WO2019071755A1 - 煤层突出危险性随钻测试方法及装置 - Google Patents

煤层突出危险性随钻测试方法及装置 Download PDF

Info

Publication number
WO2019071755A1
WO2019071755A1 PCT/CN2017/113132 CN2017113132W WO2019071755A1 WO 2019071755 A1 WO2019071755 A1 WO 2019071755A1 CN 2017113132 W CN2017113132 W CN 2017113132W WO 2019071755 A1 WO2019071755 A1 WO 2019071755A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling
coal seam
gas
sensor
pressure
Prior art date
Application number
PCT/CN2017/113132
Other languages
English (en)
French (fr)
Inventor
王恩元
李忠辉
欧建春
邱黎明
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US16/615,013 priority Critical patent/US10947842B2/en
Priority to AU2017435485A priority patent/AU2017435485B2/en
Publication of WO2019071755A1 publication Critical patent/WO2019071755A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/46Data acquisition
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/124Units with longitudinally-spaced plugs for isolating the intermediate space
    • E21B33/1243Units with longitudinally-spaced plugs for isolating the intermediate space with inflatable sleeves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/127Packers; Plugs with inflatable sleeve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/52Structural details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
    • G01V11/005Devices for positioning logging sondes with respect to the borehole wall
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/52Structural details
    • G01V2001/526Mounting of transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2200/00Details of seismic or acoustic prospecting or detecting in general
    • G01V2200/10Miscellaneous details
    • G01V2200/16Measure-while-drilling or logging-while-drilling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/121Active source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/129Source location
    • G01V2210/1299Subsurface, e.g. in borehole or below weathering layer or mud line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/14Signal detection
    • G01V2210/142Receiver location
    • G01V2210/1429Subsurface, e.g. in borehole or below weathering layer or mud line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/622Velocity, density or impedance
    • G01V2210/6222Velocity; travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction

Definitions

  • the invention relates to a coal seam protruding danger testing method and device, in particular to a coal seam protruding danger drilling while testing method and device, belonging to the field of coal mining and coal mine safety.
  • Deep coal seam mining faces the threat of high gas, coal and gas outburst (hereinafter referred to as “prominent”). More than 50% of the original state-owned key coal mines in China are affected by this, and as the mining depth increases, the ground stress and gas pressure increase. The dangers are becoming more serious and complicated. Outburst risk identification, regional hazard detection, regional hazard prediction, outburst risk prediction and prevention of outburst measures need to test and analyze the outstanding risk of coal seams. At present, the work of identifying and detecting the danger of coal seams, detecting and regional prediction, and testing the regional anti-burst measures are mainly carried out by testing and analyzing the main indicators such as coal seam gas pressure and gas content.
  • the coal seam gas content and other parameters are mainly tested by sampling.
  • the coal seam gas pressure is mainly obtained by the sealing balance test method or the coal seam gas content backcalculation.
  • the sampling process of the coal seam gas content test is more complicated.
  • the sampling process of the sampling method, the sampling time, the sampling method, the representativeness of the sampling location and the back calculation of the initial loss are accurate. Sexual influence is greater.
  • the drilling method of the drilling method is very popular, and the gas content of the coal seam is quickly tested, the sampling point is worse, the sampling time length is lower, and the test error is large.
  • the verification of regional anti-burst measures and the prominent risk of the working face are mainly determined by the indicators such as the gas desorption index of the drill cuttings or the initial velocity of the gas emission from the borehole.
  • Drilling indexes such as drill gas desorption index or initial gas velocity of borehole gas are mainly tested after the shallow hole of the working face is drilled.
  • These methods all have the disadvantages of few measuring points, and the accuracy of coal seam gas and prominent hazard distribution is poor, and the maximum value is easily missed. At the same time, these methods have fewer test parameters and do not fully reflect the indicators that highlight the dangers.
  • Various coal seam mechanical property testing methods also have problems such as few measuring points, long testing time, and complicated process, and the drilling while drilling test is not realized. Therefore, it is currently impossible to test the outstanding risk of coal seams around the place.
  • the present invention is directed to the demand and the problems existing in the prior art, and provides a device and method capable of testing the risk of coal seams while drilling, real-time and on-site, solving the current gas parameter test points, less data, testing There are few indicators, coal seam gas parameters and outstanding hazard can not be drilled, on-site, real-time testing, coal seam outburst risk testing time is long, the process is complex and so on.
  • the coal seam protruding danger drilling while testing device of the invention comprises a cabin body, a pressure sensor, a temperature sensor, a wave velocity testing module including a vibration source and a vibration absorber, an electromagnetic sensor, an acoustic wave sensor, a sealing module, a flow testing module , a communication interface, a monitoring control module, and a power compartment with a charging interface that can be quickly disassembled and installed, the power supply compartment supplying power to the monitoring control module and the respective power modules or sensors connected to the monitoring control module;
  • the body is fixed with a plurality of sensors and modules, a hollow water hole, a through hole, a two-head sealed drill bit and a beryllium while drilling and a first drill pipe; pressure sensor, temperature sensor, flow test module, wave speed test
  • the module, the electromagnetic sensor, the acoustic wave sensor, the power supply compartment, and the communication interface are respectively connected to corresponding interfaces of the monitoring control module.
  • the sealing module comprises two sealed capsules wrapped around the outer edge of the cabin, a main waterway switch installed at the front end of the hollow water pipe, and a shut-off function when sealing the hole, and a sealed capsule waterway switch; one of the two sealed capsules
  • the vibration source of the wave velocity test module is installed on the sealed capsule, and the vibration wave is emitted.
  • the other sealed capsule is equipped with a vibration pickup device to receive the vibration wave, and the measurement point is calculated by the distance between the vibration source and the vibration pickup device and the signal time difference. Coal body wave velocity.
  • the monitoring control module includes various sensors and module interfaces, a data memory, a clock, a monitoring control CPU, and a monitoring control circuit.
  • the sensors include an HD-LUGB flow sensor, a GWD90 type temperature sensor, a GZY25W type pressure sensor, and a GS18 acoustic emission sensor. All kinds of sensors are connected in parallel, operate independently, and do not affect each other. They are connected with the interface of the monitoring control module through their own interfaces, and have monitoring signal conversion, trigger data acquisition, timing data acquisition, data analysis and control functions;
  • the flow test module includes an air flow hole and a gas path switch and a flow sensor installed in the air flow hole.
  • the pressure sensor, the air flow hole and the temperature sensor are each at least two, and each of the acoustic wave sensor and the electromagnetic radiation sensor is one, and is evenly distributed around the cabin.
  • the drill bit Before drilling the coal seam, install the drill bit at the front end of the tank, and install the first drill pipe at the rear end.
  • the first drill pipe is connected to the Drilling Inclinometer capable of measuring and recording the position of the drill bit, and the power is turned on, and the drill bit is drilled into the borehole. Drilling, when the monitoring acoustic signal recognizes that drilling is started, the water flow flow Qsi , the pressure P i , the temperature T i , the electromagnetic radiation E i and the acoustic signal A i are recorded in real time;
  • the main waterway switch on the cabin is in the open state, the water flows out from the drill bit, and the drilling and chip removal are performed normally; the sealing module action is controlled by the monitoring control CPU; when the acoustic signal is detected, the drilling is stopped.
  • the main waterway switch is turned off, the sealing hole water switch is opened, and the high pressure water enters the sealing capsule.
  • the capsule sealing is completed, the water supply is stopped, the sealing capsule water switch is closed, and the closed hole is closed.
  • the bottom pressure measuring chamber the coal wall of the borehole gushes out the gas to make the pressure Pi in the bottom of the hole bottom increase continuously; at the same time, the wave velocity of the coal body is automatically tested, and the vibration signal is generated by the vibration source through the monitoring and control of the CPU, and is received by the vibration pickup device.
  • the vibration wave signal calculates and records the coal body wave velocity V i in real time; during this period, the added drill pipe is replaced at the rig; the time limit is measured, the gas circuit switch is turned on, and the gas flow rate Q wi is measured and recorded in real time; the test flow time ends. after less than a set value or flow rate, gas flow stops recording Q wi, a shutoff switch; turning on the switch plugged capsule water, drainage plugging automatic capsule contraction, capsules After shrinking water supply in place continue drilling;
  • the Drilling Test Equipment obtains temperature, pressure, water flow, gas flow, coal wave velocity, electromagnetic radiation, acoustic wave parameters or waveform data at different times; the monitoring device measures the gas pressure and changes in the chamber during the stop drilling, gas surge The velocity, temperature and its variation law are calculated to determine the initial desorption gas volume, coal seam gas content and coal seam gas pressure at different time and different positions.
  • the wave velocity and electromagnetic radiation signal are used to determine the coal body stress at the measuring point; And acoustic signal characteristics determine the lithology and hardness of the medium; through coal body stress, coal seam gas content, coal seam gas pressure, Temperature determines the outstanding danger of the coal seam;
  • the drill pipe When the high pressure water enters the sealed capsule, the drill pipe is rotated 1-2 times at a low speed for better sealing.
  • the present invention can test gas and coal seam parameters and highlight hazard while drilling, real-time and on-site, without sampling test, avoiding sampling error caused by sampling difficulty and sampling process; achieving multiple parameters Drilling, on-site, real-time testing of coal seam outburst danger, solving problems such as less coal seam outburst risk test points, less data, less test indicators, long test time, and complicated process.
  • the method has the advantages of simple method, convenient operation and good effect, and has wide practicality in the technical field.
  • FIG. 1 is a block diagram of the apparatus of the present invention
  • Figure 2 is a floor plan of the present invention.
  • Airflow hole 2 refers to the hole through which 3 and 4 pass.
  • the coal seam protruding danger while drilling test device of the present invention mainly comprises a cabin 20 , a pressure sensor 17 , a temperature sensor 16 , a wave velocity test module including the vibration source 5 and the vibration picker 6 , and an electromagnetic sensor 19 .
  • the power module or sensor connected to the control module is powered;
  • the cabin 20 is fixed with a plurality of sensors and modules, hollow water holes, through holes, and two ends are respectively sealed and connected to the drill bit 1 and the while-drilling inclinometer 24 and The rod of the first drill rod 23;
  • the pressure sensor 17, the temperature sensor 16, the flow test module, the wave speed test module, the electromagnetic sensor 19, the acoustic wave sensor 18, the power supply compartment 11, and the communication interface 9 are respectively connected to corresponding interfaces of the monitoring control module.
  • the sealing module comprises two sealed capsules 14 wrapped around the outer edge of the cabin 20, a main waterway switch 15 installed at the front end of the hollow water pipe, and a closing function when sealing the hole, and a sealed capsule waterway switch 8;
  • a vibration source 5 of the wave velocity test module is mounted on one of the hole-sealing capsules 14 to emit a vibration wave, and the other sealed capsule is provided with a vibration pickup 6 for receiving a vibration wave, passing through the vibration source 5 and the vibration pickup 6
  • the distance between the distance and the signal time difference is used to calculate the coal body velocity at the measuring point, as shown in Figure 2.
  • the monitoring control module 12 includes various types of sensors and module interfaces, data storage, clock, monitoring and control CPU And monitoring and control circuit; wherein the sensor comprises HD-LUGB flow sensor, GWD90 type temperature sensor, GZY25W type pressure sensor and GS18 acoustic emission sensor, all kinds of sensors are connected in parallel, operate independently, without affecting each other, through their own interfaces and monitoring control
  • the modules are connected together with monitoring signal conversion, trigger data acquisition, timing data acquisition, data analysis and control functions;
  • the flow test module includes an air flow hole 2 and a gas path switch 4 and a flow rate sensor 3 installed in the air flow hole.
  • the pressure sensor 17, the air flow hole 2, and the temperature sensor 16 are each at least two, and each of the acoustic wave sensor 18 and the electromagnetic radiation sensor 19 is one, and is evenly distributed around the cabin 20.
  • the model of the pressure sensor is GZY25W; the model of the temperature sensor is GWD90.
  • the drill bit 1 Before the drilling of the coal seam, the drill bit 1 is installed at the front end of the tank body 20, the first drill pipe 23 is installed at the rear end, and the rocking edge inclinometer 24 capable of measuring and recording the position of the drill bit 1 is connected to the first drill pipe 23, and is opened.
  • the power source the drill bit 1 drills into the borehole 22, and when the acoustic wave sensor 18 monitors the acoustic wave signal to recognize that the drilling is started, the water flow flow rate Qsi , the pressure P i , the temperature T i , the electromagnetic radiation E i and the acoustic wave signal A i are recorded in real time.
  • the power supply compartment 11 supplies power to the monitoring control module and the various electrical modules or sensors connected thereto;
  • the main waterway switch 15 on the cabin 20 is in an open state, water flows out from the drill bit, and normal drilling and chip removal; the sealing module action is controlled by the monitoring control CPU; when the detected acoustic signal is detected to stop After drilling and retreating, stop the main waterway switch 15, open the sealed capsule waterway switch 8, and the high pressure water enters the sealing capsule 14, during which the drill pipe can be rotated 1-2 times at a low speed for better sealing and stable water pressure.
  • the Drilling Test Equipment obtains temperature, pressure, water flow, gas flow, coal wave velocity, electromagnetic radiation, acoustic wave parameters or waveform data at different times; the monitoring device measures the gas pressure and changes in the chamber during the stop drilling, gas surge The velocity, temperature and its variation law are calculated to determine the initial desorption gas volume, coal seam gas content and coal seam gas pressure at different time and different positions.
  • the wave velocity and electromagnetic radiation signal are used to determine the coal body stress at the measuring point; And acoustic signal characteristics determine the lithology and hardness of the medium; through coal body stress, coal seam gas content, coal seam gas pressure, Temperature determines the outstanding danger of the coal seam;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

公开了一种煤层突出危险性随钻测试方法及装置,适用于突出危险性预测、瓦斯抽采效果评价等。该装置包括舱体(20)、压力传感器(17)、温度传感器(16)、流量传感器(3)、电磁传感器(19)、声波传感器(18)、波速测试模块、监测控制模块(12)、电源舱(11)和通讯接口(9),安装于钻头(1)与随钻测斜仪(24)或第一钻杆(23)之间。通过对煤层进行钻孔,并随钻实时测试瓦斯参数、岩性及煤层信息,实现对煤层突出危险性的随钻随地测试。煤层钻孔及停钻更换钻头期间,能够实时监测并记录测点处气体压力、温度、流速、煤体波速及电磁辐射、声波信号,分析计算测点处瓦斯压力、瓦斯含量、初始解吸瓦斯量、介质岩性、波速、煤体应力和煤层突出危险性。具有无需取样测试、随钻随地测试、多参数同步测试综合评价等优点。

Description

煤层突出危险性随钻测试方法及装置 技术领域
本发明涉及一种煤层突出危险性测试方法及装置,特别是一种煤层突出危险性随钻测试方法及装置,属于煤炭开采及煤矿安全领域。
背景技术
深部煤层开采面临着高瓦斯、煤与瓦斯突出(以下简称突出)危险性的威胁,我国原国有重点煤矿中50%以上矿井受此影响,而且随采深增大,地应力和瓦斯压力增大,突出危险性日趋严重及复杂。突出危险性鉴定、区域危险性探测、区域危险性预测、工作面突出危险性预报和防突措施效果检验等需要对煤层突出危险性进行测试和分析。目前煤层突出危险性鉴定、探测和区域预测、区域防突措施检验等工作主要通过测试分析煤层瓦斯压力和瓦斯含量等主要指标进行。煤层瓦斯含量等参数测试主要采用取样测试,煤层瓦斯压力主要采用封孔平衡测试方法或用煤层瓦斯含量反算得到。目前煤层瓦斯含量测试较准确的定点取样测定方法的取样过程比较复杂,退钻取样过程、取样时间长短、取样方式、取样地点代表性及初始损失量的反算等因素对煤层瓦斯含量测值准确性影响较大。目前应用非常普遍的钻孔取屑法煤层瓦斯含量快速测试,取样定点性更差,取样时间长度准确性更低,测试误差大。区域防突措施验证和工作面(局部)突出危险性主要采用钻屑瓦斯解吸指标或钻孔瓦斯涌出初速度等指标进行测试判定。钻屑瓦斯解吸指标或钻孔瓦斯涌出初速度等钻孔指标主要在工作面浅孔退钻后测试。这些方法均存在测点少的缺点,对煤层瓦斯及突出危险性分布反映准确性差,易漏掉最大值。同时,这些方法的测试参数较少,不能全面反映突出危险性的各项指标。各种煤层力学特性测试方法也存在测点少、测试时间长、过程复杂等问题,未实现随钻测试。因此,目前无法测试随钻各地的煤层突出危险性。
如何能快速、高效、就地、随钻实时测试煤层突出危险性,是急需解决的方法和技术问题,应用需求及前景非常广泛,也是对煤层突出危险性测试方法的巨大革命。
发明内容
技术问题:本发明是针对需求及现有技术中存在的问题,提供一种能够随钻、实时、就地测试煤层突出危险性的装置及方法,解决目前瓦斯参数测试点少、数据少,测试指标少,煤层瓦斯参数及突出危险性无法随钻、就地、实时测试,煤层突出危险性测试时间长、过程复杂等问题。
技术方案:本发明的煤层突出危险性随钻测试装置,包括舱体、压力传感器、温度传感器、包含振源和拾振器的波速测试模块、电磁传感器、声波传感器、封孔模块、流量测试模块、通讯接口、监测控制模块和带有充电接口且可快速拆卸与安装的电源舱,所述的电源舱为监测控制模块及与监测控制模块连接的各用电模块或传感器供电;所述的舱体为固定有多种传感器和模块、中空过水孔、过线孔、两头分别密封连接钻头和随钻测斜仪和第一钻杆的杆体;压力传感器、温度传感器、流量测试模块、波速测试模块、电磁传感器、声波传感器、电源舱、通讯接口分别与监测控制模块的相应接口连接。
所述的封孔模块包括包裹在舱体外缘的两个封孔胶囊、安装于中空水管前端、封孔时起截止作用的主水路开关和封孔胶囊水路开关;两个封孔胶囊中的一个封孔胶囊上安装有波速测试模块的振源,发射振动波,另一个封孔胶囊上安装有拾振器,接收振动波,通过振源和拾振器间的距离和信号时间差计算测点处煤体波速。
所述监测控制模块包括各类传感器及模块接口、数据存储器、时钟、监测控制CPU及监测控制电路;其中,传感器包括HD-LUGB流量传感器、GWD90型温度传感器、GZY25W型压力传感器和GS18声发射传感器,各类传感器并联,独立运行,互不影响,通过各自本身的接口与监测控制模块的接口连接在一起,具有监测信号转换、触发数据采集、定时数据采集、数据分析和控制功能;
所述的流量测试模块包括气流孔和安装于气流孔内的气路开关和流量传感器。
所述的压力传感器、气流孔、温度传感器各至少为2个,声波传感器和电磁辐射传感器各为1个,均匀分布在舱体的四周。
实施上述煤层突出危险性随钻测试装置的测试方法,对瓦斯参数、岩性及煤层信息进行随钻自动测试,通过多参数随钻测试装置在煤层钻孔及停钻更换钻头期间实时自动监测孔底附近气体压力、温度、流量、煤体波速、电磁辐射、声波信号及其变化,分析计算测点处煤层初始解吸瓦斯量、煤层瓦斯压力、瓦斯含量、介质岩性与强度和煤体应力,分析判断煤层突出危险性;具体步骤如下
a.在煤层钻孔前,在舱体的前端安装钻头,后端安装第一钻杆,第一钻杆连接能够测量并记录钻头位置的随钻测斜仪,开启电源,钻头向钻孔内钻进,当监测声波信号识别出开始钻进后,实时记录水流流量Qsi、压力Pi、温度Ti、电磁辐射Ei和声波信号Ai
b.正常钻进时,舱体上的主水路开关处于开启状态,水从钻头流出,正常钻进和排屑;封孔模块动作由监测控制CPU控制;当监测到声波信号识别出停止钻进并退钻停止后,关闭主水路开关,开启封孔胶囊水路开关,高压水进入封孔胶囊,水压稳定且无流量时表明胶囊封孔完毕,停止供水,封孔胶囊水路开关关闭,封闭孔底测压室,钻孔煤壁涌出瓦斯使孔底测压室内压力Pi不断升高;同时自动测试煤体波速,通过监测控制CPU控制,由振源产生振动波信号,由拾振器接收该振动波信号,实时计算并记录煤体波速Vi;在此期间在钻机处更换添加钻杆;限定时间测压结束,开启气路开关,实时测定并记录瓦斯流量Qwi;测试流量时间结束或流量小于某一设定值后,停止记录瓦斯流量Qwi,关闭气路开关;开启封孔胶囊水路开关,封孔胶囊自动收缩排水,胶囊收缩到位后给水继续钻进;
c.钻进到设计位置后,停止钻进;瓦斯流量测试结束,且声波传感器较长时间接收不到钻进信号时,停止采集及监测各信号;
随钻测试装置得到了不同时间的温度、压力、水流流量、瓦斯流量、煤体波速、电磁辐射、声波各指标参数或波形数据;监测装置根据停钻期间测压室内瓦斯压力及变化、瓦斯涌出速度、温度及其变化规律等计算确定不同时间及不同位置处的煤层初始解吸瓦斯量、煤层瓦斯含量和煤层瓦斯压力;通过波速和电磁辐射信号,确定测点处的煤体应力;通过波速和声波信号特征确定介质岩性与硬度;通过煤体应力、煤层瓦斯含量、煤层瓦斯压力、 温度确定煤层突出危险性;
d.退出钻杆,取下随钻测试装置,进行数据通讯,通讯后,在计算机中,结合随钻测斜仪的位置数据,即可确定钻孔内不同位置处的煤层初始解吸瓦斯量、煤层瓦斯压力、煤层瓦斯含量、介质岩性、煤体波速、煤体应力和煤层突出危险性;
e.重复步骤a-d,进行下一钻孔的测试。
当高压水进入封孔胶囊期间将钻杆低速转动1-2圈,以便更好密封。
在进行下一个钻孔的测试之前,给电源充电,或更换电源模块。
有益效果:由于采用了上述技术方案,本发明能够随钻、实时、就地测试瓦斯及煤层参数及突出危险性,无需取样测试,避免了取样难及取样过程造成的测试误差;实现了多参数随钻、就地、实时测试煤层突出危险性,解决了煤层突出危险性测试点少、数据少,测试指标少,测试时间长、过程复杂等问题。其方法简单,操作方便,效果好,在本技术领域内具有广泛的实用性。
附图说明
图1是本发明的装置构成图;
图2是本发明的现场布置图。
图中:1-钻头;2-气流孔;3-流量传感器;4-气路开关;5-振源;6-拾振器;7-耐磨片;8-封孔胶囊水路开关;9-通讯接口;10-充电接口;11-电源仓;12-监测控制模块;13-过线孔;14-封孔胶囊;15-主水路开关;16-温度传感器;17-压力传感器;18-声波传感器;19-电磁传感器;20-舱体;21-测压室;22-钻孔;23-第一钻杆;24-随钻测斜仪。
注:气流孔2是指3、4通过的孔。
具体实施方式
下面结合附图中的实施例对本发明作进一步的描述:
如图1所示,本发明的煤层突出危险性随钻测试装置,主要由舱体20、压力传感器17、温度传感器16、包含振源5和拾振器6的波速测试模块、电磁传感器19、声波传感器18、封孔模块、流量测试模块、通讯接口9、监测控制模块12和带有充电接口且可快速拆卸与安装的电源舱11,所述的电源舱11为监测控制模块12及与监测控制模块连接的各用电模块或传感器供电;所述的舱体20为固定有多种传感器和模块、中空过水孔、过线孔、两头分别密封连接钻头1和随钻测斜仪24和第一钻杆23的杆体;压力传感器17、温度传感器16、流量测试模块、波速测试模块、电磁传感器19、声波传感器18、电源舱11、通讯接口9分别与监测控制模块的相应接口连接。
所述的封孔模块包括包裹在舱体20外缘的两个封孔胶囊14、安装于中空水管前端、封孔时起截止作用的主水路开关15和封孔胶囊水路开关8;两个封孔胶囊14中的一个封孔胶囊上安装有波速测试模块的振源5,发射振动波,另一个封孔胶囊上安装有拾振器6,接收振动波,通过振源5和拾振器6间的距离和信号时间差计算测点处煤体波速,如图2所示。
所述监测控制模块12包括各类传感器及模块接口、数据存储器、时钟、监测控制CPU 及监测控制电路;其中,传感器包括HD-LUGB流量传感器、GWD90型温度传感器、GZY25W型压力传感器和GS18声发射传感器,各类传感器并联,独立运行,互不影响,通过各自本身的接口与监测控制模块的接口连接在一起,具有监测信号转换、触发数据采集、定时数据采集、数据分析和控制功能;
所述的流量测试模块包括气流孔2和安装于气流孔内的气路开关4和流量传感器3。
所述的压力传感器17、气流孔2、温度传感器16各至少为2个,声波传感器18和电磁辐射传感器19各为1个,均匀分布在舱体20的四周。压力传感器的型号为GZY25W;温度传感器的型号为GWD90。
实施上述煤层突出危险性随钻测试装置的测试方法,对瓦斯参数、岩性及煤层信息进行随钻自动测试,通过多参数随钻测试装置在煤层钻孔及停钻更换钻头期间实时自动监测孔底附近气体压力、温度、流量、煤体波速、电磁辐射、声波信号及其变化,分析计算测点处煤层初始解吸瓦斯量、煤层瓦斯压力、瓦斯含量、介质岩性与强度和煤体应力,分析判断煤层突出危险性;具体步骤如下
a.在煤层钻孔前,在舱体20的前端安装钻头1,后端安装第一钻杆23,在第一钻杆23连接能够测量并记录钻头1位置的随钻测斜仪24,开启电源,钻头1向钻孔22内钻进,当声波传感器18监测声波信号识别出开始钻进后,实时记录水流流量Qsi、压力Pi、温度Ti、电磁辐射Ei和声波信号Ai;随钻测试装置使用过程中,电源舱11为监测控制模块及与其连接的各用电模块或传感器供电;
b.正常钻进时,舱体20上的主水路开关15处于开启状态,水从钻头流出,正常钻进和排屑;封孔模块动作由监测控制CPU控制;当监测到声波信号识别出停止钻进并退钻停止后,关闭主水路开关15,开启封孔胶囊水路开关8,高压水进入封孔胶囊14,期间可将钻杆低速转动1-2圈,以便更好密封,水压稳定且无流量时表明胶囊14封孔完毕,停止供水,封孔胶囊水路开关8关闭,封闭孔底测压室21,钻孔22煤壁涌出瓦斯使孔底测压室21内压力Pi不断升高;同时自动测试煤体波速,通过监测控制CPU控制,由振源5产生振动波信号,由拾振器6接收该振动波信号,实时计算并记录煤体波速Vi;在此期间在钻机处更换添加钻杆23;限定时间测压结束,开启气路开关4,实时测定并记录瓦斯流量Qwi;测试流量时间结束或流量小于某一设定值后,停止记录瓦斯流量Qwi,关闭气路开关4;开启封孔胶囊水路开关8,封孔胶囊14自动收缩排水,胶囊14收缩到位后给水继续钻进;当高压水进入封孔胶囊14期间将钻杆低速转动1-2圈,以便更好密封。
c.钻进到设计位置后,停止钻进;瓦斯流量测试结束,且声波传感器18较长时间接收不到钻进信号时,停止采集及监测各信号;
随钻测试装置得到了不同时间的温度、压力、水流流量、瓦斯流量、煤体波速、电磁辐射、声波各指标参数或波形数据;监测装置根据停钻期间测压室内瓦斯压力及变化、瓦斯涌出速度、温度及其变化规律等计算确定不同时间及不同位置处的煤层初始解吸瓦斯量、煤层瓦斯含量和煤层瓦斯压力;通过波速和电磁辐射信号,确定测点处的煤体应力;通过波速和声波信号特征确定介质岩性与硬度;通过煤体应力、煤层瓦斯含量、煤层瓦斯压力、 温度确定煤层突出危险性;
d.退出钻杆,取下随钻测试装置,进行数据通讯,通讯后,在计算机中,结合随钻测斜仪24的位置数据,即确定了钻孔22内不同位置处的煤层初始解吸瓦斯量、煤层瓦斯压力、煤层瓦斯含量、介质岩性、煤体波速、煤体应力和煤层突出危险性;
e.重复步骤a-d,进行下一钻孔的测试;在进行下一个钻孔的测试之前,给电源充电,或更换电源模块。

Claims (8)

  1. 一种煤层突出危险性随钻测试装置,其特征在于:该装置包括舱体(20)、压力传感器(17)、温度传感器(16)、包含振源(5)和拾振器(6)的波速测试模块、电磁传感器(19)、声波传感器(18)、封孔模块、流量测试模块、通讯接口(9)、监测控制模块(12)和带有充电接口且可快速拆卸与安装的电源舱(11),所述的电源舱(11)为监测控制模块(12)及与监测控制模块连接的各用电模块或传感器供电;所述的舱体(20)为固定有多种传感器和模块、中空过水孔、过线孔、两头分别密封连接钻头(1)和随钻测斜仪(24)和第一钻杆(23)的杆体;压力传感器(17)、温度传感器(16)、流量测试模块、波速测试模块、电磁传感器(19)、声波传感器(18)、电源舱(11)、通讯接口(9)分别与监测控制模块的相应接口连接。
  2. 一种根据权利要求1所述的煤层突出危险性随钻测试装置,其特征在于:所述的封孔模块包括包裹在舱体(20)外缘的两个封孔胶囊(14)、安装于中空水管前端、封孔时起截止作用的主水路开关(15)和封孔胶囊水路开关(8);两个封孔胶囊(14)中的一个封孔胶囊上安装有波速测试模块的振源(5),发射振动波,另一个封孔胶囊上安装有拾振器(6),接收振动波,通过振源(5)和拾振器(6)间的距离和信号时间差计算测点处煤体波速。
  3. 一种根据权利要求1所述的煤层突出危险性随钻测试装置,其特征在于:所述监测控制模块(12)包括各类传感器及模块接口、数据存储器、时钟、监测控制CPU及监测控制电路;其中,传感器包括HD-LUGB流量传感器、GWD90型温度传感器、GZY25W型压力传感器和GS18声发射传感器,各类传感器并联,独立运行,互不影响,通过各自本身的接口与监测控制模块的接口连接在一起,具有监测信号转换、触发数据采集、定时数据采集、数据分析和控制功能;
  4. 一种根据权利要求1所述的煤层突出危险性随钻测试装置,其特征在于:所述的流量测试模块包括气流孔(2)和安装于气流孔内的气路开关(4)和流量传感器(3)。
  5. 一种根据权利要求1所述的煤层突出危险性随钻测试装置,其特征在于:所述的压力传感器(17)、气流孔(2)、温度传感器(16)各至少为2个,声波传感器(18)和电磁辐射传感器(19)各为1个,均匀分布在舱体(20)的四周。
  6. 实施权利要求1所述煤层突出危险性随钻测试装置的测试方法,其特征在于:对瓦斯参数、岩性及煤层信息进行随钻自动测试,通过多参数随钻测试装置在煤层钻孔及停钻更换钻头期间实时自动监测孔底附近气体压力、温度、流量、煤体波速、电磁辐射、声波信号及其变化,分析计算测点处煤层初始解吸瓦斯量、煤层瓦斯压力、瓦斯含量、介质岩性与强度和煤体应力,分析判断煤层突出危险性;具体步骤如下
    a.在煤层钻孔前,在舱体(20)的前端安装钻头(1),后端安装第一钻杆(23),第一钻杆(23)连接能够测量并记录钻头(1)位置的随钻测斜仪(24),开启电源,钻头(1)向钻孔(22)内钻进,当监测声波信号识别出开始钻进后,实时记录水流流量Qsi、压力Pi、温度Ti、电磁辐射Ei和声波信号Ai
    b.正常钻进时,舱体(20)上的主水路开关(15)处于开启状态,水从钻头流出,正常钻进和排屑;封孔模块动作由监测控制CPU控制;当监测到声波信号识别出停止钻进并退钻停止后,关闭主水路开关(15),开启封孔胶囊水路开关(8),高压水进入封孔胶囊(14),水压稳定且无流量时表明胶囊(14)封孔完毕,停止供水,封孔胶囊水路开关(8)关闭,封闭孔底测压室(21),钻孔(22)煤壁涌出瓦斯使孔底测压室(21)内压力Pi不断升高;同时自动测试煤体波速,通过监测控制CPU控制,由振源(5)产生振动波信号,由拾振器(6)接收该振动波信号,实时计算并记录煤体波速Vi;在此期间在钻机处更换添加钻杆;限定时间测压结束,开启气路开关(4),实时测定并记录瓦斯流量Qwi;测试流量时间结束或流量小于某一设定值后,停止记录瓦斯流量Qwi,关闭气路开关(4);开启封孔胶囊水路开关(8),封孔胶囊(14)自动收缩排水,胶囊(14)收缩到位后给水继续钻进;
    c.钻进到设计位置后,停止钻进;瓦斯流量测试结束,且声波传感器(18)较长时间接收不到钻进信号时,停止采集及监测各信号;
    随钻测试装置得到了不同时间的温度、压力、水流流量、瓦斯流量、煤体波速、电磁辐射、声波各指标参数或波形数据;监测装置根据停钻期间测压室内瓦斯压力及变化、瓦斯涌出速度、温度及其变化规律等计算确定不同时间及不同位置处的煤层初始解吸瓦斯量、煤层瓦斯含量和煤层瓦斯压力;通过波速和电磁辐射信号,确定测点处的煤体应力;通过波速和声波信号特征确定介质岩性与硬度;通过煤体应力、煤层瓦斯含量、煤层瓦斯压力、温度确定煤层突出危险性;
    d.退出钻杆,取下随钻测试装置,进行数据通讯,通讯后,在计算机中,结合随钻测斜仪(24)的位置数据,即可确定钻孔(22)内不同位置处的煤层初始解吸瓦斯量、煤层瓦斯压力、煤层瓦斯含量、介质岩性、煤体波速、煤体应力和煤层突出危险性;
    e.重复步骤a-d,进行下一钻孔的测试。
  7. 根据权利要求6所述的测试方法,其特征在于:当高压水进入封孔胶囊(14)期间将钻杆低速转动1-2圈,以便更好密封。
  8. 根据权利要求6所述的测试方法,其特征在于:在进行下一个钻孔的测试之前,给电源充电,或更换电源模块。
PCT/CN2017/113132 2017-10-12 2017-11-27 煤层突出危险性随钻测试方法及装置 WO2019071755A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/615,013 US10947842B2 (en) 2017-10-12 2017-11-27 Measurement-while-drilling method and device for assessing outburst risk of coal seam
AU2017435485A AU2017435485B2 (en) 2017-10-12 2017-11-27 Measurement-while-drilling method and device for assessing outburst risk of coal seam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710945322.7A CN107448188B (zh) 2017-10-12 2017-10-12 煤层瓦斯参数随钻测试方法及装置
CN201710945322.7 2017-10-12

Publications (1)

Publication Number Publication Date
WO2019071755A1 true WO2019071755A1 (zh) 2019-04-18

Family

ID=60498786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113132 WO2019071755A1 (zh) 2017-10-12 2017-11-27 煤层突出危险性随钻测试方法及装置

Country Status (4)

Country Link
US (1) US10947842B2 (zh)
CN (1) CN107448188B (zh)
AU (1) AU2017435485B2 (zh)
WO (1) WO2019071755A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608974A (zh) * 2019-10-15 2019-12-24 中煤科工集团重庆研究院有限公司 钻屑瓦斯解吸指标校验仪
CN111551624A (zh) * 2020-04-21 2020-08-18 山东科技大学 一种氢键破裂预测煤岩冲击地压装置及其预测方法
CN111579282A (zh) * 2020-05-28 2020-08-25 安徽理工大学 一种煤层原生co原位探测方法
CN112284965A (zh) * 2020-10-16 2021-01-29 中煤科工集团重庆研究院有限公司 一种煤巷掘进工作面钻孔流量模拟实验装置及方法
CN112324487A (zh) * 2020-10-20 2021-02-05 中煤科工集团重庆研究院有限公司 一种煤巷条带防突效果的双指标评价方法
CN112684755A (zh) * 2020-12-24 2021-04-20 煤炭科学技术研究院有限公司 一种集成式可编程多参量数据采集分析装置
CN113266347A (zh) * 2021-07-05 2021-08-17 中煤科工集团重庆研究院有限公司 一种近钻头煤层瓦斯参数随钻综合测量装置及方法
CN113484185A (zh) * 2021-07-19 2021-10-08 中国矿业大学 一种煤矿井下一体化测定瓦斯含量的定点取样装置及方法
CN113866380A (zh) * 2021-09-29 2021-12-31 中海石油(中国)有限公司 一种高煤阶煤层游离气含量测定装置及测定方法
CN114320164A (zh) * 2022-01-04 2022-04-12 中赟国际工程有限公司 一种煤矿瓦斯抽采钻孔用可调节钻头及其使用方法
CN114371096A (zh) * 2022-01-12 2022-04-19 平安煤炭开采工程技术研究院有限责任公司 一种井下煤样残余瓦斯含量快速测定方法与装置
CN114487125A (zh) * 2022-01-20 2022-05-13 平顶山天安煤业股份有限公司 一种用于确定煤体各向异性的三维监测综合方法
CN115522921A (zh) * 2022-11-25 2022-12-27 云南省交通发展投资有限责任公司 一种超深钻孔地应力测量系统及方法
CN116044361A (zh) * 2022-12-26 2023-05-02 重庆大学 基于孔底自发电激发的煤层水平长钻孔增透系统
CN116771277A (zh) * 2023-06-08 2023-09-19 华能云南滇东能源有限责任公司 一种瓦斯抽采定向钻孔系统及设备
CN117072095A (zh) * 2023-10-18 2023-11-17 山东省煤田地质局第一勘探队 一种煤层瓦斯含量测定随钻取芯装置及方法
CN118131341A (zh) * 2024-03-07 2024-06-04 中国矿业大学 急倾斜煤层中积水采空区电性多源地巷瞬变电磁探测方法
CN118639992A (zh) * 2024-08-12 2024-09-13 济宁矿业集团花园井田资源开发有限公司 一种用于矿山开采的钻孔设备

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107725029B (zh) * 2017-12-13 2023-06-06 河南理工大学 一种煤矿井下长钻孔瓦斯流量测试装置及方法
CN108661621A (zh) * 2018-04-28 2018-10-16 黑龙江工业学院 一种矿用本安型多参数记录仪
CN108896435A (zh) * 2018-07-18 2018-11-27 中煤科工集团重庆研究院有限公司 全自动随钻瓦斯含量快速测定装置
CN108693069B (zh) * 2018-08-13 2021-01-01 中煤科工集团重庆研究院有限公司 钻孔煤屑瓦斯解吸特征参数随钻测定装置
CN109403865B (zh) * 2018-12-20 2020-07-28 华北科技学院 煤层瓦斯参数随钻测试方法及装置
CN110145259A (zh) * 2019-05-31 2019-08-20 贵州大学 一种自动连续钻机
CN110145236A (zh) * 2019-05-31 2019-08-20 贵州大学 一种具有检测涌出量的钻头
CN110219692B (zh) * 2019-06-18 2020-09-01 中煤科工集团重庆研究院有限公司 利用煤层钻孔施工中瓦斯涌出数据反演突出主控参数的方法
CN110424949B (zh) * 2019-06-24 2021-06-22 中国矿业大学 煤层瓦斯参数随钻快速测试的反演计算方法
CN110308116A (zh) * 2019-07-01 2019-10-08 贵州大学 一种煤矿开采用便捷式瓦斯测量装置
CN110984957B (zh) * 2019-12-10 2023-03-10 内蒙古黄陶勒盖煤炭有限责任公司 煤炭开采井下钻孔工艺
CN111677495B (zh) * 2020-05-08 2023-08-15 中煤科工集团西安研究院有限公司 煤矿井下定向钻进随钻瓦斯测量装置、钻具及测量方法
CN111721912B (zh) * 2020-06-30 2023-02-03 贵州省煤矿设计研究院有限公司 一种快速测定煤层瓦斯压力与瓦斯含量的装置及方法
CN111636859B (zh) * 2020-07-09 2022-08-16 中煤科工集团重庆研究院有限公司 基于微破裂波检测的煤岩随钻自识别方法
CN111948645B (zh) * 2020-08-07 2024-09-27 武汉长盛煤安科技有限公司 煤矿巷道和隧道随钻钻孔雷达超前探测装置与方法
CN111982567B (zh) * 2020-08-17 2024-02-02 中煤科工集团重庆研究院有限公司 深孔反循环取样过程中瓦斯损失量补偿模型的构建方法
CN112267875B (zh) * 2020-10-22 2022-04-01 中国矿业大学 一种煤层水力冲孔最优出煤量确定方法
CN112461592B (zh) * 2020-11-05 2023-05-23 华北科技学院 一种用于采集煤层钻孔多种煤粉的装置
CN112523707B (zh) * 2020-12-03 2022-07-22 中煤科工集团重庆研究院有限公司 一种煤与瓦斯突出危险性随钻预测装置及其预测方法
CN112627794B (zh) * 2020-12-14 2022-05-20 重庆大学 一种酸化消突效果评判方法
CN112627895B (zh) * 2021-01-12 2024-02-02 中国石油大学(华东) 一种煤矿井下工作面突出预测多指标智能监测方法
CN112903519B (zh) * 2021-01-19 2023-08-22 河南理工大学 一种煤层瓦斯可解吸量快速测算系统及方法
CN113187550B (zh) * 2021-04-02 2022-02-08 中煤科工集团沈阳研究院有限公司 一种基于对比钻孔瓦斯流量曲线的煤与瓦斯突出预测方法
CN113107469B (zh) * 2021-05-06 2023-11-17 中煤科工集团西安研究院有限公司 一种井下长钻孔测定瓦斯压力装置及方法
CN114215507B (zh) * 2021-05-21 2023-11-17 华北科技学院(中国煤矿安全技术培训中心) 一种基于定向钻机的瓦斯压力测定装置及方法
CN113153258B (zh) * 2021-05-21 2022-09-23 上海亦又新能源科技有限公司 一种瓦斯抽采定向钻机的数字化监控管理系统和管理方法
CN113702374B (zh) * 2021-07-19 2023-08-01 中国煤炭地质总局勘查研究总院 一种矿井瓦斯探放设备
CN113640867B (zh) * 2021-07-23 2023-07-21 辽宁科技大学 一种涌水区域微震传感器的安装装置及安装方法
CN113567631A (zh) * 2021-07-26 2021-10-29 湖南科技大学 一种风排钻孔现场瓦斯含量测试方法及装置
CN113550707A (zh) * 2021-07-26 2021-10-26 中煤科工集团沈阳研究院有限公司 一种取样封孔测压钻具及取样封孔测压方法
CN113738340B (zh) * 2021-09-01 2024-07-19 苏州南智传感科技有限公司 一种钻孔回填进度实时监测装置及监测方法
CN113700477B (zh) * 2021-09-26 2024-01-05 太原理工大学 一种急倾斜采空区下部煤体瓦斯参数探测装置及方法
CN113982681B (zh) * 2021-10-26 2024-07-12 中煤西安设计工程有限责任公司 一种煤矿采空区大面积悬顶灾害自动监测预警方法及系统
CN114251087B (zh) * 2021-11-22 2023-09-26 煤炭科学技术研究院有限公司 基于钻孔瓦斯流量反演煤层瓦斯压力的测试方法与装置
CN114251084B (zh) * 2021-11-22 2023-09-15 煤炭科学技术研究院有限公司 一种随钻快速连续测量钻孔瓦斯流量的装置和方法
CN114412423A (zh) * 2021-12-22 2022-04-29 中煤科工集团西安研究院有限公司 一种碎软煤层瓦斯抽采顺层定向钻孔筛管下入装置及方法
CN114542151B (zh) * 2022-01-12 2022-11-11 中南大学 一种采煤工作面瓦斯抽采与顶板治理方法
CN114396240B (zh) * 2022-02-09 2023-05-30 贵州省矿山安全科学研究院有限公司 一种煤矿井下低温密闭煤芯钻取装置及方法
CN114646411B (zh) * 2022-03-14 2024-05-31 西安科技大学 一种智能无线多向连续钻孔应力监测装置
CN114753802A (zh) * 2022-04-18 2022-07-15 中煤科工生态环境科技有限公司 钻孔注浆装置和防吸风注浆方法
CN114994747A (zh) * 2022-07-07 2022-09-02 中国电建集团西北勘测设计研究院有限公司 一种重力式干孔声波探头
CN115288659B (zh) * 2022-07-21 2023-04-18 邵阳市水利水电勘测设计院 一种应用于水库大坝的定向穿管装置
CN115324482B (zh) * 2022-10-13 2023-02-24 中国煤炭科工集团有限公司 一种煤矿瓦斯深孔区域化抽采方法与装置
CN116752949B (zh) * 2023-07-04 2024-11-05 中南大学 岩体多维信息参数原位获取装置及其方法
CN116877203B (zh) * 2023-08-23 2024-03-12 河南理工大学 一种煤与瓦斯突出监测预警装置
CN117569796B (zh) * 2024-01-04 2024-07-09 中煤科工集团沈阳研究院有限公司 一种矿井内瓦斯压力动态监测装置
CN118110507B (zh) * 2024-04-29 2024-07-16 贵阳林海机械制造有限公司 一种地质随钻测温管
CN118223864A (zh) * 2024-05-22 2024-06-21 中煤科工集团沈阳研究院有限公司 自动多级钻孔流量衰减系数测定仪及使用方法
CN118376445B (zh) * 2024-06-25 2024-08-16 中国煤炭地质总局勘查研究总院 一种可视化高位煤层刻槽采样装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU898097A1 (ru) * 1979-11-02 1982-01-15 Донецкий Государственный Институт Проектирования Организации Шахтного Строительства Способ определени и контрол выбросоопасности призабойной части угольного пласта и устройство дл его осуществлени
DE10008450C1 (de) * 2000-02-23 2001-09-27 Montan Tech Gmbh Verfahren zur Ermittlung der Gebirgsschlaggefahr und eine dafür geeignete Vorrichtung
CN101581217A (zh) * 2008-05-16 2009-11-18 中国科学院力学研究所 煤层气的压力/含量随钻测量装置及方法
CN102230375A (zh) * 2011-06-10 2011-11-02 中国矿业大学 煤层瓦斯参数实时监测装置及方法
CN102839964A (zh) * 2012-08-08 2012-12-26 中国矿业大学 煤与瓦斯突出危险性参数钻测一体化方法
CN104695940A (zh) * 2015-02-05 2015-06-10 煤科集团沈阳研究院有限公司 煤层钻孔瓦斯涌出初速度测定装置及测定方法
CN105863616A (zh) * 2016-04-05 2016-08-17 北京合康科技发展有限责任公司 一种煤矿井下防爆钻孔轨迹声波随钻测量系统及方法
CN106761931A (zh) * 2016-12-12 2017-05-31 中国矿业大学 煤岩动力灾害声电瓦斯实时自动监测系统及方法
CN107476822A (zh) * 2017-10-12 2017-12-15 中国矿业大学 煤层突出危险性随钻测试方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2280463B (en) * 1990-08-27 1995-04-19 Baroid Technology Inc Borehole drilling and telemetry
US6490527B1 (en) * 1999-07-13 2002-12-03 The United States Of America As Represented By The Department Of Health And Human Services Method for characterization of rock strata in drilling operations
WO2014100272A1 (en) * 2012-12-19 2014-06-26 Exxonmobil Upstream Research Company Apparatus and method for monitoring fluid flow in a wellbore using acoustic signals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU898097A1 (ru) * 1979-11-02 1982-01-15 Донецкий Государственный Институт Проектирования Организации Шахтного Строительства Способ определени и контрол выбросоопасности призабойной части угольного пласта и устройство дл его осуществлени
DE10008450C1 (de) * 2000-02-23 2001-09-27 Montan Tech Gmbh Verfahren zur Ermittlung der Gebirgsschlaggefahr und eine dafür geeignete Vorrichtung
CN101581217A (zh) * 2008-05-16 2009-11-18 中国科学院力学研究所 煤层气的压力/含量随钻测量装置及方法
CN102230375A (zh) * 2011-06-10 2011-11-02 中国矿业大学 煤层瓦斯参数实时监测装置及方法
CN102839964A (zh) * 2012-08-08 2012-12-26 中国矿业大学 煤与瓦斯突出危险性参数钻测一体化方法
CN104695940A (zh) * 2015-02-05 2015-06-10 煤科集团沈阳研究院有限公司 煤层钻孔瓦斯涌出初速度测定装置及测定方法
CN105863616A (zh) * 2016-04-05 2016-08-17 北京合康科技发展有限责任公司 一种煤矿井下防爆钻孔轨迹声波随钻测量系统及方法
CN106761931A (zh) * 2016-12-12 2017-05-31 中国矿业大学 煤岩动力灾害声电瓦斯实时自动监测系统及方法
CN107476822A (zh) * 2017-10-12 2017-12-15 中国矿业大学 煤层突出危险性随钻测试方法及装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608974A (zh) * 2019-10-15 2019-12-24 中煤科工集团重庆研究院有限公司 钻屑瓦斯解吸指标校验仪
CN111551624A (zh) * 2020-04-21 2020-08-18 山东科技大学 一种氢键破裂预测煤岩冲击地压装置及其预测方法
CN111579282A (zh) * 2020-05-28 2020-08-25 安徽理工大学 一种煤层原生co原位探测方法
CN112284965A (zh) * 2020-10-16 2021-01-29 中煤科工集团重庆研究院有限公司 一种煤巷掘进工作面钻孔流量模拟实验装置及方法
CN112284965B (zh) * 2020-10-16 2022-09-23 中煤科工集团重庆研究院有限公司 一种煤巷掘进工作面钻孔流量模拟实验装置及方法
CN112324487A (zh) * 2020-10-20 2021-02-05 中煤科工集团重庆研究院有限公司 一种煤巷条带防突效果的双指标评价方法
CN112684755A (zh) * 2020-12-24 2021-04-20 煤炭科学技术研究院有限公司 一种集成式可编程多参量数据采集分析装置
CN112684755B (zh) * 2020-12-24 2022-05-20 煤炭科学技术研究院有限公司 一种集成式可编程多参量数据采集分析装置
CN113266347B (zh) * 2021-07-05 2022-05-13 中煤科工集团重庆研究院有限公司 一种近钻头煤层瓦斯参数随钻综合测量装置及方法
CN113266347A (zh) * 2021-07-05 2021-08-17 中煤科工集团重庆研究院有限公司 一种近钻头煤层瓦斯参数随钻综合测量装置及方法
CN113484185A (zh) * 2021-07-19 2021-10-08 中国矿业大学 一种煤矿井下一体化测定瓦斯含量的定点取样装置及方法
CN113484185B (zh) * 2021-07-19 2022-04-29 中国矿业大学 一种煤矿井下一体化测定瓦斯含量的定点取样装置及方法
CN113866380B (zh) * 2021-09-29 2023-12-08 中海石油(中国)有限公司 一种高煤阶煤层游离气含量测定装置及测定方法
CN113866380A (zh) * 2021-09-29 2021-12-31 中海石油(中国)有限公司 一种高煤阶煤层游离气含量测定装置及测定方法
CN114320164A (zh) * 2022-01-04 2022-04-12 中赟国际工程有限公司 一种煤矿瓦斯抽采钻孔用可调节钻头及其使用方法
CN114320164B (zh) * 2022-01-04 2024-04-16 中赟国际工程有限公司 一种煤矿瓦斯抽采钻孔用可调节钻头及其使用方法
CN114371096A (zh) * 2022-01-12 2022-04-19 平安煤炭开采工程技术研究院有限责任公司 一种井下煤样残余瓦斯含量快速测定方法与装置
CN114371096B (zh) * 2022-01-12 2023-10-10 平安煤炭开采工程技术研究院有限责任公司 一种井下煤样残余瓦斯含量快速测定方法与装置
CN114487125A (zh) * 2022-01-20 2022-05-13 平顶山天安煤业股份有限公司 一种用于确定煤体各向异性的三维监测综合方法
CN114487125B (zh) * 2022-01-20 2023-08-11 平顶山天安煤业股份有限公司 一种用于确定煤体各向异性的三维监测综合方法
CN115522921A (zh) * 2022-11-25 2022-12-27 云南省交通发展投资有限责任公司 一种超深钻孔地应力测量系统及方法
CN116044361A (zh) * 2022-12-26 2023-05-02 重庆大学 基于孔底自发电激发的煤层水平长钻孔增透系统
CN116771277A (zh) * 2023-06-08 2023-09-19 华能云南滇东能源有限责任公司 一种瓦斯抽采定向钻孔系统及设备
CN116771277B (zh) * 2023-06-08 2024-02-23 华能云南滇东能源有限责任公司 一种瓦斯抽采定向钻孔系统及设备
CN117072095A (zh) * 2023-10-18 2023-11-17 山东省煤田地质局第一勘探队 一种煤层瓦斯含量测定随钻取芯装置及方法
CN117072095B (zh) * 2023-10-18 2024-05-17 山东省煤田地质局第一勘探队 一种煤层瓦斯含量测定随钻取芯装置及方法
CN118131341A (zh) * 2024-03-07 2024-06-04 中国矿业大学 急倾斜煤层中积水采空区电性多源地巷瞬变电磁探测方法
CN118639992A (zh) * 2024-08-12 2024-09-13 济宁矿业集团花园井田资源开发有限公司 一种用于矿山开采的钻孔设备

Also Published As

Publication number Publication date
AU2017435485A1 (en) 2019-12-05
US10947842B2 (en) 2021-03-16
US20200200004A1 (en) 2020-06-25
CN107448188B (zh) 2020-06-12
AU2017435485B2 (en) 2021-02-18
CN107448188A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2019071755A1 (zh) 煤层突出危险性随钻测试方法及装置
WO2019071756A1 (zh) 煤层瓦斯参数随钻测试方法及装置
CN110424949B (zh) 煤层瓦斯参数随钻快速测试的反演计算方法
CN102607990B (zh) 一种煤样瓦斯解吸速度全程自动测试装置
CN106680451B (zh) 一种煤与瓦斯突出参数井下快速测定方法及装置
WO2018103324A1 (zh) 基于激光测距仪的巷道顶板岩体质量等级的随钻探测装置及方法
CN101354334B (zh) 基于瞬态压力脉冲法的原位小型渗透系数测量系统
CN102606145B (zh) 煤矿井下防爆型泥浆脉冲无线随钻测量系统及其使用方法
CN103147799B (zh) 一种基于瓦斯涌出特征的突出危险性预警方法
CN203881678U (zh) 一种煤矿井下便携式sf6检测装置
CN104569652A (zh) 模拟变压器重瓦斯故障实现的瓦斯定值校验台和校验方法
CN105781620A (zh) 基于巷道围岩破裂辅助孔监测的动力灾害预警方法
CN110984968A (zh) 一种随钻卸压监测方法
CN110458369A (zh) 一种煤与瓦斯突出煤层采掘工作面危险性综合评估系统
CN109323972A (zh) 一种多场耦合可控冲击波致裂含瓦斯煤体的实验装置
CN103308634A (zh) 含气量测量装置及方法
CN201448106U (zh) 三参数验封仪
CN108444856B (zh) 煤矿井下煤层瓦斯含量与压力快速测定仪及测定方法
CN206397498U (zh) 一种井下随钻气测录井测试装置
AU2023258084A1 (en) Method and system for remotely measuring gas content in coal seam
CN109342298B (zh) 一种高功率脉冲波致裂含瓦斯煤体的实验方法
CN102003177B (zh) 用于井下单个钻孔的水文地质参数观测仪器
CN206458507U (zh) 一种便携式矿山动力灾害监测装置
CN109323974A (zh) 一种多场耦合可控冲击波致裂含瓦斯煤体的实验方法
CN205714288U (zh) 基于巷道围岩破裂辅助孔监测的动力灾害预警系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017435485

Country of ref document: AU

Date of ref document: 20171127

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928479

Country of ref document: EP

Kind code of ref document: A1