WO2019069919A1 - Power conversion device, motor module, and electric power steering apparatus - Google Patents

Power conversion device, motor module, and electric power steering apparatus Download PDF

Info

Publication number
WO2019069919A1
WO2019069919A1 PCT/JP2018/036873 JP2018036873W WO2019069919A1 WO 2019069919 A1 WO2019069919 A1 WO 2019069919A1 JP 2018036873 W JP2018036873 W JP 2018036873W WO 2019069919 A1 WO2019069919 A1 WO 2019069919A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
drive mode
inverter
mode
Prior art date
Application number
PCT/JP2018/036873
Other languages
French (fr)
Japanese (ja)
Inventor
弘光 大橋
香織 鍋師
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880063702.0A priority Critical patent/CN111164874A/en
Publication of WO2019069919A1 publication Critical patent/WO2019069919A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device, a motor module, and an electric power steering device that convert power from a power supply into electric power supplied to an electric motor.
  • Patent Document 1 discloses a power conversion device that includes a control unit and two inverters, and converts power supplied to a three-phase motor. Each of the two inverters is connected to a power supply and a ground (hereinafter referred to as "GND"). One inverter is connected to one end of the three-phase winding of the motor, and the other inverter is connected to the other end of the three-phase winding. Each inverter comprises a bridge circuit composed of three legs, each of which includes a high side switch element and a low side switch element.
  • the control unit switches motor control from normal control to abnormal control when it detects a failure of the switch element in the two inverters.
  • “abnormal” mainly means failure of the switch element.
  • control at normal time means control in a state where all switch elements are normal
  • control at abnormal time means control in a state where a failure occurs in a certain switch element.
  • Embodiments of the present disclosure provide a power converter that can improve motor output in control at the time of abnormality.
  • An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having n-phase (n is an integer of 3 or more) windings, A first inverter connected to one end of the winding of each phase, and a second inverter connected to the other end of the winding of each phase, wherein one and the other of the first and second inverters are configured Has a first drive mode to perform n-phase energization control using the neutral point of the motor and a second drive mode to perform n-1 phase energization control using both the first and second inverters In the control at the time of abnormality, the first drive mode and the second drive mode are switched.
  • a power conversion device capable of improving a motor output in abnormal control by switching the first and second drive modes, and a motor module including the power conversion device And the electric-power-steering apparatus provided with the said motor module is provided.
  • FIG. 1 is a circuit diagram showing a circuit configuration of an inverter unit 100 according to an exemplary embodiment 1.
  • FIG. 2 is a block diagram illustrating a block configuration of a motor module 2000 according to an exemplary embodiment 1.
  • FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. Is a graph.
  • FIG. 4 is a diagram for explaining the on / off state of another SW when the SW 121 L of the A-phase leg of the first inverter 120 fails.
  • FIG. 1 is a circuit diagram showing a circuit configuration of an inverter unit 100 according to an exemplary embodiment 1.
  • FIG. 2 is a block diagram illustrating a block configuration of a motor module 2000 according to an exemplary embodiment 1.
  • FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current
  • FIG. 5 is a diagram showing a TN curve representing the relationship between the rotational speed (rps) per unit time of the motor and the normalized torque T (N ⁇ m).
  • FIG. 6 is a flowchart illustrating a control flow for switching between the first drive mode and the second drive mode according to the speed command value.
  • FIG. 7 is a flowchart illustrating a control flow for switching between the first drive mode and the second drive mode in accordance with the torque command value.
  • FIG. 8 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to the present second embodiment.
  • the implementation of the present disclosure will be exemplified taking a power conversion device that converts power from a power supply into power supplied to a three-phase motor having three-phase (A-phase, B-phase, C-phase) windings.
  • the form will be described.
  • a power conversion device that converts power from a power supply to power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase is also within the scope of the present disclosure. .
  • FIG. 1 schematically shows a circuit configuration of the inverter unit 100 of the power conversion device 1000 according to the present embodiment.
  • the inverter unit 100 typically includes a power shutoff circuit 110, a first inverter 120 and a second inverter 130.
  • the inverter unit 100 can convert the power from the power supply 101 into the power to be supplied to the motor 200.
  • the inverter unit 100 can convert DC power into three-phase AC power which is pseudo sine waves of A-phase, B-phase and C-phase.
  • the motor 200 is, for example, a three-phase alternating current motor.
  • the motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130.
  • the first inverter 120 is connected to one end of the winding of each phase of the motor 200
  • the second inverter 130 is connected to the other end of the winding of each phase.
  • “connection” between components (components) mainly means electrical connection, and further includes connection of components via another component or element.
  • the first inverter 120 has terminals A_L, B_L and C_L corresponding to the respective phases.
  • the second inverter 130 has terminals A_R, B_R and C_R corresponding to the respective phases.
  • the terminal A_L of the first inverter 120 is connected to one end of the A-phase winding M1
  • the terminal B_L is connected to one end of the B-phase winding M2
  • the terminal C_L is connected to one end of the C-phase winding M3.
  • inverter unit 100 includes a full H-bridge circuit configured of H-bridges of A-phase, B-phase and C-phase.
  • the motor connections are different from so-called Y connections and delta connections.
  • the power supply shutoff circuit 110 has first to fourth switch elements 111, 112, 113 and 114.
  • the first inverter 120 can be electrically connected to the power supply 101 and GND by the power shutoff circuit 110.
  • the second inverter 130 can be electrically connected to the power supply 101 and GND by the power shutoff circuit 110.
  • the first switch element 111 switches connection / non-connection between the first inverter 120 and GND.
  • the second switch element 112 switches connection / non-connection between the power supply 101 and the first inverter 120.
  • the third switch element 113 switches connection / disconnection between the second inverter 130 and GND.
  • the fourth switch element 114 switches connection / disconnection between the power supply 101 and the second inverter 130.
  • the on / off of the first to fourth switch elements 111, 112, 113 and 114 may be controlled by, for example, a microcontroller or a dedicated driver.
  • the first to fourth switch elements 111, 112, 113 and 114 can block bidirectional current.
  • semiconductor switches such as thyristors, analog switch ICs, or field effect transistors (typically MOSFETs) in which parasitic diodes are formed, or A mechanical relay or the like can be used.
  • a combination of a diode and an insulated gate bipolar transistor (IGBT) may be used.
  • MOSFETs are illustrated as the first to fourth switch elements 111, 112, 113 and 114.
  • the first to fourth switch elements 111, 112, 113 and 114 may be described as SWs 111, 112, 113 and 114, respectively.
  • the SW 111 is arranged such that a forward current flows toward the first inverter 120 in an internal parasitic diode.
  • the SW 112 is arranged such that forward current flows in the parasitic diode toward the power supply 101.
  • the SW 113 is disposed such that a forward current flows to the second inverter 130 in the parasitic diode.
  • the SW 114 is arranged such that forward current flows in the parasitic diode toward the power supply 101.
  • the power shutoff circuit 110 preferably further includes fifth and sixth switch elements 115 and 116 for reverse connection protection, as shown.
  • the fifth and sixth switch elements 115, 116 are typically semiconductor switches of a MOSFET having parasitic diodes.
  • the fifth switch element 115 is connected in series to the SW 112, and is disposed such that a forward current flows toward the first inverter 120 in the parasitic diode.
  • the sixth switch element 116 is connected in series to the SW 114, and is disposed such that a forward current flows toward the second inverter 130 in the parasitic diode. Even when the power supply 101 is connected in the reverse direction, the reverse current can be cut off by the two switch elements for reverse connection protection.
  • the number of switch elements to be used is not limited to the illustrated example, and is appropriately determined in consideration of design specifications and the like. Particularly in the on-vehicle field, high quality assurance is required from the viewpoint of safety, so it is preferable to provide a plurality of switch elements used for each inverter.
  • the power supply 101 is, for example, a single power supply common to the first and second inverters 120 and 130.
  • the power supply 101 generates a predetermined power supply voltage (for example, 12 V).
  • a power supply for example, a DC power supply is used.
  • the power source may be an AC-DC converter or a DC-DC converter, or may be a battery (storage battery).
  • the power supply 101 may separately include a power supply for the first inverter 120 and a power supply for the second inverter 130.
  • a coil 102 is provided between the power supply 101 and the power shutoff circuit 110.
  • the coil 102 functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply side.
  • a capacitor 103 is connected to the power supply line of each inverter.
  • the capacitor 103 is a so-called bypass capacitor, which suppresses voltage ripple.
  • the capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined depending on design specifications and the like.
  • the first inverter 120 comprises a bridge circuit having three legs. Each leg has a low side switch element and a high side switch element.
  • the A-phase leg has a low side switch element 121L and a high side switch element 121H.
  • the B-phase leg has a low side switch element 122L and a high side switch element 122H.
  • the C-phase leg has a low side switch element 123L and a high side switch element 123H.
  • a switch element FET or IGBT can be used, for example.
  • an example using a MOSFET as a switch element will be described, and the switch element may be described as SW.
  • the low side switch elements 121L, 122L and 123L are described as SW 121L, 122L and 123L.
  • the first inverter 120 includes three shunt resistors 121R, 122R and 123R included in a current sensor 150 (see FIG. 2) for detecting the current flowing in the winding of each phase A, B and C. .
  • Current sensor 150 includes a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
  • the shunt resistors 121R, 122R and 123R are respectively connected between the three low side switch elements included in the three legs of the first inverter 120 and the GND.
  • shunt resistor 121R is electrically connected between SW121L and SW111
  • shunt resistor 122R is electrically connected between SW122L and SW111
  • shunt resistor 123R is between SW123L and SW111. Electrically connected.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ .
  • the second inverter 130 includes a bridge circuit having three legs.
  • the A-phase leg has a low side switch element 131L and a high side switch element 131H.
  • the B-phase leg has a low side switch element 132L and a high side switch element 132H.
  • the C-phase leg has a low side switch element 133L and a high side switch element 133H.
  • the second inverter 130 includes three shunt resistors 131R, 132R and 133R. The shunt resistors are connected between the three low side switch elements included in the three legs and GND.
  • the number of shunt resistors is not limited to three for each inverter. For example, it is possible to use two shunt resistors for A phase and B phase, two shunt resistors for B phase and C phase, and two shunt resistors for A phase and C phase.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications and the like.
  • the second inverter 130 has substantially the same structure as the structure of the first inverter 120.
  • the inverter on the left side of the drawing is represented as a first inverter 120
  • the inverter on the right side is represented as a second inverter 130.
  • the first and second inverters 120 and 130 may be used as components of the inverter unit 100 without distinction.
  • FIG. 2 schematically shows a block configuration of the motor module 2000 according to the present embodiment, and mainly shows a block configuration of the power conversion device 1000. As shown in FIG.
  • Power converter 1000 includes inverter unit 100 and motor controller 300.
  • the motor module 2000 includes a power converter 1000 and a motor 200.
  • the motor module 2000 may be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller.
  • the power conversion device 1000 which is a unit other than the motor 200 can be modularized, manufactured and sold.
  • the motor control device 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360.
  • the motor control device 300 is a control circuit that is connected to the inverter unit 100 and drives the motor 200 by controlling the inverter unit 100.
  • the motor control device 300 can realize closed loop control by controlling the target position, rotational speed, current, and the like of the rotor of the motor 200.
  • Motor control device 300 may be replaced with angle sensor 320, and may be provided with a torque sensor. In this case, the motor control device 300 can control the target motor torque.
  • the power supply circuit 310 generates DC voltages (for example, 3 V, 5 V) necessary for each block in the circuit.
  • the angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the controller 340.
  • rotation signal a rotation angle of the rotor
  • Input circuit 330 receives a motor current value (hereinafter referred to as “actual current value”) detected by current sensor 150, and converts the level of the actual current value to the input level of controller 340 as necessary. , And outputs the actual current value to the controller 340.
  • the input circuit 330 is, for example, an analog-to-digital converter.
  • the controller 340 is an integrated circuit that controls the drive circuit 350, and is, for example, a microcontroller or a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the controller 340 controls the switching operation (turn on or off) of each SW in the first and second inverters 120 and 130 of the inverter unit 100.
  • the controller 340 sets a target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal, and outputs it to the drive circuit 350.
  • the controller 340 may control on / off of each SW in the power shutoff circuit 110 of the inverter unit 100.
  • the drive circuit 350 is typically a gate driver (or pre-driver).
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of the MOSFET of each SW in the first and second inverters 120 and 130 in accordance with the PWM signal, and supplies the control signal to the gate of each SW.
  • the drive circuit 350 may generate a control signal for controlling on / off of each SW in the power shutoff circuit 110 according to an instruction from the controller 340.
  • the gate driver may not be required. In that case, the function of the gate driver may be implemented in the controller 340.
  • the ROM 360 is electrically connected to the controller 340.
  • the ROM 360 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory.
  • the ROM 360 stores a control program including instructions for causing the controller 340 to control the power conversion apparatus 1000.
  • the control program is temporarily expanded in a RAM (not shown) at boot time.
  • the motor control device 300 turns on all the SWs 111, 112, 113 and 114 of the power shutoff circuit 110. Thereby, the power supply 101 and the first inverter 120 are electrically connected, and the power supply 101 and the second inverter 130 are electrically connected. In addition, the first inverter 120 and GND are electrically connected, and the second inverter 130 and GND are electrically connected. The switches 115 and 116 for reverse connection protection of the power supply shutoff circuit 110 are always on. In this connected state, the motor control device 300 drives the motor 200 by energizing the windings M1, M2 and M3 using both of the first and second inverters 120, 130. In the present specification, energization of a three-phase winding is referred to as "three-phase energization control".
  • the B-phase and C-phase H bridges are also controlled in the same manner as the A-phase H bridge.
  • FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. doing.
  • the horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • current values are plotted every 30 ° of electrical angle.
  • I pk represents the maximum current value (peak current value) of each phase.
  • the motor control device 300 can control the switching operation of each SW of the first and second inverters 120 and 130 by PWM control that obtains the current waveform shown in FIG. 3.
  • the abnormality mainly means that a failure occurs in the switch element (FET).
  • the failure of the FET can be roughly divided into “open failure” and “short failure”.
  • "Open fault” refers to a fault in which the source-drain of FET is opened (in other words, resistance rds between source-drain becomes high impedance), and "short fault” is in the source-drain of FET Refers to a short circuit failure.
  • the open failure of the switch element SW refers to a failure in which the SW is always in the off (cutoff) state and is not in the on (conducting) state.
  • the short failure of the switch element SW indicates a failure in which the SW is always in the on state and is not in the off state.
  • a failure occurs during the operation of the power conversion device 1000, it is usually considered that a random failure occurs in which one of the 16 FETs fails at random.
  • a chained failure occurs in which a plurality of FETs fail in a chained manner.
  • the chained failure means, for example, simultaneous occurrence of failure in the high side switch device and the low side switch device of one leg. The present disclosure covers these failures.
  • the drive circuit 350 monitors the voltage Vds between the drain and source of SW, and detects a failure of SW by comparing Vds with a predetermined threshold voltage.
  • the threshold voltage is set in the drive circuit 350, for example, by data communication with an external IC (not shown) and an external component.
  • the drive circuit 350 is connected to the port of the controller 340 and notifies the controller 340 of a failure detection signal. For example, when the drive circuit 350 detects a failure of the SW, the drive circuit 350 asserts a failure detection signal.
  • the controller 340 receives the asserted fault detection signal, the controller 340 reads the internal data of the drive circuit 350 to determine which one of the plurality of SWs is faulty.
  • the controller 340 can also detect a failure of the SW based on the difference between the actual current value of the motor and the target current value.
  • the failure detection is not limited to these methods, and a wide variety of known methods for failure detection can be used.
  • the controller 340 switches control of the power conversion device 1000 from normal control to abnormal control.
  • the timing at which control is switched from normal to abnormal is about 10 msec to 30 msec after the fault detection signal is asserted.
  • Power converter 1000 has first and second drive modes as drive modes in control at the time of abnormality.
  • the first drive mode is a mode in which three-phase conduction control is performed using the neutral point of the motor 200 configured to one of the first and second inverters 120 and 130 and the other.
  • FIG. 4 is a diagram for explaining the on / off state of another SW when the SW 121 L of the A-phase leg of the first inverter 120 fails. It is assumed that SW 121 L has an open failure. In that case, the power conversion device 1000 (mainly the motor control device 300) turns on all the high side SWs 121H, 122H and 123H, and turns off the low side SW 122L, 123L other than the SW 121L. By this control, the node potential of the A phase leg between SW121H and SW121L, the node potential of the B phase leg between SW122H and SW122L, and the node potential of the C phase leg between SW123H and SW123L in the first inverter 120 are all It becomes equal potential.
  • the node N1 on the high side of the first inverter 120 can function as a neutral point.
  • that the nodes N1 and N2 on the high side or low side of the inverter function as neutral points is expressed as "a neutral point is configured".
  • a neutral point is configured.
  • the low side node N 2 can function as a neutral point.
  • the motor connection switches from the connection of the full H bridge to the Y connection.
  • the motor control device 300 performs three-phase conduction control, that is, Y-connection driving, by performing PWM control on the switch elements of the second inverter 130 using the neutral point of the motor 200 configured in the first inverter 120.
  • the second drive mode is a mode in which the two-phase winding of the three phases is energized using both the first and second inverters 120 and 130. Energizing the two-phase winding is referred to as "two-phase conduction control". For example, it is assumed that the SW 121 L has an open failure. In that case, when the second drive mode is selected, the motor control device 300 energizes the windings M2 and M3 using the B-phase and C-phase H bridges other than the A-phase H bridge including the failed SW 121L. Two-phase energization control is performed.
  • FIG. 5 shows a TN curve representing the relationship between the rotational speed (rps) per unit time of the motor and the normalized torque T (N ⁇ m).
  • FIG. 5 shows respective TN curves in the three-phase conduction control, the Y-connection drive and the two-phase conduction control.
  • the horizontal axis indicates the rotational speed (rps)
  • the vertical axis indicates the normalized torque T (N ⁇ m).
  • the respective regions of the Y-connection drive and the TN curve in the two-phase conduction control are included in the region of the TN curve in the normal drive, that is, in the normal three-phase conduction control.
  • the motor control using the area of the TN curve of the Y connection drive or the two-phase current control can be performed.
  • the motor output characteristic in the high speed rotation region is limited, and when only the two-phase energization control is selected, the motor output characteristic in the high torque region Limits arise.
  • the motor control device 300 switches between the first drive mode and the second drive mode. More specifically, motor control apparatus 300 switches between the first drive mode and the second drive mode according to at least one of the torque command value and the speed information. Alternatively, the motor control device 300 switches between the first drive mode and the second drive mode in accordance with the output command value.
  • the speed information is, for example, a rotation signal of a rotor that indicates a speed command value or an actual speed.
  • a speed command value as speed information will be described.
  • the motor control device 300 preferably selects the first drive mode in the high torque region of the TN curve, and selects the second drive mode in the high speed rotation region.
  • the reason is that in the first drive mode, it is possible to flow the phase current equivalent to the normal three-phase energization control in the winding, and in the second drive mode the phase voltage equivalent to the normal three-phase energization control It is because it becomes possible to apply to a winding.
  • motor drive may be performed using either the first or second drive mode in a region where the regions of the T-N curves of Y-connection drive and two-phase conduction control overlap each other.
  • FIG. 6 illustrates a control flow for switching between the first drive mode and the second drive mode in accordance with the speed command value.
  • the motor control device 300 switches between the first drive mode and the second drive mode according to the speed command value. For example, when an assert signal indicating failure is asserted, the motor control device 300 switches motor control from normal control to abnormal control (step S100).
  • the motor control device 300 compares the speed command value with the speed threshold (step S200).
  • the motor control device 300 selects the first drive mode when the speed command value is equal to or less than the speed threshold (step S300), and selects the second drive mode when the speed command value is larger than the speed threshold (step S400).
  • the motor control device 300 repeatedly executes the determination of step S200 until the motor control ends (step S500).
  • FIG. 7 illustrates a control flow for switching between the first drive mode and the second drive mode according to the torque command value.
  • the motor control device 300 switches between the first drive mode and the second drive mode according to the torque command value. For example, when an assert signal indicating failure is asserted, the motor control device 300 switches motor control from normal control to abnormal control (step S100).
  • the motor control device 300 compares the torque command value with the torque threshold (step S200).
  • Motor control device 300 selects the second drive mode when the torque command value is equal to or less than the torque threshold (step S300), and selects the first drive mode when the torque command value is greater than the torque threshold (step S400). ).
  • the motor control device 300 repeatedly executes the determination of step S200 until the motor control ends (step S500).
  • the high motor output equivalent to the three-phase energization control at the normal time by switching the first and second drive modes mutually according to the speed command value or the torque command value. It becomes possible to obtain characteristics.
  • control at the time of abnormality has been described by taking the case where a failure occurs in the switch element of the first inverter 120 as an example.
  • control at the time of abnormality when a failure occurs in the switch element of the second inverter 130 can also be performed in the same manner as that of the first inverter 120.
  • FIG. 8 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
  • Vehicles such as automobiles generally have an electric power steering device.
  • the electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque.
  • Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel.
  • the assist torque reduces the burden on the driver's operation.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, rack shafts 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A, 528B, and left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, and a reduction mechanism 544.
  • the steering torque sensor 541 detects a steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
  • the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
  • an electronic control system is built around an ECU.
  • a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545.
  • the motor module 2000 according to the first embodiment can be suitably used for the unit.
  • Electric power steering apparatus 3000 can be mounted, for example, on a vehicle having a parking mode and a traveling mode.
  • the parking mode is a mode for traveling at a speed of approximately 20 km / h or less
  • the traveling mode is a mode for traveling at a speed of approximately 20 km / h or more. It is possible to associate the first and second drive modes of the power conversion device 1000 with the parking mode and the traveling mode of the vehicle, respectively.
  • the vehicle may be equipped with a motor control system such as shift by wire, steering by wire, x by wire such as brake by wire, or a traction motor.
  • the electric power steering apparatus 3000 mounted with the motor module 2000 is mounted on an autonomous vehicle corresponding to levels 0 to 5 (standards of automation) defined by the Japanese government or the Road Traffic Safety Administration (NHTSA) of the US Department of Transportation. obtain.
  • motor control device 300 selects the first drive mode as the drive mode of power conversion device 1000.
  • motor control device 300 selects the second drive mode as the drive mode of power conversion device 1000.
  • high torque is required for low speed steering such as when parking a vehicle or when making a right turn or left turn at an intersection.
  • high torque can be obtained by selecting the first drive mode as the drive mode of power conversion device 1000.
  • high torque is not particularly required, and low torque is sufficient. Rather, rapid steering may be required, for example when avoiding obstacles while driving.
  • second drive mode as the drive mode of power conversion device 1000, motor 200 can be rotated at high speed.
  • the driver may manually switch the parking mode and the travel mode, or the vehicle may automatically switch those modes based on, for example, speed information.
  • the control unit of the vehicle determines switching between the two modes based on the vehicle speed, and notifies the controller 340 of the motor module 2000 of the determination result;
  • the control unit of the vehicle determines switching between the two modes according to the signal of the shift lever, and notifies the controller 340 of the motor module 2000 of the determination result.
  • the shift lever is switched to reverse (R)
  • the control unit instructs the controller 340 to select the first drive mode;
  • a vehicle capable of performing automatic driving has a roadway It has a traveling mode for automatically traveling and a parking mode for automatically parking a vehicle in a parking space.
  • the control unit of the vehicle receives the selection and instructs the controller 340 to select the second drive mode, and when the driver selects the parking mode, the control unit controls the first The controller 340 is instructed to select a drive mode.
  • the present embodiment for example, by associating the first and second drive modes with the parking mode and the traveling mode of the vehicle, respectively, and switching between those modes in the control at the time of abnormality, It is possible to obtain high motor output characteristics equivalent to phase energization control. As a result, it is possible to provide an electric power steering apparatus having an optimum motor output characteristic according to the control mode of the vehicle.
  • Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.
  • 100 inverter unit, 101: power supply, 102: coil, 103: capacitor, 110: power switching circuit, 111: first switch element, 112: second switch element, 113: third switch element, 114: fourth switch element , 115: fifth switch element, 116: sixth switch element, 120: first inverter, 130: second inverter, 200: motor, 1000: power converter, M1, M2, M3: winding

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This power conversion device converts power supplied from a power source to power to be supplied to a motor having n-phase (n is an integer of 3 or greater) winding. The power conversion device is provided with a first inverter that is connected to one end of the winding of each phase of the motor, and a second inverter that is connected to the other end of the winding of each phase of the motor. The power conversion device has a first driving mode of performing n-phase energization control using motor neutral points formed in one of the first and second inverters and the other inverter, and a second driving mode of performing n-1-phase energization control using both the first and second inverters. In abnormal control, switching between the first driving mode and the second driving mode is performed.

Description

電力変換装置、モータモジュールおよび電動パワーステアリング装置Power converter, motor module and electric power steering apparatus
本開示は、電源からの電力を、電動モータに供給する電力に変換する電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。 The present disclosure relates to a power conversion device, a motor module, and an electric power steering device that convert power from a power supply into electric power supplied to an electric motor.
近年、電動モータ(以下、単に「モータ」と表記する。)、電力変換装置および電子制御ユニット(ECU)が一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。  2. Description of the Related Art In recent years, a machine-electric integrated motor has been developed, in which an electric motor (hereinafter simply referred to as "motor"), a power conversion device, and an electronic control unit (ECU) are integrated. Particularly in the automotive field, high quality assurance is required from the viewpoint of safety. Therefore, a redundant design is adopted that can continue safe operation even if part of the part fails. As an example of redundant design, it is considered to provide two power converters for one motor. As another example, it is considered to provide a backup microcontroller on the main microcontroller.
特許文献1は、制御部と、2つのインバータとを備え、三相モータに供給する電力を変換する電力変換装置を開示している。2つのインバータの各々は電源およびグランド(以下、「GND」と表記する。)に接続される。一方のインバータは、モータの三相の巻線の一端に接続され、他方のインバータは、三相の巻線の他端に接続される。各インバータは、各々がハイサイドスイッチ素子およびローサイドスイッチ素子を含む3つのレグから構成されるブリッジ回路を備える。制御部は、2つのインバータにおけるスイッチ素子の故障を検出した場合、モータ制御を正常時の制御から異常時の制御に切替える。本明細書において、「異常」とは、主としてスイッチ素子の故障を意味する。また、「正常時の制御」は、全てのスイッチ素子が正常な状態における制御を意味し、「異常時の制御」は、あるスイッチ素子に故障が生じた状態における制御を意味する。 Patent Document 1 discloses a power conversion device that includes a control unit and two inverters, and converts power supplied to a three-phase motor. Each of the two inverters is connected to a power supply and a ground (hereinafter referred to as "GND"). One inverter is connected to one end of the three-phase winding of the motor, and the other inverter is connected to the other end of the three-phase winding. Each inverter comprises a bridge circuit composed of three legs, each of which includes a high side switch element and a low side switch element. The control unit switches motor control from normal control to abnormal control when it detects a failure of the switch element in the two inverters. In the present specification, “abnormal” mainly means failure of the switch element. Also, "control at normal time" means control in a state where all switch elements are normal, and "control at abnormal time" means control in a state where a failure occurs in a certain switch element.
特開2014-192950号公報JP 2014-192950 A
上述した従来の技術では、異常時の制御におけるモータ出力を改善することが求められていた。  In the prior art described above, it has been required to improve the motor output in control at the time of abnormality.
本開示の実施形態は、異常時の制御におけるモータ出力を改善することが可能な電力変換装置を提供する。 Embodiments of the present disclosure provide a power converter that can improve motor output in control at the time of abnormality.
本開示の例示的な電力変換装置は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、前記モータの各相の巻線の一端に接続される第1インバータと、前記各相の巻線の他端に接続される第2インバータと、を備え、前記第1および第2インバータの一方および他方に構成された前記モータの中性点を用いてn相通電制御を行う第1駆動モードと、前記第1および第2インバータの両方を用いてn-1相通電制御を行う第2駆動モードとを有し、異常時の制御において、前記第1駆動モードと前記第2駆動モードとを切替える。 An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having n-phase (n is an integer of 3 or more) windings, A first inverter connected to one end of the winding of each phase, and a second inverter connected to the other end of the winding of each phase, wherein one and the other of the first and second inverters are configured Has a first drive mode to perform n-phase energization control using the neutral point of the motor and a second drive mode to perform n-1 phase energization control using both the first and second inverters In the control at the time of abnormality, the first drive mode and the second drive mode are switched.
本開示の例示的な実施形態によると、第1および第2駆動モードを切替えることによって、異常時の制御におけるモータ出力を改善することが可能となる電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。 According to an exemplary embodiment of the present disclosure, a power conversion device capable of improving a motor output in abnormal control by switching the first and second drive modes, and a motor module including the power conversion device And the electric-power-steering apparatus provided with the said motor module is provided.
図1は、例示的な実施形態1によるインバータユニット100の回路構成を示す回路図である。FIG. 1 is a circuit diagram showing a circuit configuration of an inverter unit 100 according to an exemplary embodiment 1. 図2は、例示的な実施形態1によるモータモジュール2000のブロック構成を示すブロック図である。FIG. 2 is a block diagram illustrating a block configuration of a motor module 2000 according to an exemplary embodiment 1. 図3は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. Is a graph. 図4は、第1インバータ120のA相レグのSW121Lが故障した場合の他のSWのオン・オフ状態を説明するための図である。FIG. 4 is a diagram for explaining the on / off state of another SW when the SW 121 L of the A-phase leg of the first inverter 120 fails. 図5は、モータの単位時間当たりの回転速度(rps)と正規化トルクT(N・m)との関係を表すT-N曲線を示す図である。FIG. 5 is a diagram showing a TN curve representing the relationship between the rotational speed (rps) per unit time of the motor and the normalized torque T (N · m). 図6は、速度指令値に応じて第1駆動モードと第2駆動モードとを切替える制御フローを例示するフローチャートである。FIG. 6 is a flowchart illustrating a control flow for switching between the first drive mode and the second drive mode according to the speed command value. 図7は、トルク指令値に応じて第1駆動モードと第2駆動モードとを切替える制御フローを例示するフローチャートである。FIG. 7 is a flowchart illustrating a control flow for switching between the first drive mode and the second drive mode in accordance with the torque command value. 図8は、例示的な本実施形態2による電動パワーステアリング装置3000の典型的な構成を示す模式図である。FIG. 8 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to the present second embodiment.
以下、添付の図面を参照しながら、本開示の電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。  Hereinafter, embodiments of a power conversion device, a motor module, and an electric power steering device of the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to facilitate the understanding of the person skilled in the art, the following description may be omitted unnecessarily to avoid redundant description. For example, detailed description of already well-known matters and redundant description of substantially the same configuration may be omitted.
本明細書において、電源からの電力を、三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置も本開示の範疇である。  In the present specification, the implementation of the present disclosure will be exemplified taking a power conversion device that converts power from a power supply into power supplied to a three-phase motor having three-phase (A-phase, B-phase, C-phase) windings. The form will be described. However, a power conversion device that converts power from a power supply to power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase is also within the scope of the present disclosure. .

(実施形態1)

〔1-1.インバータユニット100の構造〕

図1は、本実施形態による電力変換装置1000のインバータユニット100の回路構成を模式的に示している。

(Embodiment 1)

[1-1. Structure of inverter unit 100]

FIG. 1 schematically shows a circuit configuration of the inverter unit 100 of the power conversion device 1000 according to the present embodiment.
インバータユニット100は、典型的には、電源遮断回路110、第1インバータ120および第2インバータ130を備える。インバータユニット100は、電源101からの電力を、モータ200に供給する電力に変換することができる。例えば、インバータユニット100は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。  The inverter unit 100 typically includes a power shutoff circuit 110, a first inverter 120 and a second inverter 130. The inverter unit 100 can convert the power from the power supply 101 into the power to be supplied to the motor 200. For example, the inverter unit 100 can convert DC power into three-phase AC power which is pseudo sine waves of A-phase, B-phase and C-phase.
モータ200は、例えば、三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。本明細書において、部品(構成要素)同士の間の「接続」は、主に電気的な接続を意味し、さらに、他の部品または素子を介在した部品同士の接続を含む。  The motor 200 is, for example, a three-phase alternating current motor. The motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130. Specifically, the first inverter 120 is connected to one end of the winding of each phase of the motor 200, and the second inverter 130 is connected to the other end of the winding of each phase. In the present specification, “connection” between components (components) mainly means electrical connection, and further includes connection of components via another component or element.
第1インバータ120は、各相に対応した端子A_L、B_LおよびC_Lを有する。第2インバータ130は、各相に対応した端子A_R、B_RおよびC_Rを有する。第1インバータ120の端子A_Lは、A相の巻線M1の一端に接続され、端子B_Lは、B相の巻線M2の一端に接続され、端子C_Lは、C相の巻線M3の一端に接続される。第1インバータ120と同様に、第2インバータ130の端子A_Rは、A相の巻線M1の他端に接続され、端子B_Rは、B相の巻線M2の他端に接続され、端子C_Rは、C相の巻線M3の他端に接続される。このように、インバータユニット100は、A相、B相およびC相のHブリッジにより構成されるフルHブリッジ回路を備える。そのモータ結線は、いわゆるY結線およびデルタ結線とは異なる。  The first inverter 120 has terminals A_L, B_L and C_L corresponding to the respective phases. The second inverter 130 has terminals A_R, B_R and C_R corresponding to the respective phases. The terminal A_L of the first inverter 120 is connected to one end of the A-phase winding M1, the terminal B_L is connected to one end of the B-phase winding M2, and the terminal C_L is connected to one end of the C-phase winding M3. Connected Similar to the first inverter 120, the terminal A_R of the second inverter 130 is connected to the other end of the A-phase winding M1, the terminal B_R is connected to the other end of the B-phase winding M2, and the terminal C_R is , C phase is connected to the other end of the winding M3. Thus, inverter unit 100 includes a full H-bridge circuit configured of H-bridges of A-phase, B-phase and C-phase. The motor connections are different from so-called Y connections and delta connections.
電源遮断回路110は、第1から第4スイッチ素子111、112、113および114を有する。インバータユニット100において、第1インバータ120は、電源遮断回路110によって電源101とGNDとに電気的に接続可能である。第2インバータ130は、電源遮断回路110によって電源101とGNDとに電気的に接続可能である。具体的に説明すると、第1スイッチ素子111は、第1インバータ120とGNDとの接続・非接続を切替える。第2スイッチ素子112は、電源101と第1インバータ120との接続・非接続を切替える。第3スイッチ素子113は、第2インバータ130とGNDとの接続・非接続を切替える。第4スイッチ素子114は、電源101と第2インバータ130との接続・非接続を切替える。  The power supply shutoff circuit 110 has first to fourth switch elements 111, 112, 113 and 114. In the inverter unit 100, the first inverter 120 can be electrically connected to the power supply 101 and GND by the power shutoff circuit 110. The second inverter 130 can be electrically connected to the power supply 101 and GND by the power shutoff circuit 110. Specifically, the first switch element 111 switches connection / non-connection between the first inverter 120 and GND. The second switch element 112 switches connection / non-connection between the power supply 101 and the first inverter 120. The third switch element 113 switches connection / disconnection between the second inverter 130 and GND. The fourth switch element 114 switches connection / disconnection between the power supply 101 and the second inverter 130.
第1から第4スイッチ素子111、112、113および114のオン・オフは、例えばマイクロコントローラまたは専用ドライバによって制御され得る。第1から第4スイッチ素子111、112、113および114は、双方向の電流を遮断することが可能である。第1から第4スイッチ素子111、112、113および114として、例えば、サイリスタ、アナログスイッチIC、若しくは寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)などの半導体スイッチ、または、メカニカルリレーなどを用いることができる。ダイオードおよび絶縁ゲートバイポーラトランジスタ(IGBT)などの組み合わせを用いても構わない。本明細書の図面には、第1から第4スイッチ素子111、112、113および114として、MOSFETを例示している。以降、第1から第4スイッチ素子111、112、113および114を、SW111、112、113および114とそれぞれ表記する場合がある。  The on / off of the first to fourth switch elements 111, 112, 113 and 114 may be controlled by, for example, a microcontroller or a dedicated driver. The first to fourth switch elements 111, 112, 113 and 114 can block bidirectional current. As the first to fourth switch elements 111, 112, 113 and 114, for example, semiconductor switches such as thyristors, analog switch ICs, or field effect transistors (typically MOSFETs) in which parasitic diodes are formed, or A mechanical relay or the like can be used. A combination of a diode and an insulated gate bipolar transistor (IGBT) may be used. In the drawings of this specification, MOSFETs are illustrated as the first to fourth switch elements 111, 112, 113 and 114. Hereinafter, the first to fourth switch elements 111, 112, 113 and 114 may be described as SWs 111, 112, 113 and 114, respectively.
SW111は、内部の寄生ダイオードに順方向電流が第1インバータ120に向けて流れるよう配置される。SW112は、寄生ダイオードに順方向電流が電源101に向けて流れるよう配置される。SW113は、寄生ダイオードに順方向電流が第2インバータ130に向けて流れるよう配置される。SW114は、寄生ダイオードに順方向電流が電源101に向けて流れるよう配置される。  The SW 111 is arranged such that a forward current flows toward the first inverter 120 in an internal parasitic diode. The SW 112 is arranged such that forward current flows in the parasitic diode toward the power supply 101. The SW 113 is disposed such that a forward current flows to the second inverter 130 in the parasitic diode. The SW 114 is arranged such that forward current flows in the parasitic diode toward the power supply 101.
電源遮断回路110は、図示するように、逆接続保護用の第5および第6スイッチ素子115、116をさらに有していることが好ましい。第5および第6スイッチ素子115、116は、典型的に、寄生ダイオードを有するMOSFETの半導体スイッチである。第5スイッチ素子115は、SW112に直列に接続され、寄生ダイオードにおいて第1インバータ120に向けて順方向電流が流れるよう配置される。第6スイッチ素子116は、SW114に直列に接続され、寄生ダイオードにおいて第2インバータ130に向けて順方向電流が流れるよう配置される。電源101が逆向きに接続された場合でも、逆接続保護用の2つのスイッチ素子によって逆電流を遮断することができる。  The power shutoff circuit 110 preferably further includes fifth and sixth switch elements 115 and 116 for reverse connection protection, as shown. The fifth and sixth switch elements 115, 116 are typically semiconductor switches of a MOSFET having parasitic diodes. The fifth switch element 115 is connected in series to the SW 112, and is disposed such that a forward current flows toward the first inverter 120 in the parasitic diode. The sixth switch element 116 is connected in series to the SW 114, and is disposed such that a forward current flows toward the second inverter 130 in the parasitic diode. Even when the power supply 101 is connected in the reverse direction, the reverse current can be cut off by the two switch elements for reverse connection protection.
図示する例に限られず、使用するスイッチ素子の個数は、設計仕様などを考慮して適宜決定される。特に車載分野においては、安全性の観点から高い品質保証が要求されるので、各インバータに用いる複数のスイッチ素子を設けておくことが好ましい。  The number of switch elements to be used is not limited to the illustrated example, and is appropriately determined in consideration of design specifications and the like. Particularly in the on-vehicle field, high quality assurance is required from the viewpoint of safety, so it is preferable to provide a plurality of switch elements used for each inverter.
電源101は、例えば、第1および第2インバータ120、130に共通の単一電源である。電源101は所定の電源電圧(例えば、12V)を生成する。電源として、例えば直流電源が用いられる。ただし、電源は、AC-DCコンバータまたはDC-DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。また、電源101は、第1インバータ120用の電源および第2インバータ130用の電源を個別に備えていてもよい。  The power supply 101 is, for example, a single power supply common to the first and second inverters 120 and 130. The power supply 101 generates a predetermined power supply voltage (for example, 12 V). As a power supply, for example, a DC power supply is used. However, the power source may be an AC-DC converter or a DC-DC converter, or may be a battery (storage battery). Also, the power supply 101 may separately include a power supply for the first inverter 120 and a power supply for the second inverter 130.
電源101と電源遮断回路110との間にコイル102が設けられている。コイル102は、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源側に流出させないように平滑化する。  A coil 102 is provided between the power supply 101 and the power shutoff circuit 110. The coil 102 functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply side.
各インバータの電源ラインには、コンデンサ103が接続される。コンデンサ103は、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサ103は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。  A capacitor 103 is connected to the power supply line of each inverter. The capacitor 103 is a so-called bypass capacitor, which suppresses voltage ripple. The capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined depending on design specifications and the like.
第1インバータ120は、3個のレグを有するブリッジ回路を備える。各レグは、ローサイドスイッチ素子およびハイサイドスイッチ素子を有する。A相レグは、ローサイドスイッチ素子121Lおよびハイサイドスイッチ素子121Hを有する。B相レグは、ローサイドスイッチ素子122Lおよびハイサイドスイッチ素子122Hを有する。C相レグは、ローサイドスイッチ素子123Lおよびハイサイドスイッチ素子123Hを有する。スイッチ素子として、例えばFETまたはIGBTを用いることができる。以下、スイッチ素子としてMOSFETを用いる例を説明し、スイッチ素子をSWと表記する場合がある。例えば、ローサイドスイッチ素子121L、122Lおよび123Lは、SW121L、122Lおよび123Lと表記される。  The first inverter 120 comprises a bridge circuit having three legs. Each leg has a low side switch element and a high side switch element. The A-phase leg has a low side switch element 121L and a high side switch element 121H. The B-phase leg has a low side switch element 122L and a high side switch element 122H. The C-phase leg has a low side switch element 123L and a high side switch element 123H. As a switch element, FET or IGBT can be used, for example. Hereinafter, an example using a MOSFET as a switch element will be described, and the switch element may be described as SW. For example, the low side switch elements 121L, 122L and 123L are described as SW 121L, 122L and 123L.
第1インバータ120は、A相、B相およびC相の各相の巻線に流れる電流を検出する電流センサ150(図2を参照)に含まれる3個のシャント抵抗121R、122Rおよび123Rを備える。電流センサ150は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を含む。例えば、シャント抵抗121R、122Rおよび123Rは、第1インバータ120の3個のレグに含まれる3個のローサイドスイッチ素子とGNDとの間にそれぞれ接続される。具体的には、シャント抵抗121RはSW121LとSW111との間に電気的に接続され、シャント抵抗122RはSW122LとSW111との間に電気的に接続され、シャント抵抗123RはSW123LとSW111との間に電気的に接続される。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。  The first inverter 120 includes three shunt resistors 121R, 122R and 123R included in a current sensor 150 (see FIG. 2) for detecting the current flowing in the winding of each phase A, B and C. . Current sensor 150 includes a current detection circuit (not shown) that detects the current flowing in each shunt resistor. For example, the shunt resistors 121R, 122R and 123R are respectively connected between the three low side switch elements included in the three legs of the first inverter 120 and the GND. Specifically, shunt resistor 121R is electrically connected between SW121L and SW111, shunt resistor 122R is electrically connected between SW122L and SW111, and shunt resistor 123R is between SW123L and SW111. Electrically connected. The resistance value of the shunt resistor is, for example, about 0.5 mΩ to 1.0 mΩ.
第2インバータ130は、第1インバータ120と同様に、3個のレグを有するブリッジ回路を備える。A相レグは、ローサイドスイッチ素子131Lおよびハイサイドスイッチ素子131Hを有する。B相レグは、ローサイドスイッチ素子132Lおよびハイサイドスイッチ素子132Hを有する。C相レグは、ローサイドスイッチ素子133Lおよびハイサイドスイッチ素子133Hを有する。また、第2インバータ130は、3個のシャント抵抗131R、132Rおよび133Rを備える。それらのシャント抵抗は、3個のレグに含まれる3個のローサイドスイッチ素子とGNDとの間に接続される。  Similar to the first inverter 120, the second inverter 130 includes a bridge circuit having three legs. The A-phase leg has a low side switch element 131L and a high side switch element 131H. The B-phase leg has a low side switch element 132L and a high side switch element 132H. The C-phase leg has a low side switch element 133L and a high side switch element 133H. In addition, the second inverter 130 includes three shunt resistors 131R, 132R and 133R. The shunt resistors are connected between the three low side switch elements included in the three legs and GND.
各インバータに対し、シャント抵抗の数は3つに限られない。例えば、A相、B相用の2つのシャント抵抗、B相、C相用の2つのシャント抵抗、および、A相、C相用の2つのシャント抵抗を用いることが可能である。使用するシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などを考慮して適宜決定される。  The number of shunt resistors is not limited to three for each inverter. For example, it is possible to use two shunt resistors for A phase and B phase, two shunt resistors for B phase and C phase, and two shunt resistors for A phase and C phase. The number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications and the like.
上述したとおり、第2インバータ130は、第1インバータ120の構造と実質的に同じ構造を備える。図1において、説明の便宜上、例えば、紙面の左側のインバータを第1インバータ120と表記し、右側のインバータを第2インバータ130と表記している。ただし、このような表記は、本開示を限定する意図で解釈されてはならない。例えば、第1および第2インバータ120、130は、インバータユニット100の構成要素として区別なく用いられ得る。  As described above, the second inverter 130 has substantially the same structure as the structure of the first inverter 120. In FIG. 1, for convenience of the description, for example, the inverter on the left side of the drawing is represented as a first inverter 120, and the inverter on the right side is represented as a second inverter 130. However, such notations should not be construed with the intention of limiting the present disclosure. For example, the first and second inverters 120 and 130 may be used as components of the inverter unit 100 without distinction.
〔1-2.電力変換装置1000およびモータモジュール2000の構造〕 図2は、本実施形態によるモータモジュール2000のブロック構成を模式的に示し、主に、電力変換装置1000のブロック構成を模式的に示している。  [1-2. Structure of Power Conversion Device 1000 and Motor Module 2000 FIG. 2 schematically shows a block configuration of the motor module 2000 according to the present embodiment, and mainly shows a block configuration of the power conversion device 1000. As shown in FIG.
電力変換装置1000は、インバータユニット100と、モータ制御装置300と、を備える。モータモジュール2000は、電力変換装置1000と、モータ200と、を備える。  Power converter 1000 includes inverter unit 100 and motor controller 300. The motor module 2000 includes a power converter 1000 and a motor 200.
モータモジュール2000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。また、モータ200以外のユニットである電力変換装置1000をモジュール化して製造および販売し得る。  The motor module 2000 may be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller. In addition, the power conversion device 1000 which is a unit other than the motor 200 can be modularized, manufactured and sold.
モータ制御装置300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。モータ制御装置300は、インバータユニット100に接続され、インバータユニット100を制御することによりモータ200を駆動する制御回路である。  The motor control device 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. The motor control device 300 is a control circuit that is connected to the inverter unit 100 and drives the motor 200 by controlling the inverter unit 100.
モータ制御装置300は、目的とするモータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、モータ制御装置300は、角度センサ320に代えてトルクセンサを備えてもよい。この場合、モータ制御装置300は、目的とするモータトルクを制御することができる。  The motor control device 300 can realize closed loop control by controlling the target position, rotational speed, current, and the like of the rotor of the motor 200. Motor control device 300 may be replaced with angle sensor 320, and may be provided with a torque sensor. In this case, the motor control device 300 can control the target motor torque.
電源回路310は、回路内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。  The power supply circuit 310 generates DC voltages (for example, 3 V, 5 V) necessary for each block in the circuit.
角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。  The angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the controller 340.
入力回路330は、電流センサ150によって検出されたモータ電流値(以下、「実電流値」と表記する。)を受け取って、実電流値のレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル変換回路である。  Input circuit 330 receives a motor current value (hereinafter referred to as “actual current value”) detected by current sensor 150, and converts the level of the actual current value to the input level of controller 340 as necessary. , And outputs the actual current value to the controller 340. The input circuit 330 is, for example, an analog-to-digital converter.
コントローラ340は、駆動回路350を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。  The controller 340 is an integrated circuit that controls the drive circuit 350, and is, for example, a microcontroller or a field programmable gate array (FPGA).
 コントローラ340は、インバータユニット100の第1および第2インバータ120、130における各SWのスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。コントローラ340は、インバータユニット100の電源遮断回路110における各SWのオン・オフを制御してもよい。  The controller 340 controls the switching operation (turn on or off) of each SW in the first and second inverters 120 and 130 of the inverter unit 100. The controller 340 sets a target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal, and outputs it to the drive circuit 350. The controller 340 may control on / off of each SW in the power shutoff circuit 110 of the inverter unit 100.
駆動回路350は、典型的にはゲートドライバ(またはプリドライバ)である。駆動回路350は、第1および第2インバータ120、130における各SWのMOSFETのスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各SWのゲートに制御信号を与える。また、駆動回路350は、電源遮断回路110における各SWのオン・オフを制御する制御信号を、コントローラ340からの指示に従って生成してもよい。駆動対象が低電圧で駆動可能なモータであるとき、ゲートドライバは必ずしも必要とされない場合がある。その場合、ゲートドライバの機能は、コントローラ340に実装され得る。  The drive circuit 350 is typically a gate driver (or pre-driver). The drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of the MOSFET of each SW in the first and second inverters 120 and 130 in accordance with the PWM signal, and supplies the control signal to the gate of each SW. In addition, the drive circuit 350 may generate a control signal for controlling on / off of each SW in the power shutoff circuit 110 according to an instruction from the controller 340. When the drive target is a low voltage driveable motor, the gate driver may not be required. In that case, the function of the gate driver may be implemented in the controller 340.
ROM360は、コントローラ340に電気的に接続される。ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置1000を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。  The ROM 360 is electrically connected to the controller 340. The ROM 360 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory. The ROM 360 stores a control program including instructions for causing the controller 340 to control the power conversion apparatus 1000. For example, the control program is temporarily expanded in a RAM (not shown) at boot time.

〔1-3.電力変換装置1000の動作〕

<正常時の制御>

モータ制御装置300は、電源遮断回路110のSW111、112、113および114を全てオンする。これにより、電源101と第1インバータ120とが電気的に接続され、かつ、電源101と第2インバータ130とが電気的に接続される。また、第1インバータ120とGNDとが電気的に接続され、かつ、第2インバータ130とGNDとが電気的に接続される。電源遮断回路110の逆接続保護用のSW115、116は常時オン状態であるとする。この接続状態において、モータ制御装置300は、第1および第2インバータ120、130の両方を用いて巻線M1、M2およびM3を通電することによりモータ200を駆動する。本明細書において、三相の巻線を通電することを「三相通電制御」と呼ぶこととする。

[1-3. Operation of Power Converter 1000]

<Control when normal>

The motor control device 300 turns on all the SWs 111, 112, 113 and 114 of the power shutoff circuit 110. Thereby, the power supply 101 and the first inverter 120 are electrically connected, and the power supply 101 and the second inverter 130 are electrically connected. In addition, the first inverter 120 and GND are electrically connected, and the second inverter 130 and GND are electrically connected. The switches 115 and 116 for reverse connection protection of the power supply shutoff circuit 110 are always on. In this connected state, the motor control device 300 drives the motor 200 by energizing the windings M1, M2 and M3 using both of the first and second inverters 120, 130. In the present specification, energization of a three-phase winding is referred to as "three-phase energization control".
例えば、モータ制御装置300は、第1インバータ120のSWと第2インバータ130のSWとを互いに逆位相(位相差=180°)でスイッチング制御することにより三相通電制御を行う。例えば、A相のHブリッジに着目すると、SW121Lがオンすると、SW131Lはオフし、SW121Lがオフすると、SW131Lはオンする。これと同様に、SW121Hがオンすると、SW131Hはオフし、SW121Hがオフすると、SW131Hはオンする。B相、C相のHブリッジも、A相のHブリッジと同様に制御される。  For example, the motor control device 300 performs three-phase energization control by switching control of the SW of the first inverter 120 and the SW of the second inverter 130 in opposite phases (phase difference = 180 °). For example, focusing on the A-phase H bridge, when the SW 121 L turns on, the SW 131 L turns off, and when the SW 121 L turns off, the SW 131 L turns on. Similarly, when the SW 121 H is turned on, the SW 131 H is turned off, and when the SW 121 H is turned off, the SW 131 H is turned on. The B-phase and C-phase H bridges are also controlled in the same manner as the A-phase H bridge.
図3は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図3の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。  FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. doing. The horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A). In the current waveform of FIG. 3, current values are plotted every 30 ° of electrical angle. I pk represents the maximum current value (peak current value) of each phase.
図3に示される電流波形において、電流の向きを考慮した三相の巻線に流れる電流の総和は電気角毎に「0」となる。ただし、インバータユニット100の回路構成によれば、三相の巻線に流れる電流を独立に制御することができるために、電流の総和が「0」とはならない制御を行うことも可能である。その場合、インバータの回路内に零相電流が流れ得るために、厳密には、三相の巻線に流れる電流の総和は電気角毎に「0」にはならない点に留意されたい。例えば、モータ制御装置300は、図3に示される電流波形が得られるPWM制御によって第1および第2インバータ120、130の各SWのスイッチング動作を制御することが可能である。  In the current waveform shown in FIG. 3, the sum of the currents flowing in the three-phase winding considering the direction of the current is "0" for each electrical angle. However, according to the circuit configuration of the inverter unit 100, the currents flowing through the three-phase windings can be controlled independently, so it is also possible to perform control such that the sum of the currents does not become "0". In that case, it should be noted that, strictly speaking, the sum of the currents flowing through the three-phase windings does not become “0” at each electrical angle, since the zero-phase current can flow in the circuit of the inverter. For example, the motor control device 300 can control the switching operation of each SW of the first and second inverters 120 and 130 by PWM control that obtains the current waveform shown in FIG. 3.

<異常時の制御>

上述したように、異常とは主としてスイッチ素子(FET)に故障が発生したことを意味する。FETの故障には、大きく分けて「オープン故障」と「ショート故障」とがある。「オープン故障」は、FETのソース-ドレイン間が開放する故障(換言すると、ソース-ドレイン間の抵抗rdsがハイインピーダンスになること)を指し、「ショート故障」は、FETのソース-ドレイン間が短絡する故障を指す。スイッチ素子SWのオープン故障とは、SWが常にオフ(遮断)状態となり、オン(導通)状態にならない故障を指す。スイッチ素子SWのショート故障とは、SWが常にオン状態となり、オフ状態にならない故障を指す。

<Control at the time of abnormality>

As described above, the abnormality mainly means that a failure occurs in the switch element (FET). The failure of the FET can be roughly divided into “open failure” and “short failure”. "Open fault" refers to a fault in which the source-drain of FET is opened (in other words, resistance rds between source-drain becomes high impedance), and "short fault" is in the source-drain of FET Refers to a short circuit failure. The open failure of the switch element SW refers to a failure in which the SW is always in the off (cutoff) state and is not in the on (conducting) state. The short failure of the switch element SW indicates a failure in which the SW is always in the on state and is not in the off state.
再び図1を参照する。電力変換装置1000の動作時において故障が発生する場合、通常は、16個のFETの中から1つのFETがランダムに故障するランダム故障が発生すると考えられる。ただし、複数のFETが連鎖的に故障する連鎖的な故障も発生することが想定される。連鎖的な故障とは、例えば1つのレグのハイサイドスイッチ素子およびローサイドスイッチ素子に故障が同時に発生することを意味する。本開示は、これらの故障を範疇とする。  Refer back to FIG. If a failure occurs during the operation of the power conversion device 1000, it is usually considered that a random failure occurs in which one of the 16 FETs fails at random. However, it is assumed that a chained failure occurs in which a plurality of FETs fail in a chained manner. The chained failure means, for example, simultaneous occurrence of failure in the high side switch device and the low side switch device of one leg. The present disclosure covers these failures.
電力変換装置1000を長期間使用すると、ランダム故障が起こる可能性がある。なお、ランダム故障は、製造時に発生し得る製造故障とは異なる。2つのインバータの複数のSWのうちの1つでも故障すると、正常時の三相通電制御はもはや不可能となる。  When the power converter 1000 is used for a long time, random failures may occur. The random failure is different from the manufacturing failure that may occur at the time of manufacturing. If even one of the plurality of SWs of the two inverters fails, normal three-phase conduction control is no longer possible.
故障検知の一例として、駆動回路350は、SWのドレイン-ソース間の電圧Vdsを監視し、所定の閾値電圧とVdsとを比較することによって、SWの故障を検知する。閾値電圧は、例えば外部IC(不図示)とのデータ通信および外付け部品によって駆動回路350に設定される。駆動回路350は、コントローラ340のポートと接続され、故障検知信号をコントローラ340に通知する。例えば、駆動回路350は、SWの故障を検知すると、故障検知信号をアサートする。コントローラ340は、アサートされた故障検知信号を受信すると、駆動回路350の内部データを読み出して、複数のSWの中でどのSWが故障しているのかを判別する。  As an example of failure detection, the drive circuit 350 monitors the voltage Vds between the drain and source of SW, and detects a failure of SW by comparing Vds with a predetermined threshold voltage. The threshold voltage is set in the drive circuit 350, for example, by data communication with an external IC (not shown) and an external component. The drive circuit 350 is connected to the port of the controller 340 and notifies the controller 340 of a failure detection signal. For example, when the drive circuit 350 detects a failure of the SW, the drive circuit 350 asserts a failure detection signal. When the controller 340 receives the asserted fault detection signal, the controller 340 reads the internal data of the drive circuit 350 to determine which one of the plurality of SWs is faulty.
故障検知の他の一例としては、コントローラ340は、モータの実電流値と目標電流値との差に基づいてSWの故障を検知することも可能である。ただし、故障検知は、これらの手法に限られず、故障検知に関する公知の手法を広く用いることができる。  As another example of failure detection, the controller 340 can also detect a failure of the SW based on the difference between the actual current value of the motor and the target current value. However, the failure detection is not limited to these methods, and a wide variety of known methods for failure detection can be used.
コントローラ340は、故障検知信号がアサートされると、電力変換装置1000の制御を正常時の制御から異常時の制御に切替える。例えば、正常時から異常時に制御を切替えるタイミングは、故障検知信号がアサートされてから10msec~30msec程度である。  When the failure detection signal is asserted, the controller 340 switches control of the power conversion device 1000 from normal control to abnormal control. For example, the timing at which control is switched from normal to abnormal is about 10 msec to 30 msec after the fault detection signal is asserted.
電力変換装置1000は、異常時の制御における駆動モードとして、第1および第2駆動モードを備える。第1駆動モードは、第1および第2インバータ120、130の一方、および、他方に構成されたモータ200の中性点を用いて三相通電制御を行うモードである。  Power converter 1000 has first and second drive modes as drive modes in control at the time of abnormality. The first drive mode is a mode in which three-phase conduction control is performed using the neutral point of the motor 200 configured to one of the first and second inverters 120 and 130 and the other.
図4は、第1インバータ120のA相レグのSW121Lが故障した場合の他のSWのオン・オフ状態を説明するための図である。SW121Lはオープン故障したとする。その場合、電力変換装置1000(主としてモータ制御装置300)は、例えば、ハイサイド側のSW121H、122Hおよび123Hを全てオンし、SW121L以外のローサイド側のSW122L、123Lをオフする。この制御によって、第1インバータ120における、SW121HとSW121Lの間のA相レグのノード電位、SW122HとSW122Lの間のB相レグのノード電位およびSW123HとSW123Lの間のC相レグのノード電位は全て等電位となる。その結果、第1インバータ120のハイサイド側のノードN1を中性点として機能させることができる。本明細書では、インバータのハイサイドまたはローサイド側のノードN1、N2が中性点として機能することを、「中性点が構成される」と表現することとする。例えば、ハイサイド側のSW121Hが故障した場合には、ローサイド側のノードN2を中性点として機能させることができる。  FIG. 4 is a diagram for explaining the on / off state of another SW when the SW 121 L of the A-phase leg of the first inverter 120 fails. It is assumed that SW 121 L has an open failure. In that case, the power conversion device 1000 (mainly the motor control device 300) turns on all the high side SWs 121H, 122H and 123H, and turns off the low side SW 122L, 123L other than the SW 121L. By this control, the node potential of the A phase leg between SW121H and SW121L, the node potential of the B phase leg between SW122H and SW122L, and the node potential of the C phase leg between SW123H and SW123L in the first inverter 120 are all It becomes equal potential. As a result, the node N1 on the high side of the first inverter 120 can function as a neutral point. In the present specification, that the nodes N1 and N2 on the high side or low side of the inverter function as neutral points is expressed as "a neutral point is configured". For example, when the high side SW 121 H fails, the low side node N 2 can function as a neutral point.
第1駆動モードが選択されると、モータ結線は、フルHブリッジの結線からY結線に切り替わる。モータ制御装置300は、第1インバータ120に構成されたモータ200の中性点を用いて、第2インバータ130のスイッチ素子をPWM制御することによって三相通電制御、つまりY結線駆動を行う。  When the first drive mode is selected, the motor connection switches from the connection of the full H bridge to the Y connection. The motor control device 300 performs three-phase conduction control, that is, Y-connection driving, by performing PWM control on the switch elements of the second inverter 130 using the neutral point of the motor 200 configured in the first inverter 120.
第2駆動モードは、第1および第2インバータ120、130の両方を用いて、三相のうちの二相の巻線を通電するモードである。二相の巻線を通電することを「二相通電制御」と呼ぶこととする。例えば、SW121Lがオープン故障したとする。その場合、第2駆動モードが選択されると、モータ制御装置300は、故障したSW121Lを含むA相のHブリッジ以外のB相、C相のHブリッジを用いて巻線M2、M3を通電する二相通電制御を行う。  The second drive mode is a mode in which the two-phase winding of the three phases is energized using both the first and second inverters 120 and 130. Energizing the two-phase winding is referred to as "two-phase conduction control". For example, it is assumed that the SW 121 L has an open failure. In that case, when the second drive mode is selected, the motor control device 300 energizes the windings M2 and M3 using the B-phase and C-phase H bridges other than the A-phase H bridge including the failed SW 121L. Two-phase energization control is performed.
図5は、モータの単位時間当たりの回転速度(rps)と正規化トルクT(N・m)との関係を表すT-N曲線を示している。図5に、三相通電制御、Y結線駆動および二相通電制御におけるそれぞれのT-N曲線を示す。横軸は回転速度(rps)を示し、縦軸は正規化トルクT(N・m)を示す。  FIG. 5 shows a TN curve representing the relationship between the rotational speed (rps) per unit time of the motor and the normalized torque T (N · m). FIG. 5 shows respective TN curves in the three-phase conduction control, the Y-connection drive and the two-phase conduction control. The horizontal axis indicates the rotational speed (rps), and the vertical axis indicates the normalized torque T (N · m).
通常駆動、すなわち、正常時の三相通電制御におけるT-N曲線の領域内に、Y結線駆動および二相通電制御におけるT-N曲線の各領域が含まれる。正常時の制御が行えない場合、Y結線駆動または二相通電制御のT-N曲線の領域を利用するモータ制御が可能となる。しかしながら、異常時の制御において、Y結線駆動だけを選択した場合には、高速回転領域におけるモータ出力特性に限界が生じ、二相通電制御だけを選択した場合には、高トルク領域におけるモータ出力特性に限界が生じる。  The respective regions of the Y-connection drive and the TN curve in the two-phase conduction control are included in the region of the TN curve in the normal drive, that is, in the normal three-phase conduction control. When the control at the normal time can not be performed, the motor control using the area of the TN curve of the Y connection drive or the two-phase current control can be performed. However, when only Y connection drive is selected in the control at the time of abnormality, the motor output characteristic in the high speed rotation region is limited, and when only the two-phase energization control is selected, the motor output characteristic in the high torque region Limits arise.
本実施形態では、モータ制御装置300は、第1駆動モードと第2駆動モードとを相互に切替える。より詳細には、モータ制御装置300は、トルク指令値および速度情報の少なくとも1つに応じて第1駆動モードと第2駆動モードとを相互に切替える。または、モータ制御装置300は、出力指令値に応じて第1駆動モードと第2駆動モードとを相互に切替える。速度情報は、例えば、速度指令値または実速度を示すロータの回転信号である。以下、速度情報として速度指令値を用いる実施形態を説明する。
In the present embodiment, the motor control device 300 switches between the first drive mode and the second drive mode. More specifically, motor control apparatus 300 switches between the first drive mode and the second drive mode according to at least one of the torque command value and the speed information. Alternatively, the motor control device 300 switches between the first drive mode and the second drive mode in accordance with the output command value. The speed information is, for example, a rotation signal of a rotor that indicates a speed command value or an actual speed. Hereinafter, an embodiment using a speed command value as speed information will be described.

モータ制御装置300は、T-N曲線の高トルク領域では第1駆動モードを選択し、高速回転領域では第2駆動モードを選択することが好ましい。その理由は、第1駆動モードでは、正常時の三相通電制御と同等の相電流を巻線に流すことが可能となり、第2駆動モードでは、正常時の三相通電制御と同等の相電圧を巻線に印加することが可能となるからである。図5において、Y結線駆動および二相通電制御のT-N曲線の領域が互いに重なる領域では、第1または第2駆動モードのどちらを用いてモータ駆動を行ってもよい。

The motor control device 300 preferably selects the first drive mode in the high torque region of the TN curve, and selects the second drive mode in the high speed rotation region. The reason is that in the first drive mode, it is possible to flow the phase current equivalent to the normal three-phase energization control in the winding, and in the second drive mode the phase voltage equivalent to the normal three-phase energization control It is because it becomes possible to apply to a winding. In FIG. 5, motor drive may be performed using either the first or second drive mode in a region where the regions of the T-N curves of Y-connection drive and two-phase conduction control overlap each other.
図6は、速度指令値に応じて第1駆動モードと第2駆動モードとを切替える制御フローを例示している。  FIG. 6 illustrates a control flow for switching between the first drive mode and the second drive mode in accordance with the speed command value.
ある一態様において、モータ制御装置300は、速度指令値に応じて第1駆動モードと第2駆動モードとを相互に切替える。例えば、故障を示すアサート信号がアサートされると、モータ制御装置300は、モータ制御を正常時の制御から異常時の制御に切替える(ステップS100)。モータ制御装置300は、速度指令値と速度閾値を比較する(ステップS200)。モータ制御装置300は、速度指令値が速度閾値以下である場合、第1駆動モードを選択し(ステップS300)、速度指令値が速度閾値よりも大きい場合、第2駆動モードを選択する(ステップS400)。モータ制御装置300は、モータ制御が終了するまで、ステップS200の判定を繰り返し実行する(ステップS500)。  In one aspect, the motor control device 300 switches between the first drive mode and the second drive mode according to the speed command value. For example, when an assert signal indicating failure is asserted, the motor control device 300 switches motor control from normal control to abnormal control (step S100). The motor control device 300 compares the speed command value with the speed threshold (step S200). The motor control device 300 selects the first drive mode when the speed command value is equal to or less than the speed threshold (step S300), and selects the second drive mode when the speed command value is larger than the speed threshold (step S400). ). The motor control device 300 repeatedly executes the determination of step S200 until the motor control ends (step S500).
図7は、トルク指令値に応じて第1駆動モードと第2駆動モードとを切替える制御フローを例示している。  FIG. 7 illustrates a control flow for switching between the first drive mode and the second drive mode according to the torque command value.
ある一態様において、モータ制御装置300は、トルク指令値に応じて第1駆動モードと第2駆動モードとを相互に切替える。例えば、故障を示すアサート信号がアサートされると、モータ制御装置300は、モータ制御を正常時の制御から異常時の制御に切替える(ステップS100)。モータ制御装置300は、トルク指令値とトルク閾値を比較する(ステップS200)。モータ制御装置300は、トルク指令値がトルク閾値以下である場合、第2駆動モードを選択し(ステップS300)、トルク指令値がトルク閾値よりも大きい場合、第1駆動モードを選択する(ステップS400)。モータ制御装置300は、モータ制御が終了するまで、ステップS200の判定を繰り返し実行する(ステップS500)。  In one aspect, the motor control device 300 switches between the first drive mode and the second drive mode according to the torque command value. For example, when an assert signal indicating failure is asserted, the motor control device 300 switches motor control from normal control to abnormal control (step S100). The motor control device 300 compares the torque command value with the torque threshold (step S200). Motor control device 300 selects the second drive mode when the torque command value is equal to or less than the torque threshold (step S300), and selects the first drive mode when the torque command value is greater than the torque threshold (step S400). ). The motor control device 300 repeatedly executes the determination of step S200 until the motor control ends (step S500).
本実施形態によれば、異常時の制御において、第1および第2駆動モードを速度指令値またはトルク指令値に応じて相互に切替えることによって、正常時の三相通電制御と同等の高いモータ出力特性を得ることが可能となる。  According to the present embodiment, in the control at the time of abnormality, the high motor output equivalent to the three-phase energization control at the normal time by switching the first and second drive modes mutually according to the speed command value or the torque command value. It becomes possible to obtain characteristics.
本明細書では、第1インバータ120のスイッチ素子に故障が生じた場合を例に、異常時の制御を説明した。ただし、第2インバータ130のスイッチ素子に故障が生じた場合の異常時の制御もまた、第1インバータ120のそれと同様に行うことができることは言うまでもない。  In the present specification, the control at the time of abnormality has been described by taking the case where a failure occurs in the switch element of the first inverter 120 as an example. However, it goes without saying that control at the time of abnormality when a failure occurs in the switch element of the second inverter 130 can also be performed in the same manner as that of the first inverter 120.

(実施形態2)

図8は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示している。

Second Embodiment

FIG. 8 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。
Vehicles such as automobiles generally have an electric power steering device. The electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque. Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel. The assist torque reduces the burden on the driver's operation.
ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bを備える。  The steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, rack shafts 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A, 528B, and left and right steering wheels 529A, 529B.
補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544を備える。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。  The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, and a reduction mechanism 544. The steering torque sensor 541 detects a steering torque in the steering system 520. The ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal. The motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
ECU542は、例えば、実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのユニットに、実施形態1によるモータモジュール2000を好適に用いることができる。  The ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment. In automobiles, an electronic control system is built around an ECU. In the electric power steering apparatus 3000, for example, a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545. The motor module 2000 according to the first embodiment can be suitably used for the unit.
電動パワーステアリング装置3000は、例えば駐車モードおよび走行モードを有する車両に搭載され得る。駐車モードは、概ね20km/h以下の速度で走行するモードであり、走行モードは、概ね20km/h以上の速度で走行するモードである。車両の駐車モードおよび走行モードに、電力変換装置1000の第1および第2駆動モードをそれぞれ関連付けることが可能である。車両は、シフトバイワイヤ、ステアリングバイワイヤ、ブレーキバイワイヤなどのエックスバイワイヤまたはトラクションモータなどのモータ制御システムを搭載し得る。例えば、モータモジュール2000を実装した電動パワーステアリング装置3000は、日本政府または米国運輸省道路交通安全局(NHTSA)によって定められたレベル0から5(自動化の基準)に対応した自動運転車に搭載され得る。  Electric power steering apparatus 3000 can be mounted, for example, on a vehicle having a parking mode and a traveling mode. The parking mode is a mode for traveling at a speed of approximately 20 km / h or less, and the traveling mode is a mode for traveling at a speed of approximately 20 km / h or more. It is possible to associate the first and second drive modes of the power conversion device 1000 with the parking mode and the traveling mode of the vehicle, respectively. The vehicle may be equipped with a motor control system such as shift by wire, steering by wire, x by wire such as brake by wire, or a traction motor. For example, the electric power steering apparatus 3000 mounted with the motor module 2000 is mounted on an autonomous vehicle corresponding to levels 0 to 5 (standards of automation) defined by the Japanese government or the Road Traffic Safety Administration (NHTSA) of the US Department of Transportation. obtain.
モータモジュール2000のインバータユニット100にスイッチ故障が発生したとする。その場合、車両の制御モードとして駐車モードが選択されると、モータ制御装置300は、電力変換装置1000の駆動モードとして第1駆動モードを選択する。一方、車両の制御モードとして走行モードが選択されると、モータ制御装置300は、電力変換装置1000の駆動モードとして第2駆動モードを選択する。  It is assumed that a switch failure occurs in the inverter unit 100 of the motor module 2000. In this case, when the parking mode is selected as the control mode of the vehicle, motor control device 300 selects the first drive mode as the drive mode of power conversion device 1000. On the other hand, when the travel mode is selected as the control mode of the vehicle, motor control device 300 selects the second drive mode as the drive mode of power conversion device 1000.
例えば、車両を駐車するとき、または、交差点で右折若しくは左折を行うときなどの低速時の操舵には高トルクが必要とされる。その場合、電力変換装置1000の駆動モードとして第1駆動モードを選択することにより、高トルクを得ることができる。これに対し、例えば、車両が走行モードで走行するとき、高トルクは特に必要とされず、低トルクで足りる。むしろ、例えば走行中に障害物を回避するときに、急激な操舵が必要とされることがある。その場合、電力変換装置1000の駆動モードとして第2駆動モードを選択することにより、モータ200を高速に回転させることができる。  For example, high torque is required for low speed steering such as when parking a vehicle or when making a right turn or left turn at an intersection. In that case, high torque can be obtained by selecting the first drive mode as the drive mode of power conversion device 1000. On the other hand, for example, when the vehicle travels in the travel mode, high torque is not particularly required, and low torque is sufficient. Rather, rapid steering may be required, for example when avoiding obstacles while driving. In that case, by selecting the second drive mode as the drive mode of power conversion device 1000, motor 200 can be rotated at high speed.
運転者が、駐車モードおよび走行モードを手動で切替えてもよいし、車両が、例えば速度情報に基づいてそれらのモードを自動で切替えてもよい。具体的に説明すると、

(1)例えば、車両のコントロールユニットが、車速に基づいて2つのモードの切替えを判断し、その判断結果をモータモジュール2000のコントローラ340に通知する;

(2)例えば、車両のコントロールユニットが、シフトレバーの信号に従って2つのモードの切替えを判断し、その判断結果をモータモジュール2000のコントローラ340に通知する。例えば、シフトレバーがリバース(R)に切替ると、コントロールユニットは、第1駆動モードを選択するようコントローラ340に指示する;(3)例えば、自動運転を行うことが可能な車両は、車道を自動走行する走行モードおよび駐車スペースに車両を自動で駐車する駐車モードを備える。運転者が、走行モードを選択すると、車両のコントロールユニットはその選択を受けて、第2駆動モードを選択するようコントローラ340に指示し、運転者が駐車モードを選択すると、コントロールユニットは、第1駆動モードを選択するようコントローラ340に指示する。
The driver may manually switch the parking mode and the travel mode, or the vehicle may automatically switch those modes based on, for example, speed information. Specifically,

(1) For example, the control unit of the vehicle determines switching between the two modes based on the vehicle speed, and notifies the controller 340 of the motor module 2000 of the determination result;

(2) For example, the control unit of the vehicle determines switching between the two modes according to the signal of the shift lever, and notifies the controller 340 of the motor module 2000 of the determination result. For example, when the shift lever is switched to reverse (R), the control unit instructs the controller 340 to select the first drive mode; (3) For example, a vehicle capable of performing automatic driving has a roadway It has a traveling mode for automatically traveling and a parking mode for automatically parking a vehicle in a parking space. When the driver selects the travel mode, the control unit of the vehicle receives the selection and instructs the controller 340 to select the second drive mode, and when the driver selects the parking mode, the control unit controls the first The controller 340 is instructed to select a drive mode.
本実施形態によれば、例えば、車両の駐車モードおよび走行モードに、第1および第2駆動モードをそれぞれ関連付け、かつ、異常時の制御においてそれらのモードを相互に切替えることによって、正常時の三相通電制御と同等の高いモータ出力特性を得ることが可能となる。その結果、車両の制御モードに応じた最適なモータ出力特性を備える電動パワーステアリング装置を提供できる。 According to the present embodiment, for example, by associating the first and second drive modes with the parking mode and the traveling mode of the vehicle, respectively, and switching between those modes in the control at the time of abnormality, It is possible to obtain high motor output characteristics equivalent to phase energization control. As a result, it is possible to provide an electric power steering apparatus having an optimum motor output characteristic according to the control mode of the vehicle.
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。 Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.

100:インバータユニット、101:電源、102:コイル、103:コンデンサ、110:電源切替回路、111:第1スイッチ素子、112:第2スイッチ素子、113:第3スイッチ素子、114:第4スイッチ素子、115:第5スイッチ素子、116:第6スイッチ素子、120:第1インバータ、130:第2インバータ、200:モータ、1000:電力変換装置、M1、M2、M3:巻線

100: inverter unit, 101: power supply, 102: coil, 103: capacitor, 110: power switching circuit, 111: first switch element, 112: second switch element, 113: third switch element, 114: fourth switch element , 115: fifth switch element, 116: sixth switch element, 120: first inverter, 130: second inverter, 200: motor, 1000: power converter, M1, M2, M3: winding

Claims (11)


  1. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、

    前記モータの各相の巻線の一端に接続される第1インバータと、

    前記各相の巻線の他端に接続される第2インバータと、

    を備え、

    前記第1および第2インバータの一方および他方に構成された前記モータの中性点を用いてn相通電制御を行う第1駆動モードと、前記第1および第2インバータの両方を用いてn-1相通電制御を行う第2駆動モードとを有し、異常時の制御において、前記第1駆動モードと前記第2駆動モードとを切替える、電力変換装置。

    A power converter that converts power from a power supply into power supplied to a motor having n-phase (n is an integer of 3 or more) windings,

    A first inverter connected to one end of a winding of each phase of the motor;

    A second inverter connected to the other end of the winding of each phase;

    Equipped with

    A first drive mode for performing n-phase conduction control using the neutral point of the motor configured to one and the other of the first and second inverters, and n− using both the first and second inverters A power conversion device, comprising: a second drive mode for performing one-phase energization control; and switching between the first drive mode and the second drive mode in an abnormal control.
  2. トルク指令値および速度情報の少なくとも1つに応じて前記第1および第2駆動モードを相互に切替える、請求項1に記載の電力変換装置。
    The power converter according to claim 1, wherein the first and second drive modes are switched between each other according to at least one of a torque command value and speed information.
  3. 前記モータのT-N曲線の高トルク領域では前記第1駆動モードが選択され、高速回転領域では前記第2駆動モードが選択される、請求項2に記載の電力変換装置。
    The power conversion device according to claim 2, wherein the first drive mode is selected in a high torque area of a TN curve of the motor, and the second drive mode is selected in a high speed rotation area.
  4. 前記第1および第2駆動モードは、前記速度情報に応じて相互に切替り、

    前記速度情報の値が速度閾値以下である場合、前記第1駆動モードが選択され、前記速度情報の値が前記速度閾値よりも大きい場合、前記第2駆動モードが選択される、請求項2に記載の電力変換装置。
    The first and second drive modes are mutually switched according to the speed information,

    The first driving mode is selected when the value of the speed information is equal to or less than a speed threshold, and the second driving mode is selected when the value of the speed information is larger than the speed threshold. Power converter as described.

  5. 前記第1および第2駆動モードは、前記トルク指令値に応じて相互に切替り、

    前記トルク指令値がトルク閾値以下である場合、前記第2駆動モードが選択され、前記トルク指令値が前記トルク閾値よりも大きい場合、前記第1駆動モードが選択される、請求項2に記載の電力変換装置。

    The first and second drive modes are mutually switched according to the torque command value,

    The second drive mode is selected when the torque command value is equal to or less than a torque threshold, and the first drive mode is selected when the torque command value is greater than the torque threshold. Power converter.

  6. 前記モータのT-N曲線において、前記第1駆動モードの駆動領域と、前記第2駆動モードの駆動領域とが互いに重なる領域では、前記第1または第2駆動モードが選択される、請求項2に記載の電力変換装置。

    The first or second drive mode is selected in a region where the drive region of the first drive mode and the drive region of the second drive mode overlap with each other in the TN curve of the motor. Power converter according to claim 1.
  7. 前記第1インバータとグランドとの接続・非接続を切替える第1スイッチ素子と、

    前記第1インバータと前記電源との接続・非接続を切替える第2スイッチ素子と、

    前記第2インバータと前記グランドとの接続・非接続を切替える第3スイッチ素子と、

    前記第2インバータと前記電源との接続・非接続を切替える第4スイッチ素子と、

    をさらに備える、請求項1から6のいずれかに記載の電力変換装置。
    A first switch element for switching connection / disconnection between the first inverter and the ground;

    A second switch element for switching connection / disconnection between the first inverter and the power supply;

    A third switch element for switching connection / disconnection between the second inverter and the ground;

    A fourth switch element for switching connection / disconnection between the second inverter and the power supply;

    The power converter according to any one of claims 1 to 6, further comprising
  8. 前記第1および第2インバータのスイッチ素子のスイッチング動作を制御し、かつ、前記異常時の制御において、前記第1駆動モードと前記第2駆動モードとを切替えるモータ制御装置をさらに備える、請求項1から7のいずれかに記載の電力変換装置。
    The motor control device further controls a switching operation of switch elements of the first and second inverters, and switches between the first drive mode and the second drive mode in the control at the time of the abnormality. The power converter according to any one of to 7.

  9. モータと、

    請求項1から8のいずれかに記載の電力変換装置と、

    を備えるモータモジュール。

    Motor,

    A power converter according to any one of claims 1 to 8,

    Motor module comprising:
  10. 請求項9に記載のモータモジュールを備える電動パワーステアリング装置。
    An electric power steering apparatus comprising the motor module according to claim 9.
  11. 駐車モードおよび走行モードを有する車両に搭載される請求項10に記載の電動パワーステアリング装置であって、

    前記電力変換装置の前記異常時の制御において、前記車両の制御モードが前記駐車モードであるとき、前記電力変換装置の駆動モードとして前記第1駆動モードが選択され、前記車両の制御モードが前記走行モードであるとき、前記駆動モードとして前記第2駆動モードが選択される。
    11. The electric power steering apparatus according to claim 10, mounted on a vehicle having a parking mode and a traveling mode,

    In the control at the time of the abnormality of the power converter, when the control mode of the vehicle is the parking mode, the first drive mode is selected as a drive mode of the power converter, and the control mode of the vehicle is the traveling When in the mode, the second drive mode is selected as the drive mode.
PCT/JP2018/036873 2017-10-06 2018-10-02 Power conversion device, motor module, and electric power steering apparatus WO2019069919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880063702.0A CN111164874A (en) 2017-10-06 2018-10-02 Power conversion device, motor module, and electric power steering device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762569007P 2017-10-06 2017-10-06
US62/569,007 2017-10-06
JP2018031923 2018-02-26
JP2018-031923 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019069919A1 true WO2019069919A1 (en) 2019-04-11

Family

ID=65994421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036873 WO2019069919A1 (en) 2017-10-06 2018-10-02 Power conversion device, motor module, and electric power steering apparatus

Country Status (2)

Country Link
CN (1) CN111164874A (en)
WO (1) WO2019069919A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529055A (en) * 2010-06-14 2013-07-11 イスパノ・シユイザ Voltage inverter and method for controlling such an inverter
JP2016123222A (en) * 2014-12-25 2016-07-07 株式会社日本自動車部品総合研究所 Power conversion device
JP2016181948A (en) * 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 Power converter
WO2017150641A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102687389B (en) * 2010-01-25 2015-04-29 丰田自动车株式会社 Motor drive system, motor drive system control method and travelling device
JP5569626B1 (en) * 2013-06-17 2014-08-13 日本精工株式会社 Motor control device, electric power steering device using the same, and vehicle
JP2015139326A (en) * 2014-01-23 2015-07-30 トヨタ自動車株式会社 Device and method for power conversion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529055A (en) * 2010-06-14 2013-07-11 イスパノ・シユイザ Voltage inverter and method for controlling such an inverter
JP2016123222A (en) * 2014-12-25 2016-07-07 株式会社日本自動車部品総合研究所 Power conversion device
JP2016181948A (en) * 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 Power converter
WO2017150641A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Also Published As

Publication number Publication date
CN111164874A (en) 2020-05-15

Similar Documents

Publication Publication Date Title
US10998842B2 (en) Power conversion device, motor drive unit, and electric power steering device
WO2017150641A1 (en) Power conversion device, motor drive unit, and electric power steering device
JP7010281B2 (en) Power converter, motor drive unit and electric power steering device
JP7014183B2 (en) Power converter, motor drive unit and electric power steering device
JP7063322B2 (en) Power converter, motor drive unit and electric power steering device
JP7136110B2 (en) Power conversion device, motor drive unit and electric power steering device
JP6947184B2 (en) Power converter, motor drive unit and electric power steering device
WO2019054026A1 (en) Power conversion device, motor module, and electric power steering device
JP7070575B2 (en) Power converters, motor modules and electric power steering devices
JP7070548B2 (en) Power converter, motor drive unit and electric power steering device
WO2019159665A1 (en) Power conversion device, motor module, and electric power steering device
JP7052801B2 (en) Power converters, motor modules and electric power steering devices
WO2019159663A1 (en) Power conversion device, motor module, and electric power steering device
JP6992758B2 (en) Power converter, motor drive unit and electric power steering device
WO2019069919A1 (en) Power conversion device, motor module, and electric power steering apparatus
WO2019049449A1 (en) Electric power converting device, motor module, and electric power steering device
WO2019159664A1 (en) Power conversion device, motor module, and electric power steering device
WO2019044105A1 (en) Power conversion device, motor drive unit and electric power steering device
WO2019044106A1 (en) Power conversion device, motor drive unit and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP