WO2019072420A1 - Sensor for detecting presence of water - Google Patents

Sensor for detecting presence of water Download PDF

Info

Publication number
WO2019072420A1
WO2019072420A1 PCT/EP2018/053802 EP2018053802W WO2019072420A1 WO 2019072420 A1 WO2019072420 A1 WO 2019072420A1 EP 2018053802 W EP2018053802 W EP 2018053802W WO 2019072420 A1 WO2019072420 A1 WO 2019072420A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sleeve
sensor head
head
contact element
Prior art date
Application number
PCT/EP2018/053802
Other languages
French (fr)
Inventor
Michaela Lorenz
Original Assignee
Husqvarna Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Husqvarna Ab filed Critical Husqvarna Ab
Publication of WO2019072420A1 publication Critical patent/WO2019072420A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0209Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid
    • F04D15/0218Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid the condition being a liquid level or a lack of liquid supply
    • F04D15/0227Lack of liquid level being detected using a flow transducer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A sensor (100) for detecting presence of water, for example within a submersible pump, includes a sleeve (102) that houses a contact element (204). A sensor (100) head is partially housed inside the sleeve (102), and encloses the contact element (204). The sensor head (104) includes a sensor contact (300) and a sensor head body (302) such that the sensor contact (300) and the sensor head body (302) are integral components of the sensor head (104). The sensor (100) includes a cable (202) coupled to the contact element (204). The sensor (100) is characterized in that the sensor head (104) is made of a conductive silicone material.

Description

SENSOR FOR DETECTING PRESENCE OF WATER
TECHNICAL FIELD
The present disclosure relates to water detection for submersible pumps. More specifically, the present disclosure relates to a sensor means for detecting presence of water in the submersible pumps.
BACKGROUND
Water presence sensors are used in a variety of applications and environments. One example of such an application area may be a submersible pump. The water presence sensors may be used to detect presence of water at specific locations of interest with respect to the submersible pump body. Typically, such a sensor arrangement uses a pair of electrodes, and an associated control system which detects electrical conductivity between the pair of electrodes. Presence of water is detected based on the electrical conductivity values, and the submersible pump may be activated/de-activated based on this information.
The sensor may include a sensor head, also called as a carrier element. Typically, the sensor head is made of a metal material. With continued usage over time, the sensor head may corrode, or develop any other such defects as the sensor head stays in contact with water. Thus, an improved sensor arrangement is required.
SUMMARY
In view of the above, it is an objective of the present invention to solve or at least reduce the drawbacks discussed above. The objective is at least partially achieved by a sensor for detecting presence of water. The sensor includes a sleeve that houses a contact element. The sensor includes a sensor head partially housed inside the sleeve, and enclosing the contact element. The sensor head includes a sensor contact and a sensor head body such that the sensor contact and the sensor head body are integral components of the sensor head. The sensor includes a cable coupled to the contact element. The sensor is characterized in that the sensor head is made of silicone material. The silicone material is electrically conducting due to benefits that would become apparent hereinafter. The sensor is configured to detect presence of water in a submersible pump.
According to an embodiment of the present invention, the cable is configured to carry data indicative of electrical conductivity between the contact element and the sensor head element. Presence of the sleeve prevents interference of the data indicative of the electrical conductivity with outside environment including a user. Also, cleanability and life of the sensor head is enhanced as compared to the metal material used in the prior art.
According to an embodiment of the present invention, the sleeve includes a first portion and a second portion that house the cable and the sensor head respectively. Notably, the sleeve is made of PVC from aesthetical and technical considerations.
According to an embodiment of the present invention, the cable is made of a conducting material. Any conducting material may be selected in accordance with considerations such as electrical conductivity, service life etc.
According to an embodiment of the present invention, the contact element is made of a metal material. Herein, the metal may be selected taking into account sensitivity requirements to detect presence of water and like liquids.
According to an embodiment of the present invention, the sensor further includes a control unit configured with the sensor to evaluate a sensor output from the sensor for activation or deactivation of the submersible pump. The control unit allows the user to manually select any one or a combination of features thereof.
According to an embodiment of the present invention, the sensor further includes an electrode arrangement that includes a first electrode and a second electrode. The second electrode is height adjustable in relation to the first electrode. This allows catering to conditions with different heights while detecting water by the sensor.
According to an embodiment of the present invention, the activation of the pump is based on the sensor output being greater than a threshold value of water present and/or a combination of preferences by a user. Further, the activation may be manually disabled, if required, by the user. According to an embodiment of the present invention, the deactivation of the pump is based on the sensor output being less than a threshold value of water present and/or a combination of preferences by a user. Thus, this allows saving of vital resources in case of desired status (i.e. absence) of water.
Other features and aspects of this invention will be apparent from the following description and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be described in more detail with reference to the enclosed drawings, wherein:
FIG. 1 shows a perspective view of a sensor, in accordance with an embodiment of the present invention;
FIG. 2 shows a side cross-sectional view of a sensor used in prior art;
FIG. 3 shows a side cross-sectional view of the sensor, in accordance with an embodiment of the present invention; and
FIG. 4 shows a side view of the sensor, in accordance with an embodiment of the present invention.
DESCRIPTION OF EMBODIMENTS
The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which example embodiments of the invention incorporating one or more aspects of the present invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. For example, one or more aspects of the present invention can be utilized in other embodiments and even other types of structures and/or methods. In the drawings, like numbers refer to like elements.
Certain terminology is used herein for convenience only and is not to be taken as a limitation on the invention. For example, "upper", "lower", "front", "rear", "side", "longitudinal", "lateral", "transverse", "upwards", "downwards", "forward", "backward", "sideward", "left," "right," "horizontal," "vertical," "upward", "inner", "outer", "inward", "outward", "top", "bottom", "higher", "above", "below", "central", "middle", "intermediate", "between", "end", "adjacent", "proximate", "near", "distal", "remote", "radial", "circumferential", or the like, merely describe the configuration shown in the Figures. Indeed, the components may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise.
In the drawings and specification, there have been disclosed preferred embodiments and examples of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation of the scope of the invention being set forth in the following claims.
FIG. 1 illustrates a sensor 100 for application with pumps such as submersible pumps. The sensor 100 includes a sleeve 102 and a sensor head 104. Further, the sleeve 102 has a first portion 106 and a second portion 108. The sleeve 102 houses a contact element 204 (illustrated in FIGS. 2 & 3). The sensor head 104 is partially housed inside the sleeve 102, and encloses the contact element 204. The sleeve 102 of the sensor 100 has a cable 202 (shown in FIGS. 2 & 3) coupled to the contact element 204.
The sleeve 102, as illustrated herein, includes the first portion 106 and the second portion 108 which house the cable 202 and the sensor head 104 respectively. Moreover, the first portion 106 and the second portion 108 may be detachably secured to each other so as to have access, if desired to the cable 202 and/or the sensor head 104 among other components housed therein. Preferably, the sleeve 102 is made of for example, but not by a way of limitation, of PVC.
The first portion 106 and the second portion 108, although elaborated as detachably secured, can readily be replaced by a single unit taking into account user preferences among other factors such as health/sensitivity of sensor head 104 and/or contact element 204.
The sensor head 104 is housed partially inside the sleeve 102 (i.e. the first potion 106 of the sleeve 102). This may prove beneficial in accordance with implementation of the present disclosure, for water detection by the sensor head 104. Moreover, part of the sensor head 104 outside of the sleeve 102 may be controlled by varying configurations of any or a combination of the cable 202, the sleeve 102, or the contact element 204.
FIG. 2 illustrates a prior art sensor 100 with similar arrangements for the cable 202, the sleeve 102 and the sensor head 104. But, the sensor 100 has a provision of a contact 206 that remains housed inside the sensor head 104 with at least a part remaining outside. This leads to wastage of space and resource among other shortcomings.
The contact 206, as illustrated, is configured with the contact element 204 while being housed inside the sensor head 104. The sensor head 104 is housed inside the first portion 106 of the sleeve 102. However, length of the contact 206 outside of the sensor head 104 creates implementation and safety challenges. In an embodiment, the contact element 204 may be made of a metal material.
The cable 202 is configured to carry data indicative of electrical conductivity between the contact element 204 and the sensor head 104. From similar considerations, the cable 202 is made of a conductive material. The cable 202 serves as the link between the first portion 106 and the second portion 108 of the sleeve 102 and may be suitably removed therefrom, if required.
FIG. 3 illustrates the sensor 100 in accordance with the present disclosure. The sensor head 104 is made of an electrically conductive silicone material. Preferably, the sensor head 104 is made of silicone rubber which is desirable to be of electrically conducting nature. The sensor head 104 includes a sensor contact 300 and a sensor head body 302. The sensor contact 300 and the sensor head body 302 are integral components of the sensor head 104, and are provided as a single component i.e. the sensor head 104. The sensor contact 300 and the sensor head body 302 are both made of electrically conducting silicone material. The sensor 100 is configured to detect presence of water in a submersible pump or similar systems that are well within the scope of the present disclosure. The electrical conducting silicone provides benefits such as improved life of the sensor 100. Further, it also has properties that keep it free of external impurities and the like improving cleanability of the sensor 100. In an embodiment, the sensor 100 may further include a control unit (not shown) configured with the sensor 100 to evaluate an output from the sensor 100 for activation or deactivation of the submersible pump. The activation of the submersible pump may be based on the sensor output being greater than a threshold value of water present and/or a combination of preferences by a user. Alternatively, the deactivation of the submersible pump may be based on the sensor output being less than a threshold value of water present and/or a combination of preferences by a user.
FIG. 4 illustrates a side view to appreciate some aspects of the sensor 100 from another angle. This view illustrates the sleeve 102, the first portion 106 and the second portion 108, along with the sensor head 104. The sensor 100 may further include an electrode arrangement that has a first electrode and a second electrode. The second electrode may be height adjustable in relation to the first electrode. Thus, this feature allows catering to different dynamic height levels during implementation of the sensor 100.
In the drawings and specification, there have been disclosed preferred embodiments and examples of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation of the scope of the invention being set forth in the following claims.
LIST OF ELEMENTS
100 Sensor
102 Sleeve
104 Sensor head
106 First Portion
108 Second Portion
202 Cable
204 Contact Element
206 Contact
300 Sensor contact
302 Sensor head body

Claims

1. A sensor (100) for detecting presence of water, the sensor (100) comprising:
a sleeve (102);
a contact element (204) housed inside the sleeve (102);
a sensor head (104) partially housed inside the sleeve (102), and enclosing the contact element (204), the sensor head (104) comprising a sensor contact (300) and a sensor head body (302) such that the sensor contact (300) and the sensor head body (302) are integral components of the sensor head (104);
a cable (202) coupled to the contact element (204);
characterized in that:
the sensor head (104) is made of a silicone material.
2. The sensor (100) of claim 1, wherein the silicone material is electrically conducting.
3. The sensor (100) of claim 1 and 2, wherein the sensor (100) is configured to detect presence of water in a submersible pump.
4. The sensor (100) of claim 3, wherein the sensor (100) further includes a control unit configured with the sensor (100) to evaluate a sensor output from the sensor (100) for activation or deactivation of the submersible pump.
5. The sensor (100) of claim 1 to 4, wherein the cable (202) is configured to carry data indicative of electrical conductivity between the contact element (204) and the sensor head (104).
1
6. The sensor (100) of claim 1 to 5, wherein the sleeve (102) includes a first portion (106) housing the cable (202), and a second portion (108) housing the sensor head (104).
7. The sensor (100) of claim 1 to 6, wherein the cable (202) is made of a conducting material.
8. The sensor (100) of claim 1 to 7, wherein the contact element (204) is made of a metal material.
9. The sensor (100) of claim 1 to 8, wherein the sleeve (102) is made of Polyvinyl Chloride (PVC).
10. The sensor (100) of claim 1 to 9, wherein the sensor (100) further includes an electrode arrangement that includes a first electrode and a second electrode, wherein the second electrode is height adjustable in relation to the first electrode.
11. The sensor (100) of claim 10, wherein the activation of the pump is based on the sensor output being greater than a threshold value of water present.
12. The sensor (100) of claim 10, wherein the deactivation of the pump is based on the sensor output being less than a threshold value of water present.
2
PCT/EP2018/053802 2017-10-10 2018-02-15 Sensor for detecting presence of water WO2019072420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017009371.7 2017-10-10
DE102017009371 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019072420A1 true WO2019072420A1 (en) 2019-04-18

Family

ID=61386813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/053802 WO2019072420A1 (en) 2017-10-10 2018-02-15 Sensor for detecting presence of water

Country Status (1)

Country Link
WO (1) WO2019072420A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949389A (en) * 1974-02-28 1976-04-06 Itt Industries, Inc. Moisture detector
JPH1038705A (en) * 1996-07-26 1998-02-13 Nissei Denki Kk Water, temperature sensor
JPH1038704A (en) * 1996-07-26 1998-02-13 Nissei Denki Kk Water, temperature sensor
US6364620B1 (en) * 2000-08-29 2002-04-02 Zoeller Company Submersible pump containing two levels of moisture sensors
JP2007071042A (en) * 2005-09-05 2007-03-22 Shin Meiwa Ind Co Ltd Submerged pump
US20090278699A1 (en) * 2008-05-12 2009-11-12 John Vander Horst Recreational vehicle holding tank sensor probe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949389A (en) * 1974-02-28 1976-04-06 Itt Industries, Inc. Moisture detector
JPH1038705A (en) * 1996-07-26 1998-02-13 Nissei Denki Kk Water, temperature sensor
JPH1038704A (en) * 1996-07-26 1998-02-13 Nissei Denki Kk Water, temperature sensor
US6364620B1 (en) * 2000-08-29 2002-04-02 Zoeller Company Submersible pump containing two levels of moisture sensors
JP2007071042A (en) * 2005-09-05 2007-03-22 Shin Meiwa Ind Co Ltd Submerged pump
US20090278699A1 (en) * 2008-05-12 2009-11-12 John Vander Horst Recreational vehicle holding tank sensor probe

Similar Documents

Publication Publication Date Title
US7671754B2 (en) Sensor for detecting leakage of a liquid
CN107874612B (en) Cooking utensil
TW200636222A (en) Liquid leakage sensor
US20150330931A1 (en) Grip sensor
EP1731656A3 (en) Foam sensor of drum washing machine
US6923571B2 (en) Temperature-based sensing device for detecting presence of body part
EP1515374A3 (en) Radiation detector
JP6463722B2 (en) Terminal / Thermistor Assembly
WO2019072420A1 (en) Sensor for detecting presence of water
CN101408403B (en) Height detecting device of elastic contact piece
CN204336900U (en) A kind of contact monitoring device of contact physiological parameter measuring device
BR102021007224A2 (en) SYSTEM AND METHOD FOR DETECTING A FLUID LEVEL IN A CONTAINER
CN114136405A (en) Liquid level detector and liquid storage system
CN209877347U (en) Electric water heater with electric leakage detection function
KR200461214Y1 (en) Integrated water heater for boiler or geyser
CN107884029B (en) A anti-overflow detection device and cooking utensil for cooking utensil
CN216621374U (en) Liquid level detector and liquid storage system
JP6249855B2 (en) rice cooker
EP0048607A1 (en) Washing machine level detector
CN205758407U (en) A kind of drainage screen built-in temperature control foot basin
CN218885053U (en) Water level detector
JP3174859U (en) Flood detection sensor
CN212083632U (en) Device for detecting whether electric leakage exists in seat ring heater
JP2005274481A (en) Fluid level detecting device
US20150143899A1 (en) Residual quantity sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18707652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18707652

Country of ref document: EP

Kind code of ref document: A1