WO2019070050A1 - Mobile robot - Google Patents

Mobile robot Download PDF

Info

Publication number
WO2019070050A1
WO2019070050A1 PCT/JP2018/037344 JP2018037344W WO2019070050A1 WO 2019070050 A1 WO2019070050 A1 WO 2019070050A1 JP 2018037344 W JP2018037344 W JP 2018037344W WO 2019070050 A1 WO2019070050 A1 WO 2019070050A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile robot
body portion
section
outer diameter
ground
Prior art date
Application number
PCT/JP2018/037344
Other languages
French (fr)
Japanese (ja)
Inventor
哲明 紅林
研郎 鵜殿
中澤 淳
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2019547027A priority Critical patent/JPWO2019070050A1/en
Publication of WO2019070050A1 publication Critical patent/WO2019070050A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H11/00Self-movable toy figures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages

Definitions

  • the present invention relates to a mobile robot which is movable in an upright state by driving a drive unit.
  • Japanese Patent Application Laid-Open No. 2005-342818 describes a mobile robot that includes a cylindrical body and a lower one spherical ring so that it can move even in a narrow passage, and travels by rotating the spherical ring. It is done.
  • the mobile robot may fall over, for example, when an unexpected external force is applied. If it falls, the mobile robot may be damaged by the impact.
  • a collision absorbing material such as rubber is provided so as to protrude in the radial direction on the outer periphery of the upper end of the body.
  • An object of the present invention is to provide a mobile robot capable of alleviating an impact even if it overturns.
  • the present invention is A body portion (for example, the body portion 2 of the embodiment, the same hereinafter) and a drive portion (for example, a drive portion 3 of the embodiment) provided below the body portion to make the body portion movable.
  • the torso portion has a longitudinal cross section that is substantially elliptical, and the maximum outer diameter portion of the substantially elliptical shape (for example, the maximum outer diameter portion 8 of the embodiment, hereinafter the same) Between (for example, the middle 9 of the embodiment, and the same below) is set to be positioned below
  • the first ground contact point (e.g., the first ground contact point 10 of the embodiment, hereinafter the same) of the torso portion and the ground (for example, the ground surface 11 of the embodiment, hereinafter the same) when falling over is the maximum outer diameter portion It is characterized in that it is configured to be grounded at a lower position than that.
  • the ground can be first brought into contact with the ground below the maximum outer diameter of the substantially elliptical trunk, and then along the substantially elliptical shape.
  • the swaying falls as it shakes. Therefore, it is possible to prevent the upper part of the torso with a large potential energy from colliding with the ground first, and furthermore, a part of the potential energy due to the fall is converted into the rotational motion due to the swaying motion. The impact on the mobile robot at the time of falling can be mitigated more than before.
  • the substantially elliptical shape is described as including an elliptical shape and a substantially elliptical shape.
  • the maximum outer diameter portion is positioned below the longitudinal center of the body portion and above the lower end of the body portion.
  • the portion with smaller potential energy can be used as the first grounding point as compared with the case where the maximum outer diameter portion is located at the longitudinal center of the body portion, and the impact is further mitigated. It can be done.
  • a cross section of the body portion is a polygon. According to this configuration, since the cross section of the body portion is polygonal, it is possible to prevent the mobile robot from rotating and rolling in the lateral direction about the longitudinal direction of the mobile robot after falling.
  • FIG. 1 is a perspective view showing a mobile robot according to an embodiment of the present invention.
  • FIG. 2A is a front view of the mobile robot of this embodiment.
  • FIG. 2B is a left side view of the mobile robot of the present embodiment.
  • FIG. 2C is a right side view of the mobile robot of the present embodiment.
  • FIG. 2D is a rear view of the mobile robot of the present embodiment.
  • FIG. 2B is a plan view of the mobile robot of the present embodiment.
  • FIG. 3A is an explanatory view showing a state before the mobile robot of this embodiment falls.
  • FIG. 3B is an explanatory view showing a state in which the mobile robot of the present embodiment has begun to fall.
  • FIG. 3A is an explanatory view showing a state before the mobile robot of this embodiment falls.
  • FIG. 3B is an explanatory view showing a state in which the mobile robot of the present embodiment has begun to fall.
  • FIG. 3A is an explanatory view showing a state before the mobile robot of
  • FIG. 3C is an explanatory view showing a state in which the mobile robot of the present embodiment falls down and is first grounded on the ground.
  • FIG. 3D is an explanatory view showing a state in which the mobile robot of this embodiment falls over and the maximum outer diameter portion is in contact with the ground.
  • FIG. 3E is an explanatory view showing a state in which part of potential energy is converted into rotational motion when the mobile robot of this embodiment falls.
  • FIG. 3F is an explanatory view showing a state in which shaking at the time of falling of the mobile robot of the present embodiment has stopped.
  • the mobile robot 1 of this embodiment is shown in FIG. 1 and FIG.
  • the mobile robot 1 includes a body 2 and a drive 3 disposed at the lower end of the body 2.
  • the driving unit 3 is configured to be movable in all directions, front and rear, right and left, by rotating one spherical wheel 4.
  • the mobile robot 1 is provided with a pair of cameras 5 and 5 as environment sensors on the outer periphery of the upper end portion of the body 2.
  • the pair of cameras 5 and 5 respectively project from the body 2.
  • the cameras 5 and 5 may be surrounded by a protective member.
  • the body 2 has a substantially elliptical vertical cross section, and the largest outer diameter portion 8 of the body 2 is less than or equal to the longitudinal center 9 of the body 2 and from the lower end of the body 2 Is also set up.
  • the dashed-dotted line of FIG. 2A has shown the vertical direction, and the dashed-two dotted line has shown the horizontal direction.
  • the body 2 has a substantially hexagonal cross section, and hexagonal side portions are arranged on the front and back of the mobile robot 1.
  • the front surface 6 and the back surface 7 of the mobile robot 1 are respectively provided with displays (not shown), and can display various information such as a traveling direction, a map, or an advertisement.
  • the six side surfaces of the torso portion 2 have smooth curved surfaces that come into contact with the ground when falling over, and the other non-ground portions of the torso portion 2 may have corners.
  • the mobile robot 1 is a control device (not shown) provided inside the body 2 based on environmental information obtained from an environmental sensor (for example, a laser distance meter etc.) including the cameras 5 and 5.
  • the action to be performed is determined, such as whether to move along a route or what information is displayed on a display (not shown).
  • the mobile robot 1 can be used as a guidance robot in a station, an airport or other facilities.
  • the diameter of the body portion 2 of the mobile robot 1 gradually increases as it goes below the upper portion of the body portion 2, and the diameter becomes maximum at the lower portion of the body portion 2. After that (maximum outer diameter portion 8), the diameter gradually decreases toward the bottom. That is, in the upright state, the body 2 is configured such that the cross section (longitudinal cross section) cut in the vertical direction becomes substantially elliptical (in the present embodiment, substantially egg-shaped).
  • the body 2 Since the body 2 has a substantially elliptical shape, even if the mobile robot 1 falls over, it is inclined along the outer surface of the body 2 so that the ground point changes from the lower side of the body 2 to the upper side. The impact on the mobile robot 1 is alleviated.
  • the substantially elliptical shape is described not only as an elliptical shape but also as a substantially elliptical shape. Further, the term "general egg shape” is described not only as a chicken egg shape but also as an approximately chicken egg shape.
  • FIG. 3A shows a state in which the mobile robot 1 is operating upright. In normal times, movement or standby is performed in such a posture.
  • the mobile robot 1 contacts the ground from below the body 2 at the time of falling, and falls while rotating along the outer shape, so that the upper part of the body 2 does not contact the ground first, and Since the speed at the time is also relaxed, it is possible to reduce the impact on the body 2, particularly the upper part.
  • the body portion 2 of the mobile robot 1 has a polygonal (substantially hexagonal) cross section, it is possible to prevent the mobile robot 1 from rolling sideways around the axis in the vertical direction of the mobile robot 1 when it falls. That is, the possibility that the mobile robot 1 falls and collides with an object around the rolling is reduced, and a safer state can be achieved even when the mobile robot 1 falls.
  • this invention is not limited to the structure of this embodiment, If a trunk
  • the one including the single spherical wheel 4 has been described as the drive unit 3.
  • the drive unit of the present invention may not include the spherical ring, and a plurality of disk-like It may have wheels.
  • a laser range finder may be provided in addition to the camera, or only a laser range finder may be provided instead of the camera.
  • the maximum outer diameter portion of the trunk portion 2 is below the center 9 in the longitudinal direction of the trunk portion 2 and above the lower end of the trunk portion 2
  • the substantially chicken egg-shaped torso portion 2 has been described so as to be located.
  • the substantially elliptical trunk portion of the present invention is not limited to this.
  • the shock to the mobile robot during falling of the present invention The effect can also be obtained.
  • the substantially rugby ball shape is described not only as the rugby ball shape but also as substantially including the rugby ball shape.
  • the cross section of the body portion 2 has a substantially hexagonal shape
  • the present invention is not limited to this in order to exhibit the anti-rolling function in the lateral direction at the time of falling. It may be square. For example, it may be a triangle, a square, a pentagon, an octagon or a decagon.
  • the pentagon or larger can mitigate the impact when the corner of the polygon becomes a contact point, and if it is more than a decagon, it prevents lateral rolling at the time of falling
  • the pentagons to octagons are preferable from the viewpoint of impact relaxation and anti-rolling functions because the functions are weakened.

Abstract

Provided is a mobile robot that can better soften impacts from falls than is conventionally possible. A mobile robot 1 comprises a body section 2 and a driving unit 3 which is provided to the bottom part of the body section 2 so as to make it possible for the body section 2 to move. The body section 2 is configured such that a vertical cross section thereof is substantially ovular, and such that an initial touchdown point 10 at which the body section 2 makes contact with the ground 11 at the time of a fall will be below a maximum outer diameter section 8.

Description

移動ロボットMobile robot
 本発明は、駆動部を駆動させて直立状態で移動自在な移動ロボットに関する。 The present invention relates to a mobile robot which is movable in an upright state by driving a drive unit.
 近年、自立的に移動して様々な作業を行う移動ロボットの開発が進められている。例えば、日本国特開2005-342818号公報には、狭い通路でも移動できるように、円筒形の胴部とその下部1つの球体輪を備え、球体輪を回転させることで走行する移動ロボットが記載されている。 In recent years, development of a mobile robot that moves independently and performs various tasks has been promoted. For example, Japanese Patent Application Laid-Open No. 2005-342818 describes a mobile robot that includes a cylindrical body and a lower one spherical ring so that it can move even in a narrow passage, and travels by rotating the spherical ring. It is done.
 移動ロボットは予期しない外力が加わったときなどに転倒する可能性がある。転倒すると移動ロボットはその衝撃によって故障する虞がある。このような転倒時の衝撃を緩和するために特許文献1の移動ロボットでは、胴体部の上端外周にゴムなどの衝突吸収材を径方向へ張り出すように突設するようにしている。 The mobile robot may fall over, for example, when an unexpected external force is applied. If it falls, the mobile robot may be damaged by the impact. In order to reduce the impact at the time of such a fall, in the mobile robot of Patent Document 1, a collision absorbing material such as rubber is provided so as to protrude in the radial direction on the outer periphery of the upper end of the body.
特開2005-342818号公報JP 2005-342818 A
 日本国特開2005-342818号公報のものでは、衝突緩衝材が胴体部の上方に突設されているため、移動ロボットが転倒したときに衝突緩衝材のみが地面と接触することとなり、胴体上部に衝撃が集中して伝達されてしまい衝突緩衝材で十分に衝撃を緩和できない虞がある。更に、転倒時においては、胴体部は上方へ行くほど位置エネルギーが大きくなるため、特に衝撃が大きくなり易く、衝突吸収材で衝撃を適切に吸収しきれない虞がある。 In the case of Japanese Patent Application Laid-Open No. 2005-342818, since the shock absorbing material is provided above the body, only the shock absorbing material comes into contact with the ground when the mobile robot falls over, and the upper part of the body The shock may be concentrated and transmitted, and the shock absorbing material may not be able to sufficiently reduce the shock. Furthermore, since the potential energy of the body portion increases toward the upper side when falling, the impact is particularly likely to be large, and there is a possibility that the impact can not be properly absorbed by the collision absorber.
 本発明は、以上の点に鑑み、転倒しても衝撃を緩和させることができる移動ロボットを提供することを目的とする。 An object of the present invention is to provide a mobile robot capable of alleviating an impact even if it overturns.
 [1]上記目的を達成するため、本発明は、
 胴体部(例えば、実施形態の胴体部2。以下同一。)と、前記胴体部を移動可能とすべく前記胴体部の下部に設けられた駆動部(例えば、実施形態の駆動部3。以下同一。)と、を備える移動ロボット(例えば、実施形態の移動ロボット1。以下同一。)であって、
 前記胴体部は、縦断面が略楕円形状であり、前記略楕円形状の最大外径部分(例えば、実施形態の最大外径部分8。以下同一。)が前記胴体部の縦方向の上端と下端の間(例えば、実施形態の中央9。以下同一。)以下に位置するように設定されており、
 転倒したときの前記胴体部と地面(例えば、実施形態の地面11。以下同一。)との最初の接地点(例えば、実施形態の最初の接地点10。以下同一。)が前記最大外径部分よりも下方で接地するように構成されていることを特徴とする。
[1] In order to achieve the above object, the present invention is
A body portion (for example, the body portion 2 of the embodiment, the same hereinafter) and a drive portion (for example, a drive portion 3 of the embodiment) provided below the body portion to make the body portion movable. A mobile robot (for example, the mobile robot 1 of the embodiment, hereinafter the same),
The torso portion has a longitudinal cross section that is substantially elliptical, and the maximum outer diameter portion of the substantially elliptical shape (for example, the maximum outer diameter portion 8 of the embodiment, hereinafter the same) Between (for example, the middle 9 of the embodiment, and the same below) is set to be positioned below
The first ground contact point (e.g., the first ground contact point 10 of the embodiment, hereinafter the same) of the torso portion and the ground (for example, the ground surface 11 of the embodiment, hereinafter the same) when falling over is the maximum outer diameter portion It is characterized in that it is configured to be grounded at a lower position than that.
 本発明によれば、移動ロボットが転倒した場合であっても、略楕円形状の胴体部の最大外径部分よりも下方部分で最初に地面と接地することができ、その後、略楕円形状に沿って揺り籠が揺れるように転倒していく。従って、位置エネルギーの大きい胴体部の上部が最初に地面に衝突することを防止することができ、更に、転倒による位置エネルギーの一部が揺り籠のように揺れることによる回転運動に変換されるため、転倒時の移動ロボットへの衝撃を従来よりも緩和することができる。 According to the present invention, even when the mobile robot falls over, the ground can be first brought into contact with the ground below the maximum outer diameter of the substantially elliptical trunk, and then along the substantially elliptical shape. The swaying falls as it shakes. Therefore, it is possible to prevent the upper part of the torso with a large potential energy from colliding with the ground first, and furthermore, a part of the potential energy due to the fall is converted into the rotational motion due to the swaying motion. The impact on the mobile robot at the time of falling can be mitigated more than before.
 なお、略楕円形状とは、楕円形状及びほぼ楕円形状を含むものとして説明している。 The substantially elliptical shape is described as including an elliptical shape and a substantially elliptical shape.
 [2]また、本発明においては、前記最大外径部分は、前記胴体部の縦方向の中央以下であって、前記胴体部の前記下端よりも上方に位置していることが好ましい。 [2] Further, in the present invention, it is preferable that the maximum outer diameter portion is positioned below the longitudinal center of the body portion and above the lower end of the body portion.
 かかる構成によれば、最大外径部分が胴体部の縦方向の中央に位置している場合と比較して、より位置エネルギーの小さい部分を最初の接地点とすることができ、更に衝撃を緩和させることができる。 According to such a configuration, the portion with smaller potential energy can be used as the first grounding point as compared with the case where the maximum outer diameter portion is located at the longitudinal center of the body portion, and the impact is further mitigated. It can be done.
 [3]また、本発明においては、前記胴体部の横断面が多角形であることが好ましい。かかる構成によれば、胴体部の横断面が多角形状であるため、転倒後に移動ロボットが移動ロボットの縦方向を軸として横方向に回転して転がってしまうことを防止することができる。 [3] Further, in the present invention, it is preferable that a cross section of the body portion is a polygon. According to this configuration, since the cross section of the body portion is polygonal, it is possible to prevent the mobile robot from rotating and rolling in the lateral direction about the longitudinal direction of the mobile robot after falling.
図1は本発明の実施形態の移動ロボットを示す斜視図である。FIG. 1 is a perspective view showing a mobile robot according to an embodiment of the present invention. 図2Aは本実施形態の移動ロボットの正面図である。図2Bは本実施形態の移動ロボットの左側面図である。図2Cは本実施形態の移動ロボットの右側面図である。図2Dは本実施形態の移動ロボットの背面図である。図2Bは本実施形態の移動ロボットの平面図である。FIG. 2A is a front view of the mobile robot of this embodiment. FIG. 2B is a left side view of the mobile robot of the present embodiment. FIG. 2C is a right side view of the mobile robot of the present embodiment. FIG. 2D is a rear view of the mobile robot of the present embodiment. FIG. 2B is a plan view of the mobile robot of the present embodiment. 図3Aは本実施形態の移動ロボットが転倒する前の状態を示す説明図である。図3Bは本実施形態の移動ロボットが転倒し始めた状態を示す説明図である。図3Cは本実施形態の移動ロボットが転倒して地面に最初に接地した状態を示す説明図である。図3Dは本実施形態の移動ロボットが転倒して最大外径部分が接地している状態を示す説明図である。図3Eは本実施形態の移動ロボットが転倒したときに位置エネルギーの一部が回転運動に変換される状態を示す説明図である。図3Fは本実施形態の移動ロボットの転倒時の揺れが止まった状態を示す説明図である。FIG. 3A is an explanatory view showing a state before the mobile robot of this embodiment falls. FIG. 3B is an explanatory view showing a state in which the mobile robot of the present embodiment has begun to fall. FIG. 3C is an explanatory view showing a state in which the mobile robot of the present embodiment falls down and is first grounded on the ground. FIG. 3D is an explanatory view showing a state in which the mobile robot of this embodiment falls over and the maximum outer diameter portion is in contact with the ground. FIG. 3E is an explanatory view showing a state in which part of potential energy is converted into rotational motion when the mobile robot of this embodiment falls. FIG. 3F is an explanatory view showing a state in which shaking at the time of falling of the mobile robot of the present embodiment has stopped.
 図を参照して、本発明の移動ロボットの実施形態を説明する。図1及び図2に本実施形態の移動ロボット1を示す。移動ロボット1は、胴体部2と、胴体部2の下端に配置された駆動部3とを備えている。駆動部3は1つの球体輪4を回転させることで前後左右の全方向に移動可能に構成されている。 An embodiment of a mobile robot of the present invention will be described with reference to the drawings. The mobile robot 1 of this embodiment is shown in FIG. 1 and FIG. The mobile robot 1 includes a body 2 and a drive 3 disposed at the lower end of the body 2. The driving unit 3 is configured to be movable in all directions, front and rear, right and left, by rotating one spherical wheel 4.
 移動ロボット1には、胴体部2の上端部外周に環境センサとしての一対のカメラ5,5が設けられている。一対のカメラ5,5はそれぞれ胴体部2から突出している。カメラ5,5は保護部材で囲われていてもよい。 The mobile robot 1 is provided with a pair of cameras 5 and 5 as environment sensors on the outer periphery of the upper end portion of the body 2. The pair of cameras 5 and 5 respectively project from the body 2. The cameras 5 and 5 may be surrounded by a protective member.
 胴体部2は、図2Aに示すように縦断面が略楕円形状であり、胴体部2の最大外径部分8は、胴体部2の縦方向の中央9以下であって胴体部2の下端よりも上方に設定されている。図2Aの一点鎖線は縦方向、二点鎖線は横方向を示している。胴体部2は、図2Eに示すように、横断面が略六角形状であり、移動ロボット1の正面と背面とに六角形状の辺部分が配置される。移動ロボット1の正面6と背面7とには、それぞれディスプレイ(図示省略)が設けられており、進行方向、地図、又は広告などの様々な情報を表示することができる。 As shown in FIG. 2A, the body 2 has a substantially elliptical vertical cross section, and the largest outer diameter portion 8 of the body 2 is less than or equal to the longitudinal center 9 of the body 2 and from the lower end of the body 2 Is also set up. The dashed-dotted line of FIG. 2A has shown the vertical direction, and the dashed-two dotted line has shown the horizontal direction. As shown in FIG. 2E, the body 2 has a substantially hexagonal cross section, and hexagonal side portions are arranged on the front and back of the mobile robot 1. The front surface 6 and the back surface 7 of the mobile robot 1 are respectively provided with displays (not shown), and can display various information such as a traveling direction, a map, or an advertisement.
 胴体部2の六つの側面は、転倒したときに地面と接触する部分は滑らかに湾曲した平滑面とされており、胴体部2の接地しない他の部分には、角部があってもよい。 The six side surfaces of the torso portion 2 have smooth curved surfaces that come into contact with the ground when falling over, and the other non-ground portions of the torso portion 2 may have corners.
 移動ロボット1は、カメラ5,5を含む環境センサ(例えば、レーザー距離計など)から得られた環境情報に基づいて胴体部2の内部に設けられた制御装置(図示省略)で、どのような経路で移動するか、ディスプレイ(図示省略)にどのような情報を表示するかなど、実行する行動を決定する。移動ロボット1は、駅、空港又はその他施設における案内ロボットとして用いることができる。 The mobile robot 1 is a control device (not shown) provided inside the body 2 based on environmental information obtained from an environmental sensor (for example, a laser distance meter etc.) including the cameras 5 and 5. The action to be performed is determined, such as whether to move along a route or what information is displayed on a display (not shown). The mobile robot 1 can be used as a guidance robot in a station, an airport or other facilities.
 移動ロボット1の胴体部2は、図1から図3A~Fに示すように、胴体部2の上部より下に行くに従ってその径が徐々に大きくなり、胴体部2の下部で径が最大になったあと(最大外径部分8)、最下部に行くに従って次第に径が小さくなっている。すなわち、直立状態において胴体部2は縦方向に切断した断面(縦断面)が略楕円形状(本実施形態では略鶏卵形状)となるように構成されている。 As shown in FIGS. 1 to 3A to 3F, the diameter of the body portion 2 of the mobile robot 1 gradually increases as it goes below the upper portion of the body portion 2, and the diameter becomes maximum at the lower portion of the body portion 2. After that (maximum outer diameter portion 8), the diameter gradually decreases toward the bottom. That is, in the upright state, the body 2 is configured such that the cross section (longitudinal cross section) cut in the vertical direction becomes substantially elliptical (in the present embodiment, substantially egg-shaped).
 胴体部2が略楕円形状であるため、移動ロボット1が転倒しても胴体部2の略楕円形状の外面に沿って胴体部2の下方から上方へと接地点が変化するように傾くことにより、移動ロボット1への衝撃が緩和される。 Since the body 2 has a substantially elliptical shape, even if the mobile robot 1 falls over, it is inclined along the outer surface of the body 2 so that the ground point changes from the lower side of the body 2 to the upper side. The impact on the mobile robot 1 is alleviated.
 なお、略楕円形状とは、楕円形状のみならず、ほぼ楕円形状を含むものとして説明している。また、略鶏卵形状とは、鶏卵形状のみならず、ほぼ鶏卵形状のものを含むものとして説明している。 The substantially elliptical shape is described not only as an elliptical shape but also as a substantially elliptical shape. Further, the term "general egg shape" is described not only as a chicken egg shape but also as an approximately chicken egg shape.
 図3Aから図3Fを参照して、移動ロボット1の転倒時の動きを説明する。図3Aは移動ロボット1が直立して動作しているときの状態を示している。通常時は、このような姿勢で移動又は待機を行う。 The movement of the mobile robot 1 when it falls is described with reference to FIGS. 3A to 3F. FIG. 3A shows a state in which the mobile robot 1 is operating upright. In normal times, movement or standby is performed in such a posture.
 この直立姿勢状態から、物体にぶつかるなどして胴体部2に外力が加わり転倒するときには、図3Bに示すように、胴体部2が傾き始める。そして、図3Cに示すように、胴体部2の最大径よりも下方の部分がまず地面11(土又は砂に限らず床や路面などを含むものとする)に接地する(最初の接地点10)。その後、移動ロボット1は略楕円形状の胴体部2の外面に沿って地面11との接地点を変化させながら揺り籠が揺れるようにして転倒する(図3C~図3E)。図3Eの状態の後は揺り戻しが生じ、最終的には図3Fの状態で停止する。 When an external force is applied to the torso portion 2 by falling on the body or the like from the upright posture state, as shown in FIG. 3B, the torso portion 2 starts to tilt. And as shown to FIG. 3C, the part below the maximum diameter of the fuselage | body part 2 is first earthed | grounded on the ground 11 (it shall be not only soil or sand but a floor, a road surface, etc. shall be included) (first contact point 10). After that, the mobile robot 1 falls over while making the rocking rock shake while changing the contact point with the ground 11 along the outer surface of the substantially elliptical body 2 (FIGS. 3C to 3E). After the state of FIG. 3E, a swing back occurs and finally stops in the state of FIG. 3F.
 このように移動ロボット1は転倒時に胴体部2の下方から接地して、外形状に沿って回転しながら転倒するため、胴体部2の上部が最初に地面と接触することが無く、また、接地時の速度も緩和されることから、胴体部2、特に上方への衝撃を緩和することができる。 As described above, the mobile robot 1 contacts the ground from below the body 2 at the time of falling, and falls while rotating along the outer shape, so that the upper part of the body 2 does not contact the ground first, and Since the speed at the time is also relaxed, it is possible to reduce the impact on the body 2, particularly the upper part.
 また、移動ロボット1は胴体部2が断面多角形(略六角形)であるため、転倒時に移動ロボット1の上下方向を軸に横に転がってしまうことを防止することができる。即ち、移動ロボット1が転倒して転がり周囲の物体等に衝突する虞を低減し、転倒した場合でもより安全な状態とすることができる。 Further, since the body portion 2 of the mobile robot 1 has a polygonal (substantially hexagonal) cross section, it is possible to prevent the mobile robot 1 from rolling sideways around the axis in the vertical direction of the mobile robot 1 when it falls. That is, the possibility that the mobile robot 1 falls and collides with an object around the rolling is reduced, and a safer state can be achieved even when the mobile robot 1 falls.
 なお、本発明は、本実施形態の構成に限定されること無く、胴体部が略楕円形状であれば、他の部分は適宜設計変更可能である。例えば、本実施形態においては、駆動部3として一つの球体輪4を備えるものを説明したが、本発明の駆動部は球体輪を備えていなくてもよく、球体輪の代わりに複数の円盤状車輪を備えるものであってもよい。 In addition, this invention is not limited to the structure of this embodiment, If a trunk | drum is substantially elliptical shape, a design change of another part is possible suitably. For example, in the present embodiment, the one including the single spherical wheel 4 has been described as the drive unit 3. However, the drive unit of the present invention may not include the spherical ring, and a plurality of disk-like It may have wheels.
 また環境センサとしてカメラを説明したが、カメラに加えてレーザー距離計を備えていてもよく、又はカメラに代えてレーザー距離計のみを備えていてもよい。 Although the camera has been described as an environmental sensor, a laser range finder may be provided in addition to the camera, or only a laser range finder may be provided instead of the camera.
 また、本実施形態においては、略楕円形状の胴体部として、胴体部2の最大外径部分は、胴体部2の縦方向の中央9よりも下であって胴体部2の下端よりも上方に位置するように略鶏卵形状の胴体部2を説明した。しかしながら、本発明の略楕円形状の胴体部はこれに限らない。例えば、胴体部の最大外径部分を胴体部の縦方向中央9に位置させて、胴体部を略ラグビーボール形状に構成しても、本発明の「転倒時の移動ロボットへの衝撃を従来よりも緩和することができる」という作用効果を得ることができる。なお、略ラグビーボール形状とは、ラグビーボール形状のみならず、ほぼラグビーボール形状を含むものとして説明している。 Further, in the present embodiment, as the substantially elliptical trunk portion, the maximum outer diameter portion of the trunk portion 2 is below the center 9 in the longitudinal direction of the trunk portion 2 and above the lower end of the trunk portion 2 The substantially chicken egg-shaped torso portion 2 has been described so as to be located. However, the substantially elliptical trunk portion of the present invention is not limited to this. For example, even if the maximum outer diameter portion of the body portion is positioned at the longitudinal center 9 of the body portion and the body portion is formed substantially in the shape of a rugby ball, the shock to the mobile robot during falling of the present invention The effect can also be obtained. The substantially rugby ball shape is described not only as the rugby ball shape but also as substantially including the rugby ball shape.
 また、本実施形態においては、胴体部2の横断面が略六角形状のものを説明したが、本発明の転倒時の横方向への転がり防止機能を発揮させるためにはこれに限らず、多角形であればよい。例えば、三角形でも四角形でも五角形でも八角形でも十角形でもよい。 Further, in the present embodiment, although the cross section of the body portion 2 has a substantially hexagonal shape, the present invention is not limited to this in order to exhibit the anti-rolling function in the lateral direction at the time of falling. It may be square. For example, it may be a triangle, a square, a pentagon, an octagon or a decagon.
 但し、衝撃緩和という点では、五角形以上の方が多角形の角部が接地点となったときの衝撃を緩和することができ、また、十角形以上だと転倒時の横方向への転がり防止機能が薄れるため、五角形から八角形辺りが、衝撃緩和と転がり防止機能の観点からは好ましい。 However, in terms of impact mitigation, the pentagon or larger can mitigate the impact when the corner of the polygon becomes a contact point, and if it is more than a decagon, it prevents lateral rolling at the time of falling The pentagons to octagons are preferable from the viewpoint of impact relaxation and anti-rolling functions because the functions are weakened.
1 移動ロボット
2 胴体部
3 駆動部
4 球体輪
5 カメラ
6 正面
7 背面
8 最大外径部分
9 中央
10 最初の接地点
11 地面
DESCRIPTION OF SYMBOLS 1 mobile robot 2 body part 3 drive part 4 spherical wheel 5 camera 6 front surface 7 back surface 8 maximum outer diameter portion 9 center 10 first contact point 11 ground

Claims (4)

  1.  胴体部と、前記胴体部を移動可能とすべく前記胴体部の下部に設けられた駆動部と、を備える移動ロボットであって、
     前記胴体部は、縦断面が略楕円形状であり、前記略楕円形状の最大外径部分が前記胴体部の縦方向の上端と下端の間に位置するように設定されており、
     転倒したときの前記胴体部と地面との最初の接地点が前記最大外径部分よりも下方で接地するように構成されていることを特徴とする移動ロボット。
    A mobile robot comprising: a body portion; and a drive portion provided at a lower portion of the body portion to make the body portion movable.
    The torso portion is set so that the longitudinal cross section has a substantially elliptical shape, and the maximum outer diameter portion of the substantially elliptical shape is positioned between the upper end and the lower end in the longitudinal direction of the torso portion,
    A mobile robot characterized in that an initial contact point between the body and the ground when falling down is configured to be grounded below the maximum outer diameter portion.
  2.  請求項1に記載の移動ロボットであって、
     前記最大外径部分は、前記胴体部の縦方向の中央以下であって、前記胴体部の前記下端よりも上方に位置していることを特徴とする移動ロボット。
    The mobile robot according to claim 1, wherein
    The mobile robot according to claim 1, wherein the largest outer diameter portion is located below a longitudinal center of the body portion and above the lower end of the body portion.
  3.  請求項2に記載の移動ロボットであって、
     前記胴体部の横断面が多角形であることを特徴とする移動ロボット。
    The mobile robot according to claim 2, wherein
    A mobile robot, wherein a cross section of the body portion is a polygon.
  4.  請求項1に記載の移動ロボットであって、
     前記胴体部の横断面が多角形であることを特徴とする移動ロボット。
    The mobile robot according to claim 1, wherein
    A mobile robot, wherein a cross section of the body portion is a polygon.
PCT/JP2018/037344 2017-10-06 2018-10-05 Mobile robot WO2019070050A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019547027A JPWO2019070050A1 (en) 2017-10-06 2018-10-05 Mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-196123 2017-10-06
JP2017196123 2017-10-06

Publications (1)

Publication Number Publication Date
WO2019070050A1 true WO2019070050A1 (en) 2019-04-11

Family

ID=65995117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037344 WO2019070050A1 (en) 2017-10-06 2018-10-05 Mobile robot

Country Status (2)

Country Link
JP (1) JPWO2019070050A1 (en)
WO (1) WO2019070050A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110774292A (en) * 2019-10-25 2020-02-11 上海交通大学 Bionic soft rolling robot
JP2021028108A (en) * 2019-08-12 2021-02-25 学校法人拓殖大学 Rehabilitation support robot using sensitivity information

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101893U (en) * 1987-12-26 1989-07-10
JPH06190759A (en) * 1992-12-25 1994-07-12 Seiko Epson Corp Micro-robot
JP2003280740A (en) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd Movable device
JP2005279895A (en) * 2004-03-30 2005-10-13 Advanced Telecommunication Research Institute International Robot
JP2006051564A (en) * 2004-08-11 2006-02-23 Sony Corp Motion controlling device and method for robot device
JP2007061964A (en) * 2005-08-31 2007-03-15 Toshiba Corp Moving robot having arm mechanism
JP2008229738A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Production system and general-purpose cell for the production system
US20130194242A1 (en) * 2012-01-27 2013-08-01 Pineapple Electronics, Inc. Multi-tip stylus pen for touch screen devices
WO2018123431A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Interactive robot

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101893U (en) * 1987-12-26 1989-07-10
JPH06190759A (en) * 1992-12-25 1994-07-12 Seiko Epson Corp Micro-robot
JP2003280740A (en) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd Movable device
JP2005279895A (en) * 2004-03-30 2005-10-13 Advanced Telecommunication Research Institute International Robot
JP2006051564A (en) * 2004-08-11 2006-02-23 Sony Corp Motion controlling device and method for robot device
JP2007061964A (en) * 2005-08-31 2007-03-15 Toshiba Corp Moving robot having arm mechanism
JP2008229738A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Production system and general-purpose cell for the production system
US20130194242A1 (en) * 2012-01-27 2013-08-01 Pineapple Electronics, Inc. Multi-tip stylus pen for touch screen devices
WO2018123431A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Interactive robot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CNET JAPAN: "Development of "egg-shaped" desk robot by Panasonic- Projector is embedded and moving is OK", PRODUCT SERVICE OF CNET JAPAN NEWS, 5 January 2017 (2017-01-05), Retrieved from the Internet <URL:https://japan.cnet.com/article/35094580> [retrieved on 20181207] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028108A (en) * 2019-08-12 2021-02-25 学校法人拓殖大学 Rehabilitation support robot using sensitivity information
CN110774292A (en) * 2019-10-25 2020-02-11 上海交通大学 Bionic soft rolling robot

Also Published As

Publication number Publication date
JPWO2019070050A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
EP3024726B1 (en) Vertical take-off and landing aerial vehicle
US9611032B2 (en) Vertical take-off and landing aerial vehicle
JP6693650B2 (en) Protective frame An aircraft that can run on land that can make the aircraft body horizontal independent of the axis tilt
US20160001875A1 (en) Vertical take-off and landing aerial vehicle
US8447509B2 (en) System and method for testing crash avoidance technologies
WO2019070050A1 (en) Mobile robot
EP3281848A1 (en) Rocker bogie
CN107053215B (en) Robot control system
Bae et al. Design optimization of a mecanum wheel to reduce vertical vibrations by the consideration of equivalent stiffness
CN103895727A (en) Piston driving type jumping robot
KR101894016B1 (en) Target apparatus
KR102106303B1 (en) Mobile robot apparatus
JP2011152910A (en) Non-oriented robot
JP2016043922A (en) Flying body capable of traveling on land
CN202439771U (en) Balanced rudder device for motor vehicle
KR101991044B1 (en) Target apparatus
JP6966246B2 (en) An information processing method, a device, and a program for causing a computer to execute the information processing method.
CN206750128U (en) Aircraft
KR102538809B1 (en) Drone that can reduce impact when landing on the ground
赵勃 Design of a spherical robot based on novel double ballast masses principle
Aoki et al. Design of Quadruped Walking Robot with Spherical Shell
CN209078726U (en) A kind of mobile robot
CN106956767A (en) Aircraft
KR101887283B1 (en) Unmanned robot for reduction of vibration
US20230321813A1 (en) Robotic platform with dual track

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863885

Country of ref document: EP

Kind code of ref document: A1