WO2019071549A1 - 一种用于rfid标签的定位方法及定位系统 - Google Patents

一种用于rfid标签的定位方法及定位系统 Download PDF

Info

Publication number
WO2019071549A1
WO2019071549A1 PCT/CN2017/105979 CN2017105979W WO2019071549A1 WO 2019071549 A1 WO2019071549 A1 WO 2019071549A1 CN 2017105979 W CN2017105979 W CN 2017105979W WO 2019071549 A1 WO2019071549 A1 WO 2019071549A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal strength
value
wireless access
rfid tag
access point
Prior art date
Application number
PCT/CN2017/105979
Other languages
English (en)
French (fr)
Inventor
徐家林
Original Assignee
深圳传音通讯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音通讯有限公司 filed Critical 深圳传音通讯有限公司
Priority to PCT/CN2017/105979 priority Critical patent/WO2019071549A1/zh
Publication of WO2019071549A1 publication Critical patent/WO2019071549A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present invention relates to the field of RFID, and in particular, to a positioning method and a positioning system for an RFID tag.
  • the existing method is to attach signal transmitting equipment to the surface of the object or personnel to be positioned, and then set in the factory.
  • the plurality of monitoring devices at the location acquire the signal sent by the signal transmitting device, and determine the location of the person or object corresponding to the signal transmitting device according to the monitoring device of the acquired signal.
  • the prior art uses zigbee technology to form a local area network indoors and arranges a plurality of wireless nodes, and calculates its own position through a received signal strength indicator (RSSI) transmitted from an adjacent wireless node.
  • RSSI received signal strength indicator
  • zigbee network is a self-contained closed LAN. It is necessary to build a complete set of zigbee networks for positioning, and the investment is large;
  • the zigbee network cannot be effectively compatible with the widely popular wifi wireless LAN on the market, and must transmit data through the gateway, which is inefficient;
  • the object being located is the wireless node itself, and it is impossible to locate other objects.
  • an object of the present invention is to provide a positioning method and a positioning system for an RFID tag. By calculating and analyzing the signal strength value of the RFID tag, the position of the corresponding wireless access point is found and realized. The technical effect of positioning RFID tags.
  • a method for locating an RFID tag comprising the steps of:
  • a server obtains a signal strength value received by the at least one wireless access point from the same RFID tag, and Recording the location of the wireless access point corresponding to each signal strength value;
  • the location of the wireless access point corresponding to the strongest signal strength value is used as the positioning position of the RFID tag;
  • the location of the wireless access point corresponding to the signal strength value with the smallest deviation is used as the positioning position of the RFID tag.
  • the step of using the location of the wireless access point corresponding to the signal strength value with the smallest deviation as the positioning position of the RFID tag includes:
  • the signal strength value of the RFID tag is sampled, and a first signal strength value is obtained for each wireless access point;
  • the location of the wireless access point corresponding to the smallest deviation value of the deviation values is selected as the positioning location of the RFID tag.
  • the location of the wireless access point corresponding to the signal strength value with the smallest deviation is used as the positioning of the RFID tag.
  • the step of location also includes the following steps:
  • the current positioning is terminated.
  • the location of the wireless access point corresponding to the smallest deviation value of the deviation value as the positioning position of the RFID tag is taken as The step of positioning the RFID tag further includes:
  • the deviation value is greater than a threshold value preset by the server, it is determined that the current sampling is interfered, and the current positioning is terminated.
  • the positioning method further includes:
  • the server runs a map module
  • the map module displays a map interface, and the location of the RFID tag is displayed on the map interface.
  • a positioning system for an RFID tag comprising:
  • the acquiring module is disposed in a server, acquires a signal strength value received by the at least one wireless access point from the same RFID tag, and records a location of the wireless access point corresponding to each signal strength value;
  • a sorting module disposed in the server, connected to the collecting module, sorting the signal strength values, and obtaining the strongest signal strength value among all signal strength values;
  • the signal strength judging module is disposed in the server, and is connected to the sorting module, and determines whether the strongest signal strength value is greater than a first signal strength threshold preset in the server;
  • a first positioning module configured to be connected to the signal strength determining module, where the signal strength determining module determines that the strongest signal strength value is greater than the first signal strength threshold, The location of the wireless access point corresponding to the strongest signal strength value as the location of the RFID tag;
  • the second positioning module is disposed in the server and is connected to the signal strength determining module.
  • the signal strength determining module determines that the strongest signal strength value is not greater than the first signal strength threshold, the second positioning module is biased
  • the location of the wireless access point corresponding to the smallest signal strength value is used as the location of the RFID tag.
  • the second positioning module comprises:
  • a cyclic sampling unit that samples the signal strength value of the RFID tag at least 10 times for each wireless access point
  • a mean value calculating unit connected to the cyclic sampling unit, calculating a signal strength mean value corresponding to each wireless access point of the RFID tag;
  • the signal strength value of the RFID tag is sampled again, and a first signal strength value is obtained for each wireless access point;
  • a deviation calculating unit connected to the mean calculating unit and the reference sampling unit, subtracting the signal strength average from the first signal strength value, and taking an absolute value to obtain a set of deviation values
  • the selecting unit is connected to the deviation calculating unit, and selects a location of the wireless access point corresponding to the smallest deviation value of the deviation values as a positioning position of the RFID tag.
  • the second positioning module further includes:
  • a screening unit that rejects a signal strength value that is lower than a second signal strength threshold preset in the server
  • the quantity determining unit determines whether the number of remaining signal strength values is greater than a quantity threshold preset in the server
  • the quantity determining unit determines that the number of the signal strength values is greater than the quantity threshold, running the cyclic sampling unit;
  • the second positioning module terminates operation.
  • the second positioning module further includes:
  • the interference judging unit is connected to the deviation calculating unit, and determines that when the deviation value is greater than a threshold value preset by the server, it is determined that the current sampling is interfered, and the second positioning module terminates operation.
  • the positioning system further comprises:
  • a running module disposed in the server, running a map module preset in the server;
  • the map module displays a map interface, and the location of the RFID tag is displayed on the map interface.
  • the positioning equipment is lighter, consumes less energy and extends the working period.
  • FIG. 1 is a flow chart showing a method for positioning an RFID tag in accordance with a preferred embodiment of the present invention
  • step S105 of FIG. 1 is a schematic diagram of a specific process of step S105 of FIG. 1 in accordance with a preferred embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a positioning method for an RFID tag according to another preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a positioning system for an RFID tag in accordance with a preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a second positioning module of FIG. 4 in accordance with a preferred embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a positioning system for an RFID tag in accordance with another preferred embodiment of the present invention.
  • the positioning method includes the following steps:
  • a server acquires a signal strength value received by the at least one wireless access point from the same RFID tag, and records a location of the wireless access point corresponding to each signal strength value.
  • the positioning method of the present invention is implemented by a computer program running on a server.
  • the server is a computer device with fast computing processing capability and large capacity storage space.
  • the wireless access point is also called an AP, which is equivalent to a bridge connecting a wired network and a wireless network. Its main function is to connect the wireless network clients together, and then connect the wireless network to the Ethernet.
  • the wireless access point also supports functions such as multi-user access, data encryption, and multi-rate transmission.
  • the indoor coverage is generally 30m to 100m, and AP products of many manufacturers can be interconnected to increase the WLAN coverage area. It is also because each AP's coverage has a certain limit, just as mobile phones can roam between base stations, WLAN clients can also roam between APs.
  • the number of the wireless access points is at least one, and may be connected to the server through a wired network, or may be connected to the server through a wifi wireless network.
  • the wireless access points can also be bridged by wifi, which saves the wiring of the wired network. this.
  • the wireless access point is further provided with a radio frequency signal transmitting and receiving function to communicate with the RFID tag.
  • RFID radio frequency identification is a non-contact automatic identification technology. It automatically recognizes the target object and acquires relevant data through radio frequency signals. The identification work can be performed in various harsh environments without manual intervention, and can recognize high-speed moving objects and simultaneously Identify multiple electronic tags, ie RFID tags.
  • the RFID tag is composed of a coupling component and a chip. Each RFID tag has a unique electronic code, and is attached to an object to identify a target object, commonly known as an electronic tag or a smart tag.
  • RFID tags can be classified into active tags, passive tags, and semi-active semi-passive tags according to their working methods.
  • the tag After the tag enters the magnetic field, it receives the RF signal from the reader, and sends the product information (Passive Tag, Passive Tag or Passive Tag) stored in the chip by the energy obtained by the induced current, or actively sends a certain The frequency signal (Active Tag, active tag or active tag); the reader reads the information and decodes it, and sends it to the central information system for data processing.
  • an active tag is used, and the RFID tag can send information to the wireless access point, including electronic coding, temperature, and the like.
  • the wireless access point device has a reader, and can decode the RFID tag. The incoming RF signal.
  • the signal strength value received by the receiving side is Received Signal Strength Indication (RSSI), which is used to indicate the received signal strength.
  • RSSI Received Signal Strength Indication
  • the wireless access point After receiving the radio frequency signal sent by the RFID tag, the wireless access point in the embodiment identifies the electronic code of the RFID tag, records the signal strength value, and the server obtains the location from the wireless access point. When the information of the RFID tag and its signal strength value are described, the physical address of the wireless access point that receives the radio frequency signal, that is, the MAC address, is also acquired.
  • each wireless access point pre-stored in the server that is, the location in real space, can be represented by coordinates; as long as the geographic address of the wireless access point is known, the location can be known.
  • a set of data for the same RFID tag can be established within the server, including the electronic code of the RFID tag, the signal strength value, the physical address and location of the corresponding wireless access point. Since there are multiple wireless access points in the workplace, the RF signals sent by the same RFID tag may be received by two or more wireless access points, so the server can acquire multiple sets of data for the same RFID tag. , corresponding to different wireless access points.
  • S102 Sort the signal strength values to obtain the strongest signal strength value among all signal strength values.
  • the signal strength values in the plurality of sets of data for the same RFID tag acquired in step S101 are sorted, and the signal strength values are all values, and the unit is dB, so that they can be sorted.
  • the sorting method can be a commonly used numerical sorting algorithm such as a bubble sorting method and an interpolation sorting method. After the sorting is completed, the value with the highest signal strength value, that is, the strongest signal strength value, can be obtained.
  • S103 Determine whether the strongest signal strength value is greater than a first signal strength preset in the server. Threshold.
  • This step is a determining step, and the first signal strength threshold is preset in the server as a reference for the judgment.
  • the determination is established when the strongest signal strength value is greater than the first signal strength threshold. For example, if the strongest signal strength value is -105 dB and the first signal strength threshold is -130 dB, the judgment is established.
  • the step S103 determines that the strongest signal strength value is greater than the first signal strength threshold. Since the magnitude of the signal strength value is positively correlated with the communication distance, that is, the larger the signal strength value, the shorter the distance between the two parties performing communication. If the strongest signal strength value is greater than the first signal strength threshold, it means that the strongest signal strength value is already large enough, and it can be determined that the corresponding wireless access point is close to the RFID tag. It can be seen that the RFID tag is located at the location of the wireless access point, so the location of the wireless access point can be used as the location of the RFID tag. After the step is performed, the positioning position of the RFID tag is recorded by the server, and the positioning method for the RFID tag ends.
  • this step is performed.
  • the premise of this step is that the RFID tag is not particularly close to a certain wireless access point, so further screening and positioning is required.
  • the algorithm of this step is to sample the signal strength values acquired by different wireless access points multiple times, and each wireless access point corresponds to the signal strength value obtained by multiple sampling of the same RFID tag. Then, the variance of all signal strength values for the same wireless access point is calculated, and the wireless access point corresponding to the smallest variance value is found, and the location of the wireless access point is used as the positioning position of the RFID tag.
  • the radio frequency signals sent by the same RFID tag are respectively received by the wireless access point A, the wireless access point B, and the wireless access point C; after 5 times of sampling, the three wireless access points are respectively collected.
  • a set of sampling information including 5 signal strength values; and then each wireless access point calculates the variance of the respective collected signal strength values, and obtains variance A, variance B, and variance C, respectively corresponding to the wireless access point A, wireless connection Incoming point B, wireless access point C; finding the smallest of the above three variances, for example, the variance B is the smallest, then the location of the corresponding wireless access point B is used as the positioning position of the RFID tag.
  • the method can also be used for positioning multiple RFID tags.
  • the positioning of each RFID tag is independent and does not affect each other.
  • the positioning position can be obtained by using the steps of the method for each RFID tag.
  • Step S105 includes:
  • S105-1 rejecting a signal strength value that is lower than a second signal strength threshold preset in the server.
  • This step filters the signal strength values.
  • a second signal strength threshold is preset in the server as a determination reference, and when the signal strength value is lower than the second signal strength threshold, it is rejected. For example, if the second signal strength threshold is -180 dB, the signal strength value below -180 dB is rejected and does not participate in the subsequent steps.
  • the present invention divides the signal strength value into intervals, and the first signal strength threshold value and the second signal strength threshold value are divided into three intervals, which are larger than the first signal.
  • the RFID tag of the intensity threshold is directly positioned, and the RFID tag between the first signal strength threshold and the second signal strength threshold is positioned by step S105, and the RFID tag lower than the second signal strength threshold is not positioned. If the signal strength of the RFID tag for a wireless access point is lower than the second signal strength threshold, it means that the RFID tag is far away from the wireless access point, and the wireless access point cannot be used.
  • the location is the location of the RFID tag.
  • S105-2 Determine whether the number of remaining signal strength values is greater than a quantity threshold preset in the server.
  • the step determines the remaining intensity values after the signal strength value lower than the second signal strength threshold is removed, and determines whether the number of remaining signal strength values is greater than the quantity threshold. Subsequent calculation steps require signal strength values of the number threshold to achieve better results. For example, when using the three-point positioning algorithm, the signal strength values of at least three wireless access points are required to be calculated.
  • the number threshold is preferably at least three in this embodiment.
  • step S105-3 When the number of the signal strength values is greater than the number threshold, the subsequent step is performed, that is, step S105-3; when the number of the signal strength values is not greater than the number threshold, the current positioning is terminated.
  • the step S105-1 and the step S105-2 may be omitted, and step S105-3 is directly executed.
  • S105-3 The signal strength value of the RFID tag is sampled at least 10 times for each wireless access point.
  • This step performs multiple sampling on the signal strength value, and the number of sampling is at least 10 times. For example, for the same RFID tag, the radio frequency signals sent by the same RFID tag are respectively received by the wireless access point A, the wireless access point B, and the wireless access point C; after 15 samplings, the three wireless access points are respectively collected. A set of sample information containing 15 signal strength values.
  • the execution time of this step is not limited to be after the step S105-2, or may be within any time interval between the steps S101 to S104.
  • S105-4 Calculate an average of signal strengths of the RFID tags corresponding to each wireless access point.
  • the mean value is calculated, and the signal strength obtained by each wireless access point is added to obtain the sum and then divided by the quantity to obtain the signal strength mean.
  • each of the wireless access point A, the wireless access point B, and the wireless access point C includes sampling information of 15 signal strength values for performing mean calculation, and the signal is strong.
  • the average value A, the signal strength mean B, and the signal strength mean C are used as data for the subsequent steps, corresponding to the wireless access point A, the wireless access point B, and the wireless access point C.
  • S105-5 The signal strength value of the RFID tag is sampled again, and a first signal strength value is obtained for each wireless access point.
  • the signal strength value is sampled again, and the sampling result is the first signal strength value, which is used as data for the subsequent step operation.
  • the signal strength value is sampled for each of the wireless access point A, the wireless access point B, and the wireless access point C, to obtain a first signal strength value A, a first signal strength value B,
  • the first signal strength value C corresponds to the wireless access point A, the wireless access point B, and the wireless access point C.
  • S105-6 taking the absolute value of the first signal strength value minus the signal strength average value to obtain a set of deviation values.
  • the corresponding first signal strength value is respectively subtracted from the signal strength mean value, and the obtained difference value is further obtained as an absolute value to obtain a deviation value, and all wireless access points are obtained.
  • the deviation values are summarized as a set of deviation values. For example, for the wireless access point A, the first signal strength value A is subtracted from the signal strength mean A, and the absolute value is taken as the difference value to obtain the deviation value A; similarly, for the wireless access point B, the wireless connection At the point C, the deviation value B and the deviation value C are calculated separately.
  • S105-7 Select a location of the wireless access point corresponding to the smallest deviation value of the deviation values as a positioning location of the RFID tag.
  • the smallest one of the set of deviation values obtained in step S105-6 is selected, and the position of the wireless access point corresponding to the minimum deviation value is used as the positioning position of the RFID tag.
  • the wireless access point A, the wireless access point B, and the wireless access point C the corresponding offset value A, the deviation value B, and the deviation value B in the deviation value C are the smallest, then the wireless access is performed.
  • the position of the point B serves as the positioning position of the RFID tag.
  • the previous step has limited the signal strength values sampled by the different wireless access points between the first signal strength threshold and the second signal strength threshold, it indicates that the distance between the wireless access points and the RFID tag is Within a certain range, the wireless access point with the smallest deviation among the signal strength values is selected, which means that the connection between the RFID tag and the wireless access point is relatively stable and is not susceptible to external interference, and the wireless access point should be tied. Set as the location.
  • step S105-6 interference determination is performed.
  • this step When there is a deviation value greater than the threshold value of the deviation value obtained in step S105-6, it indicates that there is interference between the RFID tag and the wireless access point corresponding to the deviation value, resulting in interference.
  • the communication signal is toggled, the signal strength value changes drastically, and such a sampling signal cannot be used as a basis for the positioning operation, so the positioning is terminated.
  • this step may also be omitted, and is not a sub-step of step S105.
  • the positioning method further includes:
  • S106 The server runs a map module 17.
  • the map module 17 is an application that provides a map function service, has an executable file within the server, and thus can be run.
  • the map module 17 displays a map interface, and the location of the RFID tag is displayed on the map interface.
  • the map module 17 displays a map interface during operation, and displays geographic information including a road, a building, a geographical indication, and the like according to a scale.
  • the map interface may also be an indoor layout map, showing the layout of each room in the room, as well as important markers, especially the key equipment, office and other locations in the industrial plant.
  • the map interface also displays a positioning location of the RFID tag, the positioning location may be displayed on a macroscopic geographic scale, for example, tags in different areas of a city aggregate location information to a server via the Internet and display;
  • the location location may also be an indoor location, such as in which office or production area the RFID tag is distributed.
  • a preset graphic identifier may be displayed, or a text identifier may be displayed.
  • the positioning system 10 includes:
  • the collecting module 11 is disposed in a server, acquires a signal strength value received by the at least one wireless access point from the same RFID tag, and records a location of the wireless access point corresponding to each signal strength value. All modules in this embodiment operate within the server.
  • the collecting module 11 may send the inquiry information to the RFID tag, and then wait for the RFID tag to reply to the information, so as to obtain the signal strength value from the wireless access point that receives the radio frequency signal sent by the RFID tag.
  • the active reporting mechanism may also be adopted, that is, the RFID tag periodically sends out a message and is received by a nearby wireless access point, and the wireless access point adds the received message to its physical address and sends the message to the Acquisition module 11.
  • the collection module 11 is connected to the external network through the network card of the server, and stores the physical address and IP address of each wireless access point, and communicates with the wireless access point through a network protocol.
  • the collection module 11 stores the electronic code of the RFID tag, the physical address of the wireless access point, and the received signal strength value as a set of information; for the same RFID tag, it may be received by multiple wireless access points. The signal will generate multiple sets of information.
  • the sorting module 12 is disposed in the server, and is connected to the collecting module 11 to sort the signal strength values to obtain the strongest signal strength value among all signal strength values.
  • the sorting module 12 obtains the signal strength value from the acquisition module 12, and sorts the signal strength values of the same RFID tag according to the size to find the strongest signal strength value among them.
  • the signal strength determining module 13 is disposed in the server, and is connected to the sorting module 12 to determine whether the strongest signal strength value is greater than a first signal strength threshold preset in the server.
  • the signal strength judging module 13 obtains the strongest signal strength value from the sorting module 12, and compares and judges with the first signal strength threshold, when the strongest signal strength value is greater than the first signal strength threshold. The judgment is established.
  • the first positioning module 14 is disposed in the server, and is connected to the signal strength determining module 13 when the signal strength determining module 13 determines that the strongest signal strength value is greater than the first signal strength threshold. And determining, by using the position of the wireless access point corresponding to the strongest signal strength value as the positioning position of the RFID tag.
  • the first positioning module 14 obtains a determination result from the signal strength judging module 13, and when the strongest signal strength value is greater than the first signal strength threshold, performing a positioning operation, which is stored from the collection module 11
  • the wireless access point corresponding to the strongest signal strength value is found in the information, and the location of the wireless access point is used as the positioning position of the RFID tag.
  • the second positioning module 15 is disposed in the server, and is connected to the signal strength determining module 13 when the signal strength determining module 13 determines that the strongest signal strength value is not greater than the first signal strength threshold. At the time, the position of the wireless access point corresponding to the signal strength value with the smallest deviation is taken as the positioning position of the RFID tag.
  • the second positioning module 15 obtains a determination result from the signal strength determining module 13, and performs a positioning operation when the strongest signal strength value is not greater than the first signal strength threshold.
  • the second positioning module 15 acquires a signal strength value obtained by multiple sampling of the same RFID tag from the acquisition module 11, and then calculates a variance of all signal strength values for the same wireless access point to find a minimum variance. The value corresponds to the wireless access point, and the location of the wireless access point is used as the location of the RFID tag.
  • the second positioning module 15 includes:
  • the cyclic sampling unit 151 samples the signal strength value of the RFID tag for each wireless access point At least 10 times.
  • the loop sampling unit 151 repeatedly calls the collection module 11 to sample the signal strength value of the RFID tag, and the sampling frequency is at least 10 times, and the sampling range is all wireless connections that can receive the RF signal sent by the RFID tag. Entry point.
  • the mean value calculation unit 152 is connected to the cyclic sampling unit 151 to calculate a signal strength average value of the RFID tag corresponding to each wireless access point.
  • the mean value calculation unit 152 obtains the sampled signal strength value from the cyclic sampling unit 151, and performs mean calculation on the signal strength value sampled by each wireless access point to obtain the signal strength mean value.
  • the reference sampling unit 153 samples the signal strength value of the RFID tag again, and obtains a first signal strength value for each wireless access point.
  • the reference sampling unit 153 calls the collection module 11 to sample the signal strength value of the RFID tag once, and the sampling result is recorded as a first signal strength value as a data basis of the positioning operation.
  • the deviation calculation unit 154 is connected to the average calculation unit 152 and the reference sampling unit 153, and subtracts the signal strength average from the first signal strength value to obtain an absolute value to obtain a set of deviation values.
  • the deviation calculation unit 154 acquires a signal strength mean value for each wireless access point from the mean value calculation unit 152, and acquires a first signal strength value for each wireless access point from the reference sampling unit 153. Then, the deviation calculating unit 154 subtracts the signal strength value from the first signal strength value and takes an absolute value, and obtains an offset value for each wireless access point, if the RFID tag is configured by multiple wireless accesses. When the point receives the signal, a set of deviation values is obtained.
  • the selecting unit 155 is connected to the deviation calculating unit 154, and selects the position of the wireless access point corresponding to the smallest deviation value among the deviation values as the positioning position of the RFID tag.
  • the selecting unit 155 obtains the deviation value from the deviation calculating unit 154, and selects the smallest deviation value from the deviation value to find the wireless access point corresponding to the smallest deviation value, and locates the wireless access point. As the positioning position of the RFID tag.
  • the screening unit 156 rejects a signal strength value that is below a second signal strength threshold preset within the server.
  • the screening unit 156 compares the signal strength value for the same RFID tag acquired by the acquisition module 11 from different wireless access points with the second signal strength threshold, and lowers the signal lower than the second signal strength threshold. The strength value is removed, that is, the wireless access point with poor signal is filtered out.
  • the quantity determining unit 157 determines whether the number of remaining signal strength values is greater than a quantity threshold preset in the server. The quantity determining unit 157 determines only the number of signal strength values of different wireless access points corresponding to the same RFID tag, and determines whether the quantity is greater than the quantity threshold. When the quantity determining unit 157 determines that the number of the signal strength values is greater than the quantity threshold, the loop sampling unit 151 is operated; when the quantity determining unit 157 determines that the number of the signal strength values is not greater than the quantity At the threshold, the second positioning module 15 terminates operation.
  • the positioning system 10 further includes:
  • the running module 16 is disposed in the server and runs a map module 17 preset in the server.
  • the running module 16 stores a storage path where the executable file of the map module 17 is located, and the map module 17 can be run according to the storage path.
  • the map module 17 displays a map interface on which the location of the RFID tag is displayed.
  • the map interface displays geographic information according to a scale, including roads, buildings, geographical indications, and the like.
  • the map interface may also be an indoor layout map, showing the layout of each room in the room, as well as important markers, especially the key equipment, office and other locations in the industrial plant.
  • the location of the RFID tag is also displayed on the map interface, and a preset graphic identifier may be displayed, or a text identifier may be displayed. Since the positioning position is stored in the form of coordinates, the map module 17 finds a corresponding position on the map interface according to the coordinates of the positioning position, and displays preset identification content.

Abstract

本发明提供了一种用于RFID标签的定位方法及定位系统,所述定位方法包括以下步骤:一服务器获取至少一个无线接入点接收到的来自同一RFID标签的信号强度值;对所述信号强度值进行排序,获取所有信号强度值中最强的信号强度值;判断所述最强的信号强度值是否大于一第一信号强度阈值;当所述最强的信号强度值大于所述第一信号强度阈值时,将所述最强的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置;当所述最强的信号强度值不大于所述第一信号强度阈值时,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置。本发明的技术方案利用wifi无线网络与RFID技术结合,节省了定位系统的成本。

Description

一种用于RFID标签的定位方法及定位系统 技术领域
本发明涉及RFID领域,尤其涉及一种用于RFID标签的定位方法及定位系统。
背景技术
在工业领域中,尤其是在生产厂房内,需要对生产设备、物料、人员进行定位,现有采用的方法是在需要定位的物体或人员表面附上信号发射设备,而后通过设置在厂房内各处的多个监控设备获取所述信号发射设备发出的信号,并根据获取到的信号的监控设备来判断所述信号发射设备对应的人或物体的位置。现有技术采用zigbee技术在室内组成局域网络并布设多个无线节点,并通过相邻无线节点传来的接收信号强度指标(RSSI)计算自己的位置。然而,现有技术仍存在以下问题:
1.zigbee网络是自成体系的封闭式局域网,必须建设一整套zigbee网络进行定位,投资较大;
2.zigbee网络与目前市场上广泛流行的wifi无线局域网无法有效兼容,必须通过网关向外传送数据,效率较低;
3.被定位的对象是无线节点本身,无法对其他对象进行定位。
因此需要一种解决方案,利用WIFI网络来提供室内定位服务,且结合RFID技术实现对被定位对象的识别。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种用于RFID标签的定位方法及定位系统,通过对RFID标签的信号强度值进行计算分析,找出其对应的无线接入点的位置,实现对RFID标签进行定位的技术效果。
本申请的第一方面,公开了一种用于RFID标签的定位方法,包括以下步骤:
一服务器获取至少一个无线接入点接收到的来自同一RFID标签的信号强度值,并 记录每一信号强度值对应的无线接入点的位置;
对所述信号强度值进行排序,获取所有信号强度值中最强的信号强度值;
判断所述最强的信号强度值是否大于一预设于所述服务器内的第一信号强度阈值;
当所述最强的信号强度值大于所述第一信号强度阈值时,将所述最强的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置;
当所述最强的信号强度值不大于所述第一信号强度阈值时,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置。
优选地,当所述最强的信号强度值不大于所述信号强度阈值时,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤包括:
针对每一无线接入点,对所述RFID标签的信号强度值采样至少10次;
计算所述RFID标签的对应于每一无线接入点的信号强度均值;
再一次对所述RFID标签的信号强度值进行采样,针对每一无线接入点分别得到一第一信号强度值;
所述第一信号强度值减去所述信号强度均值后取绝对值,得到一组偏差值;
选取所述偏差值中最小的偏差值对应的无线接入点的位置作为所述RFID标签的定位位置。
优选地,针对每一无线接入点,对所述RFID标签的信号强度值采样至少10次的步骤之前,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤还包括以下步骤:
剔除低于一预设于所述服务器内的第二信号强度阈值的信号强度值;
判断剩下的信号强度值的数量是否大于一预设于所述服务器内的数量阈值;
当所述信号强度值的数量大于所述数量阈值时,执行后续步骤;
当所述信号强度值的数量不大于所述数量阈值时,终止本次定位。
优选地,选取所述偏差值中最小的偏差值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤之后,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤还包括:
当所述偏差值大于一预设于所述服务器的偏差值阈值时,判定本次采样受到了干扰,终止本次定位。
优选地,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤之后,所述定位方法还包括:
所述服务器运行一地图模块;
所述地图模块显示一地图界面,所述地图界面上显示所述RFID标签的定位位置。
本申请的第二方面,公开了一种用于RFID标签的定位系统,包括:
采集模块,设于一服务器内,获取至少一个无线接入点接收到的来自同一RFID标签的信号强度值,并记录每一信号强度值对应的无线接入点的位置;
排序模块,设于所述服务器内,与所述采集模块连接,对所述信号强度值进行排序,获取所有信号强度值中最强的信号强度值;
信号强度判断模块,设于所述服务器内,与所述排序模块连接,判断所述最强的信号强度值是否大于一预设于所述服务器内的第一信号强度阈值;
第一定位模块,设于所述服务器内,与所述信号强度判断模块连接,当所述信号强度判断模块判断所述最强的信号强度值大于所述第一信号强度阈值时,将所述最强的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置;
第二定位模块,设于所述服务器内,与所述信号强度判断模块连接,当所述信号强度判断模块判断所述最强的信号强度值不大于所述第一信号强度阈值时,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置。
优选地,所述第二定位模块包括:
循环采样单元,针对每一无线接入点,对所述RFID标签的信号强度值采样至少10次;
均值计算单元,与所述循环采样单元连接,计算所述RFID标签的对应于每一无线接入点的信号强度均值;
参照采样单元,再一次对所述RFID标签的信号强度值进行采样,针对每一无线接入点分别得到一第一信号强度值;
偏差计算单元,与所述均值计算单元和参照采样单元连接,将所述第一信号强度值减去所述信号强度均值后取绝对值,得到一组偏差值;
选取单元,与所述偏差计算单元连接,选取所述偏差值中最小的偏差值对应的无线接入点的位置作为所述RFID标签的定位位置。
优选地,所述第二定位模块还包括:
筛选单元,剔除低于一预设于所述服务器内的第二信号强度阈值的信号强度值;
数量判断单元,判断剩下的信号强度值的数量是否大于一预设于所述服务器内的数量阈值;
当所述数量判断单元判断所述信号强度值的数量大于所述数量阈值时,运行所述循环采样单元;
当所述数量判断单元判断所述信号强度值的数量不大于所述数量阈值时,所述第二定位模块终止运行。
优选地,所述第二定位模块还包括:
干扰判断单元,与所述偏差计算单元连接,判断当所述偏差值大于一预设于所述服务器的偏差值阈值时,判定本次采样受到了干扰,所述第二定位模块终止运行。
优选地,所述定位系统还包括:
运行模块,设于所述服务器内,运行一预设于所述服务器内的地图模块;
地图模块,显示一地图界面,所述地图界面上显示所述RFID标签的定位位置。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.利用wifi无线网络实现定位功能,充分利用既有的网络基础设施条件,降低成本;
2.与RFID技术结合,使得定位设备的轻便,能耗更低,延长工作周期。
附图说明
图1为符合本发明一优选实施例中用于RFID标签的定位方法的流程示意图;
图2为符合本发明一优选实施例中图1中步骤S105的具体流程示意图;
图3为符合本发明另一优选实施例中用于RFID标签的定位方法的流程示意图;
图4为符合本发明一优选实施例中用于RFID标签的定位系统的结构示意图;
图5为符合本发明一优选实施例中图4中第二定位模块的结构示意图;
图6为符合本发明另一优选实施例中用于RFID标签的定位系统的结构示意图。
附图标记:
10-用于RFID标签的定位系统、11-采集模块、12-排序模块、13-信号强度判断模块、14-第一定位模块、15-第二定位模块、151-循环采样单元、152-均值计算单元、153-参照采样单元、154-偏差计算单元、155-选取单元、156-筛选单元、157-数量判断单元、158-干扰判断单元、16-运行模块、17-地图模块。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效。
在下述描述中,参考附图,附图描述了本申请的若干实施例。应当理解,还可使用其他实施例,并且可以在不背离本公开的精神和范围的情况下进行机械组成、结构、电气以及操作上的改变.下面的详细描述不应该被认为是限制性的,并且本申请的实施例的范围仅由公布的专利的权利要求书所限定.这里使用的术语仅是为了描述特定实施例,而并非旨在限制本申请。空间相关的术语,例如“上”、“下”、“左”、“右”、“下面”、“下方”、“下部”、“上方”、“上部”等,可在文中使用以便于说明图中所示的一个元件或特征与另一元件或特征的关系。
虽然在一些实例中术语第一、第二等在本文中用来描述各种元件,但是这些元件不应当被这些术语限制。这些术语仅用来将一个元件与另一个元件进行区分。
再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示.应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加.此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合.因此,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”.仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
参阅图1,为符合本发明一优选实施例中用于RFID标签的定位方法的流程示意图,所述定位方法包括以下步骤:
S101:一服务器获取至少一个无线接入点接收到的来自同一RFID标签的信号强度值,并记录每一信号强度值对应的无线接入点的位置。
本发明涉及的定位方法通过一服务器上的计算机程序运行实现。所述服务器为具有快速运算处理能力、大容量存储空间的计算机设备。所述无线接入点又被称为AP,相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。所述无线接入点还支持多用户接入、数据加密、多速率发送等功能,室内覆盖范围一般是30m~100m,不少厂商的AP产品可以互联,以增加WLAN覆盖面积。也正因为每个AP的覆盖范围都有一定的限制,正如手机可以在基站之间漫游一样,无线局域网客户端也可以在AP之间漫游。本实施例中,所述无线接入点至少为1个,可以通过有线网络与所述服务器连接,也可以通过wifi无线网络与所述服务器连接。所述无线接入点之间也可以通过wifi进行桥接,节约了有线网络的布线成 本。
所述无线接入点还具备射频信号发射接收功能,与所述RFID标签通信。RFID无线射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境,可识别高速运动物体并可同时识别多个电子标签,也就是RFID标签。所述RFID标签由耦合元件及芯片组成,每个RFID标签具有唯一的电子编码,附着在物体上标识目标对象,俗称电子标签或智能标签。RFID标签按照工作方式可分为有源标签、无源标签、半有源半无源标签。RFID工作原理:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签);解读器读取信息并解码后,送至中央信息系统进行有关数据处理。本实施例采用有源标签,所述RFID标签能够向所述无线接入点发送信息,包括电子编码、温度等信息,所述无线接入点设备上有解读器,能够解码所述RFID标签发来的射频信号。
在无线电通信领域中,信号强度会随着通信距离的增长而衰弱,接收侧收到的信号强度值英文为Received Signal Strength Indication,简称RSSI,用于指示接收的信号强度。本实施例中所述无线接入点接收到所述RFID标签发出的射频信号后,会识别所述RFID标签的电子编码,记录其信号强度值,所述服务器从所述无线接入点获取所述RFID标签的信息及其信号强度值时,还会一同获取接收所述射频信号的无线接入点的物理地址,即MAC地址。所述服务器内预存有每个无线接入点的位置,也就是在实际空间中的位置,可用坐标表示;只要知道了无线接入点的地理地址,就能获知其位置。这样,所述服务器内就能建立针对同一RFID标签的一组数据,包括所述RFID标签的电子编码、信号强度值、对应的无线接入点的物理地址及位置。由于工作场合内会有多个无线接入点,同一RFID标签发出的射频信号可能会被两个或两个以上的无线接入点接收到,因此所述服务器针对同一RFID标签可获取多组数据,分别对应不同的无线接入点。
S102:对所述信号强度值进行排序,获取所有信号强度值中最强的信号强度值。
本步骤对步骤S101中获取的针对同一RFID标签的多组数据中的信号强度值进行排序,所述信号强度值均为数值,单位为dB,因此可以排序。排序方式可以是泡泡排序法、插值排序法等常用的数值排序算法。排序完成后即可获取信号强度值最大的数值,也就是最强的信号强度值。
S103:判断所述最强的信号强度值是否大于一预设于所述服务器内的第一信号强度 阈值。
本步骤为判断步骤,所述服务器内预设有第一信号强度阈值,作为判断的参照。当所述最强的信号强度值大于所述第一信号强度阈值时,判断成立。例如所述最强的信号强度值为-105dB,所述第一信号强度阈值为-130dB,则判断成立。
S104:当所述最强的信号强度值大于所述第一信号强度阈值时,将所述最强的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置。
当所述步骤S103判断所述最强的信号强度值大于所述第一信号强度阈值时,执行本步骤。由于所述信号强度值的大小与通信距离正相关,即所述信号强度值越大,进行通信的两方的距离就越短。若所述最强的信号强度值大于所述第一信号强度阈值,则意味着所述最强的信号强度值已经足够大,可以认定其对应的无线接入点与所述RFID标签距离很近,可视为所述RFID标签就在所述无线接入点的位置上,因此可以将所述无线接入点的位置作为所述RFID标签的定位位置。本步骤执行后,所述RFID标签的定位位置被所述服务器记录,针对该RFID标签的定位方法结束。
S105:当所述最强的信号强度值不大于所述第一信号强度阈值时,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置。
当所述步骤S103判断所述最强的信号强度值不大于所述第一信号强度阈值时,执行本步骤。本步骤执行的前提是所述RFID标签并没有与某个无线接入点的距离特别近,因此需要进行进一步的筛选定位。本步骤的算法思路是对不同无线接入点获取的信号强度值进行多次采样,每一无线接入点都对应同一RFID标签的多次采样获取的信号强度值。而后计算针对同一无线接入点的所有信号强度值的方差,找出最小的方差值对应的无线接入点,将该无线接入点的位置作为所述RFID标签的定位位置。举例来说,对于同一RFID标签,其发出的射频信号分别被无线接入点A、无线接入点B、无线接入点C接收;经过5次采样后,上述三个无线接入点各自采集了一组包含5个信号强度值的采样信息;而后每个无线接入点计算各自采集的信号强度值的方差,得到方差A、方差B、方差C,分别对应无线接入点A、无线接入点B、无线接入点C;找出上述三个方差中最小的,例如方差B最小,则其对应的无线接入点B的位置作为所述RFID标签的定位位置。
本方法也可用于多多个RFID标签进行定位,每个RFID标签的定位是独立的,互不影响,针对每一RFID标签分别使用本方法的步骤进行定位即可获得定位位置。
参阅图2,为符合本发明一优选实施例中图1中步骤S105的具体流程示意图,所述 步骤S105包括:
S105-1:剔除低于一预设于所述服务器内的第二信号强度阈值的信号强度值。
本步骤对所述信号强度值进行筛选。所述服务器内预设有第二信号强度阈值,作为判断参照,当所述信号强度值低于所述第二信号强度阈值时,则被剔除。例如所述第二信号强度阈值为-180dB,则低于-180dB的信号强度值被剔除,不参与后续步骤。结合前文所述的第一信号强度阈值,本发明对所述信号强度值划分了区间,所述第一信号强度阈值和第二信号强度阈值划共分出三个区间,大于所述第一信号强度阈值的RFID标签直接进行定位,介于所述第一信号强度阈值和第二信号强度阈值之间的RFID标签通过步骤S105定位,低于所述第二信号强度阈值的RFID标签不定位。若所述RFID标签对于某个无线接入点的信号强度低于所述第二信号强度阈值,则意味着所述RFID标签与该无线接入点距离较远,不能将该无线接入点的位置作为所述RFID标签的位置。
S105-2:判断剩下的信号强度值的数量是否大于一预设于所述服务器内的数量阈值。
步骤S105-1执行之后,本步骤对剔除低于所述第二信号强度阈值的信号强度值后剩下的强度值进行判断,判断剩下的信号强度值的数量是否大于所述数量阈值。后续的计算步骤需要达到所述数量阈值的信号强度值才能得到较好的结果。例如采用三点定位算法时,需要至少三个无线接入点的信号强度值才能计算。本实施例中所述数量阈值优选为至少3个。
当所述信号强度值的数量大于所述数量阈值时,执行后续步骤,也就是步骤S105-3;当所述信号强度值的数量不大于所述数量阈值时,终止本次定位。在其他实施方式中,所述步骤S105-1、步骤S105-2可以省略,直接执行步骤S105-3。
S105-3:针对每一无线接入点,对所述RFID标签的信号强度值采样至少10次。
本步骤对所述信号强度值执行多次采样,采样次数至少为10次。举例来说,对于同一RFID标签,其发出的射频信号分别被无线接入点A、无线接入点B、无线接入点C接收;经过15次采样后,上述三个无线接入点各自采集了一组包含15个信号强度值的采样信息。本步骤的执行时间并不限于在所述步骤S105-2之后,也可以是在步骤S101至步骤S104之间的任一时间区间内。
S105-4:计算所述RFID标签的对应于每一无线接入点的信号强度均值。
本步骤进行均值计算,针对每一无线接入点采集的信号强度,相加得到总和后再除以数量即可得到所述信号强度均值。举例来说,无线接入点A、无线接入点B、无线接入点C的各自的一组包含15个信号强度值的采样信息分别进行均值计算,可得到信号强 度均值A、信号强度均值B、信号强度均值C,作为后续步骤运算的数据,对应上述无线接入点A、无线接入点B、无线接入点C。
S105-5:再一次对所述RFID标签的信号强度值进行采样,针对每一无线接入点分别得到一第一信号强度值。
本步骤再一次对所述信号强度值进行采样,采样结果为第一信号强度值,作为后续步骤运算的数据。举例来说,对于所述RFID标签,针对无线接入点A、无线接入点B、无线接入点C各采样一次信号强度值,得到第一信号强度值A、第一信号强度值B、第一信号强度值C,对应上述无线接入点A、无线接入点B、无线接入点C。
S105-6:所述第一信号强度值减去所述信号强度均值后取绝对值,得到一组偏差值。
本步骤执行运算操作,对应每一无线接入点,分别将其对应的第一信号强度值减去所述信号强度均值,得到的差值再取绝对值得到一偏差值,所有无线接入点的偏差值汇总起来就是一组偏差值。举例来说,针对无线接入点A,第一信号强度值A减去所述信号强度均值A,对差值取绝对值后得到偏差值A;同样地,针对无线接入点B、无线接入点C,分别计算得到偏差值B、偏差值C。
S105-7:选取所述偏差值中最小的偏差值对应的无线接入点的位置作为所述RFID标签的定位位置。
本步骤选取步骤S105-6得到的一组偏差值中最小的一个偏差值,将所述最小偏差值对应的无线接入点的位置作为所述RFID标签的定位位置。举例来说,针对无线接入点A、无线接入点B、无线接入点C,其对应的偏差值A、偏差值B、偏差值C中偏差值B最小,则将所述无线接入点B的位置作为所述RFID标签的定位位置。由于前面步骤已经将不同无线接入点采样的信号强度值限定在所述第一信号强度阈值和第二信号强度阈值之间,也就表明这些无线接入点与所述RFID标签的的距离都在一定范围内,因此选取信号强度值中偏差最小的无线接入点,意味着所述RFID标签与该无线接入点的连接情况比较稳定,不易受到外部干扰,应当将该无线接入点绑定为定位位置。
S105-8:当所述偏差值大于一预设于所述服务器的偏差值阈值时,判定本次采样受到了干扰,终止本次定位。
本步骤进行干扰判断,当步骤S105-6获得的偏差值中有大于所述偏差值阈值的偏差值时,则表明所述RFID标签与该偏差值对应的无线接入点之间有干扰,造成了通信信号拨动,导致信号强度值变化剧烈,这样的采样信号不能作为定位运算的依据,因此终止本次定位。在本发明的其他实施例中,本步骤也可以省略,不作为步骤S105的子步骤。
参阅图3,为符合本发明另一优选实施例中用于RFID标签的定位方法的流程示意图,步骤S104’和步骤S105’之后,所述定位方法还包括:
S106:所述服务器运行一地图模块17。
所述地图模块17是提供地图功能服务的应用程序,在所述服务器内具有可执行文件,因此可以被运行。
S107:所述地图模块17显示一地图界面,所述地图界面上显示所述RFID标签的定位位置。
本步骤中,所述地图模块17运行时显示一地图界面,按照一比例尺显示地理信息,包括道路、建筑、地理标识等。所述地图界面也可以是室内布局图,显示室内各房间的布局,以及重要的标志物,特别是工业厂房中的重点设备、办公室等位置。所述地图界面还显示所述RFID标签的定位位置,所述定位位置可以在宏观的地理尺度上显示,例如在一个城市中的不同区域的标签通过互联网将位置信息汇总至服务器并显示;所述定位位置也可以是室内的位置,例如所述RFID标签分布于哪个办公室或哪个生产区域内。所述地图界面显示所述RFID标签时,可以显示预先设定的图形标识,也可以显示文字标识。
参阅图4,为符合本发明一优选实施例中用于RFID标签的定位系统的结构示意图,所述定位系统10包括:
-采集模块11
所述采集模块11设于一服务器内,获取至少一个无线接入点接收到的来自同一RFID标签的信号强度值,并记录每一信号强度值对应的无线接入点的位置。本实施例中所有的模块均在所述服务器内运行。所述采集模块11可以向所述RFID标签发送问询信息,而后等待所述RFID标签回复信息,即可从收到所述RFID标签发送的射频信号的无线接入点处获取信号强度值。也可采用主动上报机制,即所述RFID标签定期向外发送消息,被附近的无线接入点接收,所述无线接入点再将收到的消息加上自身的物理地址后发送给所述采集模块11。所述采集模块11通过所述服务器的网卡与外部连接,其内部存储有各无线接入点的物理地址和IP地址,通过网络协议与无线接入点通信。所述采集模块11将所述RFID标签的电子编码、无线接入点的物理地址及其接收到的信号强度值存储为一组信息;对于同一RFID标签,可能会被多个无线接入点接收信号,就会产生多组信息。
-排序模块12
所述排序模块12设于所述服务器内,与所述采集模块11连接,对所述信号强度值进行排序,获取所有信号强度值中最强的信号强度值。所述排序模块12从所述采集模块12获取所述信号强度值,并针对同一RFID标签的信号强度值按照大小进行排序,找出其中最强的信号强度值。
-信号强度判断模块13
所述信号强度判断模块13设于所述服务器内,与所述排序模块12连接,判断所述最强的信号强度值是否大于一预设于所述服务器内的第一信号强度阈值。信号强度判断模块13从所述排序模块12获取最强的信号强度值,并与所述第一信号强度阈值进行比较判断,当所述最强的信号强度值大于所述第一信号强度阈值时,判断成立。
-第一定位模块14
所述第一定位模块14设于所述服务器内,与所述信号强度判断模块13连接,当所述信号强度判断模块13判断所述最强的信号强度值大于所述第一信号强度阈值时,将所述最强的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置。所述第一定位模块14从所述信号强度判断模块13获取判断结果,当所述最强的信号强度值大于所述第一信号强度阈值时,执行定位操作,从所述采集模块11存储的信息中找到所述最强的信号强度值对应的无线接入点,将该无线接入点的位置作为所述RFID标签的定位位置。
-第二定位模块15
所述第二定位模块15设于所述服务器内,与所述信号强度判断模块13连接,当所述信号强度判断模块13判断所述最强的信号强度值不大于所述第一信号强度阈值时,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置。所述第二定位模块15从所述信号强度判断模块13获取判断结果,当所述最强的信号强度值不大于所述第一信号强度阈值时,执行定位操作。所述第二定位模块15从所述采集模块11获取对同一RFID标签的多次采样获取的信号强度值,而后计算针对同一无线接入点的所有信号强度值的方差,找出最小的方差值对应的无线接入点,将该无线接入点的位置作为所述RFID标签的定位位置。
参阅图5,为符合本发明一优选实施例中图4中第二定位模块15的结构示意图,所述第二定位模块15包括:
-循环采样单元151
所述循环采样单元151针对每一无线接入点,对所述RFID标签的信号强度值采样 至少10次。所述循环采样单元151多次调用所述采集模块11对所述RFID标签的信号强度值进行采样,采样次数至少为10次,采样范围是所有能接受所述RFID标签发出的射频信号的无线接入点。
-均值计算单元152
所述均值计算单元152与所述循环采样单元151连接,计算所述RFID标签的对应于每一无线接入点的信号强度均值。所述均值计算单元152从所述循环采样单元151获取采样的信号强度值,并针对每一无线接入点采样的信号强度值进行均值计算,得到所述信号强度均值。
-参照采样单元153
所述参照采样单元153再一次对所述RFID标签的信号强度值进行采样,针对每一无线接入点分别得到一第一信号强度值。所述参照采样单元153调用所述采集模块11对所述RFID标签的信号强度值进行一次采样,采样结果记录为第一信号强度值,作为定位运算的数据基础。
-偏差计算单元154
所述偏差计算单元154与所述均值计算单元152和参照采样单元153连接,将所述第一信号强度值减去所述信号强度均值后取绝对值,得到一组偏差值。所述偏差计算单元154从所述均值计算单元152获取针对每一无线接入点的信号强度均值,从所述参照采样单元153获取针对每一无线接入点的第一信号强度值。而后所述偏差计算单元154将所述第一信号强度值减去所述信号强度均值后取绝对值,针对每一无线接入点得到一偏差值,若所述RFID标签由多个无线接入点接收信号,则得到一组偏差值。
-偏差计算单元155
所述选取单元155与所述偏差计算单元154连接,选取所述偏差值中最小的偏差值对应的无线接入点的位置作为所述RFID标签的定位位置。所述选取单元155从所述偏差计算单元154获取偏差值,并从所述偏差值中选取最小的偏差值,查找最小的偏差值对应的无线接入点,将所述无线接入点的位置作为所述RFID标签的定位位置。
-筛选单元156
所述筛选单元156剔除低于一预设于所述服务器内的第二信号强度阈值的信号强度值。所述筛选单元156对所述采集模块11从不同无线接入点获取的针对同一RFID标签的信号强度值与所述第二信号强度阈值进行比较,将低于所述第二信号强度阈值的信号强度值剔除掉,即筛选掉信号较差的无线接入点。
-数量判断单元157
所述数量判断单元157判断剩下的信号强度值的数量是否大于一预设于所述服务器内的数量阈值。所述数量判断单元157仅对同一RFID标签对应的不同无线接入点的信号强度值的数量进行判断,判断该数量是否大于所述数量阈值。当所述数量判断单元157判断所述信号强度值的数量大于所述数量阈值时,运行所述循环采样单元151;当所述数量判断单元157判断所述信号强度值的数量不大于所述数量阈值时,所述第二定位模块15终止运行。
参阅图6,为符合本发明另一优选实施例中用于RFID标签的定位系统的结构示意图,所述定位系统10还包括:
-运行模块16
所述运行模块16设于所述服务器内,运行一预设于所述服务器内的地图模块17。所述运行模块16内存储了所述地图模块17的可执行文件所在的存储路径,可根据所述存储路径运行所述地图模块17。
-地图模块17
所述地图模块17显示一地图界面,所述地图界面上显示所述RFID标签的定位位置。所述地图界面,按照一比例尺显示地理信息,包括道路、建筑、地理标识等。所述地图界面也可以是室内布局图,显示室内各房间的布局,以及重要的标志物,特别是工业厂房中的重点设备、办公室等位置。所述地图界面上还显示所述RFID标签的定位位置,可以显示预先设定的图形标识,也可以显示文字标识。由于所述定位位置以坐标的形式存储,所述地图模块17根据所述定位位置的坐标找到所述地图界面上对应的位置,显示预设的标识内容。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种用于RFID标签的定位方法,其特征在于,包括以下步骤:
    一服务器获取至少一个无线接入点接收到的来自同一RFID标签的信号强度值,并记录每一信号强度值对应的无线接入点的位置;
    对所述信号强度值进行排序,获取所有信号强度值中最强的信号强度值;
    判断所述最强的信号强度值是否大于一预设于所述服务器内的第一信号强度阈值;
    当所述最强的信号强度值大于所述第一信号强度阈值时,将所述最强的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置;
    当所述最强的信号强度值不大于所述第一信号强度阈值时,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置。
  2. 如权利要求1所述的定位方法,其特征在于,
    当所述最强的信号强度值不大于所述信号强度阈值时,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤包括:
    针对每一无线接入点,对所述RFID标签的信号强度值采样至少10次;
    计算所述RFID标签的对应于每一无线接入点的信号强度均值;
    再一次对所述RFID标签的信号强度值进行采样,针对每一无线接入点分别得到一第一信号强度值;
    所述第一信号强度值减去所述信号强度均值后取绝对值,得到一组偏差值;
    选取所述偏差值中最小的偏差值对应的无线接入点的位置作为所述RFID标签的定位位置。
  3. 如权利要求2所述的定位方法,其特征在于,
    针对每一无线接入点,对所述RFID标签的信号强度值采样至少10次的步骤之前,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤还包括以下步骤:
    剔除低于一预设于所述服务器内的第二信号强度阈值的信号强度值;
    判断剩下的信号强度值的数量是否大于一预设于所述服务器内的数量阈值;
    当所述信号强度值的数量大于所述数量阈值时,执行后续步骤;
    当所述信号强度值的数量不大于所述数量阈值时,终止本次定位。
  4. 如权利要求2所述的定位方法,其特征在于,
    选取所述偏差值中最小的偏差值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤之后,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤还包括:
    当所述偏差值大于一预设于所述服务器的偏差值阈值时,判定本次采样受到了干扰,终止本次定位。
  5. 如权利要求1-3任一项所述的定位方法,其特征在于,
    将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置的步骤之后,所述定位方法还包括:
    所述服务器运行一地图模块;
    所述地图模块显示一地图界面,所述地图界面上显示所述RFID标签的定位位置。
  6. 一种用于RFID标签的定位系统,其特征在于,包括:
    采集模块,设于一服务器内,获取至少一个无线接入点接收到的来自同一RFID标签的信号强度值,并记录每一信号强度值对应的无线接入点的位置;
    排序模块,设于所述服务器内,与所述采集模块连接,对所述信号强度值进行排序,获取所有信号强度值中最强的信号强度值;
    信号强度判断模块,设于所述服务器内,与所述排序模块连接,判断所述最强的信号强度值是否大于一预设于所述服务器内的第一信号强度阈值;
    第一定位模块,设于所述服务器内,与所述信号强度判断模块连接,当所述信号强度判断模块判断所述最强的信号强度值大于所述第一信号强度阈值时,将所述最强的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置;
    第二定位模块,设于所述服务器内,与所述信号强度判断模块连接,当所述信号强度判断模块判断所述最强的信号强度值不大于所述第一信号强度阈值时,将偏差最小的信号强度值对应的无线接入点的位置作为所述RFID标签的定位位置。
  7. 如权利要求6所述的定位系统,其特征在于,
    所述第二定位模块包括:
    循环采样单元,针对每一无线接入点,对所述RFID标签的信号强度值采样至少10次;
    均值计算单元,与所述循环采样单元连接,计算所述RFID标签的对应于每一无线接入点的信号强度均值;
    参照采样单元,再一次对所述RFID标签的信号强度值进行采样,针对每一无线接入点分别得到一第一信号强度值;
    偏差计算单元,与所述均值计算单元和参照采样单元连接,将所述第一信号强度值减去所述信号强度均值后取绝对值,得到一组偏差值;
    选取单元,与所述偏差计算单元连接,选取所述偏差值中最小的偏差值对应的无线接入点的位置作为所述RFID标签的定位位置。
  8. 如权利要求7所述的定位系统,其特征在于,
    所述第二定位模块还包括:
    筛选单元,剔除低于一预设于所述服务器内的第二信号强度阈值的信号强度值;
    数量判断单元,判断剩下的信号强度值的数量是否大于一预设于所述服务器内的数量阈值;
    当所述数量判断单元判断所述信号强度值的数量大于所述数量阈值时,运行所述循环采样单元;
    当所述数量判断单元判断所述信号强度值的数量不大于所述数量阈值时,所述第二定位模块终止运行。
  9. 如权利要求7所述的定位系统,其特征在于,
    所述第二定位模块还包括:
    干扰判断单元,与所述偏差计算单元连接,判断当所述偏差值大于一预设于所述服务器的偏差值阈值时,判定本次采样受到了干扰,所述第二定位模块终止运行。
  10. 如权利要求6-8任一项所述的定位系统,其特征在于,
    所述定位系统还包括:
    运行模块,设于所述服务器内,运行一预设于所述服务器内的地图模块;
    地图模块,显示一地图界面,所述地图界面上显示所述RFID标签的定位位置。
PCT/CN2017/105979 2017-10-13 2017-10-13 一种用于rfid标签的定位方法及定位系统 WO2019071549A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105979 WO2019071549A1 (zh) 2017-10-13 2017-10-13 一种用于rfid标签的定位方法及定位系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105979 WO2019071549A1 (zh) 2017-10-13 2017-10-13 一种用于rfid标签的定位方法及定位系统

Publications (1)

Publication Number Publication Date
WO2019071549A1 true WO2019071549A1 (zh) 2019-04-18

Family

ID=66101152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105979 WO2019071549A1 (zh) 2017-10-13 2017-10-13 一种用于rfid标签的定位方法及定位系统

Country Status (1)

Country Link
WO (1) WO2019071549A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343583A (zh) * 2020-02-27 2020-06-26 厦门大洋通信有限公司 一种利用多个无线讯号接收器的定位系统
CN113115437A (zh) * 2021-03-10 2021-07-13 成都永奉科技有限公司 定位标签与基站前后位置关系判定方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780555A (zh) * 2014-01-13 2015-07-15 中兴通讯股份有限公司 基于信号强度的位置信息提示方法及装置
CN105578420A (zh) * 2014-10-17 2016-05-11 深圳航天科技创新研究院 一种基于wlan的室内定位方法和装置
US20160212579A1 (en) * 2015-01-20 2016-07-21 Red Point Positioning Corporation Method, system, and apparatus for determining and provisioning location information of wireless devices
CN106686071A (zh) * 2016-12-16 2017-05-17 京信通信技术(广州)有限公司 一种定位方法及服务器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780555A (zh) * 2014-01-13 2015-07-15 中兴通讯股份有限公司 基于信号强度的位置信息提示方法及装置
CN105578420A (zh) * 2014-10-17 2016-05-11 深圳航天科技创新研究院 一种基于wlan的室内定位方法和装置
US20160212579A1 (en) * 2015-01-20 2016-07-21 Red Point Positioning Corporation Method, system, and apparatus for determining and provisioning location information of wireless devices
CN106686071A (zh) * 2016-12-16 2017-05-17 京信通信技术(广州)有限公司 一种定位方法及服务器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343583A (zh) * 2020-02-27 2020-06-26 厦门大洋通信有限公司 一种利用多个无线讯号接收器的定位系统
CN111343583B (zh) * 2020-02-27 2021-11-12 厦门大洋通信有限公司 一种利用多个无线讯号接收器的定位系统
CN113115437A (zh) * 2021-03-10 2021-07-13 成都永奉科技有限公司 定位标签与基站前后位置关系判定方法及系统
CN113115437B (zh) * 2021-03-10 2023-02-03 成都永奉科技有限公司 定位标签与基站前后位置关系判定方法及系统

Similar Documents

Publication Publication Date Title
Abedi et al. Bluetooth and Wi-Fi MAC address based crowd collection and monitoring: Benefits, challenges and enhancement
CN100450269C (zh) 监视无线局域网中的客户机设备的可变位置的方法和系统
US7739157B2 (en) Method of tracking the real time location of shoppers, associates, managers and vendors through a communication multi-network within a store
US8576063B2 (en) System and method for tracking position of moving object
US20080180246A1 (en) Methods and apparatus for opportunistic locationing of rf tags using location triggers
CN106535134B (zh) 一种基于wifi的多房间定位方法及服务器
CN204142952U (zh) 蓝牙实时动态定位系统及蓝牙基站
CN109525937B (zh) 集成多种定位方式的室内定位管理系统的定位方法
CN104980885A (zh) 一种面向wifi探测识别的数据处理系统及方法
CN102821461A (zh) 位置判定方法、系统以及相应的移动终端
CN106199516A (zh) 一种用于室内定位的辅助方法
JP2010204028A (ja) 管理サーバ、位置推定用設備システム及び位置推定システム
KR20100099346A (ko) 멀티-통신망을 이용한 매장 쇼핑자의 실시간 위치 추적 시스템
CN103069778A (zh) 用于定位的方法
CN107509165A (zh) 一种基于大数据计算、确定ap位置的方法
CN111107627A (zh) 多模融合无线定位系统及其定位方法
CN108924190A (zh) 一种基于蓝牙低功耗混合定位系统
CN106921938A (zh) 基于无线网络的定位方法、装置及智能终端
WO2019071549A1 (zh) 一种用于rfid标签的定位方法及定位系统
US11722986B2 (en) Positioning system for continuously and accurately updating position value of wireless LAN AP, and method therefor
CN106789583A (zh) 一种基于WiFi‑Aware的智能社交方法及系统
Oransirikul et al. Feasibility of analyzing Wi-Fi activity to estimate transit passenger population
CN104349274A (zh) 一种信息处理方法及装置
EP3264806B1 (en) Method and device for providing information in communication network
US20130099896A1 (en) Sensor Location and Tagging System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928227

Country of ref document: EP

Kind code of ref document: A1