WO2019069720A1 - Recombinant avian paramyxovirus - Google Patents
Recombinant avian paramyxovirus Download PDFInfo
- Publication number
- WO2019069720A1 WO2019069720A1 PCT/JP2018/035085 JP2018035085W WO2019069720A1 WO 2019069720 A1 WO2019069720 A1 WO 2019069720A1 JP 2018035085 W JP2018035085 W JP 2018035085W WO 2019069720 A1 WO2019069720 A1 WO 2019069720A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- avian paramyxovirus
- nucleotide
- sequence
- recombinant
- paramyxovirus
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/155—Paramyxoviridae, e.g. parainfluenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
Definitions
- the present invention relates to a recombinant avian paramyxovirus and a composition for a vaccine comprising the virus as an active ingredient.
- the present invention also relates to a nucleotide construct for producing the virus, a kit for producing the virus comprising the construct, and a method for producing the virus.
- Influenza is an acute infection accompanied by symptoms of upper respiratory tract inflammation, respiratory disease and the like caused by influenza virus, and if the infectivity is strong, the symptoms of the infected person may be severe and may lead to death.
- influenza virus The natural host of influenza virus is mainly wild birds such as waterfowl, and while the epidemic spreads among birds including chicken which is poultry, the virus series evolves and becomes acclimated to various hosts (pig, human) And interspecies transmission will occur.
- HPAI highly pathogenic avian influenza virus
- HPAIV highly pathogenic avian influenza virus
- HPAIV highly pathogenic avian influenza virus
- a recombinant vaccine having a Newcastle disease (ND) virus (NDV) as a vector As a vaccine against HPAIV, a recombinant vaccine having a Newcastle disease (ND) virus (NDV) as a vector has been developed.
- ND Newcastle disease
- a recombinant vaccine (recombinant virus) in which an antigen gene such as the hemagglutinin (HA) gene of HPAIV has been inserted into the virus enables labor-saving vaccination such as drinking water and spray administration, and, like HPAIV, to respiratory mucous membranes. There is an advantage such as induction of local immunity can be expected because of infection.
- the recombinant virus based on NDV is a transcription comprising the gene initiation sequence and gene termination sequence of NDV endogenous and the antigen gene in the 3 'untranslated region in any transcription unit in NDV. It is produced by inserting a unit (non-patent documents 1 to 5). Furthermore, in these recombinant viruses, a Kozak sequence known as a sequence that improves translation efficiency in eukaryotic cells is inserted immediately before the start codon of the antigen gene (Non-patent Documents 1 and 3), which is an antigen. It is assumed that the translation efficiency of gene mRNA is enhanced.
- the present inventors recombine using as a vector another virus (avian paramyxovirus, APMV) belonging to the same genus as the virus (paramyxoviridae Abravirus genus).
- APMV avian paramyxovirus
- APMV-2, APMV-6 and APMV-10 APMV-2, APMV-6 and APMV-10
- a recombinant vaccine APMV- in which APMV-10 is a vector, and the HA gene of HPAIV is inserted into the untranslated region between P and M genes of its genome (between the ORF of P gene and the gene termination sequence).
- 10 / HA was prepared, as a result of the vaccine was inoculated into chickens immunized with ND vaccine, although certain protective effect against HPAIV infection was observed et al., the protective effect (infectious units: 10 6 EID 50 APMV-10 / After HA inoculation, the survival rate of chickens when challenged with HPAIV is as low as 25%, and it can not be said that a sufficient vaccine effect was obtained (Non-patent Document 7).
- the present invention has been made in view of the problems of the prior art, and it is a recombinant bird para that can increase the expression effect of foreign proteins such as pathogen antigens in host cells and enhance the vaccine effect against pathogens.
- the purpose is to provide a myxovirus.
- the present inventors have recombinant APMV-10 (recombinant avian paramyxovirus) into which a minus strand RNA encoding a foreign transcription unit has been inserted, having the following characteristics: It came to produce.
- the foreign transcription unit comprises a nucleotide encoding the HA protein (foreign protein) of HPAIV, which is operably linked to the gene initiation sequence and gene termination sequence of avian paramyxovirus.
- the 5 'untranslated region of the avian paramyxovirus is inserted between the gene initiation sequence and the initiation codon of the nucleotide.
- the 3 'untranslated region of the avian paramyxovirus is inserted between the stop codon of the nucleotide and the gene termination sequence.
- the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
- the recombinant avian paramyxovirus described in Non-Patent Document 7 that is, the recombinant virus in which the foreign transcription unit is inserted into the untranslated region in the endogenous transcription unit of the bird paramyxovirus, is foreign in infected cells. Almost no protein expression was observed.
- a recombinant virus in which an exogenous transcription unit that does not contain the untranslated region of avian paramyxovirus is inserted into the intergenic region between the endogenous transcriptional units of avian paramyxovirus, Almost no expression was observed.
- the survival rate of chicken after HPAIV infection is 25% or 50. %Met.
- excretion of HPAIV was observed from all individuals of the chicken.
- antibody titers to HPAIV at challenge were below the detection limit in most chickens.
- Antibody titers to HPAIV were below the detection limit in most chickens.
- the survival rate of the chicken after HPAIV infection was 100%.
- almost no excretion of HPAIV was observed in the chicken, and even if it was, its virus titer was low.
- antibody titers to HPAIV at the time of challenge were detected in many individuals immunized with the recombinant virus.
- the present invention relates to a recombinant avian paramyxovirus and a composition for a vaccine comprising the active ingredient of the virus. Furthermore, the present invention relates to a nucleotide construct for producing the virus, a kit for producing the virus containing the construct, and a method for producing the virus using them, more specifically, I will provide a.
- a recombinant avian paramyxovirus wherein a negative strand RNA encoding a foreign transcription unit is inserted into a negative strand RNA encoding avian paramyxovirus,
- the translation region is linked to the gene termination sequence of avian paramyxovirus
- a recombinant avian paramyxovirus wherein the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between endogenous transcription units of avian paramyxovirus.
- ⁇ 2> The recombinant avian paramyxovirus according to ⁇ 1>, which is derived from avian paramyxovirus serotype 10.
- the 5 'untranslated region is a region consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 6, and the 3' untranslated region is described in any of SEQ ID NOs: 7 to 12
- the recombinant avian paramyxovirus according to ⁇ 1> or ⁇ 2> which is a region consisting of the nucleotide sequence of ⁇ 4>
- ⁇ 5> The recombinant avian paramyxovirus according to any one of ⁇ 1> to ⁇ 4>, wherein the foreign protein is a hemagglutinin protein of influenza virus.
- ⁇ 6> A composition for vaccine comprising the recombinant avian paramyxovirus according to any one of ⁇ 1> to ⁇ 5> as an active ingredient.
- the 5 'untranslated region is a region consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 6, and the 3' untranslated region is described in any of SEQ ID NOs: 7 to 12
- the nucleotide construct according to ⁇ 7> or ⁇ 8> which is a region consisting of the nucleotide sequence of ⁇ 10>
- a promoter sequence recognized by a DNA-dependent RNA polymerase is linked to the 5 'end of the nucleotide encoding the avian paramyxovirus, and from the 5' end to the 3 'end of the nucleotide,
- nucleotide construct according to ⁇ 10> wherein a nucleotide encoding a foreign protein is inserted into the site.
- nucleotide construct according to ⁇ 11> wherein the foreign protein is an antigen protein derived from a pathogen.
- nucleotide construct according to ⁇ 11>, wherein the foreign protein is a hemagglutinin protein of influenza virus.
- ⁇ 14> A method for producing the recombinant avian paramyxovirus according to any one of ⁇ 1> to ⁇ 5>, Introducing the nucleotide construct according to any one of ⁇ 11> to ⁇ 13> into a transformed cell that expresses the DNA-dependent RNA polymerase and the core protein of the avian paramyxovirus; Recovering the recombinant avian paramyxovirus from the culture of the cells.
- the recombinant bird paramyxo according to any one of ⁇ 1> to ⁇ 5>, which comprises at least one substance selected from the group consisting of the following (a) to (e) and instructions for use:
- a kit for producing a virus (a) The nucleotide construct according to any one of ⁇ 10> to ⁇ 13> (b) the nucleotide construct capable of expressing the DNA-dependent RNA polymerase (c) the above Nucleotide constructs capable of expressing the core protein of avian paramyxovirus (d) Cells for introducing at least one nucleotide construct selected from the group consisting of (a) to (c) (e) said DNA dependence A transformed cell which expresses RNA polymerase and / or the core protein of the avian paramyxovirus.
- the "avian paramyxovirus” which is the basis of the recombinant virus of the present invention is a virus belonging to the mononegavirus order, paramyxoviridae, Abravirus genus, avian paramyxovirus species, and a single strand of minus strand
- the RNA is maintained as a genome.
- the avian paramyxovirus RNA genome has a leader sequence located at the 3 'end, a trailer sequence located at the 5' end, and six major transcription units (NP, P, M, And a negative strand RNA encoding a transcription unit of F, HN and L proteins (note that in APMV-6, it further has a transcription unit of SH protein between F and HN).
- proteins encoded by them three proteins (core proteins), phosphoprotein (P) that constitutes nucleoprotein (NP) and RNA-dependent RNA polymerase, and core protein, together with genomic RNA To form a complex (ribonucleoprotein complex, RNP complex) which is an autonomously replicable replicon.
- the aforementioned RNP complex by an envelope composed of matrix (M) proteins and transmembrane glycoproteins (HN and F proteins) that play a role in virus assembly, budding and cell attachment and / or invasion of the virus.
- M matrix
- HN and F proteins transmembrane glycoproteins
- Negative strand RNAs encoding each transcription unit are, in order from the 3 'end, negative strand RNA encoding a gene start sequence (GS: gene start), negative strand RNA encoding a 5' untranslated region, translation region ( A negative strand RNA encoding an ORF (open reading frame) and a negative strand RNA encoding a 3 'untranslated region are configured by being arranged in tandem. Furthermore, transcription units arranged in series are all separated by an intergenic region (IGR) that is not transcribed.
- IGR intergenic region
- the present invention it is possible to increase the expression level of foreign proteins such as pathogen antigens in the host and thus to enhance the vaccine effect against pathogens.
- foreign proteins such as pathogen antigens
- NDV Newcastle disease virus
- FIG. 1 is a schematic view showing an outline of a vector for transcribing avian paramyxovirus (APMV-10) genomic RNA.
- APMV-10 genome in which the foreign transcription unit is inserted between the transcription unit of P gene (gene termination sequence: GE) and the transcription unit of M gene (gene initiation sequence: GS), and the foreign transcription unit (in the figure, control)
- FIG. 6 is a schematic view showing an outline of the embodiment to L-NCR).
- FIG. 6 is a schematic view showing an outline of APMV-10 genome in which a foreign transcription unit is inserted into the non-translated region (P NCR) of P gene.
- FIG. 2 is a schematic view showing an outline of a vector for expressing NPMV, P protein or L protein of APMV-10.
- FIG. 5 is a schematic view showing a process of replicating recombinant avian paramyxovirus (such as pAPMV10 / HA) in cultured cells. It is a graph which shows the expression level (HA protein) of the foreign protein which each virus encodes in the host cell which infected the recombinant avian paramyxovirus.
- the horizontal axis shows the recombinant avian paramyxovirus infected with host cells (see FIGS. 2 and 3).
- the expression level of HA protein corrected by the expression level of actin protein in each host cell is further expressed as a relative value based on that in control.
- the horizontal axis indicates the time after inoculation of each recombinant avian paramyxovirus into the chorioallantoic cavity of embryonated chicken eggs, and the vertical axis indicates the virus titer in the collected chorioallantoic fluid.
- APMV-10 genome in which the foreign transcription unit is inserted between the transcription unit of F gene (gene termination sequence: GE) and the transcription unit of HN gene (gene initiation sequence: GS), and the foreign transcription unit (FHN in the figure) -HA to FHN-M-NCR) is a schematic view showing an outline. It is a graph which shows the expression level (HA protein) of the foreign protein which each virus encodes in the host cell which infected the recombinant avian paramyxovirus. In the figure, the horizontal axis shows a recombinant avian paramyxovirus infected with host cells (see FIG. 8).
- FIG. 5 is a schematic view showing an outline of a foreign transcription unit encoding a luciferase gene, each inserted into minigenome transcription plasmids (Luc-F-NCR, Luc-HN-NCR and Luc-blank) mimicking the APMV-10 genome.
- FIG. 5 is a schematic view showing an outline of a foreign transcription unit encoding a luciferase gene, each inserted into minigenome transcription plasmids (Luc-F-NCR, Luc-HN-NCR and Luc-blank) mimicking the APMV-10 genome.
- FIG. 16 is a graph showing the results of measuring the luciferase activity in the culture solution of cultured cells into which minigenome transcription plasmids (Luc-F-NCR, Luc-HN-NCR and Luc-blank) mimicking the APMV-10 genome were respectively introduced.
- "Negative Control” indicates luciferase activity in the culture solution of cultured cells to which the minigenome has not been introduced.
- the “luciferase activity” shown on the vertical axis indicates the ratio when the measured value in Luc-blank-introduced cells is 1.
- the present invention is a recombinant avian paramyxovirus, wherein the negative strand RNA encoding a foreign transcription unit is inserted into the negative strand RNA encoding avian paramyxovirus, In the said foreign transcription unit, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the nucleotide encoding the foreign protein, and the 3' non-avian paramyxovirus, in order from the 5 'side The translation region is linked to the gene termination sequence of avian paramyxovirus, and The recombinant avian paramyxovirus is provided, wherein the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
- recombinant avian paramyxovirus is a gene engineered to be able to introduce a nucleotide encoding a foreign protein into a host cell, and further to allow the protein to be expressed in the cell.
- the recombinant avian paramyxovirus may be a nucleocapsid consisting of genomic RNA of the virus (minus strand RNA encoding the virus) and an NP protein, and a ribonucleoprotein complex further comprising P protein and L protein ( It may be an RNP complex) and may be an enveloped virus particle.
- avian paramyxovirus which is the basis (derived from) of the recombinant virus of the present invention is as described above, for example, as a virus belonging to avian paramyxovirus species, serotype 2 to avian paramyxovirus 15 (APMV-2 to APMV-15).
- APMV-2, APMV-6 or APMV-10 is preferable, and APMV-10 is more preferable, from the viewpoint that the origin of the recombinant virus of the present invention infects chickens but has low pathogenicity.
- genome sequences of avian paramyxoviruses necessary for designing and preparing the recombinant avian paramyxoviruses of the present invention are known in the art. Such information can be obtained, for example, through the website of the National Center for Biotechnology Information (NCBI), for each virus sequence information (NCBI GenBank sequence information). More specifically, representative genomic sequences of APMV-2 to APMV-15 include the following. It should be understood that the sequences provided by NCBI and the like are represented by the sequences of DNA complementary to the genomic RNA (minus strand RNA) encoding each virus. Also, since two different sequences with low homology with each other are currently registered as the genome sequence of APMV-15, they are shown together in Table 1.
- NP transcription unit .P transcription unit M transcription unit, F transcription unit, HN transcription unit, L transcription unit, etc.
- sequences constituting them gene initiation sequence, 5 'non The translational region, open reading frame, 3 'non-translational region, gene termination sequence
- intergenic region separating each transcription unit are as described above.
- These specific sequences are also known and can be obtained, for example, through the NCBI website.
- the respective sequences of APMV-10 are shown below based on the NCBI GenBank sequence information exemplified in Table 1. In the table, the IGR in the NP transcription unit is not the sequence number but the sequence itself.
- the sequence of the virus can be easily mutated in nature. Therefore, it is to be understood that the sequence is not specified in the representative sequences shown in Tables 1 and 2 but also includes naturally mutated sequences.
- the recombinant avian paramyxovirus may consist of the entire genome of the avian paramyxovirus, and a part of the genome (for example, an NP transcription unit, a P transcription unit, an M transcription unit, It may be one in which at least one transcription unit selected from the group consisting of F transcription unit, SH transcription unit, HN transcription unit and L transcription unit is deleted (so-called minigenome).
- the "foreign transcription unit” comprises, in order from the 5 'side, the gene initiation sequence of the avian paramyxovirus, the 5' untranslated region of the avian paramyxovirus, the nucleotide encoding the foreign protein, and the avian paramyxo It is a transcription unit in which the 3 'untranslated region of the virus and the gene termination sequence of avian paramyxovirus are linked.
- Binding between these sequences and regions may be direct binding or indirect binding via other RNA sequences (usually 1 to 20 RNAs).
- the "foreign protein” is usually a protein which is not originally present as a component of avian paramyxovirus, and is desired to be expressed in the cell when the recombinant avian paramyxovirus of the present invention is infected into a host cell. If it is a protein, there is no restriction
- gene transcription sequences, 5 'untranslated regions, 3' untranslated regions, and gene termination sequences contained in the foreign transcription unit include endogenous transcription units (NP, P, M, F) of avian paramyxovirus. , HN, L, etc.), and typically includes each sequence described in NCBI GenBank information shown in Table 1 (refer to Table 2 for each sequence of APMV-10). ). Furthermore, the sequence of the virus can be easily mutated in nature. Therefore, it is to be understood that each of the above-mentioned sequences is not typically specified as the above sequence, but also includes naturally mutated sequences.
- each of the sequences contained in the foreign transcription unit may be substituted, deleted, inserted, and / or added with one or more nucleotides in each sequence as long as the foreign protein can be expressed from the recombinant avian paramyxovirus of the present invention.
- sequence having high homology with each sequence refers to the number of nucleotides substituted or the like in a range capable of expressing a foreign protein, preferably 30% or less of the number of the sequence to be substituted or the like, more preferably 20% or less of the sequence The number is more preferably 10% or less in the sequence.
- “high homology” means, for example, 60% or more homology, preferably 70% or more homology, more preferably 80% or more homology, still more preferably 90% or more homology (eg, 95%) (97% or more, 99% or more homology).
- Sequence homology can be determined using the BLASTN (nucleic acid level) program (Altschul et al. J. Mol. Biol., 215: 403-410, 1990). The specific method of the analysis method using such a program is known and can be analyzed using default parameters.
- the origin of each of the sequences contained in the foreign transcription unit may be different from the type of virus that is the basis of the recombinant avian paramyxovirus, as long as it is derived from the avian paramyxovirus (for example, the origin of the sequence is
- the virus which is AMPV-2 and the base of the recombinant avian paramyxovirus may be AMPV-10), preferably it is derived from the same avian paramyxovirus, and both may be derived from AMPV-10 More preferable.
- the avian paramyxoviruses from which the aforementioned sequences are derived may also differ from each other (for example, the gene initiation sequence is derived from AMPV-2 and the 5 'untranslated region is derived from AMPV-10) However, it is preferable that all are derived from the same avian paramyxovirus, and it is more preferable that all be derived from AMPV-10.
- sequences contained in the foreign transcription unit may be different from each other as long as they are derived from the endogenous transcription unit of avian paramyxovirus (eg, the gene initiation sequence is derived from the NP transcription unit, The 5 'untranslated region may be derived from a P transcription unit), preferably all these sequences are from the same endogenous transcription unit.
- each of the sequences when each of the sequences is derived from an endogenous transcription unit of AMPV-10, it contains at least the sequence described in any one of SEQ ID NOs: 1 to 6 as a 3 'untranslated region, and A foreign transcription unit comprising the sequence described in any of SEQ ID NOs: 7 to 12 as the 5 'non-translated region, and the sequence described in any of SEQ ID NOs: 13 to 15 as a gene initiation sequence
- the 3 'untranslated region includes the sequence described in any of SEQ ID NOs: 1 to 6
- the 5' untranslated region includes the sequence described in any of SEQ ID NOs: 7 to 12, and gene termination It is a foreign transcription unit comprising the sequence set forth in any of SEQ ID NOs: 16-18 as a sequence.
- a foreign transcription unit (a foreign transcription unit comprising a non-translated region derived from an NP transcription unit of AMPV-10) comprising at least the sequence set forth in SEQ ID NO: 1 and SEQ ID NO: 7, at least SEQ ID NO: 2 and A foreign transcription unit comprising the sequence set forth in SEQ ID NO: 8 (a foreign transcription unit comprising a non-translated region derived from the P transcription unit of AMPV-10), a foreign body comprising at least the sequence set forth in SEQ ID NO: 3 and SEQ ID NO: 9
- a transcription unit foreign transcription unit comprising a non-translated region derived from the M transcription unit of AMPV-10
- a foreign transcription unit comprising at least the sequence set forth in SEQ ID NO: 4 and SEQ ID NO: 10 (from the F transcription unit for AMPV-10)
- a translational transcription unit comprising a non-translational region of SEQ ID NO: 5 and at least a sequence as set forth in SEQ ID NO: 5 and SEQ ID NO: 11 A
- the foreign transcription unit comprising the non-translated region derived from the NP transcription unit of the AMPV-10 or the AMPV-10
- a foreign transcription unit comprising a non-translational region derived from the M transcription unit is preferred, and a foreign transcription unit comprising each sequence derived from the NP transcription unit of the AMPV-10 or a foreign transcription comprising each sequence derived from the M transcription unit of the AMPV-10 Units are more preferred.
- a foreign transcription unit including a non-translated region derived from the L transcription unit of AMPV-10 is preferable, and the L transcription unit of AMPV-10 is preferable.
- Foreign transcription units comprising each sequence derived from are more preferred.
- a foreign transcription unit containing a non-translated region derived from the HN transcription unit of AMPV-10 is preferable, and the HN transcription unit of AMPV-10 is preferable.
- Foreign transcription units comprising each sequence derived from are more preferred.
- the above-mentioned sequences contained in the endogenous transcription unit of avian paramyxovirus and the nucleotide encoding the foreign protein are operably linked so as to express the protein.
- the genome sequence of paramyxovirus is a multiple of 6
- the number of nucleotides constituting the exogenous transcription unit according to the present invention is 6 from the viewpoint that replication (RNA synthesis) is efficiently performed. It is preferable that the number is a multiple, and it is more preferable that the number of nucleotides constituting the recombinant avian paramyxovirus is also a multiple of 6 (for the rule of six of so-called paramyxovirus, see Kolakofsky D. et al., J. Virol., February 1998, 72 (2), pp. 891-899. Of it).
- the minus strand RNA encoding the aforementioned foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between the endogenous transcription units of the avian paramyxovirus.
- intergenic region into which the foreign transcription unit is inserted there is no particular limitation on the intergenic region into which the foreign transcription unit is inserted, and an intergenic region (NP-P intergenic region) between the gene termination sequence of the NP transcription unit and the gene initiation sequence of the P transcription unit, P The intergenic region (P-M intergenic region) between the gene termination sequence of transcription unit and the gene initiation sequence of M transcription unit, between the gene termination sequence of M transcription unit and the gene initiation sequence of F transcription unit
- SH-HN intergenic region intergenic region between gene termination sequence of HN transcription unit and gene start sequence of L transcription unit
- the P-M intergenic region is preferable from the viewpoint of better expression efficiency of the protein
- the F-HN intergenic region is preferred from the viewpoint of better growth efficiency of the virus.
- minus strand RNA encoding a foreign transcription unit may be inserted between the leader sequence and the trailer sequence.
- Such a recombinant avian paramyxovirus virus can be produced, for example, by using the nucleotide construct described below, a kit containing the same, and a method using the same.
- ⁇ Composition for vaccine> As shown in the following examples, according to the present invention, foreign proteins encoded by the virus can be highly expressed in host cells infected with the above-mentioned recombinant avian paramyxovirus. Therefore, the vaccine effect on the pathogen in the host cell can be enhanced by using the foreign protein as the antigen protein of the pathogen causing the infection.
- the present invention provides a composition for vaccine containing the above-mentioned recombinant avian paramyxovirus as an active ingredient.
- pathogen includes, for example, viruses, bacteria, fungi, protozoa, and more specifically, influenza virus, Marek's disease virus (MDV), infectious laryngo tracheitis virus (ILTV), infection Bronchitis Virus (IBV), Infectious Bursal Disease Virus (IBDV), Chicken Anemia Virus (CAV), Reovirus, Avian retrovirus, Poultry Adenovirus, Turkey rhinotracheitis virus (TRTV), Newcastle Disease Virus (NDV), E. coli, Mycoplasma, Salmonella, Campylobacter, Ornitobacterium, Pasteurella, Eimeria, Cryptosporidium protozoa.
- MDV Marek's disease virus
- ILTV infectious laryngo tracheitis virus
- IBV Infectious Bursal Disease Virus
- CAV Chicken Anemia Virus
- TRTV Turkey rhinotracheitis virus
- NDV Newcastle Disease Virus
- E. coli Mycoplasma
- Salmonella Campylobacter
- the antigenic proteins of these pathogens are proteins that constitute pathogens, and there is no particular limitation as long as they are proteins that elicit the host's immune response when the pathogen is infected, for example, in influenza virus, hemagglutinin (HA precursor, H1, H2, H3, H4, H5, H7, H8, H9, H11, H12, H13, H14, H15, H16 etc.), matrix proteins (M1, M2 etc.), neuraminidase NA1, NA2, NA3, NA4, NA5, NA6, NA7, NA8, NA9 etc., non-structural proteins (NS1, NS2 etc.), nucleoprotein (NP), polymerases (PA polymerase, PB1 polymerase 1, PB2 polymerase 2 etc.) Can be mentioned.
- HA precursor H1, H2, H3, H4, H5, H7, H8, H9, H11, H12, H13, H14, H15, H16 etc.
- matrix proteins M1, M2 etc.
- influenza virus according to the present invention for example, subtypes (H1 to H16, etc.) divided based on the difference in structure of hemagglutinin, subtypes further classified according to types of neuraminidase produced by the O virus N1H1H1N2H18N18H18N10H18N5H1N8H1H6N5H1N8H1H5N4H5N1; H5N8; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H9N8, H9N9 etc.) Strains classified according to separated place, separated order, separated year (isolate; A / Hong Kong / 156/1997, A / duck / Vietnam / 2/2007, A /
- a pharmacologically acceptable carrier or vehicle may be included in addition to the above-mentioned recombinant avian paramyxovirus as the active ingredient.
- Pharmaceutically acceptable carriers include, for example, stabilizers, excipients, preservatives, surfactants, chelating agents, binders and the like.
- a pharmacologically acceptable medium for example, water, physiological saline, phosphate buffer can be mentioned.
- the form of the vaccine composition is not particularly limited, and may be, for example, in the form of a suspension or in a lyophilised form.
- the vaccine composition of the present invention may also contain an adjuvant.
- Adjuvants include, for example, aluminum hydroxide, aluminum phosphate, aluminum oxide, oil-in-water or water-in-oil emulsions, saponins, alum, CpG DNA.
- the titer of the recombinant avian paramyxovirus contained in the vaccine composition of the present invention is not particularly limited, but is usually 10 5 EID 50 / individual to 10 7 EID 50 / individual, preferably 10 5.5 EID. 50 / individual to 10 6.5 EID 50 / individual, more preferably 10 6 EID 50 / individual.
- the survival rate of chicken after HPAIV infection is 50% It is a virus having the above (more preferably 60% or more, further preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, more preferably 80% or more, particularly preferably 100%).
- EID 50 when inoculated into embryonated chicken eggs, means a viral load of 50% is infected.
- the present invention also provides a method of inhibiting infection or growth of a pathogen in an animal. That is, the present invention also relates to a method for suppressing infection or growth of a pathogen in an animal, comprising the step of inoculating the animal a vaccine composition containing the recombinant avian paramyxovirus of the present invention or the virus as an active ingredient. provide.
- the "animal" to be inoculated in the present invention is not particularly limited as long as it can be infected by the recombinant avian paramyxovirus, but it is usually a bird, and examples are chicken, duck, duck, turkey, quail, pheasant, parrot , Hawks, crows, ostrich.
- the recombinant avian paramyxovirus etc. of the present invention can be particularly suitably used for birds (such as chickens) in which an antibody against NDV is produced.
- the "inoculation" of animals such as recombinant avian paramyxovirus can be performed using methods known in the art. Such methods include, but are not limited to, intranasal, oral, oronasal and subcutaneous and inhalation, intraocular, intradermal, intramuscular, intraperitoneal, intravenous, parenteral, suppository or transdermal . Also, such inoculation method can be carried out by using a sprayer, a spray, a spray, a syringe, a needleless injection device or a fine particle gene gun.
- the inoculation scheme for an animal is appropriately adjusted according to the dosage form, type of animal, age and body weight, etc., and is not particularly limited as long as an immunologically effective amount can be administered to the animal, single or single It may be multiple inoculations, and may be inoculated simultaneously or sequentially.
- the present invention also provides the following nucleotide construct useful in the production of the above-mentioned recombinant avian paramyxovirus.
- a nucleotide construct encoding a recombinant avian paramyxovirus wherein a cloning region containing a site for inserting a nucleotide encoding a foreign protein is inserted into the nucleotide encoding avian paramyxovirus, In the cloning region, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the aforementioned site, the 3' untranslated region of the avian paramyxovirus, and the avian paramyxovirus gene start sequence from the 5 'side Is linked to the gene termination sequence of paramyxovirus, and A nucleotide construct, wherein the cloning region is inserted into a nucleotide encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
- the cloning region is inserted between the nucleotide encoding the leader sequence and the nucleotide encoding the trailer sequence. It is also good.
- the nucleotides constituting the nucleotide construct may be DNA (single-stranded DNA, double-stranded DNA), or may be positive-strand RNA, but are chemically stable.
- DNA is preferred from the viewpoint of easy modification of the sequence of paramyxovirus and easy generation of recombinant avian paramyxovirus described later.
- the nucleotide construct may, for example, take the form of a plasmid vector, a phage vector, a viral vector.
- the “nucleotide encoding avian paramyxovirus” can be obtained, for example, as a plus-strand RNA by performing a synthesis reaction using RNA-dependent RNA polymerase, using genomic RNA (minus strand RNA) extracted from the virus as a template be able to. Also, by performing a synthesis reaction (reverse transcription reaction) using an RNA-dependent DNA polymerase using the genomic RNA (minus strand RNA) as a template, it can be obtained as a plus strand DNA and thus a double strand DNA.
- genomic RNA extraction from viruses and synthesis methods using RNA-dependent polymerase are known.
- the “nucleotide encoding avian paramyxovirus” may encode the full-length genomic RNA of avian paramyxovirus, and a part of the genome (eg, NP transcription unit, P transcription)
- a unit which is deficient in at least one transcription unit selected from the group consisting of the unit, M transcription unit, F transcription unit, SH transcription unit, HN transcription unit and L transcription unit May be
- the "cloning region" inserted into the nucleotide encoding avian paramyxovirus is for inserting the gene initiation sequence of avian paramyxovirus, the 5 'untranslated region of avian paramyxovirus, and a nucleotide encoding a foreign protein
- the person skilled in the art can use the commercially available automatic DNA synthesizer to synthesize chemically based on the sequence of the site of 3, the untranslated region of the avian paramyxovirus 3 'and the gene termination sequence of the avian paramyxovirus it can.
- the nucleotide encoding the prepared avian paramyxovirus is used as a template, and those skilled in the art appropriately use known genetic recombination techniques (PCR, restriction enzyme treatment, site-directed mutagenesis, etc.) as appropriate. It can also be prepared.
- the site is not particularly limited as long as it can insert a nucleotide encoding a foreign protein, but usually a restriction enzyme recognition sequence is used, and the site is a site having a plurality of restriction enzyme recognition sequences. It may be (a so-called multi cloning site).
- insertion of the thus obtained cloning region into the nucleotide encoding avian paramyxovirus can also be carried out using known gene recombination techniques (PCR, restriction enzyme treatment, site-directed mutagenesis, etc.) by those skilled in the art. As appropriate.
- the nucleotide construct described above further comprises a promoter sequence recognized by a DNA-dependent RNA polymerase linked to the 5 'end of the nucleotide encoding the avian paramyxovirus, and the 3' end of the nucleotide.
- the ribozyme sequence and the terminator sequence recognized by the DNA-dependent RNA polymerase may be linked to the side sequentially from the 5 'side.
- the DNA-dependent RNA polymerase recognizes the promoter sequence, and the minus-strand RNA encoding the recombinant avian paramyxovirus is transcribed. Ru. Furthermore, in order for the recombinant virus to initiate an infection cycle, an exact cleavage at the 3 'end of the minus strand RNA is required, but the cleavage is achieved by self-cleavage of the ribozyme. become.
- the binding of the promoter sequence recognized by the DNA-dependent RNA polymerase to the 5 'end of the nucleotide encoding the avian paramyxovirus can be performed as long as transcription of the negative strand RNA can be performed under the control of the promoter sequence.
- it may be a direct bond or an indirect bond via another nucleotide.
- the DNA-dependent RNA polymerase is not particularly limited as long as it can transcribe RNA using DNA as a template, for example, T7 RNA polymerase, T3 RNA polymerase, Sp6 RNA polymerase, RNA polymerase I, II or eukaryote-derived RNA polymerase Although III may be mentioned, T7 RNA polymerase is preferred from the viewpoint of higher transcription efficiency.
- the ribozyme sequence disposed between the terminator of the DNA-dependent RNA polymerase and the 3 'end of the nucleotide encoding the avian paramyxovirus is preferably a ribozyme sequence having a self-cleaving activity, more preferably These include ribozyme sequences derived from Hepatitis delta virus, hammerhead ribozyme sequences, and hairpin ribozyme sequences.
- the nucleotide construct has, in addition to the above sequences, a drug resistance gene (ampicillin resistance gene etc.), an expression control site of the gene (for example, ampicillin resistance gene) for cloning using E. coli etc. It may contain an AmpR promoter etc.), an origin of replication (f1 origin of replication, pBR322 origin of replication etc).
- the foreign protein is as described above, and the nucleotide encoding the protein is not particularly limited, but from the viewpoint of improving the expression efficiency of the protein in the host cell, according to the usage frequency of codons in the host It is desirable that the sequence is a modified (codon-optimized) nucleotide.
- the recombinant avian paramyxovirus of the present invention can be produced as follows.
- nucleotide construct as described above in which a nucleotide encoding a foreign protein is inserted at the site; Recovering the recombinant avian paramyxovirus from the culture of the cells.
- the "cell” into which the nucleotide construct described above is introduced is not particularly limited as long as it can produce the recombinant avian paramyxovirus encoded by the construct, for example, Vero cell, DF1 cell, Chicken primary cultured cells (chicken fetal fibroblast (CEF) cells, chicken fetal (CEP) cells), 293T cells, MDCK cells, MDBK cells can be mentioned, but from the viewpoint of better gene transfer efficiency and virus growth efficiency, Vero cells are preferred.
- RNA-dependent RNA polymerase in order to express the minus strand RNA encoded by the nucleotide construct (recombinant avian paramyxovirus genomic RNA) under the control of the above-mentioned promoter and further to transcribe the plus strand RNA from the minus strand RNA, It has to be transformed so that the above-mentioned DNA-dependent RNA polymerase and the avian paramyxovirus core protein can be expressed.
- the “core protein” may be any protein capable of transcribing positive strand RNA from the negative strand RNA, and includes phosphoprotein (P) and RNA-dependent RNA polymerase constituting nucleoprotein (NP) and RNA-dependent RNA polymerase (L) is mentioned. Also, they may be derived from avian paramyxovirus, but are preferably derived from the same recombinant avian paramyxovirus encoded by the nucleotide construct.
- nucleotide construct a plasmid vector, a phage vector, a virus vector, etc.
- the cells are introduced into the cells using a known method. It can be done.
- Such transformation may occur prior to, simultaneously with, or after the introduction of the nucleotide construct encoding the recombinant avian paramyxovirus.
- nucleotide construct there is no particular limitation on known methods for introducing the nucleotide construct into cells, and calcium phosphate method, lipofection method, DEAE dextran method, electroporation method and microinjection method can be mentioned.
- the plus strand RNA encoding the virus is transcribed, and the virus is further used as a template.
- the encoded viral protein and foreign protein will be expressed.
- the negative strand RNA encoding the recombinant avian paramyxovirus is linked to the virus protein, the recombinant avian paramyxovirus will be propagated in the culture of the cells.
- the “culture” of the cells may be any as long as it can contain a recombinant avian paramyxovirus, and the cells infected with the virus, which are obtained by culturing transformed cells in a culture medium, the secretory product of the cells And culture media containing the metabolites of the cells, etc., including dilutions and concentrates thereof.
- virus purification / separation methods such as filtration, centrifugation, adsorption and column purification. It can be carried out by using in combination.
- the recombinant avian paramyxovirus thus obtained is proliferated by additionally seeding cells susceptible to infection with the virus, such as primary cultured chicken cells, as shown in the following examples. You may Alternatively, they can be proliferated by inoculating embryonated eggs (for example, chicken eggs or quail eggs) instead of or in combination with such cells.
- embryonated eggs for example, chicken eggs or quail eggs
- recombinant avian paramyxovirus can be produced by using the nucleotide construct of the present invention. Accordingly, the present invention also provides a kit for producing the following recombinant avian paramyxovirus.
- a kit for producing a recombinant avian paramyxovirus of the present invention which comprises at least one substance selected from the group consisting of the following (a) to (e) and instructions for use: (a) a nucleotide construct of the present invention (b A nucleotide construct capable of expressing the DNA-dependent RNA polymerase (c) A nucleotide construct capable of expressing the core protein of the avian paramyxovirus (d) selected from the group consisting of (a) to (c) A cell for introducing at least one nucleotide construct (e) A transformed cell expressing the DNA-dependent RNA polymerase and / or the core protein of the avian paramyxovirus.
- the APMV-10 genome was divided into four fragments by RT-PCR, amplified, and cloned into pCR-XL-TOPO vector (Thermo Fisher Scientific). The vector portion of the pNDV / B1 plasmid (see Nakaya, T. et al., J Virol 75: 11868-11873.
- NDV Newcastle disease virus
- pSL1180 manufactured by Amersham Pharmacia Biotech
- APMV-10 genome was excised using the In-Fusion HD cloning kit (Clontech) to assemble the vector.
- FIG. 1 A schematic diagram of the APMV-10 genomic RNA transcription plasmid pAPMV-10 constructed in this way is shown in FIG.
- the sequences of transcription units constituting the APMV-10 genome and the region between the transcription units (intergenic region) are shown in Table 2 above.
- pAPMV-10 is obtained by inserting the T7 promoter sequence, the full-length genome of APMV-10, the hepatitis D virus ribozyme sequence and the T7 terminator sequence into pSL1180.
- the hepatitis D virus ribozyme sequence is for cleaving the 3 'end of the transcribed RNA, and is not included in the recombinant viral genome.
- a restriction enzyme (RsrII) cleavage sequence is inserted into the untranslated region (between P gene ORF and termination sequence) located between P gene and M gene. There is.
- a foreign gene (antigen gene) amplified by PT-PCR was inserted between the PM genes of pAPMV-10 to construct a full-length APMV-10 genomic RNA transcription plasmid pAPMV-10 / HA containing the antigen gene.
- a highly pathogenic avian influenza virus (HPAIV) HA gene optimized for chicken codons is used, and the untranslated region (NCR) in each transcription unit of APMV-10 endogenously flanked on both sides, and gene initiation at both ends The one flanked by the sequence (GS) and the gene termination sequence (GE) was used (see FIG. 2).
- recombinant viruses (10 / HA and 10 / opHA) were prepared in which the antigen gene was inserted into the RsrII cleavage sequence located in the NCR behind the P gene.
- the antigen gene has a 2 bp NCR before its start codon and GS, and a 113 bp NCR between the stop codon and GE, in the transcription unit of the P gene. It will be inserted.
- HA indicates that highly pathogenic avian influenza virus (HPAIV) HA gene itself was inserted in each recombinant virus, and "opHA” is most suitable for chicken codons It shows that the transformed HPA IV HA gene was inserted in each recombinant virus.
- recombinant viruses incorporating NCR used GS and GE corresponding to each NCR (see Table 2). Those in the transcription unit of the M gene were used as GS and GE in 10 / HA, 10 / opHA and control.
- the NPMV gene, AP gene and AP gene of APMV-10 are amplified by RT-PCR, inserted into the protein expression vector pCAGGS, and downstream of the CMV enhancer and chicken ⁇ -actin promoter, cloning site Plasmids for protein expression pCAGGS-NP, pCAGGS-P, and pCAGGS-L, each of which has each gene of APMV-10 inserted in and PolyA, were constructed respectively.
- the pAPMV or pAPMV-10 / HA prepared as described above and pCAGGS-NP, pCAGGS-P and pACGGS-L were infected with a recombinant vaccinia virus expressing T7 polymerase.
- the cultured cells (Vero cells) were cotransfected with a gene transfer reagent (Mirus Co., product name: TransIT (registered trademark) -LT1 reagent).
- TransIT registered trademark
- the collected supernatant and cell suspension were inoculated into the chorioallantoic cavity of 10-day-old embryonated chicken eggs, cultured at 37 ° C. for 48 hours, cooled, and the chorioallantoic fluid collected.
- the collected allantoic fluid was used as a virus solution for various tests.
- T7 RNA polymerase is expressed in cultured cells infected with the vaccinia virus MVA / T7 strain, and full-length APMV genomic RNA is synthesized from pAPMV or pAPMV / HA having a T7 promoter.
- NPMV, P protein and L protein of APMV-10 are synthesized from pCAGGS-NP, pCAGGS-P and pCAGGS-L. Since NP, P and L proteins are proteins involved in transcriptional replication of viral RNA, mRNA transcription and RNA genomic replication of APMV-10 virus are initiated using the full-length APMV-10 genomic RNA as a template.
- APMV or pAPMV / HA is produced in cultured cells. Furthermore, these recombinant APMV or APMV / HA infect and propagate in cell lines and primary chicken culture cells.
- NP-NCR, P-NCR, M-NCR, F-NCR, HN-NCR, L-NCR in which NCR was added to the antigen gene were 10 / HA, 10 / opHA and NCR.
- NCR was added to the antigen gene
- 10 / HA 10 / opHA
- NCR was found to express 11.6 to 31.8 times, 18.3 to 50.2 times and 199.3 to 545.3 times the antigen protein in infected cells, respectively, as compared to the control not containing .
- the chorioallantoic cavity of 10-day-old embryonated chicken eggs was inoculated with 100 EID 50 (infective unit) of virus, and the allantoic fluid was collected after 12, 24, 36, 48 hours. The titer of the collected chorioallantoic fluid was measured using embryonated chicken eggs. The chorioallantoic cavity was serially diluted 10-fold with PBS, and 0.2 ml each was inoculated into the chorioallantoic cavity of five 10-day-old embryonated chicken eggs at each dilution. After culturing at 37 ° C.
- the allantoic fluid was collected, and the presence or absence of virus growth was determined by a hemagglutination test using chicken erythrocytes.
- the virus titer was calculated by the Reed and Muench calculation method. The obtained result is shown in FIG.
- NDV efficacy test Immunization to NDV
- attenuated NDV B1 was administered by 10 6 EID 50 instillation to 2-week-old chicken, and ⁇ -propiolactone-inactivated NDV B1 was administered intramuscularly 10000 HAU at 4 weeks two weeks later. did.
- Vaccination with recombinant virus Next, at 7 weeks of age three weeks later, blood was collected from the wing vein, and recombinant APMV-10 / HA was administered with 10 6 EID 50 by eye drops.
- HPAIV A / chicken / Yamaguchi / 7/2004 (H5N1) strain was intranasally inoculated at 10 6 EID 50 .
- swabs were taken from the larynx and the general cavity. The symptoms were observed for 10 days and mortality was calculated.
- the virus titer contained in the collected swab was calculated using embryonated chicken eggs.
- the antibody titer in the collected blood was measured by the hemagglutination inhibition (HI) test. The obtained results are shown in Table 5.
- the serum was heat treated at 55 ° C. for 30 minutes to inactivate complement.
- 25 ⁇ L of serum diluted with PBS 25 ⁇ L of HPAIV A / chicken / Yamaguchi / 7/2004 (H5N1) strain adjusted to 8 HA was added and allowed to stand for 30 minutes.
- the maximum dilution of serum in which red blood cell aggregation did not occur was taken as the HI antibody titer.
- the insertion of the transcription unit containing the antigen gene (foreign gene) flanked by the untranslated region of APMV is not particularly limited as long as it is an intergenic region between the endogenous transcription units of APMV. It was confirmed that the expression level of the protein encoded by the gene can be improved.
- minigenome transcription system In order to confirm the improvement effect of the APMV-10 untranslated region on the protein expression amount encoded by the luciferase gene, a minigenome transcription system (minigenome transcription plasmid) that mimics the genome of APMV-10 was used.
- the minigenome transcription plasmid of APMV-10 is a hepatitis D ribozyme sequence, a leader sequence of APMV-10, an APMV between the polyA sequence of pCMV-GLuc2 (manufactured by NEW ENGLAND BioLabs) and the CMV promoter. It was constructed by inserting a gene start sequence of -10, a luciferase gene, a gene termination sequence of APMV-10, a trailer sequence of APMV-10 and a hammerhead ribozyme. In addition, the sequence of the said luciferase gene used the Gaussia luciferase gene optimized to the human codon.
- RNA transcribed by the minigenome transcription plasmid is cleaved by the ribozyme, and the leader sequence of APMV-10, the gene start sequence of APMV-10, the gene termination sequence of the luciferase gene, the gene termination sequence of APMV-10, APMV-10 in order from the 3 'end It becomes RNA in which the Trailer sequence is arranged.
- APMV-10 at both ends of the luciferase gene was added to generate two transcription plasmids (Luc-F-NCR and Luc-HN-NCR).
- a transcription plasmid (Luc-blank) to which a non-translated region was not added was also prepared.
- each mini-genome transcription plasmid described above, and a polymerase expression plasmid of APMV-10 (pCAGGS-NP, pCAGGS-P and pCAGGS-L) in a 12-well cell culture plate at 2.8 ⁇ 10 5 / well
- the Transfected Vero cells were transfected with TransIT (registered trademark) -LT1 Reagent (manufactured by TAKARA), and after 48 hours, the culture fluid was recovered.
- the luciferase activity of the collected culture solution was measured using Dual-Luciferase (registered trademark) Reporter Assay System (manufactured by Promega). The obtained result is shown in FIG.
- Luc-HN-NCR in which the untranslated region of HN gene of APMV-10 is imparted to the luciferase gene Showed 20 times higher activity than Luc-blank which was not given.
- Luc-F-NCR in which the untranslated region of the F gene is added to the luciferase gene, also showed about 3 times higher activity than Luc-blank.
- HPAIV highly pathogenic avian influenza virus
- the recombinant avian paramyxovirus of the present invention is extremely useful in the prevention of HPAIV and the like.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Virology (AREA)
- Pulmonology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Provided is a recombinant avian paramyxovirus into which negative-strand RNA encoding an exogenous transcription unit is inserted, wherein the exogenous transcription unit includes a nucleotide encoding an exogenous protein, the nucleotide is operably linked to a gene initiation sequence and a gene termination sequence of the avian paramyxovirus, untranslated regions of the avian paramyxovirus are inserted between the gene initiation sequence and the nucleotide and between the nucleotide and the gene termination sequence, the negative-strand RNA encoding the exogenous transcription unit is inserted into negative-strand RNA encoding an intergenic region between endogenous transcription units of the avian paramyxovirus, and the recombinant avian paramyxovirus enables high expression of the exogenous protein in host cells.
Description
本発明は、組み換え鳥パラミクソウイルス、及び該ウイルスを有効成分とするワクチン用組成物に関する。また、本発明は、前記ウイルスを製造するためのヌクレオチド構築物、該構築物を含む前記ウイルスを製造するためのキット、並びに前記ウイルスを製造するための方法に関する。
The present invention relates to a recombinant avian paramyxovirus and a composition for a vaccine comprising the virus as an active ingredient. The present invention also relates to a nucleotide construct for producing the virus, a kit for producing the virus comprising the construct, and a method for producing the virus.
インフルエンザは、インフルエンザウイルスによって引き起こされる、上気道炎症状、呼吸器疾患等を伴う急性感染症であり、感染力が強いものであれば、感染者の症状は重篤となり、死に至る場合もある。
Influenza is an acute infection accompanied by symptoms of upper respiratory tract inflammation, respiratory disease and the like caused by influenza virus, and if the infectivity is strong, the symptoms of the infected person may be severe and may lead to death.
インフルエンザウイルスの天然の宿主は、主に水鳥等の野鳥であり、家禽であるニワトリ等含め、トリの間で流行していきながら、ウイルス系列が進化し、様々な宿主(ブタ、ヒト)に馴化し、種間伝染が発生することになる。
The natural host of influenza virus is mainly wild birds such as waterfowl, and while the epidemic spreads among birds including chicken which is poultry, the virus series evolves and becomes acclimated to various hosts (pig, human) And interspecies transmission will occur.
例えば、高病原性鳥インフルエンザ(highly pathogenic avian influenza:HPAI)ウイルス(HPAIV)亜型のH5N1ウイルスによって、アジア、ヨーロッパ及びアフリカの多くの国々において数百万の家禽が死に至っており、さらに、1997年に流行して以来、臨床的に重大で致死的なヒトの感染をもたらすHPAI H5N1のトリからヒトへの伝染の数は増え続けている。
For example, the highly pathogenic avian influenza (HPAI) virus (HPAIV) virus (HPAIV) H5N1 virus has killed millions of poultry in many countries in Asia, Europe and Africa, and in 1997, Since the epidemic, the number of HPAI H5N1 avian-to-human transmissions leading to clinically significant and lethal human infections has continued to grow.
ヒトを含む動物のHPAIVに対する感受性も鑑みるに、当該ウイルスのトリにおける感染及びその拡大を防御する手段は必須であり、HPAIVに対する有効なワクチンが希求される。
In view of the sensitivity of animals including humans to HPAIV, means for preventing infection of the virus in birds and its spread are essential, and effective vaccines against HPAIV are sought.
HPAIVに対するワクチンとして、ニューカッスル病(ND)ウイルス(NDV)をベクターとする組み換えワクチンが開発されている。当該ウイルスにHPAIVのヘマグルチニン(HA)遺伝子等の抗原遺伝子を挿入した組み換えワクチン(組み換えウイルス)は、飲水、噴霧投与等の省力的なワクチン接種が可能であると共に、HPAIVと同様に呼吸器粘膜に感染するため、局所免疫の誘導が期待できる等の利点がある。
As a vaccine against HPAIV, a recombinant vaccine having a Newcastle disease (ND) virus (NDV) as a vector has been developed. A recombinant vaccine (recombinant virus) in which an antigen gene such as the hemagglutinin (HA) gene of HPAIV has been inserted into the virus enables labor-saving vaccination such as drinking water and spray administration, and, like HPAIV, to respiratory mucous membranes. There is an advantage such as induction of local immunity can be expected because of infection.
また、NDVを基にする組み換えウイルスは、NDV中のいずれかの転写単位における3’非翻訳領域に、NDVの内在性のいずれかの遺伝子開始配列及び遺伝子終結配列と、抗原遺伝子とからなる転写単位を挿入することによって作製されている(非特許文献1~5)。さらに、これら組み換えウイルスにおいては、抗原遺伝子の開始コドンの直前に、真核細胞内で翻訳効率を高める配列として知られているKozak配列が挿入されており(非特許文献1及び3)、これが抗原遺伝子mRNAの翻訳効率を高めていると想定される。
Moreover, the recombinant virus based on NDV is a transcription comprising the gene initiation sequence and gene termination sequence of NDV endogenous and the antigen gene in the 3 'untranslated region in any transcription unit in NDV. It is produced by inserting a unit (non-patent documents 1 to 5). Furthermore, in these recombinant viruses, a Kozak sequence known as a sequence that improves translation efficiency in eukaryotic cells is inserted immediately before the start codon of the antigen gene (Non-patent Documents 1 and 3), which is an antigen. It is assumed that the translation efficiency of gene mRNA is enhanced.
しかしながら、投与対象であるニワトリ等において、基にしているNDVに対する抗体が生成されていると、ワクチン効果が減弱されるという問題がある。養鶏産業ではニワトリに対して経時的にNDワクチンを投与しているため、NDVを基とする組み換えワクチンは、HPAI発生時における緊急用ワクチンとして有効でないことが想定される。そのため、NDワクチンで免疫されたニワトリにおいても使用可能なワクチンの開発が望まれている。
However, there is a problem that the vaccine effect is diminished if the antibody against the underlying NDV is generated in the chicken or the like to be administered. In the poultry industry, ND vaccines are administered to chickens sequentially over time, so it is assumed that recombinant vaccines based on NDV are not effective as emergency vaccines at the time of HPAI outbreak. Therefore, it is desirable to develop a vaccine that can also be used in chickens immunized with the ND vaccine.
この問題を解決するため、本発明者らは、NDVの代わりに、当該ウイルスと同じ属(パラミクソウイルス科エイブラウイルス属)に属する別種のウイルス(鳥パラミクソウイルス、APMV)をベクターとする組み換えワクチンの開発を試みている。そして、APMVの血清型2、6及び10(APMV-2、APMV-6及びAPMV-10)を接種し、これらのウイルスが、NDVに対する抗体の存在に関わらず、ニワトリの体内で効率良く増殖することを見出している。さらに、これらAPMVを基にした組み換えウイルスが、NDVに対する抗体を既に有するニワトリに対しても、抗インフルエンザウイルス活性を付与するためのワクチンとして有望であることも、本発明者らは報告している(非特許文献6)。
In order to solve this problem, instead of NDV, the present inventors recombine using as a vector another virus (avian paramyxovirus, APMV) belonging to the same genus as the virus (paramyxoviridae Abravirus genus). We are trying to develop a vaccine. Then, they are inoculated with APMV serotypes 2, 6 and 10 (APMV-2, APMV-6 and APMV-10), and these viruses grow efficiently in chickens regardless of the presence of antibodies against NDV. Have found that. Furthermore, the present inventors have reported that these APMV-based recombinant viruses are promising as a vaccine for imparting anti-influenza virus activity to chickens already having antibodies against NDV. (Non-patent document 6).
しかしながら、APMV-10をベクターとし、そのゲノムのP遺伝子とM遺伝子の間にある非翻訳領域(P遺伝子のORFと遺伝子終結配列との間)に、HPAIVのHA遺伝子を挿入した組み換えワクチン APMV-10/HAを作製し、当該ワクチンをNDワクチンで免疫したニワトリに接種した結果、HPAIV感染に対する一定の防御効果が認めらたものの、その防御効果(感染単位:106EID50のAPMV-10/HA接種後、HPAIVで攻撃した場合のニワトリの生存率)は25%と低く、十分なワクチン効果が得られたとは言えないものであった(非特許文献7)。
However, a recombinant vaccine APMV-, in which APMV-10 is a vector, and the HA gene of HPAIV is inserted into the untranslated region between P and M genes of its genome (between the ORF of P gene and the gene termination sequence). 10 / HA was prepared, as a result of the vaccine was inoculated into chickens immunized with ND vaccine, although certain protective effect against HPAIV infection was observed et al., the protective effect (infectious units: 10 6 EID 50 APMV-10 / After HA inoculation, the survival rate of chickens when challenged with HPAIV is as low as 25%, and it can not be said that a sufficient vaccine effect was obtained (Non-patent Document 7).
このような現状故、APMVを基にする組み換えウイルスの実用化には、ワクチン効果を増強することが必要であり、例えばHA等の抗原の発現量を増加させることが考えられる。しかしながら、そのような方法は開発されていなかった。
Thus, for practical use of recombinant viruses based on APMV, it is necessary to enhance the vaccine effect, for example, it is considered to increase the expression amount of an antigen such as HA. However, such a method has not been developed.
本発明は、前記従来技術の有する課題に鑑みてなされたものであり、宿主細胞において、病原体抗原等の外来タンパク質の発現量を増加させ、病原体に対するワクチン効果の増強を可能とする、組み換え鳥パラミクソウイルスを提供することを目的とする。
The present invention has been made in view of the problems of the prior art, and it is a recombinant bird para that can increase the expression effect of foreign proteins such as pathogen antigens in host cells and enhance the vaccine effect against pathogens. The purpose is to provide a myxovirus.
本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、以下の特徴を有する、外来転写単位をコードするマイナス鎖RNAが挿入されている組み換えAPMV-10(組み換え鳥パラミクソウイルス)を、作製するに至った。
(1)前記外来転写単位は、HPAIVのHAタンパク質(外来タンパク質)をコードするヌクレオチドを含み、該ヌクレオチドが、鳥パラミクソウイルスの遺伝子開始配列及び遺伝子終結配列に作動可能に連結している。
(2)前記遺伝子開始配列と前記ヌクレオチドの開始コドンとの間に、鳥パラミクソウイルスの5’非翻訳領域が挿入されている。
(3)前記ヌクレオチドの終止コドンと前記遺伝子終結配列との間に、鳥パラミクソウイルスの3’非翻訳領域が挿入されている。
(4)さらに、前記外来転写単位をコードするマイナス鎖RNAは、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするマイナス鎖RNAに挿入されている。 As a result of intensive studies to achieve the above object, the present inventors have recombinant APMV-10 (recombinant avian paramyxovirus) into which a minus strand RNA encoding a foreign transcription unit has been inserted, having the following characteristics: It came to produce.
(1) The foreign transcription unit comprises a nucleotide encoding the HA protein (foreign protein) of HPAIV, which is operably linked to the gene initiation sequence and gene termination sequence of avian paramyxovirus.
(2) The 5 'untranslated region of the avian paramyxovirus is inserted between the gene initiation sequence and the initiation codon of the nucleotide.
(3) The 3 'untranslated region of the avian paramyxovirus is inserted between the stop codon of the nucleotide and the gene termination sequence.
(4) Furthermore, the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
(1)前記外来転写単位は、HPAIVのHAタンパク質(外来タンパク質)をコードするヌクレオチドを含み、該ヌクレオチドが、鳥パラミクソウイルスの遺伝子開始配列及び遺伝子終結配列に作動可能に連結している。
(2)前記遺伝子開始配列と前記ヌクレオチドの開始コドンとの間に、鳥パラミクソウイルスの5’非翻訳領域が挿入されている。
(3)前記ヌクレオチドの終止コドンと前記遺伝子終結配列との間に、鳥パラミクソウイルスの3’非翻訳領域が挿入されている。
(4)さらに、前記外来転写単位をコードするマイナス鎖RNAは、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするマイナス鎖RNAに挿入されている。 As a result of intensive studies to achieve the above object, the present inventors have recombinant APMV-10 (recombinant avian paramyxovirus) into which a minus strand RNA encoding a foreign transcription unit has been inserted, having the following characteristics: It came to produce.
(1) The foreign transcription unit comprises a nucleotide encoding the HA protein (foreign protein) of HPAIV, which is operably linked to the gene initiation sequence and gene termination sequence of avian paramyxovirus.
(2) The 5 'untranslated region of the avian paramyxovirus is inserted between the gene initiation sequence and the initiation codon of the nucleotide.
(3) The 3 'untranslated region of the avian paramyxovirus is inserted between the stop codon of the nucleotide and the gene termination sequence.
(4) Furthermore, the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
そして、この組み換え鳥パラミクソウイルスを、ニワトリ初代培養細胞に感染させた結果、当該細胞において外来タンパク質の高い発現が認められた。
Then, as a result of infecting chicken primary culture cells with this recombinant avian paramyxovirus, high expression of foreign protein was observed in the cells.
一方、非特許文献7に記載の組み換え鳥パラミクソウイルス、すなわち外来転写単位が、鳥パラミクソウイルスの内在性転写単位中の非翻訳領域に挿入されている組み換えウイルスでは、感染させた細胞における外来タンパク質の発現は殆ど認められなかった。また、鳥パラミクソウイルスの非翻訳領域を含まない外来転写単位が、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域に挿入されている組み換えウイルスでも、感染させた細胞における外来タンパク質の発現は殆ど認められなかった。
On the other hand, the recombinant avian paramyxovirus described in Non-Patent Document 7, that is, the recombinant virus in which the foreign transcription unit is inserted into the untranslated region in the endogenous transcription unit of the bird paramyxovirus, is foreign in infected cells. Almost no protein expression was observed. In addition, even if a recombinant virus in which an exogenous transcription unit that does not contain the untranslated region of avian paramyxovirus is inserted into the intergenic region between the endogenous transcriptional units of avian paramyxovirus, Almost no expression was observed.
また、前記組み換え鳥パラミクソウイルスのワクチン効果を試験すべく、ニワトリにNDVを予め感染させた上で、これら組み換えウイルスを各々投与し、さらにHPAIVを感染させた。
In addition, in order to test the vaccine effect of the recombinant avian paramyxovirus, chickens were previously infected with NDV, and then these recombinant viruses were respectively administered and further infected with HPAIV.
その結果、従前の、外来転写単位が内在性転写単位間にある遺伝子間領域に挿入されている組み換え鳥パラミクソウイルスを用いた場合には、HPAIV感染後のニワトリの生存率は25%又は50%であった。また、当該ニワトリの全個体からHPAIVの排泄が認められた。さらに、攻撃時のHPAIVに対する抗体価は、殆どのニワトリにおいて検出限界以下であった。また、鳥パラミクソウイルスの非翻訳領域を含まない外来転写単位が、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域に挿入されている組み換えウイルスを用いた場合にも、攻撃時のHPAIVに対する抗体価は、殆どのニワトリにおいて検出限界以下であった。
As a result, when using the recombinant avian paramyxovirus in which the foreign transcription unit is inserted in the intergenic region between the endogenous transcription units, the survival rate of chicken after HPAIV infection is 25% or 50. %Met. In addition, excretion of HPAIV was observed from all individuals of the chicken. Furthermore, antibody titers to HPAIV at challenge were below the detection limit in most chickens. In addition, even when using a recombinant virus in which an exogenous transcription unit that does not contain the untranslated region of the avian paramyxovirus is inserted into the intergenic region between the endogenous transcriptional units of the avian paramyxovirus, Antibody titers to HPAIV were below the detection limit in most chickens.
一方、外来転写単位が内在性転写単位間にある遺伝子間領域に挿入されている組み換え鳥パラミクソウイルスを用いた場合には、HPAIV感染後のニワトリの生存率は100%であった。また、当該ニワトリにおけるHPAIVの排泄は殆ど認められず、認められたとしても、そのウイルス力価は低かった。さらに、攻撃時のHPAIVに対する抗体価は、前記組換えウイルスで免疫した多くの個体で検出された。
On the other hand, in the case of using the recombinant avian paramyxovirus in which the foreign transcription unit was inserted in the intergenic region between the endogenous transcription units, the survival rate of the chicken after HPAIV infection was 100%. In addition, almost no excretion of HPAIV was observed in the chicken, and even if it was, its virus titer was low. In addition, antibody titers to HPAIV at the time of challenge were detected in many individuals immunized with the recombinant virus.
また、このような高いワクチン効果は、鳥パラミクソウイルスにおいて、外来転写単位を挿入する遺伝子間領域を変更しても奏されることを確認した。さらに、外来タンパク質がHAタンパク質以外のタンパク質であっても、当該タンパク質の発現量は、上述のHAタンパク質を組み換え鳥パラミクソウイルスを用いて発現させた場合同様に、増加できることを確認し、本発明を完成するに至った。
In addition, it was confirmed that such a high vaccine effect was achieved even if the intergenic region in which the foreign transcription unit was inserted was changed in the avian paramyxovirus. Furthermore, even if the foreign protein is a protein other than HA protein, it is confirmed that the expression amount of the protein can be similarly increased when the above-mentioned HA protein is expressed using a recombinant avian paramyxovirus, and the present invention It came to complete.
すなわち、本発明は、組み換え鳥パラミクソウイルス、及び該ウイルス有効成分とするワクチン用組成物に関する。また、本発明は、前記ウイルスを製造するためのヌクレオチド構築物、該構築物を含む前記ウイルスを製造するためのキット、並びにそれらを用いた前記ウイルスを製造するための方法に関し、より具体的には以下を提供する。
<1> 鳥パラミクソウイルスをコードするマイナス鎖RNAに、外来転写単位をコードするマイナス鎖RNAが挿入されている、組み換え鳥パラミクソウイルスであって、
前記外来転写単位において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、外来タンパク質をコードするヌクレオチドと、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記外来転写単位をコードするマイナス鎖RNAが、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするマイナス鎖RNAに挿入されている、組み換え鳥パラミクソウイルス。
<2> 鳥パラミクソウイルス血清型10に由来する、<1>に記載の組み換え鳥パラミクソウイルス。
<3> 前記5’非翻訳領域が、配列番号:1~6のいずれかに記載のヌクレオチド配列からなる領域であり、前記3’非翻訳領域が、配列番号:7~12のいずれかに記載のヌクレオチド配列からなる領域である、<1>又は<2>に記載の組み換え鳥パラミクソウイルス。
<4> 前記外来タンパク質が、病原体由来の抗原タンパク質である、<1>~<3>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルス。
<5> 前記外来タンパク質が、インフルエンザウイルスのヘマグルチニンタンパク質である、<1>~<4>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルス。
<6> <1>~<5>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルスを有効成分として含有する、ワクチン用組成物。
<7> 鳥パラミクソウイルスをコードするヌクレオチドに、外来タンパク質をコードするヌクレオチドを挿入するための部位を含むクローニング領域が、挿入されている、組み換え鳥パラミクソウイルスをコードするヌクレオチド構築物であって、
前記クローニング領域において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、前記部位と、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記クローニング領域が、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするヌクレオチドに挿入されている、ヌクレオチド構築物。
<8> 前記鳥パラミクソウイルスが鳥パラミクソウイルス血清型10である、請求項7に記載のヌクレオチド構築物。
<9> 前記5’非翻訳領域が、配列番号:1~6のいずれかに記載のヌクレオチド配列からなる領域であり、前記3’非翻訳領域が、配列番号:7~12のいずれかに記載のヌクレオチド配列からなる領域である、<7>又は<8>に記載のヌクレオチド構築物。
<10> 更に、前記鳥パラミクソウイルスをコードするヌクレオチドの5’末側に、DNA依存性RNAポリメラーゼが認識するプロモーター配列が連結しており、該ヌクレオチドの3’末側に、5’側から順に、リボザイム配列と前記DNA依存性RNAポリメラーゼが認識するターミネーター配列とが連結している、<7>~<9>のうちのいずれか一項に記載のヌクレオチド構築物。
<11> 外来タンパク質をコードするヌクレオチドが前記部位に挿入されている、<10>に記載のヌクレオチド構築物。
<12> 前記外来タンパク質が、病原体由来の抗原タンパク質である、<11>に記載のヌクレオチド構築物。
<13> 前記外来タンパク質が、インフルエンザウイルスのヘマグルチニンタンパク質である、<11>に記載のヌクレオチド構築物。
<14> <1>~<5>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルスを製造するための方法であって、
前記DNA依存性RNAポリメラーゼと前記鳥パラミクソウイルスのコアタンパク質とを発現する形質転換細胞に、<11>~<13>のうちのいずれか一項に記載のヌクレオチド構築物を導入する工程と、
前記組み換え鳥パラミクソウイルスを、前記細胞の培養物から回収する工程とを含む、方法。
<15> 下記(a)~(e)からなる群から選択される少なくとも一の物質及び使用説明書を含む、<1>~<5>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルスを製造するためのキット
(a)<10>~<13>のうちのいずれか一項に記載のヌクレオチド構築物
(b)前記DNA依存性RNAポリメラーゼを発現することができるヌクレオチド構築物
(c)前記鳥パラミクソウイルスのコアタンパク質を発現することができるヌクレオチド構築物
(d)(a)~(c)からなる群から選択される少なくとも一のヌクレオチド構築物を導入するための細胞
(e)前記DNA依存性RNAポリメラーゼ及び/又は前記鳥パラミクソウイルスのコアタンパク質とを発現する形質転換細胞。 That is, the present invention relates to a recombinant avian paramyxovirus and a composition for a vaccine comprising the active ingredient of the virus. Furthermore, the present invention relates to a nucleotide construct for producing the virus, a kit for producing the virus containing the construct, and a method for producing the virus using them, more specifically, I will provide a.
<1> A recombinant avian paramyxovirus, wherein a negative strand RNA encoding a foreign transcription unit is inserted into a negative strand RNA encoding avian paramyxovirus,
In the said foreign transcription unit, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the nucleotide encoding the foreign protein, and the 3' non-avian paramyxovirus, in order from the 5 'side The translation region is linked to the gene termination sequence of avian paramyxovirus, and
A recombinant avian paramyxovirus, wherein the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between endogenous transcription units of avian paramyxovirus.
<2> The recombinant avian paramyxovirus according to <1>, which is derived fromavian paramyxovirus serotype 10.
<3> The 5 'untranslated region is a region consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 6, and the 3' untranslated region is described in any of SEQ ID NOs: 7 to 12 The recombinant avian paramyxovirus according to <1> or <2>, which is a region consisting of the nucleotide sequence of
<4> The recombinant avian paramyxovirus according to any one of <1> to <3>, wherein the foreign protein is an antigen protein derived from a pathogen.
<5> The recombinant avian paramyxovirus according to any one of <1> to <4>, wherein the foreign protein is a hemagglutinin protein of influenza virus.
<6> A composition for vaccine comprising the recombinant avian paramyxovirus according to any one of <1> to <5> as an active ingredient.
<7> A nucleotide construct encoding a recombinant avian paramyxovirus, wherein a cloning region including a site for inserting a nucleotide encoding a foreign protein is inserted into the nucleotide encoding avian paramyxovirus,
In the cloning region, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the aforementioned site, the 3' untranslated region of the avian paramyxovirus, and the avian paramyxovirus gene start sequence from the 5 'side Is linked to the gene termination sequence of paramyxovirus, and
A nucleotide construct, wherein the cloning region is inserted into a nucleotide encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
<8> The nucleotide construct according to claim 7, wherein the avian paramyxovirus isavian paramyxovirus serotype 10.
<9> The 5 'untranslated region is a region consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 6, and the 3' untranslated region is described in any of SEQ ID NOs: 7 to 12 The nucleotide construct according to <7> or <8>, which is a region consisting of the nucleotide sequence of
<10> Furthermore, a promoter sequence recognized by a DNA-dependent RNA polymerase is linked to the 5 'end of the nucleotide encoding the avian paramyxovirus, and from the 5' end to the 3 'end of the nucleotide, The nucleotide construct according to any one of <7> to <9>, in which a ribozyme sequence and a terminator sequence recognized by the DNA-dependent RNA polymerase are linked in sequence.
<11> The nucleotide construct according to <10>, wherein a nucleotide encoding a foreign protein is inserted into the site.
<12> The nucleotide construct according to <11>, wherein the foreign protein is an antigen protein derived from a pathogen.
<13> The nucleotide construct according to <11>, wherein the foreign protein is a hemagglutinin protein of influenza virus.
<14> A method for producing the recombinant avian paramyxovirus according to any one of <1> to <5>,
Introducing the nucleotide construct according to any one of <11> to <13> into a transformed cell that expresses the DNA-dependent RNA polymerase and the core protein of the avian paramyxovirus;
Recovering the recombinant avian paramyxovirus from the culture of the cells.
<15> The recombinant bird paramyxo according to any one of <1> to <5>, which comprises at least one substance selected from the group consisting of the following (a) to (e) and instructions for use: A kit for producing a virus (a) The nucleotide construct according to any one of <10> to <13> (b) the nucleotide construct capable of expressing the DNA-dependent RNA polymerase (c) the above Nucleotide constructs capable of expressing the core protein of avian paramyxovirus (d) Cells for introducing at least one nucleotide construct selected from the group consisting of (a) to (c) (e) said DNA dependence A transformed cell which expresses RNA polymerase and / or the core protein of the avian paramyxovirus.
<1> 鳥パラミクソウイルスをコードするマイナス鎖RNAに、外来転写単位をコードするマイナス鎖RNAが挿入されている、組み換え鳥パラミクソウイルスであって、
前記外来転写単位において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、外来タンパク質をコードするヌクレオチドと、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記外来転写単位をコードするマイナス鎖RNAが、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするマイナス鎖RNAに挿入されている、組み換え鳥パラミクソウイルス。
<2> 鳥パラミクソウイルス血清型10に由来する、<1>に記載の組み換え鳥パラミクソウイルス。
<3> 前記5’非翻訳領域が、配列番号:1~6のいずれかに記載のヌクレオチド配列からなる領域であり、前記3’非翻訳領域が、配列番号:7~12のいずれかに記載のヌクレオチド配列からなる領域である、<1>又は<2>に記載の組み換え鳥パラミクソウイルス。
<4> 前記外来タンパク質が、病原体由来の抗原タンパク質である、<1>~<3>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルス。
<5> 前記外来タンパク質が、インフルエンザウイルスのヘマグルチニンタンパク質である、<1>~<4>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルス。
<6> <1>~<5>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルスを有効成分として含有する、ワクチン用組成物。
<7> 鳥パラミクソウイルスをコードするヌクレオチドに、外来タンパク質をコードするヌクレオチドを挿入するための部位を含むクローニング領域が、挿入されている、組み換え鳥パラミクソウイルスをコードするヌクレオチド構築物であって、
前記クローニング領域において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、前記部位と、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記クローニング領域が、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするヌクレオチドに挿入されている、ヌクレオチド構築物。
<8> 前記鳥パラミクソウイルスが鳥パラミクソウイルス血清型10である、請求項7に記載のヌクレオチド構築物。
<9> 前記5’非翻訳領域が、配列番号:1~6のいずれかに記載のヌクレオチド配列からなる領域であり、前記3’非翻訳領域が、配列番号:7~12のいずれかに記載のヌクレオチド配列からなる領域である、<7>又は<8>に記載のヌクレオチド構築物。
<10> 更に、前記鳥パラミクソウイルスをコードするヌクレオチドの5’末側に、DNA依存性RNAポリメラーゼが認識するプロモーター配列が連結しており、該ヌクレオチドの3’末側に、5’側から順に、リボザイム配列と前記DNA依存性RNAポリメラーゼが認識するターミネーター配列とが連結している、<7>~<9>のうちのいずれか一項に記載のヌクレオチド構築物。
<11> 外来タンパク質をコードするヌクレオチドが前記部位に挿入されている、<10>に記載のヌクレオチド構築物。
<12> 前記外来タンパク質が、病原体由来の抗原タンパク質である、<11>に記載のヌクレオチド構築物。
<13> 前記外来タンパク質が、インフルエンザウイルスのヘマグルチニンタンパク質である、<11>に記載のヌクレオチド構築物。
<14> <1>~<5>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルスを製造するための方法であって、
前記DNA依存性RNAポリメラーゼと前記鳥パラミクソウイルスのコアタンパク質とを発現する形質転換細胞に、<11>~<13>のうちのいずれか一項に記載のヌクレオチド構築物を導入する工程と、
前記組み換え鳥パラミクソウイルスを、前記細胞の培養物から回収する工程とを含む、方法。
<15> 下記(a)~(e)からなる群から選択される少なくとも一の物質及び使用説明書を含む、<1>~<5>のうちのいずれか一項に記載の組み換え鳥パラミクソウイルスを製造するためのキット
(a)<10>~<13>のうちのいずれか一項に記載のヌクレオチド構築物
(b)前記DNA依存性RNAポリメラーゼを発現することができるヌクレオチド構築物
(c)前記鳥パラミクソウイルスのコアタンパク質を発現することができるヌクレオチド構築物
(d)(a)~(c)からなる群から選択される少なくとも一のヌクレオチド構築物を導入するための細胞
(e)前記DNA依存性RNAポリメラーゼ及び/又は前記鳥パラミクソウイルスのコアタンパク質とを発現する形質転換細胞。 That is, the present invention relates to a recombinant avian paramyxovirus and a composition for a vaccine comprising the active ingredient of the virus. Furthermore, the present invention relates to a nucleotide construct for producing the virus, a kit for producing the virus containing the construct, and a method for producing the virus using them, more specifically, I will provide a.
<1> A recombinant avian paramyxovirus, wherein a negative strand RNA encoding a foreign transcription unit is inserted into a negative strand RNA encoding avian paramyxovirus,
In the said foreign transcription unit, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the nucleotide encoding the foreign protein, and the 3' non-avian paramyxovirus, in order from the 5 'side The translation region is linked to the gene termination sequence of avian paramyxovirus, and
A recombinant avian paramyxovirus, wherein the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between endogenous transcription units of avian paramyxovirus.
<2> The recombinant avian paramyxovirus according to <1>, which is derived from
<3> The 5 'untranslated region is a region consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 6, and the 3' untranslated region is described in any of SEQ ID NOs: 7 to 12 The recombinant avian paramyxovirus according to <1> or <2>, which is a region consisting of the nucleotide sequence of
<4> The recombinant avian paramyxovirus according to any one of <1> to <3>, wherein the foreign protein is an antigen protein derived from a pathogen.
<5> The recombinant avian paramyxovirus according to any one of <1> to <4>, wherein the foreign protein is a hemagglutinin protein of influenza virus.
<6> A composition for vaccine comprising the recombinant avian paramyxovirus according to any one of <1> to <5> as an active ingredient.
<7> A nucleotide construct encoding a recombinant avian paramyxovirus, wherein a cloning region including a site for inserting a nucleotide encoding a foreign protein is inserted into the nucleotide encoding avian paramyxovirus,
In the cloning region, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the aforementioned site, the 3' untranslated region of the avian paramyxovirus, and the avian paramyxovirus gene start sequence from the 5 'side Is linked to the gene termination sequence of paramyxovirus, and
A nucleotide construct, wherein the cloning region is inserted into a nucleotide encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
<8> The nucleotide construct according to claim 7, wherein the avian paramyxovirus is
<9> The 5 'untranslated region is a region consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 6, and the 3' untranslated region is described in any of SEQ ID NOs: 7 to 12 The nucleotide construct according to <7> or <8>, which is a region consisting of the nucleotide sequence of
<10> Furthermore, a promoter sequence recognized by a DNA-dependent RNA polymerase is linked to the 5 'end of the nucleotide encoding the avian paramyxovirus, and from the 5' end to the 3 'end of the nucleotide, The nucleotide construct according to any one of <7> to <9>, in which a ribozyme sequence and a terminator sequence recognized by the DNA-dependent RNA polymerase are linked in sequence.
<11> The nucleotide construct according to <10>, wherein a nucleotide encoding a foreign protein is inserted into the site.
<12> The nucleotide construct according to <11>, wherein the foreign protein is an antigen protein derived from a pathogen.
<13> The nucleotide construct according to <11>, wherein the foreign protein is a hemagglutinin protein of influenza virus.
<14> A method for producing the recombinant avian paramyxovirus according to any one of <1> to <5>,
Introducing the nucleotide construct according to any one of <11> to <13> into a transformed cell that expresses the DNA-dependent RNA polymerase and the core protein of the avian paramyxovirus;
Recovering the recombinant avian paramyxovirus from the culture of the cells.
<15> The recombinant bird paramyxo according to any one of <1> to <5>, which comprises at least one substance selected from the group consisting of the following (a) to (e) and instructions for use: A kit for producing a virus (a) The nucleotide construct according to any one of <10> to <13> (b) the nucleotide construct capable of expressing the DNA-dependent RNA polymerase (c) the above Nucleotide constructs capable of expressing the core protein of avian paramyxovirus (d) Cells for introducing at least one nucleotide construct selected from the group consisting of (a) to (c) (e) said DNA dependence A transformed cell which expresses RNA polymerase and / or the core protein of the avian paramyxovirus.
なお、本発明の組み換えウイルスの基となる「鳥パラミクソウイルス」は、モノネガウイルス目、パラミクソウイルス科、エイブラウイルス属、鳥パラミクソウイルス種に属するウイルスであり、マイナス鎖の一本鎖RNAをゲノムとして保持する。
The "avian paramyxovirus" which is the basis of the recombinant virus of the present invention is a virus belonging to the mononegavirus order, paramyxoviridae, Abravirus genus, avian paramyxovirus species, and a single strand of minus strand The RNA is maintained as a genome.
鳥パラミクソウイルスのRNAゲノムは、3’末側に位置するリーダー配列と、5’ 末側に位置するトレーラー配列と、それら配列に挟まれた主要な6つの転写単位(NP、P、M、F、HN及びLタンパク質の転写単位)をコードするマイナス鎖RNAとから構成される(なお、APMV-6においては、FとHNの間にSHタンパク質の転写単位を更に有する)。それらがコードするタンパク質のうち、ヌクレオタンパク質(NP)及びRNA依存性RNAポリメラーゼを構成するホスホタンパク質(P)及びRNA依存性RNAポリメラーゼ(L)の3種類のタンパク質(コアタンパク質)は、ゲノムRNAと共に、自律複製可能なレプリコンである複合体(リボヌクレオタンパク質複合体、RNP複合体)を形成する。また、マトリックス(M)タンパク質、並びにウイルスの集合、出芽及びウイルスの細胞付着及び/又は侵入において役割を果たしている膜貫通糖タンパク質(HN及びFタンパク質)から構成されるエンベロープによって、前述のRNP複合体が包まれることによって、鳥パラミクソウイルスの基本構造(ウイルス粒子)が形成される。
The avian paramyxovirus RNA genome has a leader sequence located at the 3 'end, a trailer sequence located at the 5' end, and six major transcription units (NP, P, M, And a negative strand RNA encoding a transcription unit of F, HN and L proteins (note that in APMV-6, it further has a transcription unit of SH protein between F and HN). Among the proteins encoded by them, three proteins (core proteins), phosphoprotein (P) that constitutes nucleoprotein (NP) and RNA-dependent RNA polymerase, and core protein, together with genomic RNA To form a complex (ribonucleoprotein complex, RNP complex) which is an autonomously replicable replicon. Also, the aforementioned RNP complex by an envelope composed of matrix (M) proteins and transmembrane glycoproteins (HN and F proteins) that play a role in virus assembly, budding and cell attachment and / or invasion of the virus. By being packaged, the basic structure (virus particle) of avian paramyxovirus is formed.
また、鳥パラミクソウイルスのゲノムにおいて、転写単位をコードするマイナス鎖RNAの順序は極めて高度に保存されており、3’側から、NP、P、M、F、HN及びLの順に、各転写単位をコードするマイナス鎖RNAが直列に配置されている(APMV-6においては、更にFとHNの間にSHが配置れている)。
Moreover, in the genome of avian paramyxovirus, the order of minus strand RNA encoding a transcription unit is extremely highly conserved, and each transcription in the order of NP, P, M, F, HN and L from the 3 'side Negative strand RNAs encoding units are arranged in tandem (in APMV-6, SH is further arranged between F and HN).
各転写単位をコードするマイナス鎖RNAは各々、3’末側から順に、遺伝子開始配列(GS:gene start)をコードするマイナス鎖RNA、5’非翻訳領域をコードするマイナス鎖RNA、翻訳領域(ORF:open reading frame)をコードするマイナス鎖RNA、3’非翻訳領域をコードするマイナス鎖RNAが、直列的に配置されることによって構成される。さらに、直列に配置された転写単位間は転写されない遺伝子間領域(IGR)によって全て隔てられている。
Negative strand RNAs encoding each transcription unit are, in order from the 3 'end, negative strand RNA encoding a gene start sequence (GS: gene start), negative strand RNA encoding a 5' untranslated region, translation region ( A negative strand RNA encoding an ORF (open reading frame) and a negative strand RNA encoding a 3 'untranslated region are configured by being arranged in tandem. Furthermore, transcription units arranged in series are all separated by an intergenic region (IGR) that is not transcribed.
本発明によれば、宿主において、病原体抗原等の外来タンパク質の発現量を増加させ、ひいては病原体に対するワクチン効果を増強することが可能となる。特に、ニューカッスル病ウイルス(NDV)に対する抗体を保持するニワトリにおいても、本発明によれば、高病原性鳥インフルエンザウイルス(HPAIV)に対するワクチン効果を発揮させることが可能となる。
According to the present invention, it is possible to increase the expression level of foreign proteins such as pathogen antigens in the host and thus to enhance the vaccine effect against pathogens. In particular, even in chickens that retain antibodies against Newcastle disease virus (NDV), according to the present invention, it is possible to exert a vaccine effect against highly pathogenic avian influenza virus (HPAIV).
<組み換え鳥パラミクソウイルス>
本発明は、鳥パラミクソウイルスをコードするマイナス鎖RNAに、外来転写単位をコードするマイナス鎖RNAが挿入されている、組み換え鳥パラミクソウイルスであって、
前記外来転写単位において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、外来タンパク質をコードするヌクレオチドと、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記外来転写単位をコードするマイナス鎖RNAが、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするマイナス鎖RNAに挿入されている、組み換え鳥パラミクソウイルスを、提供する。 <Recombinant bird paramyxovirus>
The present invention is a recombinant avian paramyxovirus, wherein the negative strand RNA encoding a foreign transcription unit is inserted into the negative strand RNA encoding avian paramyxovirus,
In the said foreign transcription unit, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the nucleotide encoding the foreign protein, and the 3' non-avian paramyxovirus, in order from the 5 'side The translation region is linked to the gene termination sequence of avian paramyxovirus, and
The recombinant avian paramyxovirus is provided, wherein the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
本発明は、鳥パラミクソウイルスをコードするマイナス鎖RNAに、外来転写単位をコードするマイナス鎖RNAが挿入されている、組み換え鳥パラミクソウイルスであって、
前記外来転写単位において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、外来タンパク質をコードするヌクレオチドと、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記外来転写単位をコードするマイナス鎖RNAが、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするマイナス鎖RNAに挿入されている、組み換え鳥パラミクソウイルスを、提供する。 <Recombinant bird paramyxovirus>
The present invention is a recombinant avian paramyxovirus, wherein the negative strand RNA encoding a foreign transcription unit is inserted into the negative strand RNA encoding avian paramyxovirus,
In the said foreign transcription unit, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the nucleotide encoding the foreign protein, and the 3' non-avian paramyxovirus, in order from the 5 'side The translation region is linked to the gene termination sequence of avian paramyxovirus, and
The recombinant avian paramyxovirus is provided, wherein the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
本発明において「組み換え鳥パラミクソウイルス」とは、外来タンパク質をコードするヌクレオチドを宿主細胞に導入することができ、さらに該タンパク質を該細胞において発現させることができるように、遺伝子操作によって改変された鳥パラミクソウイルスを意味する。組み換え鳥パラミクソウイルスは、当該ウイルスのゲノムRNA(当該ウイルスをコードするマイナス鎖RNA)とNPタンパク質とからなるヌクレオカプシドであってもよく、更にPタンパク質及びLタンパク質を備えたリボヌクレオタンパク質複合体(RNP複合体)であってもよく、更にエンベロープを備えたウイルス粒子であってもよい。
In the present invention, “recombinant avian paramyxovirus” is a gene engineered to be able to introduce a nucleotide encoding a foreign protein into a host cell, and further to allow the protein to be expressed in the cell. Means bird paramyxovirus. The recombinant avian paramyxovirus may be a nucleocapsid consisting of genomic RNA of the virus (minus strand RNA encoding the virus) and an NP protein, and a ribonucleoprotein complex further comprising P protein and L protein ( It may be an RNP complex) and may be an enveloped virus particle.
本発明の組み換えウイルスの基となる(由来とする)「鳥パラミクソウイルス」については、上述のとおりであり、例えば、鳥パラミクソウイルス種に属するウイルスとして、鳥パラミクソウイルスの血清型2~15(APMV-2~APMV-15)が挙げられる。これらにおいて、本発明の組み換えウイルスの由来は、ニワトリには感染はするが、病原性は低いという観点から、APMV-2、APMV-6又はAPMV-10が好ましく、APMV-10がより好ましい。
The “avian paramyxovirus” which is the basis (derived from) of the recombinant virus of the present invention is as described above, for example, as a virus belonging to avian paramyxovirus species, serotype 2 to avian paramyxovirus 15 (APMV-2 to APMV-15). Among these, APMV-2, APMV-6 or APMV-10 is preferable, and APMV-10 is more preferable, from the viewpoint that the origin of the recombinant virus of the present invention infects chickens but has low pathogenicity.
また、本発明の組み換え鳥パラミクソウイルスを設計、調製する際に必要となる、鳥パラミクソウイルスのゲノム配列は、本分野において公知である。このような情報は、例えば、米国国立生物工学情報センター(NCBI)のウェブサイトを通じて、各ウイルスの配列情報(NCBI GenBank配列情報)を入手することができる。APMV-2~APMV-15の代表的なゲノム配列として、より具体的には以下が挙げられる。なお、NCBI等が提供する配列が、各ウイルスをコードするゲノムRNA(マイナス鎖RNA)に相補的なDNAの配列で表記されることを理解されたい。また現在、APMV-15のゲノム配列として、互いに相同性の低い異なる2つの配列が登録されているため、表1においてそれらを共に示す。
In addition, genome sequences of avian paramyxoviruses necessary for designing and preparing the recombinant avian paramyxoviruses of the present invention are known in the art. Such information can be obtained, for example, through the website of the National Center for Biotechnology Information (NCBI), for each virus sequence information (NCBI GenBank sequence information). More specifically, representative genomic sequences of APMV-2 to APMV-15 include the following. It should be understood that the sequences provided by NCBI and the like are represented by the sequences of DNA complementary to the genomic RNA (minus strand RNA) encoding each virus. Also, since two different sequences with low homology with each other are currently registered as the genome sequence of APMV-15, they are shown together in Table 1.
鳥パラミクソウイルスの内在性の転写単位(NP転写単位.P転写単位、M転写単位、F転写単位、HN転写単位、L転写単位等)及びそれらを構成する配列(遺伝子開始配列、5’非翻訳領域、オープンリーディングフレーム、3’非翻訳領域、遺伝子終結配列)、並びに各転写単位間を隔てる遺伝子間領域については上述のとおりである。また、これらの具体的な配列についても公知であり、例えば、NCBIのウェブサイトを通じて入手することができる。以下に、表1にて例示するNCBI GenBank配列情報に基づき、APMV-10の各配列を示す。なお、当該表において、NP転写単位におけるIGRについては、配列番号ではなく、配列そのものを示す。
Avian paramyxovirus endogenous transcription units (NP transcription unit .P transcription unit, M transcription unit, F transcription unit, HN transcription unit, L transcription unit, etc.) and sequences constituting them (gene initiation sequence, 5 'non The translational region, open reading frame, 3 'non-translational region, gene termination sequence), and the intergenic region separating each transcription unit are as described above. These specific sequences are also known and can be obtained, for example, through the NCBI website. The respective sequences of APMV-10 are shown below based on the NCBI GenBank sequence information exemplified in Table 1. In the table, the IGR in the NP transcription unit is not the sequence number but the sequence itself.
なお、ウイルスの配列は自然界において容易に変異し得る。したがって、当該配列は、表1及び2に示す代表的な配列に特定されず、天然に変異した配列も含まれるものであることは理解されたい。また、本発明において、組み換え鳥パラミクソウイルスには、鳥パラミクソウイルスのゲノム全長からなるものであってもよく、当該ゲノムの一部(例えば、NP転写単位、P転写単位、M転写単位、F転写単位、SH転写単位、HN転写単位及びL転写単位なる群から選択される少なくとも1の転写単位)が欠損しているもの(所謂、ミニゲノム)であってもよい。
Furthermore, the sequence of the virus can be easily mutated in nature. Therefore, it is to be understood that the sequence is not specified in the representative sequences shown in Tables 1 and 2 but also includes naturally mutated sequences. In the present invention, the recombinant avian paramyxovirus may consist of the entire genome of the avian paramyxovirus, and a part of the genome (for example, an NP transcription unit, a P transcription unit, an M transcription unit, It may be one in which at least one transcription unit selected from the group consisting of F transcription unit, SH transcription unit, HN transcription unit and L transcription unit is deleted (so-called minigenome).
本発明において、「外来転写単位」は、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、外来タンパク質をコードするヌクレオチドと、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結してなる転写単位である。
In the present invention, the "foreign transcription unit" comprises, in order from the 5 'side, the gene initiation sequence of the avian paramyxovirus, the 5' untranslated region of the avian paramyxovirus, the nucleotide encoding the foreign protein, and the avian paramyxo It is a transcription unit in which the 3 'untranslated region of the virus and the gene termination sequence of avian paramyxovirus are linked.
これら配列及び領域間の結合は、直接的な結合であってもよく、また他のRNA配列(通常、1~20のRNA)を介した間接的な結合であってもよい。
Binding between these sequences and regions may be direct binding or indirect binding via other RNA sequences (usually 1 to 20 RNAs).
「外来タンパク質」は、通常、鳥パラミクソウイルスの構成成分として本来存在しないタンパク質であり、本発明の組み換え鳥パラミクソウイルスを宿主細胞に感染させた際に、当該細胞において発現させることを所望するタンパク質であれば特に制限はなく、例えば、後述のとおり、組み換え鳥パラミクソウイルスをワクチンとして利用する場合には、感染症を引き起こす病原体の抗原タンパク質が挙げられる。
The "foreign protein" is usually a protein which is not originally present as a component of avian paramyxovirus, and is desired to be expressed in the cell when the recombinant avian paramyxovirus of the present invention is infected into a host cell. If it is a protein, there is no restriction | limiting in particular, For example, as mentioned later, when using a recombinant avian paramyxovirus as a vaccine, the antigenic protein of the pathogen which causes an infection is mentioned.
本発明において、外来転写単位に含まれる、遺伝子開始配列、5’非翻訳領域、3’非翻訳領域及び遺伝子終結配列としては、鳥パラミクソウイルスの内在性転写単位(NP,P、M、F、HN、L等)に含まれる各配列であり、典型的には、表1に示すNCBI GenBank情報に記載の各配列が挙げられる(APMV-10の各配列については、表2を参照のこと)。なお、ウイルスの配列は自然界において容易に変異し得る。したがって、前記各配列は、上記典型的は配列に特定されず、天然に変異した配列も含まれるものであることは理解されたい。
In the present invention, gene transcription sequences, 5 'untranslated regions, 3' untranslated regions, and gene termination sequences contained in the foreign transcription unit include endogenous transcription units (NP, P, M, F) of avian paramyxovirus. , HN, L, etc.), and typically includes each sequence described in NCBI GenBank information shown in Table 1 (refer to Table 2 for each sequence of APMV-10). ). Furthermore, the sequence of the virus can be easily mutated in nature. Therefore, it is to be understood that each of the above-mentioned sequences is not typically specified as the above sequence, but also includes naturally mutated sequences.
また、外来転写単位に含まれる前記各配列は、本発明の組み換え鳥パラミクソウイルスから外来タンパク質が発現され得る限り、各配列において1若しくは複数のヌクレオチドが置換、欠失、挿入、及び/又は付加した配列であってもよく、また各配列と高い相同性を有する配列であってもよい。ここで「複数」とは、外来タンパク質を発現し得る範囲において置換等されるヌクレオチドの個数であり、好ましくは置換等される配列における30%以下の個数、より好ましくは該配列における20%以下の個数、さらに好ましくは該配列における10%以下の個数である。また「高い相同性」とは、例えば60%以上の相同性、好ましくは70%以上の相同性、より好ましくは80%以上の相同性、さらに好ましくは90%以上の相同性(例えば、95%以上、97%以上、99%以上の相同性)である。配列の相同性は、BLASTN(核酸レベル)のプログラム(Altschul et al.J.Mol.Biol.,215:403-410,1990)を利用して決定することができる。かかるプログラムを用いた解析方法の具体的な手法は公知であり、デフォルトのパラメーターを用いて解析することができる。
In addition, each of the sequences contained in the foreign transcription unit may be substituted, deleted, inserted, and / or added with one or more nucleotides in each sequence as long as the foreign protein can be expressed from the recombinant avian paramyxovirus of the present invention. Or a sequence having high homology with each sequence. Here, "plurality" refers to the number of nucleotides substituted or the like in a range capable of expressing a foreign protein, preferably 30% or less of the number of the sequence to be substituted or the like, more preferably 20% or less of the sequence The number is more preferably 10% or less in the sequence. Also, “high homology” means, for example, 60% or more homology, preferably 70% or more homology, more preferably 80% or more homology, still more preferably 90% or more homology (eg, 95%) (97% or more, 99% or more homology). Sequence homology can be determined using the BLASTN (nucleic acid level) program (Altschul et al. J. Mol. Biol., 215: 403-410, 1990). The specific method of the analysis method using such a program is known and can be analyzed using default parameters.
外来転写単位に含まれる前記各配列の由来としては、鳥パラミクソウイルス由来である限り、組み換え鳥パラミクソウイルスの基となるウイルスの種類と異なっていてもよいが(例えば、前記配列の由来がAMPV-2であり、組み換え鳥パラミクソウイルスの基となるウイルスがAMPV-10であってもよいが)、同一の鳥パラミクソウイルス由来であることが好ましく、共にAMPV-10由来であることがより好ましい。また、前記各配列が由来とする鳥パラミクソウイルスにおいても互いに異なっていてもよいが(例えば、遺伝子開始配列の由来がAMPV-2であり、5’非翻訳領域の由来がAMPV-10であってもよいが)、全て同一の鳥パラミクソウイルス由来であることが好ましく、全てAMPV-10由来であることがより好ましい。
The origin of each of the sequences contained in the foreign transcription unit may be different from the type of virus that is the basis of the recombinant avian paramyxovirus, as long as it is derived from the avian paramyxovirus (for example, the origin of the sequence is The virus which is AMPV-2 and the base of the recombinant avian paramyxovirus may be AMPV-10), preferably it is derived from the same avian paramyxovirus, and both may be derived from AMPV-10 More preferable. The avian paramyxoviruses from which the aforementioned sequences are derived may also differ from each other (for example, the gene initiation sequence is derived from AMPV-2 and the 5 'untranslated region is derived from AMPV-10) However, it is preferable that all are derived from the same avian paramyxovirus, and it is more preferable that all be derived from AMPV-10.
また、外来転写単位に含まれる前記各配列は、鳥パラミクソウイルスの内在性転写単位由来である限り、互いに異なるものであってもよいが(例えば、遺伝子開始配列がNP転写単位に由来し、5’非翻訳領域がP転写単位に由来するものであってもよいが)、これら全配列は同一の内在性転写単位由来であることが好ましい。より具体的に、前記各配列がAMPV-10の内在性転写単位由来である場合には、少なくとも、3’非翻訳領域として、配列番号:1~6のいずれかに記載の配列を含み、かつ5’非翻訳領域として、配列番号:7~12のいずれかに記載の配列を含む外来転写単位であり、また、遺伝子開始配列として、配列番号:13~15のいずれかに記載の配列であり、3’非翻訳領域として、配列番号:1~6のいずれかに記載の配列を含み、5’非翻訳領域として、配列番号:7~12のいずれかに記載の配列を含み、かつ遺伝子終結配列として、配列番号:16~18のいずれかに記載の配列を含む外来転写単位である。さらに、好ましくは、少なくとも配列番号:1及び配列番号:7に記載の配列を含む外来転写単位(AMPV-10のNP転写単位由来の非翻訳領域を含む外来転写単位)、少なくとも配列番号:2及び配列番号:8に記載の配列を含む外来転写単位(AMPV-10のP転写単位由来の非翻訳領域を含む外来転写単位)、少なくとも配列番号:3及び配列番号:9に記載の配列を含む外来転写単位(AMPV-10のM転写単位由来の非翻訳領域を含む外来転写単位)、少なくとも配列番号:4及び配列番号:10に記載の配列を含む外来転写単位(AMPV-10のF転写単位由来の非翻訳領域を含む外来転写単位)、少なくとも配列番号:5及び配列番号:11に記載の配列を含む外来転写単位(AMPV-10のHN転写単位由来の非翻訳領域を含む外来転写単位)、又は、少なくとも配列番号:6及び配列番号:12に記載の配列を含む外来転写単位(AMPV-10のL転写単位由来の非翻訳領域を含む外来転写単位)であり、より好ましくは、配列番号:13、配列番号:1、配列番号:7及び配列番号:16に記載の配列を含む外来転写単位(AMPV-10のNP転写単位由来の各配列を含む外来転写単位)、配列番号:14、配列番号:2、配列番号:8及び配列番号:17に記載の配列を含む外来転写単位(AMPV-10のP転写単位由来の各配列を含む外来転写単位)、配列番号:15、配列番号:3、配列番号:9及び配列番号:18に記載の配列を含む外来転写単位(AMPV-10のM転写単位由来の各配列を含む外来転写単位)、配列番号:14、配列番号:4、配列番号:10及び配列番号:16に記載の配列を含む外来転写単位(AMPV-10のF転写単位由来の各配列を含む外来転写単位)、配列番号:14、配列番号:5、配列番号:11及び配列番号:16に記載の配列を含む外来転写単位(AMPV-10のHN転写単位由来の各配列を含む外来転写単位)、又は、配列番号:14、配列番号:6、配列番号:12及び配列番号:16に記載の配列を含む外来転写単位(AMPV-10のL転写単位由来の各配列を含む外来転写単位)である。
The sequences contained in the foreign transcription unit may be different from each other as long as they are derived from the endogenous transcription unit of avian paramyxovirus (eg, the gene initiation sequence is derived from the NP transcription unit, The 5 'untranslated region may be derived from a P transcription unit), preferably all these sequences are from the same endogenous transcription unit. More specifically, when each of the sequences is derived from an endogenous transcription unit of AMPV-10, it contains at least the sequence described in any one of SEQ ID NOs: 1 to 6 as a 3 'untranslated region, and A foreign transcription unit comprising the sequence described in any of SEQ ID NOs: 7 to 12 as the 5 'non-translated region, and the sequence described in any of SEQ ID NOs: 13 to 15 as a gene initiation sequence And the 3 'untranslated region includes the sequence described in any of SEQ ID NOs: 1 to 6, the 5' untranslated region includes the sequence described in any of SEQ ID NOs: 7 to 12, and gene termination It is a foreign transcription unit comprising the sequence set forth in any of SEQ ID NOs: 16-18 as a sequence. Furthermore, preferably, a foreign transcription unit (a foreign transcription unit comprising a non-translated region derived from an NP transcription unit of AMPV-10) comprising at least the sequence set forth in SEQ ID NO: 1 and SEQ ID NO: 7, at least SEQ ID NO: 2 and A foreign transcription unit comprising the sequence set forth in SEQ ID NO: 8 (a foreign transcription unit comprising a non-translated region derived from the P transcription unit of AMPV-10), a foreign body comprising at least the sequence set forth in SEQ ID NO: 3 and SEQ ID NO: 9 A transcription unit (foreign transcription unit comprising a non-translated region derived from the M transcription unit of AMPV-10), a foreign transcription unit comprising at least the sequence set forth in SEQ ID NO: 4 and SEQ ID NO: 10 (from the F transcription unit for AMPV-10) A translational transcription unit comprising a non-translational region of SEQ ID NO: 5 and at least a sequence as set forth in SEQ ID NO: 5 and SEQ ID NO: 11 A foreign transcription unit containing a translation region) or a foreign transcription unit containing at least the sequence set forth in SEQ ID NO: 6 and SEQ ID NO: 12 (a foreign transcription unit containing a non-translated region derived from the L transcription unit of AMPV-10) And more preferably, a foreign transcription unit comprising the sequence set forth in SEQ ID NO: 13, SEQ ID NO: 1, SEQ ID NO: 7 and SEQ ID NO: 16 (a foreign transcription comprising each sequence derived from an NP transcription unit of AMPV-10) Unit), SEQ ID NO: 14, SEQ ID NO: 2, SEQ ID NO: 8 and SEQ ID NO: 17 as an exogenous transcription unit (foreign transcription unit comprising each sequence derived from P transcription unit of AMPV-10), A foreign transcription unit (a foreign transcription unit containing each sequence derived from the M transcription unit of AMPV-10) comprising the sequence set forth in SEQ ID NO: 15, SEQ ID NO: 3, SEQ ID NO: 9 and SEQ ID NO: 18, SEQ ID NO: 1 SEQ ID NO: 4, SEQ ID NO: 10 and SEQ ID NO: 16 (The foreign transcription unit containing the respective sequences derived from the F transcription unit of AMPV-10) SEQ ID NO: 14, SEQ ID NO: SEQ ID NO: 11, SEQ ID NO: 11 and SEQ ID NO: 16 (SEQ ID NO: 16), or exogenous transcription unit (foreign transcription unit comprising each sequence derived from HN transcription unit of AMPV-10) 6, a foreign transcription unit (a foreign transcription unit comprising each sequence derived from the L transcription unit of AMPV-10) comprising the sequence set forth in SEQ ID NO: 12 and SEQ ID NO: 16.
また、組み換え鳥パラミクソウイルスから発現される外来タンパク質の発現量がより高い傾向にあるという観点から、前記AMPV-10のNP転写単位由来の非翻訳領域を含む外来転写単位又は前記AMPV-10のM転写単位由来の非翻訳領域を含む外来転写単位が好ましく、前記AMPV-10のNP転写単位由来の各配列を含む外来転写単位又は前記AMPV-10のM転写単位由来の各配列を含む外来転写単位が、より好ましい。
In addition, from the viewpoint that the expression level of the foreign protein expressed from the recombinant avian paramyxovirus tends to be higher, the foreign transcription unit comprising the non-translated region derived from the NP transcription unit of the AMPV-10 or the AMPV-10 A foreign transcription unit comprising a non-translational region derived from the M transcription unit is preferred, and a foreign transcription unit comprising each sequence derived from the NP transcription unit of the AMPV-10 or a foreign transcription comprising each sequence derived from the M transcription unit of the AMPV-10 Units are more preferred.
また、組み換え鳥パラミクソウイルスの力価がより高い傾向にあるという観点からは、前記AMPV-10のL転写単位由来の非翻訳領域を含む外来転写単位が好ましく、前記AMPV-10のL転写単位由来の各配列を含む外来転写単位が、より好ましい。
In addition, from the viewpoint that the titer of the recombinant avian paramyxovirus tends to be higher, a foreign transcription unit including a non-translated region derived from the L transcription unit of AMPV-10 is preferable, and the L transcription unit of AMPV-10 is preferable. Foreign transcription units comprising each sequence derived from are more preferred.
また、組み換え鳥パラミクソウイルスの増殖性がより高い傾向にあるという観点からは、前記AMPV-10のHN転写単位由来の非翻訳領域を含む外来転写単位が好ましく、前記AMPV-10のHN転写単位由来の各配列を含む外来転写単位が、より好ましい。
In addition, from the viewpoint that the proliferation of the recombinant avian paramyxovirus tends to be higher, a foreign transcription unit containing a non-translated region derived from the HN transcription unit of AMPV-10 is preferable, and the HN transcription unit of AMPV-10 is preferable. Foreign transcription units comprising each sequence derived from are more preferred.
本発明にかかる外来転写単位において、鳥パラミクソウイルスの内在性転写単位に含まれる上述の各配列と、外来タンパク質をコードするヌクレオチドとは、当該タンパク質を発現できるよう、作動可能的に連結されていればよいが、パラミクソウイルスのゲノム配列は6の倍数である場合に、その複製(RNA合成)は効率良く行なわれるという観点から、本発明にかかる外来転写単位を構成するヌクレオチド数は6の倍数であることが好ましく、組み換え鳥パラミクソウイルスを構成するヌクレオチド数も6の倍数であることがより好ましい(所謂パラミクソウイルスの6のルール(rule of six)については、Kolakofsky D.ら、J Virol.、1998年2月、72(2)、891~899ページ 参照のこと)。
In the foreign transcription unit according to the present invention, the above-mentioned sequences contained in the endogenous transcription unit of avian paramyxovirus and the nucleotide encoding the foreign protein are operably linked so as to express the protein. However, when the genome sequence of paramyxovirus is a multiple of 6, the number of nucleotides constituting the exogenous transcription unit according to the present invention is 6 from the viewpoint that replication (RNA synthesis) is efficiently performed. It is preferable that the number is a multiple, and it is more preferable that the number of nucleotides constituting the recombinant avian paramyxovirus is also a multiple of 6 (for the rule of six of so-called paramyxovirus, see Kolakofsky D. et al., J. Virol., February 1998, 72 (2), pp. 891-899. Of it).
本発明の組み換え鳥パラミクソウイルスにおいて、前述の外来転写単位をコードするマイナス鎖RNAは、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするマイナス鎖RNAに挿入される。外来転写単位が挿入される遺伝子間領域としては特に制限はなく、NP転写単位の遺伝子終結配列とP転写単位の遺伝子開始配列との間にある遺伝子間領域(NP-P遺伝子間領域)、P転写単位の遺伝子終結配列とM転写単位の遺伝子開始配列との間にある遺伝子間領域(P-M遺伝子間領域)、M転写単位の遺伝子終結配列とF転写単位の遺伝子開始配列との間にある遺伝子間領域(M-F遺伝子間領域)、F転写単位の遺伝子終結配列とHN転写単位の遺伝子開始配列との間にある遺伝子間領域(F-HN遺伝子間領域。なお、APMV-6においては、F転写単位の遺伝子終結配列とSH転写単位の遺伝子開始配列との間にある遺伝子間領域(F-SH遺伝子間領域)、SH転写単位の遺伝子終結配列とHN転写単位の遺伝子開始配列との間にある遺伝子間領域(SH-HN遺伝子間領域))、HN転写単位の遺伝子終結配列とL転写単位の遺伝子開始配列との間にある遺伝子間領域(HN-L遺伝子間領域)の少なくともいずれかであれば良いが、タンパク質の発現効率がより良いという観点から、P-M遺伝子間領域が好ましく、またウイルスの増殖効率がより良いという観点から、F-HN遺伝子間領域が好ましい。また、本発明の組み換え鳥パラミクソウイルスが、上述のミニゲノムの形態をとる場合には、外来転写単位をコードするマイナス鎖RNAは、リーダー配列とトレーラー配列との間に挿入されていてもよい。
In the recombinant avian paramyxovirus of the present invention, the minus strand RNA encoding the aforementioned foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between the endogenous transcription units of the avian paramyxovirus. There is no particular limitation on the intergenic region into which the foreign transcription unit is inserted, and an intergenic region (NP-P intergenic region) between the gene termination sequence of the NP transcription unit and the gene initiation sequence of the P transcription unit, P The intergenic region (P-M intergenic region) between the gene termination sequence of transcription unit and the gene initiation sequence of M transcription unit, between the gene termination sequence of M transcription unit and the gene initiation sequence of F transcription unit An intergenic region (M-F intergenic region), an intergenic region between the gene termination sequence of the F transcription unit and the gene start sequence of the HN transcription unit (F-HN intergenic region. In APMV-6) The intergenic region (F-SH intergenic region) between the gene termination sequence of the F transcription unit and the gene initiation sequence of the SH transcription unit, the gene termination sequence of the SH transcription unit and the gene initiation sequence of the HN transcription unit Intergenic region (SH-HN intergenic region), intergenic region (HN-L intergenic region) between gene termination sequence of HN transcription unit and gene start sequence of L transcription unit Although at least one of them may be used, the P-M intergenic region is preferable from the viewpoint of better expression efficiency of the protein, and the F-HN intergenic region is preferred from the viewpoint of better growth efficiency of the virus. In addition, when the recombinant avian paramyxovirus of the present invention takes the form of the above-mentioned minigenome, minus strand RNA encoding a foreign transcription unit may be inserted between the leader sequence and the trailer sequence.
なお、このような組み換え鳥パラミクソウイルスウイルスは、例えば、後述のヌクレオチド構築物及びそれを含むキット、並びにそれらを用いた方法を利用することにより、製造することができる。
Such a recombinant avian paramyxovirus virus can be produced, for example, by using the nucleotide construct described below, a kit containing the same, and a method using the same.
<ワクチン用組成物>
後述の実施例に示すとおり、本発明によれば、上述の組み換え鳥パラミクソウイルスが感染した宿主細胞において、該ウイルスがコードする外来タンパク質を高発現させることができる。そのため、外来タンパク質を感染症を引き起こす病原体の抗原タンパク質とすることにより、前記宿主細胞における当該病原体に対するワクチン効果を増強させることができる。 <Composition for vaccine>
As shown in the following examples, according to the present invention, foreign proteins encoded by the virus can be highly expressed in host cells infected with the above-mentioned recombinant avian paramyxovirus. Therefore, the vaccine effect on the pathogen in the host cell can be enhanced by using the foreign protein as the antigen protein of the pathogen causing the infection.
後述の実施例に示すとおり、本発明によれば、上述の組み換え鳥パラミクソウイルスが感染した宿主細胞において、該ウイルスがコードする外来タンパク質を高発現させることができる。そのため、外来タンパク質を感染症を引き起こす病原体の抗原タンパク質とすることにより、前記宿主細胞における当該病原体に対するワクチン効果を増強させることができる。 <Composition for vaccine>
As shown in the following examples, according to the present invention, foreign proteins encoded by the virus can be highly expressed in host cells infected with the above-mentioned recombinant avian paramyxovirus. Therefore, the vaccine effect on the pathogen in the host cell can be enhanced by using the foreign protein as the antigen protein of the pathogen causing the infection.
したがって、本発明は、上述の組み換え鳥パラミクソウイルスを有効成分として含有する、ワクチン用組成物を提供する。
Therefore, the present invention provides a composition for vaccine containing the above-mentioned recombinant avian paramyxovirus as an active ingredient.
本発明において、「病原体」としては、例えば、ウイルス、細菌、真菌、原虫が挙げられ、より具体的には、インフルエンザウイルス、マレック病ウイルス(MDV)、伝染性喉頭気管炎ウイルス(ILTV)、感染性気管支炎ウイルス(IBV)、伝染性ファブリーキウス嚢病ウイルス(IBDV)、ニワトリ貧血ウイルス(CAV)、レオウイルス、鳥類レトロウイルス、家禽アデノウイルス、シチメンチョウ鼻気管炎ウイルス(TRTV)、ニューキャッスル病ウイルス(NDV)、大腸菌、マイコプラズマ、サルモネラ、カンピロバクター、オルニトバクテリウム、パスツレラ、アイメリア、クリプトスポリジウム原虫が挙げられる。
In the present invention, "pathogen" includes, for example, viruses, bacteria, fungi, protozoa, and more specifically, influenza virus, Marek's disease virus (MDV), infectious laryngo tracheitis virus (ILTV), infection Bronchitis Virus (IBV), Infectious Bursal Disease Virus (IBDV), Chicken Anemia Virus (CAV), Reovirus, Avian retrovirus, Poultry Adenovirus, Turkey rhinotracheitis virus (TRTV), Newcastle Disease Virus (NDV), E. coli, Mycoplasma, Salmonella, Campylobacter, Ornitobacterium, Pasteurella, Eimeria, Cryptosporidium protozoa.
また、これら病原体の抗原タンパク質としては、病原体を構成するタンパク質であり、病原体が感染した際に、その宿主の免疫応答を惹起するタンパク質であれば特に制限はなく、例えば、インフルエンザウイルスにおいては、ヘマグルチニン(HA前駆体、H1、H2、H3、H4、H5、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16等)、マトリックスタンパク質(M1、M2等)、ノイラミニダーゼ(NA1、NA2、NA3、NA4、NA5、NA6、NA7、NA8、NA9等)、非構造タンパク質(NS1、NS2等)、核タンパク質(NP)、ポリメラーゼ(PAポリメラーゼ、PB1ポリメラーゼ1、PB2ポリメラーゼ2等)が挙げられる。
Furthermore, the antigenic proteins of these pathogens are proteins that constitute pathogens, and there is no particular limitation as long as they are proteins that elicit the host's immune response when the pathogen is infected, for example, in influenza virus, hemagglutinin (HA precursor, H1, H2, H3, H4, H5, H7, H8, H9, H11, H12, H13, H14, H15, H16 etc.), matrix proteins (M1, M2 etc.), neuraminidase NA1, NA2, NA3, NA4, NA5, NA6, NA7, NA8, NA9 etc., non-structural proteins (NS1, NS2 etc.), nucleoprotein (NP), polymerases (PA polymerase, PB1 polymerase 1, PB2 polymerase 2 etc.) Can be mentioned.
また、本発明にかかるインフルエンザウイルスとしては、例えば、ヘマグルチニンの構造の違いに基づき分けられるサブタイプ(H1~H16等)、該オウイルスが産生するノイラミニダーゼの種類に応じてさらに分類される亜型(H1N1、H1N2、H1N3、H1N4、H1N5、H1N6、H1N7、H1N8、H1N9、H5N1、H5N2、H5N3、H5N4、H5N5、H5N6、H5N7、H5N8、H5N9、H9N1、H9N2、H9N3、H9N4、H9N5、H9N6、H9N7、H9N8、H9N9等)、分離された場所、分離された順番、分離された年に応じて分類される株(分離株;A/Hong Kong/156/1997、A/duck/Vietnam/2/2007、A/chicken/Indonesia/7/2003、A/Indonesia/CDC596/2006、A/Indonesia/CDC940/2006、A/Egypt/1394-NAMRU3/2007、A/duck/Hunan/127/2005、A/whooper swan/Akita/1/2008、A/chicken/Guiyang/3055/2005、A/Viet Nam/HN31242/2007、A/Chicken/Yunnan/493/2005、A/chicken/Yamaguchi/7/2004、A/Pheasant/HongKong/FY155/2001、A/goose/Guiyang/337/2006、A/goose/Guangxi/914/2004、A/duck/Hubei/wg/2002、A/Beijing/01/2003、A/chicken/Hong Kong/61.9/2002、A/Goose/Shantou/1621/2005等)が挙げられるが、これらに制限されるものではない。
In addition, as the influenza virus according to the present invention, for example, subtypes (H1 to H16, etc.) divided based on the difference in structure of hemagglutinin, subtypes further classified according to types of neuraminidase produced by the O virus N1H1H1N2H18N18H18N10H18N5H1N8H1H6N5H1N8H1H5N4H5N1; H5N8; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H5N1; H9N8, H9N9 etc.) Strains classified according to separated place, separated order, separated year (isolate; A / Hong Kong / 156/1997, A / duck / Vietnam / 2/2007, A / chicken / I donesia / 7/2003, A / Indonesia / CDC596 / 2006, A / Indonesia / CDC940 / 2006, A / Egypt / 1394-NAMRU3 / 2007, A / duck / Hunan / 127/2005, A / whooper swan / Akita / 1 / 2008, A / chicken / Guiyang / 3055/2005, A / Viet Nam / HN 31242/2007, A / Chicken / Yunnan / 493/2005, A / chicken / Yamaguchi / 7/2004, A / Pheasant / Hong Kong / FY155 / 2001, A / goose / Guiyang / 337/2006, A / goose / Guangxi / 914/2004, A / duck / H bei / wg / 2002, A / Beijing / 01/2003, A / chicken / Hong Kong / 61.9 / 2002, A / Goose / Shantou / 1621/2005, etc.), but what is limited thereto Absent.
本発明のワクチン組成物においては、有効成分である上述の組み換え鳥パラミクソウイルスの他、薬理学上許容される担体又は媒体を含み得る。薬理学上許容される担体としては、例えば、安定剤、賦形剤、防腐剤、界面活性剤、キレート剤、結合剤が挙げられる。また、薬理学上許容される媒体としては、例えば、水、生理食塩水、リン酸緩衝液が挙げられる。これら担体及び媒体は、当業者であれば、ワクチン組成物の剤型、使用方法に応じて、当該分野に用いられる公知の物を適宜又は組み合わせて選択して用いることができる。
In the vaccine composition of the present invention, a pharmacologically acceptable carrier or vehicle may be included in addition to the above-mentioned recombinant avian paramyxovirus as the active ingredient. Pharmaceutically acceptable carriers include, for example, stabilizers, excipients, preservatives, surfactants, chelating agents, binders and the like. Moreover, as a pharmacologically acceptable medium, for example, water, physiological saline, phosphate buffer can be mentioned. Those skilled in the art can appropriately select and use known carriers and media known in the art according to the type and method of use of the vaccine composition, as these carriers and vehicles.
また、ワクチン組成物の形態としては、特に制限はなく、例えば、懸濁液の形態であってもよく、凍結乾燥された形態であってもよい。さらに、ワクチン効果を増強するという観点から、本発明のワクチン組成物はアジュバントも含有し得る。アジュバントとしては、例えば、水酸化アルミニウム、リン酸アルミニウム、酸化アルミニウム、水中油又は油中水エマルジョン、サポニン、ミョウバン、CpG DNAが挙げられる。
In addition, the form of the vaccine composition is not particularly limited, and may be, for example, in the form of a suspension or in a lyophilised form. Furthermore, in terms of enhancing the vaccine effect, the vaccine composition of the present invention may also contain an adjuvant. Adjuvants include, for example, aluminum hydroxide, aluminum phosphate, aluminum oxide, oil-in-water or water-in-oil emulsions, saponins, alum, CpG DNA.
本発明のワクチン組成物に含まれる、組み換え鳥パラミクソウイルスの力価としては特に制限はないが、通常105EID50/個体~107EID50/個体であり、好ましくは105.5EID50/個体~106.5EID50/個体であり、より好ましくは106EID50/個体である。
The titer of the recombinant avian paramyxovirus contained in the vaccine composition of the present invention is not particularly limited, but is usually 10 5 EID 50 / individual to 10 7 EID 50 / individual, preferably 10 5.5 EID. 50 / individual to 10 6.5 EID 50 / individual, more preferably 10 6 EID 50 / individual.
また、本発明の組み換え鳥パラミクソウイルスとして、さらに好ましくは、後述の実施例に示すように、当該ウイルスを106EID50にて接種した場合に、HPAIV感染後のニワトリの生存率が50%以上(より好ましくは60%以上、さらに好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上、より好ましくは80%以上、特に好ましくは100%)となるウイルスである。
In addition, as the recombinant avian paramyxovirus of the present invention, more preferably, as shown in the examples below, when the virus is inoculated at 10 6 EID 50 , the survival rate of chicken after HPAIV infection is 50% It is a virus having the above (more preferably 60% or more, further preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, more preferably 80% or more, particularly preferably 100%).
なお、「EID50」とは、発育鶏卵に接種した場合に、その50%が感染するウイルス量を意味する。
Note that the "EID 50", when inoculated into embryonated chicken eggs, means a viral load of 50% is infected.
<病原体の感染等に対する予防方法>
また、本発明は、動物における病原体の感染又は増殖を抑制する方法を提供する。すなわち、本発明の組み換え鳥パラミクソウイルス又は当該ウイルスを有効成分として含有するワクチン組成物を、動物に接種する工程を含む、該動物における病原体の感染又は増殖を抑制する方法をも、本発明は提供する。 <Preventive method against infection of pathogens>
The present invention also provides a method of inhibiting infection or growth of a pathogen in an animal. That is, the present invention also relates to a method for suppressing infection or growth of a pathogen in an animal, comprising the step of inoculating the animal a vaccine composition containing the recombinant avian paramyxovirus of the present invention or the virus as an active ingredient. provide.
また、本発明は、動物における病原体の感染又は増殖を抑制する方法を提供する。すなわち、本発明の組み換え鳥パラミクソウイルス又は当該ウイルスを有効成分として含有するワクチン組成物を、動物に接種する工程を含む、該動物における病原体の感染又は増殖を抑制する方法をも、本発明は提供する。 <Preventive method against infection of pathogens>
The present invention also provides a method of inhibiting infection or growth of a pathogen in an animal. That is, the present invention also relates to a method for suppressing infection or growth of a pathogen in an animal, comprising the step of inoculating the animal a vaccine composition containing the recombinant avian paramyxovirus of the present invention or the virus as an active ingredient. provide.
本発明において接種対象となる「動物」については、組み換え鳥パラミクソウイルスが感染し得る限り特に制限はないが、通常、鳥類であり、例えば、ニワトリ、アヒル、カモ、七面鳥、ウズラ、キジ、オウム、タカ、カラス、ダチョウが挙げられる。また後述の実施例において示すとおり、NDVに対する抗体が生成されている鳥類(ニワトリ等)に、本発明の組み換え鳥パラミクソウイルス等は特に好適に用いられ得る。
The "animal" to be inoculated in the present invention is not particularly limited as long as it can be infected by the recombinant avian paramyxovirus, but it is usually a bird, and examples are chicken, duck, duck, turkey, quail, pheasant, parrot , Hawks, crows, ostrich. In addition, as shown in Examples described later, the recombinant avian paramyxovirus etc. of the present invention can be particularly suitably used for birds (such as chickens) in which an antibody against NDV is produced.
組み換え鳥パラミクソウイルス等の動物への「接種」は、本分野における公知の方法を用いて行なうことができる。このような方法には、鼻内、経口、口鼻及び皮下並びに吸入、眼内、皮内、筋肉内、腹腔内、静脈内、非経口、坐薬又は経皮が含まれるが、これらに限定されない。また、かかる接種方法は、噴霧器、霧吹き、スプレー、注射器、無針注射用具又は微粒子遺伝子銃を用いることによって行なうことができる。
The "inoculation" of animals such as recombinant avian paramyxovirus can be performed using methods known in the art. Such methods include, but are not limited to, intranasal, oral, oronasal and subcutaneous and inhalation, intraocular, intradermal, intramuscular, intraperitoneal, intravenous, parenteral, suppository or transdermal . Also, such inoculation method can be carried out by using a sprayer, a spray, a spray, a syringe, a needleless injection device or a fine particle gene gun.
また、動物への接種スキームは、その剤型、動物の種類、齢及び体重等によって、適宜調整され、免疫学的に有効な量を当該動物に投与し得る限り特に制限はなく、単回又は複数回接種であってもよく、同時に又は順次に接種してもよい。
In addition, the inoculation scheme for an animal is appropriately adjusted according to the dosage form, type of animal, age and body weight, etc., and is not particularly limited as long as an immunologically effective amount can be administered to the animal, single or single It may be multiple inoculations, and may be inoculated simultaneously or sequentially.
<組み換え鳥パラミクソウイルス製造用ヌクレオチド構築物>
本発明は、上述の組み換え鳥パラミクソウイルスの製造において有用な、下記ヌクレオチド構築物をも提供する。 <A nucleotide construct for recombinant bird paramyxovirus production>
The present invention also provides the following nucleotide construct useful in the production of the above-mentioned recombinant avian paramyxovirus.
本発明は、上述の組み換え鳥パラミクソウイルスの製造において有用な、下記ヌクレオチド構築物をも提供する。 <A nucleotide construct for recombinant bird paramyxovirus production>
The present invention also provides the following nucleotide construct useful in the production of the above-mentioned recombinant avian paramyxovirus.
鳥パラミクソウイルスをコードするヌクレオチドに、外来タンパク質をコードするヌクレオチドを挿入するための部位を含むクローニング領域が、挿入されている、組み換え鳥パラミクソウイルスをコードするヌクレオチド構築物であって、
前記クローニング領域において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、前記部位と、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記クローニング領域が、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするヌクレオチドに挿入されている、ヌクレオチド構築物。
なお、本発明のヌクレオチド構築物において、前記鳥パラミクソウイルスが、ミニゲノムの形態をとる場合には、クローニング領域は、リーダー配列をコードするヌクレオチドとトレーラー配列をコードするヌクレオチドとの間に挿入されていてもよい。 A nucleotide construct encoding a recombinant avian paramyxovirus, wherein a cloning region containing a site for inserting a nucleotide encoding a foreign protein is inserted into the nucleotide encoding avian paramyxovirus,
In the cloning region, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the aforementioned site, the 3' untranslated region of the avian paramyxovirus, and the avian paramyxovirus gene start sequence from the 5 'side Is linked to the gene termination sequence of paramyxovirus, and
A nucleotide construct, wherein the cloning region is inserted into a nucleotide encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
In the nucleotide construct of the present invention, when the avian paramyxovirus takes the form of a minigenome, the cloning region is inserted between the nucleotide encoding the leader sequence and the nucleotide encoding the trailer sequence. It is also good.
前記クローニング領域において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、前記部位と、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記クローニング領域が、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするヌクレオチドに挿入されている、ヌクレオチド構築物。
なお、本発明のヌクレオチド構築物において、前記鳥パラミクソウイルスが、ミニゲノムの形態をとる場合には、クローニング領域は、リーダー配列をコードするヌクレオチドとトレーラー配列をコードするヌクレオチドとの間に挿入されていてもよい。 A nucleotide construct encoding a recombinant avian paramyxovirus, wherein a cloning region containing a site for inserting a nucleotide encoding a foreign protein is inserted into the nucleotide encoding avian paramyxovirus,
In the cloning region, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the aforementioned site, the 3' untranslated region of the avian paramyxovirus, and the avian paramyxovirus gene start sequence from the 5 'side Is linked to the gene termination sequence of paramyxovirus, and
A nucleotide construct, wherein the cloning region is inserted into a nucleotide encoding an intergenic region between the endogenous transcription units of avian paramyxovirus.
In the nucleotide construct of the present invention, when the avian paramyxovirus takes the form of a minigenome, the cloning region is inserted between the nucleotide encoding the leader sequence and the nucleotide encoding the trailer sequence. It is also good.
本発明において、ヌクレオチド構築物を構成するヌクレオチドは、DNA(一本鎖DNA、二重鎖DNA)であってもよく、またプラス鎖RNAであってもよいが、化学的に安定であるため、鳥パラミクソウイルスの配列を改変し易く、また後述の組み換え鳥パラミクソウイルスを生成し易いという観点から、DNAが好ましい。また、DNAによって構成される場合には、ヌクレオチド構築物は、例えば、プラスミドベクター、ファージベクター、ウイルスベクターの形態をとり得る。
In the present invention, the nucleotides constituting the nucleotide construct may be DNA (single-stranded DNA, double-stranded DNA), or may be positive-strand RNA, but are chemically stable. DNA is preferred from the viewpoint of easy modification of the sequence of paramyxovirus and easy generation of recombinant avian paramyxovirus described later. Also, when constituted by DNA, the nucleotide construct may, for example, take the form of a plasmid vector, a phage vector, a viral vector.
「鳥パラミクソウイルスをコードするヌクレオチド」は、例えば、当該ウイルスから抽出したゲノムRNA(マイナス鎖RNA)を鋳型とし、RNA依存性RNAポリメラーゼを用いた合成反応を行なうことによって、プラス鎖RNAとして得ることができる。また前記ゲノムRNA(マイナス鎖RNA)を鋳型として、RNA依存性DNAポリメラーゼを用いた合成反応(逆転写反応)を行なうことによって、プラス鎖DNA、ひいては二重鎖DNAとして得ることができる。なお、ウイルスからのゲノムRNA抽出及びRNA依存性ポリメラーゼを用いた合成方法は公知である。また、本発明において、「鳥パラミクソウイルスをコードするヌクレオチド」は、鳥パラミクソウイルスのゲノムRNA全長をコードするものであってもよく、当該ゲノムの一部(例えば、NP転写単位、P転写単位、M転写単位、F転写単位、SH転写単位、HN転写単位及びL転写単位なる群から選択される少なくとも1の転写単位)が欠損しているもの(所謂、ミニゲノム)をコードするものであってもよい。
The “nucleotide encoding avian paramyxovirus” can be obtained, for example, as a plus-strand RNA by performing a synthesis reaction using RNA-dependent RNA polymerase, using genomic RNA (minus strand RNA) extracted from the virus as a template be able to. Also, by performing a synthesis reaction (reverse transcription reaction) using an RNA-dependent DNA polymerase using the genomic RNA (minus strand RNA) as a template, it can be obtained as a plus strand DNA and thus a double strand DNA. In addition, genomic RNA extraction from viruses and synthesis methods using RNA-dependent polymerase are known. Furthermore, in the present invention, the “nucleotide encoding avian paramyxovirus” may encode the full-length genomic RNA of avian paramyxovirus, and a part of the genome (eg, NP transcription unit, P transcription) A unit (the so-called minigenome) which is deficient in at least one transcription unit selected from the group consisting of the unit, M transcription unit, F transcription unit, SH transcription unit, HN transcription unit and L transcription unit May be
また、鳥パラミクソウイルスをコードするヌクレオチドに挿入される「クローニング領域」は、鳥パラミクソウイルスの遺伝子開始配列、鳥パラミクソウイルスの5’非翻訳領域、外来タンパク質をコードするヌクレオチドを挿入するための部位、鳥パラミクソウイルスの3’非翻訳領域及び鳥パラミクソウイルスの遺伝子終結配列の配列に基づき、当業者であれば、市販のDNA自動合成機を用いて、化学的に合成することができる。また、前述のとおり、調製した鳥パラミクソウイルスをコードするヌクレオチドを鋳型として、当業者であれば、公知の遺伝子組み換え技術(PCR、制限酵素処理、部位特異的変異導入法等)を適宜用いて調製することもできる。なお、前記部位としては、外来タンパク質をコードするヌクレオチドを挿入することができればよく特に制限はないが、通常、制限酵素認識配列が用いられ、また当該部位は、複数の制限酵素認識配列を有する部位(所謂、マルチクローニングサイト)であってもよい。
In addition, the "cloning region" inserted into the nucleotide encoding avian paramyxovirus is for inserting the gene initiation sequence of avian paramyxovirus, the 5 'untranslated region of avian paramyxovirus, and a nucleotide encoding a foreign protein The person skilled in the art can use the commercially available automatic DNA synthesizer to synthesize chemically based on the sequence of the site of 3, the untranslated region of the avian paramyxovirus 3 'and the gene termination sequence of the avian paramyxovirus it can. In addition, as described above, the nucleotide encoding the prepared avian paramyxovirus is used as a template, and those skilled in the art appropriately use known genetic recombination techniques (PCR, restriction enzyme treatment, site-directed mutagenesis, etc.) as appropriate. It can also be prepared. The site is not particularly limited as long as it can insert a nucleotide encoding a foreign protein, but usually a restriction enzyme recognition sequence is used, and the site is a site having a plurality of restriction enzyme recognition sequences. It may be (a so-called multi cloning site).
また、このようにして得られるクローニング領域の鳥パラミクソウイルスをコードするヌクレオチドへの挿入も、当業者であれば、公知の遺伝子組み換え技術(PCR、制限酵素処理、部位特異的変異導入法等)を適宜用いて行なうことができる。
In addition, insertion of the thus obtained cloning region into the nucleotide encoding avian paramyxovirus can also be carried out using known gene recombination techniques (PCR, restriction enzyme treatment, site-directed mutagenesis, etc.) by those skilled in the art. As appropriate.
本発明において、前述のヌクレオチド構築物は、更に、前記鳥パラミクソウイルスをコードするヌクレオチドの5’末側に、DNA依存性RNAポリメラーゼが認識するプロモーター配列が連結しており、該ヌクレオチドの3’末側に、5’側から順に、リボザイム配列と前記DNA依存性RNAポリメラーゼが認識するターミネーター配列とが連結していてもよい。
In the present invention, the nucleotide construct described above further comprises a promoter sequence recognized by a DNA-dependent RNA polymerase linked to the 5 'end of the nucleotide encoding the avian paramyxovirus, and the 3' end of the nucleotide. The ribozyme sequence and the terminator sequence recognized by the DNA-dependent RNA polymerase may be linked to the side sequentially from the 5 'side.
ヌクレオチド構築物がこのような構成をとることにより、後述の形質転換細胞に導入された場合、DNA依存性RNAポリメラーゼが前記プロモーター配列を認識し、組み換え鳥パラミクソウイルスをコードするマイナス鎖RNAが転写される。さらに、当該組み換えウイルスが、感染サイクルを開始するためには、当該マイナス鎖RNAの3’末側の正確な切断が必要とされるが、当該切断は、前記リボザイムの自己切断によって達成されることになる。
When the nucleotide construct is introduced into a transformed cell described below by adopting such a configuration, the DNA-dependent RNA polymerase recognizes the promoter sequence, and the minus-strand RNA encoding the recombinant avian paramyxovirus is transcribed. Ru. Furthermore, in order for the recombinant virus to initiate an infection cycle, an exact cleavage at the 3 'end of the minus strand RNA is required, but the cleavage is achieved by self-cleavage of the ribozyme. become.
したがって、DNA依存性RNAポリメラーゼが認識するプロモーター配列と前記鳥パラミクソウイルスをコードするヌクレオチドの5’末との結合は、当該プロモーター配列の制御下にて前記マイナス鎖RNAの転写が行われ得る限り、特に制限はなく、直接的な結合であってもよく、また他のヌクレオチドを介した間接的な結合であってもよい。
Therefore, the binding of the promoter sequence recognized by the DNA-dependent RNA polymerase to the 5 'end of the nucleotide encoding the avian paramyxovirus can be performed as long as transcription of the negative strand RNA can be performed under the control of the promoter sequence. There is no particular limitation, and it may be a direct bond or an indirect bond via another nucleotide.
DNA依存性RNAポリメラーゼとしては、DNAを鋳型としてRNAを転写できるポリメラーゼであれば特に制限はなく、例えば、T7 RNAポリメラーゼ、T3 RNAポリメラーゼ、Sp6 RNAポリメラーゼ、真核生物由来のRNAポリメラーゼI、II又はIIIが挙げられるが、より転写効率が高いという観点から、T7 RNAポリメラーゼが好ましい。
The DNA-dependent RNA polymerase is not particularly limited as long as it can transcribe RNA using DNA as a template, for example, T7 RNA polymerase, T3 RNA polymerase, Sp6 RNA polymerase, RNA polymerase I, II or eukaryote-derived RNA polymerase Although III may be mentioned, T7 RNA polymerase is preferred from the viewpoint of higher transcription efficiency.
前記DNA依存性RNAポリメラーゼのターミネーターと前記鳥パラミクソウイルスをコードするヌクレオチドの3’末との間に配置されるリボザイム配列としては、好ましくは、自己切断活性を有するリボザイム配列であり、より好ましくは、デルタ肝炎ウイルス由来のリボザイム配列、ハンマーヘッド型リボザイム配列、ヘアピン型リボザイム配列が挙げられる。
The ribozyme sequence disposed between the terminator of the DNA-dependent RNA polymerase and the 3 'end of the nucleotide encoding the avian paramyxovirus is preferably a ribozyme sequence having a self-cleaving activity, more preferably These include ribozyme sequences derived from Hepatitis delta virus, hammerhead ribozyme sequences, and hairpin ribozyme sequences.
また、本発明において、ヌクレオチド構築物は、上記配列の他、後述の実施例において示すとおり、大腸菌等を用いたクローニングのために、薬剤耐性遺伝子(アンピシリン耐性遺伝子等)、当該遺伝子の発現制御サイト(AmpRプロモーター等)、複製起点(f1複製起点、pBR322複製起点等)を含むものであってもよい。
Furthermore, in the present invention, the nucleotide construct has, in addition to the above sequences, a drug resistance gene (ampicillin resistance gene etc.), an expression control site of the gene (for example, ampicillin resistance gene) for cloning using E. coli etc. It may contain an AmpR promoter etc.), an origin of replication (f1 origin of replication, pBR322 origin of replication etc).
また、以下に示すように、組み換え鳥パラミクソウイルスを生成(製造)するためには、宿主において発現させることを所望する、外来タンパク質をコードするヌクレオチドを、上述の部位に挿入する必要がある。
In addition, as described below, in order to produce (produce) recombinant avian paramyxovirus, it is necessary to insert a nucleotide encoding a foreign protein, which is desired to be expressed in a host, at the above-mentioned site.
外来タンパク質については上述のとおりであり、該タンパク質をコードするヌクレオチドについても、特に制限はないが、宿主細胞における当該タンパク質の発現効率を向上させるという観点から、当該宿主におけるコドンの使用頻度に合わせて配列が改変(コドンが最適化)されたヌクレオチドであることが望ましい。
The foreign protein is as described above, and the nucleotide encoding the protein is not particularly limited, but from the viewpoint of improving the expression efficiency of the protein in the host cell, according to the usage frequency of codons in the host It is desirable that the sequence is a modified (codon-optimized) nucleotide.
<組み換え鳥パラミクソウイルスの製造方法>
上述のヌクレオチド構築物を用いることによって、以下のようにして、本発明の組み換え鳥パラミクソウイルスを製造することができる。 <Method of producing recombinant bird paramyxovirus>
By using the above-described nucleotide construct, the recombinant avian paramyxovirus of the present invention can be produced as follows.
上述のヌクレオチド構築物を用いることによって、以下のようにして、本発明の組み換え鳥パラミクソウイルスを製造することができる。 <Method of producing recombinant bird paramyxovirus>
By using the above-described nucleotide construct, the recombinant avian paramyxovirus of the present invention can be produced as follows.
前記DNA依存性RNAポリメラーゼと前記鳥パラミクソウイルスのコアタンパク質とを発現する形質転換細胞に、外来タンパク質をコードするヌクレオチドが前記部位に挿入されている上述のヌクレオチド構築物を導入する工程と、
前記組み換え鳥パラミクソウイルスを、前記細胞の培養物から回収する工程とを含む、方法。 Introducing into the transformed cell expressing the DNA-dependent RNA polymerase and the core protein of the avian paramyxovirus a nucleotide construct as described above in which a nucleotide encoding a foreign protein is inserted at the site;
Recovering the recombinant avian paramyxovirus from the culture of the cells.
前記組み換え鳥パラミクソウイルスを、前記細胞の培養物から回収する工程とを含む、方法。 Introducing into the transformed cell expressing the DNA-dependent RNA polymerase and the core protein of the avian paramyxovirus a nucleotide construct as described above in which a nucleotide encoding a foreign protein is inserted at the site;
Recovering the recombinant avian paramyxovirus from the culture of the cells.
本発明の製造方法において、上述のヌクレオチド構築物が導入される「細胞」としては、当該構築物がコードする組み換え鳥パラミクソウイルスを生成し得る限り、特に制限はなく、例えば、Vero細胞、DF1細胞、ニワトリ初代培養細胞(ニワトリ胎児線維芽(CEF)細胞、ニワトリ胎児(CEP)細胞)、293T細胞、MDCK細胞、MDBK細胞が挙げられるが、遺伝子導入効率及びウイルスの増殖効率がより良いという観点から、Vero細胞が好ましい。
In the production method of the present invention, the "cell" into which the nucleotide construct described above is introduced is not particularly limited as long as it can produce the recombinant avian paramyxovirus encoded by the construct, for example, Vero cell, DF1 cell, Chicken primary cultured cells (chicken fetal fibroblast (CEF) cells, chicken fetal (CEP) cells), 293T cells, MDCK cells, MDBK cells can be mentioned, but from the viewpoint of better gene transfer efficiency and virus growth efficiency, Vero cells are preferred.
また、これら細胞においては、上記プロモーター制御下にてヌクレオチド構築物がコードするマイナス鎖RNA(組み換え鳥パラミクソウイルスのゲノムRNA)を発現させ、更に当該マイナス鎖RNAからプラス鎖RNAを転写させるために、上述のDNA依存性RNAポリメラーゼと鳥パラミクソウイルスのコアタンパク質とが発現するように、形質を転換されている必要がある。
Moreover, in these cells, in order to express the minus strand RNA encoded by the nucleotide construct (recombinant avian paramyxovirus genomic RNA) under the control of the above-mentioned promoter and further to transcribe the plus strand RNA from the minus strand RNA, It has to be transformed so that the above-mentioned DNA-dependent RNA polymerase and the avian paramyxovirus core protein can be expressed.
「コアタンパク質」としては、前記マイナス鎖RNAからプラス鎖RNAを転写させ得るタンパク質であればよく、ヌクレオタンパク質(NP)及びRNA依存性RNAポリメラーゼを構成するホスホタンパク質(P)及びRNA依存性RNAポリメラーゼ(L)が挙げられる。また、これらは鳥パラミクソウイルス由来であればよいが、ヌクレオチド構築物がコードする組み換え鳥パラミクソウイルスと同じ由来であることが好ましい。
The “core protein” may be any protein capable of transcribing positive strand RNA from the negative strand RNA, and includes phosphoprotein (P) and RNA-dependent RNA polymerase constituting nucleoprotein (NP) and RNA-dependent RNA polymerase (L) is mentioned. Also, they may be derived from avian paramyxovirus, but are preferably derived from the same recombinant avian paramyxovirus encoded by the nucleotide construct.
形質転換としては、特に制限はなく、これらタンパク質を前記細胞にて発現させることのできるヌクレオチド構築物(プラスミドベクター、ファージベクター、ウイルスベクター等)を、公知の手法を用い、当該細胞に導入することによって行なうことができる。
There is no particular limitation on the transformation, and by introducing a nucleotide construct (a plasmid vector, a phage vector, a virus vector, etc.) capable of expressing these proteins in the cells, the cells are introduced into the cells using a known method. It can be done.
かかる形質転換は、組み換え鳥パラミクソウイルスをコードするヌクレオチド構築物の導入の前に行なってもよく、同時に行なってもよく、また後に行なってもよい。
Such transformation may occur prior to, simultaneously with, or after the introduction of the nucleotide construct encoding the recombinant avian paramyxovirus.
ヌクレオチド構築物を細胞に導入するための公知の手法としては、特に制限はなく、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法、エレクトロポレーション法、マイクロインジェクション法が挙げられる。
There is no particular limitation on known methods for introducing the nucleotide construct into cells, and calcium phosphate method, lipofection method, DEAE dextran method, electroporation method and microinjection method can be mentioned.
このようにして、組み換え鳥パラミクソウイルスをコードするヌクレオチド構築物が導入された形質転換細胞においては、前述のとおり、当該ウイルスをコードするプラス鎖RNAが転写され、更にそれを鋳型として、前記ウイルスがコードするウイルスタンパク質及び外来タンパク質が発現することとなる。そして、組み換え鳥パラミクソウイルスをコードするマイナス鎖RNAと当該ウイルスタンパク質とが結合等することにより、組み換え鳥パラミクソウイルスが、前記細胞の培養物において増殖することとなる。
Thus, in the transformed cell into which the nucleotide construct encoding the recombinant avian paramyxovirus has been introduced, as described above, the plus strand RNA encoding the virus is transcribed, and the virus is further used as a template. The encoded viral protein and foreign protein will be expressed. Then, when the negative strand RNA encoding the recombinant avian paramyxovirus is linked to the virus protein, the recombinant avian paramyxovirus will be propagated in the culture of the cells.
細胞の「培養物」としては、組み換え鳥パラミクソウイルスを含有し得るものであればよく、形質転換細胞を培地で培養することによって得られる、当該ウイルスが感染した前記細胞、該細胞の分泌産物及び該細胞の代謝産物等を含有する培地のことであり、それらの希釈物、濃縮物を含む。
The “culture” of the cells may be any as long as it can contain a recombinant avian paramyxovirus, and the cells infected with the virus, which are obtained by culturing transformed cells in a culture medium, the secretory product of the cells And culture media containing the metabolites of the cells, etc., including dilutions and concentrates thereof.
このような培養物から、組み換え鳥パラミクソウイルスを「回収」する方法としては特に制限はなく、濾過、遠心分離、吸着及びカラム精製等の公知のウイルス精製・分離方法を用いることによって、また適宜組み合わせて用いることによって行なうことができる。
There is no particular limitation on the method of “recovering” the recombinant avian paramyxovirus from such culture, and it is possible to appropriately use known virus purification / separation methods such as filtration, centrifugation, adsorption and column purification. It can be carried out by using in combination.
さらに、本発明においては、このようにして得られた組み換え鳥パラミクソウイルスを、後述の実施例に示すとおり、ニワトリ初代培養細胞等の該ウイルスに感染し易い細胞を追播することにより、増殖させてもよい。また、かかる細胞の代わりに、または当該細胞と併せて、孵化卵(例えば、ニワトリの卵又はウズラの卵)に接種することにより、増殖させることができる。
Furthermore, in the present invention, the recombinant avian paramyxovirus thus obtained is proliferated by additionally seeding cells susceptible to infection with the virus, such as primary cultured chicken cells, as shown in the following examples. You may Alternatively, they can be proliferated by inoculating embryonated eggs (for example, chicken eggs or quail eggs) instead of or in combination with such cells.
<組み換え鳥パラミクソウイルスを製造するためのキット>
上述のとおり、本発明のヌクレオチド構築物等を用いることによって、組み換え鳥パラミクソウイルスを製造することができる。したがって、本発明は、以下の組み換え鳥パラミクソウイルスを製造するためのキットをも提供する。 <Kit for producing recombinant bird paramyxovirus>
As described above, recombinant avian paramyxovirus can be produced by using the nucleotide construct of the present invention. Accordingly, the present invention also provides a kit for producing the following recombinant avian paramyxovirus.
上述のとおり、本発明のヌクレオチド構築物等を用いることによって、組み換え鳥パラミクソウイルスを製造することができる。したがって、本発明は、以下の組み換え鳥パラミクソウイルスを製造するためのキットをも提供する。 <Kit for producing recombinant bird paramyxovirus>
As described above, recombinant avian paramyxovirus can be produced by using the nucleotide construct of the present invention. Accordingly, the present invention also provides a kit for producing the following recombinant avian paramyxovirus.
下記(a)~(e)からなる群から選択される少なくとも一の物質及び使用説明書を含む、本発明の組み換え鳥パラミクソウイルスを製造するためのキット
(a)本発明のヌクレオチド構築物
(b)前記DNA依存性RNAポリメラーゼを発現することができるヌクレオチド構築物
(c)前記鳥パラミクソウイルスのコアタンパク質を発現することができるヌクレオチド構築物
(d)(a)~(c)からなる群から選択される少なくとも一のヌクレオチド構築物を導入するための細胞
(e)前記DNA依存性RNAポリメラーゼ及び/又は前記鳥パラミクソウイルスのコアタンパク質とを発現する形質転換細胞。 A kit for producing a recombinant avian paramyxovirus of the present invention, which comprises at least one substance selected from the group consisting of the following (a) to (e) and instructions for use: (a) a nucleotide construct of the present invention (b A nucleotide construct capable of expressing the DNA-dependent RNA polymerase (c) A nucleotide construct capable of expressing the core protein of the avian paramyxovirus (d) selected from the group consisting of (a) to (c) A cell for introducing at least one nucleotide construct (e) A transformed cell expressing the DNA-dependent RNA polymerase and / or the core protein of the avian paramyxovirus.
(a)本発明のヌクレオチド構築物
(b)前記DNA依存性RNAポリメラーゼを発現することができるヌクレオチド構築物
(c)前記鳥パラミクソウイルスのコアタンパク質を発現することができるヌクレオチド構築物
(d)(a)~(c)からなる群から選択される少なくとも一のヌクレオチド構築物を導入するための細胞
(e)前記DNA依存性RNAポリメラーゼ及び/又は前記鳥パラミクソウイルスのコアタンパク質とを発現する形質転換細胞。 A kit for producing a recombinant avian paramyxovirus of the present invention, which comprises at least one substance selected from the group consisting of the following (a) to (e) and instructions for use: (a) a nucleotide construct of the present invention (b A nucleotide construct capable of expressing the DNA-dependent RNA polymerase (c) A nucleotide construct capable of expressing the core protein of the avian paramyxovirus (d) selected from the group consisting of (a) to (c) A cell for introducing at least one nucleotide construct (e) A transformed cell expressing the DNA-dependent RNA polymerase and / or the core protein of the avian paramyxovirus.
以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be more specifically described based on examples, but the present invention is not limited to the following examples.
(組換えウイルスの作製)
APMV-10ゲノムを、RT-PCRにより4つの断片に分けて増幅し、pCR-XL-TOPOベクター(Thermo Fisher Scientific社製)にクローニングした。ニューカッスル病ウイルス(NDV)ゲノムをクローニングしているpNDV/B1プラスミド(Nakaya,T.ら、J Virol 75:11868-11873.2001 参照)のベクター部分(すなわち、pSL1180(アマシャム ファルマシア バイオテック社製))を制限酵素切断部位で切り出し、クローニングしたAPMV-10ゲノムを切り出したベクターにIn-Fusion HDクローニングキット(クロンテック社製)を用いてアッセンブルした。このようにして構築したAPMV-10ゲノムRNA転写プラスミド pAPMV-10の模式図を、図1に示す。また、APMV-10ゲノムを構成する転写単位及びそれら転写単位間の領域(遺伝子間領域)の配列を、上記表2に示す。 (Preparation of recombinant virus)
The APMV-10 genome was divided into four fragments by RT-PCR, amplified, and cloned into pCR-XL-TOPO vector (Thermo Fisher Scientific). The vector portion of the pNDV / B1 plasmid (see Nakaya, T. et al., J Virol 75: 11868-11873. 2001) cloning the Newcastle disease virus (NDV) genome (ie, pSL1180 (manufactured by Amersham Pharmacia Biotech)) Was excised at the restriction enzyme cleavage site, and the cloned APMV-10 genome was excised using the In-Fusion HD cloning kit (Clontech) to assemble the vector. A schematic diagram of the APMV-10 genomic RNA transcription plasmid pAPMV-10 constructed in this way is shown in FIG. The sequences of transcription units constituting the APMV-10 genome and the region between the transcription units (intergenic region) are shown in Table 2 above.
APMV-10ゲノムを、RT-PCRにより4つの断片に分けて増幅し、pCR-XL-TOPOベクター(Thermo Fisher Scientific社製)にクローニングした。ニューカッスル病ウイルス(NDV)ゲノムをクローニングしているpNDV/B1プラスミド(Nakaya,T.ら、J Virol 75:11868-11873.2001 参照)のベクター部分(すなわち、pSL1180(アマシャム ファルマシア バイオテック社製))を制限酵素切断部位で切り出し、クローニングしたAPMV-10ゲノムを切り出したベクターにIn-Fusion HDクローニングキット(クロンテック社製)を用いてアッセンブルした。このようにして構築したAPMV-10ゲノムRNA転写プラスミド pAPMV-10の模式図を、図1に示す。また、APMV-10ゲノムを構成する転写単位及びそれら転写単位間の領域(遺伝子間領域)の配列を、上記表2に示す。 (Preparation of recombinant virus)
The APMV-10 genome was divided into four fragments by RT-PCR, amplified, and cloned into pCR-XL-TOPO vector (Thermo Fisher Scientific). The vector portion of the pNDV / B1 plasmid (see Nakaya, T. et al., J Virol 75: 11868-11873. 2001) cloning the Newcastle disease virus (NDV) genome (ie, pSL1180 (manufactured by Amersham Pharmacia Biotech)) Was excised at the restriction enzyme cleavage site, and the cloned APMV-10 genome was excised using the In-Fusion HD cloning kit (Clontech) to assemble the vector. A schematic diagram of the APMV-10 genomic RNA transcription plasmid pAPMV-10 constructed in this way is shown in FIG. The sequences of transcription units constituting the APMV-10 genome and the region between the transcription units (intergenic region) are shown in Table 2 above.
図1に示すとおり、pAPMV-10は、pSL1180に、T7プロモーター配列、APMV-10の全長ゲノム、D型肝炎ウイルスリボザイム配列及びT7ターミネーター配列を、挿入してなるものである。なお、D型肝炎ウイルスリボザイム配列は、転写されたRNAの3’端を切断するためのものであり、組換えウイルスゲノムには含まれない。また、本実施例で用いるAPMV-10のゲノムには、P遺伝子とM遺伝子の間にある非翻訳領域(P遺伝子ORFと終結配列との間)に制限酵素(RsrII)切断配列を挿入している。
As shown in FIG. 1, pAPMV-10 is obtained by inserting the T7 promoter sequence, the full-length genome of APMV-10, the hepatitis D virus ribozyme sequence and the T7 terminator sequence into pSL1180. The hepatitis D virus ribozyme sequence is for cleaving the 3 'end of the transcribed RNA, and is not included in the recombinant viral genome. In addition, in the genome of APMV-10 used in this example, a restriction enzyme (RsrII) cleavage sequence is inserted into the untranslated region (between P gene ORF and termination sequence) located between P gene and M gene. There is.
さらに、pAPMV-10のP-M遺伝子間に、PT-PCRにより増幅した外来遺伝子(抗原遺伝子)を挿入し、抗原遺伝子を含む完全長APMV-10ゲノムRNA転写プラスミドpAPMV-10/HAを構築した。抗原遺伝子には、ニワトリコドンに最適化した高病原性鳥インフルエンザウイルス(HPAIV)HA遺伝子を用い、両隣にAPMV-10内在性の各転写単位における非翻訳領域(NCR)を、その両端を遺伝子開始配列(GS)及び遺伝子終結配列(GE)で挟んだものを用いた(図2 参照)。
Furthermore, a foreign gene (antigen gene) amplified by PT-PCR was inserted between the PM genes of pAPMV-10 to construct a full-length APMV-10 genomic RNA transcription plasmid pAPMV-10 / HA containing the antigen gene. . For the antigen gene, a highly pathogenic avian influenza virus (HPAIV) HA gene optimized for chicken codons is used, and the untranslated region (NCR) in each transcription unit of APMV-10 endogenously flanked on both sides, and gene initiation at both ends The one flanked by the sequence (GS) and the gene termination sequence (GE) was used (see FIG. 2).
また、対照実験用の組換えウイルスとして、P遺伝子の後ろのNCRにあるRsrII切断配列に抗原遺伝子を挿入した組換えウイルス(10/HA及び10/opHA)を作製した。図3に示すとおり、これらの組み換えウイルスにおいて、抗原遺伝子は、その開始コドンとGSとの前に2bpのNCR、終止コドンとGEとの間に113bpのNCRを備え、P遺伝子の転写単位中に挿入されたことになる。
Also, as a recombinant virus for control experiments, recombinant viruses (10 / HA and 10 / opHA) were prepared in which the antigen gene was inserted into the RsrII cleavage sequence located in the NCR behind the P gene. As shown in FIG. 3, in these recombinant viruses, the antigen gene has a 2 bp NCR before its start codon and GS, and a 113 bp NCR between the stop codon and GE, in the transcription unit of the P gene. It will be inserted.
各組換えウイルスに挿入した外来転写単位の配列を表3示す。
The sequences of the foreign transcription unit inserted into each recombinant virus are shown in Table 3.
なお、表3の「外来遺伝子」の項目において、「HA」は高病原性鳥インフルエンザウイルス(HPAIV)HA遺伝子そのものを各組換えウイルスにおいて挿入したことを示し、「opHA」は、ニワトリコドンに最適化したHPAIVのHA遺伝子を各組換えウイルスにおいて挿入したことを示す。また、当該表に示すとおり、NCRを組み込んだ組換えウイルスは、各NCRと対応するGS及びGEを使用した(表2 参照)。10/HA、10/opHA及びcontrolにおけるGS及びGEとして、M遺伝子の転写単位におけるそれらを用いた。
In the item of "foreign gene" in Table 3, "HA" indicates that highly pathogenic avian influenza virus (HPAIV) HA gene itself was inserted in each recombinant virus, and "opHA" is most suitable for chicken codons It shows that the transformed HPA IV HA gene was inserted in each recombinant virus. In addition, as shown in the table, recombinant viruses incorporating NCR used GS and GE corresponding to each NCR (see Table 2). Those in the transcription unit of the M gene were used as GS and GE in 10 / HA, 10 / opHA and control.
また、図4に示すとおり、APMV-10のNP遺伝子、P遺伝子及びL遺伝子を、RT-PCRにより増幅し、タンパク質発現用ベクターpCAGGSに挿入し、CMVエンハンサー及びチキンβアクチンプロモーター下流に、クローニング部位に挿入されたAPMV-10の各遺伝子及びPolyAを有する、タンパク質発現用プラスミド pCAGGS-NP、pCAGGS-P及びpCAGGS-Lを各々構築した。
In addition, as shown in FIG. 4, the NPMV gene, AP gene and AP gene of APMV-10 are amplified by RT-PCR, inserted into the protein expression vector pCAGGS, and downstream of the CMV enhancer and chicken β-actin promoter, cloning site Plasmids for protein expression pCAGGS-NP, pCAGGS-P, and pCAGGS-L, each of which has each gene of APMV-10 inserted in and PolyA, were constructed respectively.
そして、図5に示すとおり、以上のとおりにして調製したpAPMV又はpAPMV-10/HAと、pCAGGS-NP、pCAGGS-P及びpACGGS-Lとを、T7ポリメラーゼを発現する組換えワクシニアウイルスを感染させた培養細胞(Vero細胞)に、遺伝子導入試薬(Mirus社製、製品名:TransIT(登録商標)-LT1試薬)を用いてコトランスフェクションした。1日後、ニワトリ初代培養細胞(胎児線維芽(CEF)細胞)を追播し、その1日後に上清及び細胞懸濁液を回収した。回収した上清及び細胞懸濁液を、10日齢発育鶏卵の漿尿膜腔に接種し、37℃で48時間培養した後、冷却し、漿尿膜腔液を回収した。回収した漿尿膜腔液をウイルス液とし、各種試験に用いた。
Then, as shown in FIG. 5, the pAPMV or pAPMV-10 / HA prepared as described above and pCAGGS-NP, pCAGGS-P and pACGGS-L were infected with a recombinant vaccinia virus expressing T7 polymerase. The cultured cells (Vero cells) were cotransfected with a gene transfer reagent (Mirus Co., product name: TransIT (registered trademark) -LT1 reagent). One day later, primary chicken cultured cells (fetal fibroblast (CEF) cells) were replated, and one day later, the supernatant and cell suspension were collected. The collected supernatant and cell suspension were inoculated into the chorioallantoic cavity of 10-day-old embryonated chicken eggs, cultured at 37 ° C. for 48 hours, cooled, and the chorioallantoic fluid collected. The collected allantoic fluid was used as a virus solution for various tests.
なお、上記工程にて、ワクシニアウイルスMVA/T7株が感染した培養細胞内では、T7RNAポリメラーゼが発現し、T7プロモーターを有するpAPMV又はpAPMV/HAから完全長APMVゲノムRNAが合成される。また、pCAGGS-NP、pCAGGS-P及びpCAGGS-Lからは、APMV-10のNPタンパク質、Pタンパク質及びLタンパク質が合成される。NP、P及びLタンパク質はウイルスRNAの転写複製に関わるタンパク質であるため、前記完全長APMV-10ゲノムRNAを鋳型として、APMV-10ウイルスのmRNA転写及びRNAゲノム複製が開始される。そして、各ウイルスタンパク質の合成が起こり、最終的に組換えAPMV又はpAPMV/HAが培養細胞内で作出される。さらに、これらの組換えAPMV又はAPMV/HAは、株化細胞及びニワトリ初代培養細胞に感染し、増殖する。
In the above steps, T7 RNA polymerase is expressed in cultured cells infected with the vaccinia virus MVA / T7 strain, and full-length APMV genomic RNA is synthesized from pAPMV or pAPMV / HA having a T7 promoter. In addition, NPMV, P protein and L protein of APMV-10 are synthesized from pCAGGS-NP, pCAGGS-P and pCAGGS-L. Since NP, P and L proteins are proteins involved in transcriptional replication of viral RNA, mRNA transcription and RNA genomic replication of APMV-10 virus are initiated using the full-length APMV-10 genomic RNA as a template. Then, synthesis of each viral protein takes place, and finally, recombinant APMV or pAPMV / HA is produced in cultured cells. Furthermore, these recombinant APMV or APMV / HA infect and propagate in cell lines and primary chicken culture cells.
(感染細胞での抗原発現量の比較)
ニワトリ初代培養細胞(CEF細胞)に、moi=1(細胞あたり1感染単位のウイルスが感染する量)を接種し、24時間後に細胞をSDS-PAGE用サンプルバッファー(ATTO社製、製品名:EzApply)で溶解して回収した。回収した溶解液を、全自動キャピラリー電気泳動イムノアッセイシステム(製品名:Wes、プロテインシンプル社製)にて泳動し、抗HA2ニワトリモノクローナル抗体及びHRP標識抗ニワトリIgY抗体を用い、抗原タンパク質を検出した。タンパク質量の測定は、Compassソフトウェア(プロテインシンプル社製)を用いて行った。得られた結果を図6及び表4に示す。 (Comparison of antigen expression level in infected cells)
Chicken primary cultured cells (CEF cells) were inoculated with moi = 1 (the amount infected with 1 infectious unit of virus per cell), and after 24 hours, the cells were subjected to SDS-PAGE sample buffer (manufactured by ATTO, product name: EzApply) ) And recovered. The collected lysate was electrophoresed by a fully automatic capillary electrophoresis immunoassay system (product name: Wes, manufactured by Protein Simple Co., Ltd.), and an antigen protein was detected using an anti-HA2 chicken monoclonal antibody and an HRP-labeled anti-chicken IgY antibody. The amount of protein was measured using Compass software (manufactured by Protein Simple Co., Ltd.). The obtained results are shown in FIG. 6 and Table 4.
ニワトリ初代培養細胞(CEF細胞)に、moi=1(細胞あたり1感染単位のウイルスが感染する量)を接種し、24時間後に細胞をSDS-PAGE用サンプルバッファー(ATTO社製、製品名:EzApply)で溶解して回収した。回収した溶解液を、全自動キャピラリー電気泳動イムノアッセイシステム(製品名:Wes、プロテインシンプル社製)にて泳動し、抗HA2ニワトリモノクローナル抗体及びHRP標識抗ニワトリIgY抗体を用い、抗原タンパク質を検出した。タンパク質量の測定は、Compassソフトウェア(プロテインシンプル社製)を用いて行った。得られた結果を図6及び表4に示す。 (Comparison of antigen expression level in infected cells)
Chicken primary cultured cells (CEF cells) were inoculated with moi = 1 (the amount infected with 1 infectious unit of virus per cell), and after 24 hours, the cells were subjected to SDS-PAGE sample buffer (manufactured by ATTO, product name: EzApply) ) And recovered. The collected lysate was electrophoresed by a fully automatic capillary electrophoresis immunoassay system (product name: Wes, manufactured by Protein Simple Co., Ltd.), and an antigen protein was detected using an anti-HA2 chicken monoclonal antibody and an HRP-labeled anti-chicken IgY antibody. The amount of protein was measured using Compass software (manufactured by Protein Simple Co., Ltd.). The obtained results are shown in FIG. 6 and Table 4.
図6及び表4に示すとおり、NCRを抗原遺伝子に加えたNP-NCR、P-NCR、M-NCR、F-NCR、HN-NCR、L-NCRは、10/HA、10/opHA及びNCRを含まないcontrolに比べて、それぞれ11.6~31.8倍、18.3~50.2倍及び199.3~545.3倍の抗原タンパク質を感染細胞に発現することが明らかになった。
As shown in FIG. 6 and Table 4, NP-NCR, P-NCR, M-NCR, F-NCR, HN-NCR, L-NCR in which NCR was added to the antigen gene were 10 / HA, 10 / opHA and NCR. Was found to express 11.6 to 31.8 times, 18.3 to 50.2 times and 199.3 to 545.3 times the antigen protein in infected cells, respectively, as compared to the control not containing .
(発育鶏卵での増殖性)
10日齢発育鶏卵の漿尿膜腔に100EID50(感染単位)のウイルスを接種し、12、24、36、48時間後に漿尿膜腔液を回収した。回収した漿尿膜腔液の力価は、発育鶏卵を用いて測定した。漿尿膜腔をPBSで10倍階段希釈し、0.2mlずつ各希釈5個の10日齢発育鶏卵の漿尿膜腔に接種した。37℃で48時間培養した後、漿尿膜腔液を回収し、ニワトリ赤血球を用いた赤血球凝集試験によりウイルス増殖の有無を判定した。ウイルス力価の算出は、Reed and Muenchの計算方法により行った。得られた結果を図7に示す。 (Proliferative in developing chicken eggs)
The chorioallantoic cavity of 10-day-old embryonated chicken eggs was inoculated with 100 EID 50 (infective unit) of virus, and the allantoic fluid was collected after 12, 24, 36, 48 hours. The titer of the collected chorioallantoic fluid was measured using embryonated chicken eggs. The chorioallantoic cavity was serially diluted 10-fold with PBS, and 0.2 ml each was inoculated into the chorioallantoic cavity of five 10-day-old embryonated chicken eggs at each dilution. After culturing at 37 ° C. for 48 hours, the allantoic fluid was collected, and the presence or absence of virus growth was determined by a hemagglutination test using chicken erythrocytes. The virus titer was calculated by the Reed and Muench calculation method. The obtained result is shown in FIG.
10日齢発育鶏卵の漿尿膜腔に100EID50(感染単位)のウイルスを接種し、12、24、36、48時間後に漿尿膜腔液を回収した。回収した漿尿膜腔液の力価は、発育鶏卵を用いて測定した。漿尿膜腔をPBSで10倍階段希釈し、0.2mlずつ各希釈5個の10日齢発育鶏卵の漿尿膜腔に接種した。37℃で48時間培養した後、漿尿膜腔液を回収し、ニワトリ赤血球を用いた赤血球凝集試験によりウイルス増殖の有無を判定した。ウイルス力価の算出は、Reed and Muenchの計算方法により行った。得られた結果を図7に示す。 (Proliferative in developing chicken eggs)
The chorioallantoic cavity of 10-day-old embryonated chicken eggs was inoculated with 100 EID 50 (infective unit) of virus, and the allantoic fluid was collected after 12, 24, 36, 48 hours. The titer of the collected chorioallantoic fluid was measured using embryonated chicken eggs. The chorioallantoic cavity was serially diluted 10-fold with PBS, and 0.2 ml each was inoculated into the chorioallantoic cavity of five 10-day-old embryonated chicken eggs at each dilution. After culturing at 37 ° C. for 48 hours, the allantoic fluid was collected, and the presence or absence of virus growth was determined by a hemagglutination test using chicken erythrocytes. The virus titer was calculated by the Reed and Muench calculation method. The obtained result is shown in FIG.
図7に示すとおり、ウイルス増殖がやや遅いものもあるが、48時間後のウイルス力価は同程度であった。したがって、NCRを付与した組換えウイルスは、NDV等と同様に発育鶏卵を使用してワクチンを製造することが可能であることが明らかになった。なお、L-NCRは、48時間後のウイルス力価が最も高く、ワクチンの製造コストが安くなることが期待できる。また、HN-NCR、10/opHA及びcontrolは、接種してから24時間後において高い増殖性が認められた。一方、M-NCR及びNP-NCRは、接種してから24時間後における増殖性は、他のウイルスと比べやや遅いものであった。
As shown in FIG. 7, although virus growth was somewhat slow, virus titer after 48 hours was similar. Therefore, it became clear that it is possible to produce a vaccine using an embryonated chicken egg as well as NDV etc. by the recombinant virus which gave NCR. L-NCR has the highest virus titer after 48 hours and can be expected to reduce the cost of vaccine production. In addition, HN-NCR, 10 / opHA and control showed high proliferative activity 24 hours after inoculation. On the other hand, M-NCR and NP-NCR were slightly slower in growth than the other viruses 24 hours after inoculation.
(ワクチン効果試験)
NDVに対する免疫の付与
先ず、2週齢のニワトリに弱毒NDV B1株を106EID50点眼投与し、2週間後の4週齢時にβプロピオラクトンで不活化したNDV B1株を10000HAU筋肉内投与した。 (Vaccine efficacy test)
Immunization to NDV First, attenuated NDV B1 was administered by 10 6 EID 50 instillation to 2-week-old chicken, and β-propiolactone-inactivated NDV B1 was administered intramuscularly 10000 HAU at 4 weeks two weeks later. did.
NDVに対する免疫の付与
先ず、2週齢のニワトリに弱毒NDV B1株を106EID50点眼投与し、2週間後の4週齢時にβプロピオラクトンで不活化したNDV B1株を10000HAU筋肉内投与した。 (Vaccine efficacy test)
Immunization to NDV First, attenuated NDV B1 was administered by 10 6 EID 50 instillation to 2-week-old chicken, and β-propiolactone-inactivated NDV B1 was administered intramuscularly 10000 HAU at 4 weeks two weeks later. did.
組換えウイルスでのワクチネーション
次に、3週間後の7週齢時に、翼静脈より血液を採取した後、組換えAPMV-10/HAを106EID50点眼投与した。 Vaccination with recombinant virus Next, at 7 weeks of age three weeks later, blood was collected from the wing vein, and recombinant APMV-10 / HA was administered with 10 6 EID 50 by eye drops.
次に、3週間後の7週齢時に、翼静脈より血液を採取した後、組換えAPMV-10/HAを106EID50点眼投与した。 Vaccination with recombinant virus Next, at 7 weeks of age three weeks later, blood was collected from the wing vein, and recombinant APMV-10 / HA was administered with 10 6 EID 50 by eye drops.
HPAIVでの攻撃
そして、ワクチン接種2週間後の9週齢時に、翼静脈より血液を採取した後、HPAIV A/chicken/Yamaguchi/7/2004(H5N1)株を106EID50経鼻接種した。2日目及び4日目に、喉頭及び総排泄腔よりスワブを採取した。10日間症状を観察し、死亡率を算出した。採取したスワブ中に含まれるウイルス力価は、発育鶏卵を用いて算出した。また、採取した血液中の抗体価は、赤血球凝集阻止(HI)試験によって測定した。得られた結果を表5に示す。 After challenge with HPAIV and at 9 weeks ofage 2 weeks after vaccination, blood was collected from the wing vein, and then HPAIV A / chicken / Yamaguchi / 7/2004 (H5N1) strain was intranasally inoculated at 10 6 EID 50 . On days 2 and 4, swabs were taken from the larynx and the general cavity. The symptoms were observed for 10 days and mortality was calculated. The virus titer contained in the collected swab was calculated using embryonated chicken eggs. Moreover, the antibody titer in the collected blood was measured by the hemagglutination inhibition (HI) test. The obtained results are shown in Table 5.
そして、ワクチン接種2週間後の9週齢時に、翼静脈より血液を採取した後、HPAIV A/chicken/Yamaguchi/7/2004(H5N1)株を106EID50経鼻接種した。2日目及び4日目に、喉頭及び総排泄腔よりスワブを採取した。10日間症状を観察し、死亡率を算出した。採取したスワブ中に含まれるウイルス力価は、発育鶏卵を用いて算出した。また、採取した血液中の抗体価は、赤血球凝集阻止(HI)試験によって測定した。得られた結果を表5に示す。 After challenge with HPAIV and at 9 weeks of
表5に示すとおり、NCRを付与した組換えウイルスで免疫したニワトリは、HPAIVで攻撃した場合、臨床症状を示すことなく、100%生存した。HPAIV攻撃後のウイルスの排泄は、NP-NCR、F-NCR及びHN-NCRでは検出されず、P-NCR、M-NCR及びL-NCRでは、10羽中1~2羽より検出されたが、そのウイルス力価は低かった。攻撃時のHPAIVに対するHI抗体価は、NCRを付与した組換えウイルスで免疫した多くの個体で検出され、特にHN-NCRでは10羽中8羽でHI抗体価の上昇が認められた。
As shown in Table 5, chickens immunized with NCR-given recombinant virus survived 100% without any clinical symptoms when challenged with HPAIV. Virus excretion after HPAIV challenge was not detected by NP-NCR, F-NCR and HN-NCR, but was detected by P-NCR, M-NCR and L-NCR from 1 to 2 out of 10 birds. , Its virus titer was low. The HI antibody titer against HPAIV at the time of challenge was detected in many individuals immunized with the NCR-added recombinant virus, and HN-NCR in particular showed an increase in HI antibody titer in 8 out of 10 birds.
NCRを付与していない10/HA及び10/opHAで免疫したニワトリは、ウイルス攻撃により25%及び50%にとどまり、感染ニワトリからのウイルス排泄が100%確認された。また、HPAIV攻撃時のHI価はほとんどのニワトリにおいて検出限界以下であった。
Chickens immunized with 10 / HA and 10 / opHA without NCR remained at 25% and 50% by virus challenge, and 100% virus elimination from infected chickens was confirmed. In addition, the HI titer at the time of HPAIV challenge was below the detection limit in most chickens.
これらのことから、NCRを付与した組換えウイルスは、付与していない組換えウイルスと比べ、そのワクチン効果が増強されていることが確認された。
From these facts, it was confirmed that the vaccine effect of the NCR-added recombinant virus was enhanced as compared to the non-added recombinant virus.
(赤血球凝集阻止試験)
血清を55℃で30分間熱処理し、補体を非働化した。PBSで希釈した血清25μLに、8HAに調整したHPAIV A/chicken/Yamaguchi/7/2004(H5N1)株を25μL加え、30分間静置した。PBSに0.55%の割合でニワトリ赤血球を加えた血球浮遊液を50μL加え、45分後に赤血球の凝集の有無を判定した。赤血球の凝集が起こらない血清の最大希釈を、HI抗体価とした。 (Hemagglutination inhibition test)
The serum was heat treated at 55 ° C. for 30 minutes to inactivate complement. To 25 μL of serum diluted with PBS, 25 μL of HPAIV A / chicken / Yamaguchi / 7/2004 (H5N1) strain adjusted to 8 HA was added and allowed to stand for 30 minutes. 50 μL of a blood cell suspension obtained by adding chicken erythrocytes to PBS at a ratio of 0.55% was added, and after 45 minutes, it was determined whether or not there was aggregation of erythrocytes. The maximum dilution of serum in which red blood cell aggregation did not occur was taken as the HI antibody titer.
血清を55℃で30分間熱処理し、補体を非働化した。PBSで希釈した血清25μLに、8HAに調整したHPAIV A/chicken/Yamaguchi/7/2004(H5N1)株を25μL加え、30分間静置した。PBSに0.55%の割合でニワトリ赤血球を加えた血球浮遊液を50μL加え、45分後に赤血球の凝集の有無を判定した。赤血球の凝集が起こらない血清の最大希釈を、HI抗体価とした。 (Hemagglutination inhibition test)
The serum was heat treated at 55 ° C. for 30 minutes to inactivate complement. To 25 μL of serum diluted with PBS, 25 μL of HPAIV A / chicken / Yamaguchi / 7/2004 (H5N1) strain adjusted to 8 HA was added and allowed to stand for 30 minutes. 50 μL of a blood cell suspension obtained by adding chicken erythrocytes to PBS at a ratio of 0.55% was added, and after 45 minutes, it was determined whether or not there was aggregation of erythrocytes. The maximum dilution of serum in which red blood cell aggregation did not occur was taken as the HI antibody titer.
(抗原遺伝子挿入部位の検討)
抗原遺伝子を挿入する部位がP-M間以外でも、NCR挿入によって抗原の発現量が増加するかを調べるため、F-HN転写単位間に抗原遺伝子を挿入した組換えウイルスFHN-HA、FHN-opHA及びFHN-M-NCRを作製した(図8及び表6 参照)。なお、表6において、組み換えウイルスFHN-HA及びFHN-opHAの3’非翻訳領域及び5’非翻訳領域は、配列番号ではなく、配列そのものを示す。 (Examination of antigen gene insertion site)
In order to investigate whether the expression level of the antigen is increased by NCR insertion even if the site to insert the antigen gene is not between P and M, recombinant viruses FHN-HA and FHN- with the antigen gene inserted between F-HN transcription units opHA and FHN-M-NCR were produced (see FIG. 8 and Table 6). In Table 6, the 3 'untranslated region and the 5' untranslated region of the recombinant viruses FHN-HA and FHN-opHA indicate not the sequence numbers but the sequences themselves.
抗原遺伝子を挿入する部位がP-M間以外でも、NCR挿入によって抗原の発現量が増加するかを調べるため、F-HN転写単位間に抗原遺伝子を挿入した組換えウイルスFHN-HA、FHN-opHA及びFHN-M-NCRを作製した(図8及び表6 参照)。なお、表6において、組み換えウイルスFHN-HA及びFHN-opHAの3’非翻訳領域及び5’非翻訳領域は、配列番号ではなく、配列そのものを示す。 (Examination of antigen gene insertion site)
In order to investigate whether the expression level of the antigen is increased by NCR insertion even if the site to insert the antigen gene is not between P and M, recombinant viruses FHN-HA and FHN- with the antigen gene inserted between F-HN transcription units opHA and FHN-M-NCR were produced (see FIG. 8 and Table 6). In Table 6, the 3 'untranslated region and the 5' untranslated region of the recombinant viruses FHN-HA and FHN-opHA indicate not the sequence numbers but the sequences themselves.
そして、これらF-HN転写単位間に抗原遺伝子を挿入した組換えウイルスについて、感染細胞でのタンパク質発現量及びワクチン効果を調べた。得られた結果を図9及び表7に示す。
And about the recombinant virus which inserted the antigen gene between these F-HN transcription units, the protein expression amount in an infected cell and the vaccine effect were investigated. The obtained results are shown in FIG. 9 and Table 7.
図9に示した結果から明らかなように、感染細胞におけるタンパク質発現量は、M遺伝子のNCRを付与したものが他に比べ有意に高かった。また、抗原遺伝子の挿入位置をP-M転写単位間とした場合同様(表5等参照)に、挿入位置をF-HN転写単位間とした場合にも、表7に示すとおり、そのワクチン効果も高いことも明らかになった。
As is clear from the results shown in FIG. 9, the amount of protein expression in infected cells was significantly higher in those to which NCR of M gene was imparted than in the others. Furthermore, as shown in Table 7, vaccine effects are also obtained when the insertion position is between F-HN transcription units, as in the case where the insertion position of the antigen gene is between PM transcription units (see Table 5 etc.). It also became clear that it was expensive.
したがって、APMVの非翻訳領域によって挟まれた抗原遺伝子(外来遺伝子)を含む転写単位の挿入は、APMVの内在性の各転写単位間にある遺伝子間領域であれば特に制限されることなく、前記遺伝子がコードするタンパク質の発現量を向上できることが、確認された。
Therefore, the insertion of the transcription unit containing the antigen gene (foreign gene) flanked by the untranslated region of APMV is not particularly limited as long as it is an intergenic region between the endogenous transcription units of APMV. It was confirmed that the expression level of the protein encoded by the gene can be improved.
(抗原遺伝子についての検討)
上述のとおり、本発明によれば、HA遺伝子がコードするタンパク質の発現量を向上できることが明らかになった。そこで次に、外来遺伝子としてHA遺伝子以外の遺伝子(ルシフェラーゼ遺伝子)を用いた場合にも、本発明によれば、当該遺伝子がコードするタンパク質の発現量を向上することができることを、以下に示す方法にて確認した。 (Examination of antigen gene)
As described above, it has been revealed that the present invention can improve the expression level of the protein encoded by the HA gene. Therefore, next, even when a gene other than the HA gene (luciferase gene) is used as the foreign gene, according to the present invention, the method shown below can improve the expression level of the protein encoded by the gene. It confirmed by.
上述のとおり、本発明によれば、HA遺伝子がコードするタンパク質の発現量を向上できることが明らかになった。そこで次に、外来遺伝子としてHA遺伝子以外の遺伝子(ルシフェラーゼ遺伝子)を用いた場合にも、本発明によれば、当該遺伝子がコードするタンパク質の発現量を向上することができることを、以下に示す方法にて確認した。 (Examination of antigen gene)
As described above, it has been revealed that the present invention can improve the expression level of the protein encoded by the HA gene. Therefore, next, even when a gene other than the HA gene (luciferase gene) is used as the foreign gene, according to the present invention, the method shown below can improve the expression level of the protein encoded by the gene. It confirmed by.
(ミニゲノム転写系の構築)
ルシフェラーゼ遺伝子がコードするタンパク質発現量における、APMV-10非翻訳領域による向上効果を確認するため、APMV-10のゲノムを模したミニゲノム転写系(ミニゲノム転写プラスミド)を用いた。 (Construction of mini-genome transcription system)
In order to confirm the improvement effect of the APMV-10 untranslated region on the protein expression amount encoded by the luciferase gene, a minigenome transcription system (minigenome transcription plasmid) that mimics the genome of APMV-10 was used.
ルシフェラーゼ遺伝子がコードするタンパク質発現量における、APMV-10非翻訳領域による向上効果を確認するため、APMV-10のゲノムを模したミニゲノム転写系(ミニゲノム転写プラスミド)を用いた。 (Construction of mini-genome transcription system)
In order to confirm the improvement effect of the APMV-10 untranslated region on the protein expression amount encoded by the luciferase gene, a minigenome transcription system (minigenome transcription plasmid) that mimics the genome of APMV-10 was used.
APMV-10のミニゲノム転写プラスミドは、図10に示すとおり、pCMV-GLuc2(NEW ENGLAND BioLabs社製)のpolyA配列とCMVプロモーターとの間に、D型肝炎リボザイム配列、APMV-10のLeader配列、APMV-10の遺伝子開始配列、ルシフェラーゼ遺伝子、APMV-10の遺伝子終結配列、APMV-10のTrailer配列及びハンマーヘッド型リボザイムを挿入することにより構築した。なお、前記ルシフェラーゼ遺伝子の配列は、ヒトコドンに最適化したガウシアルシフェラーゼ遺伝子を用いた。
The minigenome transcription plasmid of APMV-10, as shown in FIG. 10, is a hepatitis D ribozyme sequence, a leader sequence of APMV-10, an APMV between the polyA sequence of pCMV-GLuc2 (manufactured by NEW ENGLAND BioLabs) and the CMV promoter. It was constructed by inserting a gene start sequence of -10, a luciferase gene, a gene termination sequence of APMV-10, a trailer sequence of APMV-10 and a hammerhead ribozyme. In addition, the sequence of the said luciferase gene used the Gaussia luciferase gene optimized to the human codon.
ミニゲノム転写プラスミドにより転写されたRNAは、リボザイムにより切断され、3‘末より順にAPMV-10のLeader配列、APMV-10の遺伝子開始配列、ルシフェラーゼ遺伝子、APMV-10の遺伝子終結配列、APMV-10のTrailer配列が並んだRNAとなる。
The RNA transcribed by the minigenome transcription plasmid is cleaved by the ribozyme, and the leader sequence of APMV-10, the gene start sequence of APMV-10, the gene termination sequence of the luciferase gene, the gene termination sequence of APMV-10, APMV-10 in order from the 3 'end It becomes RNA in which the Trailer sequence is arranged.
また、図11及び表8に示すとおり、ルシフェラーゼ遺伝子がコードするタンパク質発現量における、APMV-10非翻訳領域による向上効果を確認するため、前述のミニゲノム転写プラスミドにおいて、ルシフェラーゼ遺伝子の両端にAPMV-10のF又はHN遺伝子の非翻訳領域を付与し、2種類の転写プラスミド(Luc-F-NCR及びLuc-HN-NCR)を作製した。また、コントロールとして、非翻訳領域付与しない転写プラスミド(Luc-blank)も作製した。
In addition, as shown in FIG. 11 and Table 8, in order to confirm the improvement effect of the APMV-10 untranslated region on the protein expression amount encoded by the luciferase gene, in the minigenome transcription plasmid described above, APMV-10 at both ends of the luciferase gene The untranslated region of the F or HN gene was added to generate two transcription plasmids (Luc-F-NCR and Luc-HN-NCR). In addition, as a control, a transcription plasmid (Luc-blank) to which a non-translated region was not added was also prepared.
なお、表8において、「6の倍数への調整配列」については、配列番号ではなく、配列そのものを示す。また、当該配列は、上述の「パラミクソウイルスの6のルール」を充たすために各転写プラスミドに設けた。
In addition, in Table 8, about "the adjustment | control arrangement | sequence to the multiple of 6", not sequence number but the arrangement | sequence itself is shown. In addition, the relevant sequences were provided in each transcription plasmid in order to satisfy the above-mentioned "6 rules of paramyxovirus".
(ルシフェラーゼ活性の測定)
図11に示すとおり、前述の各ミニゲノム転写プラスミドと、APMV-10のポリメラーゼ発現プラスミド(pCAGGS-NP、pCAGGS-P及びpCAGGS-L)を、12穴細胞培養プレートに2.8×105/wellで播種したVero細胞に、TransIT(登録商標)-LT1 Reagent(TAKARA社製)を用いてトランスフェクションし、48時間後に培養液を回収した。回収した培養液のルシフェラーゼ活性を、Dual-Luciferase(登録商標) Reporter Assay System(プロメガ社製)を用いて測定した。得られた結果を図12に示す。 (Measurement of luciferase activity)
As shown in FIG. 11, each mini-genome transcription plasmid described above, and a polymerase expression plasmid of APMV-10 (pCAGGS-NP, pCAGGS-P and pCAGGS-L) in a 12-well cell culture plate at 2.8 × 10 5 / well The Transfected Vero cells were transfected with TransIT (registered trademark) -LT1 Reagent (manufactured by TAKARA), and after 48 hours, the culture fluid was recovered. The luciferase activity of the collected culture solution was measured using Dual-Luciferase (registered trademark) Reporter Assay System (manufactured by Promega). The obtained result is shown in FIG.
図11に示すとおり、前述の各ミニゲノム転写プラスミドと、APMV-10のポリメラーゼ発現プラスミド(pCAGGS-NP、pCAGGS-P及びpCAGGS-L)を、12穴細胞培養プレートに2.8×105/wellで播種したVero細胞に、TransIT(登録商標)-LT1 Reagent(TAKARA社製)を用いてトランスフェクションし、48時間後に培養液を回収した。回収した培養液のルシフェラーゼ活性を、Dual-Luciferase(登録商標) Reporter Assay System(プロメガ社製)を用いて測定した。得られた結果を図12に示す。 (Measurement of luciferase activity)
As shown in FIG. 11, each mini-genome transcription plasmid described above, and a polymerase expression plasmid of APMV-10 (pCAGGS-NP, pCAGGS-P and pCAGGS-L) in a 12-well cell culture plate at 2.8 × 10 5 / well The Transfected Vero cells were transfected with TransIT (registered trademark) -LT1 Reagent (manufactured by TAKARA), and after 48 hours, the culture fluid was recovered. The luciferase activity of the collected culture solution was measured using Dual-Luciferase (registered trademark) Reporter Assay System (manufactured by Promega). The obtained result is shown in FIG.
なお、前記試験(トランスフェクション、培養液の回収及びルシフェラーゼ活性の測定)は、各検体2wellずつの細胞を対象として行ない、別々に3回の試験を実施した。
The above tests (transfection, recovery of culture solution and measurement of luciferase activity) were performed on cells of 2 wells of each sample as targets, and three tests were performed separately.
各ミニゲノム転写プラスミドを導入した培養細胞の細胞上清のルシフェラーゼ活性を測定した結果、図12に示すとおり、APMV-10のHN遺伝子の非翻訳領域がルシフェラーゼ遺伝子に付与してあるLuc-HN-NCRは、付与していないLuc-blankに比べ20倍以上の高い活性を示した。また、F遺伝子の非翻訳領域がルシフェラーゼ遺伝子に付与ししてあるLuc-F-NCRにおいても、Luc-blankに比べ約3倍の高い活性を示した。
As a result of measuring the luciferase activity of the cell supernatant of cultured cells into which each minigenome transcription plasmid has been introduced, as shown in FIG. 12, Luc-HN-NCR in which the untranslated region of HN gene of APMV-10 is imparted to the luciferase gene Showed 20 times higher activity than Luc-blank which was not given. In addition, Luc-F-NCR, in which the untranslated region of the F gene is added to the luciferase gene, also showed about 3 times higher activity than Luc-blank.
以上のことから、発現するタンパク質がルシフェラーゼの場合でも、APMV-10の非翻訳領域の付与により、高病原性鳥インフルエンザウイルスのHA遺伝子の場合と同様に、発現が増強されることが確認された。
From the above, even when the protein to be expressed was luciferase, it was confirmed that the addition of the untranslated region of APMV-10 enhanced the expression as in the case of the HA gene of highly pathogenic avian influenza virus .
以上説明したように、本発明によれば、宿主において、病原体抗原等の外来タンパク質の発現量を増加させ、ひいては病原体に対するワクチン効果を増強することが可能となる。特に、ニューカッスル病ウイルス(NDV)に対する抗体を保持するニワトリにおいても、本発明によれば、高病原性鳥インフルエンザウイルス(HPAIV)に対するワクチン効果を発揮させることが可能となる。
As described above, according to the present invention, it is possible to increase the expression level of foreign proteins such as pathogen antigens in a host, and thus to enhance the vaccine effect against pathogens. In particular, even in chickens that retain antibodies against Newcastle disease virus (NDV), according to the present invention, it is possible to exert a vaccine effect against highly pathogenic avian influenza virus (HPAIV).
したがって、本発明の組み換え鳥パラミクソウイルスは、HPAIVの予防等において極めて有用である。
Therefore, the recombinant avian paramyxovirus of the present invention is extremely useful in the prevention of HPAIV and the like.
配列番号:25
<223> コドンが最適化された配列
配列番号:26
<223> 合成コンストラクト
配列番号:29
<223> ルシフェラーゼ遺伝子 合成コンストラクト
配列番号:30
<223> 合成コンストラクト SEQ ID NO: 25
<223> SEQ ID NO: 26 with codon optimization
<223> Synthetic construct SEQ ID NO: 29
<223> Luciferase gene synthetic construct SEQ ID NO: 30
<223> Synthetic Constructs
<223> コドンが最適化された配列
配列番号:26
<223> 合成コンストラクト
配列番号:29
<223> ルシフェラーゼ遺伝子 合成コンストラクト
配列番号:30
<223> 合成コンストラクト SEQ ID NO: 25
<223> SEQ ID NO: 26 with codon optimization
<223> Synthetic construct SEQ ID NO: 29
<223> Luciferase gene synthetic construct SEQ ID NO: 30
<223> Synthetic Constructs
Claims (15)
- 鳥パラミクソウイルスをコードするマイナス鎖RNAに、外来転写単位をコードするマイナス鎖RNAが挿入されている、組み換え鳥パラミクソウイルスであって、
前記外来転写単位において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、外来タンパク質をコードするヌクレオチドと、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記外来転写単位をコードするマイナス鎖RNAが、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするマイナス鎖RNAに挿入されている、組み換え鳥パラミクソウイルス。 A recombinant avian paramyxovirus, wherein a negative strand RNA encoding a foreign transcription unit is inserted into a negative strand RNA encoding avian paramyxovirus,
In the said foreign transcription unit, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the nucleotide encoding the foreign protein, and the 3' non-avian paramyxovirus, in order from the 5 'side The translation region is linked to the gene termination sequence of avian paramyxovirus, and
A recombinant avian paramyxovirus, wherein the minus strand RNA encoding the foreign transcription unit is inserted into the minus strand RNA encoding an intergenic region between endogenous transcription units of avian paramyxovirus. - 鳥パラミクソウイルス血清型10に由来する、請求項1に記載の組み換え鳥パラミクソウイルス。 The recombinant avian paramyxovirus according to claim 1, which is derived from avian paramyxovirus serotype 10.
- 前記5’非翻訳領域が、配列番号:1~6のいずれかに記載のヌクレオチド配列からなる領域であり、前記3’非翻訳領域が、配列番号:7~12のいずれかに記載のヌクレオチド配列からなる領域である、請求項1又は2に記載の組み換え鳥パラミクソウイルス。 The 5 'untranslated region is a region consisting of the nucleotide sequence set forth in any of SEQ ID NOs: 1 to 6, and the 3' untranslated region is a nucleotide sequence set forth in any of SEQ ID NOs: 7 to 12. The recombinant avian paramyxovirus according to claim 1 or 2, which is a region consisting of
- 前記外来タンパク質が、病原体由来の抗原タンパク質である、請求項1~3のうちのいずれか一項に記載の組み換え鳥パラミクソウイルス。 The recombinant avian paramyxovirus according to any one of claims 1 to 3, wherein the foreign protein is an antigen protein derived from a pathogen.
- 前記外来タンパク質が、インフルエンザウイルスのヘマグルチニンタンパク質である、請求項1~4のうちのいずれか一項に記載の組み換え鳥パラミクソウイルス。 The recombinant avian paramyxovirus according to any one of claims 1 to 4, wherein the foreign protein is a hemagglutinin protein of influenza virus.
- 請求項1~5のうちのいずれか一項に記載の組み換え鳥パラミクソウイルスを有効成分として含有する、ワクチン用組成物。 A composition for a vaccine comprising the recombinant avian paramyxovirus according to any one of claims 1 to 5 as an active ingredient.
- 鳥パラミクソウイルスをコードするヌクレオチドに、外来タンパク質をコードするヌクレオチドを挿入するための部位を含むクローニング領域が、挿入されている、組み換え鳥パラミクソウイルスをコードするヌクレオチド構築物であって、
前記クローニング領域において、5’側から順に、鳥パラミクソウイルスの遺伝子開始配列と、鳥パラミクソウイルスの5’非翻訳領域と、前記部位と、鳥パラミクソウイルスの3’非翻訳領域と、鳥パラミクソウイルスの遺伝子終結配列とが連結しており、かつ、
前記クローニング領域が、鳥パラミクソウイルスの内在性転写単位間にある遺伝子間領域をコードするヌクレオチドに挿入されている、ヌクレオチド構築物。 A nucleotide construct encoding a recombinant avian paramyxovirus, wherein a cloning region containing a site for inserting a nucleotide encoding a foreign protein is inserted into the nucleotide encoding avian paramyxovirus,
In the cloning region, the gene start sequence of the avian paramyxovirus, the 5 'untranslated region of the avian paramyxovirus, the aforementioned site, the 3' untranslated region of the avian paramyxovirus, and the avian paramyxovirus gene start sequence from the 5 'side Is linked to the gene termination sequence of paramyxovirus, and
A nucleotide construct, wherein the cloning region is inserted into a nucleotide encoding an intergenic region between the endogenous transcription units of avian paramyxovirus. - 前記鳥パラミクソウイルスが鳥パラミクソウイルス血清型10である、請求項7に記載のヌクレオチド構築物。 8. The nucleotide construct of claim 7, wherein said avian paramyxovirus is avian paramyxovirus serotype 10.
- 前記5’非翻訳領域が、配列番号:1~6のいずれかに記載のヌクレオチド配列からなる領域であり、前記3’非翻訳領域が、配列番号:7~12のいずれかに記載のヌクレオチド配列からなる領域である、請求項7又は8に記載のヌクレオチド構築物。 The 5 'untranslated region is a region consisting of the nucleotide sequence set forth in any of SEQ ID NOs: 1 to 6, and the 3' untranslated region is a nucleotide sequence set forth in any of SEQ ID NOs: 7 to 12. The nucleotide construct according to claim 7 or 8, which is a region consisting of
- 更に、前記鳥パラミクソウイルスをコードするヌクレオチドの5’末側に、DNA依存性RNAポリメラーゼが認識するプロモーター配列が連結しており、該ヌクレオチドの3’末側に、5’側から順に、リボザイム配列と前記DNA依存性RNAポリメラーゼが認識するターミネーター配列とが連結している、請求項7~9のうちのいずれか一項に記載のヌクレオチド構築物。 Furthermore, a promoter sequence recognized by a DNA-dependent RNA polymerase is linked to the 5 'end of the avian paramyxovirus-encoding nucleotide, and the 5' end of the nucleotide sequence is a ribozyme in this order from the 5 'end. The nucleotide construct according to any one of claims 7 to 9, wherein a sequence is linked to a terminator sequence recognized by said DNA dependent RNA polymerase.
- 外来タンパク質をコードするヌクレオチドが前記部位に挿入されている、請求項10に記載のヌクレオチド構築物。 11. The nucleotide construct according to claim 10, wherein a nucleotide encoding a foreign protein is inserted at said site.
- 前記外来タンパク質が、病原体由来の抗原タンパク質である、請求項11に記載のヌクレオチド構築物。 The nucleotide construct according to claim 11, wherein the foreign protein is an antigenic protein derived from a pathogen.
- 前記外来タンパク質が、インフルエンザウイルスのヘマグルチニンタンパク質である、請求項11に記載のヌクレオチド構築物。 The nucleotide construct according to claim 11, wherein the foreign protein is a hemagglutinin protein of influenza virus.
- 請求項1~5のうちのいずれか一項に記載の組み換え鳥パラミクソウイルスを製造するための方法であって、
前記DNA依存性RNAポリメラーゼと前記鳥パラミクソウイルスのコアタンパク質とを発現する形質転換細胞に、請求項11~13のうちのいずれか一項に記載のヌクレオチド構築物を導入する工程と、
前記組み換え鳥パラミクソウイルスを、前記細胞の培養物から回収する工程とを含む、方法。 A method for producing the recombinant avian paramyxovirus according to any one of claims 1 to 5, comprising
Introducing the nucleotide construct according to any one of claims 11 to 13 into a transformed cell expressing the DNA-dependent RNA polymerase and the core protein of the avian paramyxovirus;
Recovering the recombinant avian paramyxovirus from the culture of the cells. - 下記(a)~(e)からなる群から選択される少なくとも一の物質及び使用説明書を含む、請求項1~5のうちのいずれか一項に記載の組み換え鳥パラミクソウイルスを製造するためのキット
(a)請求項10~13のうちのいずれか一項に記載のヌクレオチド構築物
(b)前記DNA依存性RNAポリメラーゼを発現することができるヌクレオチド構築物
(c)前記鳥パラミクソウイルスのコアタンパク質を発現することができるヌクレオチド構築物
(d)(a)~(c)からなる群から選択される少なくとも一のヌクレオチド構築物を導入するための細胞
(e)前記DNA依存性RNAポリメラーゼ及び/又は前記鳥パラミクソウイルスのコアタンパク質とを発現する形質転換細胞。 The method for producing the recombinant avian paramyxovirus according to any one of claims 1 to 5, comprising at least one substance selected from the group consisting of the following (a) to (e) and instructions for use: Kit of (a) a nucleotide construct according to any one of claims 10 to 13 (b) a nucleotide construct capable of expressing said DNA-dependent RNA polymerase (c) a core protein of said avian paramyxovirus (D) a cell for introducing at least one nucleotide construct selected from the group consisting of (a) to (c) (e) said DNA-dependent RNA polymerase and / or said bird A transformed cell that expresses a core protein of paramyxovirus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019510375A JP6573746B1 (en) | 2017-10-02 | 2018-09-21 | Recombinant bird paramyxovirus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-192725 | 2017-10-02 | ||
JP2017192725 | 2017-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019069720A1 true WO2019069720A1 (en) | 2019-04-11 |
Family
ID=65994659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035085 WO2019069720A1 (en) | 2017-10-02 | 2018-09-21 | Recombinant avian paramyxovirus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6573746B1 (en) |
WO (1) | WO2019069720A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111334464A (en) * | 2020-03-30 | 2020-06-26 | 重庆市畜牧科学院 | Application of goose paramyxovirus in accelerating proliferation rate of goose fibroblasts |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003512009A (en) * | 1998-09-14 | 2003-04-02 | マウント シナイ スクール オブ メディシン オブ ザ シティー ユニバーシティー オブ ニューヨーク | Recombinant Newcastle disease virus RNA expression system and vaccine |
JP2009529889A (en) * | 2006-03-15 | 2009-08-27 | インターベツト・インターナシヨナル・ベー・ベー | Recombinant Mononegavirales virus vector |
-
2018
- 2018-09-21 WO PCT/JP2018/035085 patent/WO2019069720A1/en active Application Filing
- 2018-09-21 JP JP2019510375A patent/JP6573746B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003512009A (en) * | 1998-09-14 | 2003-04-02 | マウント シナイ スクール オブ メディシン オブ ザ シティー ユニバーシティー オブ ニューヨーク | Recombinant Newcastle disease virus RNA expression system and vaccine |
JP2009529889A (en) * | 2006-03-15 | 2009-08-27 | インターベツト・インターナシヨナル・ベー・ベー | Recombinant Mononegavirales virus vector |
Non-Patent Citations (2)
Title |
---|
NAKAYA T ET AL.: "Recombinant Newcastle Disease Virus as a Vaccine Vector", JOURNAL OF VIROLOGY, vol. 75, no. 23, 2001, pages 11868 - 11873, XP002974292, DOI: doi:10.1128/JVI.75.23.11868-11873.2001 * |
TSUNEKUNI R ET AL.: "Evaluation of avian paramyxovirus serotypes 2 to 10 as vaccine vectors in chickens previously immunized against Newcastle disease viru s", VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, vol. 160, 2014, pages 184 - 191, XP029038827, DOI: doi:10.1016/j.vetimm.2014.05.001 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111334464A (en) * | 2020-03-30 | 2020-06-26 | 重庆市畜牧科学院 | Application of goose paramyxovirus in accelerating proliferation rate of goose fibroblasts |
Also Published As
Publication number | Publication date |
---|---|
JP6573746B1 (en) | 2019-09-11 |
JPWO2019069720A1 (en) | 2019-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | Evaluation of the Newcastle disease virus F and HN proteins in protective immunity by using a recombinant avian paramyxovirus type 3 vector in chickens | |
Gogoi et al. | Avian paramyxovirus: a brief review | |
EP2831246B1 (en) | Multivalent recombinant avian herpes viruses and vaccines for immunizing avian species | |
Samal et al. | Coordinate deletion of N-glycans from the heptad repeats of the fusion F protein of Newcastle disease virus yields a hyperfusogenic virus with increased replication, virulence, and immunogenicity | |
JP2009529861A (en) | Recombinant Newcastle disease virus expressing avian influenza virus H5 hemagglutinin | |
JP5432703B2 (en) | Recombinant Mononegavirales virus vector | |
US20190358316A1 (en) | Infectious bronchitis virus vaccine using newcastle disease viral vector | |
JP6990814B2 (en) | Duck plague virus and its use | |
US20220370594A1 (en) | Whole avian-origin reverse genetic system and its use in producing h7n9 subtype avian influenza vaccine | |
CN108368488B (en) | Duck enteritis virus and application thereof | |
Xu et al. | Generation and evaluation of a recombinant goose origin Newcastle disease virus expressing Cap protein of goose origin avastrovirus as a bivalent vaccine in goslings | |
WO2014077096A1 (en) | Method for preventing infections using combination of vector vaccine and live vaccine | |
KR20210108971A (en) | Recombinant avian herpes virus containing multiple foreign genes | |
Abolnik et al. | Dose immunogenicity study of a plant-produced influenza virus-like particle vaccine in layer hens | |
Wang et al. | Rapid development of an effective newcastle disease virus vaccine candidate by attenuation of a genotype VII velogenic isolate using a simple infectious cloning system | |
JP6573746B1 (en) | Recombinant bird paramyxovirus | |
JP4691495B2 (en) | Coronavirus spike S1 fusion protein and expression vector thereof | |
US12053518B2 (en) | Method for rescuing and producing a virus in avian cells | |
WO2017221076A1 (en) | Compositions and methods comprising measles virus defective interfering particles for the prevention of infectious diseases | |
BRPI0308365B1 (en) | multiple injection dna vaccine in ovo | |
BRPI0709613A2 (en) | method for producing a recombinant mononegaviral virus vector, recombinant mononegaviral virus vector, and vaccine against a microbial pathogen | |
EP3596205A1 (en) | Ndv recombinant vaccine | |
Arora et al. | Evaluation of immunogenic potential of 75kDa and 56kDa proteins of newcastle disease virus (NDV) | |
Nath et al. | Reverse genetics and its usage in the development of vaccine against poultry diseases | |
Eldemery et al. | Evaluation of Newcastle disease virus LaSota strain attenuated by codon pair deoptimization of the HN and F genes for in ovo vaccination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019510375 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18864702 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18864702 Country of ref document: EP Kind code of ref document: A1 |