40 promoter (Mulligan et al., Nature (1979) 277, 108), It is essential to have MMTV-LTR promoter, EF1 ⁇ promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322), CAG promoter (Gene. (1991) 108, 193), CMV promoter, etc. It is more preferable to have a gene for selecting transformed cells. Examples of genes for selecting transformed cells include drug resistant genes that can be distinguished by drugs (neomycin, G418, etc.). Examples of vectors having such characteristics include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, pOP13 and the like.
  • a vector having a DHFR gene that complements the CHO cell deficient in the nucleic acid synthesis pathway for example, , PCHOI etc.
  • MTX methotrexate
  • COS having a gene expressing SV40 T antigen on the chromosome COS having a gene expressing SV40 T antigen on the chromosome.
  • a method of transforming cells using a vector (such as pcD) having an SV40 origin of replication can be mentioned.
  • a replication origin those derived from polyoma virus, adenovirus, bovine papilloma virus (BPV) and the like can also be used.
  • the expression vector is used as a selection marker for selection of aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase ( dhfr) gene etc. can be included.
  • APH aminoglycoside transferase
  • TK thymidine kinase
  • Ecogpt E. coli xanthine guanine phosphoribosyltransferase
  • dhfr dihydrofolate reductase
  • the antibody of the present invention thus obtained can be isolated from the inside or outside of the host cell (such as medium) and purified as a substantially pure homogeneous antibody.
  • the separation and purification of the antibody may be carried out using the separation and purification methods used in the conventional purification of antibodies, and is not limited in any way. For example, chromatography column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing method, dialysis, recrystallization etc. are appropriately selected, In combination, antibodies can be separated and purified.
  • the chromatography includes, for example, affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography, etc. (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographies can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC or FPLC. Examples of columns used for affinity chromatography include Protein A column and Protein G column. For example, as columns using Protein A, Hyper D, POROS, Sepharose FF (GE Amersham Biosciences), etc. may be mentioned. The present invention also encompasses highly purified antibodies using these purification methods.
  • the resulting antibodies can be purified to homogeneity.
  • separation and purification methods used for ordinary proteins may be used.
  • separation and purification of antibodies can be achieved by appropriately selecting and combining chromatography columns such as affinity chromatography, filters, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc.
  • chromatography columns such as affinity chromatography, filters, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc.
  • affinity chromatography such as affinity chromatography, filters, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc.
  • examples of columns used for affinity chromatography include Protein A column, Protein G column and the like.
  • Aptamer refers to a nucleic acid molecule that specifically binds to a target molecule, such as a polypeptide.
  • the aptamer of the present invention can be an RNA aptamer that can specifically bind to plexin A1.
  • the generation and therapeutic use of aptamers is well established in the art.
  • the aptamer can be obtained by using the SELEX method (see US Patent Nos. 5475096, 5580737, 5657588, 57077796, 5765177 etc.).
  • an "antisense nucleic acid” is an oligonucleotide which is an oligoribonucleotide, an oligodeoxyribonucleotide, a modified oligoribonucleotide, or a modified oligodeoxyribonucleotide, and which is under physiological conditions and contains mRNA of a specific gene or mRNA of that gene. Refers to said oligonucleotides which hybridize to a substance and thereby inhibit transcription of its gene and / or translation of its mRNA.
  • Antisense RNA hybridizes to mRNA in vivo to inhibit translation of the mRNA molecule (Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, FL, 1988)). Methods for obtaining antisense nucleic acids are well established in the art.
  • Ribozyme nucleic acids are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. For details, see, for example, Rossi, Current Biology 4: 469-471 (1994). Ribozymes act by sequence specific hybridization to a complementary target RNA, followed by cleavage of the nucleotide strand.
  • the composition of the ribozyme nucleic acid preferably comprises one or more sequences complementary to the target mRNA and a known or functionally equivalent sequence involved in mRNA cleavage (see, eg, US Pat. No. 5,093,246).
  • RNAi activity is a molecule that degrades mRNA in a sequence specific manner or inhibits its translation. Examples of this molecule include double stranded RNA (dsRNA), siRNA, miRNA, short hairpin RNA (shRNA).
  • dsRNA double stranded RNA
  • siRNA siRNA
  • miRNA miRNA
  • shRNA short hairpin RNA
  • a list of known miRNA sequences can be found in databases maintained by research institutions such as Wellcome Trust Sanger Institute, Penn Center for Bioinformatics, Memorial Sloan Kettering Cancer Center, and the European Molecule Biology Laboratory, among others.
  • Known effective siRNA sequences are also well shown in the relevant literature. Methods for making and using nucleic acids having RNAi activity are well known to those skilled in the art.
  • there are computational tools that increase the opportunity to discover effective and specific sequence motifs (Pei et al 2006, Reynolds et al 2004, Khvorova et al 2003, Schwarz et al 2003, Ui-Tei et al 2004, Heale et al 2005, Chalk et al 2004 , Amarzguioui et al. 2004).
  • the pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carriers include sterile water and saline, stabilizers, excipients, antioxidants (such as ascorbic acid), buffers (such as phosphoric acid, citric acid, and other organic acids) And preservatives, surfactants (PEG, Tween etc.), chelating agents (EDTA etc.), binders and the like.
  • polypeptides such as serum albumin, gelatin or immunoglobulin, amino acids such as glycine, glutamine, asparagine, arginine and lysine, saccharides and carbohydrates such as polysaccharides and monosaccharides, mannitol, sorbitol and the like It may contain a sugar alcohol.
  • aqueous solution for injection for example, physiological saline, isotonic solution containing glucose and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, etc. may be mentioned, and appropriate dissolution You may use together with adjuvants, such as alcohol (ethanol etc.), polyalcohol (propylene glycol, PEG etc.), nonionic surfactant (polysorbate 80, HCO-50) etc.
  • adjuvants such as alcohol (ethanol etc.), polyalcohol (propylene glycol, PEG etc.), nonionic surfactant (polysorbate 80, HCO-50)
  • the pharmaceutical composition of the present invention may, if necessary, be encapsulated in microcapsules (microcapsules such as hydroxymethylcellulose, gelatin, poly [methyl methacrylate], etc.) or a colloid drug delivery system (liposomes, albumin microspheres, It may also be an emulsion, nanoparticles, nanocapsule etc.) (see “Remington's Pharmaceutical Science 16th edition", Oslo Ed., 1980 etc.).
  • methods of making the drug a sustained release drug are also known and may be applied to the present invention (Langer et al., J. Biomed. Mater. Res. 1981, 15: 167-277; Langer, Chem. Tech 1982, 12: 98-105; US3773919; EP58481; Sidman et al., Biopolymers 1983, 22: 547-556; EP 133988).
  • Administration to patients can be either oral or parenteral administration, but is preferably parenteral administration.
  • the form (dosage form) of the pharmaceutical composition of the present invention is not particularly limited, and injection, nasal administration, transpulmonary administration, transdermal administration, lyophilization, solution administration Etc.
  • Lyophilization can be carried out by methods well known to the person skilled in the art (Pharm Biotechnol, 2002, 13, 109-33, Int J Pharm. 2000, 203 (1-2), 1-60, Pharm Res. 1997, 14 (8). ), 969-975).
  • the solution is dispensed in an appropriate amount into a container such as a vial used for lyophilization and carried out in a freezing or lyophilizing chamber or immersed in a refrigerant such as acetone / dry ice and liquid nitrogen.
  • a refrigerant such as acetone / dry ice and liquid nitrogen.
  • it can implement by the method known to those skilled in the art. For example, as described in J. Pharm. Sc, 2004, 93 (6), 1390-1402, a membrane concentration method using a TFF membrane is used.
  • the injection form can be administered systemically or locally, for example, by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
  • the administration method can be appropriately selected according to the age and symptoms of the patient.
  • the dose can be selected, for example, in the range of 0.0001 mg to 1000 mg per kg body weight. Alternatively, for example, the dose can be selected in the range of 0.001 to 100,000 mg / body per patient.
  • the present invention is not limited to these dosages and administration methods.
  • a therapeutically and / or prophylactically effective amount of a plexin A1 antagonist is that amount of the antagonist that, when administered to a subject, is effective to prevent, delay, reduce or inhibit a symptom or biological activity associated with a disease or disorder.
  • Means Administration may consist of a single dose or multiple doses and may be given in combination with other pharmaceutical compositions.
  • kits The present invention provides a kit comprising at least the pharmaceutical composition for the prevention and / or treatment of ALS of the present invention.
  • the kit can also be packaged with syringes, injection needles, pharmaceutically acceptable vehicles, alcohol cotton cloths, bandages, instructions describing the method of use, and the like.
  • the invention relates to a method for the prophylaxis and / or treatment of ALS, comprising the step of administering to a patient a plexin A1 antagonist.
  • the invention relates to plexin A1 antagonists for use in a method of preventing and / or treating ALS.
  • the invention relates to the use of a plexin A1 antagonist in the manufacture of a medicament for the prevention and / or treatment of ALS.
  • the present invention relates to a pharmaceutical composition for suppressing muscle weakness or muscle atrophy comprising a plexin A1 antagonist.
  • muscle weakness or muscle atrophy is muscle weakness or muscle atrophy due to ALS.
  • muscle weakness or muscle atrophy is extremity, muscle weakness or muscle atrophy associated with breathing, speech or swallowing.
  • muscle weakness or muscle atrophy is ALS-related limb weakness, muscle weakness or muscle atrophy related to speech or speech.
  • the present invention relates to a pharmaceutical composition for suppressing degeneration or loss of motor nerves containing a plexin A1 antagonist.
  • degeneration or loss of motor nerves is degeneration or loss of motor nerves by ALS.
  • the present invention is a pharmaceutical composition for use in the prevention and / or treatment of a disease associated with biological activity of semaphorin 3A, which comprises a plexin A1 antagonist.
  • a disease associated with biological activity of semaphorin 3A is ALS.
  • Example 1 Preparation of Semaphorin 3A Protein
  • Human semaphorin 3A protein performs gene synthesis based on the sequence of NP — 006071.1 (SEQ ID NO: 41), and arginine residues (552, 555, 757, 759, 760) of the protease recognition site Converted to alanine.
  • the signal peptide (the 20th alanine from the N terminal) is replaced with the artificial signal peptide HMM + 38 (MWRWRWWLLLLLLLLWPMVWA, SEQ ID NO: 42), and a spacer of glutamate-aspartate-arginine is interposed between the signal peptide and the asparagine 21st.
  • the His tag sequence was inserted.
  • a FLAG tag sequence (DYKDDDDK, SEQ ID NO: 43) was inserted at the C-terminus.
  • the generated amino acid sequence is shown in SEQ ID NO: 44.
  • the prepared gene was incorporated into an expression vector, introduced into Invitrogen's FreeStyle 293 cells for expression, and semaphorin 3A protein was purified from the culture supernatant by affinity purification using HisTrap excel (GE Healthcare) and gel filtration chromatography.
  • the secreted protein mouse semaphorin 3A (mSema 3A) was prepared as follows.
  • the prepared gene was incorporated into a vector for animal cell expression, and was transfected into FreeStyle 293 cells (Invitorgen) using 293Fectin (Invitorgen). At this time, a gene expressing EBNA1 was simultaneously introduced to improve the expression efficiency of the target gene product.
  • the transfected cells were cultured at 37 ° C., 8% CO 2 for 5 days to secrete the desired protein into the culture supernatant.
  • Example 2 Preparation of Anti-Human Mouse Cross Plexin A1 Antibody An anti-human mouse cross Plexin A1 antibody was generated from a naive human antibody library and a synthetic human antibody library by the following method.
  • the gene encoding human plexin A1 (hPlexin A1) (SEQ ID NO: 49) thus prepared was incorporated into an expression vector for animal cells, and was introduced into FreeStyle 293 cells (Invitorgen) using 293 Fectin (Invitorgen). At this time, in order to improve the expression efficiency of the target gene, a gene expressing EBNA1 (SEQ ID NO: 50) was simultaneously introduced.
  • the cells transfected according to the above-mentioned procedure were cultured at 37 ° C., 8% CO 2 for 6 days to secrete the desired protein into the culture supernatant.
  • a cell culture solution containing the target hPlexin A1 was filtered with a 0.22 ⁇ m bottle top filter to obtain a culture supernatant.
  • the fraction containing hPlexin A1 was fractionated by gel filtration chromatography using Superdex 200 (GE Healthcare) equilibrated with D-PBS ( ⁇ ).
  • Biotin-labeled hPlexin A1 was prepared by using EZ-Link NHS-PEG4-Biotin (Thermo SCIENTIFIC) against hPlexin A1 prepared as described above.
  • the linker of the phagemid Fab and the phage pIII protein, and the sequence of the phage display library in which the trypsin cleavage sequence is inserted between the N2 domain and the CT domain of the helper phage pIII protein gene was used.
  • a synthetic human antibody phage display library was constructed using 10 types of heavy chain germline sequences and 7 types of light chain germline sequences by methods known to those skilled in the art.
  • the Germline sequence used is based on the frequency of appearance in the human B cell repertoire and the physicochemical properties of the variable region family as indexes, and VH1-2, VH1-69, VH3-23, VH3-66, VH3-72, VH4-59. , VH4-61, VH4-b, VH5-51, VH6-1, V ⁇ 1-39, V ⁇ 2-28, V ⁇ 3-20, V ⁇ 1-40, V ⁇ 1-44, V ⁇ 2-14, V ⁇ 3-21.
  • the antigen recognition site of the synthetic antibody library was diversified.
  • Phage production was carried out from E. coli carrying the constructed phagemid for phage display.
  • a phage library solution was obtained by adding 2.5 M NaCl / 10% PEG to a culture solution of phage-produced E. coli to dilute the precipitated phage population with TBS.
  • the final concentration of 4% BSA, 1.2 mM calcium ion was prepared by adding BSA and CaCl 2 to the phage library solution.
  • the phage library solution was brought into contact with the antigen for 60 minutes at room temperature by adding 250 pmol of the biotin-labeled hPlexin A1 described above to the prepared phage library solution.
  • BSA-blocked magnetic beads were added, and the complex of antigen and phage was allowed to bind to the magnetic beads for 15 minutes at room temperature.
  • TBS TBS
  • TBS TBS
  • the recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 of 0.4 to 0.7).
  • the phage was infected with E. coli by stirring the E. coli gently at 37 ° C. for 1 hour.
  • the infected E. coli was plated on a 225 mm x 225 mm plate.
  • the phage library solution was prepared by recovering the phage from the culture solution of the inoculated E. coli and used for the second panning.
  • the culture supernatant containing the skimmed milk and the phage to which CaCl 2 was added was subjected to ELISA in the following procedure. StreptaWell 96 microtiter plates (Roche) were coated overnight with 100 ⁇ L PBS containing biotin-labeled antigen. After removing the antigen by washing each well of the plate with PBST, the well was blocked with 250 ⁇ L of 0.02% skim milk-TBS for 1 hour or more. The plate-displayed plate containing the prepared culture supernatant was allowed to stand at 37 ° C. for 1 hour in each well from which 0.02% skim milk-TBS had been removed, whereby the antibody displayed on the phage was used as an antigen present in each well. It was combined.
  • Phagemid extraction was performed from NucleoBond Xtra Midi Plus (MACHEREY-NAGEL, 74041.50) from E. coli collected at the time of conversion from antibody fragment to full-length antibody, expression and purification at the third panning. Thereafter, the base sequence of the variable region of the antibody was excised by restriction enzyme treatment.
  • the antibody constant region (the constant region of the H chain is human IgG1 (hG1d) (SEQ ID NO: 51), L chain, and the vector carrying the excision antibody variable region partial base sequence to the EF1 promoter and OriP that is the replication origin of EBNA1.
  • the ligation product was used to transform E. coli DH5 ⁇ (TOYOBO, DNA-903), and extraction of a full-length antibody plasmid for animal cell expression was performed from the obtained single colony.
  • the expression of the antibody was performed using the following method. Human fetal kidney cell-derived FreeStyle 293-F strain (Invitrogen) was suspended in FreeStyle 293 Expression Medium (Invitrogen), and 190 ⁇ L each was seeded at a cell density of 5.0 ⁇ 10 4 cells / well in each well of a 96-well plate. Each prepared plasmid was introduced into cells by lipofection. The cells were cultured for 5 days in a CO 2 incubator (37 ° C., 8% CO 2 ) to secrete the antibody into the culture supernatant.
  • a CO 2 incubator 37 ° C., 8% CO 2
  • the secreted antibody in the culture supernatant was filtered using Multi screen HTS GV (Millipore, MSGVN 2250), and the obtained culture supernatant was subjected to cell ELISA.
  • the antibody was expressed in FreeStyle 293-F strain, and the antibody was affinity purified from the culture supernatant with a Protein A column, and used for evaluation of biological activity and evaluation of drug efficacy.
  • Antigen expressing cell lines were constructed in the following manner.
  • the Myc tag SEQ ID NO: 55
  • a plasmid was prepared in which the cDNA constructed so as to express the fused protein was inserted.
  • the prepared plasmid was digested with restriction enzyme PvuI to linearize it, and then introduced into Ba / F3 cells by electroporation using GenePulser X cell (Bio-Rad).
  • the cells were seeded on a 96 well plate by limiting dilution and subjected to selection with G418. After 1 to 2 weeks, visually check whether the selected cells form single colonies in the wells, collect some cells from those forming single colonies, and use Myc tag antibody Western blot analysis and ELISA to determine whether the Myc tag antibody reacts with 4% paraformaldehyde, acetone and methanol immobilized on a 96-well plate and fixed with 4% paraformaldehyde, acetone and methanol, human and mouse Plexin A1 was confirmed to be expressed in Ba / F3 cells.
  • the antibody supernatant obtained above was subjected to cell ELISA in the following procedure. First, a 384 well plate was prepared, and human PlexinA1 and mouse PlexinA1 expressing Ba / F3 cells were captured on the bottom of separate wells. After washing each well of the plate with PBS, the prepared antibody supernatant was added at 20 ⁇ L / well and allowed to stand at room temperature for 1 hour. After that, each well was washed with 1 M Hepes (pH 7.4), HRP-labeled anti-human IgG antibody (Invitrogen, AHI0304) diluted 5000 times with TBS was added at 20 ⁇ L / well each, and left at room temperature for 1 hour.
  • HRP-labeled anti-human IgG antibody Invitrogen, AHI0304
  • Each well of the plate is washed with 1 M Hepes (pH 7.4), 20 ⁇ L / well of substrate solution (ABTS peroxidase substrate system) is dispensed, color is allowed to develop for 1 hour at room temperature, and then SpectraMax by Molecular Device is used. Binding to human PlexinA1 and binding to mouse PlexinA1 were confirmed by measuring absorbance at 405 nm.
  • An antibody having an absorbance value of 0.15 or more for human Plexin A1 expressing Ba / F3 cells and an absorbance value for mouse Plexin A1 expressing Ba / F3 cells was selected and subjected to the in vitro biological activity evaluation assay described later.
  • the antibodies showing the absorbance values shown in “Table 1” are shown as anti-human mouse crossover Plexin A1 antibodies (hPANK # 016; amino acid sequences of H chain CDRs 1 to 3 in SEQ ID NOs: 1 to 3, SEQ ID NOs: 4 to 6)
  • Amino acid sequences of L chain CDRs 1 to 3; amino acid sequences of H chain variable region, amino acid sequences of L chain variable region, SEQ ID NOs: 33 and 34 amino acid sequence of H chain, amino acid sequence of L chain HPANK # 135; amino acid sequences of H chain CDR1 to 3 in SEQ ID NO: 7-9, amino acid sequences of L chain CDR1 to 3 in SEQ ID NO: 10 to 12, amino acid sequences of H chain variable region in SEQ ID NO: 27;
  • the amino acid sequence of the chain variable region, the amino acid sequence of the H chain in SEQ ID NOs: 35 and 36, and the amino acid sequence of the L chain are shown hPANK # 354; the amino acid sequences of the H chain C
  • Example 3 Evaluation system construction of mouse semaphorin 3A biological activity on mouse bone marrow-derived dendritic cells using xCELLigence system
  • an assay using the xCELLigence system was performed. The assay was performed by the following method.
  • Mouse bone marrow-derived dendritic cells have been described in MB Luntz et al. J Immunol Methods. 223 (1): 77-92 (1999) and Kushimoto Hiroki et al. Journal of Japanese Society for Emergency Medicine 27 (4): 557-562 (2007) It prepared according to the method as described in 2.).
  • mice bone marrow-derived dendritic cells are suspended in RPMI medium containing mouse GM-CSF and FBS, and seeded in wells of the plate. Culture overnight at 37 ° C. After culture, mouse semaphorin 3A was diluted to an appropriate concentration with RPMI medium containing FBS and added to the cell culture solution, and the Cell index value of each well was measured with xCELLigence system (ACEA). The cell index value about one hour after addition of mouse semaphorin 3A is shown in FIG. There was a concentration-dependent decrease in Cell index value by mouse semaphorin 3A, confirming mouse semaphorin 3A biological activity against mouse bone marrow-derived dendritic cells.
  • E-plate 96 E-plate 96
  • Example 4 Evaluation system construction of human semaphorin 3A biological activity on human monocyte-derived dendritic cells using xCELLigence system
  • an assay using the xCELLigence system was performed.
  • the assay was performed by the following method.
  • Human monocyte-derived dendritic cells were prepared by the following method. Peripheral blood mononuclear cells were isolated and collected from human heparinized peripheral blood, and only monocyte fraction was obtained using Monocyte Isolation Kit II, human (Mirteni Biotech Co., Ltd.).
  • the monocyte fraction obtained was cultured in RPMI medium containing FBS supplemented with human IL-4 and human GM-CSF (both from R & D systems).
  • AIM-V medium containing human GM-CSF into E-plate 96 (ACEA), which is a plate exclusively for the xCELLigence system
  • human monocyte-derived dendritic cells are resuspended in AIM-V medium containing human GM-CSF.
  • the suspension was seeded in a well of a plate and cultured overnight at 37 ° C.
  • Human semaphorin 3A was diluted with AIM-V medium to an appropriate concentration and added to the cell culture solution, and Cell index value of each well was measured with xCELLigence system (ACEA).
  • the cell index value about one hour after the addition of human semaphorin 3A is shown in FIG. There was a concentration-dependent decrease in Cell index value due to human semaphorin 3A, confirming the human semaphorin 3A biological activity against human monocyte-derived dendritic cells.
  • Example 5 Evaluation of Antagonist Activity of Anti-Human Mouse Cross Plexin A1 Antibody
  • the biological activity of the anti-human mouse crossover Plexin A1 antibody prepared in Example 2 was evaluated using the human semaphorin 3A activity measurement system by the xCELLigence system described in Example 4.
  • Human monocyte-derived dendritic cells were seeded on E-plate 96 (ACEA), a plate exclusively for xCELLigence system, and cultured overnight at 37 ° C.
  • Anti-human mouse crossover Plexin A1 antibody and anti-Keyhole limpet hemocyanin (KLH) antibody as a control were diluted to appropriate concentrations in AIM-V medium and added to the wells.
  • KLH Keyhole limpet hemocyanin
  • Example 6 Evaluation of Antagonist Activity of Anti-Human Mouse Cross Plexin A1 Antibody
  • Anti-human mouse crossover PlexinA1 antibody hPASK # 188 H chain constant region is mouse IgG2a variant (mIgG2a silent) (SEQ ID NO: 2) prepared in Example 2 using the mouse Semaphorin 3A activity measurement system according to the xCELLigence system described in Example 3. : 56), L chain constant region evaluated the antagonist activity of mouse IgIg (mk1) (SEQ ID NO: 57).
  • Mouse bone marrow-derived dendritic cells were suspended in RPMI medium containing mouse GM-CSF and FBS, seeded on E-plate 96 (ACEA), which is a plate exclusively for xCELLigence system, and cultured overnight at 37 ° C.
  • Anti-human mouse cross Plexin A1 antibody was diluted to the appropriate concentration in RPMI medium containing FBS and added to the wells. Thereafter, mouse semaphorin 3A diluted to an appropriate concentration with FBS-containing RPMI medium was added to each well, and the cell index value of each well was measured.
  • the cell index value of wells added with mouse Semaphorin 3A is 0%, and the Cell index value of non-added wells is 100%, the value of anti-human mouse crossed Plexin A1 antibody and mouse Semaphorin 3A added wells (%) was calculated as antagonist activity (Percent inhibition (%)).
  • the results are shown in FIG.
  • the obtained anti-human mouse crossover Plexin A1 antibody inhibited the decrease of Cell index by mouse semaphorin 3A, and it was confirmed that there is an antagonist activity to mouse semaphorin 3A.
  • Transgenic mice B6SJL-TgN (SOD1-G93A) 1 Gurd / J, hereinafter referred to as mSOD1 mice
  • mSOD1 mice B6SJL-TgN (SOD1-G93A) 1 Gurd / J
  • mSOD1 mice overexpressing human SOD1 G93A mutant purchased from Jackson Laboratories were bred in an experimental animal storage facility at Osaka University. The colonies were maintained.
  • mSOD1 mice female mice that had been backcrossed for at least 10 generations with wild-type mice (C57BL / 6) were used.
  • the genotype of the transgenic mice was determined using polymerase chain reaction.
  • ex4Pla 5'-CATCAGCCCTAATCCATCTGA-3 '(SEQ ID NO: 58) and ex4P2a 5'-TGGACTCTTAGAATTCGCGAC-3' SEQ ID NO: 59
  • reaction conditions 94 ° C. for 30 seconds, 60 ° C. for 30 seconds, and 72 ° C. for 1 minute.
  • the mice were observed daily, and once a week, the time to drop of the mice was measured by the rotarod test.
  • the rotarod test is a test in which a mouse is placed on a rotating rotor and the time until it does not stay on the rotor and falls is reflected, and the time spent on the rotor reflects the muscle strength.
  • Anti-Plexin A1 antagonist antibody hPASK # 188 H chain constant region is mouse IgG2a variant (mIgG2a silent) (SEQ ID NO: 56), L chain constant region is mouse Ig ⁇ (mk1) (SEQ ID NO: 57) in ALS model mice
  • Fig. 5 Survival time of mice treated with anti-PlexinA1 antagonist antibody hPASK # 188 and control antibody in ALS model mice (11 mice in hPASK # 188 administration group, 6 mice in anti-KLH antibody administration group), rotarod test (hPASK # The time to drop of the mice was shown in 8 groups administered in 188 and 6 in group administered with anti-KLH antibody. This result indicates that the anti-Plexin A1 antagonist antibody hPASK # 188 showed a significant prolongation of the survival time as compared to the control antibody, and further that the rotarod test extended the time until the mouse fell.

Abstract

Provided is a medicinal composition for preventing and/or treating amyotrophic lateral sclerosis (ALS), said composition containing a plexin A1 antagonist.

Description

[規則26に基づく補充 30.10.2017] プレキシンA1アンタゴニストを含有する筋萎縮性側索硬化症予防および/または治療用医薬組成物 [Repletion based on rule 26 30.10.2017] Pharmaceutical composition for preventing and / or treating amyotrophic lateral sclerosis containing plexin A1 antagonist
 本発明は、プレキシンA1アンタゴニストを含有する筋委縮性側索硬化症予防および/または治療用医薬組成物に関する。 The present invention relates to a pharmaceutical composition for preventing and / or treating myotonic side sclerosis, which comprises a plexin A1 antagonist.
 セマフォリンは1990年代初頭に神経成長円錐に対する反発分子として発見された(非特許文献1、2)。セマフォリンは、現在までに20種類を超えるメンバーが同定されている。セマフォリンは、細胞外にSemaドメインと呼ばれる500程度のアミノ酸からなる領域をファミリーで共有し保存していることを特徴としている。セマフォリンは、Semaドメインに続くC末端側の構造の違いから8つのサブクラス(Sema1~7、V)に分類されている。 Semaphorin was discovered in the early 1990's as a repulsive molecule for nerve growth cones (Non-patent Documents 1 and 2). Semaphorin has more than 20 members identified to date. Semaphorin is characterized by sharing and saving a region consisting of about 500 amino acids called Sema domain outside the cell. Semaphorin is classified into eight subclasses (Sema1-7, V) from the difference in the C-terminal structure following the Sema domain.
 セマフォリンの活性を担う受容体として、主にプレキシン(プレキシンA1/A2/A3/A4、プレキシンB1/B2/B3、プレキシンC1、プレキシンD1)、ニューロピリン(Nrp-1、Nrp-2)が知られている。セマフォリンは、その他にもインテグリン、CD72、Tim-2と結合することが知られている(非特許文献3)。また、セマフォリン受容体であるプレキシンが、VEGFR-2、c-Met、Trem2/DAP12などの種々の共受容体と会合することが知られている。プレキシンは、セマフォリンの有する多彩な機能を反映してか、複雑なリガンド-受容体関係を構築する。実際、セマフォリンの生物活性は、血管・脈管形成、癌の転移・浸潤、骨代謝調節、網膜恒常性維持、免疫調節など多彩である。アレルギー疾患や自己免疫疾患、骨代謝疾患、神経変性疾患、網膜色素変性症、心臓の突然死、癌の転移・浸潤などの種々の疾患へのセマフォリンの関与がここ数年相次いで報告されている(非特許文献3)。セマフォリンの生物活性に関連して、ヒトの病気の診断・治療法開発を目指した研究が現在精力的に行われている。 The receptors responsible for semaphorin activity are mainly plexins (plexin A1 / A2 / A3 / A4, plexin B1 / B2 / B3, plexin C1, plexin D1) and neuropilins (Nrp-1 and Nrp-2). It is done. Semaphorin is also known to bind to integrins, CD72 and Tim-2 (Non-patent Document 3). It is also known that plexin, which is a semaphorin receptor, associates with various co-receptors such as VEGFR-2, c-Met and Trem2 / DAP12. Plexin reflects the diverse functions of semaphorins or constructs complex ligand-receptor relationships. In fact, the biological activity of semaphorin is diverse, such as blood vessel and angiogenesis, cancer metastasis / invasion, bone metabolism regulation, retinal homeostasis maintenance, and immune regulation. Involvement of semaphorin in various diseases such as allergic diseases, autoimmune diseases, bone metabolic diseases, neurodegenerative diseases, retinitis pigmentosa, sudden death of the heart, metastasis / invasion of cancer, etc. has been reported sequentially in recent years (Non-Patent Document 3). In connection with the biological activity of semaphorin, research aimed at development of a method for diagnosis and treatment of human diseases is currently being vigorously carried out.
 プレキシンA1は、クラスIIIおよびクラスVIセマフォリンの受容体である。プレキシンA1は、ニワトリの心臓形態発生時にはVEGF受容体やOff-Trackとともに受容体を形成するほか、Nrp-1と共にクラスIIIセマフォリンの受容体を形成し神経反発因子の受容体として作用することが報告されている。さらに、プレキシンA1は、クラスVIセマフォリンであるSema6C及びSema6Dの受容体としても作用し、軸索誘導や心臓器官形成に関与することも報告されている。 Plexin A1 is a receptor for class III and class VI semaphorins. Plexin A1 forms a receptor with VEGF receptor and Off-Track during cardiac morphogenesis of chicken, and also forms a receptor for class III semaphorin with Nrp-1 to act as a receptor for neural repulsion factor It has been reported. Furthermore, plexin A1 also acts as a receptor for class VI semaphorins Sema6C and Sema6D, and is also reported to be involved in axonal guidance and cardiac organogenesis.
 マウス樹状細胞などにおいて、shRNAによってプレキシンA1の発現を抑制することによって、in vivo又はin vitroにおいて非自己に対するT細胞免疫が減弱されることが報告された(非特許文献4)。また、樹状細胞や破骨細胞におけるプレキシンA1シグナル解析から、これらの細胞においてプレキシンA1はTrem-2及びDAP-12とヘテロ受容体を形成していることが確認された。さらに、組換可溶型Sema6Dタンパク質の刺激によって樹状細胞からのIL-12等の炎症性サイトカインの発現や、前駆細胞からの破骨細胞分化が促進されること、Sema6Dが野生型の樹状細胞に結合する一方で、プレキシンA1欠損マウスの樹状細胞にはほとんど結合できないことが示された。プレキシンA1欠損マウスでは、T細胞免疫反応が著しく減弱し、破骨細胞分化に異常が起こるため大理石骨病様の症状を自然発症することが報告された(非特許文献5)。マウス樹状細胞を用いたshRNAによるプレキシンA1阻害により、プレキシンA1がシグナル伝達因子Rhoの活性化を介して樹状細胞とT細胞の免疫シナプスへのアクチン骨格の局在を制御していることが示された(非特許文献6)。 In mouse dendritic cells and the like, it has been reported that suppression of plexin A1 expression by shRNA attenuates T cell immunity to nonself in vivo or in vitro (Non-patent Document 4). In addition, plexin A1 signal analysis in dendritic cells and osteoclasts confirmed that in these cells plexin A1 forms a heteroreceptor with Trem-2 and DAP-12. Furthermore, stimulation of recombinant soluble Sema6D protein promotes expression of inflammatory cytokines such as IL-12 from dendritic cells and osteoclast differentiation from precursor cells, Sema6D wild type dendritic cells It was shown that while binding to cells, it could hardly bind to dendritic cells of plexin A1-deficient mice. In plexin A1 deficient mice, it has been reported that osteopetrosis-like symptoms spontaneously develop because T cell immune response is significantly attenuated and osteoclast differentiation occurs abnormally (Non-patent Document 5). Plexin A1 inhibition by plexin A1 by shRNA using mouse dendritic cells controls plexin A localization to the immune synapse of dendritic cells and T cells through activation of signal transduction factor Rho (Non-patent document 6).
 さらに、プレキシンA1が、樹状細胞のリンパ節への移行および抗原特異的T細胞応答に関与していることが報告されている。さらに、Sema6CまたはSema6DではなくSema3Aの発現が、リンパ管内皮細胞を通過する際の樹状細胞移動に必要であり、この際、Sema3Aはミオシン-II活性を刺激して、アクトミオシン収縮を誘導することが報告されている(特許文献1)。 Furthermore, plexin A1 has been reported to be involved in dendritic cell migration to lymph nodes and in antigen-specific T cell responses. Furthermore, expression of Sema3A but not Sema6C or Sema6D is required for dendritic cell migration as it passes through lymphatic endothelial cells, where Sema3A stimulates myosin-II activity to induce actomyosin contraction Has been reported (Patent Document 1).
 また、最近、プレキシンAファミリーに属する他の分子であるプレキシンA2に関して、「Sema3A-プレキシンA2-Nrp-1」の3者複合体の低分解能(7.0A)構造が開示された。Sema3AとプレキシンA2の間の結合は検出できないほど弱いが、Nrp-1が存在すると、Sema3Aの生物活性発現には程遠い弱いものではあるが、Sema3AとプレキシンA2の相互作用が検出されたことが報告されている(非特許文献7)。しかしながら、この構造は非常に低い分解能であること、全長ではなく部分長のタンパク質を用いていることなどから、本複合体の解明にはさらに詳細な検討が必要である。一方、非特許文献8は、上記非特許文献7を引用し「Sema3A-プレキシンA1-Nrp-1」の3者複合体の構造を紹介している。しかし、非特許文献7には、「Sema3A-プレキシンA1-Nrp-1」の3者複合体の構造は開示されていない。 Also, recently, the low resolution (7.0 A) structure of the “Sema3A-plexin A2-Nrp-1” ternary complex has been disclosed for plexin A2, another molecule belonging to the plexin A family. Although the binding between Sema3A and plexin A2 is undetectably weak, in the presence of Nrp-1, it is reported that the interaction between Sema3A and plexin A2 is detected, although it is far weaker than the expression of biological activity of Sema3A (Non-Patent Document 7). However, due to the very low resolution of this structure, and the use of a partial length protein rather than full length, etc., further detailed study is required for elucidation of this complex. On the other hand, Non-Patent Document 8 cites the above-mentioned Non-Patent Document 7 and introduces the structure of a ternary complex of “Sema3A-plexin A1-Nrp-1”. However, Non-Patent Document 7 does not disclose the structure of the “Sema3A-plexin A1-Nrp-1” ternary complex.
 Sema3Aは、Nrp-1/プレキシンA1を介してシグナルを伝達するが、プレキシンA1とは結合せず、Nrp-1とのみ結合することが報告されている。Nrp-1/プレキシンA1ヘテロ受容体とSema3Aとの結合を阻害する物質として開示されているSema3A中和抗体、Nrp-1中和抗体、可溶型Nrp-1が細胞性免疫疾患の治療剤となる可能性が示唆された(特許文献1)。また、ALS患者の脳の運動皮質や脊髄でSema3Aの発現亢進が見られることが報告されている(非特許文献9)。また抗Nrp-1抗体のALSモデルマウスでの効果(非特許文献10)、Nrp-1をノックアウトしたALSモデルマウスにおけるロータロッドテスト等の結果が報告されている(非特許文献11)。 It has been reported that Sema3A transmits a signal through Nrp-1 / plexin A1, but does not bind to plexin A1, but only to Nrp-1. Sema3A neutralizing antibody, Nrp-1 neutralizing antibody, soluble Nrp-1 disclosed as substances that inhibit the binding of Nrp-1 / plexin A1 heteroreceptor to Sema 3A and therapeutic agents for cellular immune diseases It has been suggested that it could be (Patent Document 1). In addition, it has been reported that enhanced expression of Sema3A is found in the motor cortex and spinal cord of the brain of ALS patients (Non-patent Document 9). In addition, the results of the effect of an anti-Nrp-1 antibody in ALS model mice (Non-patent Document 10) and the Rotarod test in ALS model mice knocked out of Nrp-1 have been reported (Non-patent document 11).
本明細書において引用される参考文献は以下のとおりである。これらの文献に記載される内容はすべて本明細書に参照として取り込まれる。これらの文献のいずれかが、本明細書に対する先行技術を構成すると認めるものではない。 The references cited herein are as follows. The contents described in these documents are all incorporated herein by reference. It is not recognized that any of these documents constitute prior art to the present specification.
国際公開第2011/055550号International Publication No. 2011/055550
 しかしながら、プレキシンA1アンタゴニスト(例えば抗プレキシンA1抗体)が筋萎縮性側索硬化症(ALS)の予防薬や治療薬となることは知られていなかった。 However, it has not been known that a plexin A1 antagonist (for example, an anti-plexin A1 antibody) will be a preventive drug or a therapeutic drug for amyotrophic lateral sclerosis (ALS).
本発明は、上記の状況に鑑みてなされたものであり、プレキシンA1アンタゴニストを含有する筋萎縮性側索硬化症(ALS)の予防および/または治療用医薬組成物、当該医薬組成物を含むキット、プレキシンA1アンタゴニストを含有する筋力低下または筋委縮を抑制するための医薬組成物、プレキシンA1アンタゴニストを含有する運動神経の変性あるいは消失を抑制するための医薬組成物、プレキシンA1アンタゴニストを含有するセマフォリン3Aの生物活性が関連する疾患の予防および/または治療に用いられる医薬組成物、抗プレキシンA1抗体を提供することを目的とする。特に、抗プレキシンA1抗体を含有する筋萎縮性側索硬化症(ALS)の予防および/または治療用医薬組成物、セマフォリン3Aの生物活性を阻害する抗プレキシンA1抗体を提供することを目的とする。 The present invention has been made in view of the above situation, and provides a pharmaceutical composition for preventing and / or treating amyotrophic lateral sclerosis (ALS) containing a plexin A1 antagonist, and a kit comprising the pharmaceutical composition. Pharmaceutical composition for suppressing muscle weakness or muscle atrophy containing plexin A1 antagonist, pharmaceutical composition for suppressing degeneration or disappearance of motor nerve containing plexin A1 antagonist Semaphorin containing plexin A1 antagonist An object of the present invention is to provide an anti-plexin A1 antibody, a pharmaceutical composition used for the prevention and / or treatment of a disease associated with the biological activity of 3A. In particular, it is an object of the present invention to provide a pharmaceutical composition for preventing and / or treating amyotrophic lateral sclerosis (ALS) containing an anti-plexin A1 antibody, and an anti-plexin A1 antibody that inhibits the biological activity of semaphorin 3A. Do.
 本発明者は、上記課題を解決するために鋭意研究した結果、プレキシンA1アンタゴニストがALSモデルにおいて薬効を示すことを見出した。また、本発明者は、セマフォリン3Aの生物活性を阻害する抗プレキシンA1抗体の取得に成功した。本発明はこのような知見に基づくものであり、以下〔1〕から〔11〕に関する。 As a result of earnest studies to solve the above problems, the present inventor has found that plexin A1 antagonists exhibit efficacy in the ALS model. In addition, the present inventors succeeded in obtaining an anti-plexin A1 antibody that inhibits the biological activity of semaphorin 3A. The present invention is based on such findings, and relates to [1] to [11] below.
〔1〕 プレキシンA1アンタゴニストを含有する筋委縮性側索硬化症(ALS)の予防および/または治療用医薬組成物。
〔2〕 前記アンタゴニストは、セマフォリン3Aの生物活性を阻害する、〔1〕の医薬組成物。
〔3〕 セマフォリン3Aの生物活性が細胞形態の退縮である、〔2〕の医薬組成物。
〔4〕 前記アンタゴニストが、抗プレキシンA1抗体またはその抗体断片、プレキシンA1に対するアンチセンス、二本鎖RNA(dsRNA)、siRNA、miRNA、低分子ヘアピン型RNA 、RNAアプタマーおよびリボザイムからなる群より選択される、〔1〕~〔3〕のいずれかの医薬組成物。
〔5〕 前記アンタゴニストが抗プレキシンA1抗体またはその抗体断片である、〔1〕~〔4〕のいずれかの医薬組成物。
〔6〕 前記抗体またはその抗体断片は抗ヒトマウス交叉プレキシンA1抗体である、〔4〕または〔5〕の医薬組成物。
〔7〕 前記抗体またはその抗体断片が以下の(1)~(4)のいずれかに記載の抗体またはその抗体断片である、〔4〕~〔6〕のいずれかの医薬組成物
(1)配列番号:1に記載のCDR1、配列番号:2に記載のCDR2、および配列番号:3に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:4に記載のCDR1、配列番号:5に記載のCDR2、および配列番号:6に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
(2)配列番号:7に記載のCDR1、配列番号:8に記載のCDR2、および配列番号:9に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:10に記載のCDR1、配列番号:11に記載のCDR2、および配列番号:12に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
(3)配列番号:13に記載のCDR1、配列番号:14に記載のCDR2、および配列番号:15に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:16に記載のCDR1、配列番号:17に記載のCDR2、および配列番号:18に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
(4)配列番号:19に記載のCDR1、配列番号:20に記載のCDR2、および配列番号:21に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:22に記載のCDR1、配列番号:23に記載のCDR2、および配列番号:24に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片。
〔8〕 〔1〕~〔7〕のいずれかの医薬組成物を含むキット。
〔9〕 プレキシンA1アンタゴニストを含有する筋力低下または筋委縮を抑制するための医薬組成物。
〔10〕 前記筋力低下または筋委縮は四肢、呼吸、発語あるいは嚥下に関する筋力低下または筋萎縮である、〔9〕の医薬組成物。
〔11〕 プレキシンA1アンタゴニストを含有する運動神経の変性あるいは消失を抑制するための医薬組成物。
[1] A pharmaceutical composition for the prevention and / or treatment of myotrophic lateral sclerosis (ALS), which comprises a plexin A1 antagonist.
[2] The pharmaceutical composition of [1], wherein the antagonist inhibits the biological activity of semaphorin 3A.
[3] The pharmaceutical composition of [2], wherein the biological activity of semaphorin 3A is regression of cell form.
[4] The antagonist is selected from the group consisting of anti-plexin A1 antibody or antibody fragment thereof, antisense to plexin A1, double stranded RNA (dsRNA), siRNA, miRNA, short hairpin RNA, RNA aptamer and ribozyme The pharmaceutical composition according to any one of [1] to [3].
[5] The pharmaceutical composition of any one of [1] to [4], wherein the antagonist is an anti-plexin A1 antibody or an antibody fragment thereof.
[6] The pharmaceutical composition of [4] or [5], wherein the antibody or the antibody fragment thereof is an anti-human mouse cross plexin A1 antibody.
[7] The pharmaceutical composition (1) according to any one of [4] to [6], wherein the antibody or the antibody fragment thereof is the antibody according to any one of the following (1) to (4) or an antibody fragment thereof A heavy chain variable region comprising CDR1 set forth in SEQ ID NO: 1, CDR2 set forth in SEQ ID NO: 2, and CDR3 set forth in SEQ ID NO: 3, and CDR1 set forth in SEQ ID NO: 4, SEQ ID NO: 5 An antibody or antibody fragment thereof comprising a light chain variable region comprising the CDR2 of the description and the CDR3 of SEQ ID NO: 6;
(2) H chain variable region comprising CDR1 of SEQ ID NO: 7, CDR2 of SEQ ID NO: 8, and CDR3 of SEQ ID NO: 9, and CDR1 of SEQ ID NO: 10, SEQ ID NO: An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 of SEQ ID NO: 11 and CDR3 of SEQ ID NO: 12;
(3) H chain variable region comprising CDR1 of SEQ ID NO: 13, CDR2 of SEQ ID NO: 14, and CDR3 of SEQ ID NO: 15, and CDR1 of SEQ ID NO: 16, SEQ ID NO: An antibody or antibody fragment thereof comprising a light chain variable region comprising CDR2 described in: 17 and CDR3 described in SEQ ID NO: 18;
(4) H chain variable region comprising CDR1 of SEQ ID NO: 19, CDR2 of SEQ ID NO: 20, and CDR3 of SEQ ID NO: 21, and CDR1 of SEQ ID NO: 22, SEQ ID NO: An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 described in: 23 and CDR3 described in SEQ ID NO: 24.
[8] A kit comprising the pharmaceutical composition of any one of [1] to [7].
[9] A pharmaceutical composition for suppressing muscle weakness or muscle atrophy comprising a plexin A1 antagonist.
[10] The pharmaceutical composition according to [9], wherein the muscle weakness or muscle atrophy is extremity, muscle weakness or muscle atrophy associated with breathing, speech or swallowing.
[11] A pharmaceutical composition for suppressing degeneration or disappearance of a motor nerve containing a plexin A1 antagonist.
 また、本発明は以下〔12〕~〔18〕に関する。
〔12〕以下の(1)~(4)のいずれかに記載の抗プレキシンA1抗体またはその抗体断片。
(1)配列番号:1に記載のCDR1、配列番号:2に記載のCDR2、および配列番号:3に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:4に記載のCDR1、配列番号:5に記載のCDR2、および配列番号:6に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
(2)配列番号:7に記載のCDR1、配列番号:8に記載のCDR2、および配列番号:9に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:10に記載のCDR1、配列番号:11に記載のCDR2、および配列番号:12に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
(3)配列番号:13に記載のCDR1、配列番号:14に記載のCDR2、および配列番号:15に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:16に記載のCDR1、配列番号:17に記載のCDR2、および配列番号:18に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
(4)配列番号:19に記載のCDR1、配列番号:20に記載のCDR2、および配列番号:21に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:22に記載のCDR1、配列番号:23に記載のCDR2、および配列番号:24に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片。
〔13〕前記抗体またはその抗体断片は、セマフォリン3Aの生物活性を阻害する抗体またはその抗体断片である、〔12〕に記載の抗体またはその抗体断片。
〔14〕セマフォリン3Aの生物活性が細胞形態の退縮である、〔13〕に記載の抗体またはその抗体断片。
〔15〕前記抗体またはその抗体断片は抗ヒトマウス交叉プレキシンA1抗体である、〔12〕~〔14〕のいずれかに記載の抗体またはその抗体断片。
〔16〕患者に対して、プレキシンA1アンタゴニストを投与する工程を含む、ALSの予防および/または治療のための方法。
〔17〕ALSの予防方法および/または治療方法に使用するための、プレキシンA1アンタゴニスト。
〔18〕ALSの予防および/または治療のための医薬の製造における、プレキシンA1アンタゴニストの使用。
The present invention also relates to the following [12] to [18].
[12] An anti-plexin A1 antibody or an antibody fragment thereof according to any one of the following (1) to (4):
(1) H chain variable region comprising CDR1 set forth in SEQ ID NO: 1, CDR2 set forth in SEQ ID NO: 2, and CDR3 set forth in SEQ ID NO: 3, and CDR1 set forth in SEQ ID NO: 4, SEQ ID NO: 4 An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 of 5: and CDR3 of SEQ ID NO: 6;
(2) H chain variable region comprising CDR1 of SEQ ID NO: 7, CDR2 of SEQ ID NO: 8, and CDR3 of SEQ ID NO: 9, and CDR1 of SEQ ID NO: 10, SEQ ID NO: An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 of SEQ ID NO: 11 and CDR3 of SEQ ID NO: 12;
(3) H chain variable region comprising CDR1 of SEQ ID NO: 13, CDR2 of SEQ ID NO: 14, and CDR3 of SEQ ID NO: 15, and CDR1 of SEQ ID NO: 16, SEQ ID NO: An antibody or antibody fragment thereof comprising a light chain variable region comprising CDR2 described in: 17 and CDR3 described in SEQ ID NO: 18;
(4) H chain variable region comprising CDR1 of SEQ ID NO: 19, CDR2 of SEQ ID NO: 20, and CDR3 of SEQ ID NO: 21, and CDR1 of SEQ ID NO: 22, SEQ ID NO: An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 described in: 23 and CDR3 described in SEQ ID NO: 24.
[13] The antibody or antibody fragment thereof according to [12], which is an antibody or antibody fragment thereof that inhibits the biological activity of semaphorin 3A.
[14] The antibody or antibody fragment thereof of [13], wherein the biological activity of semaphorin 3A is regression of cell morphology.
[15] The antibody or antibody fragment thereof according to any one of [12] to [14], wherein the antibody or antibody fragment thereof is an anti-human mouse crossover plexin A1 antibody.
[16] A method for the prophylaxis and / or treatment of ALS, which comprises the step of administering a plexin A1 antagonist to a patient.
[17] A plexin A1 antagonist for use in a method for preventing and / or treating ALS.
[18] Use of a plexin A1 antagonist in the manufacture of a medicament for the prevention and / or treatment of ALS.
 本発明により、プレキシンA1アンタゴニストを含有する筋萎縮性側索硬化症(ALS)の予防および/または治療用医薬組成物、当該医薬組成物を含むキット、プレキシンA1アンタゴニストを含有する筋力低下または筋委縮を抑制するための医薬組成物、プレキシンA1アンタゴニストを含有する運動神経の変性あるいは消失を抑制するための医薬組成物、プレキシンA1アンタゴニストを含有するセマフォリン3Aの生物活性が関連する疾患の予防および/または治療に用いられる医薬組成物、抗プレキシンA1抗体が提供された。特に、抗プレキシンA1抗体を含有する筋萎縮性側索硬化症(ALS)の予防および/または治療用医薬組成物、セマフォリン3Aの生物活性を阻害する抗プレキシンA1抗体が提供された。 According to the present invention, a pharmaceutical composition for preventing and / or treating amyotrophic lateral sclerosis (ALS) containing a plexin A1 antagonist, a kit comprising the pharmaceutical composition, muscle weakness or muscle atrophy comprising the plexin A1 antagonist Of the pharmaceutical composition for suppressing the plexin A1, a pharmaceutical composition for suppressing degeneration or loss of the motor nerve containing the plexin A1 antagonist, prevention of a disease associated with biological activity of semaphorin 3A containing the plexin A1 antagonist and / Alternatively, there is provided a pharmaceutical composition for use in therapy, an anti-plexin A1 antibody. In particular, a pharmaceutical composition for preventing and / or treating amyotrophic lateral sclerosis (ALS) containing an anti-plexin A1 antibody, and an anti-plexin A1 antibody that inhibits the biological activity of semaphorin 3A were provided.
マウスセマフォリン3Aでマウス骨髄由来樹状細胞を約1時間刺激した際のxCELLigence systemで測定したCell indexの変化を示す図である。It is a figure which shows the change of Cell index measured by xCELLigence system at the time of stimulating mouse bone marrow derived dendritic cells for about 1 hour with mouse semaphorin 3A. ヒトセマフォリン3Aでヒト単球由来樹状細胞を約1時間刺激した際のxCELLigence systemで測定したCell indexの変化を示す図である。It is a figure which shows the change of Cell index measured by xCELLigence system at the time of stimulating human monocyte origin dendritic cells for about 1 hour with human semaphorin 3A. 抗ヒトマウス交叉PlexinA1抗体のヒトセマフォリン3Aに対するアンタゴニスト活性を示す図である。FIG. 5 shows antagonist activity of anti-human mouse cross Plexin A1 antibody against human semaphorin 3A. 抗ヒトマウス交叉PlexinA1抗体のマウスセマフォリン3Aに対するアンタゴニスト活性を示す図である。It is a figure which shows the antagonist activity with respect to mouse semaphorin 3A of an anti-human mouse cross Plexin A1 antibody. コントロール抗体または抗PlexinA1アンタゴニスト抗体hPASK#188をG93A変異SOD1トランスジェニックマウスに投与した際の生存期間、ロータロッドテストでマウスが落下するまでの時間の変化の相対値を示す図である。抗PlexinA1アンタゴニスト抗体hPASK#188は、コントロール抗体と比較して生存期間(P≦0.005、ログランク検定)、ロータロッドテストでマウスが落下するまでの時間(18週目および19週目においてP≦0.05、wilcoxon  rank sum test、片側検定)を有意に延長させた。FIG. 6 is a graph showing relative survival time when a control antibody or anti-PlexinA1 antagonist antibody hPASK # 188 is administered to G93A mutant SOD1 transgenic mice, and a relative value of a change in time until the mouse falls in the rotarod test. Anti-PlexinA1 antagonist antibody hPASK # 188 has a survival time (P ≦ 0.005, log rank test), time to drop of mouse in Rotarod test (P ≦ 0.05 at 18 and 19 weeks in comparison with control antibody) , Wilcoxon rank sum test, one-tailed test) was significantly extended.
 本発明はプレキシンA1アンタゴニストを含有する筋委縮性側索硬化症(ALS)の予防および/または治療用医薬組成物に関する。
[プレキシンA1]
 プレキシンA1は例えばヒトやマウスのプレキシンA1を用いることができるが、特にこれらに限定されるものでない。マウスプレキシンA1のアミノ酸配列及び塩基配列は、例えばKameyama T et al. "Biochemical and biophysical research communications."Biochem Biophys Res Commun. 1996, 226(2), 524-9、 GenbankのAccession No. D86948、NCBI Reference Sequence NP_032907.1において公開されている。また、ヒトプレキシンA1のアミノ酸配列及び塩基配列は、例えばTamagnone L et al. Cell. 1999, 99(1), 71-80、GenbankのAccession No. X87832、NCBI Reference Sequence NP_115618、NCBI Reference Sequence NM_032242において公開されている。これらの配列情報をもとに容易にプレキシンA1をクローニングすることができる。使用の目的の範囲内において適宜プレキシンA1のアミノ酸配列又は塩基配列を改変して使用することができる。プレキシンA1のアミノ酸配列はヒトとマウスの間でよく保存されている。
The present invention relates to a pharmaceutical composition for the prevention and / or treatment of muscle atrophy lateral sclerosis (ALS) containing a plexin A1 antagonist.
[Plexin A1]
As plexin A1, for example, human or mouse plexin A1 can be used, but it is not particularly limited thereto. The amino acid sequence and nucleotide sequence of mouse plexin A1 are described, for example, in Kameyama T et al. "Biochemical and biophysical research communications." Biochem Biophys Res Commun. 1996, 226 (2), 524-9, Accession No. D 86948 of Genbank, NCBI. It is published in Reference Sequence NP_032907.1. In addition, the amino acid sequence and nucleotide sequence of human plexin A1 are disclosed in, for example, Tamagnone L et al. Cell. 1999, 99 (1), 71-80, Genbank Accession No. X87832, NCBI Reference Sequence NP_115618, NCBI Reference Sequence NM_032242 ing. Plexin A1 can be easily cloned based on these sequence information. The amino acid sequence or base sequence of plexin A1 can be appropriately modified and used within the intended range of use. The amino acid sequence of plexin A1 is well conserved between human and mouse.
[プレキシンA1アンタゴニスト]
 プレキシンA1アンタゴニストとは、例えば、プレキシンA1タンパク質に特異的に結合し、そのシグナル伝達活性を妨げるか又は減少させる化合物を意味し、例えば抗体(当該抗体は抗プレキシンA1抗体、抗プレキシンA1に対する抗体ともいう)やアプタマーが挙げられる。別のプレキシンA1アンタゴニストとしては、プレキシンA1タンパク質の発現を妨げるか又は減少させる化合物を意味し、例えばアンチセンス核酸、リボザイム核酸、RNAi活性を有する核酸が挙げられる。プレキシンA1アンタゴニストとしては、抗プレキシンA1抗体が挙げられる。また、プレキシンA1アンタゴニストとしては、セマフォリン3Aの生物活性を阻害するプレキシンA1アンタゴニスト、細胞形態の退縮を阻害するプレキシンA1アンタゴニストが挙げられる。好ましくは、プレキシンA1アンタゴニストとしてはセマフォリン3Aの生物活性を阻害する抗プレキシンA1抗体、細胞形態の退縮を阻害する抗プレキシンA1抗体が挙げられる。より具体的には、抗プレキシンA1抗体としては後述する抗体を挙げることが出来る。
[Plexin A1 antagonist]
The plexin A1 antagonist means, for example, a compound that specifically binds to plexin A1 protein and prevents or reduces its signal transduction activity, for example, an antibody (the antibody is an anti-plexin A1 antibody, an antibody against anti-plexin A1) And aptamers. Another plexin A1 antagonist refers to a compound that prevents or reduces expression of plexin A1 protein, and includes, for example, antisense nucleic acid, ribozyme nucleic acid, and nucleic acid having RNAi activity. The plexin A1 antagonists include anti-plexin A1 antibodies. In addition, plexin A1 antagonists include plexin A1 antagonists that inhibit the biological activity of semaphorin 3A, and plexin A1 antagonists that inhibit the regression of cell forms. Preferably, plexin A1 antagonists include anti-plexin A1 antibodies that inhibit the biological activity of semaphorin 3A, and anti-plexin A1 antibodies that inhibit the regression of cell forms. More specifically, examples of the anti-plexin A1 antibody include the antibodies described later.
[セマフォリン3A]
 セマフォリン3Aは、例えばヒトやマウスのセマフォリン3Aを用いることができるが、特にこれらに限定されるものでない。ヒトセマフォリン3Aのアミノ酸配列は、例えばNCBI Reference Sequence NP_006071.1において公開されている。また、マウスセマフォリン3Aのアミノ酸配列は、例えばNCBI Reference Sequence NM_009152において公開されている。これらの配列情報をもとに容易にセマフォリン3Aをクローニングすることができる。使用の目的の範囲内において適宜セマフォリン3Aのアミノ酸配列を改変して使用することができる。本明細書においては、セマフォリン3AはSema3Aとも記載する。
[Semaphorin 3A]
Semaphorin 3A may be, for example, human or mouse semaphorin 3A, but is not particularly limited thereto. The amino acid sequence of human semaphorin 3A is published, for example, in NCBI Reference Sequence NP — 006071.1. In addition, the amino acid sequence of mouse semaphorin 3A is disclosed, for example, in NCBI Reference Sequence NM_009152. Semaphorin 3A can be easily cloned based on these sequence information. The amino acid sequence of semaphorin 3A can be appropriately modified and used within the scope of the purpose of use. In the present specification, semaphorin 3A is also described as Sema 3A.
[セマフォリン3Aの生物活性とその阻害]
 セマフォリン3Aの生物活性とはセマフォリン3Aがin vitro又はin vivoで発揮し得る活性をいい、例えば以下の活性を意味する。細胞の形態(例えば、樹状細胞の細胞形態)を退縮させる活性、樹状細胞の所属リンパ節へ移動を促進する活性(米国特許公開第2012/0322085号)、破骨細胞の分化を抑制する活性、骨芽細胞の分化を促進する活性(Hayashi M et al. Nature 2012, 485, 69-74)、神経伸長阻害活性(米国特許第7642362号)が挙げられる。本発明のアンタゴニストはセマフォリン3Aの生物活性のうち、少なくとも1つを阻害するものであればよく、好ましくは細胞形態の退縮を阻害するものであり、さらに好ましくは樹状細胞の細胞形態の退縮を阻害するものである。樹状細胞は例えば、骨髄由来あるいは単球由来であってもよい。
[Bioactivity of semaphorin 3A and its inhibition]
The biological activity of semaphorin 3A refers to an activity that semaphorin 3A can exert in vitro or in vivo, and means, for example, the following activities. Activity to retract cell morphology (eg dendritic cell morphology), activity to promote migration of dendritic cells to regional lymph nodes (US Patent Publication 2012/0322085), inhibit osteoclast differentiation These include activity, activity to promote osteoblast differentiation (Hayashi M et al. Nature 2012, 485, 69-74), and nerve extension inhibitory activity (US Pat. No. 7,642,362). The antagonist of the present invention is only required to inhibit at least one of the biological activities of semaphorin 3A, preferably to inhibit the regression of cell form, and more preferably the regression of cell form of dendritic cell Inhibit. Dendritic cells may be derived, for example, from bone marrow or monocytes.
[セマフォリン3Aの生物活性が関連する疾患]
 セマフォリン3Aの生物活性が関連する疾患としては、例えば筋萎縮性側索硬化症(ALS)が挙げられる。
[Diseases associated with biological activity of semaphorin 3A]
Diseases associated with the biological activity of semaphorin 3A include, for example, amyotrophic lateral sclerosis (ALS).
 家族性筋萎縮性側索硬化症(家族性ALS)の原因遺伝子としてSOD1遺伝子の変異が報告されており,遺伝子の変異としてG37R 、H46R、 G85R 、G93Aなどが知られている。これら変異を有するトランスジェニックマウスがALSに似た症状を発症しており、ALSモデル動物としてALSの治療薬の研究・開発に広く使われている。例えば、G93A変異を有するSOD1トランスジェニックマウスを用いてALS治療薬の効果を確認することができるが、その他の変異を有するSOD1トランスジェニックマウスを用いることもできる。 Mutation of the SOD1 gene has been reported as the causative gene for familial amyotrophic lateral sclerosis (familial ALS), and G37R, H46R, G85R, G93A, etc. are known as gene mutations. Transgenic mice having these mutations develop symptoms similar to ALS, and are widely used for research and development of therapeutic agents for ALS as ALS model animals. For example, SOD1 transgenic mice carrying the G93A mutation can be used to confirm the effect of ALS therapeutics, but SOD1 transgenic mice carrying other mutations can also be used.
 セマフォリン3Aの生物活性を「阻害」とは、本発明のアンタゴニストの存在下において、非存在下に比べセマフォリン3Aの生物活性が5%以上減少したことをいい、好ましくは10%以上、20%以上、30%以上、50%以上、75%以上、80%以上、90%以上、95%以上減少したことをいう。 The term "inhibition" of the biological activity of semaphorin 3A means that the biological activity of semaphorin 3A is reduced by 5% or more in the presence of the antagonist of the present invention as compared to the absence, preferably 10% or more, 20 % Or more, 30% or more, 50% or more, 75% or more, 80% or more, 90% or more, or 95% or more.
[細胞形態を退縮させる活性及び神経伸長阻害活性]
 Sema3Aは、神経細胞の神経成長円錐を退縮させ軸索の伸長を抑制することや、樹状細胞が微小リンパ管を通過する過程において樹状細胞の形態の退縮を誘導することにより樹状細胞移動を制御することなど、様々な細胞に対して退縮活性を示すことで、神経回路網の形成や免疫反応を含む多彩な生体反応を制御している。
[Reduction of cell morphology and nerve elongation inhibition activity]
Sema3A induces dendritic cell migration by retracting nerve growth cones of neurons and suppressing axonal outgrowth, or inducing regression of dendritic cell morphology in the process of dendritic cells passing through micro lymphatics. It controls a variety of biological reactions including neural network formation and immune reaction by showing the reductive activity to various cells, such as controlling
 細胞形態の退縮を測定する方法としては、当業者に知られている方法を適宜用いることができるが、例えば、細胞形態を直接画像解析する方法、細胞形態や接着性の変化をxCELLigence(登録商標)等の装置を用いて電気的インピーダンスとして測定する方法が挙げられるが、これらに限定されるものではない。 Methods known to those skilled in the art can be appropriately used as a method for measuring the regression of the cell form, for example, a method of directly analyzing the cell form, changes in cell form and adhesion, xCELLigence (registered trademark) And so on), but it is not limited thereto.
〔細胞形態を直接画像解析する方法〕
 各種腫瘍細胞、HUVECを含む内皮細胞、脊髄後根神経節(DRG)ニューロンおよび樹状細胞などの細胞を96 well cell cultureプレートに播種し、数時間~1日間培養することで細胞を接着させる。次に、Sema3Aを添加しさらに30分から数時間程度37℃、CO2 5%のインキュベーター中で培養する。この際に比較対照としてSema3Aを添加しないウェル設定する。その後、顕微鏡観察またはArrayScan(登録商標)等のハイコンテントスクリーニング用細胞イメージアナライザーを用いて細胞形態を撮影し、画像解析用ソフトウェア(Cellomics-vHCSTM:Scanなど)によって細胞形態の変化を数値化する。
[Method for direct image analysis of cell morphology]
Cells such as various tumor cells, endothelial cells including HUVEC, dorsal root ganglion (DRG) neurons and dendritic cells are seeded on a 96 well cell culture plate and cultured for several hours to 1 day to allow the cells to adhere. Next, Sema3A is added, and culture is further performed for 30 minutes to several hours at 37 ° C. in a 5% CO 2 incubator. At this time, a well to which Sema3A is not added is set as a comparison control. Thereafter, the cell morphology is photographed using a cell image analyzer for high content screening such as microscopic observation or ArrayScan (registered trademark), and changes in the cell morphology are quantified by image analysis software (Cellomics-vHCSTM: Scan etc.).
 細胞形態変化を数値化する際に用いる指標の一つの例として、例えば「%High Object Convex Hull Area ratio」という指標を用いる方法が挙げられる。これは、細胞そのものの面積とその凸包の面積の比を算出した数値がある一定の閾値を上回る細胞の割合を算出するものであり、この数値をSema3Aの非添加時と添加時で比較することによってSema3Aの細胞形態退縮誘導活性を測定する。細胞形態の退縮とは、Sema3A添加時においてSema3A非添加時と比べて、上記値が5%以上減少したことをいい、好ましくは10%以上、20%以上、30%以上、50%以上、75%以上、80%以上、90%以上、95%以上減少したことをいう。 As an example of an index used in quantifying cell shape change, for example, a method using an index "% High Object Convex Hull Area ratio" can be mentioned. This is a calculation of the ratio of the area of the cell itself to the area of the convex hull to calculate the percentage of cells above a certain threshold, and this number is compared between when Sema3A is not added and when it is added. By measuring the cell shape regression induction activity of Sema3A. Regression of the cell form means that the above value decreased by 5% or more when Sema3A is added compared to when Sema3A is not added, preferably 10% or more, 20% or more, 30% or more, 50% or more, 75 % Or more, 80% or more, 90% or more, or 95% or more.
 別の細胞形態変化を数値化する際に用いる指標の一つの例として、画像解析用ソフトウェア(Cellomics-vHCSTM:Scanなど)の神経突起伸長アプリケーションを用いて、神経突起伸長を平均神経突起伸長/ニューロン/ウェルとして定量した指標を用いることができる。細胞形態の退縮とは、Sema3A添加時においてSema3A非添加時と比べて、上記値が5%以上減少したことをいい、好ましくは10%以上、20%以上、30%以上、50%以上、75%以上、80%以上、90%以上、95%以上減少したことをいう。 Average neurite outgrowth / neuron by using neurite outgrowth application of image analysis software (Cellomics-vHCSTM: Scan etc.) as an example of an index used in quantifying another cell shape change The index quantified as / well can be used. Regression of the cell form means that the above value decreased by 5% or more when Sema3A is added compared to when Sema3A is not added, preferably 10% or more, 20% or more, 30% or more, 50% or more, 75 % Or more, 80% or more, 90% or more, or 95% or more.
 その他、例えば、撮影した画像から細胞の面積を算出し、ある一定の閾値よりも小さくなった細胞を退縮したと判断する方法も用いることができる。 In addition, for example, a method of calculating the area of cells from the captured image and determining that the cells smaller than a certain threshold value are determined to be regressed can also be used.
〔細胞形態や接着性の変化を電気的インピーダンスとして測定する方法〕
 各種腫瘍細胞、HUVECを含む内皮細胞、脊髄後根神経節(DRG)ニューロンおよび樹状細胞などの細胞を、ウェルの底面に電極を集積した組織培養E-プレートに播種し、数時間~1日間培養することで細胞を接着させる。次に、Sema3Aを添加しさらに1数時間程度37℃、CO5%のインキュベーター中で培養する。この際に比較対照としてSema3Aを添加しないウェルを設定する。細胞形態や接着性の変化をxCELLigence(登録商標)を用いて電気的インピーダンスとして検出する。この電気的インピーダンスはxCELLigence(登録商標)の解析用ソフトウェアであるRTCA ソフトウェア(登録商標)を用いて検出され、セル・インデックス(CI)と呼ばれる無単位のパラメーターとして現在の細胞状態との相対的変化から創出される。このCI値のSema3Aを非添加時と添加時で比較することによってSema3Aの細胞形態退縮誘導活性を測定する。細胞形態の退縮とは、Sema3A添加時においてSema3A非添加時と比べて、CI値が5%以上減少したことをいい、好ましくは10%以上、20%以上、30%以上、50%以上、75%以上、80%以上、90%以上、95%以上減少したことをいう。
[Method of measuring changes in cell morphology and adhesion as electrical impedance]
Cells such as various tumor cells, endothelial cells including HUVEC, dorsal root ganglion (DRG) neurons and dendritic cells are seeded on tissue culture E-plates with electrodes accumulated on the bottom of the wells, and can be performed for several hours to 1 day Adhere cells by culturing. Next, Sema3A is added, and the cells are cultured in an incubator at 37 ° C., 5% CO 2 for about one more hour. At this time, a well to which Sema3A is not added is set as a comparison control. Changes in cell morphology and adhesion are detected as electrical impedance using xCELLigence®. This electrical impedance is detected using RTCA software (registered trademark), which is analysis software for xCELLigence (registered trademark), and changes relative to the current cell condition as a unitless parameter called cell index (CI). It is created from The cell shape regression-inducing activity of Sema3A is measured by comparing Sema3A with and without this CI value. Regression of the cell form means that the CI value decreased by 5% or more when Sema3A was added compared to when Sema3A was not added, and preferably 10% or more, 20% or more, 30% or more, 50% or more, 75 % Or more, 80% or more, 90% or more, or 95% or more.
[樹状細胞の所属リンパ節への移動を促進する活性]
 Sema3Aは樹状細胞上のPlexin-A1およびNeuropilin-1のヘテロ受容体複合体に作用しアクトミオシン収縮を誘導する活性を示し、細胞形態の変化を誘導することで微小リンパ管細胞間隙の通過を制御している。
[Activation to promote migration of dendritic cells to regional lymph nodes]
Sema3A acts on the heteroreceptor complex of Plexin-A1 and Neuropilin-1 on dendritic cells and shows activity to induce actomyosin contraction, and induces changes in cell morphology to pass through the microlymphatic cell gap I have control.
 活性を測定する方法としては、当業者に知られている方法を適宜用いることができるが、例えば、in vitroのボイデンチャンバを用いた細胞遊走アッセイを利用して測定する方法が挙げられるが、これらに限定されるものではない。  As a method of measuring the activity, methods known to those skilled in the art can be used as appropriate, for example, a method of measuring using a cell migration assay using a Boyden chamber in vitro, It is not limited to these.
 具体的にはトランスウェル(Corning)をCCL21やCXCL12などのケモカインを含むRPMI1640中0.1% BSA 0.6mLの入った24ウェルプレートに入れる。樹状細胞をトランスウェルの上部チャンバーに加え、37℃で1~3時間インキュベーションする。その後、下部チャンバー中の細胞を計数する。また、経内皮細胞遊走アッセイのためには、リンパ管内皮細胞や血管内皮細胞を上部チャンバーに重層する。簡単には、SVEC4-10またはHMVEC-dLyの細胞を2μg/mLのフィブロネクチンでコーティングしたトランスウェル挿入物の上部または下部に播種する。1~2日間培養した後、前述の細胞遊走アッセイと同様の方法に従い経内皮細胞遊走アッセイを実施する。これらのアッセイを実施する際にトランスウェルの上部チャンバーに樹状細胞とともにSema3Aを添加し、下部チャンバーへの樹状細胞の移動の計数結果をSema3Aを添加していないウェルと比較することによってSema3Aの細胞遊走の促進活性を測定する。 Specifically, transwells (Corning) are placed in a 24-well plate containing 0.6 mL of 0.1% BSA in RPMI 1640 containing chemokines such as CCL21 and CXCL12. Dendritic cells are added to the upper chamber of the transwell and incubated at 37 ° C. for 1-3 hours. The cells in the lower chamber are then counted. In addition, for transendothelial cell migration assay, lymphatic endothelial cells and vascular endothelial cells are overlaid on the upper chamber. Briefly, cells of SVEC 4-10 or HMVEC-dLy are seeded at the top or bottom of a 2 μg / mL fibronectin coated transwell insert. After culturing for 1 to 2 days, transendothelial cell migration assay is performed according to the same method as the cell migration assay described above. In performing these assays, add Sema 3A with dendritic cells to the upper chamber of the transwell and compare the migration results of dendritic cells to the lower chamber with wells without Sema 3A. The promoting activity of cell migration is measured.
 樹状細胞の所属リンパ節へ移動を促進する活性は、Sema3Aを添加したウェルにおいてSema3Aを添加していないウェルと比較して下部チャンバーへの樹状細胞の移動計数が5%以上増加したことをいい、好ましくは10%以上、20%以上、30%以上、50%以上、75%以上、80%以上、90%以上、95%以上増加したことをいう。 The activity to promote migration of dendritic cells to regional lymph nodes was an increase in migration counts of dendritic cells to the lower chamber by at least 5% in wells to which Sema3A was added as compared to wells to which Sema3A was not added. It means that the increase is preferably 10% or more, 20% or more, 30% or more, 50% or more, 75% or more, 80% or more, 90% or more, 95% or more.
[破骨細胞の分化を抑制する活性、骨芽細胞の分化を促進する活性]
 Sema3Aは破骨細胞や骨芽細胞に発現する受容体を介して破骨細胞の分化に抑制的に作用すると同時に、骨芽細胞の活性化に促進的に働くことで骨保護作用の活性を示すことが報告されている。
[Activation to inhibit osteoclast differentiation, activity to promote osteoblast differentiation]
Sema3A exerts an osteoprotective activity by acting on the activation of osteoblasts as well as suppressing the differentiation of osteoclasts through receptors expressed on osteoclasts and osteoblasts. It has been reported.
 破骨細胞の分化を抑制する活性や骨芽細胞の分化を促進する活性を測定する方法としては、当業者に知られている方法を適宜用いることができ、例えば、以下の方法が挙げられるが、これらに限定されるものではない。 Methods known to those skilled in the art can be appropriately used as methods for measuring the activity to suppress the differentiation of osteoclasts and the activity to promote the differentiation of osteoblasts, and the following methods may, for example, be mentioned. Not limited to these.
〔破骨細胞分化抑制活性〕
 活性の測定としては多様な方法が存在するが、例えばその一例として、酒石酸抵抗性酸性ホスファターゼ(Tartrate-resistant acid phosphatase;TRAP)染色により評価される。具体的には、骨髄細胞をM-CSFを含むα-MEM培地で48時間以上培養し、骨髄単球/マクロファージ前駆細胞を調製する。RANKLを添加した培地に交換して数日間培養を継続する。Sema3Aの評価のためには、Sema3Aを添加した培地に交換し、10~12時間後にRANKLを添加して数日間培養を継続する。数日おきに培地を交換し、破骨細胞の形成が確認されたら、TRAP染色及び核染色を行う。Sema3Aを添加した細胞の染色画像を顕微鏡やArrayScan(登録商標)等のハイコンテントスクリーニング用細胞イメージアナライザーを用いて取得し、Sema3Aを添加していない細胞の染色像と比較することで、Sema3Aの破骨細胞分化抑制活性を測定する。具体的には、ウェル当たりのTRAP陽性細胞の数、あるいはTRAP陽性かつ多核細胞の数を計測し比較する。
Osteoclast differentiation inhibitory activity
There are various methods for measuring the activity, and it is evaluated by, for example, tartrate-resistant acid phosphatase (TRAP) staining as one example. Specifically, bone marrow cells are cultured in α-MEM medium containing M-CSF for 48 hours or more to prepare myeloid monocyte / macrophage precursor cells. The medium is changed to a medium supplemented with RANKL and culture is continued for several days. For evaluation of Sema3A, the medium is changed to the medium to which Sema3A is added, and after 10 to 12 hours, RANKL is added and culture is continued for several days. The medium is changed every few days, and when osteoclast formation is confirmed, TRAP staining and nuclear staining are performed. Obtain a stained image of cells to which Sema3A has been added using a microscope or a cell image analyzer for high content screening such as ArrayScan (registered trademark), and compare it with a stained image of cells to which Sema3A has not been added. Measure osteoclast differentiation inhibitory activity. Specifically, the number of TRAP positive cells per well, or the number of TRAP positive and multinucleated cells are counted and compared.
 破骨細胞分化抑制活性は、Sema3Aを添加したウェルにおいてSema3Aを添加していないウェルと比較してTRAP陽性細胞の数、あるいはTRAP陽性かつ多核細胞の数が5%以上減少したことをいい、好ましくは10%以上、20%以上、30%以上、50%以上、75%以上、80%以上、90%以上、95%以上減少したことをいう。 The osteoclast differentiation inhibitory activity means that the number of TRAP-positive cells or the number of TRAP-positive and multinucleated cells is reduced by 5% or more in the wells to which Sema3A is added, as compared to the wells to which Sema3A is not added. Means a decrease of 10% or more, 20% or more, 30% or more, 50% or more, 75% or more, 80% or more, 90% or more, 95% or more.
〔骨芽細胞活性化活性〕
 活性の測定方法としては多様な方法が存在するが、例えばその例として、アルカリホスファターゼ(Alkaline Phosphatase;ALP)染色やALP活性測定、石灰化の検出によって評価される。具体的には、頭蓋冠細胞やMC3T3-E1細胞をコラーゲンコートされたプレートに播種し、アスコルビン酸とβ-グリセロリン酸を含むα-MEM培地で培養する。Sema3Aの評価のためには、培地にSema3Aを添加して培養する。数日おきに培地を交換し、培養終了後にALP染色を行って顕微鏡で画像を取得するか、またはそのALP活性を吸光度法を用いて測定する。また、石灰化の検出にはAlizarin red染色を行う。Sema3Aを添加した細胞の染色画像を顕微鏡を用いて取得し、Sema3Aを添加していない細胞の染色像と比較することで、Sema3Aの骨芽細胞活性化作用を評価する。具体的には、顕微鏡で染色後の細胞を撮影し、ALP染色やAlizarin red染色の強度を視覚的に比較して活性の有無を判断する。
Osteoblast activation activity
There are various methods for measuring the activity, and for example, evaluation is made by, for example, alkaline phosphatase (ALP) staining, ALP activity measurement, and detection of calcification. Specifically, calvarial cells and MC3T3-E1 cells are seeded on a collagen-coated plate and cultured in α-MEM medium containing ascorbic acid and β-glycerophosphate. For evaluation of Sema3A, culture is performed by adding Sema3A to the medium. The medium is changed every few days, and after completion of culture, ALP staining is performed to obtain an image by a microscope, or its ALP activity is measured using absorbance method. In addition, Alizarin red staining is performed to detect calcification. The stained image of cells to which Sema3A is added is obtained using a microscope, and the osteoblast activating action of Sema3A is evaluated by comparing with the stained image of cells to which Sema3A is not added. Specifically, cells after staining are photographed with a microscope, and the intensity of ALP staining and Alizarin red staining is visually compared to determine the presence or absence of activity.
 骨芽細胞活性化活性は、Sema3Aを添加したウェルにおいてSema3Aを添加していないウェルと比較してALP活性の吸光度あるいはAlizarin Red染色の強度が5%以上増加したことをいい、好ましくは10%以上、20%以上、30%以上、50%以上、75%以上、80%以上、90%以上、95%以上増加したことをいう。 The osteoblast activation activity means that the absorbance of ALP activity or the intensity of Alizarin Red staining is increased by 5% or more in the wells to which Sema 3A is added as compared with the wells to which Sema 3A is not added, preferably 10% or more 20% or more, 30% or more, 50% or more, 75% or more, 80% or more, 90% or more, 95% or more.
[抗体]
 本明細書で用語「抗体」は、最も広い意味で使用され、所望の抗原結合活性を示す限りは、これらに限定されるものではないが、モノクローナル抗体、ポリクローナル抗体、多重特異性抗体(例えば、二重特異性抗体)および抗体断片を含む、種々の抗体構造を包含する。抗体は、マウス、ヒト、ヒト化、キメラであってもよく、または他の種由来であってもよい。本明細書中に開示される抗体は、免疫グロブリン分子の任意のタイプ(例えば、IgG、IgE、IgM、IgDおよびIgA)、クラス(例えば、IgG1、IgG2、IgG3、IgG4、IgA1およびIgA2)またはサブクラスであり得る。免疫グロブリンは、任意の種(例えば、ヒト、マウスまたはウサギ)由来であり得る。尚、「抗体」、「免疫グロブリン」及び「イムノグロブリン」なる用語は互換性をもって広義な意味で使われる。
[antibody]
As used herein, the term "antibody" is used in the broadest sense and, as long as it exhibits the desired antigen binding activity, it is not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. It includes various antibody structures, including bispecific antibodies) and antibody fragments. The antibodies may be murine, human, humanized, chimeric or derived from other species. The antibodies disclosed herein can be of any type (eg, IgG, IgE, IgM, IgD and IgA), class (eg, IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule It can be. The immunoglobulin may be from any species (eg, human, mouse or rabbit). The terms "antibody", "immunoglobulin" and "immunoglobulin" are used interchangeably in a broad sense.
 「抗体断片」は、完全抗体が結合する抗原に結合する当該完全抗体の一部分を含む、当該完全抗体以外の分子のことをいう。抗体断片の例は、これらに限定されるものではないが、Fv、Fab、Fab'、Fab’-SH、F(ab')2、ダイアボディ、線状抗体、単鎖抗体分子(例えば、scFv)、および、抗体断片から形成された多重特異性抗体を含む。 An "antibody fragment" refers to a molecule other than the complete antibody that comprises the portion of the complete antibody that binds to the antigen to which the complete antibody binds. Examples of antibody fragments include, but are not limited to, Fv, Fab, Fab ', Fab'-SH, F (ab') 2, diabodies, linear antibodies, single chain antibody molecules (eg, scFv) And multispecific antibodies formed from antibody fragments.
 「交叉抗体」は、交叉性抗体又は交叉反応性抗体ともいい、複数の抗原における同一または類似のエピトープを認識する抗体をいう。ここで複数の抗原とは、例えば同じ種の抗原であってもよく、異なる種の抗原であってもよい。 "Cross-over antibody" is also referred to as cross-over antibody or cross-reacting antibody, and refers to an antibody that recognizes the same or similar epitopes in multiple antigens. Here, the plurality of antigens may be, for example, antigens of the same species, or antigens of different species.
 本発明における抗体は、遺伝子組換え技術を用いて産生した組換え型抗体であることが好ましい。組換え型抗体は、それをコードするDNAをハイブリドーマ、または抗体を産生する感作リンパ球等の抗体産生細胞からクローニングし、ベクターに組み込んで、これを宿主(宿主細胞)に導入し産生させることにより得ることができる。 The antibody in the present invention is preferably a recombinant antibody produced using genetic recombination technology. The recombinant antibody may be cloned from antibody-producing cells such as hybridomas or sensitized lymphocytes producing the antibody, and then incorporated into a vector and introduced into a host (host cell) for production. It can be obtained by
 本発明の抗体は、ヒト抗体、マウス抗体、ラット抗体など、その由来は限定されない。またキメラ抗体やヒト化抗体などの遺伝子改変抗体でもよい。 The antibody of the present invention is not limited in its origin, such as human antibody, mouse antibody, rat antibody and the like. In addition, genetically modified antibodies such as chimeric antibodies and humanized antibodies may be used.
 遺伝子改変抗体は、既知の方法を用いて製造することができる。具体的には、たとえばキメラ抗体は、免疫動物の抗体のH鎖、およびL鎖の可変領域と、ヒト抗体のH鎖およびL鎖の定常領域からなる抗体である。免疫動物由来の抗体の可変領域をコードするDNAを、ヒト抗体の定常領域をコードするDNAと連結し、これを発現ベクターに組み込んで宿主に導入し産生させることによって、キメラ抗体を得ることができる。 Genetically modified antibodies can be produced using known methods. Specifically, for example, a chimeric antibody is an antibody comprising the H chain and L chain variable regions of the antibody of the immunized animal and the H chain and L chain constant regions of a human antibody. A chimeric antibody can be obtained by linking DNA encoding the variable region of an antibody derived from an immunized animal with DNA encoding the constant region of a human antibody, and incorporating this into an expression vector to introduce it into a host for production. .
 ヒト抗体の取得方法は既に知られており、例えば、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物を目的の抗原で免疫することで目的のヒト抗体を取得することができる(国際公開第93/12227号, 国際公開第92/03918号,国際公開第94/02602号, 国際公開第94/25585号,国際公開第96/34096号, 国際公開第96/33735号参照)。 Methods for obtaining human antibodies are already known, and for example, a human antibody of interest can be obtained by immunizing a transgenic animal having a full repertoire of human antibody genes with an antigen of interest (WO 93 See WO / 12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, WO 96/33735).
 さらに、ヒト抗体は、ハイブリドーマをベースとした方法によって製造することができる。ヒトモノクローナル抗体の産生のためのヒト骨髄腫及びマウス-ヒトヘテロ細胞株が利用可能である(Kozbor J. Immunol., 133: 3001 (1984); Brodeur et al., MonoclonalAntibody Production Techniques and Applications, pp51-63 (Marcel Dekker, Inc., New York, 1987);及びBoerner et al., J. Immunol., 147: 86 (1991)を参照)。ヒトB細胞ハイブリドーマ技術を介して生成されたヒト抗体も知られている(Li et al., Proc.Natl. Acad. Sci. USA, 103:3557-3562 (2006)を参照)。ヒトハイブリドーマ技術(トリオーマ技術)もまた利用可能である(Vollmers and Brandlein, Histology and Histopathology, 20(3):927-937 (2005) 及びVollmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27(3):185-91 (2005)を参照)。 Furthermore, human antibodies can be produced by hybridoma-based methods. Human myeloma and mouse-human hetero cell lines for the production of human monoclonal antibodies are available (Kozbor J. Immunol., 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp 51-63. (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol., 147: 86 (1991)). Human antibodies generated through human B cell hybridoma technology are also known (see Li et al., Proc. Natl. Acad. Sci. USA, 103: 3557-3562 (2006)). Human hybridoma technology (trioma technology) is also available (Vallmers and Brandlein, Histology and Histopathology, 20 (3): 927-937 (2005) and Vallmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27 (3) ): 185-91 (2005)).
 ヒト抗体は、ヒト由来のファージディスプレイライブラリーから選択されたFvクローン可変ドメイン配列を単離することによっても生成され得る。このような可変ドメイン配列は、所望のヒト定常ドメインと組み合わせてもよい。抗体ライブラリーからヒト抗体を選択するための技術が、以下に説明される。尚、本技術はヒト抗体に限られるものではない。 Human antibodies can also be generated by isolating Fv clone variable domain sequences selected from phage display libraries of human origin. Such variable domain sequences may be combined with the desired human constant domain. Techniques for selecting human antibodies from antibody libraries are described below. The present technology is not limited to human antibodies.
 抗体ライブラリーについては既に多くの抗体ライブラリーが公知になっており、又、抗体ライブラリーの作製方法も公知であるので、当業者は適宜抗体ライブラリーを入手することが可能である。例えば、ファージライブラリーについては、Clackson et al., Nature 1991, 352: 624-8、Marks et al., J. Mol. Biol. 1991, 222: 581-97、Waterhouse et al., Nucleic Acids Res. 1993, 21: 2265-6、Griffiths et al., EMBO J. 1994, 13: 3245-60、Vaughan et al., Nature Biotechnology 1996, 14: 309-14、及び国際公開第96/07754号等の文献を参照することができる。その他、真核細胞をライブラリーとする方法(国際公開第95/15393号)やリボソーム提示法等の公知の方法を用いることが可能である。 Many antibody libraries are already known for antibody libraries, and methods for producing antibody libraries are also known, so that one skilled in the art can appropriately obtain an antibody library. For example, for phage libraries, see Clackson et al., Nature 1991, 352: 624-8, Marks et al., J. MoI. Biol. 1991, 222: 581-97, Waterhouse et al., Nucleic Acids Res. 1993, 21: 2265-6, Griffiths et al., EMBO J. 1994, 13: 3245-60, Vaughan et al., Nature Biotechnology 1996, 14: 309-14, and documents such as WO 96/07754. Can be referenced. In addition, it is possible to use known methods such as a method of using eukaryotic cells as a library (WO 95/15393) and a ribosome display method.
 ライブラリーには、当業者公知のライブラリー(Methods Mol Biol. 2002; 178: 87-100;J Immunol Methods. 2004 Jun; 289(1-2): 65-80;およびExpert Opin Biol Ther. 2007 May; 7(5): 763-79)である、ナイーブヒトライブラリー、非ヒト動物およびヒト由来の免疫ライブラリー、半合成ライブラリーならびに合成ライブラリーが含まれるが、これらに限定されない。しかし、方法はこれらの例に特に限定されない。 Libraries include those known to those skilled in the art (Methods Mol Biol. 2002; 178: 87-100; J Immunol Methods. 2004 Jun; 289 (1-2): 65-80; and Expert Opin Biol Ther. 2007 May. 7 (5): 763-79), including, but not limited to, naive human libraries, immune libraries from non-human animals and humans, semi-synthetic libraries and synthetic libraries. However, the method is not particularly limited to these examples.
 さらに、ヒト抗体ライブラリーを用いて、パンニングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体の可変領域を一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発現させ、抗原に結合するファージを選択することができる。選択されたファージの遺伝子を解析すれば、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。抗原に結合するscFvのDNA配列が明らかになれば、当該配列を元に適当な発現ベクターを作製し、ヒト抗体を取得することができる。これらの方法は既に周知であり、国際公開第92/01047号、国際公開第92/20791号、国際公開第93/06213号、国際公開第93/11236号、国際公開第93/19172号、国際公開第95/01438号、国際公開第95/15388号を参考にすることができる。 Furthermore, techniques for obtaining human antibodies by panning using a human antibody library are also known. For example, the variable region of a human antibody can be expressed as a single chain antibody (scFv) on the surface of phage by phage display method, and phage that bind to an antigen can be selected. By analyzing the gene of the selected phage, it is possible to determine the DNA sequence encoding the variable region of a human antibody that binds to the antigen. Once the DNA sequence of the scFv that binds to the antigen is clarified, an appropriate expression vector can be produced based on the sequence and a human antibody can be obtained. These methods are already known, and WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19172, International The publication No. 95/01438 and the international publication No. 95/15388 can be referred to.
 ヒト抗体ライブラリーから単離された抗体または抗体断片は、本明細書でヒト抗体またはヒト抗体の断片とみなされる。 Antibodies or antibody fragments isolated from human antibody libraries are considered herein as human antibodies or fragments of human antibodies.
 ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される改変抗体である。ヒト化抗体は、免疫動物由来の抗体のCDRを、ヒト抗体の相補性決定領域へ移植することによって構築される。その一般的な遺伝子組換え手法も知られている(欧州特許出願公開第239400号、国際公開第96/02576号、Sato K et al, Cancer Research 1993, 53: 851-856、国際公開第99/51743号参照)。 Humanized antibodies are modified antibodies, also referred to as reshaped human antibodies. Humanized antibodies are constructed by grafting the CDRs of the antibody derived from the immunized animal into the complementarity determining regions of human antibodies. The general genetic recombination method is also known (European Patent Application Publication No. 239400, WO 96/02576, Sato K et al, Cancer Research 1993, 53: 851-856, WO 99 / 51743).
 一局面において、抗プレキシンA1抗体は以下の(1)~(4)のいずれかに記載の抗体またはその抗体断片であり、例えばALSの予防および/または治療に用いることが出来る。
(1)配列番号:1に記載のCDR1、配列番号:2に記載のCDR2、および配列番号:3に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:4に記載のCDR1、配列番号:5に記載のCDR2、および配列番号:6に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
(2)配列番号:7に記載のCDR1、配列番号:8に記載のCDR2、および配列番号:9に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:10に記載のCDR1、配列番号:11に記載のCDR2、および配列番号:12に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
(3)配列番号:13に記載のCDR1、配列番号:14に記載のCDR2、および配列番号:15に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:16に記載のCDR1、配列番号:17に記載のCDR2、および配列番号:18に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
(4)配列番号:19に記載のCDR1、配列番号:20に記載のCDR2、および配列番号:21に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:22に記載のCDR1、配列番号:23に記載のCDR2、および配列番号:24に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片。
In one aspect, the anti-plexin A1 antibody is an antibody described in any of the following (1) to (4) or an antibody fragment thereof, and can be used, for example, for the prophylaxis and / or treatment of ALS.
(1) H chain variable region comprising CDR1 set forth in SEQ ID NO: 1, CDR2 set forth in SEQ ID NO: 2, and CDR3 set forth in SEQ ID NO: 3, and CDR1 set forth in SEQ ID NO: 4, SEQ ID NO: 4 An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 of 5: and CDR3 of SEQ ID NO: 6;
(2) H chain variable region comprising CDR1 of SEQ ID NO: 7, CDR2 of SEQ ID NO: 8, and CDR3 of SEQ ID NO: 9, and CDR1 of SEQ ID NO: 10, SEQ ID NO: An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 of SEQ ID NO: 11 and CDR3 of SEQ ID NO: 12;
(3) H chain variable region comprising CDR1 of SEQ ID NO: 13, CDR2 of SEQ ID NO: 14, and CDR3 of SEQ ID NO: 15, and CDR1 of SEQ ID NO: 16, SEQ ID NO: An antibody or antibody fragment thereof comprising a light chain variable region comprising CDR2 described in: 17 and CDR3 described in SEQ ID NO: 18;
(4) H chain variable region comprising CDR1 of SEQ ID NO: 19, CDR2 of SEQ ID NO: 20, and CDR3 of SEQ ID NO: 21, and CDR1 of SEQ ID NO: 22, SEQ ID NO: An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 described in: 23 and CDR3 described in SEQ ID NO: 24.
 さらに別の局面において抗プレキシンA1抗体は以下の(5)~(8)のいずれかに記載の抗体またはその抗体断片である。
(5)配列番号:25に記載のH鎖可変領域、および、配列番号:26に記載のL鎖可変領域を含む抗体またはその抗体断片;
(6)配列番号:27に記載のH鎖可変領域、および、配列番号:28に記載のL鎖可変領域を含む抗体またはその抗体断片;
(7)配列番号:29に記載のH鎖可変領域、および、配列番号:30に記載のL鎖可変領域を含む抗体またはその抗体断片;
(8)配列番号:31に記載のH鎖可変領域、および、配列番号:32に記載のL鎖可変領域を含む抗体またはその抗体断片。
In yet another aspect, the anti-plexin A1 antibody is the antibody or antibody fragment thereof according to any one of the following (5) to (8).
(5) An antibody or antibody fragment thereof comprising the H chain variable region described in SEQ ID NO: 25 and the L chain variable region described in SEQ ID NO: 26;
(6) An antibody or antibody fragment thereof comprising the H chain variable region of SEQ ID NO: 27 and the L chain variable region of SEQ ID NO: 28;
(7) An antibody or antibody fragment thereof comprising the H chain variable region described in SEQ ID NO: 29 and the L chain variable region described in SEQ ID NO: 30;
(8) An antibody or antibody fragment thereof comprising the H chain variable region shown in SEQ ID NO: 31 and the L chain variable region shown in SEQ ID NO: 32.
 さらに別の局面において抗プレキシンA1抗体は以下の(9)~(12)のいずれかに記載の抗体またはその抗体断片である。
(9)配列番号:33に記載のH鎖、および、配列番号:34に記載のL鎖を含む抗体またはその抗体断片;
(10)配列番号:35に記載のH鎖、および、配列番号:36に記載のL鎖を含む抗体またはその抗体断片;
(11)配列番号:37に記載のH鎖、および、配列番号:38に記載のL鎖を含む抗体またはその抗体断片;
(12)配列番号:39に記載のH鎖、および、配列番号:40に記載のL鎖を含む抗体またはその抗体断片。
In yet another aspect, the anti-plexin A1 antibody is the antibody or antibody fragment thereof according to any of the following (9) to (12).
(9) An antibody or antibody fragment thereof comprising the H chain set forth in SEQ ID NO: 33, and the L chain set forth in SEQ ID NO: 34;
(10) An antibody or antibody fragment thereof comprising the H chain set forth in SEQ ID NO: 35, and the L chain set forth in SEQ ID NO: 36;
(11) An antibody or antibody fragment thereof comprising the H chain set forth in SEQ ID NO: 37, and the L chain set forth in SEQ ID NO: 38;
(12) An antibody or antibody fragment thereof comprising the H chain set forth in SEQ ID NO: 39 and the L chain set forth in SEQ ID NO: 40.
 本発明の目的を達成できる範囲で、適宜前記抗体またはその抗体断片に当業者に知られているアミノ酸改変を加えることができる。前記抗体またはその抗体断片のアミノ酸配列に含まれるアミノ酸は翻訳後に修飾(例えば、N末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である)を受ける場合もあるが、そのようにアミノ酸が翻訳後修飾された抗体またはその抗体断片であっても、当然のことながら前記抗体またはその抗体断片に含まれる。 As long as the object of the present invention can be achieved, amino acid modifications known to those skilled in the art can be added to the aforementioned antibody or antibody fragment thereof as appropriate. The amino acid contained in the amino acid sequence of the antibody or its antibody fragment may also be post-translationally modified (eg, modification to pyroglutamic acid by pyroglutamylation of N-terminal glutamine is a modification well known to those skilled in the art). However, even if such an amino acid is post-translationally modified, an antibody or an antibody fragment thereof is naturally included in the antibody or an antibody fragment thereof.
 一局面において、前記抗体またはその抗体断片は、セマフォリン3Aの生物活性を阻害する抗体またはその抗体断片である。
 特定の局面において、前記抗体またはその抗体断片は細胞形態の退縮を阻害する抗体またはその抗体断片である。
In one aspect, the antibody or antibody fragment thereof is an antibody or antibody fragment thereof that inhibits the biological activity of semaphorin 3A.
In a particular aspect, the antibody or antibody fragment thereof is an antibody or antibody fragment thereof that inhibits the regression of cell morphology.
 また一局面において、前記抗体またはその抗体断片は抗ヒトマウス交叉プレキシンA1抗体である。 In one aspect, the antibody or antibody fragment thereof is an anti-human mouse cross plexin A1 antibody.
 本明細書中の「モノクローナル抗体」という用語は、実質的に均質な抗体の集団、即ち、集団を構成する個々の抗体が、天然において起こり得る少量で存在する変異体を除いては均一である抗体集団から得られた抗体を指す。モノクローナル抗体は高度に特異的であり、一般に単一の抗原部位に対して作用するものである。さらに、典型的には異なる抗原決定基(エピトープ)に対する異なる抗体を含む慣用のポリクローナル抗体調製物と比べて、モノクローナル抗体は、抗原上の単一の抗原決定基に向けられる。その特異性に加えて、モノクローナル抗体は、他の抗体が混入していないハイブリドーマ培養などにより合成される点で有利である。なお、「モノクローナル」という修飾語は、実質的に均一な抗体の集団より得られた抗体の特性を示唆するものであって、抗体が特定の方法により製造されることを要求するものではない。例えば、本発明において用いられるモノクローナル抗体を、例えばハイブリドーマ法(例えば、Kohler and Milstein, Nature 256:495 (1975))、または、組換え方法(例えば、米国特許第4816567号)により製造してもよい。本発明において使用するモノクローナル抗体はまた、ファージ抗体ライブラリーから単離してもよい(例えば、Clackson et al., Nature 352:624-628 (1991) ; Marks et al., J.Mol.Biol. 222:581-597 (1991))。 As used herein, the term "monoclonal antibody" refers to a population of substantially homogeneous antibodies, ie, the individual antibodies that make up the population are homogeneous except for small naturally occurring variants that may occur in nature. Refers to an antibody obtained from an antibody population. Monoclonal antibodies are highly specific, generally acting against a single antigenic site. In addition, monoclonal antibodies are directed to a single antigenic determinant on an antigen, as compared to conventional polyclonal antibody preparations that typically include different antibodies to different antigenic determinants (epitopes). In addition to their specificity, monoclonal antibodies are advantageous in that they are synthesized by hybridoma cultures etc. that are not contaminated with other antibodies. The modifier "monoclonal" indicates the properties of the antibody obtained from a substantially homogeneous population of antibodies, and does not require that the antibody be produced by a particular method. For example, the monoclonal antibodies used in the present invention may be produced, for example, by the hybridoma method (e.g. Kohler and Milstein, Nature 256: 495 (1975)), or by a recombinant method (e.g. U.S. Pat. No. 4,816,567). . The monoclonal antibodies used in the present invention may also be isolated from phage antibody libraries (e.g. Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222). : 581-597 (1991)).
 本発明の抗体は当業者に公知の方法により製造することができる。具体的には、目的とする抗体をコードするDNAを発現ベクターへ組み込む。その際、発現制御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより宿主細胞を形質転換し、抗体を発現させる。その際には、適当な宿主と発現ベクターの組み合わせを使用することができる。 The antibodies of the present invention can be produced by methods known to those skilled in the art. Specifically, DNA encoding a target antibody is incorporated into an expression vector. At that time, it is incorporated into an expression vector to be expressed under the control of an expression control region, such as an enhancer or a promoter. Next, host cells are transformed with this expression vector to express an antibody. At that time, a combination of appropriate host and expression vector can be used.
 ベクターの例としては、M13系ベクター、pUC系ベクター、pBR322、pBluescript、pCR-Scriptなどが挙げられる。また、cDNAのサブクローニング、切り出しを目的とした場合、上記ベクターの他に、例えば、pGEM-T、pDIRECT、pT7などを用いることができる。 Examples of vectors include M13 vectors, pUC vectors, pBR322, pBluescript, pCR-Script and the like. In addition, for the purpose of subcloning and excision of cDNA, for example, pGEM-T, pDIRECT, pT7 and the like can be used in addition to the above vectors.
 抗体を生産する目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、宿主をJM109、DH5α、HB101、XL1-Blueなどの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、lacZプロモーター(Wardら, Nature (1989) 341, 544-546;FASEB J. (1992) 6, 2422-2427)、araBプロモーター(Betterら, Science (1988) 240, 1041-1043)、またはT7プロモーターなどを持っていることが不可欠である。このようなベクターとしては、上記ベクターの他にpGEX-5X-1(Pharmacia社製)、「QIAexpress system」(QIAGEN社製)、pEGFP、またはpET(この場合、宿主はT7 RNAポリメラーゼを発現しているBL21が好ましい)などが挙げられる。 In particular, expression vectors are useful when using vectors to produce antibodies. As an expression vector, for example, when the host is E. coli such as JM109, DH5α, HB101, XL1-Blue, a promoter that can be efficiently expressed in E. coli, for example, lacZ promoter (Ward et al., Nature (1989) 341) , 542-546; FASEB J. (1992) 6, 2422-2427), araB promoter (Better et al., Science (1988) 240, 1041-1043), or having a T7 promoter or the like is essential. As such a vector, pGEX-5X-1 (manufactured by Pharmacia), "QIAexpress system" (manufactured by QIAGEN), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase) in addition to the above-mentioned vectors. And the like) are preferable.
 また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれていてもよい。ポリペプチド分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、例えばpelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4397)を使用すればよい。宿主細胞へのベクターの導入は、例えば塩化カルシウム法、エレクトロポレーション法を用いて行うことができる。 The vector may also contain a signal sequence for polypeptide secretion. As a signal sequence for polypeptide secretion, for example, pelB signal sequence (Lei, SP et al J. Bacteriol. (1987) 169, 4397) may be used when producing in the periplasm of E. coli. The introduction of the vector into host cells can be performed, for example, using the calcium chloride method or electroporation.
 大腸菌発現ベクターの他、本発明の抗体を製造するためのベクターとしては、例えば、哺乳動物由来の発現ベクター(例えば、pcDNA3(Invitrogen社製)や、pEGF-BOS (Nucleic Acids. Res.1990, 18(17),p5322)、pEF、pCDM8)、昆虫細胞由来の発現ベクター(例えば「Bac-to-BAC baculovairus expression system」(GIBCO BRL社製)、pBacPAK8)、植物由来の発現ベクター(例えばpMH1、pMH2)、動物ウィルス由来の発現ベクター(例えば、pHSV、pMV、pAdexLcw)、レトロウィルス由来の発現ベクター(例えば、pZIPneo)、酵母由来の発現ベクター(例えば、「Pichia Expression Kit」(Invitrogen社製)、pNV11、SP-Q01)、枯草菌由来の発現ベクター(例えば、pPL608、pKTH50)が挙げられる。 Examples of vectors for producing the antibody of the present invention other than E. coli expression vectors include, for example, mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen) and pEGF-BOS (Nucleic Acids. Res. 1990, 18). (17), p5322), pEF, pCDM8), insect cell-derived expression vectors (eg, “Bac-to-BAC baculovairus expression system” (GIBCO BRL), pBacPAK8), plant-derived expression vectors (eg, pMH1, pMH2) ), An animal virus-derived expression vector (eg, pHSV, pMV, pAdexLcw), a retrovirus-derived expression vector (eg, pZIPneo), a yeast-derived expression vector (eg, “Pichia Expression Kit” (Invitrogen), pNV11) , SP-Q01), and B. subtilis-derived expression vectors (eg, pPL608, pKTH50).
 CHO細胞、COS細胞、NIH3T3細胞等の動物細胞での発現を目的とした場合には、細胞内で発現させるために必要なプロモーター、例えばSV40プロモーター(Mulliganら, Nature (1979) 277, 108)、MMTV-LTRプロモーター、EF1αプロモーター(Mizushimaら, Nucleic Acids Res. (1990) 18, 5322)、CAGプロモーター(Gene. (1991) 108, 193)、CMVプロモーターなどを持っていることが不可欠であり、形質転換細胞を選抜するための遺伝子を有すればさらに好ましい。形質転換細胞を選抜するための遺伝子としては、例えば、薬剤(ネオマイシン、G418など)により判別できるような薬剤耐性遺伝子がある。このような特性を有するベクターとしては、例えば、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13などが挙げられる。 For expression in animal cells such as CHO cells, COS cells and NIH3T3 cells, a promoter necessary for intracellular expression, for example, the SV40 promoter (Mulligan et al., Nature (1979) 277, 108), It is essential to have MMTV-LTR promoter, EF1α promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322), CAG promoter (Gene. (1991) 108, 193), CMV promoter, etc. It is more preferable to have a gene for selecting transformed cells. Examples of genes for selecting transformed cells include drug resistant genes that can be distinguished by drugs (neomycin, G418, etc.). Examples of vectors having such characteristics include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, pOP13 and the like.
 さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を目的とする場合には、核酸合成経路を欠損したCHO細胞にそれを相補するDHFR遺伝子を有するベクター(例えば、pCHOIなど)を導入し、メトトレキセート(MTX)により増幅させる方法が挙げられ、また、遺伝子の一過性の発現を目的とする場合には、SV40 T抗原を発現する遺伝子を染色体上に持つCOS細胞を用いてSV40の複製起点を持つベクター(pcDなど)で形質転換する方法が挙げられる。複製開始点としては、また、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。 Furthermore, in order to stably express a gene and to amplify the copy number of the gene in cells, a vector having a DHFR gene that complements the CHO cell deficient in the nucleic acid synthesis pathway (for example, , PCHOI etc.) and amplification with methotrexate (MTX), and, for the purpose of transient expression of the gene, COS having a gene expressing SV40 T antigen on the chromosome. A method of transforming cells using a vector (such as pcD) having an SV40 origin of replication can be mentioned. As a replication origin, those derived from polyoma virus, adenovirus, bovine papilloma virus (BPV) and the like can also be used. Furthermore, for amplification of gene copy number in host cell systems, the expression vector is used as a selection marker for selection of aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase ( dhfr) gene etc. can be included.
 これにより得られた本発明の抗体は、宿主細胞内または細胞外(培地など)から単離し、実質的に純粋で均一な抗体として精製することができる。抗体の分離、精製は、通常の抗体の精製で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等を適宜選択、組み合わせれば抗体を分離、精製することができる。 The antibody of the present invention thus obtained can be isolated from the inside or outside of the host cell (such as medium) and purified as a substantially pure homogeneous antibody. The separation and purification of the antibody may be carried out using the separation and purification methods used in the conventional purification of antibodies, and is not limited in any way. For example, chromatography column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing method, dialysis, recrystallization etc. are appropriately selected, In combination, antibodies can be separated and purified.
 クロマトグラフィーとしては、例えばアフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーは、液相クロマトグラフィー、例えばHPLC、FPLC等の液相クロマトグラフィーを用いて行うことができる。アフィニティークロマトグラフィーに用いるカラムとしては、Protein Aカラム、Protein Gカラムが挙げられる。例えば、Protein Aを用いたカラムとして、Hyper D, POROS, Sepharose FF(GE Amersham Biosciences)等が挙げられる。本発明は、これらの精製方法を用い、高度に精製された抗体も包含する。 The chromatography includes, for example, affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography, etc. (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographies can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC or FPLC. Examples of columns used for affinity chromatography include Protein A column and Protein G column. For example, as columns using Protein A, Hyper D, POROS, Sepharose FF (GE Amersham Biosciences), etc. may be mentioned. The present invention also encompasses highly purified antibodies using these purification methods.
 得られた抗体は、均一にまで精製することができる。抗体の分離、精製は通常の蛋白質で使用されている分離、精製方法を使用すればよい。例えばアフィニティークロマトグラフィー等のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析、SDSポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択、組合せれば、抗体を分離、精製することができる(Antibodies : A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988)が、これらに限定されるものではない。アフィニティークロマトグラフィーに用いるカラムとしては、Protein Aカラム、Protein Gカラムなどが挙げられる。 The resulting antibodies can be purified to homogeneity. For separation and purification of antibodies, separation and purification methods used for ordinary proteins may be used. For example, separation and purification of antibodies can be achieved by appropriately selecting and combining chromatography columns such as affinity chromatography, filters, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc. However, the present invention is not limited thereto (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988). Examples of columns used for affinity chromatography include Protein A column, Protein G column and the like.
[アプタマー]
 「アプタマー」は、ポリペプチドなどの標的分子に特異的に結合する核酸分子を指す。例えば、本発明のアプタマーは、プレキシンA1に特異的に結合することができるRNAアプタマーであることができる。アプタマーの生成および治療的使用は当分野において十分に確立されている。例えば、アプタマーはSELEX法(米国特許第5475096号、同5580737号、同5567588号、同5707796号、同5763177号などを参照)を用いることで取得可能である。
[Aptamer]
"Aptamer" refers to a nucleic acid molecule that specifically binds to a target molecule, such as a polypeptide. For example, the aptamer of the present invention can be an RNA aptamer that can specifically bind to plexin A1. The generation and therapeutic use of aptamers is well established in the art. For example, the aptamer can be obtained by using the SELEX method (see US Patent Nos. 5475096, 5580737, 5657588, 57077796, 5765177 etc.).
[アンチセンス核酸]
 「アンチセンス核酸」とは、オリゴリボヌクレオチド、オリゴデオキシリボヌクレオチド、修飾オリゴリボヌクレオチド、または修飾オリゴデオキシリボヌクレオチドであるオリゴヌクレオチドであって、生理学的条件下で特定遺伝子を含むDNAまたはその遺伝子のmRNA転写物にハイブリダイズして、これにより、その遺伝子の転写および/またはそのmRNAの翻訳を阻害する、前記オリゴヌクレオチドを指す。
[Antisense nucleic acid]
An "antisense nucleic acid" is an oligonucleotide which is an oligoribonucleotide, an oligodeoxyribonucleotide, a modified oligoribonucleotide, or a modified oligodeoxyribonucleotide, and which is under physiological conditions and contains mRNA of a specific gene or mRNA of that gene. Refers to said oligonucleotides which hybridize to a substance and thereby inhibit transcription of its gene and / or translation of its mRNA.
 アンチセンスRNAはインビボでmRNAにハイブリダイズしてmRNA分子の翻訳を阻害する(Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, FL, 1988))。アンチセンス核酸の取得方法は当分野において十分に確立されている。 Antisense RNA hybridizes to mRNA in vivo to inhibit translation of the mRNA molecule (Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, FL, 1988)). Methods for obtaining antisense nucleic acids are well established in the art.
[リボザイム核酸]
 リボザイム核酸は、RNAの特異的切断を触媒できる酵素的RNA分子である。詳細は、例えば、Rossi, Current Biology 4:469-471 (1994)を参照できる。リボザイムは、相補的な標的RNAへの配列特異的ハイブリダイゼーション、次いでヌクレオチド鎖の切断により作用する。リボザイム核酸の組成は、好ましくは標的mRNAに相補的な1個以上の配列とmRNA切断に関与する周知の配列または機能的に同等な配列とを含む (例えば、米国特許5093246号参照)。
Ribozyme Nucleic Acids
Ribozyme nucleic acids are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. For details, see, for example, Rossi, Current Biology 4: 469-471 (1994). Ribozymes act by sequence specific hybridization to a complementary target RNA, followed by cleavage of the nucleotide strand. The composition of the ribozyme nucleic acid preferably comprises one or more sequences complementary to the target mRNA and a known or functionally equivalent sequence involved in mRNA cleavage (see, eg, US Pat. No. 5,093,246).
[RNAi活性を有する核酸]
 RNA干渉(RNAi)活性を有する核酸は配列特異的にmRNAを分解するか、またはその翻訳を阻害する分子である。この分子としては、例えば、二本鎖RNA(dsRNA)、siRNA、miRNA、低分子ヘアピン型RNA(shRNA)を挙げることができる。
[Nucleic acid having RNAi activity]
A nucleic acid having RNA interference (RNAi) activity is a molecule that degrades mRNA in a sequence specific manner or inhibits its translation. Examples of this molecule include double stranded RNA (dsRNA), siRNA, miRNA, short hairpin RNA (shRNA).
 公知のmiRNA配列のリストは、とりわけ、Wellcome Trust Sanger Institute、Penn Center for Bioinformatics、Memorial Sloan Kettering Cancer Center、およびEuropean Molecule Biology Laboratoryなどの研究機関によって維持されるデータベース中に見いだされ得る。公知の有効なsiRNA配列もまた、関連のある文献によく示されている。RNAi活性を有する核酸を作成し使用するための方法は、当業者にとって周知である。さらに、有効および特異的な配列モチーフを発見する機会を増加させる計算ツールがある (Peiら2006、Reynoldsら2004、Khvorovaら2003、Schwarzら2003、Ui-Teiら2004、Healeら2005、Chalkら2004、Amarzguiouiら2004)。 A list of known miRNA sequences can be found in databases maintained by research institutions such as Wellcome Trust Sanger Institute, Penn Center for Bioinformatics, Memorial Sloan Kettering Cancer Center, and the European Molecule Biology Laboratory, among others. Known effective siRNA sequences are also well shown in the relevant literature. Methods for making and using nucleic acids having RNAi activity are well known to those skilled in the art. In addition, there are computational tools that increase the opportunity to discover effective and specific sequence motifs (Pei et al 2006, Reynolds et al 2004, Khvorova et al 2003, Schwarz et al 2003, Ui-Tei et al 2004, Heale et al 2005, Chalk et al 2004 , Amarzguioui et al. 2004).
[医薬組成物]
 本発明の医薬組成物には、薬学的に許容される担体が含まれてもよい。薬学的に許容される担体としては、例えば、滅菌水や生理食塩水、安定剤、賦形剤、酸化防止剤(アスコルビン酸等)、緩衝剤(リン酸、クエン酸、他の有機酸等)、防腐剤、界面活性剤(PEG、Tween等)、キレート剤(EDTA等)、または結合剤等を挙げることができる。また、その他の低分子量のポリペプチド、血清アルブミン、ゼラチン、または免疫グロブリン等の蛋白質、グリシン、グルタミン、アスパラギン、アルギニンおよびリシン等のアミノ酸、多糖および単糖等の糖類や炭水化物、マンニトールやソルビトール等の糖アルコールを含んでいてもよい。注射用の水溶液とする場合には、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えば、D-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、PEG等)、非イオン性界面活性剤(ポリソルベート80、HCO-50)等と併用してもよい。
[Pharmaceutical composition]
The pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier. Examples of pharmaceutically acceptable carriers include sterile water and saline, stabilizers, excipients, antioxidants (such as ascorbic acid), buffers (such as phosphoric acid, citric acid, and other organic acids) And preservatives, surfactants (PEG, Tween etc.), chelating agents (EDTA etc.), binders and the like. In addition, other low molecular weight polypeptides, proteins such as serum albumin, gelatin or immunoglobulin, amino acids such as glycine, glutamine, asparagine, arginine and lysine, saccharides and carbohydrates such as polysaccharides and monosaccharides, mannitol, sorbitol and the like It may contain a sugar alcohol. In the case of an aqueous solution for injection, for example, physiological saline, isotonic solution containing glucose and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, etc. may be mentioned, and appropriate dissolution You may use together with adjuvants, such as alcohol (ethanol etc.), polyalcohol (propylene glycol, PEG etc.), nonionic surfactant (polysorbate 80, HCO-50) etc.
 また、本発明の医薬組成物は、必要に応じ、マイクロカプセル(ヒドロキシメチルセルロース、ゼラチン、ポリ[メチルメタクリル酸]等のマイクロカプセル)に封入したり、コロイドドラッグデリバリーシステム(リポソーム、アルブミンミクロスフェア、マイクロエマルジョン、ナノ粒子およびナノカプセル等)とすることもできる("Remington's Pharmaceutical Science 16th edition", Oslo Ed., 1980等参照)。さらに、薬剤を徐放性の薬剤とする方法も公知であり、本発明に適用し得る(Langer et al., J.Biomed.Mater.Res. 1981, 15: 167-277; Langer, Chem. Tech. 1982, 12: 98-105;US3773919;EP58481; Sidman et al., Biopolymers 1983, 22: 547-556;EP133988)。 In addition, the pharmaceutical composition of the present invention may, if necessary, be encapsulated in microcapsules (microcapsules such as hydroxymethylcellulose, gelatin, poly [methyl methacrylate], etc.) or a colloid drug delivery system (liposomes, albumin microspheres, It may also be an emulsion, nanoparticles, nanocapsule etc.) (see "Remington's Pharmaceutical Science 16th edition", Oslo Ed., 1980 etc.). Furthermore, methods of making the drug a sustained release drug are also known and may be applied to the present invention (Langer et al., J. Biomed. Mater. Res. 1981, 15: 167-277; Langer, Chem. Tech 1982, 12: 98-105; US3773919; EP58481; Sidman et al., Biopolymers 1983, 22: 547-556; EP 133988).
 患者への投与は経口、非経口投与のいずれでも可能であるが、好ましくは非経口投与である。本発明の医薬組成物の形態(剤型)としては、特に制限はなく、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与剤型、凍結乾燥剤型、溶液剤型などが挙げられる。 Administration to patients can be either oral or parenteral administration, but is preferably parenteral administration. The form (dosage form) of the pharmaceutical composition of the present invention is not particularly limited, and injection, nasal administration, transpulmonary administration, transdermal administration, lyophilization, solution administration Etc.
 凍結乾燥は、当業者に周知の方法によって実施できる(Pharm Biotechnol, 2002, 13, 109-33、Int J Pharm. 2000, 203(1-2), 1-60、Pharm Res. 1997, 14(8), 969-975)。例えば、溶液を凍結乾燥に用いるバイアル等の容器に適当量分注し、凍結庫または凍結乾燥庫中にて行なうか、アセトン/ドライアイス及び液体窒素などの冷媒中に浸漬して行う。また、抗体製剤を高濃度溶液製剤にする場合は、当業者に周知の方法によって実施できる。例えば、J. Pharm.Sc, 2004, 93(6), 1390-1402に記載されているように、TFF膜を利用した膜濃縮法が用いられる。 Lyophilization can be carried out by methods well known to the person skilled in the art (Pharm Biotechnol, 2002, 13, 109-33, Int J Pharm. 2000, 203 (1-2), 1-60, Pharm Res. 1997, 14 (8). ), 969-975). For example, the solution is dispensed in an appropriate amount into a container such as a vial used for lyophilization and carried out in a freezing or lyophilizing chamber or immersed in a refrigerant such as acetone / dry ice and liquid nitrogen. Moreover, when making an antibody formulation into a high concentration solution formulation, it can implement by the method known to those skilled in the art. For example, as described in J. Pharm. Sc, 2004, 93 (6), 1390-1402, a membrane concentration method using a TFF membrane is used.
 注射剤型は、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。また、患者の年齢、症状によって適宜投与方法を選択することができる。投与量としては、例えば、一回につき体重1kgあたり0.0001mgから1000mgの範囲で選ぶことが可能である。あるいは、例えば、患者あたり0.001~100000mg/bodyの範囲で投与量を選ぶことができる。しかしながら、本発明はこれらの投与量および投与方法等に制限されるものではない。 The injection form can be administered systemically or locally, for example, by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like. In addition, the administration method can be appropriately selected according to the age and symptoms of the patient. The dose can be selected, for example, in the range of 0.0001 mg to 1000 mg per kg body weight. Alternatively, for example, the dose can be selected in the range of 0.001 to 100,000 mg / body per patient. However, the present invention is not limited to these dosages and administration methods.
 プレキシンA1アンタゴニストの治療的・予防的有効量とは、対象に投与された場合に、疾患または障害に関連した症状または生物活性を予防、遅延、軽減、または阻害するのに有効であるアンタゴニストの量を意味する。投与は、単回投与または複数回投与からなってよく、かつ、他の薬学的組成物と組み合わせて与えてもよい。 A therapeutically and / or prophylactically effective amount of a plexin A1 antagonist is that amount of the antagonist that, when administered to a subject, is effective to prevent, delay, reduce or inhibit a symptom or biological activity associated with a disease or disorder. Means Administration may consist of a single dose or multiple doses and may be given in combination with other pharmaceutical compositions.
[キット]
 本発明は、少なくとも本発明のALSの予防および/または治療用医薬組成物を含むキットを提供する。該キットには、その他、注射筒、注射針、薬学的に許容される媒体、アルコール綿布、絆創膏、または使用方法を記載した指示書等をパッケージしておくこともできる。
[kit]
The present invention provides a kit comprising at least the pharmaceutical composition for the prevention and / or treatment of ALS of the present invention. The kit can also be packaged with syringes, injection needles, pharmaceutically acceptable vehicles, alcohol cotton cloths, bandages, instructions describing the method of use, and the like.
 一局面において、本発明は、患者に対して、プレキシンA1アンタゴニストを投与する工程を含む、ALSの予防および/または治療のための方法に関する。 In one aspect, the invention relates to a method for the prophylaxis and / or treatment of ALS, comprising the step of administering to a patient a plexin A1 antagonist.
 別の局面において、本発明は、ALSの予防方法および/または治療方法に使用するための、プレキシンA1アンタゴニストに関する。 In another aspect, the invention relates to plexin A1 antagonists for use in a method of preventing and / or treating ALS.
 別の局面において、本発明は、ALSの予防および/または治療のための医薬の製造における、プレキシンA1アンタゴニストの使用に関する。 In another aspect, the invention relates to the use of a plexin A1 antagonist in the manufacture of a medicament for the prevention and / or treatment of ALS.
 一局面において、本発明は、プレキシンA1アンタゴニストを含有する筋力低下または筋委縮を抑制するための医薬組成物に関する。
 特定の局面において、筋力低下または筋委縮はALSによる筋力低下または筋委縮である。
 特定の局面において、筋力低下または筋委縮は四肢、呼吸、発語あるいは嚥下に関する筋力低下または筋萎縮である。
 また、特定の局面において、筋力低下または筋委縮はALSによる四肢、呼吸、発語あるいは嚥下に関する筋力低下または筋萎縮である。
In one aspect, the present invention relates to a pharmaceutical composition for suppressing muscle weakness or muscle atrophy comprising a plexin A1 antagonist.
In certain aspects, muscle weakness or muscle atrophy is muscle weakness or muscle atrophy due to ALS.
In certain aspects, muscle weakness or muscle atrophy is extremity, muscle weakness or muscle atrophy associated with breathing, speech or swallowing.
Also, in certain aspects, muscle weakness or muscle atrophy is ALS-related limb weakness, muscle weakness or muscle atrophy related to speech or speech.
 別の局面において、本発明は、プレキシンA1アンタゴニストを含有する運動神経の変性あるいは消失を抑制するための医薬組成物に関する。
 特定の局面において、運動神経の変性あるいは消失はALSによる運動神経の変性あるいは消失である。
In another aspect, the present invention relates to a pharmaceutical composition for suppressing degeneration or loss of motor nerves containing a plexin A1 antagonist.
In a particular aspect, degeneration or loss of motor nerves is degeneration or loss of motor nerves by ALS.
 別の局面において、本発明は、プレキシンA1アンタゴニストを含有する、セマフォリン3Aの生物活性が関連する疾患の予防および/または治療に用いられる医薬組成物である。
 特定の局面において、セマフォリン3Aの生物活性が関連する疾患はALSである。
In another aspect, the present invention is a pharmaceutical composition for use in the prevention and / or treatment of a disease associated with biological activity of semaphorin 3A, which comprises a plexin A1 antagonist.
In a particular aspect, the disease associated with the biological activity of semaphorin 3A is ALS.
[実施例1:セマフォリン3Aタンパク質の調製]
 ヒトセマフォリン3Aタンパク質は、NP_006071.1の配列(配列番号:41)を基に遺伝子合成を行い、プロテアーゼ認識サイトのアルギニン残基(552番目、555番目、757番目、759番目、760番目)をアラニンに変換した。シグナルペプチド (N末から20番目のアラニン)を人工シグナルペプチドHMM+38(MWWRLWWLLLLLLLLWPMVWA、配列番号:42)に置換し、シグナルペプチドと21番目のアスパラギンの間に、グルタミン酸-アスパラギン酸-アルギニンのスペーサー介してHisタグ配列を挿入した。さらに、C末端にはFLAGタグ配列(DYKDDDDK、配列番号:43)を挿入した。作製したアミノ酸配列を配列番号:44に示した。作製した遺伝子は発現ベクターに組み込みInvitrogen社FreeStyle293細胞に導入して発現させ、培養上清からセマフォリン3Aタンパク質をHisTrap excel(GE Healthcare社)を用いたAffinity精製とゲルろ過クロマトグラフィーにより精製した。
 分泌タンパク質であるマウスセマフォリン3A(mSema3A)は以下のように調製された。NCBI Reference Sequence NM_009152のアミノ酸配列(配列番号:45)をもとに1-20番目のシグナルペプチドを人工シグナルペプチドHMM+38 (MWWRLWWLLLLLLLLWPMVWA、配列番号:42)に置換し、付加配列EDRとHis6 tagをシグナルペプチドの後ろに挿入し、furinプロテアーゼ認識部位の552、555、758、760、761番目のアルギニンをアラニンに置換し、プロテアーゼによって切断されるC末2残基(SV)を欠失させた。作製したアミノ酸配列を配列番号:46に示した。作製された遺伝子を動物細胞発現用ベクターに組み込み293Fectin (Invitorgen)を用いて、FreeStyle293細胞(Invitorgen)に遺伝子導入した。このとき目的遺伝子産物の発現効率向上のためEBNA1を発現する遺伝子を同時に導入した。遺伝子導入された細胞を、37℃、CO2 8%で5日間培養し、目的のタンパク質を培養上清中に分泌させた。
Example 1 Preparation of Semaphorin 3A Protein
Human semaphorin 3A protein performs gene synthesis based on the sequence of NP — 006071.1 (SEQ ID NO: 41), and arginine residues (552, 555, 757, 759, 760) of the protease recognition site Converted to alanine. The signal peptide (the 20th alanine from the N terminal) is replaced with the artificial signal peptide HMM + 38 (MWRWRWWLLLLLLLLWPMVWA, SEQ ID NO: 42), and a spacer of glutamate-aspartate-arginine is interposed between the signal peptide and the asparagine 21st. And the His tag sequence was inserted. Furthermore, a FLAG tag sequence (DYKDDDDK, SEQ ID NO: 43) was inserted at the C-terminus. The generated amino acid sequence is shown in SEQ ID NO: 44. The prepared gene was incorporated into an expression vector, introduced into Invitrogen's FreeStyle 293 cells for expression, and semaphorin 3A protein was purified from the culture supernatant by affinity purification using HisTrap excel (GE Healthcare) and gel filtration chromatography.
The secreted protein mouse semaphorin 3A (mSema 3A) was prepared as follows. Based on the amino acid sequence (SEQ ID NO: 45) of NCBI Reference Sequence NM — 009152, the signal peptide at position 1-20 is replaced with artificial signal peptide HMM + 38 (MWRWRWWLLLLLLLLWPMVWA, SEQ ID NO: 42) to add additional sequences EDR and His6 tag After the signal peptide, arginine at position 552, 555, 758, 760, 761 of the furin protease recognition site was replaced with alanine, and the C-terminal 2 residues (SV) cleaved by protease were deleted. The generated amino acid sequence is shown in SEQ ID NO: 46. The prepared gene was incorporated into a vector for animal cell expression, and was transfected into FreeStyle 293 cells (Invitorgen) using 293Fectin (Invitorgen). At this time, a gene expressing EBNA1 was simultaneously introduced to improve the expression efficiency of the target gene product. The transfected cells were cultured at 37 ° C., 8% CO 2 for 5 days to secrete the desired protein into the culture supernatant.
[実施例2:抗ヒトマウス交叉PlexinA1抗体の作製
 以下の方法で、ナイーブヒト抗体ライブラリーおよび合成ヒト抗体ライブラリーから抗ヒトマウス交叉PlexinA1抗体を作製した。
Example 2 Preparation of Anti-Human Mouse Cross Plexin A1 Antibody An anti-human mouse cross Plexin A1 antibody was generated from a naive human antibody library and a synthetic human antibody library by the following method.
ビオチン標識ヒトPlexinA1の調製
 単回膜貫通タンパク質であるヒトプレキシンA1の細胞外領域を以下のように調製した。NCBI Reference Sequence NP_115618(配列番号:47)のアミノ酸配列をもとに合成されたヒトプレキシンA1遺伝子から、膜貫通領域と予想される1245番目のアラニンからC末端までの領域を除去し、替わりにFLAG タグ配列(配列番号:43)を付加した。さらに1-26番目までのシグナルペプチド(配列番号:48)を人工シグナルペプチドHMM+38(配列番号:42)に置換した。作製されたヒトプレキシンA1(hPlexinA1)(配列番号:49)をコードする遺伝子を動物細胞用発現ベクターに組み込み、293Fectin(Invitorgen)を用いてFreeStyle293細胞(Invitorgen)に導入した。このとき、目的遺伝子の発現効率の向上のため、EBNA1(配列番号:50)を発現する遺伝子を同時に導入した。
Preparation of Biotin-Labeled Human Plexin A1 The extracellular domain of human plexin A1, a single transmembrane protein, was prepared as follows. The human plexin A1 gene synthesized based on the amino acid sequence of NCBI Reference Sequence NP_115618 (SEQ ID NO: 47), the region from alanine to C-terminus at 1245th, which is predicted to be a transmembrane region, is removed and a FLAG tag is substituted instead. The sequence (SEQ ID NO: 43) was added. Furthermore, the signal peptide (SEQ ID NO: 48) up to the 1-26th position was replaced with the artificial signal peptide HMM + 38 (SEQ ID NO: 42). The gene encoding human plexin A1 (hPlexin A1) (SEQ ID NO: 49) thus prepared was incorporated into an expression vector for animal cells, and was introduced into FreeStyle 293 cells (Invitorgen) using 293 Fectin (Invitorgen). At this time, in order to improve the expression efficiency of the target gene, a gene expressing EBNA1 (SEQ ID NO: 50) was simultaneously introduced.
 前述の手順に従って遺伝子導入された細胞を37℃、8% CO2で6日間培養し、目的のタンパク質を培養上清中に分泌させた。目的のhPlexinA1を含む細胞培養液を0.22μmボトルトップフィルターでろ過し、培養上清を得た。D-PBS(-)(和光純薬)で平衡化された抗FLAG抗体M2アガロース(Sigma-Aldrich)に培養上清をアプライした後、FLAGペプチドを溶解したD-PBSを加えることにより目的のhPlexinA1を溶出させた。次に、D-PBS(-)で平衡化されたSuperdex 200(GEヘルスケア)を用いたゲルろ過クロマトグラフィーにより、hPlexinA1を含む画分を分取した。 The cells transfected according to the above-mentioned procedure were cultured at 37 ° C., 8% CO 2 for 6 days to secrete the desired protein into the culture supernatant. A cell culture solution containing the target hPlexin A1 was filtered with a 0.22 μm bottle top filter to obtain a culture supernatant. Apply the culture supernatant to anti-FLAG antibody M2 agarose (Sigma-Aldrich) equilibrated with D-PBS (-) (Wako Pure Chemical Industries, Ltd.), and then add the FLAG peptide-dissolved D-PBS to the target hPlexin A1 Was eluted. Next, the fraction containing hPlexin A1 was fractionated by gel filtration chromatography using Superdex 200 (GE Healthcare) equilibrated with D-PBS (−).
 上述のように作製されたhPlexinA1に対してEZ-Link NHS-PEG4-Biotin (Thermo SCIENTIFIC)を用いることにより、ビオチン標識hPlexinA1が調製された。 Biotin-labeled hPlexin A1 was prepared by using EZ-Link NHS-PEG4-Biotin (Thermo SCIENTIFIC) against hPlexin A1 prepared as described above.
ナイーブヒト抗体ライブラリーの作製 
 ヒトPBMCから作成したポリA RNAや、市販されているヒトポリA RNAなどを鋳型としてPCR法により抗体重鎖可変領域および抗体軽鎖可変領域の遺伝子ライブラリーを増幅した。作製した抗体重鎖可変領域の遺伝子ライブラリーと抗体軽鎖可変領域の遺伝子ライブラリーを組合せ、ファージミドベクターへ挿入し、ヒト抗体配列からなるFabドメインを提示するヒト抗体ファージディスプレイライブラリーを構築した。構築方法として、文献(Methods Mol Biol. (2002) 178, 87-100)を参考にした。上記ライブラリーの構築に際しては、ファージミドのFabとファージpIIIタンパク質をつなぐリンカー部分、および、ヘルパーファージpIIIタンパク遺伝子のN2ドメインとCTドメインの間にトリプシン切断配列が挿入されたファージディスプレイライブラリーの配列が使用された。
Preparation of naive human antibody library
Gene libraries of antibody heavy chain variable region and antibody light chain variable region were amplified by PCR using polyA RNA prepared from human PBMC or commercially available human polyA RNA as a template. The gene library of the antibody heavy chain variable region and the gene library of the antibody light chain variable region were combined, inserted into a phagemid vector, and a human antibody phage display library displaying Fab domain consisting of human antibody sequences was constructed. As a construction method, literature (Methods Mol Biol. (2002) 178, 87-100) was referred to. At the time of construction of the above library, the linker of the phagemid Fab and the phage pIII protein, and the sequence of the phage display library in which the trypsin cleavage sequence is inserted between the N2 domain and the CT domain of the helper phage pIII protein gene Was used.
合成ヒト抗体ライブラリーの作製 
 当業者公知の方法により、10種類の重鎖germline配列, 7種類の軽鎖germline配列を用いた合成ヒト抗体ファージディスプレイライブラリーを構築した。用いたGermline配列は、ヒトB細胞レパートリーにおける出現頻度、可変領域ファミリーでの物理化学的性質を指標にし、VH1-2, VH1-69, VH3-23, VH3-66, VH3-72, VH4-59, VH4-61, VH4-b, VH5-51, VH6-1, Vκ1-39, Vκ2-28, Vκ3-20, Vλ1-40, Vλ1-44, Vλ2-14, Vλ3-21を選択した。ヒトB細胞の抗体のレパートリーを模した形で、合成抗体ライブラリーの抗原認識部位に多様性を持たせた。
Preparation of synthetic human antibody library
A synthetic human antibody phage display library was constructed using 10 types of heavy chain germline sequences and 7 types of light chain germline sequences by methods known to those skilled in the art. The Germline sequence used is based on the frequency of appearance in the human B cell repertoire and the physicochemical properties of the variable region family as indexes, and VH1-2, VH1-69, VH3-23, VH3-66, VH3-72, VH4-59. , VH4-61, VH4-b, VH5-51, VH6-1, Vκ1-39, Vκ2-28, Vκ3-20, Vλ1-40, Vλ1-44, Vλ2-14, Vλ3-21. In a form that mimics the repertoire of human B cell antibodies, the antigen recognition site of the synthetic antibody library was diversified.
ナイーブヒト抗体ライブラリーおよび合成ヒト抗体ライブラリーからのビーズパンニングによる抗原結合抗体断片の取得
 構築したファージディスプレイ用ファージミドを保持した大腸菌からファージ産生を行った。ファージ産生を行った大腸菌の培養液に2.5 M NaCl/10%PEGを添加することによって、沈殿させたファージの集団をTBSにて希釈することによりファージライブラリー液を得た。次に、ファージライブラリー液にBSAおよびCaCl2を添加することによって終濃度4% BSA, 1.2 mM カルシウムイオンとなるよう調製した。
Preparation of antigen-binding antibody fragments by bead panning from a naive human antibody library and a synthetic human antibody library Phage production was carried out from E. coli carrying the constructed phagemid for phage display. A phage library solution was obtained by adding 2.5 M NaCl / 10% PEG to a culture solution of phage-produced E. coli to dilute the precipitated phage population with TBS. Next, the final concentration of 4% BSA, 1.2 mM calcium ion was prepared by adding BSA and CaCl 2 to the phage library solution.
 パンニング方法としては、一般的な方法である磁気ビーズに固定化した抗原を用いたパンニング方法を参照した(J. Immunol. Methods. (2008) 332 (1-2), 2-9、J. Immunol. Methods. (2001) 247 (1-2),191-203、Biotechnol. Prog. (2002) 18(2) 212-20、Mol. Cell Proteomics (2003) 2 (2), 61-9)。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads Neutravidin-coated)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)を用いた。 As a panning method, a panning method using an antigen immobilized on magnetic beads, which is a general method, is referred to (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol Methods (2001) 247 (1-2), 191-203, Biotechnol. Prog. (2002) 18 (2) 212-20, Mol. Cell Proteomics (2003) 2 (2), 61-9). NeutrAvidin coated beads (Sera-Mag SpeedBeads Neutravidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin) were used as magnetic beads.
 具体的には、調製したファージライブラリー液に、前述の250 pmolのビオチン標識hPlexinA1を加えることによって、当該ファージライブラリー液を室温にて60分間抗原と接触させた。BSAでブロッキングした磁気ビーズを加え、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズを1 mLの1.2 mM CaCl2/TBST(1.2 mM CaCl2を含むTBST)にて3回洗浄した後、1 mLの1.2 mM CaCl2/TBS(1.2 mM CaCl2を含むTBS)にてさらに2回洗浄した。その後、ビーズに1mg/mLのトリプシン0.5 mLを加え、室温で15分懸濁した後、即座に磁気スタンドを用いてビーズを分離し、ファージ溶液を回収した。 Specifically, the phage library solution was brought into contact with the antigen for 60 minutes at room temperature by adding 250 pmol of the biotin-labeled hPlexin A1 described above to the prepared phage library solution. BSA-blocked magnetic beads were added, and the complex of antigen and phage was allowed to bind to the magnetic beads for 15 minutes at room temperature. After the beads were washed 3 times with a TBST containing 1.2 mM CaCl 2 /TBST(1.2 mM CaCl 2 in 1 mL), further in TBS) containing 1.2 mM CaCl 2 /TBS(1.2 mM CaCl 2 in 1 mL 2 Washed several times. Thereafter, 0.5 mL of 1 mg / mL trypsin was added to the beads and suspended at room temperature for 15 minutes, and then the beads were immediately separated using a magnetic stand to recover a phage solution.
 回収したファージ溶液を、対数増殖期(OD600が0.4-0.7)となった10 mLの大腸菌株ER2738に添加した。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種した。次に、播種した大腸菌の培養液からファージを回収することによって、ファージライブラリー液を調製し、2回目のパンニングに利用した。 The recovered phage solution was added to 10 mL of E. coli strain ER2738 in the logarithmic growth phase (OD600 of 0.4 to 0.7). The phage was infected with E. coli by stirring the E. coli gently at 37 ° C. for 1 hour. The infected E. coli was plated on a 225 mm x 225 mm plate. Next, the phage library solution was prepared by recovering the phage from the culture solution of the inoculated E. coli and used for the second panning.
 2回目のパンニングでは、調製したファージライブラリー液に40 pmolのビオチン標識抗原を加え、1回目のパンニングと同様の操作を行うことにより、ファージライブラリー液を調製した。この調製液を利用して、3回目のパンニングを行った。3回目のパンニングでは、調製したファージライブラリー液に10 pmolのビオチン標識抗原を加え、1、2回目のパンニングと同様の操作を行い、播種された大腸菌を回収した。 In the second round of panning, 40 pmol of biotin-labeled antigen was added to the prepared phage library solution, and the same procedure as in the first round of panning was performed to prepare a phage library solution. A third panning was performed using this preparation. In the third panning, 10 pmol of biotin-labeled antigen was added to the prepared phage library solution, and the same operation as in the first and second panning was performed to recover the inoculated E. coli.
ファージELISAによる評価
 上記の方法によって得られた大腸菌のシングルコロニーから、常法(Methods Mol. Biol. (2002) 178, 133-145)に従って、ファージ含有培養上清を回収した。
Phage ELISA Evaluation From the single colony of E. coli obtained by the above method, the phage-containing culture supernatant was recovered according to a conventional method (Methods Mol. Biol. (2002) 178, 133-145).
 Skim milkおよびCaCl2を加えたファージを含有する培養上清が以下の手順でELISAに供された。StreptaWell 96マイクロタイタープレート(Roche)を、ビオチン標識抗原を含む100μLのPBSで一晩コートした。当該プレートの各ウェルをPBSTで洗浄することによって抗原を除いた後、当該ウェルを0.02% skim milk-TBS 250μLにて1時間以上ブロッキングした。0.02% skim milk-TBSを除いた各ウェルに、調製した培養上清を加えた当該プレートを37℃で1時間静置することにより、ファージに提示された抗体を、各ウェルに存在する抗原に結合させた。1.2 mM CaCl2/TBSTにて洗浄した後、1.2 mM CaCl2/TBSによって25,000倍希釈されたHRP結合抗M13抗体(GE Healthcare, 27-9421-01)を各ウェルに添加し、1時間インキュベートさせた。1.2 mM CaCl2/TBSTにて洗浄後、TMB solution(LifeTechnologies, 00-2023)を添加した各ウェル中の溶液の発色反応を、硫酸の添加により停止した後、450 nmの吸光度によって当該発色を測定した。 The culture supernatant containing the skimmed milk and the phage to which CaCl 2 was added was subjected to ELISA in the following procedure. StreptaWell 96 microtiter plates (Roche) were coated overnight with 100 μL PBS containing biotin-labeled antigen. After removing the antigen by washing each well of the plate with PBST, the well was blocked with 250 μL of 0.02% skim milk-TBS for 1 hour or more. The plate-displayed plate containing the prepared culture supernatant was allowed to stand at 37 ° C. for 1 hour in each well from which 0.02% skim milk-TBS had been removed, whereby the antibody displayed on the phage was used as an antigen present in each well. It was combined. After washing with 1.2 mM CaCl 2 / TBST, HRP-conjugated anti-M13 antibody (GE Healthcare, 27-9421-01) diluted 25,000 fold with 1.2 mM CaCl 2 / TBS is added to each well and incubated for 1 hour The After washing with 1.2 mM CaCl 2 / TBST, the color reaction of the solution in each well to which TMB solution (Life Technologies, 00-2023) is added is stopped by addition of sulfuric acid, and then the color development is measured by absorbance at 450 nm. did.
 上記のファージELISAを実施したクローンに対し、特異的なプライマーを用いて増幅した遺伝子の塩基配列解析を行い、上記のファージELISAおよび配列解析の結果から、3回目のパンニングのプールを抗体断片から完全長のヒト抗体に変換し、更なる評価に供した。 Based on the results of phage ELISA and sequence analysis described above, base sequence analysis of the gene amplified using a specific primer was performed on the above-described phage ELISA clone, and the pool of the third panning was completely isolated from the antibody fragment. It was converted to a long human antibody and subjected to further evaluation.
抗体断片から完全長抗体への変換、発現および精製
 3回目のパンニング時に回収した大腸菌から、NucleoBond Xtra Midi Plus (MACHEREY-NAGEL, 740412.50)によってファージミドの抽出を行った。その後、制限酵素処理によって抗体の可変領域部分の塩基配列を切出した。切り出した抗体可変領域部分塩基配列を、EF1プロモーターとEBNA1の複製開始点であるOriPを保持するベクターに抗体定常領域(H鎖の定常領域はヒトIgG1( hG1d)(配列番号:51)、L鎖の定常領域はヒトIgκ(k0)(配列番号:52)をそれぞれ使用した)を導入したカセットベクターに、ライゲーションした。ライゲーション産物を用いて、大腸菌DH5α(TOYOBO, DNA-903)を形質転換し、得られたシングルコロニーから動物細胞発現用の完全長抗体プラスミドの抽出を行った。
Phagemid extraction was performed from NucleoBond Xtra Midi Plus (MACHEREY-NAGEL, 74041.50) from E. coli collected at the time of conversion from antibody fragment to full-length antibody, expression and purification at the third panning. Thereafter, the base sequence of the variable region of the antibody was excised by restriction enzyme treatment. The antibody constant region (the constant region of the H chain is human IgG1 (hG1d) (SEQ ID NO: 51), L chain, and the vector carrying the excision antibody variable region partial base sequence to the EF1 promoter and OriP that is the replication origin of EBNA1. Were ligated to a cassette vector into which human Ig kappa (k0) (SEQ ID NO: 52) was used, respectively. The ligation product was used to transform E. coli DH5α (TOYOBO, DNA-903), and extraction of a full-length antibody plasmid for animal cell expression was performed from the obtained single colony.
 抗体の発現は以下の方法を用いて行った。ヒト胎児腎細胞由来FreeStyle 293-F株(Invitrogen)をFreeStyle 293 Expression Medium培地(Invitrogen)に懸濁し、5.0 x 104細胞/wellの細胞密度で96ウェルプレートの各ウェルへ190μLずつ播種した。調製したそれぞれのプラスミドを、リポフェクション法によって細胞導入した。CO2インキュベーター(37度、8%CO2)中で5日間培養し、培養上清中に抗体を分泌させた。培養上清中の分泌抗体は、Multi screen HTS GV (Millipore, MSGVN2250)を用いてフィルター濾過し、得られた培養上清をセルELISAに供した。もしくは、抗体をFreeStyle 293-F株において発現させ、培養上清から抗体をProtein Aカラムにてアフィニティー精製し、生物活性の評価、薬効評価に用いた。 The expression of the antibody was performed using the following method. Human fetal kidney cell-derived FreeStyle 293-F strain (Invitrogen) was suspended in FreeStyle 293 Expression Medium (Invitrogen), and 190 μL each was seeded at a cell density of 5.0 × 10 4 cells / well in each well of a 96-well plate. Each prepared plasmid was introduced into cells by lipofection. The cells were cultured for 5 days in a CO 2 incubator (37 ° C., 8% CO 2 ) to secrete the antibody into the culture supernatant. The secreted antibody in the culture supernatant was filtered using Multi screen HTS GV (Millipore, MSGVN 2250), and the obtained culture supernatant was subjected to cell ELISA. Alternatively, the antibody was expressed in FreeStyle 293-F strain, and the antibody was affinity purified from the culture supernatant with a Protein A column, and used for evaluation of biological activity and evaluation of drug efficacy.
ヒトおよびマウスPlexinA1発現細胞の構築
 抗原発現細胞株は以下の方法で構築した。CAGプロモーターとネオマイシン耐性遺伝子を保持するpCXND3ベクターに、シグナル配列を含むヒトおよびマウスPlexinA1膜貫通領域までの部分(配列番号:53、配列番号:54)のC末側にMycタグ(配列番号:55)を融合させたタンパク質を発現するようにコンストラクトしたcDNAを挿入したプラスミドを作製した。作製したプラスミドは制限酵素PvuIで切断し直鎖状にした後、Ba/F3細胞にGenePulser X cell(Bio-Rad)でエレクトロポレーション法により導入した。導入後、限界希釈法により96 well plateに播種し、G418で選抜をかけた。1~2週間後、選抜をかけた細胞がウェルの中でシングルコロニーを形成しているかどうか目視で確認し、シングルコロニーを形成しているものについて細胞を一部回収し、Mycタグ抗体を用いたウエスタンブロット解析および細胞を96 well plateに捕捉して4%パラホルムアルデヒド、アセトン、メタノールにより固定化し細胞膜に穴があいた状態でMycタグ抗体が反応するかどうか調べたELISA法により、ヒトおよびマウスPlexinA1がBa/F3細胞に発現していることを確かめた。
Construction of human and mouse Plexin A1 expressing cells Antigen expressing cell lines were constructed in the following manner. In the pCXND3 vector carrying the CAG promoter and the neomycin resistance gene, the Myc tag (SEQ ID NO: 55) at the C-terminal side of the portion up to human and mouse Plexin A1 transmembrane region (SEQ ID NO: 53, SEQ ID NO: 54) containing the signal sequence. A plasmid was prepared in which the cDNA constructed so as to express the fused protein was inserted. The prepared plasmid was digested with restriction enzyme PvuI to linearize it, and then introduced into Ba / F3 cells by electroporation using GenePulser X cell (Bio-Rad). After the introduction, the cells were seeded on a 96 well plate by limiting dilution and subjected to selection with G418. After 1 to 2 weeks, visually check whether the selected cells form single colonies in the wells, collect some cells from those forming single colonies, and use Myc tag antibody Western blot analysis and ELISA to determine whether the Myc tag antibody reacts with 4% paraformaldehyde, acetone and methanol immobilized on a 96-well plate and fixed with 4% paraformaldehyde, acetone and methanol, human and mouse Plexin A1 Was confirmed to be expressed in Ba / F3 cells.
セルELISAによる評価
 上記で得られた抗体上清は、以下の手順でセルELISAに供された。まず、384ウェルプレートを準備し、ヒトPlexinA1およびマウスPlexinA1発現Ba/F3細胞をそれぞれ別のウェルの底面に捕捉した。当該プレートの各ウェルをPBSで洗浄した後、調製した抗体上清を20μL/wellで添加し、室温で1時間静置した。その後、各ウェルを1M Hepes (pH7.4)で洗浄し、TBSで5000倍希釈したHRP標識抗ヒトIgG抗体(Invitrogen, AHI0304)を20μL/wellずつ添加、室温で1時間静置した。当該プレートの各ウェルを1M Hepes (pH7.4)で洗浄後、基質液(ABTS peroxidase substrate system)を20μL/wellずつ分注し、室温で1時間発色させた後、Molecular Device社製SpectraMaxにて405nmの吸光度を測定することによって、ヒトPlexinA1への結合およびマウスPlexinA1への結合を確認した。
Evaluation by Cell ELISA The antibody supernatant obtained above was subjected to cell ELISA in the following procedure. First, a 384 well plate was prepared, and human PlexinA1 and mouse PlexinA1 expressing Ba / F3 cells were captured on the bottom of separate wells. After washing each well of the plate with PBS, the prepared antibody supernatant was added at 20 μL / well and allowed to stand at room temperature for 1 hour. After that, each well was washed with 1 M Hepes (pH 7.4), HRP-labeled anti-human IgG antibody (Invitrogen, AHI0304) diluted 5000 times with TBS was added at 20 μL / well each, and left at room temperature for 1 hour. Each well of the plate is washed with 1 M Hepes (pH 7.4), 20 μL / well of substrate solution (ABTS peroxidase substrate system) is dispensed, color is allowed to develop for 1 hour at room temperature, and then SpectraMax by Molecular Device is used. Binding to human PlexinA1 and binding to mouse PlexinA1 were confirmed by measuring absorbance at 405 nm.
 ヒトPlexinA1発現Ba/F3細胞への吸光度値かつマウスPlexinA1発現Ba/F3細胞への吸光度値が0.15以上の抗体を選抜し、後述のin vitro 生物活性評価アッセイに供した。具体的には、「表1」に示す吸光度値を示した抗体を、抗ヒトマウス交叉PlexinA1抗体(hPANK#016;配列番号1~3にH鎖CDR1~3のアミノ酸配列、配列番号4~6にL鎖CDR1~3のアミノ酸配列、配列番号25、26にH鎖可変領域のアミノ酸配列、L鎖可変領域のアミノ酸配列、配列番号33、34にH鎖のアミノ酸配列、L鎖のアミノ酸配列を示す、hPANK#135;配列番号7~9にH鎖CDR1~3のアミノ酸配列、配列番号10~12にL鎖CDR1~3のアミノ酸配列、配列番号27、28にH鎖可変領域のアミノ酸配列、L鎖可変領域のアミノ酸配列、配列番号35、36にH鎖のアミノ酸配列、L鎖のアミノ酸配列を示す、hPANK#354;配列番号13~15にH鎖CDR1~3のアミノ酸配列、配列番号16~18にL鎖CDR1~3のアミノ酸配列、配列番号29、30にH鎖可変領域のアミノ酸配列、L鎖可変領域のアミノ酸配列、配列番号37、38にH鎖のアミノ酸配列、L鎖のアミノ酸配列を示す、hPASK#188;配列番号19~21にH鎖CDR1~3のアミノ酸配列、配列番号22~24にL鎖CDR1~3のアミノ酸配列、配列番号31、32にH鎖可変領域のアミノ酸配列、L鎖可変領域のアミノ酸配列、配列番号39、40にH鎖のアミノ酸配列、L鎖のアミノ酸配列を示す)として選抜した。 An antibody having an absorbance value of 0.15 or more for human Plexin A1 expressing Ba / F3 cells and an absorbance value for mouse Plexin A1 expressing Ba / F3 cells was selected and subjected to the in vitro biological activity evaluation assay described later. Specifically, the antibodies showing the absorbance values shown in “Table 1” are shown as anti-human mouse crossover Plexin A1 antibodies (hPANK # 016; amino acid sequences of H chain CDRs 1 to 3 in SEQ ID NOs: 1 to 3, SEQ ID NOs: 4 to 6) Amino acid sequences of L chain CDRs 1 to 3; amino acid sequences of H chain variable region, amino acid sequences of L chain variable region, SEQ ID NOs: 33 and 34: amino acid sequence of H chain, amino acid sequence of L chain HPANK # 135; amino acid sequences of H chain CDR1 to 3 in SEQ ID NO: 7-9, amino acid sequences of L chain CDR1 to 3 in SEQ ID NO: 10 to 12, amino acid sequences of H chain variable region in SEQ ID NO: 27; The amino acid sequence of the chain variable region, the amino acid sequence of the H chain in SEQ ID NOs: 35 and 36, and the amino acid sequence of the L chain are shown hPANK # 354; the amino acid sequences of the H chain CDRs 1-3 in SEQ ID NOs: 13 to 15; 18 amino acid sequences of L chain CDRs 1 to 3; SEQ ID NOs: 29 and 30 H chain possible Amino acid sequence of the L chain variable region, the amino acid sequence of the H chain in SEQ ID NOs: 37 and 38, and the amino acid sequence of the L chain, hPASK # 188; amino acids of H chain CDRs 1 to 3 in SEQ ID NOs: 19 to 21 Sequences, amino acid sequences of L chain CDRs 1 to 3 in SEQ ID NOS: 22 to 24, amino acid sequences of H chain variable region at SEQ ID NOs: 31 and 32, amino acid sequences of L chain variable region, amino acid sequence of H chain at SEQ ID NOs: 39, 40 , And the amino acid sequence of the L chain are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例3:xCELLigence systemを用いたマウス骨髄由来樹状細胞に対するマウスセマフォリン3A生物活性の評価系構築]
 マウスセマフォリン3Aタンパク質の作用を評価するために、xCELLigence systemを用いたアッセイを実施した。アッセイは、以下の方法により行なった。マウス骨髄由来樹状細胞は、M.B. Luntz et al. J Immunol Methods. 223(1):77-92(1999)及び、辻本広紀ら. 日本腹部救急医学会雑誌27(4):557-562(2007)に記載の方法に準じて調製した。
 xCELLigence system専用plateであるE-plate 96(ACEA社)にFBS含有RPMI培地を分注後、マウス骨髄由来樹状細胞をマウスGM-CSF及びFBS含有RPMI培地に懸濁し、plateのウェルに播種して37℃で一晩培養した。培養後マウスセマフォリン3AをFBS含有RPMI培地で適切な濃度に希釈して細胞培養液に添加し、xCELLigence system(ACEA社)で各ウェルのCell index値を測定した。マウスセマフォリン3A添加約1時間後のCell index値を図1に示した。マウスセマフォリン3Aによる濃度依存的なCell index値の低下がみられ、マウス骨髄由来樹状細胞に対するマウスセマフォリン3A生物活性を確認した。
[Example 3: Evaluation system construction of mouse semaphorin 3A biological activity on mouse bone marrow-derived dendritic cells using xCELLigence system]
In order to evaluate the action of mouse semaphorin 3A protein, an assay using the xCELLigence system was performed. The assay was performed by the following method. Mouse bone marrow-derived dendritic cells have been described in MB Luntz et al. J Immunol Methods. 223 (1): 77-92 (1999) and Kushimoto Hiroki et al. Journal of Japanese Society for Emergency Medicine 27 (4): 557-562 (2007) It prepared according to the method as described in 2.).
After dispensing RPMI medium containing FBS to E-plate 96 (ACEA), which is a plate exclusively for the xCELLigence system, mouse bone marrow-derived dendritic cells are suspended in RPMI medium containing mouse GM-CSF and FBS, and seeded in wells of the plate. Culture overnight at 37 ° C. After culture, mouse semaphorin 3A was diluted to an appropriate concentration with RPMI medium containing FBS and added to the cell culture solution, and the Cell index value of each well was measured with xCELLigence system (ACEA). The cell index value about one hour after addition of mouse semaphorin 3A is shown in FIG. There was a concentration-dependent decrease in Cell index value by mouse semaphorin 3A, confirming mouse semaphorin 3A biological activity against mouse bone marrow-derived dendritic cells.
[実施例4:xCELLigence systemを用いたヒト単球由来樹状細胞に対するヒトセマフォリン3A生物活性の評価系構築]
 ヒトセマフォリン3Aタンパク質の作用を評価するために、xCELLigence systemを用いたアッセイを実施した。アッセイは、以下の方法により行なった。ヒト単球由来樹状細胞は、以下の方法で調製した。ヒトヘパリン処理末梢血から末梢血単核球を分離採取し、Monocyte アイソレーションキットII, ヒト (ミルテニーバイオテク株式会社)を用いて単球画分のみを得た。得られた単球画分をヒトIL-4及びヒトGM-CSF(共にR&D systems社)を添加したFBS含有RPMI培地で培養した。
 xCELLigence system専用plateであるE-plate 96(ACEA社)にヒトGM-CSF含有AIM-V培地を分注した後、ヒト単球由来樹状細胞をヒトGM-CSF含有AIM-V培地に再懸濁してplateのウェルに播種し、37℃で一晩培養した。ヒトセマフォリン3AをAIM-V培地で適切な濃度に希釈して細胞培養液に添加し、xCELLigence system(ACEA社)で各ウェルのCell index値を測定した。ヒトセマフォリン3A添加約1時間後のCell index値を図2に示した。ヒトセマフォリン3Aによる濃度依存的なCell index値の低下がみられ、ヒト単球由来樹状細胞に対するヒトセマフォリン3A生物活性を確認した。
[Example 4: Evaluation system construction of human semaphorin 3A biological activity on human monocyte-derived dendritic cells using xCELLigence system]
In order to evaluate the action of human semaphorin 3A protein, an assay using the xCELLigence system was performed. The assay was performed by the following method. Human monocyte-derived dendritic cells were prepared by the following method. Peripheral blood mononuclear cells were isolated and collected from human heparinized peripheral blood, and only monocyte fraction was obtained using Monocyte Isolation Kit II, human (Mirteni Biotech Co., Ltd.). The monocyte fraction obtained was cultured in RPMI medium containing FBS supplemented with human IL-4 and human GM-CSF (both from R & D systems).
After dispensing AIM-V medium containing human GM-CSF into E-plate 96 (ACEA), which is a plate exclusively for the xCELLigence system, human monocyte-derived dendritic cells are resuspended in AIM-V medium containing human GM-CSF. The suspension was seeded in a well of a plate and cultured overnight at 37 ° C. Human semaphorin 3A was diluted with AIM-V medium to an appropriate concentration and added to the cell culture solution, and Cell index value of each well was measured with xCELLigence system (ACEA). The cell index value about one hour after the addition of human semaphorin 3A is shown in FIG. There was a concentration-dependent decrease in Cell index value due to human semaphorin 3A, confirming the human semaphorin 3A biological activity against human monocyte-derived dendritic cells.
[実施例5:抗ヒトマウス交叉PlexinA1抗体のアンタゴニスト活性の評価]
 実施例4に記載のxCELLigence systemによるヒトセマフォリン3A活性測定系を用いて実施例2で作製した抗ヒトマウス交叉PlexinA1抗体の生物活性を評価した。ヒト単球由来樹状細胞を、xCELLigence system専用plateであるE-plate 96(ACEA社)に播種し、37℃で一晩培養した。抗ヒトマウス交叉PlexinA1抗体及びコントロールとして抗Keyhole limpet hemocyanin (KLH)抗体をAIM-V培地で適切な濃度に希釈し、ウェルに添加した。その後、AIM-V培地で適切な濃度に希釈したヒトセマフォリン3Aを各ウェルに添加し、各ウェルのCell index値を測定した。抗KLH抗体添加ウェルの内、ヒトセマフォリン3Aを添加したウェルのCell index値を0%、セマフォリン3A非添加ウェルのCell index 値を100%として、各抗PlexinA1抗体及びセマフォリン3A添加ウェルの値(%)をアンタゴニスト活性(Percent inhibition (%))として算出した。結果を図3に示した。取得した抗ヒトマウス交叉PlexinA1抗体は、ヒトセマフォリン3AによるCell indexの低下を阻害し、ヒトセマフォリン3Aに対するアンタゴニスト活性があることが確認された。
Example 5 Evaluation of Antagonist Activity of Anti-Human Mouse Cross Plexin A1 Antibody
The biological activity of the anti-human mouse crossover Plexin A1 antibody prepared in Example 2 was evaluated using the human semaphorin 3A activity measurement system by the xCELLigence system described in Example 4. Human monocyte-derived dendritic cells were seeded on E-plate 96 (ACEA), a plate exclusively for xCELLigence system, and cultured overnight at 37 ° C. Anti-human mouse crossover Plexin A1 antibody and anti-Keyhole limpet hemocyanin (KLH) antibody as a control were diluted to appropriate concentrations in AIM-V medium and added to the wells. Thereafter, human semaphorin 3A diluted to an appropriate concentration with AIM-V medium was added to each well, and the cell index value of each well was measured. Of the wells with anti-KLH antibody added, the cell index value of the well added with human semaphorin 3A is 0%, and the cell index value of the non-semaphorin 3A added well is 100%, and each anti-Plexin A1 antibody and semaphorin 3A added well The value (%) was calculated as antagonist activity (Percent inhibition (%)). The results are shown in FIG. The obtained anti-human mouse cross Plexin A1 antibody inhibited the reduction of Cell index by human semaphorin 3A, and it was confirmed that there is an antagonist activity to human semaphorin 3A.
[実施例6:抗ヒトマウス交叉PlexinA1抗体のアンタゴニスト活性の評価]
 実施例3に記載のxCELLigence systemによるマウスセマフォリン3A活性測定系を用いて実施例2で作製した抗ヒトマウス交叉PlexinA1抗体hPASK#188(H鎖定常領域はマウスIgG2a改変体(mIgG2a silent)(配列番号:56)、L鎖定常領域はマウスIgκ (mk1)(配列番号:57)をそれぞれ使用した)のアンタゴニスト活性を評価した。マウス骨髄由来樹状細胞をマウスGM-CSF及びFBS含有RPMI培地に懸濁し、xCELLigence system専用plateであるE-plate 96(ACEA社)に播種して37℃で一晩培養した。抗ヒトマウス交叉PlexinA1抗体をFBS含有RPMI培地で適切な濃度に希釈し、ウェルに添加した。その後、FBS含有RPMI培地で適切な濃度に希釈したマウスセマフォリン3Aを各ウェルに添加し、各ウェルのCell index値を測定した。抗体非添加のウェルの内、マウスセマフォリン3Aを添加したウェルのCell index値を0%、非添加ウェルのCell index 値を100%として、抗ヒトマウス交叉PlexinA1抗体及びマウスセマフォリン3A添加ウェルの値(%)をアンタゴニスト活性(Percent inhibition (%))として算出した。結果を図4に示した。取得した抗ヒトマウス交叉PlexinA1抗体は、マウスセマフォリン3AによるCell indexの低下を阻害し、マウスセマフォリン3Aに対するアンタゴニスト活性があることが確認された。
[Example 6: Evaluation of Antagonist Activity of Anti-Human Mouse Cross Plexin A1 Antibody]
Anti-human mouse crossover PlexinA1 antibody hPASK # 188 (H chain constant region is mouse IgG2a variant (mIgG2a silent) (SEQ ID NO: 2) prepared in Example 2 using the mouse Semaphorin 3A activity measurement system according to the xCELLigence system described in Example 3. : 56), L chain constant region evaluated the antagonist activity of mouse IgIg (mk1) (SEQ ID NO: 57). Mouse bone marrow-derived dendritic cells were suspended in RPMI medium containing mouse GM-CSF and FBS, seeded on E-plate 96 (ACEA), which is a plate exclusively for xCELLigence system, and cultured overnight at 37 ° C. Anti-human mouse cross Plexin A1 antibody was diluted to the appropriate concentration in RPMI medium containing FBS and added to the wells. Thereafter, mouse semaphorin 3A diluted to an appropriate concentration with FBS-containing RPMI medium was added to each well, and the cell index value of each well was measured. Of the wells without antibody added, the cell index value of wells added with mouse Semaphorin 3A is 0%, and the Cell index value of non-added wells is 100%, the value of anti-human mouse crossed Plexin A1 antibody and mouse Semaphorin 3A added wells (%) Was calculated as antagonist activity (Percent inhibition (%)). The results are shown in FIG. The obtained anti-human mouse crossover Plexin A1 antibody inhibited the decrease of Cell index by mouse semaphorin 3A, and it was confirmed that there is an antagonist activity to mouse semaphorin 3A.
[実施例7:抗PlexinA1抗体のALSモデルマウスにおける薬効評価]
 抗PlexinA1抗体hPASK#188の疾患進行に及ぼす影響をG93A変異SOD1トランスジェニックマウス(Gurney 1994, Science 264:1772-1775で確立され、Benatar 2007, Neurobiol Dis.26(1):1-13で総説に記載されている)を用いて評価した。家族性ALSにおいて認められた93番目のグリシンがアラニンに変異したヒトSOD1遺伝子を過剰発現するトランスジェニックマウスは、進行性の筋力低下と筋萎縮を呈するため、ALSのモデルとして研究に利用されている。Jackson Laboratoriesから購入したヒトSOD1 G93A突然変異体を過剰発現するトランスジェニックマウス(B6SJL-TgN(SOD1-G93A)1Gurd/J、以降mSOD1マウスと記載する)を大阪大学の実験動物飼養保管施設で繁殖させコロニーを維持した。mSOD1マウスは野生型マウス(C57BL/6)と少なくとも10世代以上バッククロスを行った雌マウスを使用した。トランスジェニックマウスの遺伝子型はポリメラーゼ連鎖反応を用いて決定した。具体的には、プライマーとしてヒトSOD1遺伝子の第4エキソン由来の配列であるex4Pla 5'-CATCAGCCCTAATCCATCTGA-3'(配列番号:58) およびex4P2a 5'-TGGATCTTAGAATTCGCGAC-3' (配列番号:59)を用い94℃で30秒、60℃で30秒、72℃で1分の反応条件で35サイクルのポリメラーゼ連鎖反応を行い確認した。
[Example 7: Efficacy evaluation of anti-Plexin A1 antibody in ALS model mouse]
G93A mutant SOD1 transgenic mice (Gurney 1994, Science 264: 1772-1775 established the effects of the anti-Plexin A1 antibody hPASK # 188 on disease progression and reviewed in Benatar 2007, Neurobiol Dis. 26 (1): 1-13 It evaluated using (it is described). Transgenic mice overexpressing the human SOD1 gene, in which glycine at the 93rd position has been mutated to alanine, found in familial ALS, exhibit progressive muscle weakness and muscle atrophy, and are used in research as a model for ALS . Transgenic mice (B6SJL-TgN (SOD1-G93A) 1 Gurd / J, hereinafter referred to as mSOD1 mice) overexpressing human SOD1 G93A mutant purchased from Jackson Laboratories were bred in an experimental animal storage facility at Osaka University. The colonies were maintained. As mSOD1 mice, female mice that had been backcrossed for at least 10 generations with wild-type mice (C57BL / 6) were used. The genotype of the transgenic mice was determined using polymerase chain reaction. Specifically, ex4Pla 5'-CATCAGCCCTAATCCATCTGA-3 '(SEQ ID NO: 58) and ex4P2a 5'-TGGACTCTTAGAATTCGCGAC-3' (SEQ ID NO: 59) which are sequences derived from the fourth exon of human SOD1 gene as primers 35 cycles of polymerase chain reaction were confirmed by reaction conditions of 94 ° C. for 30 seconds, 60 ° C. for 30 seconds, and 72 ° C. for 1 minute.
 マウスを毎日観察し、1週間に一度、ロータロッドテストでマウスが落下するまでの時間を測定した。ロータロッドテストは、マウスを回転するロータの上に乗せ、ロータ上に留まれず落下するまでの時間を測定する試験であり、ロータ上に留まれる時間が筋力を反映する。ALSモデルマウスに抗PlexinA1アンタゴニスト抗体hPASK#188(H鎖定常領域はマウスIgG2a改変体(mIgG2a silent)(配列番号:56)、L鎖定常領域はマウスIgκ(mk1)(配列番号:57)をそれぞれ使用した)およびコントロール抗体(抗KLH抗体)(H鎖可変領域は配列番号:60に記載のアミノ酸配列、L鎖可変領域は配列番号:61に記載のアミノ酸配列、H鎖定常領域はマウスIgG1改変体(mIgG1 silent)(配列番号:62)、L鎖定常領域はマウスIgκ(mk1)(配列番号:57)をそれぞれ使用した)をマウス一匹あたり40mg/kgで第5週齢より週に1回の割合で腹腔内投与した。図5にALSモデルマウスに抗PlexinA1アンタゴニスト抗体hPASK#188およびコントロール抗体を投与した時のマウスの生存期間(hPASK#188投与群11匹、抗KLH抗体投与群6匹)、ロータロッドテスト(hPASK#188投与群8匹、抗KLH抗体投与群6匹)でマウスが落下するまでの時間を示した。この結果は、抗PlexinA1アンタゴニスト抗体hPASK#188がコントロール抗体と比較して有意に生存期間の延長を示し、さらに、ロータロッドテストでマウスが落下するまでの時間を延長したことを示している。一方、野生型マウスにおける抗PlexinA1アンタゴニスト抗体hPASK#188投与によるマウスの生存期間、ロータロッドテストでマウスが落下するまでの時間についても同様の検証を行った。野生型マウスでは、抗PlexinA1アンタゴニスト抗体hPASK#188の投与はコントロール抗体の投与と比較して有意な生存期間、ロータロッドテストでマウスが落下するまでの時間への影響を示さなかった(データは示さない)。 The mice were observed daily, and once a week, the time to drop of the mice was measured by the rotarod test. The rotarod test is a test in which a mouse is placed on a rotating rotor and the time until it does not stay on the rotor and falls is reflected, and the time spent on the rotor reflects the muscle strength. Anti-Plexin A1 antagonist antibody hPASK # 188 (H chain constant region is mouse IgG2a variant (mIgG2a silent) (SEQ ID NO: 56), L chain constant region is mouse Igκ (mk1) (SEQ ID NO: 57) in ALS model mice The amino acid sequence described in SEQ ID NO: 60, the L chain variable domain is the amino acid sequence described in SEQ ID NO: 61, and the H chain constant region is a mouse IgG1 modified The body (mIgG1 silent) (SEQ ID NO: 62), L chain constant region used mouse Ig ((mk1) (SEQ ID NO: 57) respectively at 40 mg / kg / mouse and 1 week from the 5th week Intraperitoneal injection was given at a rate of 1 time. Fig. 5 Survival time of mice treated with anti-PlexinA1 antagonist antibody hPASK # 188 and control antibody in ALS model mice (11 mice in hPASK # 188 administration group, 6 mice in anti-KLH antibody administration group), rotarod test (hPASK # The time to drop of the mice was shown in 8 groups administered in 188 and 6 in group administered with anti-KLH antibody. This result indicates that the anti-Plexin A1 antagonist antibody hPASK # 188 showed a significant prolongation of the survival time as compared to the control antibody, and further that the rotarod test extended the time until the mouse fell. On the other hand, the same verification was carried out also on the survival time of the mice by administration of the anti-PlexinA1 antagonist antibody hPASK # 188 in wild type mice and the time until the mice fall in the Rotarod test. In wild-type mice, administration of the anti-PlexinA1 antagonist antibody hPASK # 188 showed no significant survival time compared to administration of control antibodies, or the Rotarod test had any effect on the time to fall of the mice (data shown) Absent).
配列番号1: hPANK#016 H鎖CDR1
配列番号2: hPANK#016 H鎖CDR2
配列番号3: hPANK#016 H鎖CDR3
配列番号4: hPANK#016 L鎖CDR1
配列番号5: hPANK#016 L鎖CDR2
配列番号6: hPANK#016 L鎖CDR3
配列番号7: hPANK#135 H鎖CDR1
配列番号8: hPANK#135 H鎖CDR2
配列番号9: hPANK#135 H鎖CDR3
配列番号10: hPANK#135 L鎖CDR1
配列番号11: hPANK#135 L鎖CDR2
配列番号12: hPANK#135 L鎖CDR3
配列番号13: hPANK#354 H鎖CDR1
配列番号14: hPANK#354 H鎖CDR2
配列番号15: hPANK#354 H鎖CDR3
配列番号16: hPANK#354 L鎖CDR1
配列番号17: hPANK#354 L鎖CDR2
配列番号18: hPANK#354 L鎖CDR3 
配列番号19: hPASK#188 H鎖CDR1
配列番号20: hPASK#188 H鎖CDR2
配列番号21: hPASK#188 H鎖CDR3
配列番号22: hPASK#188 L鎖CDR1
配列番号23: hPASK#188 L鎖CDR2
配列番号24: hPASK#188 L鎖CDR3
配列番号25: hPANK#016 H鎖可変領域
配列番号26: hPANK#016 L鎖可変領域
配列番号27: hPANK#135 H鎖可変領域
配列番号28: hPANK#135 L鎖可変領域
配列番号29: hPANK#354 H鎖可変領域
配列番号30: hPANK#354 L鎖可変領域
配列番号31: hPASK#188 H鎖可変領域
配列番号32: hPASK#188 L鎖可変領域
配列番号33: hPANK#016 H鎖
配列番号34: hPANK#016 L鎖
配列番号35: hPANK#135 H鎖
配列番号36: hPANK#135 L鎖
配列番号37: hPANK#354 H鎖
配列番号38: hPANK#354 L鎖
配列番号39: hPASK#188 H鎖
配列番号40: hPASK#188 L鎖
配列番号41: ヒトセマフォリン3A
配列番号42: 人工シグナルペプチドHMM+38
配列番号43: FLAGタグ配列
配列番号44: 改変ヒトセマフォリン3A
配列番号45: マウスセマフォリン3A
配列番号46: 改変マウスセマフォリン3A
配列番号47: ヒトプレキシンA1
配列番号48: ヒトプレキシンA1シグナルペプチド
配列番号49: 改変ヒトプレキシンA1
配列番号50: EBNA1
配列番号51: ヒトIgG1( hG1d)のH鎖定常領域
配列番号52:ヒトIgκ(k0)のL鎖定常領域
配列番号53:ヒトPlexinA1細胞外ドメイン
配列番号54: マウスPlexinA1細胞外ドメイン
配列番号55: Mycタグ配列
配列番号56:マウスIgG2a改変体(mIgG2a silent)のH鎖定常領域
配列番号57:マウスIgκ (mk1)のL鎖定常領域
配列番号58: プライマーex4Pla
配列番号59: プライマーex4P2a
配列番号60:抗KLH抗体 H鎖可変領域
配列番号61:抗KLH抗体 L鎖可変領域
配列番号62:マウスIgG1改変体(mIgG1 silent)のH鎖定常領域
Sequence number 1: hPANK # 016 H chain CDR1
Sequence number 2: hPANK # 016 H chain CDR2
Sequence number 3: hPANK # 016 H chain CDR3
Sequence number 4: hPANK # 016 L chain CDR1
SEQ ID NO: 5: hPANK # 016 L chain CDR2
Sequence number 6: hPANK # 016 L chain CDR3
Sequence number 7: hPANK # 135 heavy chain CDR1
SEQ ID NO: 8: hPANK # 135 H chain CDR2
Sequence number 9: hPANK # 135 heavy chain CDR3
SEQ ID NO: 10: hPANK # 135 L chain CDR1
SEQ ID NO: 11: hPANK # 135 L chain CDR2
SEQ ID NO: 12: hPANK # 135 L chain CDR3
Sequence number 13: hPANK # 354 heavy chain CDR1
Sequence number 14: hPANK # 354 heavy chain CDR2
SEQ ID NO: 15: hPANK # 354 heavy chain CDR3
SEQ ID NO: 16: hPANK # 354 L chain CDR1
SEQ ID NO: 17: hPANK # 354 L chain CDR2
SEQ ID NO: 18: hPANK # 354 L chain CDR3
SEQ ID NO: 19: hPASK # 188 heavy chain CDR1
SEQ ID NO: 20: hPASK # 188 heavy chain CDR2
SEQ ID NO: 21: hPASK # 188 heavy chain CDR3
SEQ ID NO: 22: hPASK # 188 L chain CDR1
SEQ ID NO: 23: hPASK # 188 L chain CDR2
SEQ ID NO: 24: hPASK # 188 light chain CDR3
SEQ ID NO: 25: hPANK # 016 H chain variable region SEQ ID NO: 26: hPANK # 016 L chain variable region SEQ ID NO: 27: hPANK # 135 H chain variable region SEQ ID NO: 28: hPANK # 135 L chain variable region SEQ ID NO: 29: hPANK # 354 H chain variable region SEQ ID NO: 30: hPANK # 354 L chain variable region SEQ ID NO: 31: hPASK # 188 H chain variable region SEQ ID NO: 32: hPASK # 188 L chain variable region SEQ ID NO: 33: hPANK # 016 H chain SEQ ID NO: 34 : HPANK # 016 L chain SEQ ID NO: 35: hPANK # 135 H chain SEQ ID NO: 36: hPANK # 135 L chain SEQ ID NO: 37: hPANK # 354 H chain SEQ ID NO: 38: hPANK # 354 L chain SEQ ID NO: 39: hPASK # 188 H Chain SEQ ID NO: 40: hPASK # 188 L chain SEQ ID NO: 41: human semaphorin 3A
SEQ ID NO: 42: artificial signal peptide HMM + 38
SEQ ID NO: 43: FLAG tag sequence SEQ ID NO: 44: modified human semaphorin 3A
SEQ ID NO: 45: Mouse Semaphorin 3A
SEQ ID NO: 46: Modified Mouse Semaphorin 3A
SEQ ID NO: 47: human plexin A1
SEQ ID NO: 48: Human plexin A1 signal peptide SEQ ID NO: 49: Modified human plexin A1
SEQ ID NO: 50: EBNA1
SEQ ID NO: 51: heavy chain constant region of human IgG1 (hG1d) SEQ ID NO: 52: light chain constant region of human Igκ (k0) SEQ ID NO: 53: human PlexinA1 extracellular domain SEQ ID NO: 54: mouse PlexinA1 extracellular domain SEQ ID NO: 55 Myc tag sequence SEQ ID NO: 56: heavy chain constant region of mouse IgG2a variant (mIgG2a silent) SEQ ID NO: 57: light chain constant region of mouse Igκ (mk1) SEQ ID NO: 58: primer ex4Pla
SEQ ID NO: 59: Primer ex4P2a
SEQ ID NO: 60: anti-KLH antibody heavy chain variable region SEQ ID NO: 61: anti-KLH antibody light chain variable region SEQ ID NO: 62: heavy chain constant region of mouse IgG1 variant (mIgG1 silent)

Claims (11)

  1. プレキシンA1アンタゴニストを含有する筋委縮性側索硬化症(ALS)の予防および/または治療用医薬組成物。 A pharmaceutical composition for the prevention and / or treatment of myotonic lateral sclerosis (ALS) comprising a plexin A1 antagonist.
  2. 前記アンタゴニストは、セマフォリン3Aの生物活性を阻害する、請求項1に記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the antagonist inhibits the biological activity of semaphorin 3A.
  3. セマフォリン3Aの生物活性が細胞形態の退縮である、請求項2に記載の医薬組成物。 The pharmaceutical composition according to claim 2, wherein the biological activity of semaphorin 3A is regression of cellular form.
  4. 前記アンタゴニストが、抗プレキシンA1抗体またはその抗体断片、プレキシンA1に対するアンチセンス、二本鎖RNA(dsRNA)、siRNA、miRNA、低分子ヘアピン型RNA 、RNAアプタマーおよびリボザイムからなる群より選択される、請求項1~3のいずれか一項に記載の医薬組成物。 The antagonist is selected from the group consisting of anti-plexin A1 antibody or antibody fragment thereof, antisense to plexin A1, double stranded RNA (dsRNA), siRNA, miRNA, short hairpin RNA, RNA aptamer and ribozyme The pharmaceutical composition according to any one of Items 1 to 3.
  5. 前記アンタゴニストが抗プレキシンA1抗体またはその抗体断片である、請求項1~4のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 4, wherein the antagonist is an anti-plexin A1 antibody or an antibody fragment thereof.
  6. 前記抗体またはその抗体断片は抗ヒトマウス交叉プレキシンA1抗体である、請求項4または5に記載の医薬組成物。 The pharmaceutical composition according to claim 4 or 5, wherein the antibody or antibody fragment thereof is an anti-human mouse crossover plexin A1 antibody.
  7. 前記抗体またはその抗体断片が以下の(1)~(4)のいずれかに記載の抗体またはその抗体断片である、請求項4~6のいずれか一項に記載の医薬組成物
    (1)配列番号:1に記載のCDR1、配列番号:2に記載のCDR2、および配列番号:3に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:4に記載のCDR1、配列番号:5に記載のCDR2、および配列番号:6に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
    (2)配列番号:7に記載のCDR1、配列番号:8に記載のCDR2、および配列番号:9に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:10に記載のCDR1、配列番号:11に記載のCDR2、および配列番号:12に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
    (3)配列番号:13に記載のCDR1、配列番号:14に記載のCDR2、および配列番号:15に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:16に記載のCDR1、配列番号:17に記載のCDR2、および配列番号:18に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片;
    (4)配列番号:19に記載のCDR1、配列番号:20に記載のCDR2、および配列番号:21に記載のCDR3を含むH鎖可変領域、ならびに、配列番号:22に記載のCDR1、配列番号:23に記載のCDR2、および配列番号:24に記載のCDR3を含むL鎖可変領域を含む抗体またはその抗体断片。
    The pharmaceutical composition (1) according to any one of claims 4 to 6, wherein the antibody or the antibody fragment thereof is an antibody or an antibody fragment thereof according to any one of the following (1) to (4): A heavy chain variable region comprising CDR1 of SEQ ID NO: 1, CDR2 of SEQ ID NO: 2, and CDR3 of SEQ ID NO: 3, and CDR1 of SEQ ID NO: 4, of SEQ ID NO: 5 An antibody or antibody fragment thereof comprising a light chain variable region comprising CDR2 of SEQ ID NO: 2 and CDR3 as set forth in SEQ ID NO: 6;
    (2) H chain variable region comprising CDR1 of SEQ ID NO: 7, CDR2 of SEQ ID NO: 8, and CDR3 of SEQ ID NO: 9, and CDR1 of SEQ ID NO: 10, SEQ ID NO: An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 of SEQ ID NO: 11 and CDR3 of SEQ ID NO: 12;
    (3) H chain variable region comprising CDR1 of SEQ ID NO: 13, CDR2 of SEQ ID NO: 14, and CDR3 of SEQ ID NO: 15, and CDR1 of SEQ ID NO: 16, SEQ ID NO: An antibody or antibody fragment thereof comprising a light chain variable region comprising CDR2 described in: 17 and CDR3 described in SEQ ID NO: 18;
    (4) H chain variable region comprising CDR1 of SEQ ID NO: 19, CDR2 of SEQ ID NO: 20, and CDR3 of SEQ ID NO: 21, and CDR1 of SEQ ID NO: 22, SEQ ID NO: An antibody or an antibody fragment thereof comprising a light chain variable region comprising CDR2 described in: 23 and CDR3 described in SEQ ID NO: 24.
  8. 請求項1~7のいずれか一項に記載の医薬組成物を含むキット。 A kit comprising the pharmaceutical composition according to any one of the preceding claims.
  9. プレキシンA1アンタゴニストを含有する筋力低下または筋委縮を抑制するための医薬組成物。 Pharmaceutical composition for suppressing muscle weakness or muscle atrophy comprising plexin A1 antagonist.
  10. 前記筋力低下または筋委縮は四肢、呼吸、発語あるいは嚥下に関する筋力低下または筋萎縮である、請求項9に記載の医薬組成物。 The pharmaceutical composition according to claim 9, wherein the muscle weakness or muscle atrophy is extremity, respiration, muscle weakness or muscle atrophy associated with speech or swallowing.
  11. プレキシンA1アンタゴニストを含有する運動神経の変性あるいは消失を抑制するための医薬組成物。
     
    A pharmaceutical composition for suppressing degeneration or loss of motor nerves comprising a plexin A1 antagonist.
PCT/JP2017/036585 2017-10-10 2017-10-10 Plexin a1 antagonist-containing medicinal composition for preventing and/or treating amyotrophic lateral sclerosis WO2019073507A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036585 WO2019073507A1 (en) 2017-10-10 2017-10-10 Plexin a1 antagonist-containing medicinal composition for preventing and/or treating amyotrophic lateral sclerosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036585 WO2019073507A1 (en) 2017-10-10 2017-10-10 Plexin a1 antagonist-containing medicinal composition for preventing and/or treating amyotrophic lateral sclerosis

Publications (1)

Publication Number Publication Date
WO2019073507A1 true WO2019073507A1 (en) 2019-04-18

Family

ID=66100450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036585 WO2019073507A1 (en) 2017-10-10 2017-10-10 Plexin a1 antagonist-containing medicinal composition for preventing and/or treating amyotrophic lateral sclerosis

Country Status (1)

Country Link
WO (1) WO2019073507A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308465A (en) * 2006-05-15 2007-11-29 Boehringer Ingelheim Internatl Gmbh Method for treatment of inflammatory disease, autoimmune disease or bone resorption abnormality
WO2017002919A1 (en) * 2015-06-30 2017-01-05 国立大学法人大阪大学 Antiplexin a1 agonist antibody

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308465A (en) * 2006-05-15 2007-11-29 Boehringer Ingelheim Internatl Gmbh Method for treatment of inflammatory disease, autoimmune disease or bone resorption abnormality
WO2017002919A1 (en) * 2015-06-30 2017-01-05 国立大学法人大阪大学 Antiplexin a1 agonist antibody

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANTIPENKO A. ET AL.: "Structure of the Semaphorin- 3A Receptor Binding Module", NEURON, vol. 39, no. 4, 2003, pages 589 - 598, XP055302516 *
KORNER S. ET AL.: "The Axon Guidance Protein Semaphorin 3A is Increased in the Motor Cortex of Patients With Amyotrophic Lateral Sclerosis", J NEUROPATHOL EXP NEUROL., vol. 75, no. 4, 2016, pages 326 - 333, XP055593487, ISSN: 0022-3069, DOI: 10.1093/jnen/nlw003 *
PASTERKAMP R. J. ET AL.: "Emerging roles for semaphorins in neural regeneration", BRAIN RES BRAIN RES REV., vol. 35, no. 1, 2001, pages 36 - 54, XP055593489, ISSN: 0165-0173, DOI: 10.1016/S0165-0173(00)00050-3 *

Similar Documents

Publication Publication Date Title
US20220340646A1 (en) Therapeutic agent or prophylactic agent for dementia
EP3901175A1 (en) Anti-cd73 monoclonal antibody and application thereof
KR101317264B1 (en) Toll like receptor 3 antagonists, methods and uses
JP7334912B2 (en) Anti-Plexin A1 agonist antibody
CN105884895B (en) Anti-human CCR7 antibody, hybridoma, nucleic acid, vector, cell, pharmaceutical composition, and antibody-immobilized carrier
CN107922499B (en) anti-EphA 4 antibodies
JP2019500855A (en) Humanized anti-BAG3 antibody
JP6872756B2 (en) Anti-Myl9 antibody
WO2019073507A1 (en) Plexin a1 antagonist-containing medicinal composition for preventing and/or treating amyotrophic lateral sclerosis
JP6248037B2 (en) Monoclonal antibody against human midkine
CN116528899A (en) anti-EphA 4 antibodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP