WO2019071686A1 - Système de surveillance et procédé de surveillance pour transmettre la puissance d'un module optique sr4 - Google Patents

Système de surveillance et procédé de surveillance pour transmettre la puissance d'un module optique sr4 Download PDF

Info

Publication number
WO2019071686A1
WO2019071686A1 PCT/CN2017/109960 CN2017109960W WO2019071686A1 WO 2019071686 A1 WO2019071686 A1 WO 2019071686A1 CN 2017109960 W CN2017109960 W CN 2017109960W WO 2019071686 A1 WO2019071686 A1 WO 2019071686A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
input
reflecting
transmitting
monitoring system
Prior art date
Application number
PCT/CN2017/109960
Other languages
English (en)
Chinese (zh)
Inventor
雷奖清
林星
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Publication of WO2019071686A1 publication Critical patent/WO2019071686A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present invention relates to the field of optical transceivers, and in particular, to a monitoring system and a monitoring method for transmitting power of an SR4 optical module.
  • the optical fiber used to connect the server is only a few meters to several kilometers, people More attention is paid to the interconnection of stations by means of high-rate short-distance fiber optic modules.
  • the existing 4-channel parallel-optical-module for short-distance optical links (4-channel short-range optical module) generally adopts a scheme of integrating four transceiver chips on a PCB board, and a single channel. At a rate of 25 Gbps, a total rate of up to 100 Gbps can be achieved.
  • the transmit power of the transmitter is calculated by detecting the operating current of the transmitter.
  • this method will fail with the aging of the SR4 optical module and the temperature change.
  • the technical problem to be solved by the present invention is to provide a monitoring system for transmitting power of an SR4 optical module according to the above-mentioned defects of the prior art, to realize beam splitting and turning in an SR4 optical module, and to detect a partially reflected beam by detecting Power achieves the goal of controlling the power of the transmitted beam.
  • the technical problem to be solved by the present invention is to provide a method for monitoring the transmission power of an SR4 optical module according to the above-mentioned defects of the prior art, to realize optical path splitting and turning in the SR4 optical module, and to detect a partially reflected beam by detecting Power achieves the goal of controlling the power of the transmitted beam.
  • the present invention provides a monitoring system for transmitting power of an SR4 optical module, including a transmitting device and an monitoring device, the transmitting device emitting an input beam, the monitoring device receiving the reflected beam, the monitoring system further comprising a beam splitting device for splitting, a first reflecting device for reflecting and a master device, the master device The device is respectively connected to the transmitting device and the monitoring device; wherein the transmitting device emits an input beam to the beam splitting device, the beam splitting device splits the input beam, wherein an input beam is input to the first reflecting device and reflected by the first reflecting device
  • a monitoring device receives the reflected beam and detects a power parameter of the reflected beam, and transmits a power parameter of the reflected beam to the main control device, and the main control device controls the transmission power of the transmitting device according to the power parameter of the reflected beam.
  • the monitoring system further includes a second reflecting device for reflecting and focusing, the beam splitting device splits the input beam, and the other input beam is input to the second reflecting device. And forming an output beam by the reflection and focusing of the second reflecting means and outputting.
  • the spectroscopic device is a thin film spectroscope.
  • the monitoring system further comprises: a collimating lens, the emitting device emits an input beam to the collimating lens, and the collimating lens converts the input beam into a parallel beam and inputs the light to the spectroscopic device.
  • the monitoring system further comprises: a focusing lens, the first reflecting device reflects the input beam to the focusing lens, and the focusing lens focuses the reflected beam and inputs to the monitoring device.
  • the first reflecting device is a triangular groove designed by total internal reflection.
  • the second reflecting device is a triangular groove with a concave surface.
  • the present invention further provides a method for monitoring transmit power of an SR4 optical module, where the monitoring method further includes the following steps:
  • the transmitting device emits an input beam
  • the spectroscopic device splits the input beam
  • the monitoring device detects the power parameter of the reflected beam and sends it to the main control device;
  • the main control device controls the transmission power of the transmitting device according to the power parameter of the reflected beam.
  • the monitoring method further includes the following steps:
  • the second reflecting means reflects and focuses to form an output beam and outputs.
  • the spectroscopic device is a thin film spectroscope, and the input beam is realized by coating Line splitting; wherein, the parameters of the coating of the spectroscopic device are controlled according to the ratio of the total power of the transmitting device and the required output optical power.
  • the beneficial effects of the present invention are that, compared with the prior art, the present invention realizes the optical path splitting and turning in the SR4 optical module by designing a monitoring system and monitoring method for the transmitting power of the SR4 optical module, and passes the detection.
  • the reflected beam controls the emitted beam to achieve direct monitoring of the transmit power, avoiding monitoring due to aging of the device or temperature changes.
  • the monitoring system is simple in structure and easy to maintain, and can automatically adjust the transmit power of the device only by setting parameters. operating.
  • FIG. 1 is a schematic diagram of a monitoring device for transmitting power of an SR4 optical module according to the present invention
  • FIG. 2 is a flowchart of a method for monitoring transmission power of an SR4 optical module according to the present invention
  • FIG. 3 is a further flow chart of a method for monitoring transmission power of the SR4 optical module of the present invention.
  • the present invention provides a preferred embodiment of a monitoring device for transmitting power of an SR4 optical module.
  • a monitoring system for transmitting power of an SR4 optical module comprising a transmitting device 1 for transmitting an input beam, and a monitoring device 2 for receiving a reflected beam, the monitoring system further comprising a splitting device 3, a first reflecting device 4 for reflection, and a main control device 5, which are respectively connected to the transmitting device 1 and the monitoring device 2, and the transmitting device 1, the monitoring device 2 and the main control The device 5 is soldered to the PCB to achieve the above functions.
  • the light splitting device 3 is disposed above the transmitting device 1, and the first reflecting device 4 is disposed at a side adjacent to the light splitting device 3, the monitoring device 2 set in the first Below the reflecting device 4, and the transmitting device 1, the monitoring device 2 and the main control device 5 are soldered to the PCB.
  • the transmitting device 1 emits an input beam to the beam splitting device 3, and the beam splitting device 3 splits the input beam.
  • one of the input beams is input to the right to the first reflecting device 4.
  • the monitoring device 2 receives the reflected beam and detects the power parameter of the reflected beam, and transmits the power parameter of the reflected beam to the main control device 5, the main control device 5 is
  • the power parameter of the reflected beam controls the transmission power of the transmitting device 1; the optical path splitting and turning is realized in the SR4 optical module, and the transmitted beam is controlled by detecting the reflected beam, thereby directly monitoring the transmitting power, avoiding aging or temperature change with the device. Impact monitoring.
  • the spectroscopic device 3 is first formed by grooving on a beam splitter, coating, and bonding a beam splitter and a film with glue, and the spectroscopic device 3 splits the input beam and forms 90° with each other. The two directions diverge.
  • the power parameters of the reflected beam include light intensity (optical power) and luminous flux.
  • the monitoring system further includes a second reflecting device 6 for reflecting and focusing, wherein the second reflecting device 6 is disposed above the beam splitting device 3; the beam splitting device 3 divides the input beam Referring to Figure 1, another input beam is input upward to the second reflecting means 6, and an output beam is formed by reflection and focusing of the second reflecting means 6, and outputted to the end face of the fiber to realize the subsequent function of the SR4 optical module.
  • the spectroscopic device 3 is a thin film spectroscope, and the film is designed according to the required power ratio. After processing, the film parameters are fixed values, and the input beam is split by the coating; , controlling the parameters of the coating of the spectroscopic device according to the ratio of the total power of the transmitting device and the required output optical power.
  • parameters of the coating include transmittance, reflectance, polarization dependence, film material and thickness design, and the like.
  • the monitoring system further includes a collimating lens 7, the emitting device 1 emits a plurality of input beams to the collimating lens 7, and the collimating lens 7 converts the input beam into a parallel beam by collimating action. And input to the spectroscopic device 3.
  • the collimator lens 7 is disposed on the light path of the input beam emitted from the transmitting device 1, i.e., above the transmitting device 1.
  • the monitoring system further includes a focusing lens 8, the first reflecting device 4 will input the light beam It is reflected to the focusing lens 8.
  • the focusing lens 8 focuses the reflected beam and inputs it to the monitoring device 2 by focusing, so that the monitoring device 2 can receive the reflected beam.
  • the focusing lens 8 is disposed on the optical path of the reflected beam, that is, above the monitoring device 2.
  • the first reflecting device 4 is a triangular groove designed by total internal reflection to realize a reflection function
  • the second reflecting device 6 is a triangular groove with a concave surface, which realizes both a reflection function and a focus.
  • the present invention further provides a preferred embodiment of a method for monitoring the transmission power of an SR4 optical module.
  • a method for monitoring transmit power of an SR4 optical module where the monitoring method further includes the following steps:
  • Step 10 The transmitting device emits an input beam
  • Step 20 the light splitting device splits the input beam
  • Step 30 wherein an input beam is reflected by the first reflecting device to the monitoring device;
  • Step 40 the monitoring device detects the power parameter of the reflected beam, and sends it to the main control device;
  • Step 50 The main control device controls the transmit power of the transmitting device according to the power parameter of the reflected beam.
  • the monitoring method further includes the following steps:
  • Step 31 wherein another input beam is input to the second reflecting device
  • Step 41 The second reflecting device reflects and focuses to form an output beam and outputs.
  • the spectroscopic device is a thin film spectroscope, and the input beam is split by coating.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

L'invention concerne un système de surveillance et un procédé de surveillance de la puissance d'émission d'un module optique SR4, se rapportant au domaine des émetteurs-récepteurs optiques, le système de surveillance comprenant : un dispositif de transmission (1), un dispositif de surveillance (2), un dispositif de division de faisceau (3), un premier dispositif de réflexion (4) et un dispositif de commande principal (5). Le dispositif de transmission (1) émet un faisceau d'entrée vers le dispositif de division de faisceau (3), et le dispositif de division de faisceau (3) divise le faisceau d'entrée, un des faisceaux d'entrée étant entré dans le premier dispositif de réflexion (4) et réfléchi vers le dispositif de surveillance (2) au moyen du premier dispositif de réflexion (4); le dispositif de surveillance (2) reçoit le faisceau réfléchi, détecte un paramètre de puissance du faisceau réfléchi, et transmet le paramètre de puissance du faisceau réfléchi au dispositif de commande principal (5); et le dispositif de commande principal (5) commande la puissance d'émission du dispositif d'émission (1) en fonction du paramètre de puissance du faisceau réfléchi. Selon la présente invention, une division et une rotation de trajet de faisceau optique sont mises en œuvre dans un module optique SR4, et un faisceau de transmission est commandé au moyen de la détection d'un faisceau réfléchi de façon à surveiller directement la puissance de transmission, ce qui permet d'éviter le vieillissement d'un dispositif ou d'un changement de température ayant une influence sur la surveillance.
PCT/CN2017/109960 2017-10-10 2017-11-08 Système de surveillance et procédé de surveillance pour transmettre la puissance d'un module optique sr4 WO2019071686A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710935322.9A CN107566034A (zh) 2017-10-10 2017-10-10 一种sr4光模块发射功率的监控系统和监控方法
CN201710935322.9 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019071686A1 true WO2019071686A1 (fr) 2019-04-18

Family

ID=60985403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109960 WO2019071686A1 (fr) 2017-10-10 2017-11-08 Système de surveillance et procédé de surveillance pour transmettre la puissance d'un module optique sr4

Country Status (2)

Country Link
CN (1) CN107566034A (fr)
WO (1) WO2019071686A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494477A (zh) * 2018-03-30 2018-09-04 昂纳信息技术(深圳)有限公司 一种实现监测发射功率的sr4器件和一种监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081638A (en) * 1998-07-20 2000-06-27 Honeywell Inc. Fiber optic header with integrated power monitor
US20040264881A1 (en) * 2003-06-26 2004-12-30 Posamentier Joshua D. Laser power monitoring tap
US20110057204A1 (en) * 2009-08-07 2011-03-10 Shimpei Morioka Optical module
US8503838B2 (en) * 2010-09-15 2013-08-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Two-part optical coupling system having an air gap therein for reflecting light to provide optical feedback for monitoring optical output power levels in an optical transmitter (TX)
CN103885133A (zh) * 2012-12-21 2014-06-25 鸿富锦精密工业(深圳)有限公司 光学通讯装置
CN104577708A (zh) * 2014-12-12 2015-04-29 武汉华工正源光子技术有限公司 带背光监控用于高速传输的光组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888988B2 (en) * 2003-03-14 2005-05-03 Agilent Technologies, Inc. Small form factor all-polymer optical device with integrated dual beam path based on total internal reflection optical turn
US8477298B2 (en) * 2009-09-30 2013-07-02 Corning Incorporated Angle-cleaved optical fibers and methods of making and using same
CN102062635A (zh) * 2010-12-02 2011-05-18 北京心润心激光医疗设备技术有限公司 激光功率监测装置
CN207504867U (zh) * 2017-10-10 2018-06-15 昂纳信息技术(深圳)有限公司 一种sr4光模块发射功率的监控系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081638A (en) * 1998-07-20 2000-06-27 Honeywell Inc. Fiber optic header with integrated power monitor
US20040264881A1 (en) * 2003-06-26 2004-12-30 Posamentier Joshua D. Laser power monitoring tap
US20110057204A1 (en) * 2009-08-07 2011-03-10 Shimpei Morioka Optical module
US8503838B2 (en) * 2010-09-15 2013-08-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Two-part optical coupling system having an air gap therein for reflecting light to provide optical feedback for monitoring optical output power levels in an optical transmitter (TX)
CN103885133A (zh) * 2012-12-21 2014-06-25 鸿富锦精密工业(深圳)有限公司 光学通讯装置
CN104577708A (zh) * 2014-12-12 2015-04-29 武汉华工正源光子技术有限公司 带背光监控用于高速传输的光组件

Also Published As

Publication number Publication date
CN107566034A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
CN104067105B (zh) 用于通过光散射测量颗粒尺寸分布的设备和方法
CN204925459U (zh) 一种多波长单纤双向光收发模块
TW201440443A (zh) 雙向光學資料通訊模組
CN105388693A (zh) 一种激光投影机色彩自动控制系统
CN104577708B (zh) 带背光监控用于高速传输的光组件
US20230058940A1 (en) Detection structure and method for feed-forward pump failure in l-band optical fiber amplifier
CN202267786U (zh) 一种可变反射率激光分光装置
WO2020034255A1 (fr) Appareil et procédé d'agrégation, de transmission et de séparation de signaux optiques multimode multi-canaux
WO2019071686A1 (fr) Système de surveillance et procédé de surveillance pour transmettre la puissance d'un module optique sr4
CN102590962A (zh) 将多单元半导体激光器与光纤的耦合系统
CN110794529A (zh) 一种光组件及其系统
CN207504867U (zh) 一种sr4光模块发射功率的监控系统
TW201804190A (zh) 光耦合結構及光通訊裝置
WO2022033062A1 (fr) Dispositif d'ajustement de longueur d'onde
WO2019071685A1 (fr) Par ces moyens, non seulement une résistance d'électrode est réduite, augmentant ainsi la résistivité de la cathode, réduisant la génération de chaleur du panneau, et réduisant la consommation d'énergie, mais les effets du packaging sont également améliorés.
WO2016198018A1 (fr) Module optique et procédé de commande et dispositif associé
WO2019052126A1 (fr) Système de source lumineuse et système de projection
CN112073124B (zh) 一种用于调节波长的器件
US9525267B2 (en) Vertical cavity surface emitting laser assembly
WO2021026774A1 (fr) Appareil de couplage de dispositif bidirectionnel parallèle multicanal
WO2011015143A1 (fr) Dispositif optique et composant optique correspondant
TW201801486A (zh) 具有雷射光分路裝置的光纖雷射傳輸系統
WO2019184214A1 (fr) Dispositif sr4 pour surveiller la puissance de transmission et procédé de surveillance
CN112054842B (zh) 一种用于调节波长的器件
WO2019184215A1 (fr) Dispositif sr4 permettant de mettre en oeuvre une surveillance de puissance d'émission, et procédé de surveillance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928793

Country of ref document: EP

Kind code of ref document: A1