WO2019072290A2 - 需求侧能源互联系统、能源互联控制系统 - Google Patents

需求侧能源互联系统、能源互联控制系统 Download PDF

Info

Publication number
WO2019072290A2
WO2019072290A2 PCT/CN2018/119828 CN2018119828W WO2019072290A2 WO 2019072290 A2 WO2019072290 A2 WO 2019072290A2 CN 2018119828 W CN2018119828 W CN 2018119828W WO 2019072290 A2 WO2019072290 A2 WO 2019072290A2
Authority
WO
WIPO (PCT)
Prior art keywords
level
energy
area unit
data
regional
Prior art date
Application number
PCT/CN2018/119828
Other languages
English (en)
French (fr)
Other versions
WO2019072290A3 (zh
Inventor
王灵军
赵志刚
罗晓
邵世卓
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2019072290A2 publication Critical patent/WO2019072290A2/zh
Publication of WO2019072290A3 publication Critical patent/WO2019072290A3/zh

Links

Images

Classifications

    • H02J13/0006
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • the invention relates to the technical field of microgrid energy control, in particular to a demand side energy interconnection system and an energy interconnection control system.
  • the demand side energy information internet is an emerging development field and is in the development stage. Although many documents are mentioned, they are all general introductions, mainly focusing on the main network, and paying little attention to the realization of the demand side. There are also some implementations of demand side systems, but the level of intelligence is not high.
  • At least some embodiments of the present invention provide a demand side energy interconnection system and an energy interconnection control system to at least partially solve the problem of poor intelligence of the demand side energy information interconnection system in the related art.
  • a demand side energy interconnection system including a first level area unit, a second level area unit, and a third level area unit, the first level area unit being subordinate to the second level area unit,
  • the second-level regional unit is subordinate to the third-level regional unit, and the first-level regional unit includes a first-level energy router connected to the first power grid link, a first-level power device, a first-level energy storage device, and a second-level region.
  • the unit includes a second-level energy router connected to the second grid link, and a second-stage energy storage device, and the third-level regional unit includes a third-level energy router connected to the grid trunk road, a third-stage energy storage device, and a new energy source.
  • the power generation device the first power grid link is connected to the second power grid link through the first-level energy router, and the second power grid link is connected to the power grid trunk road through the second-level energy router, and the power grid trunk is set to pass the third-level energy router Connected to the public energy Internet, where each level of energy routers is based on energy usage and policies within the regional unit of this level, and energy usage between the same level regional units Conditions and strategies, energy usage and strategies between subordinates and subordinates plan the optimal energy flow direction and optimal flow time of the local area units.
  • Each level of energy routers and regional units corresponding to each level of energy routers can be Perform island operations or network operations and achieve network autonomy.
  • each level of energy routers and regional units corresponding to each level of energy routers can be operated in an island or network, and achieve network autonomy, including at least one of the following: self-demand management, self-fault detection , self-diagnosis, failure information announcement, self-island operation or network operation.
  • the first level area unit further includes a first level computing center
  • the third level area unit further includes a second level computing center
  • the first level computing center is configured to analyze data in the local area unit and Perform cloud computing, big data analysis, data mining, machine learning, and artificial intelligence technology processing.
  • the second-level computing center integrates data from the first-level computing center for cloud computing, big data analysis, data mining, machine learning, and artificial intelligence processing.
  • the third-level regional unit further includes: an Internet weather service module configured to provide historical, real-time, and predicted weather data to each level of the computing center; and a local weather station module configured to provide local real-time weather data To each level of computing center; spatio-temporal data terminal module, set to provide timing and latitude and longitude information to each level of computing center.
  • an Internet weather service module configured to provide historical, real-time, and predicted weather data to each level of the computing center
  • a local weather station module configured to provide local real-time weather data To each level of computing center
  • spatio-temporal data terminal module set to provide timing and latitude and longitude information to each level of computing center.
  • each level of the computing center is configured to analyze data in the local area unit including: power consumption data, status data, user behavior data, time and space characteristics of the data, weather data, public energy internet model data. .
  • the third-level regional unit further includes a regional transaction center and a public energy transaction center, respectively configured to implement electrical energy transactions between the power user and the user, between the power user and the producer,
  • the primary area unit also includes a user control center and a ledger module, which are configured to perform power transaction control and data recording through the regional transaction center.
  • each level of energy storage device is a cluster energy storage device.
  • the new energy power generation device is a plug-and-play device, and the new energy power generation device includes one of the following: a photovoltaic power generation device, a wind power generation device, and a geothermal power generation device.
  • an energy interconnection control system comprising: the demand side energy interconnection system described above, and a public energy system, wherein the demand side energy interconnection system interacts with the public energy system as a whole.
  • the demand side energy interconnection system as a whole interacts with the public energy system, including: the demand side energy interconnection system acts as an executive body to respond to the adjustment and control requirements of the public energy system, and the demand side energy source
  • the interconnected system serves as a demanding entity to subscribe to public energy systems.
  • the demand side energy information interconnection system manages the demand side as a whole, interconnects the energy information on the demand side, and improves the intelligent control of the demand side energy interconnection system, and has great economic and social benefits.
  • FIG. 1 is a block diagram showing the structure of a demand side energy interconnection system in accordance with an alternative embodiment of the present invention.
  • the demand side energy interconnection system includes a first level area unit, a second level area unit, and a third level area unit.
  • the first level area unit is subordinate to the second level area unit, and the second level area unit is subordinate to the third level area unit.
  • the first level area unit includes a first level energy router connected to the first grid link, a first level power device, and a first level energy storage device.
  • the second level area unit includes a second level energy router and a second level energy storage device connected to the second grid link.
  • the third-level regional unit includes a third-level energy router, a third-level energy storage device, and a new energy power generation device connected to the main road of the power grid.
  • the first grid link is connected to the second grid link by the first level energy router, and the second grid link is connected to the grid trunk by the second level energy router.
  • the grid trunk is set up to connect to the public energy Internet via a third-level energy router.
  • Each primary energy router optimizes the energy of the local area unit according to the energy usage and strategy in the regional unit of the level, the energy usage and strategy between the subordinate regional units, and the energy usage and strategy between the subordinate subordinates. Planning for flow direction and optimal flow time.
  • Each level of energy routers and regional units corresponding to each level of energy routers can be operated in an island or network, and achieve network autonomy.
  • the first-level area unit, the second-level area unit, and the third-level area unit may respectively correspond to a home, a building, a cell, and the like, and the corresponding energy routers are a home energy router and a building energy router respectively. , regional level energy routers.
  • the above system structure is a network structure in which a layered autonomous and self-healing backbone combines one of a bus type, a star shape, and a double ring.
  • the network structure can be divided into multiple layers such as a cell, a building, and a home.
  • the bottom floor is family-based and the family is brought together to the building.
  • the middle floor is based on buildings and the buildings are combined into a community.
  • the top floor is a cell.
  • Each unit of each layer is connected externally by an energy router.
  • the backbone is a collection of energy information links between buildings.
  • the cell is then connected to the public energy internet via a backbone level energy router.
  • Each level of energy routers and regional units corresponding to each level of energy routers can be operated by islands or networked, and achieve network autonomy, including at least one of the following: self-demand management, self-detection, self-diagnosis, failure information announcement, Self island operation or network operation.
  • each energy router and the network governed by the energy router are autonomous to achieve at least one of: self-demand management, self-fault detection, self-diagnosis, failure information announcement, self-offline into island operation, or networking. This also enables rapid fault location, quickly adjusting and restoring the steady state of the energy information network.
  • the first level area unit further includes a first level computing center
  • the third level area unit further includes a second level computing center.
  • the first-level computing center is configured to analyze data in the local area unit and perform cloud computing, big data analysis, data mining, machine learning, and artificial intelligence processing.
  • the second-level computing center integrates the data of the first-level computing center for cloud computing, big data analysis, data mining, machine learning, and artificial intelligence technology processing.
  • the third-level regional unit further includes: an Internet weather service module configured to provide historical, real-time, and predicted meteorological data to the computing center; a local weather station module configured to provide local real-time meteorological data to the computing center; a spatio-temporal data terminal module, setting To provide timing and latitude and longitude information to the computing center.
  • Each level of the computing center is set to analyze the data in the local area unit including: electricity consumption data, status data, user behavior data, time and space characteristics of the data, weather data, and public energy internet model data.
  • nebula computing and distributed collaborative intelligence Different from ordinary cloud computing, many small computing centers (star computing centers) are distributed in the original environment to perform local big data analysis and processing to provide local intelligence services. These local small centers work together to connect into a large cloud computing environment. This evolves a single centralized cloud computing environment into a distributed (satellite computing center, planetary computing center, stellar computing center), centerless, collaborative, or similar nebula-like computing environment.
  • Each component of each layer can have a star computing center, or multiple components can have a star computing center group to work together, using machine learning and deep learning, artificial intelligence and other technologies to manage demand.
  • Each star computing center realizes intelligence in a unit area by processing the data it receives.
  • the user energy information data carries time and space information, and uses the global satellite positioning system to provide the spatio-temporal attributes of the data.
  • the meteorological information of the star computing center is formed by the Internet to form the history and trend of meteorological information.
  • the Star Computing Center analyzes the user's usage habits, combines time and space information, weather information, etc., optimizes energy utilization efficiency in the unit area, and performs prediction or regulation operations, fault location operations, grid-connected and off-grid operations in advance.
  • Multiple adjacent star computing centers cooperate to form group intelligence. Multiple adjacent star computing centers are equal, shared, and open, and together intelligently operate the entire area to form a nebula calculation.
  • the user energy information data refers to data such as U, I, P, Q, and instantaneous change values of each of the powered devices including the routing device.
  • the third level regional unit further includes a regional transaction center and a public energy transaction center, respectively configured to enable electrical energy transactions between the power consumer and the user, between the power consumer and the producer.
  • the first level area unit further includes a user control center and a ledger module, and is configured to perform power transaction control and data recording through the regional transaction center.
  • regional energy trading on the demand side combines energy trading with the public energy Internet.
  • the regional energy trading center provides a platform for household-based energy transactions throughout the jurisdiction.
  • Each household user can conduct energy transactions between users at the regional energy trading center and other users, including energy spot and futures trading.
  • the regional trading center can also participate in public energy transactions as an agent (virtual energy company or customer) in the area under its jurisdiction, and conduct spot and futures trading of energy between the open market and other regional trading centers. .
  • Distributed account books are used within the regional trading center, using blockchain technology to ensure the security of transactions. No need for a unified billing center.
  • each level of energy storage equipment is a cluster energy storage device, specifically, a redundant distributed cluster energy storage, and an energy storage network is formed by public and household.
  • the energy router decides to store the output direction of the energy (either for personal use or for external output).
  • An energy storage cluster is formed by a small-capacity energy storage device, and a plurality of clusters are distributed over the entire area and distributed near the most frequently used locations. This can avoid the uneconomicality caused by a single large-capacity energy storage device, avoid the single point of failure caused by centralized energy storage, and improve the fast response time and performance.
  • New energy power generation equipment is a plug-and-play equipment, and new energy power generation equipment includes one of the following: photovoltaic power generation equipment, wind power generation equipment, and geothermal power generation equipment.
  • the renewable energy is converted to a uniform DC by means of an AC/DC or DC/DC device, and must meet the requirements of the corresponding voltage level and accuracy, frequency and accuracy.
  • Renewable energy access covers both household and public use.
  • an energy interconnection control system including a demand side energy interconnection system and a public energy system.
  • the demand side energy interconnection system as a whole interacts with the public energy system.
  • the demand side energy interconnection system acts as an executive body to respond to the adjustment and control needs of the public energy system.
  • the demand side energy interconnection system serves as a demanding entity to issue subscription requirements to the public energy system.
  • the demand side uses the energy router to conduct physical energy access, and the star computing center and the main network negotiate to perform demand management.
  • Power generation equipment such as photovoltaic, wind power
  • Home Control Center (such as home gateway)
  • Satellite Computing Center response for data calculation and intelligence of one or several buildings, or buildings
  • 012 Internet weather service (providing historical, real-time, and forecasted meteorological data)
  • 013 Local weather station (providing local real-time weather data)
  • 014 Spatio-temporal data terminal (providing timing and latitude and longitude information)
  • the above 016, 017 and 018 are not part of the demand side system; they are part of the public energy information Internet.
  • the first angle From the perspective of network topology, the system consists of three layers: home, building, and community. Depending on the situation, it can also be expanded from three layers to multiple layers; for example, factory production lines, workshops, branches, companies, etc. Wait. In general it is a layered structure. Each component of each layer may be a bus type, a star connection, or a double ring connection. Each component unit and each layer of each layer are connected by an energy router.
  • the second angle From the perspective of equipment, the system includes the demand side of the transmission, transmission, storage, distribution, transformation, use, control center, star computing center, distributed accounting transactions, space and time information and weather information system.
  • the third angle From the perspective of the public energy information Internet, the system constitutes its user side (demand side).
  • the hierarchical autonomy and self-healing structure of the system Each component of each layer is autonomous, and the internal energy use (issuing, storage, and use) is managed autonomously.
  • the internal devices are plug and play and do not require centralized configuration in advance. Equality, sharing, and synergy between devices enable the autonomy of the entire unit.
  • the energy router for each unit is bidirectional.
  • the energy router of each unit can determine the optimal energy flow direction of the unit according to the energy usage and strategy of the unit, the energy usage and strategy between the units, and the energy usage and strategy between the upper and lower layers. Excellent flow time planning.
  • energy routers In addition to routing energy, energy routers also function as a security isolation and autonomous region segmentation.
  • the main purpose of the Star Computing Center is to provide the intelligence of the unit under its jurisdiction, which is equivalent to the brain of the unit. It uses cloud computing, big data analysis, data mining, machine learning, artificial intelligence and other technologies.
  • a family can be configured with a star computing center, or multiple homes can be configured with a star computing center. This is weighed against the resources available to the Star Computing Center, the computing power required by each family, the controls, or the corresponding real-time requirements.
  • the Star Computing Center needs to determine the deployment method based on the scale and performance requirements of the demand side applied.
  • the Star Computing Center is set up to analyze the data of the units under its jurisdiction and provide artificial intelligence to help other devices achieve intelligence.
  • the Star Computing Center uses tools and methods such as machine learning and deep learning to process data, enhance learning, and continuously improve the intelligent behavior of the units under its jurisdiction.
  • the analyzed data includes power consumption data and status data of each device; behavior data of the user; space-time characteristics of the data; meteorological data; behavior state data of each unit of the demand side network; public network behavior model data. These data include historical data, real-time data, and trend forecast data.
  • the spatio-temporal data terminal provides time reference and spatial location information on the demand side, and the space-time terminal adopts a global satellite positioning system terminal.
  • the local weather station provides local meteorological information, and multiple local weather stations combine to form the demand side weather field information; combined with the public weather server data, the time accuracy and accuracy of the demand side weather information are improved.
  • the star computing centers can communicate with each other to form cluster intelligence, forming a panoramic intelligence on the entire demand side, and collaboratively accomplishing the optimal operation of the energy information on the demand side.
  • the intelligence and control are separated, and the control center and energy router of each unit communicate with the star computing center to realize unit intelligence. In this way, each of them performs their duties and works collaboratively.
  • the star computing center on the demand side can cooperate with the cloud computing center of the public energy information Internet to share its behavior model to the cloud computing center of the public network, and at the same time obtain the behavior model of the public network, and coordinate actions between the two.
  • Renewable distributed generation equipment is connected to the demand side energy information interconnection system with uniform energy specifications.
  • the energy quality of distributed generation equipment needs to meet the requirements of the interconnection system (including voltage level and deviation, frequency and deviation, adjust recovery time, etc.), and can respond to demand side control and information request (active fault detection and status information notification, active / Passive off-grid or grid-connected, energy and power adjustments, etc.).
  • Renewable distributed generation equipment includes household, regional, and public. These generated electrical energy is preferably stored and absorbed nearby. Distributed energy storage can provide sufficient buffering. There is a single point of failure for unified centralized energy storage, and there is always an optimal upper limit for the size of the centralized (beyond this upper limit, the price/performance ratio will drop sharply; this can be analogized with the mainframe of the computer and the blade server). Distributed energy storage clusters (small and large, equivalent to blade server clusters) can meet the energy storage requirements, improve reaction time, stabilize the grid more quickly, and improve grid quality more effectively. In addition, distributed energy storage clusters can be deployed redundantly to further improve the security of the grid operation, because the impact of a cluster failure on the grid is limited, and due to the existence of redundancy, the backup cluster can be replaced immediately.
  • Distributed energy storage clusters can be varied and adapted to local conditions.
  • the distributed energy storage cluster can be a battery pack, which can be hydrogen production; it can be a flywheel or the like. All kinds of energy storage clusters form a storage energy system on the demand side, and the clusters can be replaced, upgraded, and the investment can be controlled.
  • Each unit can be a power user and a power producer. Each unit can behave as one of the roles of pure electric energy consumers, short-term electric energy producers, and long-term electric energy producers.
  • the regional trading center is adapted to this need.
  • electricity consumers and producers can be listed for trading. They can be traded in stock or in futures.
  • the regional trading center provides trading information and matches the transaction, but does not settle the transaction.
  • the regional trading center uses the blockchain as a technical support, and each trader holds a distributed ledger and settles between them. No need for a unified settlement center to better ensure the convenience and confidentiality of the transaction.
  • the rest of the electricity network has created the demand side as a whole to trade with the public network.
  • the regional trading center on the demand side can represent the demand side as a virtual selling power entity, and carry out spot or forward transactions with the public network.
  • the blockchain is also used as the underlying technical support.
  • the demand side energy information interconnection system accesses the public energy information Internet via a regional level energy router.
  • the demand side communication can be PLC; it can also be local PLC combined with backbone cable; it can also be wireless communication, such as 4G/5G; various IOT communication technologies, such as NB-IOT
  • the demand side energy information interconnection system is a user terminal, but the degree of freedom is limited, and it needs to respond to various needs of the public network, including peak power consumption, peak shifting and valley filling.
  • energy affluence is the final result, then the demand side energy information interconnection system can also reserve various services on the public network on behalf of the demand side, and propose its own energy service to the public network service provider, which includes instantaneous usage, reserved usage, and different The power quality requirements, the demand for electricity at different times, the designated power producer, in short, because they need electricity (have the freedom of electricity).
  • the service gateway implements the service specification and the calling primitive of both parties, and the two parties publish their own requirements in a prescribed manner through the agreed specifications. After the contract is reached, the service gateway implements specific functions through the energy router between the two.
  • the service protocol and calling primitives of the service gateway can be implemented in the form of WebAPI, using PKI, blockchain, etc. to confirm transaction information.
  • the demand side acts as an intelligent entity, autonomously manages the system of sending, transmitting, storing, distributing, changing, and using on the demand side, and shares, shares, and interacts with the public energy information Internet to complete the last piece of the energy information Internet. Puzzle.
  • the above system can be applied to a smart factory, which corresponds to the family, building, and community, and the production line, workshop, branch, and company.
  • the above system can be extended from a basic three layer to a multi-layer structure.
  • the above system can be applied to various communities and social organizations, not just communities. Such as schools, hospitals, etc., not listed one by one.
  • a demand-side energy interconnection system of a specific structure is provided, the demand side energy information interconnection system manages the demand side as a whole, and the demand side
  • the interconnection of energy information and the intelligent control of the demand-side energy interconnection system have enormous economic and social benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种需求侧能源互联系统、能源互联控制系统,系统包括:第一级区域单元、第二级区域单元以及第三级区域单元,第一级区域单元包括连接于第一电网链路的第一级能源路由器、第一级用电设备、第一级储能设备,第二级区域单元包括连接于第二电网链路的第二级能源路由器、第二级储能设备,第三级区域单元包括连接于电网干路的第三级能源路由器、第三级储能设备、新能源发电设备,第一电网链路通过第一级能源路由器连接于第二电网链路,第二电网链路通过第二级能源路由器连接于电网干路,每一级能源路由器对应的区域单元可进行孤岛运行或联网运行,实现网络自治。本发明提高需求侧能源互联系统的智能化控制。

Description

需求侧能源互联系统、能源互联控制系统 技术领域
本发明涉及微网能源控制技术领域,具体而言,涉及一种需求侧能源互联系统、能源互联控制系统。
背景技术
现在正处于以可再生能源和互联网为表征的第三次工业革命中。分布式可再生能源结合互联网技术正在彻底变革整个社会的能源使用方式。整个能源网络涵盖发、输、储、配、变、送、用(需求侧)七部分。在需求侧(用)又可以构成微网,由于分布式发电的接入,微网又是整个能源网络的一个缩影,也涵盖了前述七部分。
需求侧能源信息互联网络是新兴的发展领域,正处于开拓期,很多文献虽有提及,但都是概论,主要关注于主网,而极少关注于需求侧的实现。也有一些需求侧系统的实现方案,但是智能化程度不高。
针对相关技术需求侧能源信息互联系统智能化较差的问题,目前尚未提出有效地解决方案。
发明内容
本发明至少部分实施例提供了一种需求侧能源互联系统、能源互联控制系统,以至少部分地解决相关技术中需求侧能源信息互联系统智能化较差的问题。
在本发明其中一实施例中,提供了一种需求侧能源互联系统,包括第一级区域单元、第二级区域单元以及第三级区域单元,第一级区域单元从属第二级区域单元,第二级区域单元从属第三级区域单元,第一级区域单元包括连接于第一电网链路的第一级能源路由器、第一级用电设备、第一级储能设备,第二级区域单元包括连接于第二电网链路的第二级能源路由器、第二级储能设备,第三级区域单元包括连 接于电网干路的第三级能源路由器、第三级储能设备、新能源发电设备,第一电网链路通过第一级能源路由器连接于第二电网链路,第二电网链路通过第二级能源路由器连接于电网干路,电网干路设置为通过第三级能源路由器与公共能源互联网连接,其中,每一级能源路由器根据本级区域单元内的能源使用情况和策略、同级区域单元之间的能源使用情况和策略、从属上下级之间的能源使用情况和策略对本级区域单元的最优能源流动方向、最优流动时间进行规划,每一级能源路由器以及与每一级能源路由器对应的区域单元可进行孤岛运行或联网运行,并实现网络自治。
在一个可选实施例中,每一级能源路由器以及与每一级能源路由器对应的区域单元可进行孤岛运行或联网运行,并实现网络自治,包括以下至少之一:自我需求管理、自我故障检测,自我诊断、故障信息宣告、自我孤岛运行或联网运行。
在一个可选实施例中,第一级区域单元还包括第一级计算中心,第三级区域单元还包括第二级计算中心,第一级计算中心设置为分析本级区域单元内的数据并进行云计算、大数据分析、数据挖掘、机器学习、人工智能技术处理,第二级计算中心整合第一级计算中心的数据进行云计算、大数据分析、数据挖掘、机器学习、人工智能技术处理。
在一个可选实施例中,第三级区域单元还包括:互联网气象服务模块,设置为提供历史、实时、预测的气象数据至每级计算中心;本地气象站模块,设置为提供本地实时气象数据至每级计算中心;时空数据终端模块,设置为提供授时和经纬度信息至每级计算中心。
在一个可选实施例中,每级计算中心设置为分析本级区域单元内的数据包括:用电数据、状态数据、使用人的行为数据、数据的时空特征、气象数据、公共能源互联网模型数据。
在一个可选实施例中,第三级区域单元还包括区域交易中心和公共能源交易中心,分别设置为实现电能使用者和使用者之间、电能使用者和生产者之间的电能交易,第一级区域单元还包括用户控制中心和账本模块,设置为通过区域交易中心进行电能交易控制及数据记录。
在一个可选实施例中,每级储能设备为集群储能设备。
在一个可选实施例中,新能源发电设备为即插即用式设备,新能源发电设备包括以下之一:光伏发电设备、风力发电设备、地热发电设备。
在本发明其中一实施例中,还提供了一种能源互联控制系统,包括:上述的需求侧能源互联系统,以及公共能源系统,其中,需求侧能源互联系统作为整体与公共能源系统进行交互。
在一个可选实施例中,需求侧能源互联系统作为整体与公共能源系统进行交互,包括:需求侧能源互联系统作为执行主体来对公共能源系统的调整和控制需求进行响应,以及,需求侧能源互联系统作为需求主体对公共能源系统发出订阅需求。
在本发明至少部分实施例中,该需求侧能量信息互联系统将需求侧作为一个整体进行管理,需求侧的能量信息互联,提高需求侧能源互联系统的智能化控制,具有巨大的经济和社会效益。
附图说明
图1是根据本发明其中一可选实施例的需求侧能源互联系统的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
实施例1
下面结合附图对本发明提供的需求侧能源互联系统进行说明。
图1是根据本发明其中一可选实施例的需求侧能源互联系统的结构示意图。如图1所示,需求侧能源互联系统包括第一级区域单元、第二级区域单元以及第三级区域单元。第一级区域单元从属第二级区域单元,第二级区域单元从属第三级区域单元。第一级区域单元包括连接于第一电网链路的第一级能源路由器、第一级用电设备、第一级 储能设备。第二级区域单元包括连接于第二电网链路的第二级能源路由器、第二级储能设备。第三级区域单元包括连接于电网干路的第三级能源路由器、第三级储能设备、新能源发电设备。第一电网链路通过第一级能源路由器连接于第二电网链路,第二电网链路通过第二级能源路由器连接于电网干路。电网干路设置为通过第三级能源路由器与公共能源互联网连接。每一级能源路由器根据本级区域单元内的能源使用情况和策略、同级区域单元之间的能源使用情况和策略、从属上下级之间的能源使用情况和策略对本级区域单元的最优能源流动方向、最优流动时间进行规划。每一级能源路由器以及与每一级能源路由器对应的区域单元可进行孤岛运行或联网运行,并实现网络自治。在一个可选实施例中,第一级区域单元、第二级区域单元、第三级区域单元可以分别对应家庭、楼宇、小区等单元,其对应的能源路由器分别为家庭能源路由器、楼宇能源路由器、区域级能源路由器。
上述系统结构为分层的自治和自愈的主干结合总线式、星状以及双环其中之一的网络结构。该网络结构可以分为小区、楼宇、家庭等多层。底层以家庭为单位,家庭汇集至楼宇。中间层以楼宇为单位,楼宇汇集为小区。顶层为小区。每一层的每个单位由能源路由器对外连接。主干为楼宇之间的能量信息汇集链路。然后小区经由主干级别的能源路由器连接至公共能源互联网。
每一级能源路由器以及与每一级能源路由器对应的区域单元可进行孤岛运行或联网运行,并实现网络自治,包括以下至少之一:自我需求管理、自我故障检测,自我诊断、故障信息宣告、自我孤岛运行或联网运行。换言之,每个能源路由器及该能源路由器所管辖的网络自治,以实现以下至少之一:自我需求管理、自我故障检测、自我诊断、故障信息宣告、自我离线成孤岛运行或联网。这样也可快速故障定位,快速调整并恢复能源信息网络的稳定状态。
在一个可选实施方式中,第一级区域单元还包括第一级计算中心,第三级区域单元还包括第二级计算中心。第一级计算中心设置为分析本级区域单元内的数据并进行云计算、大数据分析、数据挖掘、机器学习、人工智能技术处理。第二级计算中心整合第一级计算中心的数据进行进行云计算、大数据分析、数据挖掘、机器学习、人工智能技 术处理。第三级区域单元还包括:互联网气象服务模块,设置为提供历史、实时、预测的气象数据至计算中心;本地气象站模块,设置为提供本地实时气象数据至计算中心;时空数据终端模块,设置为提供授时和经纬度信息至计算中心。每级计算中心设置为分析本级区域单元内的数据包括:用电数据、状态数据、使用人的行为数据、数据的时空特征、气象数据、公共能源互联网模型数据。
如图1所示,星云计算和分布式协同智能。不同于普通的云计算,在原来的环境中分布着众多小的计算中心(星计算中心)来进行局部的大数据分析和处理,为局部智能提供服务。而这些局部的小中心协同工作,连接成大的云计算环境。这样将单一集中的云计算环境演化为分布式(卫星计算中心、行星计算中心、恒星计算中心)、无中心的、协同的类似星云一样的计算环境。
每层的每个组成单元都可以拥有一个星计算中心,也可以多个组成单元拥有一个星计算中心群协同工作,运用机器学习和深度学习、人工智能等技术来管理需求。
每个星计算中心通过处理自身接收到的数据来实现单位区域内的智能化。用户能源信息数据带有时空信息,采用全球卫星定位系统等来提供数据的时空属性,同时由互联网结合星计算中心的气象信息形成气象信息历史和趋势。
星计算中心分析用户的使用习惯,结合时空信息、气象信息等,优化单位区域内的能源利用效率,并提前执行预测或调控操作,故障定位操作,并网与离网操作等。
多个相邻的星计算中心协同构成群体智能。多个相邻的星计算中心之间平等、共享、开放,一起智能运维整个区域的,从而构成星云计算。
用户能源信息数据指每台用电设备含路由设备的U、I、P、Q和瞬时变化值等数据。
在一个可选实施例中,第三级区域单元还包括区域交易中心和公共能源交易中心,分别设置为实现电能使用者和使用者之间、电能使用者和生产者之间的电能交易。第一级区域单元还包括用户控制中心和账本模块,设置为通过区域交易中心进行电能交易控制及数据记录。
具体来说,需求侧的区域能源交易结合公共能源互联网的能源交易。
按照就近使用的原则,在需求侧自我管理的区域内,区域能源交易中心为整个管辖区域内以家庭为单位的能源交易提供平台。每个家庭用户可以在区域能源交易中心与其它用户进行用户之间的能源交易,包括能源现货及期货交易。
按照余电上网的原则,区域交易中心又可以作为所管辖的区域的代理(虚拟能源公司或客户)参与公共的能源交易,在公开市场内与其它区域交易中心之间进行能源的现货及期货交易。
在区域交易中心内部采用分布式账本,使用区块链技术来保证交易的安全进行。无需统一的结算中心。
在一个可选实施例中,每级储能设备为集群储能设备,具体地,采用冗余分布式集群储能,由公用和户用组成储能网络。能量路由器决策储存能源的输出方向(自用或是向外输出)。由小容量的储能装置构成储能集群,多个集群分布在整个区域范围内,且靠近最频繁使用的地点分布。这样可以避免单一的大容量储能装置所带来的不经济性,避免集中储能所带来的单点故障问题,能提高快速反应时间和性能。
新能源发电设备为即插即用式设备,新能源发电设备包括以下之一:光伏发电设备、风力发电设备、地热发电设备。
在一个可选实施例中,可再生能源通过AC/DC或DC/DC等装置转换为统一规格的直流,须满足相应电压等级及精度,频率及精度等约定。可再生能源接入涵盖户用和公用。
在本发明其中一实施例中,还提供了一种能源互联控制系统,包括需求侧能源互联系统以及公共能源系统。需求侧能源互联系统作为整体与公共能源系统进行交互。需求侧能源互联系统作为执行主体来对公共能源系统的调整和控制需求进行响应。需求侧能源互联系统作为需求主体对公共能源系统发出订阅需求。需求侧通过能量路由器来进行物理能量的通路,而由星计算中心和主网进行协商来进行需求管理。
下面对附图1示出的系统进行具体说明,以便更好的理解本申请:
在图1中,
001:用电设备(会采集其用电信息)。
002:户用储能。
003:发电设备(如光伏,风电)
004:家庭控制中心(如家庭网关)
005:账本(分布式账本)
006:家庭级能量路由器
007:卫星计算中心(负责一家或几家,或楼宇的数据计算和智能)
008:楼宇级能量路由器
009:分布式储能集群
010:区域能源交易中心
011:行星计算中心(负责改区域的数据计算和智能)
012:互联网气象服务(提供历史、实时、预测气象数据)
013:本地气象站(提供本地实时气象数据)
014:时空数据终端(提供授时和经纬度信息)
015:区域级能量路由器
016:公共能源信息互联网
017:恒星计算中心(公共能源信息互联网)
018:公共能源交易中心
上述016、017和018非需求侧系统组成部分;而是公共能源信息互联网组成部分。
从三个角度来看本系统。
第一个角度:从网络拓扑机构来看,本系统由家庭、楼宇、小区三层构成,根据情况,也可以从三层扩展成多层;比如工厂的产线、车间、分厂、公司等等。总的来说是一个分层的结构。每层的各组成单元之间既可以是总线式,也可以是星状连接,还可以是双环连接。每层的各组成单元、各层之间通过能量路由器进行连接。
第二个角度:从设备来看,本系统包括需求侧的发、输、储、配、变、用、控制中心、星计算中心、分布式记账交易、时空信息和气象信息系统。
第三个角度:从公共能源信息互联网来看,本系统构成其用户侧(需求侧)。
系统构成的分层的自治和自愈结构。每层的每个组成单元自治,自主管理内部的能源使用(发、储,用)。内部设备即插即用,无需预先集中配置。设备之间平等、共享、协同实现整个单元的自治。
每个单元的能源路由器是双向的。每个单元的能源路由器可以根据本单元的能源使用情况和策略、单元之间的能源使用情况和策略、上下层之间的能源使用情况和策略来自主决定本单元的最优能源流动方向、最优流动时间规划。能源路由器除了路由能源之外,还起到安全隔离和自治区域分割的功能。
星计算中心主要目的是提供所管辖单位的智能,相当于单位的大脑,其综合运用云计算、大数据分析、数据挖掘、机器学习、人工智能等技术。
一个家庭可以配置一个星计算中心,也可以多个家庭配置一个星计算中心。这是根据星计算中心可供使用的资源、每个家庭需要的计算能力、控制或相应的实时性要求来权衡的。星计算中心需要根据所应用的需求侧的规模和性能要求来确定部署方式。
星计算中心设置为分析所管辖单位数据,提供人工智能,帮助其它设备实现智能。星计算中心运用机器学习、深度学习等工具和方法来对数据进行处理,进行增强学习,不断提升所管辖单位的智能行为。
所分析的数据包括各设备的用电数据、状态数据;使用人的行为数据;数据的时空特征;气象数据;需求侧网络各单位行为状态数据;公网行为模型数据等。这些数据又涵盖历史数据、实时数据和趋势预测数据等。时空数据终端提供需求侧的时间基准和空间位置信息,时空终端采用全球卫星定位系统终端。本地气象站提供本地的气象信息,多个本地气象站联合起来构成需求侧气象场信息;结合公众气象服务器数据,提高需求侧气象信息的时间精度和准确度。
同时,星计算中心可以相互通讯,从而构成集群智能,形成整个需求侧的全景智能,协同完成需求侧的能源信息的最优化运营。
将智能与控制分离出来,各个单位的控制中心、能量路由器与星计算中心通讯从而实现单位智能。这样,各司其职,协同完成工作。
需求侧的星计算中心可以与公共能源信息互联网的云计算中心协同,将自己的行为模型分享给公网的云计算中心,同时获取公网的行 为模型,二者之间协调行动。
可再生的分布式发电设备以统一的能源规格接入需求侧能源信息互联系统。分布式发电设备的能量品质需满足互联系统的要求(包括电压等级及偏差、频率及偏差,调整恢复时间等),并能响应需求侧的控制和信息请求(主动故障检测及状态信息通告,主动/被动离网或并网,能源和功率调剂等)。
其它需求侧的输、储、配、变、用设备或系统的要求也遵循上述同样的要求。
可再生的分布式发电设备包括户用的、区域公用的。这些产生的电能最好能就近存储和吸纳。分布式储能可以起到足够的缓冲作用。统一的集中式储能存在单点故障,并且集中式总会存在规模的最优上限(超过这个上限,性价比会急剧下降;这可以用计算机的大型主机和刀片式服务器来类比)。分布式储能集群(小而多,相当于刀片式服务器集群)即可以满足储能要求,又可以提高反应时间,能更快速地稳定电网,更有效地提高电网质量。另外,分布式储能集群可以冗余部署,进一步提高电网运行的安全性,因为某一集群的失效对电网的冲击是有限的,而且由于冗余的存在,备份集群可以立即替代。
分布式储能集群可以多种多样,因地制宜。分布式储能集群可以是电池组,可以是制氢;可以是飞轮等等。各种储能集群统一构成需求侧的储能系统,同时集群可替代,可升级,投资可控。
分布式可再生能源的即插即用带来了能量的大量生产,每个单位都可以是电能使用者,同时也可以是电能生产者。每个单位可以表现为纯电能消耗者、短时间电能生产者、长期电能生产者的角色之一。
无论是短时间或长期电能生产者,从经济效益和低碳生活的角度来看,所产生的电能都需要消纳。一般采用就地消纳,余电上网的原则。
就地消纳就产生了市场行为,而生产的电能需要在需求侧内部进行消化从而驱动了交易的产生。区域交易中心则是适应了这种需求。在区域交易中心,电能使用者和生产者之间可以挂牌交易。既可以以现货,也可以以期货的方式相互交易。区域交易中心提供交易信息并撮合交易,但是不对交易进行结算。区域交易中心以区块链作为技术 支持,每个交易者都持有分布式账本,相互之间进行结算。无需统一的结算中心的参与,更好地保证交易的便捷性和机密性。
余电上网就产生了需求侧作为一个整体与公网进行交易的需求。需求侧的区域交易中心则可以代表需求侧成为虚拟的售卖电实体,与公网进行现货或远期交易。同样采用区块链作为底层技术支撑。
需求侧能源信息互联系统作为一个自治整体经由区域级能量路由器接入公共能源信息互联网。
需求侧的通讯可以采用PLC;也可以是局部PLC结合主干有线;还可以是无线通讯,比如4G/5G;各种IOT通讯技术,比如NB-IOT
大量分布式可再生能源的接入最终导致的结果是能量的富裕、能量的廉价。在目前看来,需求侧能源信息互联系统虽是用户端,但是自由度有限,需要响应公网的各种需求,包括错峰用电、移峰填谷等。另外,能量富裕是最终的结果,那么需求侧能源信息互联系统还可以代表需求侧对公网预约各种服务,向公网服务商提出自己的用能服务,这包括瞬时用量,预约用量,不同的电能品质要求,不同时段的用电需求,指定的电能生产商,总之因自己需要用电(拥有用电的自由度)。通过在需求侧能量信息互联系统和公共能量信息互联网之间服务网关来实现。服务网关实现双方的服务规约和调用原语,双方通过约定的规范以规定的方式来发布自己的需求。契约达成后,服务网关通过二者之间的能量路由器实现具体的功能。服务网关的服务规约和调用原语可以以WebAPI的方式实现,使用PKI、区块链等来确认交易信息。
通过该系统,需求侧作为一个智能主体,自治管理需求侧的发、输、储、配、变、用系统,并与公共能源信息互联网平等、共享、协同交互,补完了能源信息互联网的最后一块拼图。
上述系统可以应用智能工厂,将家庭、楼宇、小区与产线、车间、分厂、公司对应。
上述系统可以由基础的三层扩展为多层结构。
上述系统可以应用各种社区和社会组织,而不仅是小区。诸如学校,医院等,不一一列举。
以上不同角色的系统,随着控制设备资源的强大,可以逐渐集成到一起。比如,随着AI芯片技术的发展,星计算的部分功能可以迁移 至设备的控制系统上。
从以上描述中可以看出,在本发明的上述各个实施方式中,提供了一种具体结构的需求侧能源互联系统,该需求侧能量信息互联系统将需求侧作为一个整体进行管理,需求侧的能量信息互联,提高需求侧能源互联系统的智能化控制,具有巨大的经济和社会效益。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种需求侧能源互联系统,所述需求侧能源互联系统包括第一级区域单元、第二级区域单元以及第三级区域单元,所述第一级区域单元从属所述第二级区域单元,所述第二级区域单元从属所述第三级区域单元,所述第一级区域单元包括连接于第一电网链路的第一级能源路由器、第一级用电设备、第一级储能设备,所述第二级区域单元包括连接于第二电网链路的第二级能源路由器、第二级储能设备,所述第三级区域单元包括连接于电网干路的第三级能源路由器、第三级储能设备、新能源发电设备,所述第一电网链路通过所述第一级能源路由器连接于所述第二电网链路,所述第二电网链路通过所述第二级能源路由器连接于所述电网干路,所述电网干路设置为通过所述第三级能源路由器与公共能源互联网连接,其中,每一级能源路由器根据本级区域单元内的能源使用情况和策略、同级区域单元之间的能源使用情况和策略、从属上下级之间的能源使用情况和策略对本级区域单元的最优能源流动方向、最优流动时间进行规划,每一级能源路由器以及与每一级能源路由器对应的区域单元可进行孤岛运行或联网运行,并实现网络自治。
  2. 根据权利要求1所述的系统,其中,每一级能源路由器以及与每一级能源路由器对应的区域单元可进行孤岛运行或联网运行,并实现网络自治,包括以下至少之一:自我需求管理、自我故障检测,自我诊断、故障信息宣告、自我孤岛运行或联网运行。
  3. 根据权利要求1所述的系统,其中,所述第一级区域单元还包括第一级计算中心,所述第三级区域单元还包括第二级计算中心,所述第一级计算中心设置为分析本级区域单元内的数据并进行云计算、大数据分析、数据挖掘、机器学习、人工智能技术处理,所述第二级计算中心整合所述第一级计算中心的数据进行云计算、大数据分析、数据挖掘、机器学习、人工智能技术处理。
  4. 根据权利要求3所述的系统,其中,所述第三级区域单元还包括:互联网气象服务模块,设置为提供历史、实时、预测的气象数据至每级计算中心;本地气象站模块,设置为提供本地实时气象数据至每级计算中心;时空数据终端模块,设置为提供授时和经纬度信息至每级 计算中心。
  5. 根据权利要求3所述的系统,其中,每级计算中心设置为分析本级区域单元内的数据包括:用电数据、状态数据、使用人的行为数据、数据的时空特征、气象数据、公共能源互联网模型数据。
  6. 根据权利要求1所述的系统,其中,所述第三级区域单元还包括区域交易中心和公共能源交易中心,分别设置为实现电能使用者和使用者之间、电能使用者和生产者之间的电能交易,所述第一级区域单元还包括用户控制中心和账本模块,设置为通过所述区域交易中心进行电能交易控制及数据记录。
  7. 根据权利要求1所述的系统,其中,每级储能设备为集群储能设备。
  8. 根据权利要求1所述的系统,其中,所述新能源发电设备为即插即用式设备,所述新能源发电设备包括以下之一:光伏发电设备、风力发电设备、地热发电设备。
  9. 一种能源互联控制系统,其中,包括:如权利要求1-8任一项所述的需求侧能源互联系统,以及公共能源系统,其中,所述需求侧能源互联系统作为整体与所述公共能源系统进行交互。
  10. 根据权利要求9所述的能源互联控制系统,其中,所述需求侧能源互联系统作为整体与所述公共能源系统进行交互,包括:所述需求侧能源互联系统作为执行主体来对所述公共能源系统的调整和控制需求进行响应,以及,所述需求侧能源互联系统作为需求主体对公共能源系统发出订阅需求。
  11. 一种需求侧能源互联系统,所述需求侧能源互联系统包括第一级区域单元、第二级区域单元以及第三级区域单元,所述第一级区域单元从属所述第二级区域单元,所述第二级区域单元从属所述第三级区域单元,所述第一级区域单元包括连接于第一电网链路的第一级能源路由器,所述第二级区域单元包括连接于第二电网链路的第二级能源路由器,所述第三级区域单元包括连接于电网干路的第三级能源路由器,其中,每一级能源路由器根据本级区域单元内的能源使用情况和策略、同级区域单元之间的能源使用情况和策略、从属上下级之间的能源使用情况和策略对本级区域单元的最优能源流动方向、最优流 动时间进行规划。
  12. 根据权利要求11所述的系统,其中,所述第一级区域单元还包括第一级用电设备、第一级储能设备。
  13. 根据权利要求11所述的系统,其中,所述第二级区域单元还包括第二级储能设备。
  14. 根据权利要求11所述的系统,其中,所述第三级区域单元还包括第三级储能设备、新能源发电设备。
  15. 根据权利要求11所述的系统,其中,所述第一电网链路通过所述第一级能源路由器连接于所述第二电网链路,所述第二电网链路通过所述第二级能源路由器连接于所述电网干路,所述电网干路设置为通过所述第三级能源路由器与公共能源互联网连接。
  16. 根据权利要求11所述的系统,其中,每一级能源路由器以及与每一级能源路由器对应的区域单元可进行孤岛运行或联网运行,并实现网络自治。
PCT/CN2018/119828 2017-10-12 2018-12-07 需求侧能源互联系统、能源互联控制系统 WO2019072290A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710948976.5A CN107707025A (zh) 2017-10-12 2017-10-12 需求侧能源互联系统、能源互联控制系统
CN201710948976.5 2017-10-12

Publications (2)

Publication Number Publication Date
WO2019072290A2 true WO2019072290A2 (zh) 2019-04-18
WO2019072290A3 WO2019072290A3 (zh) 2019-05-16

Family

ID=61183410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119828 WO2019072290A2 (zh) 2017-10-12 2018-12-07 需求侧能源互联系统、能源互联控制系统

Country Status (2)

Country Link
CN (1) CN107707025A (zh)
WO (1) WO2019072290A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824163A (zh) * 2021-09-22 2021-12-21 成都星宇融科电力电子股份有限公司 一种能量路由器及其控制方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107707025A (zh) * 2017-10-12 2018-02-16 珠海格力电器股份有限公司 需求侧能源互联系统、能源互联控制系统
CN111897498A (zh) * 2018-07-27 2020-11-06 创新先进技术有限公司 区块链数据的多级存储方法和装置
CN109066691B (zh) * 2018-09-13 2020-10-02 珠海格力电器股份有限公司 能源调度方法、能源控制设备和能源系统
US11070379B2 (en) 2019-04-18 2021-07-20 Advanced New Technologies Co., Ltd. Signature verification for a blockchain ledger
CN110163006B (zh) * 2019-04-18 2020-07-07 阿里巴巴集团控股有限公司 一种块链式账本中的签名验证方法、系统、装置及设备
CN111049169B (zh) * 2019-12-06 2021-04-16 星络智能科技有限公司 一种蓄电管理方法、计算机设备及可读存储介质
CN110807714A (zh) * 2019-12-09 2020-02-18 珠海格力电器股份有限公司 能源网络和交互方法
CN111064212A (zh) * 2019-12-24 2020-04-24 沃太能源南通有限公司 一种集群式自组织储能配电系统及构建方法
CN111224402A (zh) * 2020-03-13 2020-06-02 珠海格力电器股份有限公司 直流多微电网系统及控制方法
CN112994084A (zh) * 2021-02-05 2021-06-18 中国科学院电工研究所 一种模块化能量路由器系统
CN114530854A (zh) * 2021-12-28 2022-05-24 国网浙江省电力有限公司平湖市供电公司 一种多级能量路由器协同系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450454B2 (en) * 2011-05-31 2016-09-20 Cisco Technology, Inc. Distributed intelligence architecture with dynamic reverse/forward clouding
CN103354358A (zh) * 2013-06-15 2013-10-16 力德风力发电(江西)有限责任公司 一种具拓扑结构的能源互联网
CN105790273A (zh) * 2015-07-01 2016-07-20 湘潭大学 一种新能源微网互联功率路由方法及其装置
CN105902273A (zh) * 2016-04-11 2016-08-31 上海大学 一种基于人手尺偏动作的手功能康复定量评估方法
CN106655267B (zh) * 2016-12-26 2019-08-16 上海电力学院 一种考虑多微网互动的能源局域网及控制方法
CN106911149B (zh) * 2017-04-14 2019-11-12 许继集团有限公司 一种基于分层储能的主动配电网需求响应控制方法
CN207368748U (zh) * 2017-10-12 2018-05-15 珠海格力电器股份有限公司 需求侧能源互联系统、能源互联控制系统
CN107707025A (zh) * 2017-10-12 2018-02-16 珠海格力电器股份有限公司 需求侧能源互联系统、能源互联控制系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824163A (zh) * 2021-09-22 2021-12-21 成都星宇融科电力电子股份有限公司 一种能量路由器及其控制方法

Also Published As

Publication number Publication date
WO2019072290A3 (zh) 2019-05-16
CN107707025A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2019072290A2 (zh) 需求侧能源互联系统、能源互联控制系统
CN110416998B (zh) 一种基于虚拟发电厂的地区复杂配网调度控制管理系统
Zhao et al. Distributed model predictive control strategy for islands multimicrogrids based on noncooperative game
Hernández et al. A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants
Binding et al. Electric vehicle fleet integration in the Danish EDISON project-a virtual power plant on the island of Bornholm
US20040263116A1 (en) Intelligent distributed energy storage system for demand side power management
CN103181144A (zh) 微电网控制系统
Nordman et al. DC Local Power Distribution with microgrids and nanogrids
Klaimi et al. A novel loss-based energy management approach for smart grids using multi-agent systems and intelligent storage systems
Werth et al. Evaluation of centralized and distributed microgrid topologies and comparison to Open Energy Systems (OES)
Igder et al. Service restoration through microgrid formation in distribution networks: A review
CN207368748U (zh) 需求侧能源互联系统、能源互联控制系统
Ferreira et al. Extension of holonic paradigm to smart grids
Zadeh et al. IoT-based stochastic EMS using multi-agent system for coordination of grid-connected multi-microgrids
Ma et al. Decentralized robust optimal dispatch of user-level integrated electricity-gas-heat systems considering two-level integrated demand response
CN111371087A (zh) 一种多微网系统协调优化的交易策略和利益分配机制
Werth et al. Evaluation model for multi‐microgrid with autonomous DC energy exchange
Minhas et al. Two-Stage Multi-time Scale Energy Management & Control framework for Home Area Power Network
Gao et al. Green Energy Cloud-Taxonomy, Infrastructure, Platform, and Services
Penya et al. ENERGOS: Integral smart grid management
Abdel-Fattah et al. A review of the holonic architecture for the smart grids and the self-healing application
Mendicino et al. An IT platform for the management of a Power Cloud community leveraging IoT, data ingestion, data analytics and blockchain notarization
Mthethwa et al. Development of Optimal Algorithm to Interconnect Multiple Microgrids in an Agricultural-based Remote Community
Kong et al. Future distribution system architecture in the uk
Tina et al. Aggregation Platform to Maximize the Utilization of Distributed Energy Resources' Flexibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865831

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865831

Country of ref document: EP

Kind code of ref document: A2