WO2019069665A1 - Measurement system, control system, and measurement method - Google Patents

Measurement system, control system, and measurement method Download PDF

Info

Publication number
WO2019069665A1
WO2019069665A1 PCT/JP2018/034258 JP2018034258W WO2019069665A1 WO 2019069665 A1 WO2019069665 A1 WO 2019069665A1 JP 2018034258 W JP2018034258 W JP 2018034258W WO 2019069665 A1 WO2019069665 A1 WO 2019069665A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
altitude
height
difference
barometric pressure
Prior art date
Application number
PCT/JP2018/034258
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 隆司
滋人 岩井
隆一郎 野田
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Publication of WO2019069665A1 publication Critical patent/WO2019069665A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means

Definitions

  • the present disclosure relates to a measurement system, a control system, and a measurement method, for example, an altitude difference between an altitude of an object and a predetermined reference altitude based on an air pressure measured by an air pressure sensor.
  • an atmospheric pressure sensor may be employed in altitude measurement and vertical position measurement as part of position monitoring. More specifically, the barometric pressure sensor is utilized for altitude measurement in a portable terminal device such as a multi-function mobile phone, measurement of altitude change before and after work by a swing element such as a hoist, and the like.
  • the method for determining the working height of a working device provided with a pivoting element described in Patent Document 1 determines the reference pressure corresponding to zero working height of the pivoting element before pivoting the pivoting element before the pivoting operation. After pivoting of the pivoting element in which the angle of the pivoting element relative to the device and the length of the pivoting element are changed, the pressure occurring at the freely movable end of the pivoting element is measured. Then, the method calculates the working height of the turning element from the differential pressure obtained from the height difference which the turning element has advanced, and calculates the length of the turning element as a trigonometric function from the calculated working height and the angle of the turning element. Calculated by
  • Patent No. 5638077 gazette
  • Patent Document 1 includes a step of obtaining a differential pressure from pressure measurement values measured at different times before and after turning. Temporal changes in the environment due to changes such as the weather cause an error between the calculated work height and the actual work height.
  • the atmospheric pressure change of 1 hPa of the International Civil Aviation Organization (ICAO) standard atmosphere due to weather change corresponds to an elevation change of 8 m at 0 m above sea level. Such errors are not acceptable for high accuracy altitude monitoring.
  • IAO International Civil Aviation Organization
  • the present disclosure aims to provide a measurement system, a control system, and a measurement method that can measure the altitude difference from a predetermined altitude with high accuracy.
  • a measurement system includes a reference barometric sensor installed at a predetermined height, an object barometric sensor attached to a movable object, the reference barometric sensor, and the object barometric sensor And a height difference calculating unit configured to calculate a height difference between the height of the object pressure sensor and the height of the reference pressure sensor based on the measurement value of the pressure measured at the same time.
  • the sea level pressure information is calculated by calculating the difference between the height of the object pressure sensor and the height of the reference pressure sensor based on the measurement value of the pressure measured simultaneously by the reference pressure sensor and the object pressure sensor. It is possible to obtain the height of the object attached with the object pressure sensor without using it, and the influence of the pressure fluctuation on the calculated height difference is mitigated or eliminated, so the height difference can be determined with high accuracy It becomes.
  • the measurement system includes at least one auxiliary reference pressure sensor installed at an altitude different from the altitude at which the reference air pressure sensor is installed, the reference air pressure sensor, and the auxiliary reference pressure sensor. And a parameter calculation unit that calculates a parameter of a function indicating a relationship between altitude and pressure based on the measured value of air pressure measured at the same time, and the height difference calculation unit calculates the parameter by the parameter calculation unit.
  • the difference between the height of the object barometric pressure sensor and the height at which the reference barometric pressure sensor is installed may be calculated using the function to which the parameter is applied.
  • the parameters of the function indicating the relationship between altitude and barometric pressure are calculated based on the measured values of the barometric pressure simultaneously measured by the reference barometric pressure sensor and the auxiliary reference barometric pressure sensor, and using the calculated parameters, the object barometric pressure
  • the influence of the change in weather conditions is mitigated or eliminated, so that the accuracy of the difference in height can be improved.
  • the number of the auxiliary reference pressure sensors is n (n is an integer greater than or equal to 1)
  • the function calculates the pressure based on the pressure measured by the reference pressure sensor as a reference value It may be an n-order function of
  • the function by setting the function as an n-order function temperature of the barometric pressure with the barometric pressure measured by the reference barometric pressure sensor as a reference value, the influence of changes in meteorological conditions such as humidity can be mitigated or eliminated. Since the altitude includes high-order components of the barometric pressure with the reference measurement value as the reference value, the accuracy of the altitude difference can be further improved.
  • the measurement system is a difference between measurement values of barometric pressure measured by the object barometric pressure sensor and the reference barometric pressure sensor when the object is disposed at a preset reference position.
  • the reference position differential pressure storage unit may further include a reference position differential pressure storage unit, and the height difference calculation unit may calculate the height difference between the reference position and the object by further using the reference position differential pressure.
  • the measurement system may further include a notification unit that notifies the height difference.
  • the notification unit for notifying the difference in altitude, the pilot can grasp the difference in altitude without making a call with another worker.
  • the control system controls the measurement system, the drive unit for moving the object, and the altitude difference so as to approach the target altitude difference that is the target value of the altitude difference. And a control unit. As described above, by further including the control unit, it is possible to control the height of the object on which the object pressure sensor is installed.
  • a measurement method includes: a first step of measuring air pressure with a reference air pressure sensor installed at a predetermined height and an object air pressure sensor attached to a movable object; And a second step of calculating a difference in height between the height of the object barometric pressure sensor and the height of the reference barometric pressure sensor based on the measurement value of the barometric pressure simultaneously measured by the reference barometric pressure sensor and the object barometric pressure sensor.
  • the sea level pressure information is calculated by calculating the difference between the height of the object pressure sensor and the height of the reference pressure sensor based on the measurement value of the pressure measured simultaneously by the reference pressure sensor and the object pressure sensor. It is possible to obtain the height of the object attached with the object pressure sensor without using it, and the influence of the pressure fluctuation on the calculated height difference is mitigated or eliminated, so the height difference can be determined with high accuracy It becomes.
  • the present disclosure it is possible to provide a measurement system, a control system, and a measurement method capable of measuring an altitude difference from a predetermined altitude with high accuracy.
  • the measurement system according to the present embodiment is applied to measurement of the height of an object transported at a construction site such as a building.
  • the altitude changes as the object is transported by the crane.
  • the measurement system which concerns on this embodiment may be applied to measurement of the altitude of the moving object in the other work site.
  • the object to be measured at high altitude may be a powered and autonomously moving object, or may be an object that is not powered and is moved along with another object.
  • FIG. 1 is a view showing an application example of the measurement system 1 according to the present embodiment.
  • the measurement system 1 according to the present embodiment is configured to include an object pressure sensor 11, a reference pressure sensor 12, and an arithmetic device 20.
  • the object barometric sensor 11 is equipped with a mounting tool that can be attached to and detached from an object whose height is to be measured, and is mounted on the surface of a load 78 that is a movable object.
  • the object pressure sensor 11 measures the pressure at the surface of the load 78.
  • the measurement value of the air pressure measured by the object air pressure sensor 11 and the altitude of the object air pressure sensor 11 may be referred to as an “object measurement value” and an “object altitude”, respectively.
  • the reference air pressure sensor 12 is installed on the ground as an example of a reference position which is a reference of the height of the measurement object. By this arrangement, the reference pressure sensor 12 measures the pressure on the ground.
  • the measurement value of the air pressure measured by the reference air pressure sensor 12 and the altitude of the reference air pressure sensor 12 may be referred to as a “reference measurement value” and a “reference altitude”, respectively.
  • the object air pressure sensor 11 and the reference air pressure sensor 12 are, for example, absolute pressure gauges in which the vacuum state is a pressure reference (0 [Pa]).
  • the object barometric pressure sensor 11 and the reference barometric pressure sensor 12 each include a time information acquisition unit (not shown) for acquiring time information on synchronization of measurement times.
  • the time information acquisition unit sequentially receives time information indicating GPS time from, for example, a GPS (Global Positioning System) satellite.
  • GPS time is a reference time adopted by GPS satellites.
  • the reference time is used to calibrate the time measured by a timer provided with each of the object air pressure sensor 11 and the reference air pressure sensor 12.
  • the object air pressure sensor 11 and the reference air pressure sensor 12 measure an object measurement value and a reference measurement value at a predetermined measurement cycle (for example, 0.1 to 0.3 seconds).
  • the object air pressure sensor 11 and the reference air pressure sensor 12 add time information indicating the time at that time to the measured object measurement value and reference measurement value, respectively, and transmit the result to the arithmetic device 20.
  • the arithmetic device 20 receives, from the object pressure sensor 11 and the reference pressure sensor 12, an object measurement value to which time information is added and a reference measurement value.
  • the arithmetic unit 20 refers to time information added to each of the received object measurement value and the reference measurement value, and identifies the object measurement value and the reference measurement value measured at the same time.
  • the arithmetic unit 20 calculates the height difference ⁇ H between the object height and the reference height based on the object measurement value and the reference measurement value measured simultaneously with the object measurement value.
  • the height difference ⁇ H corresponds to the height of the object pressure sensor 11 based on the reference height.
  • the computing device 20 may be configured as a dedicated device including a computing device such as a CPU (Central Processing Unit), or a multi-function mobile phone (including a so-called smart phone) including such a computing device, a tablet terminal device It may be configured as a general-purpose electronic device such as a personal computer (PC: Personal Computer).
  • the object barometric pressure sensor 11, the reference barometric pressure sensor 12, and the computing device 20 may be connected wirelessly or wired so as to enable transmission and reception of various information.
  • the computing device 20 is disposed on the swing body 72 of the hoist 70 which transports the load 78.
  • the pivoting body 72 is pivotably supported at the distal end of the leg 71, and the base end of the leg 71 is supported on the ground.
  • the swivel body 72 is provided with a cockpit which allows an operator who is a user to enter the room, and is provided with a control member for operating the operation of the hoist 70.
  • the operation of the hoist 70 includes raising and lowering the load 78 by the hoisting device 73, horizontal turning of the turning body 72, raising and lowering in the vertical direction, and extension and contraction of the jib 74.
  • the load 78 is suspended by a hanger 76 attached to one end of the hoisting rope 75 by a suspension wire 77.
  • the rotating body of the hoisting device 73 installed on the revolving body 72 winds the other end of the hoisting rope 75 stretched along the jib 74 by rotating in a predetermined rotational direction (forward direction), and the load 78 Can be raised.
  • the rotating body of the hoisting device 73 can unwind the other end of the hoisting rope 75 and rotate the load 78 by rotating in the direction opposite to the forward direction.
  • the raising and lowering of the load 78 is instructed by the operation of the operator.
  • the measurement system 1 according to the present embodiment can measure and notify the height difference ⁇ H between the object height that can change due to work and the reference height, and can help to improve the work efficiency of the worker who gets into the cockpit.
  • FIG. 2 is a block diagram showing an example of a functional configuration of the measurement system 1 according to the present embodiment.
  • the time information providing unit 10 provides time information indicating the time at that point in time to the object pressure sensor 11 and the reference pressure sensor 12.
  • the time information providing unit 10 is mounted on, for example, a GPS satellite, generates time information indicating GPS time as a reference time of a predetermined reference time period (for example, 1 second), and transmits a radio wave carrying the generated time information. Do.
  • the object pressure sensor 11 includes a timer (not shown) that counts the current time sequentially.
  • the timer includes a time adjustment unit (not shown) that adjusts the time counted by the own unit to a reference time indicated by the time information acquired from the time information providing unit 10.
  • the object atmospheric pressure sensor 11 measures the atmospheric pressure at a predetermined measurement interval, and adds the time information indicating the time (current time) at that point in time measured by the timer to the object measurement value which is the measurement value of the measured atmospheric pressure Send to 20.
  • the reference pressure sensor 12 includes a timer (not shown) that counts the current time sequentially, similarly to the object pressure sensor 11.
  • the timer includes a time adjustment unit (not shown) that adjusts the time counted by the own unit to a reference time indicated by the time information acquired from the time information providing unit 10.
  • the reference atmospheric pressure sensor 12 measures atmospheric pressure at a predetermined measurement interval, adds time information indicating the time at that time measured by the timer to the reference measurement value which is the measurement value of the measured atmospheric pressure, and transmits it to the arithmetic device 20 .
  • the arithmetic device 20 is configured to include a communication unit 21, an operation unit 22, a notification unit 23, a storage unit 24, and a control unit 25.
  • the communication unit 21 is communicably connected to another device such as the object barometric pressure sensor 11 and the reference barometric pressure sensor 12 via the network NW, and transmits / receives various data wirelessly or by wire based on the control of the control unit 25. .
  • the communication unit 21 is, for example, a communication interface and an input / output interface.
  • the operation unit 22 receives an operation of the user, and outputs an operation signal generated according to the received operation to the control unit 25.
  • the operation unit 22 may be, for example, a dedicated input member such as a dedicated button or a lever, or may be a general-purpose input member such as a mouse, a pointing device such as a touch sensor, or a keyboard.
  • the notification unit 23 notifies various notification information input from the control unit 25, for example, the height difference.
  • the notification unit 23 includes, for example, output members such as a display panel and a speaker.
  • the touch pad which comprises the operation part 22, and the display which comprises the notification part 23 may be comprised as a touch panel integrated mutually.
  • the storage unit 24 stores various types of information used for processing executed by the control unit 25, various types of information acquired by the processing, and a program for executing the processing.
  • the storage unit 24 includes, for example, a storage medium such as an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), a ROM (Read only Memory), or a RAM (Random Access Memory). .
  • the control unit 25 controls various functions of the arithmetic device 20.
  • the control unit 25 may include an arithmetic device, and may execute a process instructed by various instructions described in a program stored in advance in the storage unit 24 to realize a part or all of the function.
  • the control unit 25 is configured to include an altitude difference calculation unit 251 and a notification control unit 252.
  • the altitude difference calculation unit 251 receives an object measurement value and a reference measurement value from the object pressure sensor 11 and the reference pressure sensor 12 via the communication unit 21 respectively.
  • the altitude difference calculating unit 251 refers to the time information added to each of the object measurement value and the reference measurement value, and associates the object measurement value to which the time information indicating the same time is added mutually and the reference measurement value.
  • the height difference calculation unit 251 uses the object measurement value P st and the reference measurement value P r associated with the object measurement value to obtain a function indicating the relationship between the height and the air pressure exemplified in Equation (1).
  • the calculated height difference H st -H r corresponds to the height difference ⁇ H shown in FIG.
  • T 0 represents the surface temperature.
  • the ground temperature T 0 is, for example, 288.15 [K].
  • L shows the temperature decrease rate.
  • the rate of temperature decrease L is, for example, -0.0065 [K / m].
  • g 0 represents gravitational acceleration.
  • the gravitational acceleration g 0 is, for example, 9.80665 [m / s 2 ].
  • M represents the molar mass of the atmosphere.
  • the molar mass M is, for example, 0.02899644 [kg / mol].
  • R shows a gas constant.
  • the gas constant R is, for example, 8.3144598 [J / K / mol].
  • the above ground temperature T 0 and the temperature reduction rate L are each defined as part of the constants of the ICAO standard atmosphere.
  • the reference height H r may be set in advance in the height difference calculation unit 251. Further, the altitude difference calculation unit 251 may set the altitude instructed by the operation signal from the operation unit 22 as the reference altitude H r . The altitude difference calculation unit 251 outputs the calculated altitude difference to the notification control unit 252.
  • the notification control unit 252 outputs the information on the height difference input from the height difference calculation unit 251 to the notification unit 23.
  • the notification control unit 252 outputs, for example, a numerical value indicating the difference in height that is input to the notification unit 23 as height difference information, and causes the display panel constituting the notification unit 23 to display the numerical value.
  • the notification control unit 252 may output a graphic screen indicating the difference in height as the difference in height information to the notification unit 23, and may display the screen on the display panel.
  • the notification control unit 252 enables setting of the target altitude difference instructed by the operation signal from the operation unit 22, and determines whether or not the absolute value of the difference between the input altitude difference and the target altitude difference has reached a predetermined range.
  • the notification control unit 252 may output the target altitude notification information to the notification unit 23, and may cause the speakers constituting the notification unit 23 to ring a predetermined cue sound, or the target altitude may be set. A guidance voice indicating approach may be played back.
  • Equation (2) shows that the differential pressure dP is the product of the density ⁇ of the atmosphere, the gravitational acceleration g 0 and the height dH. On the right side of the equation (2), a sign (-) indicating a negative value indicates that the direction of the differential pressure dP is applied in the vertical direction.
  • the equation of state of gas is generally given by equation (3).
  • Equation (3) shows that the product of density ⁇ , gas constant R and air temperature T is equal to the product of molar mass M and pressure P. Substituting equation (2) into equation (3), equation (4) is obtained.
  • the left side is a function of the air pressure P
  • the right side is a function of the air temperature T.
  • Formula (1) is obtained by arranging Formula (7).
  • FIG. 3 is a flowchart showing an example of the height difference measurement process according to the present embodiment.
  • the object barometric pressure sensor 11 and the reference barometric pressure sensor 12 each acquire time information, and measure the same time on the basis of the acquired time information.
  • the object atmospheric pressure sensor 11 and the reference atmospheric pressure sensor 12 measure the atmospheric pressure at the same time with each other in a predetermined measurement cycle, and transmit them to the control unit 25 of the arithmetic device 20 as the object measurement value and the reference measurement value.
  • the height difference calculation unit 251 of the arithmetic device 20 is a reference measurement that is an object measurement value received from the object pressure sensor 11 and a reference measurement value received from the reference pressure sensor 12, and is measured simultaneously with the object measurement value. From the values, the height difference is calculated using the relationship shown in equation (1). Thereafter, the height difference calculation unit 251 outputs height difference information indicating the calculated height difference to the notification unit 23, and causes the notification unit 23 to notify.
  • the measurement system 1 includes the reference pressure sensor 12 installed at a predetermined height, the object pressure sensor 11 attached to a movable object, and the height difference calculation unit 251. And.
  • the altitude difference calculation unit 251 calculates an altitude difference between the altitude of the object atmospheric pressure sensor 11 and the altitude of the reference atmospheric pressure sensor 12 based on the measurement value of the atmospheric pressure simultaneously measured by the reference atmospheric pressure sensor 12 and the object atmospheric pressure sensor 11.
  • the height difference between the height of the object pressure sensor 11 and the height of the reference pressure sensor 12 is calculated using the measurement values of the pressure measured by the reference pressure sensor 12 and the object pressure sensor 11. Therefore, the altitude of the object attached with the object pressure sensor 11 can be obtained without using the sea surface pressure information. Further, even if the atmospheric pressure fluctuates due to a fluctuation factor such as weather fluctuation, the altitude difference is calculated using the measurement value of the atmospheric pressure simultaneously measured by the reference atmospheric pressure sensor 12 and the object atmospheric pressure sensor 11. Therefore, the influence of the pressure fluctuation on the calculated height difference is alleviated or eliminated, so the height difference can be determined with high accuracy.
  • the measurement system 1 includes a notification unit 23 that notifies the user of the height difference calculated by the height difference calculation unit 251.
  • a notification unit 23 that notifies the user of the height difference calculated by the height difference calculation unit 251.
  • the measurement system 1 is applied to a dismantling site of a high-rise building, and a process in which a hoist 70 (FIG. 1) lifts a member dismantled from the top floor of the high-rise building on the ground as a load 78 at the dismounting site.
  • a worker other than the operator of the hoist 70 observes the height of the disassembled member on the ground floor, and the height of the member is located in the cockpit using a wireless terminal device such as a mobile phone. It may be transmitted by voice to the pilot's wireless terminal device.
  • the pilot adjusts the height of the member based on the information transmitted from the worker, determines the landing on the ground, and stops the movement of the member.
  • the work efficiency has been reduced because the pilot relies on the information transmitted from the operator when determining the adjustment of the altitude of the member and the stop of the movement.
  • the object pressure sensor 11 is attached to the load 78, and the reference pressure sensor 12 is installed on the ground.
  • the object barometric pressure sensor 11 and the reference barometric pressure sensor 12 respectively measure an object measurement value and a reference measurement value under time synchronization based on time information.
  • the height difference calculation unit 251 calculates the height of the load 78 from the ground as the height difference, based on the measured object measurement value and the reference measurement value.
  • FIG. 4 is a view showing an application example of the measurement system 1 according to the present embodiment.
  • the measurement system 1 according to the present embodiment is configured to further include an auxiliary reference pressure sensor 13 in the object pressure sensor 11, the reference pressure sensor 12, and the arithmetic device 20.
  • the auxiliary reference pressure sensor 13 is installed at an altitude different from that of the reference pressure sensor 12.
  • the measurement value and altitude of the air pressure measured by the auxiliary reference air pressure sensor 13 may be referred to as “auxiliary reference measurement value” and “auxiliary reference altitude”, respectively.
  • the reference pressure sensor 12 and the auxiliary reference pressure sensor 13 are installed at different heights within a predetermined range close to the movable range of the load 78 on which the object pressure sensor 11 is installed.
  • a support member 80 having an elongated shape is installed in the vicinity of the hoist 70 with its longitudinal direction parallel to the vertical direction.
  • the reference atmospheric pressure sensor 12 and the auxiliary reference atmospheric pressure sensor 13 are respectively installed at the proximal end and the distal end of the support member.
  • the supporting member 80 may be a member having high rigidity such as metal, stone, concrete, etc., and capable of fixing the positions of the reference pressure sensor 12 and the auxiliary reference pressure sensor 13.
  • a scaffold temporarily installed at a work site, a constantly installed building, a bridge, a pole, etc. can be used.
  • FIG. 5 is a block diagram showing an example of a functional configuration of the measurement system 1 according to the present embodiment.
  • the auxiliary reference pressure sensor 13 includes a timer (not shown) that counts the current time sequentially.
  • the timer includes an adjustment unit that sets the time counted by the own unit as a reference time indicated by the time information acquired from the time information providing unit 10.
  • the auxiliary reference pressure sensor 13 measures the pressure at a predetermined measurement interval, uses the measured value of the measured pressure as a reference measurement value, adds time information indicating the time at that time counted by the timer, and adds the time information to the arithmetic device 20 Send.
  • the control unit 25 of the arithmetic device 20 further includes a parameter calculation unit 253 in addition to the height difference calculation unit 251 and the notification control unit 252.
  • the parameter calculation unit 253 receives the reference measurement value and the auxiliary reference measurement value from the reference pressure sensor 12 and the auxiliary reference pressure sensor 13 via the communication unit 21.
  • the parameter calculation unit 253 refers to the time information added to each of the reference measurement value and the auxiliary reference measurement value, and associates the reference measurement value to which the time information indicating the same time is added with each other and the auxiliary reference measurement value.
  • Parameter calculation unit 253, the auxiliary reference measurement P 1, from the auxiliary reference measurement reference measurement value associated with the value P r calculates the parameters of a function showing the relationship between the altitude and atmospheric pressure.
  • the parameter calculation unit 253 sets the parameter A 1 of the linear function indicating the relationship to the auxiliary reference height H 1 , the reference height H r , the auxiliary reference measurement value P 1, and the reference measurement value P which are preset. It calculates using the relationship shown to Formula (8) from r .
  • the parameter A 1 is the ratio of the difference in height between the auxiliary reference height H 1 to the reference height H r with respect to the differential pressure P 1 -P r between the auxiliary reference measurement value P 1 and the reference measurement value P r (slope Indicates that it corresponds to).
  • the differential pressure P 1 -P r indicated by the denominator on the right side of the equation (8) is normalized by the reference measurement value P r .
  • the parameter A 1 is a variable having a high dimensionality.
  • the parameter calculation unit 253 outputs the calculated parameter A 1 to the height difference calculation unit 251.
  • the auxiliary reference height H 1 and the reference height H r are set in the parameter calculation unit 253 in advance.
  • the altitude difference calculation unit 251 uses the parameter A 1 input from the parameter calculation unit 253 and the object measurement value and the reference measurement value respectively received from the object pressure sensor 11 and the reference pressure sensor 12 to obtain the object height and the reference height. Calculate the altitude difference with More specifically, the height difference calculation unit 251 uses the function indicating the relationship between the height and the air pressure exemplified in the equation (9) to obtain the height difference H st -H between the object height H st and the reference height H r. Calculate r .
  • altitude difference H st -H r is proportional normalized reference measurements
  • P r from (division) is the object measured value
  • P st differential pressure P st -P r of the reference measured value P r Indicates that it is a linear function.
  • Proportional coefficient of the linear function is a parameter A 1.
  • the altitude difference calculation unit 251 outputs the calculated altitude difference to the notification control unit 252.
  • Equation (8) is a formula for parameter A 1.
  • equation (10) it is assumed that the height difference between the reference altitude H r from the auxiliary reference altitude H 1 is proportional to the pressure difference reference measurements P r from the auxiliary reference measurement P 1.
  • the differential pressure P 1 -P r shown on the right side of the equation (10) indicates an auxiliary reference measurement value P 1 with the reference measurement value P r as a reference value, and is normalized by the reference measurement value P r .
  • Formula (8) is obtained by arranging Formula (10).
  • equation (10) is obtained by replacing the auxiliary reference height H 1 with the object height H st and replacing the auxiliary reference measurement value P 1 with the object measurement value P st .
  • FIG. 6 is a flowchart showing an example of the height difference measurement process according to the present embodiment.
  • Step S22 The object atmospheric pressure sensor 11, the reference atmospheric pressure sensor 12, and the auxiliary reference atmospheric pressure sensor 13 each acquire time information, and measure the same time on the basis of the acquired time information.
  • Step S24 The object barometric pressure sensor 11, the reference barometric pressure sensor 12, and the auxiliary reference barometric pressure sensor 13 measure the barometric pressure at the same time in a predetermined measurement cycle, and use them as an object measured value, a reference measured value, and an auxiliary reference measured value. It is transmitted to the control unit 25 of the arithmetic device 20.
  • Step S26 The parameter calculation unit 253 of the arithmetic unit 20 uses the relationship shown in equation (8) from the reference measurement value and the auxiliary reference measurement value received from the reference air pressure sensor 12 and the auxiliary reference air pressure sensor 13, respectively.
  • Calculate 1 (Step S28) altitude difference calculating unit 251 shows the parameters A 1 the reference measured value and the object measuring values received from each of the reference pressure sensor 12 and the object pressure sensor 11 and the parameter calculation unit 253 has calculated, the equation (9) The height difference H st ⁇ H r between the object height H st and the reference height H r is calculated using the relationship. Thereafter, the height difference calculation unit 251 outputs height difference information indicating the calculated height difference to the notification unit 23, and causes the notification unit 23 to notify.
  • the time interval parameter calculation unit 253 calculates the parameters A 1 may be equal to the time interval that the altitude difference calculating unit 251 calculates the altitude difference H st -H r, may be longer.
  • Time interval for calculating the parameters A 1 is a time interval sufficient to follow the change of the correspondence between the altitude and atmospheric pressure due to climate change or the like (e.g., 1 minute to 10 minutes) may be any.
  • a function representing the relationship between the atmospheric pressure and the altitude shown in equation (1) is used, but predetermined ground temperature T 0 and the rate of decrease in temperature as parameters of the function L, gravitational acceleration g 0 and molar mass M are used.
  • the ground temperature T 0 , the rate of decrease in temperature L and the molar mass M may change depending on actual weather conditions, in particular, temperature and humidity. Therefore, changes in weather conditions can cause errors in the measured altitude difference.
  • the measurement system 1 includes the auxiliary reference pressure sensor 13 at a height different from the height at which the reference pressure sensor 12 is installed.
  • the measurement system 1 further includes a parameter calculation unit 253 that calculates a parameter of a function that indicates the relationship between altitude and pressure based on the measurement value of pressure that is simultaneously measured by the reference pressure sensor 12 and the auxiliary reference pressure sensor 13. Prepare.
  • the altitude difference calculation unit 251 calculates the altitude difference between the altitude of the object pressure sensor 11 and the altitude at which the reference pressure sensor 12 is installed, using the function to which the parameter calculated by the parameter calculation unit 253 is applied.
  • the parameters of the function indicating the relationship between the altitude and the air pressure are calculated based on the measurement values of the air pressure simultaneously measured by the reference air pressure sensor 12 and the auxiliary reference air pressure sensor 13, and using the calculated parameters
  • An altitude difference between the altitude of the object barometric pressure sensor 11 and the altitude at which the reference barometric pressure sensor 12 is installed is calculated. Therefore, since the influence of the change in weather conditions is mitigated or eliminated, the accuracy of the altitude difference is improved.
  • FIG. 7 is a view showing an application example of the measurement system 1 according to the present embodiment.
  • the measurement system 1 according to the present embodiment is configured to include n (n is an integer of 2 or more) auxiliary reference pressure sensors 13 in the object air pressure sensor 11, the reference air pressure sensor 12, and the arithmetic device 20.
  • the n auxiliary reference pressure sensors 13-1 to 13-n are installed at different heights on the support member 80.
  • auxiliary reference pressure sensors 13-1 to 13-n are also different from the altitude of the reference pressure sensor 12, respectively.
  • Reference numerals 13-1 to 13-n are attached to the ascending order of the altitude of the individual auxiliary reference pressure sensors.
  • FIG. 8 is a block diagram showing an example of a functional configuration of the measurement system 1 according to the present embodiment.
  • the auxiliary reference pressure sensors 13-1 to 13-n each include the timer (not shown) described above.
  • Each of the auxiliary reference pressure sensors 13-1 to 13-n measures the pressure at a predetermined measurement interval, uses the measured value of the measured pressure as a reference measurement value, and adds time information indicating the time measured by the timer. Then, it transmits to the arithmetic unit 20.
  • the control unit 25 of the arithmetic device 20 includes an altitude difference calculation unit 251, a notification control unit 252, and a parameter calculation unit 253.
  • the parameter calculation unit 253 receives the reference measurement value from the reference pressure sensor 12 via the communication unit 21 and receives the auxiliary reference measurement values from the auxiliary reference pressure sensors 13-1 to 13-n.
  • the parameter calculation unit 253 refers to the time information added to each of the reference measurement value and the n auxiliary reference measurement values, and adds the reference measurement values and n pieces of time information to each other indicating the same time. Associate the auxiliary reference measurement value.
  • the parameter calculation unit 253 calculates parameters A 1 to A n of an n-order function indicating the relationship between the barometric pressure and the altitude from the auxiliary reference measurement values P 1 to P n correlated with each other and the reference measurement value P r Do. More specifically, the parameter calculation unit 253 calculates the formula from the auxiliary reference heights H 1 to H n and the reference height H r set in advance and the auxiliary reference measurement values P 1 to P n and the reference measurement value P r. calculating the parameters a 1 ⁇ a n of n-th order function which satisfies the relationship shown in (11).
  • i represents an integer of 1 to n. That is, the parameters A 1 to An are calculated by simultaneously setting n equations (11) obtained by substituting 1 to n into i.
  • the left side of the equation (11) indicates the difference in height between the auxiliary reference pressure H i of the auxiliary reference pressure sensor 13-i and the reference height H r .
  • ⁇ P ir indicates a differential pressure P i -P r which is a difference between the reference measurement value P i measured from the auxiliary reference pressure sensor 13 -i and the reference measurement value P r .
  • equation (11) is an n-th-order function of normalized atmospheric pressure (P ⁇ P r ) / P r obtained by normalizing the atmospheric pressure P whose altitude is the reference measurement value P r as a reference value with the reference measurement value P r Based on the assumption that The n-th order function corresponds to the function of the pressure applied by Taylor expansion with pressure P a reference measured value P r in the reference altitude H r the height H as the reference value.
  • the i-th parameter A i is a parameter to be multiplied by the i-th power value of normalized atmospheric pressure (P ⁇ P r ) / P r and has a dimension of height H.
  • the parameter calculation unit 253 outputs the calculated parameters A 1 to An to the height difference calculation unit 251.
  • the auxiliary reference heights H 1 to H n and the reference height H r are set in the parameter calculation unit 253 in advance.
  • the altitude difference calculation unit 251 uses the parameters A 1 to A n input from the parameter calculation unit 253 and the object measurement value and the reference measurement value respectively received from the object pressure sensor 11 and the reference pressure sensor 12 to obtain the object height. Calculate the difference between the height and the reference height. More specifically, the altitude difference calculating unit 251, altitude difference H st of the reference altitude H r and the object height H st with n-order function indicating the relationship between the altitude and atmospheric pressure illustrated in Equation (12) -H Calculate r .
  • Equation (12) shows a height difference H st -H r is, n-order function of the differential pressure of the reference measured value P r by the reference measured value P r from the normalized object measuring value P st.
  • the equation (12) is the difference in height H st of the sum of the first to n-th multiplication values obtained by multiplying the i-th power of the differential pressure normalized by the reference measurement value P r by the i-th parameter A i -H Calculated as r .
  • the altitude difference calculation unit 251 outputs the calculated altitude difference to the notification control unit 252.
  • the parameter calculation unit 253 may calculate the parameters A 1 ⁇ A n using the relationship shown in equation (13).
  • m represents an integer of 1 to n.
  • the calculation of the parameters A 1 to A n according to the equation (13) can be performed independently, and it is not necessary to combine n equations as in the above example.
  • the variable C 1 is given by equation (14).
  • equation (16) is transformed as shown in equation (18).
  • Equation (18) ( ⁇ P ir / P r) is multiplied by m m following parameters A m is derived that given by equation (13).
  • FIG. 9 is a flowchart showing an example of the height difference measurement process according to the present embodiment.
  • Step S32 The object barometric pressure sensor 11, the reference barometric pressure sensor 12, and the n auxiliary reference barometric sensors 13-1 to 13-n acquire time information, and measure the same time on the basis of the acquired time information Do.
  • Step S34 The object air pressure sensor 11, the reference air pressure sensor 12, and the n auxiliary reference air pressure sensors 13-1 to 13-n measure the air pressure at the same time in a predetermined measurement cycle, and measure the object measured value It transmits to the control part 25 of the arithmetic unit 20 as a reference measurement value and n auxiliary reference measurement values.
  • Step S36 The parameter calculation unit 253 of the arithmetic device 20 is represented by the equation (11) from the reference measurement value and the auxiliary reference measurement value respectively received from the reference pressure sensor 12 and the auxiliary reference pressure sensors 13-1 to 13-n. Parameters A 1 to An are calculated by simultaneously establishing n relationships.
  • the height difference calculation unit 251 calculates the object measurement value P st received from the object air pressure sensor 11 and the reference air pressure sensor 12, the reference measurement value P r , and the parameters A 1 to A n calculated by the parameter calculation unit 253. From the equation (12), the height difference H st ⁇ H r between the object height H st and the reference height H r is calculated using the relationship shown in equation (12). Thereafter, the height difference calculation unit 251 outputs height difference information indicating the calculated height difference to the notification unit 23, and causes the notification unit 23 to notify.
  • the measurement system 1 includes n auxiliary reference pressure sensors 13-1 to 13-n (n is an integer of 2 or more) at mutually different altitudes. These altitudes are all different from the altitude at which the reference barometric sensor 12 is installed.
  • the parameter calculation unit 253 determines the reference measurement value as the relationship between the altitude and the pressure based on the pressures P r and P 1 to P n simultaneously measured by the reference pressure sensor 12 and the auxiliary reference pressure sensors 13-1 to 13-n. calculating the parameters a 1 ⁇ a n of n-th order function of pressure as a reference value P r.
  • the altitude difference calculation unit 251 uses an n-order function to which parameters A 1 to A n are applied for the object measurement value P st measured by the object pressure sensor 11 with the reference measurement value P r as a reference value. An altitude difference between the altitude of 11 and the altitude at which the reference pressure sensor 12 is installed is calculated. With this configuration, the influence of changes in weather conditions such as temperature and humidity is alleviated or eliminated, and the calculated altitude includes high-order components of barometric pressure with the reference measurement value P r as a reference value. Therefore, the accuracy of the height difference calculated is improved compared to the second embodiment.
  • a measurement system 1 according to a fourth embodiment of the present invention will be described.
  • the following description mainly focuses on differences from the first embodiment, and the same configuration as in the first embodiment is denoted by the same reference numeral, and the description is incorporated unless otherwise specified.
  • the present embodiment described below is an example in which the first embodiment is applied, but the second embodiment or the third embodiment may be applied.
  • FIG. 10 is a block diagram showing an example of a functional configuration of the measurement system 1 according to the present embodiment.
  • the control unit 25 of the arithmetic device 20 further includes a reference position setting unit 254 in the height difference calculation unit 251 and the notification control unit 252.
  • the reference position setting unit 254 sets the position of the load 78, which is the measurement object, at that time as a predetermined reference position.
  • the reference position setting unit 254 calculates the difference between the object measurement value received from the object barometric pressure sensor 11 and the reference measurement value received from the reference barometric pressure sensor 12 as the reference position differential pressure, and calculates the calculated reference position differential pressure.
  • the reference position differential pressure information shown is stored in the storage unit 24.
  • the storage unit 24 functions as a reference position differential pressure storage unit.
  • the operation unit 22 may include a predetermined reference position setting button, and may output a reference position setting signal to the reference position setting unit 254 when pressing of the reference position setting button is detected.
  • the reference position to be the reference of the altitude is set according to the operation of the user. For example, as shown in FIG. 11A, when the load 78 is installed on the ground, the position of the load 78 is set as the reference position.
  • the object air pressure sensor 11 does not have to be in contact with or close to the load 78, and may be installed at a position where the difference in height with the load 78 is kept constant regardless of the position of the load 78.
  • the object air pressure sensor 11 is installed in the hanger 76 for hanging the load 78.
  • FIG. 11B even if the load 78 is lifted by the hoisting device 73 and is separated from the ground, the height difference between the object pressure sensor 11 and the load 78 is the height difference when the load 78 is installed on the ground It does not change from
  • the altitude difference calculation unit 251 stores the measured value of the object received from the object pressure sensor 11 and the reference measurement value measured simultaneously with the measured value of the object and received from the reference pressure sensor 12 in the storage unit 24
  • the differential pressure information is used to calculate the height difference between the object height and the reference height. More specifically, the height difference calculation unit 251 subtracts the reference position differential pressure indicated by the reference position differential pressure information from the object measured value to calculate the corrected object measured value, and the corrected object measured value and reference measurement Substitute the value into equation (1) to calculate the altitude difference.
  • the calculated altitude corresponds to the altitude of the object relative to the reference position.
  • FIG. 12 is a flowchart showing an example of the height difference measurement process according to the present embodiment.
  • Step S42 When the reference position setting signal is input from the operation unit 22, the reference position setting unit 254 sets the position of the object to be the measurement object at that time as a predetermined reference position.
  • Step S44 The reference position setting unit 254 stores reference position differential pressure information indicating the reference position differential pressure, which is the difference between the object measurement value at that time and the reference measurement value, in the storage unit 24.
  • Step S46 As in step S12, the object barometric pressure sensor 11 and the reference barometric pressure sensor 12 each acquire time information, and measure the same time on the basis of the acquired time information.
  • Step S48 As in step S14, the object barometric pressure sensor 11 and the reference barometric pressure sensor 12 measure the barometric pressure at the same time in each predetermined measurement cycle, and control the arithmetic unit 20 as the object measured value and the reference measured value. Send to section 25.
  • Step S50 The height difference calculation unit 251 of the arithmetic device 20 receives the object measurement value from the object pressure sensor 11, and reads out the reference position differential pressure information from the storage unit 24.
  • the altitude difference calculation unit 251 subtracts the reference position differential pressure indicated by the read reference position differential pressure information from the received object measurement value to calculate the corrected object measurement value.
  • the altitude difference calculation unit 251 calculates the altitude difference using the relationship shown in equation (1) from the reference measurement value received simultaneously with the object measurement value and received from the reference pressure sensor 12 after the correction. Do. Thereafter, the height difference calculation unit 251 outputs height difference information indicating the calculated height difference to the notification unit 23, and causes the notification unit 23 to notify.
  • the measurement system 1 according to the first embodiment is provided with the reference position setting unit 254, and the reference position differential pressure information stored in the storage unit 24 by the reference position setting unit 254 is further used to
  • the case of calculating the height difference from the reference height is taken as an example, the present invention is not limited to this.
  • the measurement system 1 according to the second embodiment or the third embodiment includes the reference position setting unit 254, and the reference position differential pressure information stored in the storage unit 24 by the reference position setting unit 254 is further used to An altitude difference with the reference altitude may be calculated.
  • the altitude difference calculation unit 251 of the computing device 20 substitutes the object measurement value in steps S28 (FIG. 6) and S38 (FIG. 9) and makes reference based on the object measurement value received from the object pressure sensor 11 as described above.
  • the height difference may be calculated using a corrected object measurement value obtained by subtracting the position differential pressure.
  • the storage unit 24 refers to the air pressure and the pressure measured by the object air pressure sensor 11 when the movable object is disposed at the preset reference position.
  • the reference position differential pressure which is the difference between the measured values of the air pressure measured by the air pressure sensor 12 is stored.
  • the altitude difference calculation unit 251 calculates the altitude difference by the method adopted in any of the first to third embodiments, further using the reference position differential pressure.
  • the degree of freedom in the arrangement of the object barometric sensor 11 is increased, and it is permissible to omit the work relating to the attachment and detachment. This contributes to the improvement of the work efficiency of the worker involved in the movement of the object.
  • the measurement system 1 is applied to a dismantling site of a high-rise building, and at the dismantling site, the hoist 70 lowers the dismantled member from the top floor of the high-rise building to the ground.
  • This process requires an operation of attaching the member as the load 78 to the hanger 76 and an operation of removing the member from the hanger 76.
  • it is necessary to attach the object pressure sensor 11 before transporting the member, and remove the object pressure sensor 11 from the member after transporting the member.
  • the measurement system 1 may further include an altitude control unit 255.
  • the altitude control unit 255 controls the altitude of the object on which the object barometric pressure sensor 11 is installed so that the altitude difference calculated by the altitude difference calculation unit 251 approaches a predetermined target altitude difference.
  • the altitude control unit 255 uses the existing control method to calculate the amount of rotation of the rotor of the hoisting device 73 (FIG. 1) as an operation amount so that the magnitude of the difference between the target value and the output value decreases.
  • the advanced control unit 255 can use, as a control method, a method such as PI (Proportional-Integral) control or PID (Proportional-Integral-Differential) control.
  • the altitude control unit 255 supplies the hoisting device 73 with an amount of power that gives the calculated amount of rotation.
  • the rotor of the hoisting device 73 rotates in accordance with the amount of power supplied from the height control unit 255, and winds up or unwinds the hoisting rope 75, and the load 78 is suspended via the hanger 76. Act as a drive to adjust the altitude of the
  • the load 78 lifted and lowered by the hoist 70 and the lifting gear 76 are mainly exemplified.
  • the object pressure sensor 11 may be, for example, a flying object such as a drone, an elevator such as an elevator or an escalator, a vehicle with a change in altitude due to movement of a ropeway, a cable car or the like, or other objects mounted on them.
  • the object pressure sensor 11 is not limited to non-living things, and mounts living things directly on living things (including elderly people, infants, persons such as patients, animals other than persons such as pets, livestock, etc.) or those living things.
  • the measured altitudes may then be applied to a system that analyzes the activity state of organisms based on their altitudes. For example, a state such as a sleeping state, a fallen state, or the like may be detected due to a time-dependent change in altitude of a hospitalized patient.
  • the system continues a state in which the amount of change between altitude observation points (for example, 1 to 3 seconds) is within a predetermined amount of change for a predetermined period (for example, 1 to 3 minutes) or more
  • the hospitalized patient is determined to be sleeping, and the amount of decrease in altitude between observation points exceeds a predetermined amount of decrease (for example, 0.4 to 0.7 m), and immediately thereafter, the amount of change in altitude is a predetermined change If the state of being within the amount continues for a predetermined period or more, it is determined that the hospitalized patient has fallen.
  • the height difference calculation unit of the arithmetic device 20 251 can calculate the height difference between the height of the information collection device and the reference height.
  • the computing device 20 may add the information on the calculated height difference to the collected information acquired from the information collecting device.
  • the control unit 25 of the computing device 20 adds the information on the altitude difference calculated by the altitude difference calculating unit 251 at that time to the image information received from the image sensor.
  • control unit 25 adds the information on the altitude difference calculated by the altitude difference calculating unit 251 at that time to the temperature information received from the temperature sensor.
  • the control unit 25 may store the collected information to which the information on the height difference is added in the storage unit 24 or may transmit it to a predetermined provision destination. Further, in addition to the information on the altitude difference, the control unit 25 may add time information received from the object pressure sensor 11 together with the altitude difference to the collected information. This can improve the efficiency of analysis based on altitude at the time of collection of collected information.
  • the object air pressure sensor 11, the reference air pressure sensor 12, and the auxiliary reference air pressure sensors 13 (13-1 to 13-n) described above may be air pressure sensors provided with vibration transducers.
  • the vibration type transducer includes, for example, a vibrating beam provided on a substrate of silicon single crystal, and a shell made of a silicon material which encloses the vibrating beam so as to maintain a gap around the vibrating beam and which constitutes a vacuum chamber together with a base.
  • An exciter for exciting the vibrating beam and a detector for detecting the vibration of the vibrating beam are provided, and the resonance frequency of the vibrating beam is measured to measure the strain applied to the vibrating beam.
  • the vibrating beam is provided in a vacuum chamber, has tensile stress applied to the substrate, and has a cross-sectional shape in which the cross-sectional heat in the vertical direction is longer than the direction parallel to the substrate surface.
  • the vibratory transducer includes first to third electrode plates and concave and convex portions.
  • the first electrode plate is provided parallel to the substrate surface, has one end connected to the vibrating beam, and acts as an excitation electrode for exciting the vibrating beam.
  • the second and third electrode plates are provided parallel to the substrate surface with the vibrating beam interposed therebetween, and are in direct planar bias with the vibrating beam and the first electrode plate in parallel to the substrate surface.
  • the uneven portion is provided on the side wall surface facing the vibrating beam and the second and third electrode plates to prevent mutual adhesion.
  • the resonant frequency to be detected depends on the pressure around it. With this configuration, the pressure is measured with high response speed and high accuracy (for example, 2.1 Pa).
  • the configuration of the vibration type transducer is described in detail, for example, in Japanese Patent Application Laid-Open No. 2012-581727.
  • the time information provided to the object air pressure sensor 11, the reference air pressure sensor 12, and the auxiliary reference air pressure sensor 13 is not limited to the time information conveyed by radio waves from GPS satellites, and may be NTP (Network Time) Protocol (Time Protocol) may be time information provided from a server via a network.
  • NTP server is a server device that transmits time information indicating a standard time.
  • the altitude difference between the object altitude and the reference altitude can be acquired with high accuracy even indoors where radio waves from the GPS satellites can not reach.
  • synchronization signals indicating measurement timing may be provided to the object pressure sensor 11, the reference pressure sensor 12, and the auxiliary reference pressure sensors 13 (13-1 to 13-n).
  • the object barometric pressure sensor 11, the reference barometric pressure sensor 12, and the auxiliary reference barometric pressure sensors 13 (13-1 to 13-n) each transmit the measured value of the barometric pressure at the measurement timing indicated by the synchronization signal to the arithmetic unit 20.
  • the altitude difference calculation unit 251 and the parameter calculation unit 253 of the arithmetic device 20 can treat the measurement values received from the sensors as they are simultaneously measured, without referring to the time information.
  • the arithmetic device 20 also generates a synchronization signal, and transmits the generated synchronization signal to the object barometric pressure sensor 11, the reference barometric pressure sensor 12 and the auxiliary reference barometric pressure sensors 13 (13-1 to 13-n) (Not shown) may be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Provided are: a measurement system capable of highly accurately measuring an altitude difference with respect to a predetermined altitude; a control system; and a measurement method. A reference atmospheric pressure sensor is disposed at a predetermined altitude, an object atmospheric pressure sensor is attached to a movable object, and an altitude difference calculation unit calculates the altitude difference between the altitude of the object atmospheric pressure sensor and the altitude of the reference atmospheric pressure sensor on the basis of the atmospheric pressure measurement values measured at one time by means of the reference atmospheric pressure sensor and the object atmospheric pressure sensor. The present embodiment is provided as a measurement system or a control system or a measurement method.

Description

計測システム、制御システム及び計測方法Measurement system, control system and measurement method 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年10月2日に出願された日本国特許出願2017-192801号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2017-192801 filed on Oct. 2, 2017, the entire disclosure of the prior application is incorporated herein by reference.
 本開示は、計測システム、制御システム及び計測方法、例えば、気圧センサが計測した気圧に基づいて、物体の高度と所定の参照高度との高度差に関する。 The present disclosure relates to a measurement system, a control system, and a measurement method, for example, an altitude difference between an altitude of an object and a predetermined reference altitude based on an air pressure measured by an air pressure sensor.
 建設など、物体を昇降させる作業工程を伴う作業現場では、事故の未然防止のため作業に係る物体の位置モニタリングの導入が検討されている。一般に、気圧センサは、分解能が高く、経済的である。そのため、位置モニタリングの一環として、高度計測、鉛直方向の位置計測において気圧センサが採用されることがある。より具体的には、気圧センサは、多機能携帯電話機などの携帯端末装置における高度計測、起重機などの旋回素子による作業前後における高度変化の計測、などに活用される。 At work sites involving work processes for raising and lowering objects, such as construction, introduction of position monitoring of objects involved in work is being considered for the prevention of accidents. In general, barometric pressure sensors have high resolution and are economical. Therefore, an atmospheric pressure sensor may be employed in altitude measurement and vertical position measurement as part of position monitoring. More specifically, the barometric pressure sensor is utilized for altitude measurement in a portable terminal device such as a multi-function mobile phone, measurement of altitude change before and after work by a swing element such as a hoist, and the like.
 例えば、特許文献1に記載の旋回素子を備える作業装置の作業高さを決定するための方法は、旋回素子の旋回前に、旋回素子の作業高さゼロに相当する基準圧力を決定し、作業装置に対する旋回素子の角度および旋回素子の長さが変更される旋回素子の旋回後に、旋回素子の自由に可動な端部で生じる圧力を測定する。そして、当該方法は、旋回素子が進んだ高低差から得られる差圧から、旋回素子の作業高さを計算し、計算した作業高さおよび旋回素子の角度から、旋回素子の長さを三角関数により計算する。 For example, the method for determining the working height of a working device provided with a pivoting element described in Patent Document 1 determines the reference pressure corresponding to zero working height of the pivoting element before pivoting the pivoting element before the pivoting operation. After pivoting of the pivoting element in which the angle of the pivoting element relative to the device and the length of the pivoting element are changed, the pressure occurring at the freely movable end of the pivoting element is measured. Then, the method calculates the working height of the turning element from the differential pressure obtained from the height difference which the turning element has advanced, and calculates the length of the turning element as a trigonometric function from the calculated working height and the angle of the turning element. Calculated by
特許第5638077号公報Patent No. 5638077 gazette
 しかしながら、気圧、温度、湿度などの環境の変動は、測定される高度の誤差要因となる。このことは、物体のわずかな高度変化を高い精度でモニタリングすることを困難にしていた。例えば、特許文献1に記載の方法は、旋回前後で異なる時刻で計測された圧力測定値から差圧を求める工程を含む。気象などの変化に伴う環境の経時変化が、計算した作業高さと現実の作業高さとの誤差要因となる。気象変化による1hPaのICAO(International Civil Aviation Organization;国際民間航空機関)標準大気の気圧変化は、海抜高度0mにおける8mの高度変化に相当する。このような誤差は、高精度の高度モニタリングでは許容されない。 However, environmental fluctuations such as barometric pressure, temperature and humidity are sources of error in the measured altitude. This makes it difficult to monitor a slight change in height of the object with high accuracy. For example, the method described in Patent Document 1 includes a step of obtaining a differential pressure from pressure measurement values measured at different times before and after turning. Temporal changes in the environment due to changes such as the weather cause an error between the calculated work height and the actual work height. The atmospheric pressure change of 1 hPa of the International Civil Aviation Organization (ICAO) standard atmosphere due to weather change corresponds to an elevation change of 8 m at 0 m above sea level. Such errors are not acceptable for high accuracy altitude monitoring.
 そこで、本開示は、所定の高度からの高度差を高精度で計測することができる計測システム、制御システム及び計測方法を提供することを目的とする。 Therefore, the present disclosure aims to provide a measurement system, a control system, and a measurement method that can measure the altitude difference from a predetermined altitude with high accuracy.
(1)幾つかの実施形態に係る計測システムは、所定の高度に設置された参照気圧センサと、移動可能な物体に取り付けられた物体気圧センサと、前記参照気圧センサと前記物体気圧センサとによって同時に計測された気圧の計測値に基づいて、前記物体気圧センサの高度と前記参照気圧センサの高度との高度差を算出する高度差算出部と、を備える。
 このように、参照気圧センサと物体気圧センサとによって同時に計測された気圧の計測値に基づいて、物体気圧センサの高度と参照気圧センサの高度との高度差を算出することにより、海面気圧情報を用いずに物体気圧センサが取り付けられた物体の高度を得ることが可能となり、また、算出される高度差に対する気圧変動の影響が緩和又は解消されるので、高度差を高い精度で求めることが可能となる。
(1) A measurement system according to some embodiments includes a reference barometric sensor installed at a predetermined height, an object barometric sensor attached to a movable object, the reference barometric sensor, and the object barometric sensor And a height difference calculating unit configured to calculate a height difference between the height of the object pressure sensor and the height of the reference pressure sensor based on the measurement value of the pressure measured at the same time.
Thus, the sea level pressure information is calculated by calculating the difference between the height of the object pressure sensor and the height of the reference pressure sensor based on the measurement value of the pressure measured simultaneously by the reference pressure sensor and the object pressure sensor. It is possible to obtain the height of the object attached with the object pressure sensor without using it, and the influence of the pressure fluctuation on the calculated height difference is mitigated or eliminated, so the height difference can be determined with high accuracy It becomes.
(2)一実施形態において、計測システムは、前記参照気圧センサが設置された高度とは異なる高度に設置された少なくとも1つの補助参照気圧センサと、前記参照気圧センサと前記補助参照気圧センサとによって同時に計測された気圧の計測値に基づいて、高度と気圧との関係を示す関数のパラメータを算出するパラメータ算出部と、をさらに備え、前記高度差算出部は、前記パラメータ算出部によって算出されたパラメータが適用された前記関数を用いて、前記物体気圧センサの高度と前記参照気圧センサが設置された高度との高度差を算出してもよい。
 このように、高度と気圧との関係を示す関数のパラメータが、参照気圧センサと補助参照気圧センサとによって同時に計測された気圧の計測値に基づいて算出され、算出されたパラメータを用いて物体気圧センサの高度と参照気圧センサが設置された高度との高度差を算出することにより、気象条件の変化の影響が緩和又は解消されるので、高度差の精度を向上させることが可能となる。
(2) In one embodiment, the measurement system includes at least one auxiliary reference pressure sensor installed at an altitude different from the altitude at which the reference air pressure sensor is installed, the reference air pressure sensor, and the auxiliary reference pressure sensor. And a parameter calculation unit that calculates a parameter of a function indicating a relationship between altitude and pressure based on the measured value of air pressure measured at the same time, and the height difference calculation unit calculates the parameter by the parameter calculation unit. The difference between the height of the object barometric pressure sensor and the height at which the reference barometric pressure sensor is installed may be calculated using the function to which the parameter is applied.
Thus, the parameters of the function indicating the relationship between altitude and barometric pressure are calculated based on the measured values of the barometric pressure simultaneously measured by the reference barometric pressure sensor and the auxiliary reference barometric pressure sensor, and using the calculated parameters, the object barometric pressure By calculating the difference between the height of the sensor and the height at which the reference barometric sensor is installed, the influence of the change in weather conditions is mitigated or eliminated, so that the accuracy of the difference in height can be improved.
(3)一実施形態において、計測システムは、前記補助参照気圧センサの数はn(nは1以上の整数)であり、前記関数は前記参照気圧センサにより計測される気圧を基準値とする気圧のn次関数であってもよい。
 このように、前記関数を参照気圧センサにより計測される気圧を基準値とする気圧のn次関数温度とすることにより、湿度などの気象条件の変化の影響が緩和又は解消されるうえ、算出される高度には、参照計測値を基準値とする気圧の高次の成分が含まれるため、高度差の精度をさらに向上させることが可能となる。
(3) In one embodiment, in the measurement system, the number of the auxiliary reference pressure sensors is n (n is an integer greater than or equal to 1), and the function calculates the pressure based on the pressure measured by the reference pressure sensor as a reference value It may be an n-order function of
As described above, by setting the function as an n-order function temperature of the barometric pressure with the barometric pressure measured by the reference barometric pressure sensor as a reference value, the influence of changes in meteorological conditions such as humidity can be mitigated or eliminated. Since the altitude includes high-order components of the barometric pressure with the reference measurement value as the reference value, the accuracy of the altitude difference can be further improved.
(4)一実施形態において、計測システムは、前記物体が予め設定された基準位置に配置されているとき、前記物体気圧センサと前記参照気圧センサとによって計測された気圧の計測値の差である基準位置差圧を記憶する基準位置差圧記憶部をさらに備え、前記高度差算出部は、前記基準位置差圧をさらに用いて前記基準位置と前記物体との高度差を算出してもよい。
 このように、基準位置差圧を用いて基準位置と物体との高度差を算出することにより、物体が基準位置に配置されているとき、物体気圧センサと参照気圧センサの高度が異なる場合であっても、物体気圧センサと参照気圧センサとの高度差が一定に保たれれば、物体の高度と基準位置の高度との高度差が算出されるため、物体気圧センサの配置の自由度が高くなり、その着脱に係る作業を省略することが可能となる。
(4) In one embodiment, the measurement system is a difference between measurement values of barometric pressure measured by the object barometric pressure sensor and the reference barometric pressure sensor when the object is disposed at a preset reference position. The reference position differential pressure storage unit may further include a reference position differential pressure storage unit, and the height difference calculation unit may calculate the height difference between the reference position and the object by further using the reference position differential pressure.
Thus, when the object is placed at the reference position by calculating the difference in height between the reference position and the object using the reference position differential pressure, the heights of the object pressure sensor and the reference pressure sensor are different. Even if the difference in height between the object barometric pressure sensor and the reference barometric pressure sensor is kept constant, the difference in height between the height of the object and the height of the reference position is calculated. Thus, it is possible to omit the work relating to the attachment and detachment.
(5)一実施形態において、計測システムは、前記高度差を通知する通知部をさらに備えてもよい。
 このように、高度差を通知する通知部をさらに備えることにより、操縦者は、別の作業者との通話を行わなくても高度差を把握することが可能となる。
(5) In one embodiment, the measurement system may further include a notification unit that notifies the height difference.
Thus, by further providing the notification unit for notifying the difference in altitude, the pilot can grasp the difference in altitude without making a call with another worker.
(6)幾つかの実施形態に係る制御システムは、上記の計測システムと、前記物体を移動させる駆動部と、前記高度差を、前記高度差の目標値である目標高度差に近づくように制御する制御部と、を備える。
 このように、制御部をさらに備えることにより、物体気圧センサが設置される物体の高度を制御することが可能となる。
(6) The control system according to some embodiments controls the measurement system, the drive unit for moving the object, and the altitude difference so as to approach the target altitude difference that is the target value of the altitude difference. And a control unit.
As described above, by further including the control unit, it is possible to control the height of the object on which the object pressure sensor is installed.
(7)幾つかの実施形態に係る計測方法は、所定の高度に設置された参照気圧センサと、移動可能な物体に取り付けられた物体気圧センサとによってそれぞれ気圧の計測を行う第1ステップと、前記参照気圧センサと前記物体気圧センサとが同時に計測した気圧の計測値に基づいて、前記物体気圧センサの高度と前記参照気圧センサの高度との高度差を算出する第2ステップと、を有する。
 このように、参照気圧センサと物体気圧センサとによって同時に計測された気圧の計測値に基づいて、物体気圧センサの高度と参照気圧センサの高度との高度差を算出することにより、海面気圧情報を用いずに物体気圧センサが取り付けられた物体の高度を得ることが可能となり、また、算出される高度差に対する気圧変動の影響が緩和又は解消されるので、高度差を高い精度で求めることが可能となる。
(7) A measurement method according to some embodiments includes: a first step of measuring air pressure with a reference air pressure sensor installed at a predetermined height and an object air pressure sensor attached to a movable object; And a second step of calculating a difference in height between the height of the object barometric pressure sensor and the height of the reference barometric pressure sensor based on the measurement value of the barometric pressure simultaneously measured by the reference barometric pressure sensor and the object barometric pressure sensor.
Thus, the sea level pressure information is calculated by calculating the difference between the height of the object pressure sensor and the height of the reference pressure sensor based on the measurement value of the pressure measured simultaneously by the reference pressure sensor and the object pressure sensor. It is possible to obtain the height of the object attached with the object pressure sensor without using it, and the influence of the pressure fluctuation on the calculated height difference is mitigated or eliminated, so the height difference can be determined with high accuracy It becomes.
 本開示によれば、所定の高度からの高度差を高精度で計測することができる計測システム、制御システム及び計測方法を提供することができる。 According to the present disclosure, it is possible to provide a measurement system, a control system, and a measurement method capable of measuring an altitude difference from a predetermined altitude with high accuracy.
第1実施形態に係る計測システムの適用例を示す図である。It is a figure which shows the application example of the measurement system which concerns on 1st Embodiment. 第1実施形態に係る計測システムの機能構成例を示すブロック図である。It is a block diagram showing an example of functional composition of a measurement system concerning a 1st embodiment. 第1実施形態に係る高度差計測処理の一例を示すフローチャートである。It is a flow chart which shows an example of height difference measurement processing concerning a 1st embodiment. 第2実施形態に係る計測システムの適用例を示す図である。It is a figure which shows the application example of the measurement system which concerns on 2nd Embodiment. 第2実施形態に係る計測システムの機能構成例を示すブロック図である。It is a block diagram showing an example of functional composition of a measurement system concerning a 2nd embodiment. 第2施形態に係る高度差計測処理の一例を示すフローチャートである。It is a flow chart which shows an example of height difference measurement processing concerning a 2nd embodiment. 第3実施形態に係る計測システムの適用例を示す図である。It is a figure which shows the application example of the measurement system which concerns on 3rd Embodiment. 第3実施形態に係る計測システムの機能構成例を示すブロック図である。It is a block diagram showing an example of functional composition of a measurement system concerning a 3rd embodiment. 第3実施形態に係る高度差計測処理の一例を示すフローチャートである。It is a flow chart which shows an example of height difference measurement processing concerning a 3rd embodiment. 第4実施形態に係る計測システムの機能構成例を示すブロック図である。It is a block diagram showing an example of functional composition of a measurement system concerning a 4th embodiment. 第4実施形態に係る計測システムの適用例を示す図である。It is a figure which shows the application example of the measurement system which concerns on 4th Embodiment. 第4実施形態に係る計測システムの適用例を示す図である。It is a figure which shows the application example of the measurement system which concerns on 4th Embodiment. 第4実施形態に係る高度差計測処理の一例を示すフローチャートである。It is a flow chart which shows an example of height difference measurement processing concerning a 4th embodiment. 第1~4実施形態に係る高度差計測処理の変形例を示すブロック図である。It is a block diagram showing a modification of height difference measurement processing concerning a 1st-4th embodiment.
 以下、図面を参照し、本発明に係る計測システムの実施形態について説明する。以下の説明では、理解を容易にするために、本実施形態に係る計測システムが、建築等の工事現場において運搬される物体の高度の計測に適用する場合を例にする。この例では、物体が起重機(クレーン)によって運搬される過程で高度が変化することを仮定する。なお、本実施形態に係る計測システムは、その他の作業現場において移動する物体の高度の計測に応用されてもよい。また、高度の計測対象となる物体は、動力を備え自律移動する物体であってもよいし、動力を備えずに他の物体に付随して移動する物体であってもよい。 Hereinafter, embodiments of a measurement system according to the present invention will be described with reference to the drawings. In the following description, in order to facilitate understanding, the measurement system according to the present embodiment is applied to measurement of the height of an object transported at a construction site such as a building. In this example, it is assumed that the altitude changes as the object is transported by the crane. In addition, the measurement system which concerns on this embodiment may be applied to measurement of the altitude of the moving object in the other work site. Further, the object to be measured at high altitude may be a powered and autonomously moving object, or may be an object that is not powered and is moved along with another object.
(第1実施形態)
 まず、本発明の第1実施形態に係る計測システム1について説明する。
 図1は、本実施形態に係る計測システム1の適用例を示す図である。
 本実施形態に係る計測システム1は、物体気圧センサ11と、参照気圧センサ12と、演算装置20と、を含んで構成される。
First Embodiment
First, a measurement system 1 according to a first embodiment of the present invention will be described.
FIG. 1 is a view showing an application example of the measurement system 1 according to the present embodiment.
The measurement system 1 according to the present embodiment is configured to include an object pressure sensor 11, a reference pressure sensor 12, and an arithmetic device 20.
 図1に示す例では、物体気圧センサ11は、高度差の計測対象となる物体に着脱可能とする装着具を備え、移動可能とする物体である荷78の表面に装着されている。この配置により、物体気圧センサ11は、荷78の表面における気圧を計測する。以下、物体気圧センサ11が計測する気圧の計測値、物体気圧センサ11の高度を、それぞれ「物体計測値」、「物体高度」と呼ぶことがある。
 参照気圧センサ12は、計測対象物の高度の基準となる基準位置の例として地面に設置されている。この配置により、参照気圧センサ12は、地面上の気圧を計測する。以下、参照気圧センサ12が計測する気圧の計測値、参照気圧センサ12の高度を、それぞれ「参照計測値」、「参照高度」と呼ぶことがある。
In the example shown in FIG. 1, the object barometric sensor 11 is equipped with a mounting tool that can be attached to and detached from an object whose height is to be measured, and is mounted on the surface of a load 78 that is a movable object. By this arrangement, the object pressure sensor 11 measures the pressure at the surface of the load 78. Hereinafter, the measurement value of the air pressure measured by the object air pressure sensor 11 and the altitude of the object air pressure sensor 11 may be referred to as an “object measurement value” and an “object altitude”, respectively.
The reference air pressure sensor 12 is installed on the ground as an example of a reference position which is a reference of the height of the measurement object. By this arrangement, the reference pressure sensor 12 measures the pressure on the ground. Hereinafter, the measurement value of the air pressure measured by the reference air pressure sensor 12 and the altitude of the reference air pressure sensor 12 may be referred to as a “reference measurement value” and a “reference altitude”, respectively.
 物体気圧センサ11及び参照気圧センサ12は、例えば、それぞれ真空状態を圧力の基準(0〔Pa〕)とする絶対圧力計である。また、物体気圧センサ11及び参照気圧センサ12は、それぞれ計測時刻の同期に関する時刻情報を取得する時刻情報取得部(図示せず)を備える。時刻情報取得部は、例えば、GPS(Global Positioning System)衛星からGPS時刻を示す時刻情報を逐次に受信する。GPS時刻は、GPS衛星で採用している基準時刻である。基準時刻は、物体気圧センサ11及び参照気圧センサ12が、それぞれ備えるタイマが計時する時刻の校正に用いられる。物体気圧センサ11、参照気圧センサ12は、所定計測周期(例えば、0.1~0.3秒)で物体計測値、参照計測値をそれぞれ計測する。物体気圧センサ11、参照気圧センサ12は、計測した物体計測値、参照計測値に、それぞれその時点の時刻を示す時刻情報を付加して演算装置20に送信する。 The object air pressure sensor 11 and the reference air pressure sensor 12 are, for example, absolute pressure gauges in which the vacuum state is a pressure reference (0 [Pa]). The object barometric pressure sensor 11 and the reference barometric pressure sensor 12 each include a time information acquisition unit (not shown) for acquiring time information on synchronization of measurement times. The time information acquisition unit sequentially receives time information indicating GPS time from, for example, a GPS (Global Positioning System) satellite. GPS time is a reference time adopted by GPS satellites. The reference time is used to calibrate the time measured by a timer provided with each of the object air pressure sensor 11 and the reference air pressure sensor 12. The object air pressure sensor 11 and the reference air pressure sensor 12 measure an object measurement value and a reference measurement value at a predetermined measurement cycle (for example, 0.1 to 0.3 seconds). The object air pressure sensor 11 and the reference air pressure sensor 12 add time information indicating the time at that time to the measured object measurement value and reference measurement value, respectively, and transmit the result to the arithmetic device 20.
 演算装置20は、物体気圧センサ11、参照気圧センサ12からそれぞれ時刻情報を付加した物体計測値、参照計測値を受信する。演算装置20は、受信した物体計測値と参照計測値のそれぞれに付加された時刻情報を参照して、互いに同一時刻に計測された物体計測値と参照計測値を特定する。演算装置20は、物体計測値と、その物体計測値と同時に計測された参照計測値に基づいて、物体高度と参照高度との高度差ΔHを算出する。高度差ΔHは、参照高度を基準とした物体気圧センサ11の高度に相当する。演算装置20は、例えば、CPU(Central Processing Unit)等の演算デバイスを備える専用の装置として構成されてもよいし、かかる演算デバイスを備える多機能携帯電話機(いわゆる、スマートフォンを含む)、タブレット端末装置、パーソナルコンピュータ(PC:Personal Computer)等の汎用の電子機器として構成されてもよい。
 なお、物体気圧センサ11、参照気圧センサ12及び演算装置20とは、各種の情報が送受信可能となるように、無線で接続されてもよいし、有線で接続されてもよい。
The arithmetic device 20 receives, from the object pressure sensor 11 and the reference pressure sensor 12, an object measurement value to which time information is added and a reference measurement value. The arithmetic unit 20 refers to time information added to each of the received object measurement value and the reference measurement value, and identifies the object measurement value and the reference measurement value measured at the same time. The arithmetic unit 20 calculates the height difference ΔH between the object height and the reference height based on the object measurement value and the reference measurement value measured simultaneously with the object measurement value. The height difference ΔH corresponds to the height of the object pressure sensor 11 based on the reference height. For example, the computing device 20 may be configured as a dedicated device including a computing device such as a CPU (Central Processing Unit), or a multi-function mobile phone (including a so-called smart phone) including such a computing device, a tablet terminal device It may be configured as a general-purpose electronic device such as a personal computer (PC: Personal Computer).
The object barometric pressure sensor 11, the reference barometric pressure sensor 12, and the computing device 20 may be connected wirelessly or wired so as to enable transmission and reception of various information.
 図1に示す例では、荷78を運搬する起重機70の旋回体72に演算装置20が配置されている。旋回体72は、脚71の先端部に旋回可能に支持され、脚71の基端部は地面に支持されている。旋回体72には、ユーザである作業者が入室可能とする操縦室が設けられ、起重機70の動作を操縦するための操縦部材が備えられる。起重機70の動作には、巻上装置73による荷78の昇降、旋回体72の水平方向の旋回、鉛直方向の昇降、及びジブ74の伸縮が含まれる。荷78は、吊りワイヤ77により巻上ロープ75の一端に取り付けられた吊り具76に吊り下げられている。旋回体72に設置された巻上装置73の回転体は、所定の回転方向(順方向)に回転することでジブ74に沿って張られた巻上ロープ75の他端を巻き取り、荷78を上昇させることができる。また、巻上装置73の回転体は、順方向とは逆方向に回転することで巻上ロープ75の他端を巻き出し、荷78を下降させることができる。荷78の昇降は、作業者の操作により指示される。本実施形態に係る計測システム1は、作業により変化しうる物体高度と参照高度との高度差ΔHを計測、通知して操縦室に乗務する作業者の業務の効率化に役立てることができる。 In the example shown in FIG. 1, the computing device 20 is disposed on the swing body 72 of the hoist 70 which transports the load 78. The pivoting body 72 is pivotably supported at the distal end of the leg 71, and the base end of the leg 71 is supported on the ground. The swivel body 72 is provided with a cockpit which allows an operator who is a user to enter the room, and is provided with a control member for operating the operation of the hoist 70. The operation of the hoist 70 includes raising and lowering the load 78 by the hoisting device 73, horizontal turning of the turning body 72, raising and lowering in the vertical direction, and extension and contraction of the jib 74. The load 78 is suspended by a hanger 76 attached to one end of the hoisting rope 75 by a suspension wire 77. The rotating body of the hoisting device 73 installed on the revolving body 72 winds the other end of the hoisting rope 75 stretched along the jib 74 by rotating in a predetermined rotational direction (forward direction), and the load 78 Can be raised. In addition, the rotating body of the hoisting device 73 can unwind the other end of the hoisting rope 75 and rotate the load 78 by rotating in the direction opposite to the forward direction. The raising and lowering of the load 78 is instructed by the operation of the operator. The measurement system 1 according to the present embodiment can measure and notify the height difference ΔH between the object height that can change due to work and the reference height, and can help to improve the work efficiency of the worker who gets into the cockpit.
(機能構成)
 次に、本実施形態に係る計測システム1の機能構成例について説明する。
 図2は、本実施形態に係る計測システム1の機能構成例を示すブロック図である。
 時刻情報提供部10は、その時点における時刻を示す時刻情報を物体気圧センサ11と参照気圧センサ12に提供する。時刻情報提供部10は、例えば、GPS衛星に搭載され、所定の基準時刻周期(例えば、1秒)の基準時刻としてGPS時刻を示す時刻情報を生成し、生成した時刻情報を搬送する電波を送出する。
(Functional configuration)
Next, a functional configuration example of the measurement system 1 according to the present embodiment will be described.
FIG. 2 is a block diagram showing an example of a functional configuration of the measurement system 1 according to the present embodiment.
The time information providing unit 10 provides time information indicating the time at that point in time to the object pressure sensor 11 and the reference pressure sensor 12. The time information providing unit 10 is mounted on, for example, a GPS satellite, generates time information indicating GPS time as a reference time of a predetermined reference time period (for example, 1 second), and transmits a radio wave carrying the generated time information. Do.
 物体気圧センサ11は、現時刻を逐次に計時するタイマ(図示せず)を備える。タイマは、自部が計時する時刻を時刻情報提供部10から取得した時刻情報が示す基準時刻に調整する時刻調整部(図示せず)を備える。
 物体気圧センサ11は、所定の計測間隔で気圧を計測し、計測した気圧の計測値である物体計測値にタイマが計時したその時点の時刻(現時刻)を示す時刻情報を付加して演算装置20に送信する。
 参照気圧センサ12は、物体気圧センサ11と同様に、現時刻を逐次に計時するタイマ(図示せず)を備える。タイマは、自部が計時する時刻を時刻情報提供部10から取得した時刻情報が示す基準時刻に調整する時刻調整部(図示せず)を備える。
 参照気圧センサ12は、所定の計測間隔で気圧を計測し、計測した気圧の計測値である参照計測値にタイマが計時したその時点の時刻を示す時刻情報を付加して演算装置20に送信する。
The object pressure sensor 11 includes a timer (not shown) that counts the current time sequentially. The timer includes a time adjustment unit (not shown) that adjusts the time counted by the own unit to a reference time indicated by the time information acquired from the time information providing unit 10.
The object atmospheric pressure sensor 11 measures the atmospheric pressure at a predetermined measurement interval, and adds the time information indicating the time (current time) at that point in time measured by the timer to the object measurement value which is the measurement value of the measured atmospheric pressure Send to 20.
The reference pressure sensor 12 includes a timer (not shown) that counts the current time sequentially, similarly to the object pressure sensor 11. The timer includes a time adjustment unit (not shown) that adjusts the time counted by the own unit to a reference time indicated by the time information acquired from the time information providing unit 10.
The reference atmospheric pressure sensor 12 measures atmospheric pressure at a predetermined measurement interval, adds time information indicating the time at that time measured by the timer to the reference measurement value which is the measurement value of the measured atmospheric pressure, and transmits it to the arithmetic device 20 .
 演算装置20は、通信部21と、操作部22と、通知部23と、記憶部24と、制御部25と、を含んで構成される。
 通信部21は、ネットワークNWを介して他の機器、例えば、物体気圧センサ11と参照気圧センサ12と通信可能に接続し、制御部25の制御に基づいて各種のデータを無線又は有線で送受信する。通信部21は、例えば、通信インタフェース、入出力インタフェースである。
 操作部22は、ユーザの操作を受け付け、受け付けた操作に応じて生成した操作信号を制御部25に出力する。操作部22は、例えば、専用のボタン、レバーなどの専用の入力部材でもよいし、マウス、タッチセンサ等のポインティングデバイス、キーボード、などの汎用の入力部材であってもよい。
The arithmetic device 20 is configured to include a communication unit 21, an operation unit 22, a notification unit 23, a storage unit 24, and a control unit 25.
The communication unit 21 is communicably connected to another device such as the object barometric pressure sensor 11 and the reference barometric pressure sensor 12 via the network NW, and transmits / receives various data wirelessly or by wire based on the control of the control unit 25. . The communication unit 21 is, for example, a communication interface and an input / output interface.
The operation unit 22 receives an operation of the user, and outputs an operation signal generated according to the received operation to the control unit 25. The operation unit 22 may be, for example, a dedicated input member such as a dedicated button or a lever, or may be a general-purpose input member such as a mouse, a pointing device such as a touch sensor, or a keyboard.
 通知部23は、制御部25から入力される各種の通知情報、例えば、高度差を通知する。通知部23は、例えば、ディスプレイパネル、スピーカ等の出力部材を含んで構成される。なお、操作部22を構成するタッチパッドと、通知部23を構成するディスプレイは、互いに一体化したタッチパネルとして構成されてもよい。 The notification unit 23 notifies various notification information input from the control unit 25, for example, the height difference. The notification unit 23 includes, for example, output members such as a display panel and a speaker. In addition, the touch pad which comprises the operation part 22, and the display which comprises the notification part 23 may be comprised as a touch panel integrated mutually.
 記憶部24は、制御部25で実行される処理に用いられる各種情報、その処理により取得された各種情報、その処理を実行するためのプログラムを記憶する。記憶部24は、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Readonly Memory)、またはRAM(Random Access Memory)などの記憶媒体を含んで構成される。 The storage unit 24 stores various types of information used for processing executed by the control unit 25, various types of information acquired by the processing, and a program for executing the processing. The storage unit 24 includes, for example, a storage medium such as an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), a ROM (Read only Memory), or a RAM (Random Access Memory). .
 制御部25は、演算装置20の各種の機能を制御する。制御部25は、演算デバイスを備え、記憶部24に予め記憶されたプログラムに記述された各種の命令で指示された処理を実行して、その機能の一部又は全部を実現してもよい。制御部25は、高度差算出部251と、通知制御部252と、を含んで構成される。 The control unit 25 controls various functions of the arithmetic device 20. The control unit 25 may include an arithmetic device, and may execute a process instructed by various instructions described in a program stored in advance in the storage unit 24 to realize a part or all of the function. The control unit 25 is configured to include an altitude difference calculation unit 251 and a notification control unit 252.
 高度差算出部251は、通信部21を介して物体気圧センサ11と参照気圧センサ12から、それぞれ物体計測値、参照計測値を受信する。高度差算出部251は、物体計測値、参照計測値のそれぞれに付加された時刻情報を参照して、相互に同一の時刻を示す時刻情報が付加された物体計測値と参照計測値を対応付ける。そして、高度差算出部251は、物体計測値Pstと、その物体計測値に対応付けられた参照計測値Pから、式(1)に例示される高度と気圧との関係を示す関数を用いて物体高度Hstから参照高度Hrの高度差Hst-Hを算出する。算出される高度差Hst-Hは、図1に示される高度差ΔHに相当する。 The altitude difference calculation unit 251 receives an object measurement value and a reference measurement value from the object pressure sensor 11 and the reference pressure sensor 12 via the communication unit 21 respectively. The altitude difference calculating unit 251 refers to the time information added to each of the object measurement value and the reference measurement value, and associates the object measurement value to which the time information indicating the same time is added mutually and the reference measurement value. Then, the height difference calculation unit 251 uses the object measurement value P st and the reference measurement value P r associated with the object measurement value to obtain a function indicating the relationship between the height and the air pressure exemplified in Equation (1). calculating the altitude difference H st -H r of the reference altitude Hr from the object height H st used. The calculated height difference H st -H r corresponds to the height difference ΔH shown in FIG.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Tは、地上気温を示す。地上温度Tは、例えば、288.15[K]である。Lは、気温減率を示す。気温減率Lは、例えば、-0.0065[K/m]である。gは、重力加速度を示す。重力加速度gは、例えば、9.80665[m/s]である。Mは、大気のモル質量を示す。モル質量Mは、例えば、0.02899644[kg/mol]である。Rは、気体定数を示す。気体定数Rは、例えば、8.3144598[J/K/mol]である。上記の地上温度T、気温減率Lは、それぞれICAO標準大気の諸定数の一部として規定されている。参照高度Hは、高度差算出部251に予め設定されてもよい。また、高度差算出部251は、操作部22からの操作信号で指示された高度を、参照高度Hとして設定可能としてもよい。
 高度差算出部251は、算出した高度差を通知制御部252に出力する。
In the formula (1), T 0 represents the surface temperature. The ground temperature T 0 is, for example, 288.15 [K]. L shows the temperature decrease rate. The rate of temperature decrease L is, for example, -0.0065 [K / m]. g 0 represents gravitational acceleration. The gravitational acceleration g 0 is, for example, 9.80665 [m / s 2 ]. M represents the molar mass of the atmosphere. The molar mass M is, for example, 0.02899644 [kg / mol]. R shows a gas constant. The gas constant R is, for example, 8.3144598 [J / K / mol]. The above ground temperature T 0 and the temperature reduction rate L are each defined as part of the constants of the ICAO standard atmosphere. The reference height H r may be set in advance in the height difference calculation unit 251. Further, the altitude difference calculation unit 251 may set the altitude instructed by the operation signal from the operation unit 22 as the reference altitude H r .
The altitude difference calculation unit 251 outputs the calculated altitude difference to the notification control unit 252.
 通知制御部252は、高度差算出部251から入力される高度差の情報を通知部23に出力する。通知制御部252は、例えば、入力される高度差を示す数値を高度差情報として通知部23に出力し、通知部23を構成するディスプレイパネルにその数値を表示させる。通知制御部252は、高度差を示すグラフィック画面を高度差情報として通知部23に出力し、ディスプレイパネルにその画面を表示させてもよい。
 通知制御部252は、操作部22から操作信号で指示される目標高度差を設定可能とし、入力される高度差と目標高度差の差分の絶対値が所定範囲内に達したか否かを判定してもよい。通知制御部252は、所定範囲内に達したとき、目標高度通知情報を通知部23に出力し、通知部23を構成するスピーカに所定の合図音を鳴動させてもよいし、目標高度への接近を示す案内音声を再生させてもよい。
The notification control unit 252 outputs the information on the height difference input from the height difference calculation unit 251 to the notification unit 23. The notification control unit 252 outputs, for example, a numerical value indicating the difference in height that is input to the notification unit 23 as height difference information, and causes the display panel constituting the notification unit 23 to display the numerical value. The notification control unit 252 may output a graphic screen indicating the difference in height as the difference in height information to the notification unit 23, and may display the screen on the display panel.
The notification control unit 252 enables setting of the target altitude difference instructed by the operation signal from the operation unit 22, and determines whether or not the absolute value of the difference between the input altitude difference and the target altitude difference has reached a predetermined range. You may When the notification control unit 252 reaches the predetermined range, the notification control unit 252 may output the target altitude notification information to the notification unit 23, and may cause the speakers constituting the notification unit 23 to ring a predetermined cue sound, or the target altitude may be set. A guidance voice indicating approach may be played back.
 (計算式の導出)
 次に、高度差の計算式である式(1)の導出過程を説明する。
 大気が平衡状態にあると仮定し、鉛直方向の高さdHの微小気柱の表面における気圧と底面における気圧との差圧dPは、式(2)に示すように微小気柱内の大気の質量により生じる重力により鉛直方向にかかる圧力に相当する。
(Derivation of calculation formula)
Next, the process of deriving equation (1), which is an equation for calculating the height difference, will be described.
Assuming that the atmosphere is in equilibrium, the differential pressure dP between the air pressure on the surface of the micro air column at the vertical height dH and the air pressure at the bottom is, as shown in equation (2), the atmospheric pressure in the micro air column. It corresponds to the pressure applied in the vertical direction by the gravity generated by the mass.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)は、差圧dPが、大気の密度ρ、重力加速度g及び高さdHの積となることを示す。式(2)の右辺において、負値を示す符号(-)は、差圧dPの方向が鉛直方向にかかることを示す。
 気体の状態方程式は、一般に式(3)で与えられる。
Equation (2) shows that the differential pressure dP is the product of the density ρ of the atmosphere, the gravitational acceleration g 0 and the height dH. On the right side of the equation (2), a sign (-) indicating a negative value indicates that the direction of the differential pressure dP is applied in the vertical direction.
The equation of state of gas is generally given by equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)は、密度ρ、気体定数R及び気温Tの積が、モル質量Mと気圧Pの積に等しいことを示す。式(2)を式(3)に代入すると、式(4)が得られる。 Equation (3) shows that the product of density ρ, gas constant R and air temperature T is equal to the product of molar mass M and pressure P. Substituting equation (2) into equation (3), equation (4) is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、気温Tが高度Hに対して線形に変化する、即ち、T+LHと仮定する。この仮定のもとでは、式(4)は式(5)に示すように変形される。 Here, it is assumed that the temperature T changes linearly with the height H, that is, T 0 + LH. Under this assumption, equation (4) is transformed as shown in equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)は、式(6)に示すように、左辺を気圧Pの関数とし、右辺を気温Tの関数となるように変形される。 In the equation (5), as shown in the equation (6), the left side is a function of the air pressure P, and the right side is a function of the air temperature T.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 そして、大気が上昇に伴い断熱膨張することを仮定する。この仮定のもとで、式(6)の左辺を気圧Pについて参照計測値Pから物体計測値Pstまで積分し、右辺を参照計測値Pが与えられるときの参照高度Hから物体計測値Pstが与えられるときの物体高度Hstまで積分すると、式(7)が得られる。 Then, it is assumed that the adiabatic expansion occurs as the atmosphere rises. Under this assumption, the left side of equation (6) is integrated from the reference measurement value P r to the object measurement value P st for the air pressure P, and the right side is the object from the reference height H r when the reference measurement value P r is given. When integration is performed up to the object height H st when the measured value P st is given, Expression (7) is obtained.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(7)を整理すると、式(1)が得られる。 Formula (1) is obtained by arranging Formula (7).
(高度差計測処理)
 次に、本実施形態に係る高度差計測処理について説明する。
 図3は、本実施形態に係る高度差計測処理の一例を示すフローチャートである。
(ステップS12)物体気圧センサ11、参照気圧センサ12は、それぞれ時刻情報を取得し、取得した時刻情報を基準として互いに同一の時刻を計時する。
(ステップS14)物体気圧センサ11、参照気圧センサ12は、それぞれ所定の計測周期で互いに同一の時刻における気圧を計測し、物体計測値、参照計測値として演算装置20の制御部25に送信する。
(ステップS16)演算装置20の高度差算出部251は、物体気圧センサ11から受信した物体計測値と、参照気圧センサ12から受信した参照計測値であって物体計測値と同時に計測された参照計測値から、式(1)に示す関係を用いて高度差を算出する。その後、高度差算出部251は、算出した高度差を示す高度差情報を通知部23に出力し、通知部23に通知させる。
(Alt difference measurement processing)
Next, the height difference measurement process according to the present embodiment will be described.
FIG. 3 is a flowchart showing an example of the height difference measurement process according to the present embodiment.
(Step S12) The object barometric pressure sensor 11 and the reference barometric pressure sensor 12 each acquire time information, and measure the same time on the basis of the acquired time information.
(Step S14) The object atmospheric pressure sensor 11 and the reference atmospheric pressure sensor 12 measure the atmospheric pressure at the same time with each other in a predetermined measurement cycle, and transmit them to the control unit 25 of the arithmetic device 20 as the object measurement value and the reference measurement value.
(Step S16) The height difference calculation unit 251 of the arithmetic device 20 is a reference measurement that is an object measurement value received from the object pressure sensor 11 and a reference measurement value received from the reference pressure sensor 12, and is measured simultaneously with the object measurement value. From the values, the height difference is calculated using the relationship shown in equation (1). Thereafter, the height difference calculation unit 251 outputs height difference information indicating the calculated height difference to the notification unit 23, and causes the notification unit 23 to notify.
 以上に説明したように、本実施形態に係る計測システム1は、所定の高度に設置された参照気圧センサ12と、移動可能な物体に取り付けられた物体気圧センサ11と、高度差算出部251と、を備える。高度差算出部251は、参照気圧センサ12と物体気圧センサ11によって同時に計測された気圧の計測値に基づいて、物体気圧センサ11の高度と参照気圧センサ12の高度との高度差を算出する。 As described above, the measurement system 1 according to the present embodiment includes the reference pressure sensor 12 installed at a predetermined height, the object pressure sensor 11 attached to a movable object, and the height difference calculation unit 251. And. The altitude difference calculation unit 251 calculates an altitude difference between the altitude of the object atmospheric pressure sensor 11 and the altitude of the reference atmospheric pressure sensor 12 based on the measurement value of the atmospheric pressure simultaneously measured by the reference atmospheric pressure sensor 12 and the object atmospheric pressure sensor 11.
 この構成によれば、参照気圧センサ12と物体気圧センサ11によって計測された気圧の計測値を用いて物体気圧センサ11の高度と参照気圧センサ12の高度との高度差が算出される。そのため、海面気圧情報を用いずに物体気圧センサ11が取り付けられた物体の高度が得られる。
 また、気象変動等の変動要因により気圧が変動しても、参照気圧センサ12と物体気圧センサ11によって同時に計測された気圧の計測値を用いて高度差が算出される。そのため、算出される高度差に対する気圧変動の影響が緩和又は解消されるので、高度差が高い精度で求められる。
According to this configuration, the height difference between the height of the object pressure sensor 11 and the height of the reference pressure sensor 12 is calculated using the measurement values of the pressure measured by the reference pressure sensor 12 and the object pressure sensor 11. Therefore, the altitude of the object attached with the object pressure sensor 11 can be obtained without using the sea surface pressure information.
Further, even if the atmospheric pressure fluctuates due to a fluctuation factor such as weather fluctuation, the altitude difference is calculated using the measurement value of the atmospheric pressure simultaneously measured by the reference atmospheric pressure sensor 12 and the object atmospheric pressure sensor 11. Therefore, the influence of the pressure fluctuation on the calculated height difference is alleviated or eliminated, so the height difference can be determined with high accuracy.
 計測システム1は、高度差算出部251が算出した高度差をユーザに通知する通知部23を備える。ここで、計測システム1を高層ビルの解体現場に適用し、解体現場において起重機70(図1)が高層ビルの最上階から解体された部材を荷78として地上に降ろす工程を仮定する。この工程では、従来、起重機70の操縦者とは別の作業者が、地上階において解体された部材の高度を観察し、部材の高度を携帯電話機等の無線端末装置を用いて操縦席に在席する操縦者の無線端末装置に音声で伝達することがある。操縦者は、作業者から伝達される情報に基づいて部材の高度を調整し、地上への着地を判断して部材の移動を停止している。操縦者が部材の高度の調整及び移動の停止を判断する際、作業者から伝達される情報に頼るので、作業効率が低下していた。 The measurement system 1 includes a notification unit 23 that notifies the user of the height difference calculated by the height difference calculation unit 251. Here, it is assumed that the measurement system 1 is applied to a dismantling site of a high-rise building, and a process in which a hoist 70 (FIG. 1) lifts a member dismantled from the top floor of the high-rise building on the ground as a load 78 at the dismounting site. In this process, conventionally, a worker other than the operator of the hoist 70 observes the height of the disassembled member on the ground floor, and the height of the member is located in the cockpit using a wireless terminal device such as a mobile phone. It may be transmitted by voice to the pilot's wireless terminal device. The pilot adjusts the height of the member based on the information transmitted from the worker, determines the landing on the ground, and stops the movement of the member. The work efficiency has been reduced because the pilot relies on the information transmitted from the operator when determining the adjustment of the altitude of the member and the stop of the movement.
 この点、本実施形態では、物体気圧センサ11を荷78に取り付け、地上に参照気圧センサ12が設置される。時刻情報による時刻同期のもとで物体気圧センサ11と参照気圧センサ12は、それぞれ物体計測値と参照計測値を計測する。そして、高度差算出部251は、計測された物体計測値と参照計測値に基づいて、荷78の地上からの高さが高度差として算出する。起重機70の操縦室に設置されたディスプレイパネルを通知部23として適用することで、算出された高度差が通知される。操縦者は、別の作業者との通話を行わなくても解体した部材の高度を把握することができるので、部材の高度の調整に係る作業効率が格段に向上する。 In this respect, in the present embodiment, the object pressure sensor 11 is attached to the load 78, and the reference pressure sensor 12 is installed on the ground. The object barometric pressure sensor 11 and the reference barometric pressure sensor 12 respectively measure an object measurement value and a reference measurement value under time synchronization based on time information. Then, the height difference calculation unit 251 calculates the height of the load 78 from the ground as the height difference, based on the measured object measurement value and the reference measurement value. By applying the display panel installed in the cockpit of the hoist 70 as the notification unit 23, the calculated height difference is notified. Since the pilot can grasp the height of the disassembled member without making a call with another worker, the working efficiency for adjusting the height of the member is significantly improved.
(第2実施形態)
 次に、本発明の第2実施形態に係る計測システム1について説明する。以下の説明は、第1実施形態との差異点を主とし、第1実施形態と同一の構成については同一の符号を付して、特に断らない限りその説明を援用する。
 図4は、本実施形態に係る計測システム1の適用例を示す図である。
 本実施形態に係る計測システム1は、物体気圧センサ11、参照気圧センサ12及び演算装置20に、補助参照気圧センサ13をさらに含んで構成される。補助参照気圧センサ13は、参照気圧センサ12の高度とは異なる高度に設置される。以下の説明では、補助参照気圧センサ13が計測する気圧の計測値、高度を、それぞれ「補助参照計測値」、「補助参照高度」と呼ぶことがある。
Second Embodiment
Next, a measurement system 1 according to a second embodiment of the present invention will be described. The following description mainly focuses on differences from the first embodiment, and the same configuration as in the first embodiment is denoted by the same reference numeral, and the description is incorporated unless otherwise specified.
FIG. 4 is a view showing an application example of the measurement system 1 according to the present embodiment.
The measurement system 1 according to the present embodiment is configured to further include an auxiliary reference pressure sensor 13 in the object pressure sensor 11, the reference pressure sensor 12, and the arithmetic device 20. The auxiliary reference pressure sensor 13 is installed at an altitude different from that of the reference pressure sensor 12. In the following description, the measurement value and altitude of the air pressure measured by the auxiliary reference air pressure sensor 13 may be referred to as “auxiliary reference measurement value” and “auxiliary reference altitude”, respectively.
 図4に示す例では、物体気圧センサ11が設置される荷78の起重機70による可動範囲に近接した所定範囲内に、参照気圧センサ12と補助参照気圧センサ13が互いに異なる高度に設置される。この例では、起重機70の近傍に細長い形状を有する支持部材80が長手方向を鉛直方向と平行に向けて設置される。参照気圧センサ12と補助参照気圧センサ13は、それぞれ支持部材の基端部、先端部に設置されている。
 支持部材80は、金属、石材、コンクリート等の剛性が高く、参照気圧センサ12と補助参照気圧センサ13の位置を固定することができる部材であればよい。支持部材80として、作業現場に一時的に設置される足場、常時設置されるビルディング、橋梁、ポールなどが利用可能である。
In the example shown in FIG. 4, the reference pressure sensor 12 and the auxiliary reference pressure sensor 13 are installed at different heights within a predetermined range close to the movable range of the load 78 on which the object pressure sensor 11 is installed. In this example, a support member 80 having an elongated shape is installed in the vicinity of the hoist 70 with its longitudinal direction parallel to the vertical direction. The reference atmospheric pressure sensor 12 and the auxiliary reference atmospheric pressure sensor 13 are respectively installed at the proximal end and the distal end of the support member.
The supporting member 80 may be a member having high rigidity such as metal, stone, concrete, etc., and capable of fixing the positions of the reference pressure sensor 12 and the auxiliary reference pressure sensor 13. As the support member 80, a scaffold temporarily installed at a work site, a constantly installed building, a bridge, a pole, etc. can be used.
(機能構成例)
 次に、本実施形態に係る計測システム1の機能構成例について説明する。
 図5は、本実施形態に係る計測システム1の機能構成例を示すブロック図である。
 補助参照気圧センサ13は、参照気圧センサ12と同様に、現時刻を逐次に計時するタイマ(図示せず)を備える。タイマは、自部が計時する時刻を時刻情報提供部10から取得した時刻情報が示す基準時刻とする調整部を備える。
 補助参照気圧センサ13は、所定の計測間隔で気圧を計測し、計測した気圧の計測値を参照計測値とし、タイマが計時したその時点の時刻を示す時刻情報を付加して演算装置2 0に送信する。
(Example of functional configuration)
Next, a functional configuration example of the measurement system 1 according to the present embodiment will be described.
FIG. 5 is a block diagram showing an example of a functional configuration of the measurement system 1 according to the present embodiment.
Similar to the reference pressure sensor 12, the auxiliary reference pressure sensor 13 includes a timer (not shown) that counts the current time sequentially. The timer includes an adjustment unit that sets the time counted by the own unit as a reference time indicated by the time information acquired from the time information providing unit 10.
The auxiliary reference pressure sensor 13 measures the pressure at a predetermined measurement interval, uses the measured value of the measured pressure as a reference measurement value, adds time information indicating the time at that time counted by the timer, and adds the time information to the arithmetic device 20 Send.
 演算装置20の制御部25は、高度差算出部251と通知制御部252の他、さらにパラメータ算出部253を備える。
 パラメータ算出部253は、通信部21を介して参照気圧センサ12と補助参照気圧センサ13から、それぞれ参照計測値、補助参照計測値を受信する。パラメータ算出部253は、参照計測値、補助参照計測値のそれぞれに付加された時刻情報を参照して、相互に同一の時刻を示す時刻情報が付加された参照計測値と補助参照計測値を対応付ける。パラメータ算出部253は、補助参照計測値Pと、その補助参照計測値に対応付けられた参照計測値Pから、気圧と高度との関係を示す関数のパラメータを算出する。より具体的には、パラメータ算出部253は、その関係を示す一次関数のパラメータAを、予め設定された補助参照高度H、参照高度H、補助参照計測値P及び参照計測値Pから式(8)に示す関係を用いて算出する。
The control unit 25 of the arithmetic device 20 further includes a parameter calculation unit 253 in addition to the height difference calculation unit 251 and the notification control unit 252.
The parameter calculation unit 253 receives the reference measurement value and the auxiliary reference measurement value from the reference pressure sensor 12 and the auxiliary reference pressure sensor 13 via the communication unit 21. The parameter calculation unit 253 refers to the time information added to each of the reference measurement value and the auxiliary reference measurement value, and associates the reference measurement value to which the time information indicating the same time is added with each other and the auxiliary reference measurement value. . Parameter calculation unit 253, the auxiliary reference measurement P 1, from the auxiliary reference measurement reference measurement value associated with the value P r, calculates the parameters of a function showing the relationship between the altitude and atmospheric pressure. More specifically, the parameter calculation unit 253 sets the parameter A 1 of the linear function indicating the relationship to the auxiliary reference height H 1 , the reference height H r , the auxiliary reference measurement value P 1, and the reference measurement value P which are preset. It calculates using the relationship shown to Formula (8) from r .
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)は、パラメータAが、補助参照計測値Pと参照計測値Pとの差圧P-Pに対する補助参照高度Hから参照高度Hの高度差の比(傾き)に相当することを示す。但し、式(8)の右辺の分母に示される差圧P-Pは、参照計測値Pで正規化されている。パラメータAは、高度の次元を有する変数である。パラメータ算出部253は、算出したパラメータAを高度差算出部251に出力する。なお、補助参照高度Hと参照高度Hを、パラメータ算出部253に予め設定しておく。 In equation (8), the parameter A 1 is the ratio of the difference in height between the auxiliary reference height H 1 to the reference height H r with respect to the differential pressure P 1 -P r between the auxiliary reference measurement value P 1 and the reference measurement value P r (slope Indicates that it corresponds to). However, the differential pressure P 1 -P r indicated by the denominator on the right side of the equation (8) is normalized by the reference measurement value P r . The parameter A 1 is a variable having a high dimensionality. The parameter calculation unit 253 outputs the calculated parameter A 1 to the height difference calculation unit 251. The auxiliary reference height H 1 and the reference height H r are set in the parameter calculation unit 253 in advance.
 高度差算出部251は、パラメータ算出部253から入力されたパラメータAと、物体気圧センサ11と参照気圧センサ12からそれぞれ受信した物体計測値と参照計測値とを用いて、物体高度と参照高度との高度差を算出する。より具体的には、高度差算出部251は、式(9)に例示される高度と気圧との関係を示す関数を用いて物体高度Hstと参照高度Hとの高度差Hst-Hを算出する。 The altitude difference calculation unit 251 uses the parameter A 1 input from the parameter calculation unit 253 and the object measurement value and the reference measurement value respectively received from the object pressure sensor 11 and the reference pressure sensor 12 to obtain the object height and the reference height. Calculate the altitude difference with More specifically, the height difference calculation unit 251 uses the function indicating the relationship between the height and the air pressure exemplified in the equation (9) to obtain the height difference H st -H between the object height H st and the reference height H r. Calculate r .
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式(9)は、高度差Hst-Hが、参照計測値Pで正規化(除算)された物体計測値Pstから参照計測値Pの差圧Pst-Pに比例する一次関数であることを示す。この一次関数の比例係数が、パラメータAとなる。高度差算出部251は、算出した高度差を通知制御部252に出力する。 Equation (9), altitude difference H st -H r is proportional normalized reference measurements P r from (division) is the object measured value P st differential pressure P st -P r of the reference measured value P r Indicates that it is a linear function. Proportional coefficient of the linear function is a parameter A 1. The altitude difference calculation unit 251 outputs the calculated altitude difference to the notification control unit 252.
(計算式の導出)
 次に、パラメータAの計算式である式(8)の導出過程を説明する。
 式(10)に示すように、補助参照高度Hから参照高度Hの高度差が、補助参照計測値Pから参照計測値Pの差圧に比例すると仮定する。式(10)の右辺に示す差圧P-Pは、参照計測値Pを基準値とする補助参照計測値Pを示し、参照計測値Pで正規化されている。
(Derivation of calculation formula)
Next, a process of deriving equation (8) is a formula for parameter A 1.
As shown in equation (10), it is assumed that the height difference between the reference altitude H r from the auxiliary reference altitude H 1 is proportional to the pressure difference reference measurements P r from the auxiliary reference measurement P 1. The differential pressure P 1 -P r shown on the right side of the equation (10) indicates an auxiliary reference measurement value P 1 with the reference measurement value P r as a reference value, and is normalized by the reference measurement value P r .
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(10)を整理すると式(8)が得られる。
 なお、式(10)において、補助参照高度Hを物体高度Hstに置き換え、補助参照計測値Pを物体計測値Pstに置き換えれば、式(9)が得られる。
Formula (8) is obtained by arranging Formula (10).
In equation (10), equation (9) is obtained by replacing the auxiliary reference height H 1 with the object height H st and replacing the auxiliary reference measurement value P 1 with the object measurement value P st .
 
(高度差計測処理)
 次に、本実施形態に係る高度差計測処理について説明する。
 図6は、本実施形態に係る高度差計測処理の一例を示すフローチャートである。
(ステップS22)物体気圧センサ11、参照気圧センサ12、補助参照気圧センサ13は、それぞれ時刻情報を取得し、取得した時刻情報を基準として互いに同一の時刻を計時する。
(ステップS24)物体気圧センサ11、参照気圧センサ12、補助参照気圧センサ13は、それぞれ所定の計測周期で互いに同一の時刻における気圧を計測し、物体計測値、参照計測値、補助参照計測値として演算装置20の制御部25に送信する。
(ステップS26)演算装置20のパラメータ算出部253は、参照気圧センサ12と補助参照気圧センサ13から、それぞれ受信した参照計測値、補助参照計測値から式(8)に示す関係を用いてパラメータAを算出する。
(ステップS28)高度差算出部251は、物体気圧センサ11と参照気圧センサ12からそれぞれ受信した物体計測値と参照計測値とパラメータ算出部253が算出したパラメータAから、式(9)に示す関係を用いて物体高度Hstと参照高度Hとの高度差Hst-Hを算出する。その後、高度差算出部251は、算出した高度差を示す高度差情報を通知部23に出力し、通知部23に通知させる。

(Alt difference measurement processing)
Next, the height difference measurement process according to the present embodiment will be described.
FIG. 6 is a flowchart showing an example of the height difference measurement process according to the present embodiment.
(Step S22) The object atmospheric pressure sensor 11, the reference atmospheric pressure sensor 12, and the auxiliary reference atmospheric pressure sensor 13 each acquire time information, and measure the same time on the basis of the acquired time information.
(Step S24) The object barometric pressure sensor 11, the reference barometric pressure sensor 12, and the auxiliary reference barometric pressure sensor 13 measure the barometric pressure at the same time in a predetermined measurement cycle, and use them as an object measured value, a reference measured value, and an auxiliary reference measured value. It is transmitted to the control unit 25 of the arithmetic device 20.
(Step S26) The parameter calculation unit 253 of the arithmetic unit 20 uses the relationship shown in equation (8) from the reference measurement value and the auxiliary reference measurement value received from the reference air pressure sensor 12 and the auxiliary reference air pressure sensor 13, respectively. Calculate 1
(Step S28) altitude difference calculating unit 251 shows the parameters A 1 the reference measured value and the object measuring values received from each of the reference pressure sensor 12 and the object pressure sensor 11 and the parameter calculation unit 253 has calculated, the equation (9) The height difference H st −H r between the object height H st and the reference height H r is calculated using the relationship. Thereafter, the height difference calculation unit 251 outputs height difference information indicating the calculated height difference to the notification unit 23, and causes the notification unit 23 to notify.
 なお、パラメータ算出部253がパラメータAを算出する時間間隔は、高度差算出部251が高度差Hst-Hを算出する時間間隔と等しくてもよいし、より長くてもよい。パラメータAを算出する時間間隔は、気象変動等による高度と気圧との対応関係の変化に追従するのに十分な時間間隔(例えば、1分~10分)であればよい。 The time interval parameter calculation unit 253 calculates the parameters A 1 may be equal to the time interval that the altitude difference calculating unit 251 calculates the altitude difference H st -H r, may be longer. Time interval for calculating the parameters A 1 is a time interval sufficient to follow the change of the correspondence between the altitude and atmospheric pressure due to climate change or the like (e.g., 1 minute to 10 minutes) may be any.
なお、第1実施形態では、高度差を算出する際、式(1)に示す気圧と高度との関係を示す関数が用いられるが、関数のパラメータとして、所定の地上温度T、気温減率L、重力加速度g及びモル質量Mが用いられる。このことは、地上温度T、気温減率L及びモル質量Mは、現実の気象条件、特に温度と湿度により変化しうる。そのため、気象条件の変化が測定された高度差に誤差を生じる原因となりうる。 In the first embodiment, when calculating the difference in altitude, a function representing the relationship between the atmospheric pressure and the altitude shown in equation (1) is used, but predetermined ground temperature T 0 and the rate of decrease in temperature as parameters of the function L, gravitational acceleration g 0 and molar mass M are used. This means that the ground temperature T 0 , the rate of decrease in temperature L and the molar mass M may change depending on actual weather conditions, in particular, temperature and humidity. Therefore, changes in weather conditions can cause errors in the measured altitude difference.
これに対して、本実施形態に係る計測システム1は、参照気圧センサ12が設置された高度とは異なる高度に補助参照気圧センサ13を備える。また、計測システム1は、参照気圧センサ12と補助参照気圧センサ13とによって同時に計測された気圧の計測値に基づいて、高度と気圧との関係を示す関数のパラメータを算出するパラメータ算出部253を備える。高度差算出部251は、パラメータ算出部253が算出したパラメータが適用された前記関数を用いて、物体気圧センサ11の高度と参照気圧センサ12が設置された高度との高度差を算出する。
 この構成により、高度と気圧との関係を示す関数のパラメータが、参照気圧センサ12と補助参照気圧センサ13とによって同時に計測された気圧の計測値に基づいて算出され、算出されたパラメータを用いて物体気圧センサ11の高度と参照気圧センサ12が設置された高度との高度差が算出される。そのため、気象条件の変化の影響が緩和又は解消されるので、高度差の精度が向上する。
On the other hand, the measurement system 1 according to the present embodiment includes the auxiliary reference pressure sensor 13 at a height different from the height at which the reference pressure sensor 12 is installed. The measurement system 1 further includes a parameter calculation unit 253 that calculates a parameter of a function that indicates the relationship between altitude and pressure based on the measurement value of pressure that is simultaneously measured by the reference pressure sensor 12 and the auxiliary reference pressure sensor 13. Prepare. The altitude difference calculation unit 251 calculates the altitude difference between the altitude of the object pressure sensor 11 and the altitude at which the reference pressure sensor 12 is installed, using the function to which the parameter calculated by the parameter calculation unit 253 is applied.
With this configuration, the parameters of the function indicating the relationship between the altitude and the air pressure are calculated based on the measurement values of the air pressure simultaneously measured by the reference air pressure sensor 12 and the auxiliary reference air pressure sensor 13, and using the calculated parameters An altitude difference between the altitude of the object barometric pressure sensor 11 and the altitude at which the reference barometric pressure sensor 12 is installed is calculated. Therefore, since the influence of the change in weather conditions is mitigated or eliminated, the accuracy of the altitude difference is improved.
(第3実施形態)
 次に、本発明の第3実施形態に係る計測システム1について説明する。以下の説明は、上記の実施形態との差異点を主とし、上記実施形態と同一の構成については同一の符号を付して、特に断らない限りその説明を援用する。
 図7は、本実施形態に係る計測システム1の適用例を示す図である。
 本実施形態に係る計測システム1は、物体気圧センサ11、参照気圧センサ12及び演算装置20に、補助参照気圧センサ13をn(nは、2以上の整数)個含んで構成される。n個の補助参照気圧センサ13-1~13-nは、支持部材80において相互に異なる高度に設置される。また、n個の補助参照気圧センサ13-1~13-nの高度は、それぞれ参照気圧センサ12の高度とも異なる。符号13-1~13-nは、個々の補助参照気圧センサの高度の昇順に付されている。
Third Embodiment
Next, a measurement system 1 according to a third embodiment of the present invention will be described. The following description mainly focuses on differences from the above embodiment, and the same configuration as the above embodiment is denoted by the same reference numeral, and the description is incorporated unless otherwise specified.
FIG. 7 is a view showing an application example of the measurement system 1 according to the present embodiment.
The measurement system 1 according to the present embodiment is configured to include n (n is an integer of 2 or more) auxiliary reference pressure sensors 13 in the object air pressure sensor 11, the reference air pressure sensor 12, and the arithmetic device 20. The n auxiliary reference pressure sensors 13-1 to 13-n are installed at different heights on the support member 80. Further, the altitudes of the n auxiliary reference pressure sensors 13-1 to 13-n are also different from the altitude of the reference pressure sensor 12, respectively. Reference numerals 13-1 to 13-n are attached to the ascending order of the altitude of the individual auxiliary reference pressure sensors.
(機能構成例)
 次に、本実施形態に係る計測システム1の機能構成例について説明する。
 図8は、本実施形態に係る計測システム1の機能構成例を示すブロック図である。
 補助参照気圧センサ13-1~13-nは、それぞれ上記のタイマ(図示せず)を備える。
 補助参照気圧センサ13-1~13-nは、それぞれ所定の計測間隔で気圧を計測し、計測した気圧の計測値を参照計測値とし、タイマが計時したその時点の時刻を示す時刻情報を付加して演算装置20に送信する。
(Example of functional configuration)
Next, a functional configuration example of the measurement system 1 according to the present embodiment will be described.
FIG. 8 is a block diagram showing an example of a functional configuration of the measurement system 1 according to the present embodiment.
The auxiliary reference pressure sensors 13-1 to 13-n each include the timer (not shown) described above.
Each of the auxiliary reference pressure sensors 13-1 to 13-n measures the pressure at a predetermined measurement interval, uses the measured value of the measured pressure as a reference measurement value, and adds time information indicating the time measured by the timer. Then, it transmits to the arithmetic unit 20.
 演算装置20の制御部25は、高度差算出部251と、通知制御部252と、パラメータ算出部253とを備える。
 パラメータ算出部253は、通信部21を介して参照気圧センサ12から参照計測値を受信し、補助参照気圧センサ13-1~13-nからそれぞれ補助参照計測値を受信する。パラメータ算出部253は、参照計測値とn個の補助参照計測値のそれぞれに付加された時刻情報を参照して、相互に同一の時刻を示す時刻情報が付加された参照計測値とn個の補助参照計測値を対応付ける。パラメータ算出部253は、相互に対応付けられた補助参照計測値P~Pと、参照計測値Pから、気圧と高度との関係を示すn次関数のパラメータA~Aを算出する。より具体的には、パラメータ算出部253は、予め設定された補助参照高度H~H及び参照高度Hと、補助参照計測値P~P及び参照計測値Pとから、式(11)に示す関係を満たすn次関数のパラメータA~Aを算出する。
The control unit 25 of the arithmetic device 20 includes an altitude difference calculation unit 251, a notification control unit 252, and a parameter calculation unit 253.
The parameter calculation unit 253 receives the reference measurement value from the reference pressure sensor 12 via the communication unit 21 and receives the auxiliary reference measurement values from the auxiliary reference pressure sensors 13-1 to 13-n. The parameter calculation unit 253 refers to the time information added to each of the reference measurement value and the n auxiliary reference measurement values, and adds the reference measurement values and n pieces of time information to each other indicating the same time. Associate the auxiliary reference measurement value. The parameter calculation unit 253 calculates parameters A 1 to A n of an n-order function indicating the relationship between the barometric pressure and the altitude from the auxiliary reference measurement values P 1 to P n correlated with each other and the reference measurement value P r Do. More specifically, the parameter calculation unit 253 calculates the formula from the auxiliary reference heights H 1 to H n and the reference height H r set in advance and the auxiliary reference measurement values P 1 to P n and the reference measurement value P r. calculating the parameters a 1 ~ a n of n-th order function which satisfies the relationship shown in (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(11)において、iは、1からnまでの整数を示す。つまり、パラメータA~Aは、1からnまでのそれぞれをiに代入して得られるn本の式(11)を連立して算出される。式(11)の左辺は、補助参照気圧センサ13-iの補助参照高度Hから参照高度Hの高度差を示す。式(11)の右辺におけるΔPirは、補助参照気圧センサ13-iで計測された補助参照計測値Pから参照計測値Pの差分である差圧P-P、を示す。即ち、式(11)は、高度が参照計測値Pを基準値とする気圧Pを参照計測値Pで正規化して得られる正規化気圧(P-P)/Pのn次関数となるとの仮定に基づく。このn次関数は、高度Hを参照高度Hにおける参照計測値Pを基準値として気圧Pでテイラー展開して与えられる気圧の関数に相当する。i次のパラメータAは、正規化気圧(P-P)/Pのi乗値に乗じられるパラメータであり、高度Hの次元を有する。
 パラメータ算出部253は、算出したパラメータA~Aを高度差算出部251に出力する。なお、補助参照高度H~Hと参照高度Hをパラメータ算出部253に予め設定しておく。
In formula (11), i represents an integer of 1 to n. That is, the parameters A 1 to An are calculated by simultaneously setting n equations (11) obtained by substituting 1 to n into i. The left side of the equation (11) indicates the difference in height between the auxiliary reference pressure H i of the auxiliary reference pressure sensor 13-i and the reference height H r . In the right side of the equation (11), ΔP ir indicates a differential pressure P i -P r which is a difference between the reference measurement value P i measured from the auxiliary reference pressure sensor 13 -i and the reference measurement value P r . That is, equation (11) is an n-th-order function of normalized atmospheric pressure (P−P r ) / P r obtained by normalizing the atmospheric pressure P whose altitude is the reference measurement value P r as a reference value with the reference measurement value P r Based on the assumption that The n-th order function corresponds to the function of the pressure applied by Taylor expansion with pressure P a reference measured value P r in the reference altitude H r the height H as the reference value. The i-th parameter A i is a parameter to be multiplied by the i-th power value of normalized atmospheric pressure (P−P r ) / P r and has a dimension of height H.
The parameter calculation unit 253 outputs the calculated parameters A 1 to An to the height difference calculation unit 251. The auxiliary reference heights H 1 to H n and the reference height H r are set in the parameter calculation unit 253 in advance.
 高度差算出部251は、パラメータ算出部253から入力されたパラメータA~Aと、物体気圧センサ11と参照気圧センサ12からそれぞれ受信した物体計測値と参照計測値とを用いて、物体高度と参照高度との高度差を算出する。より具体的には、高度差算出部251は、式(12)に例示される高度と気圧との関係を示すn次関数を用いて物体高度Hstと参照高度Hとの高度差Hst-Hを算出する。 The altitude difference calculation unit 251 uses the parameters A 1 to A n input from the parameter calculation unit 253 and the object measurement value and the reference measurement value respectively received from the object pressure sensor 11 and the reference pressure sensor 12 to obtain the object height. Calculate the difference between the height and the reference height. More specifically, the altitude difference calculating unit 251, altitude difference H st of the reference altitude H r and the object height H st with n-order function indicating the relationship between the altitude and atmospheric pressure illustrated in Equation (12) -H Calculate r .
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(12)は、高度差Hst-Hが、参照計測値Pで正規化された物体計測値Pstから参照計測値Pの差圧のn次関数を示す。式(12)は、参照計測値Pで正規化された差圧のi乗値にi次のパラメータAを乗じて得られる乗算値の1次からn次までの総和を高度差Hst-Hとして算出することを示す。
 高度差算出部251は、算出した高度差を通知制御部252に出力する。
Equation (12) shows a height difference H st -H r is, n-order function of the differential pressure of the reference measured value P r by the reference measured value P r from the normalized object measuring value P st. The equation (12) is the difference in height H st of the sum of the first to n-th multiplication values obtained by multiplying the i-th power of the differential pressure normalized by the reference measurement value P r by the i-th parameter A i -H Calculated as r .
The altitude difference calculation unit 251 outputs the calculated altitude difference to the notification control unit 252.
(変形例)
 なお、パラメータ算出部253は、式(13)に示す関係を用いてパラメータA~Aを算出してもよい。
(Modification)
The parameter calculation unit 253 may calculate the parameters A 1 ~ A n using the relationship shown in equation (13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(13)において、mは、1からnまでの整数を示す。式(13)によるパラメータA~Aの算出は、独立に実行することが可能であり、上記の例のようにn本の等式を連立させる必要はない。但し、変数Cは、式(14)で与えられる。 In formula (13), m represents an integer of 1 to n. The calculation of the parameters A 1 to A n according to the equation (13) can be performed independently, and it is not necessary to combine n equations as in the above example. However, the variable C 1 is given by equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
(計算式の導出)
 次に、パラメータAの計算式である式(13)の導出過程を説明する。
 補助参照高度Hは、式(15)に示すように、式(1)の物体計測値Pstに補助参照計測値Pを代入して算出される。
(Derivation of calculation formula)
Next, the process of deriving formula (13) is a formula for parameter A m.
The auxiliary reference height H i is calculated by substituting the auxiliary reference measurement value P i for the object measurement value P st of the equation (1), as shown in the equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 式(15)のPにP+ΔPirを代入し、-RL/gMにCを代入すると、式(15)は式(16)に示すように変形される。 By substituting P r + [Delta] P ir the P i of formula (15), and substituting C 1 to -RL / g 0 M, formula (15) is modified as shown in equation (16).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 他方、(1+ΔPir/PC1は、式(17)に示すように(ΔPir/P)によるべき級数に展開される。 On the other hand, (1 + ΔP ir / P r ) C1 is expanded to a power series by (ΔP ir / P r ) as shown in equation (17).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 式(16)の(1+ΔPir/PC1に式(17)を代入すると、式(16)は式(18)に示すように変形される。 Substituting equation (17) into (1 + ΔP ir / P r ) C1 of equation (16), equation (16) is transformed as shown in equation (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 式(11)と式(18)を比較すると、(ΔPir/Pに乗算されるm次のパラメータAが式(13)で与えられることが導かれる。 Compared to equation (11) Equation (18), (ΔP ir / P r) is multiplied by m m following parameters A m is derived that given by equation (13).
(高度差計測処理)
 次に、本実施形態に係る高度差計測処理について説明する。
 図9は、本実施形態に係る高度差計測処理の一例を示すフローチャートである。
(ステップS32)物体気圧センサ11、参照気圧センサ12、n個の補助参照気圧センサ13-1~13-nは、それぞれ時刻情報を取得し、取得した時刻情報を基準として互いに同一の時刻を計時する。
(ステップS34)物体気圧センサ11、参照気圧センサ12、n個の補助参照気圧センサ13-1~13-nは、それぞれ所定の計測周期で互いに同一の時刻における気圧を計測し、物体計測値、参照計測値、n個の補助参照計測値として演算装置20の制御部25に送信する。
(ステップS36)演算装置20のパラメータ算出部253は、参照気圧センサ12と補助参照気圧センサ13-1~13-nから、それぞれ受信した参照計測値、補助参照計測値から式(11)に示すn個の関係を連立してパラメータA~Aを算出する。
(ステップS38)高度差算出部251は、物体気圧センサ11と参照気圧センサ12からそれぞれ受信した物体計測値Pst、参照計測値P、及びパラメータ算出部253が算出したパラメータA~Aから、式(12)に示す関係を用いて物体高度Hstと参照高度Hとの高度差Hst-Hを算出する。その後、高度差算出部251は、算出した高度差を示す高度差情報を通知部23に出力し、通知部23に通知させる。
(Alt difference measurement processing)
Next, the height difference measurement process according to the present embodiment will be described.
FIG. 9 is a flowchart showing an example of the height difference measurement process according to the present embodiment.
(Step S32) The object barometric pressure sensor 11, the reference barometric pressure sensor 12, and the n auxiliary reference barometric sensors 13-1 to 13-n acquire time information, and measure the same time on the basis of the acquired time information Do.
(Step S34) The object air pressure sensor 11, the reference air pressure sensor 12, and the n auxiliary reference air pressure sensors 13-1 to 13-n measure the air pressure at the same time in a predetermined measurement cycle, and measure the object measured value It transmits to the control part 25 of the arithmetic unit 20 as a reference measurement value and n auxiliary reference measurement values.
(Step S36) The parameter calculation unit 253 of the arithmetic device 20 is represented by the equation (11) from the reference measurement value and the auxiliary reference measurement value respectively received from the reference pressure sensor 12 and the auxiliary reference pressure sensors 13-1 to 13-n. Parameters A 1 to An are calculated by simultaneously establishing n relationships.
(Step S38) The height difference calculation unit 251 calculates the object measurement value P st received from the object air pressure sensor 11 and the reference air pressure sensor 12, the reference measurement value P r , and the parameters A 1 to A n calculated by the parameter calculation unit 253. From the equation (12), the height difference H st −H r between the object height H st and the reference height H r is calculated using the relationship shown in equation (12). Thereafter, the height difference calculation unit 251 outputs height difference information indicating the calculated height difference to the notification unit 23, and causes the notification unit 23 to notify.
 以上に説明したように、本実施形態に係る計測システム1は、互いに異なる高度にn個の補助参照気圧センサ13-1~13-n(nは、2以上の整数)を備える。これらの高度は、いずれも参照気圧センサ12が設置された高度とは異なる。パラメータ算出部253は、参照気圧センサ12と補助参照気圧センサ13-1~13-nが同時に計測した気圧P、P~Pに基づいて、高度と気圧との関係として、参照計測値Pを基準値とする気圧のn次関数のパラメータA~Aを算出する。高度差算出部251は、参照計測値Pを基準値とする物体気圧センサ11が計測した物体計測値Pstについて、パラメータA~Aを適用したn次関数を用いて、物体気圧センサ11の高度と参照気圧センサ12が設置された高度との高度差を算出する。
 この構成により、温度、湿度などの気象条件の変化の影響が緩和又は解消されるうえ、算出される高度には、参照計測値Pを基準値とする気圧の高次の成分が含まれる。そのため、第2実施形態よりも算出される高度差の精度が向上する。
As described above, the measurement system 1 according to the present embodiment includes n auxiliary reference pressure sensors 13-1 to 13-n (n is an integer of 2 or more) at mutually different altitudes. These altitudes are all different from the altitude at which the reference barometric sensor 12 is installed. The parameter calculation unit 253 determines the reference measurement value as the relationship between the altitude and the pressure based on the pressures P r and P 1 to P n simultaneously measured by the reference pressure sensor 12 and the auxiliary reference pressure sensors 13-1 to 13-n. calculating the parameters a 1 ~ a n of n-th order function of pressure as a reference value P r. The altitude difference calculation unit 251 uses an n-order function to which parameters A 1 to A n are applied for the object measurement value P st measured by the object pressure sensor 11 with the reference measurement value P r as a reference value. An altitude difference between the altitude of 11 and the altitude at which the reference pressure sensor 12 is installed is calculated.
With this configuration, the influence of changes in weather conditions such as temperature and humidity is alleviated or eliminated, and the calculated altitude includes high-order components of barometric pressure with the reference measurement value P r as a reference value. Therefore, the accuracy of the height difference calculated is improved compared to the second embodiment.
(第4実施形態)
 次に、本発明の第4実施形態に係る計測システム1について説明する。以下の説明は、第1実施形態との差異点を主とし、第1実施形態と同一の構成については同一の符号を付して、特に断らない限りその説明を援用する。以下に説明する本実施形態は、第1実施形態を応用して構成される場合を例にするが、第2実施形態又は第3実施形態を応用して構成されてもよい。
Fourth Embodiment
Next, a measurement system 1 according to a fourth embodiment of the present invention will be described. The following description mainly focuses on differences from the first embodiment, and the same configuration as in the first embodiment is denoted by the same reference numeral, and the description is incorporated unless otherwise specified. The present embodiment described below is an example in which the first embodiment is applied, but the second embodiment or the third embodiment may be applied.
 図10は、本実施形態に係る計測システム1の機能構成例を示すブロック図である。 演算装置20の制御部25は、高度差算出部251と通知制御部252に、基準位置設定部254をさらに備える。
 基準位置設定部254は、操作部22から入力される操作信号として、基準位置設定信号が入力されるとき、その時点における計測対象物である荷78の位置を所定の基準位置として定める。このとき、基準位置設定部254は、物体気圧センサ11から受信した物体計測値と参照気圧センサ12から受信した参照計測値との差を基準位置差圧として算出し、算出した基準位置差圧を示す基準位置差圧情報を記憶部24に記憶する。記憶部24は、基準位置差圧記憶部として機能する。操作部22は、例えば、所定の基準位置設定ボタンを備え、基準位置設定ボタンへの押下が検出されたときに基準位置設定信号を基準位置設定部254に出力するようにしてもよい。
FIG. 10 is a block diagram showing an example of a functional configuration of the measurement system 1 according to the present embodiment. The control unit 25 of the arithmetic device 20 further includes a reference position setting unit 254 in the height difference calculation unit 251 and the notification control unit 252.
When the reference position setting signal is input as the operation signal input from the operation unit 22, the reference position setting unit 254 sets the position of the load 78, which is the measurement object, at that time as a predetermined reference position. At this time, the reference position setting unit 254 calculates the difference between the object measurement value received from the object barometric pressure sensor 11 and the reference measurement value received from the reference barometric pressure sensor 12 as the reference position differential pressure, and calculates the calculated reference position differential pressure. The reference position differential pressure information shown is stored in the storage unit 24. The storage unit 24 functions as a reference position differential pressure storage unit. For example, the operation unit 22 may include a predetermined reference position setting button, and may output a reference position setting signal to the reference position setting unit 254 when pressing of the reference position setting button is detected.
 よって、ユーザの操作に応じて高度の基準とする基準位置が設定される。例えば、図11Aに示すように、荷78が地上に設置されているとき、その荷78の位置が基準位置として設定される。物体気圧センサ11は、必ずしも荷78に接触もしくは近接している必要はなく、荷78の位置に関わらず、荷78との高度差が一定に保たれる位置に設置されればよい。図11A,Bに示す例では、物体気圧センサ11は、荷78を吊るための吊り具76に設置されている。図11Bに示すように、荷78が巻上装置73に吊り上げられ地上から離れていても、物体気圧センサ11と荷78との高度差は、荷78が地上に設置されているときの高度差から変化しない。 Therefore, the reference position to be the reference of the altitude is set according to the operation of the user. For example, as shown in FIG. 11A, when the load 78 is installed on the ground, the position of the load 78 is set as the reference position. The object air pressure sensor 11 does not have to be in contact with or close to the load 78, and may be installed at a position where the difference in height with the load 78 is kept constant regardless of the position of the load 78. In the example shown to FIG. 11A, B, the object air pressure sensor 11 is installed in the hanger 76 for hanging the load 78. As shown in FIG. As shown in FIG. 11B, even if the load 78 is lifted by the hoisting device 73 and is separated from the ground, the height difference between the object pressure sensor 11 and the load 78 is the height difference when the load 78 is installed on the ground It does not change from
 
 図10に戻り、高度差算出部251は、物体気圧センサ11から受信した物体計測値と、物体計測値と同時に計測され参照気圧センサ12から受信した参照計測値の他、記憶部 24に記憶された差圧情報を用いて物体高度と参照高度との高度差を算出する。より具体的には、高度差算出部251は、物体計測値から基準位置差圧情報が示す基準位置差圧を差し引いて補正後の物体計測値を算出し、補正後の物体計測値と参照計測値を式(1)に代入して高度差を算出する。算出される高度は、基準位置を基準とする物体の高度に相当する。

Returning to FIG. 10, the altitude difference calculation unit 251 stores the measured value of the object received from the object pressure sensor 11 and the reference measurement value measured simultaneously with the measured value of the object and received from the reference pressure sensor 12 in the storage unit 24 The differential pressure information is used to calculate the height difference between the object height and the reference height. More specifically, the height difference calculation unit 251 subtracts the reference position differential pressure indicated by the reference position differential pressure information from the object measured value to calculate the corrected object measured value, and the corrected object measured value and reference measurement Substitute the value into equation (1) to calculate the altitude difference. The calculated altitude corresponds to the altitude of the object relative to the reference position.
(高度差計測処理)
 次に、本実施形態に係る高度差計測処理について説明する。
 図12は、本実施形態に係る高度差計測処理の一例を示すフローチャートである。
(ステップS42)基準位置設定部254は、操作部22から基準位置設定信号が入力されるとき、その時点における計測対象物となる物体の位置を所定の基準位置として設定する。
(ステップS44)基準位置設定部254は、その時点における物体計測値と参照計測値との差である基準位置差圧を示す基準位置差圧情報を記憶部24に記憶する。
(ステップS46)物体気圧センサ11、参照気圧センサ12は、ステップS12と同様に、それぞれ時刻情報を取得し、取得した時刻情報を基準として互いに同一の時刻を計時する。
(ステップS48)物体気圧センサ11、参照気圧センサ12は、ステップS14と同様に、それぞれ所定の計測周期で互いに同一の時刻における気圧を計測し、物体計測値、参照計測値として演算装置20の制御部25に送信する。
(ステップS50)演算装置20の高度差算出部251は、物体気圧センサ11から物体計測値を受信し、記憶部24から基準位置差圧情報を読み出す。高度差算出部251は、受信した物体計測値から読み出した基準位置差圧情報が示す基準位置差圧を差し引いて補正後の物体計測値を算出する。高度差算出部251は、補正後の物体計測値と、参照気圧センサ12から受信し、物体計測値と同時に計測された参照計測値から、式(1)に示す関係を用いて高度差を算出する。その後、高度差算出部251は、算出した高度差を示す高度差情報を通知部23に出力し、通知部23に通知させる。
(Alt difference measurement processing)
Next, the height difference measurement process according to the present embodiment will be described.
FIG. 12 is a flowchart showing an example of the height difference measurement process according to the present embodiment.
(Step S42) When the reference position setting signal is input from the operation unit 22, the reference position setting unit 254 sets the position of the object to be the measurement object at that time as a predetermined reference position.
(Step S44) The reference position setting unit 254 stores reference position differential pressure information indicating the reference position differential pressure, which is the difference between the object measurement value at that time and the reference measurement value, in the storage unit 24.
(Step S46) As in step S12, the object barometric pressure sensor 11 and the reference barometric pressure sensor 12 each acquire time information, and measure the same time on the basis of the acquired time information.
(Step S48) As in step S14, the object barometric pressure sensor 11 and the reference barometric pressure sensor 12 measure the barometric pressure at the same time in each predetermined measurement cycle, and control the arithmetic unit 20 as the object measured value and the reference measured value. Send to section 25.
(Step S50) The height difference calculation unit 251 of the arithmetic device 20 receives the object measurement value from the object pressure sensor 11, and reads out the reference position differential pressure information from the storage unit 24. The altitude difference calculation unit 251 subtracts the reference position differential pressure indicated by the read reference position differential pressure information from the received object measurement value to calculate the corrected object measurement value. The altitude difference calculation unit 251 calculates the altitude difference using the relationship shown in equation (1) from the reference measurement value received simultaneously with the object measurement value and received from the reference pressure sensor 12 after the correction. Do. Thereafter, the height difference calculation unit 251 outputs height difference information indicating the calculated height difference to the notification unit 23, and causes the notification unit 23 to notify.
 なお、上記の説明では、第1実施形態に係る計測システム1に基準位置設定部254を備え、基準位置設定部254により記憶部24に記憶された基準位置差圧情報をさらに用いて物体高度と参照高度との高度差を算出する場合を例にしたが、これには限られない。例えば、第2実施形態もしくは第3実施形態に係る計測システム1に基準位置設定部254を備え、基準位置設定部254により記憶部24に記憶された基準位置差圧情報をさらに用いて物体高度と参照高度との高度差を算出するようにしてもよい。その場合、演算装置20の高度差算出部251は、ステップS28(図6)、S38(図9)において物体計測値に代えて、上記のように物体気圧センサ11から受信した物体計測値から基準位置差圧を差し引いて得られる補正後の物体計測値を用いて高度差を算出すればよい。 In the above description, the measurement system 1 according to the first embodiment is provided with the reference position setting unit 254, and the reference position differential pressure information stored in the storage unit 24 by the reference position setting unit 254 is further used to Although the case of calculating the height difference from the reference height is taken as an example, the present invention is not limited to this. For example, the measurement system 1 according to the second embodiment or the third embodiment includes the reference position setting unit 254, and the reference position differential pressure information stored in the storage unit 24 by the reference position setting unit 254 is further used to An altitude difference with the reference altitude may be calculated. In that case, the altitude difference calculation unit 251 of the computing device 20 substitutes the object measurement value in steps S28 (FIG. 6) and S38 (FIG. 9) and makes reference based on the object measurement value received from the object pressure sensor 11 as described above. The height difference may be calculated using a corrected object measurement value obtained by subtracting the position differential pressure.
 以上に説明したように、本実施形態に係る計測システム1において、記憶部24は、移動可能な物体が予め設定された基準位置に配置されているとき、物体気圧センサ11が計測した気圧と参照気圧センサ12が計測した気圧の計測値の差である基準位置差圧を記憶する。高度差算出部251は、基準位置差圧をさらに用いて第1~第3実施形態のいずれかで採用された手法で高度差を算出する。
 この構成により、物体が基準位置に配置されているとき、物体気圧センサ11と参照気圧センサ12の高度が異なる場合であっても、物体気圧センサ11と参照気圧センサ12との高度差が一定に保たれれば、物体の高度と基準位置の高度との高度差が算出される。そのため、物体気圧センサ11の配置の自由度が高くなり、その着脱に係る作業を省略することが許容される。このことは、物体の移動に係る作業員の作業効率の向上に寄与する。
As described above, in the measurement system 1 according to the present embodiment, the storage unit 24 refers to the air pressure and the pressure measured by the object air pressure sensor 11 when the movable object is disposed at the preset reference position. The reference position differential pressure which is the difference between the measured values of the air pressure measured by the air pressure sensor 12 is stored. The altitude difference calculation unit 251 calculates the altitude difference by the method adopted in any of the first to third embodiments, further using the reference position differential pressure.
With this configuration, when the object is disposed at the reference position, even if the heights of the object pressure sensor 11 and the reference pressure sensor 12 are different, the difference in height between the object pressure sensor 11 and the reference pressure sensor 12 is constant. If maintained, the height difference between the height of the object and the height of the reference position is calculated. Therefore, the degree of freedom in the arrangement of the object barometric sensor 11 is increased, and it is permissible to omit the work relating to the attachment and detachment. This contributes to the improvement of the work efficiency of the worker involved in the movement of the object.
 例えば、計測システム1を高層ビルの解体現場に適用し、解体現場において起重機70が高層ビルの最上階から解体された部材を地上に降ろす工程を仮定する。この工程は、部材を荷78として吊り具76に取り付ける作業と、吊り具76から取り外す作業とを要する。第1~第3実施形態に係る計測システム1では、部材を運搬する前に物体気圧センサ 11を取り付け、部材を運搬した後に物体気圧センサ11を部材から取り外す必要がある。しかしながら、本実施形態では、物体気圧センサ11と運搬中の部材との高度差が一定に保たれれば足りるため、物体気圧センサ11は、例えば、図11に示すように吊り具76に装着したままでもよい。そのため、物体気圧センサ11と部材との着脱に係る作業を要しない。また、巻上ロープ75及び吊りワイヤ77の長さが変わった場合においても、その都度、ユーザの操作に応じて基準位置差圧情報を取得して、取得後の基準位置差圧情報に基づいて、物体の高度と基準位置の高度との高度差が算出される。 For example, it is assumed that the measurement system 1 is applied to a dismantling site of a high-rise building, and at the dismantling site, the hoist 70 lowers the dismantled member from the top floor of the high-rise building to the ground. This process requires an operation of attaching the member as the load 78 to the hanger 76 and an operation of removing the member from the hanger 76. In the measurement system 1 according to the first to third embodiments, it is necessary to attach the object pressure sensor 11 before transporting the member, and remove the object pressure sensor 11 from the member after transporting the member. However, in the present embodiment, it is sufficient if the difference in height between the object barometric pressure sensor 11 and the member being transported is kept constant, so the object barometric pressure sensor 11 is attached to the hanger 76 as shown in FIG. You may leave it alone. Therefore, the operation | work which concerns on attachment or detachment of the object air pressure sensor 11 and a member is not required. Also, even when the lengths of the hoisting rope 75 and the suspension wire 77 change, reference position differential pressure information is acquired each time according to the user's operation, and based on the acquired reference position differential pressure information. The difference between the height of the object and the height of the reference position is calculated.
(変形例)
 以上、図面を参照してこの発明の実施形態について説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 図13に示すように、計測システム1は、さらに高度制御部255を備えてもよい。高度制御部255は、高度差算出部251が算出した高度差が所定の目標高度差に近づくように物体気圧センサ11が設置される物体の高度を制御する。
(Modification)
Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to the above, and various design changes can be made without departing from the scope of the present invention. It is possible.
As shown in FIG. 13, the measurement system 1 may further include an altitude control unit 255. The altitude control unit 255 controls the altitude of the object on which the object barometric pressure sensor 11 is installed so that the altitude difference calculated by the altitude difference calculation unit 251 approaches a predetermined target altitude difference.
 高度制御部255には、出力値として高度差算出部251から入力される高度が出力値として入力され、目標値として目標高度差が設定される。目標高度差は、例えば、操作部 22から入力される操作信号で指示される。高度制御部255は、既存の制御手法を用いて出力値から目標値の差の大きさが減少するように操作量として巻上装置73(図1)の回転子の回転量を算出する。高度制御部255は、制御方法として、PI(Proportional-Integral)制御、PID(Proportional-Inte gral-Differential)制御などの手法を用いることができる。高度制御部255は、算出した回転量を与える電力量を巻上装置73に供給する。巻上装置73の回転子は、高度制御部255から供給される電力量に応じて回転し、巻上ロープ75を巻き取る、もしくは巻き出して、吊り具76を介して吊り下げられた荷78の高度を調整する駆動部として機能する。 In the altitude control unit 255, the altitude input from the altitude difference calculating unit 251 as an output value is input as an output value, and a target altitude difference is set as a target value. The target height difference is indicated by an operation signal input from the operation unit 22, for example. The altitude control unit 255 uses the existing control method to calculate the amount of rotation of the rotor of the hoisting device 73 (FIG. 1) as an operation amount so that the magnitude of the difference between the target value and the output value decreases. The advanced control unit 255 can use, as a control method, a method such as PI (Proportional-Integral) control or PID (Proportional-Integral-Differential) control. The altitude control unit 255 supplies the hoisting device 73 with an amount of power that gives the calculated amount of rotation. The rotor of the hoisting device 73 rotates in accordance with the amount of power supplied from the height control unit 255, and winds up or unwinds the hoisting rope 75, and the load 78 is suspended via the hanger 76. Act as a drive to adjust the altitude of the
 上記の実施形態では、物体気圧センサ11を設置する移動可能な物体として、主に起重機70によって昇降する荷78、吊り具76を例にしたが、これには限られない。物体気圧センサ11は、例えば、ドローン等の飛行体、エレベータ、エスカレータ等の昇降機、ロープウェイ、ケーブルカー等の移動により高度変化を伴う車両、またはそれらに搭載される他の物体であってもよい。また、物体気圧センサ11は、非生物に限られず、例えば、生物(高齢者、幼児、患者などの人物、ペット、家畜などの人物以外の動物を含む)に直接、又はそれらの生物を搭載する物体に設置されてもよい。そして、計測した高度は、それらの高度に基づいて生物の活動状態を分析するシステムに応用されてもよい。例えば、入院患者の高度の時間変化により寝ている状態、倒れた状態、などの状態が検出されてもよい。より具体的には、当該システムは、高度の観測時点(例えば、1~3秒)間の変化量が所定の変化量以内である状態が所定期間(例えば、1~3分)以上継続する場合、入院患者が寝ていると判定し、観測時点間での高度の低下量が所定の低下量(例えば、0.4~0.7m)を超え、その直後、高度の変化量が所定の変化量以内である状態が所定期間以上継続する場合、入院患者が倒れていると判定する。 In the above embodiment, as the movable object on which the object barometric pressure sensor 11 is installed, the load 78 lifted and lowered by the hoist 70 and the lifting gear 76 are mainly exemplified. However, the present invention is not limited thereto. The object pressure sensor 11 may be, for example, a flying object such as a drone, an elevator such as an elevator or an escalator, a vehicle with a change in altitude due to movement of a ropeway, a cable car or the like, or other objects mounted on them. In addition, the object pressure sensor 11 is not limited to non-living things, and mounts living things directly on living things (including elderly people, infants, persons such as patients, animals other than persons such as pets, livestock, etc.) or those living things. It may be installed on an object. The measured altitudes may then be applied to a system that analyzes the activity state of organisms based on their altitudes. For example, a state such as a sleeping state, a fallen state, or the like may be detected due to a time-dependent change in altitude of a hospitalized patient. More specifically, in the case where the system continues a state in which the amount of change between altitude observation points (for example, 1 to 3 seconds) is within a predetermined amount of change for a predetermined period (for example, 1 to 3 minutes) or more The hospitalized patient is determined to be sleeping, and the amount of decrease in altitude between observation points exceeds a predetermined amount of decrease (for example, 0.4 to 0.7 m), and immediately thereafter, the amount of change in altitude is a predetermined change If the state of being within the amount continues for a predetermined period or more, it is determined that the hospitalized patient has fallen.
 物体気圧センサ11が撮影装置、測定装置などの情報収集装置(図示せず)に設置又は情報収集装置と位置関係を一定に保ちながら設置されている場合には、演算装置20の高度差算出部251は、情報収集装置の高度と参照高度との高度差を算出することができる。その場合、演算装置20は、算出した高度差の情報を、情報収集装置から取得した収集情報に付加してもよい。例えば、演算装置20の制御部25は、画像センサから受信した画像情報に、その時点において高度差算出部251が算出した高度差の情報を付加する。また、制御部25は、温度センサから受信した温度情報に、その時点において高度差算出部251が算出した高度差の情報を付加する。制御部25は、高度差の情報を付加した収集情報を記憶部24に蓄積してもよいし、所定の提供先に送信してもよい。また、制御部 25は、高度差の情報に加え、高度差とともに物体気圧センサ11から受信した時刻情報を収集情報に付加してもよい。これにより、収集情報の収集時点の高度に基づく解析の効率を向上することができる。 When the object barometric sensor 11 is installed in an information collecting device (not shown) such as a photographing device or a measuring device or installed while maintaining a constant positional relationship with the information collecting device, the height difference calculation unit of the arithmetic device 20 251 can calculate the height difference between the height of the information collection device and the reference height. In that case, the computing device 20 may add the information on the calculated height difference to the collected information acquired from the information collecting device. For example, the control unit 25 of the computing device 20 adds the information on the altitude difference calculated by the altitude difference calculating unit 251 at that time to the image information received from the image sensor. Further, the control unit 25 adds the information on the altitude difference calculated by the altitude difference calculating unit 251 at that time to the temperature information received from the temperature sensor. The control unit 25 may store the collected information to which the information on the height difference is added in the storage unit 24 or may transmit it to a predetermined provision destination. Further, in addition to the information on the altitude difference, the control unit 25 may add time information received from the object pressure sensor 11 together with the altitude difference to the collected information. This can improve the efficiency of analysis based on altitude at the time of collection of collected information.
 上述の物体気圧センサ11、参照気圧センサ12、補助参照気圧センサ13(13-1~13-n)は、振動式トランスデューサを備える気圧センサであってもよい。振動式トランスデューサは、例えば、シリコン単結晶の基板に設けられた振動梁と、振動梁の周辺に隙間が維持されるように振動梁を囲み基盤と共に真空室を構成するシリコン材よりなるシェルと、振動梁を励振する励振器と、振動梁の振動を検出する検出器とを備え、振動梁の共振周波数を測定して振動梁に印加された歪を測定する。振動梁は、真空室内に設けられ、基板に対して引張の応力が付与され基板面に平行方向より垂直方向の断面暑さが長い断面形状を有する。また、当該振動式トランスデューサは、第1~第3の電極板とド凸凹部を備える。第1の電極板は、基板面に平行に設けられ振動梁に一端が接続され、振動梁を励振する励振電極として作用する。第2、第3の電極板は、振動梁を挟んで基板面に平行に対向して設けられ振動梁と第1の電極板と共に基板面に平行な一平面状をなす、振動梁に直流バイアス電圧を印加するバイアス電圧電極として用いられ、振動梁の振動を検出する振動検出電極として用いられる。凹凸部は、振動梁と第2、第3の電極板と対向する側壁部面に設けられ相互の付着を防止する。検出される共振周波数は、その周囲の気圧に依存する。この構成により、応答が速く、高い精度(例えば、2.1Pa)で気圧が測定される。当該振動式トランスデューサの構成については、例えば、特開2012-581 27号公報により詳しく記載されている。 The object air pressure sensor 11, the reference air pressure sensor 12, and the auxiliary reference air pressure sensors 13 (13-1 to 13-n) described above may be air pressure sensors provided with vibration transducers. The vibration type transducer includes, for example, a vibrating beam provided on a substrate of silicon single crystal, and a shell made of a silicon material which encloses the vibrating beam so as to maintain a gap around the vibrating beam and which constitutes a vacuum chamber together with a base. An exciter for exciting the vibrating beam and a detector for detecting the vibration of the vibrating beam are provided, and the resonance frequency of the vibrating beam is measured to measure the strain applied to the vibrating beam. The vibrating beam is provided in a vacuum chamber, has tensile stress applied to the substrate, and has a cross-sectional shape in which the cross-sectional heat in the vertical direction is longer than the direction parallel to the substrate surface. In addition, the vibratory transducer includes first to third electrode plates and concave and convex portions. The first electrode plate is provided parallel to the substrate surface, has one end connected to the vibrating beam, and acts as an excitation electrode for exciting the vibrating beam. The second and third electrode plates are provided parallel to the substrate surface with the vibrating beam interposed therebetween, and are in direct planar bias with the vibrating beam and the first electrode plate in parallel to the substrate surface. It is used as a bias voltage electrode which applies a voltage, and is used as a vibration detection electrode which detects the vibration of a vibrating beam. The uneven portion is provided on the side wall surface facing the vibrating beam and the second and third electrode plates to prevent mutual adhesion. The resonant frequency to be detected depends on the pressure around it. With this configuration, the pressure is measured with high response speed and high accuracy (for example, 2.1 Pa). The configuration of the vibration type transducer is described in detail, for example, in Japanese Patent Application Laid-Open No. 2012-581727.
 また、演算装置20は、操作部22と通知部23の一方又は両方と各種の情報を入出力可能に接続されていれば、その一方又は両方が省略されてもよい。
 物体気圧センサ11、参照気圧センサ12及び補助参照気圧センサ13(13-1~13-n)に提供される時刻情報は、GPS衛星から電波で搬送される時刻情報に限られず、NTP(Network Time Protocol)サーバからネットワークを介して提供される時刻情報であってもよい。NTPサーバは、標準時刻を示す時刻情報を送出するサーバ装置である。これにより、GPS衛星からの電波が届かない屋内でも物体高度と参照高度との高度差を高い精度で取得することができる。
 また、時刻情報に代えて、測定タイミングを示す同期信号が物体気圧センサ11、参照気圧センサ12及び補助参照気圧センサ13(13-1~13-n)に提供されてもよい。物体気圧センサ11、参照気圧センサ12及び補助参照気圧センサ13(13-1~13-n)は、それぞれ同期信号で指示された測定タイミングにおける気圧の計測値を演算装置20に送信する。その場合、演算装置20の高度差算出部251、パラメータ算出部253は、それぞれ時刻情報を参照せずに、各センサから受信した計測値をそのまま同時に測定された計測値として扱うことができる。また、演算装置20は、同期信号を生成し、生成した同期信号を物体気圧センサ11、参照気圧センサ12及び補助参照気圧センサ13(13-1~13-n)に送信する同期信号提供部(図示せず)を備えてもよい。
In addition, as long as the arithmetic device 20 is connected to one or both of the operation unit 22 and the notification unit 23 so as to be able to input and output various types of information, one or both of them may be omitted.
The time information provided to the object air pressure sensor 11, the reference air pressure sensor 12, and the auxiliary reference air pressure sensor 13 (13-1 to 13-n) is not limited to the time information conveyed by radio waves from GPS satellites, and may be NTP (Network Time) Protocol (Time Protocol) may be time information provided from a server via a network. The NTP server is a server device that transmits time information indicating a standard time. Thereby, the altitude difference between the object altitude and the reference altitude can be acquired with high accuracy even indoors where radio waves from the GPS satellites can not reach.
Also, instead of time information, synchronization signals indicating measurement timing may be provided to the object pressure sensor 11, the reference pressure sensor 12, and the auxiliary reference pressure sensors 13 (13-1 to 13-n). The object barometric pressure sensor 11, the reference barometric pressure sensor 12, and the auxiliary reference barometric pressure sensors 13 (13-1 to 13-n) each transmit the measured value of the barometric pressure at the measurement timing indicated by the synchronization signal to the arithmetic unit 20. In that case, the altitude difference calculation unit 251 and the parameter calculation unit 253 of the arithmetic device 20 can treat the measurement values received from the sensors as they are simultaneously measured, without referring to the time information. The arithmetic device 20 also generates a synchronization signal, and transmits the generated synchronization signal to the object barometric pressure sensor 11, the reference barometric pressure sensor 12 and the auxiliary reference barometric pressure sensors 13 (13-1 to 13-n) (Not shown) may be provided.
1…計測システム、11…物体気圧センサ、12…参照気圧センサ、13…補助参照気圧センサ、20…演算装置、21…通信部、22…操作部、23…通知部、24…記憶部、25…制御部、251…高度差算出部、252…通知制御部、253…パラメータ算出部、254…基準位置設定部、255…高度制御部
 
Reference Signs List 1 measurement system 11 object pressure sensor 12 reference pressure sensor 13 auxiliary reference pressure sensor 20 arithmetic device 21 communication unit 22 operation unit 23 notification unit 24 storage unit 25 ... control unit, 251 ... height difference calculation unit, 252 ... notification control unit, 253 ... parameter calculation unit, 254 ... reference position setting unit, 255 ... height control unit

Claims (7)

  1.  所定の高度に設置された参照気圧センサと、
     移動可能な物体に取り付けられた物体気圧センサと、
     前記参照気圧センサと前記物体気圧センサとによって同時に計測された気圧の計測値に基づいて、前記物体気圧センサの高度と前記参照気圧センサの高度との高度差を算出する高度差算出部と、
     を備える計測システム。
    A reference pressure sensor installed at a predetermined altitude,
    An object pressure sensor attached to a movable object;
    An altitude difference calculation unit that calculates an altitude difference between the altitude of the object barometric pressure sensor and the altitude of the reference barometric pressure sensor based on the measurement value of the barometric pressure simultaneously measured by the reference barometric pressure sensor and the object barometric pressure sensor;
    Measurement system equipped with
  2.  前記参照気圧センサが設置された高度とは異なる高度に設置された少なくとも1つの補助参照気圧センサと、
     前記参照気圧センサと前記補助参照気圧センサとによって同時に計測された気圧の計測値に基づいて、高度と気圧との関係を示す関数のパラメータを算出するパラメータ算出部と、をさらに備え、
     前記高度差算出部は、
     前記パラメータ算出部によって算出されたパラメータが適用された前記関数を用いて、前記物体気圧センサの高度と前記参照気圧センサが設置された高度との高度差を算出する
     請求項1に記載の計測システム。
    At least one auxiliary reference pressure sensor installed at an altitude different from the altitude at which the reference pressure sensor is installed;
    A parameter calculation unit that calculates a parameter of a function indicating a relationship between altitude and barometric pressure based on the measurement value of barometric pressure simultaneously measured by the reference barometric pressure sensor and the auxiliary reference barometric pressure sensor;
    The height difference calculation unit
    The measurement system according to claim 1, wherein the difference in height between the height of the object barometric pressure sensor and the height at which the reference barometric pressure sensor is installed is calculated using the function to which the parameter calculated by the parameter calculator is applied. .
  3.  前記補助参照気圧センサの数はn(nは1以上の整数)であり、前記関数は前記参照気圧センサにより計測される気圧を基準値とする気圧のn次関数である、請求項2に記載の計測システム。 The number of the said auxiliary reference pressure sensors is n (n is an integer greater than or equal to 1), The said function is an n-order function of the barometric pressure which makes the standard value the barometric pressure measured by the said reference barometric pressure sensor. Measurement system.
  4.  前記物体が予め設定された基準位置に配置されているとき、前記物体気圧センサと前記参照気圧センサとによって計測された気圧の計測値の差である基準位置差圧を記憶する基準位置差圧記憶部をさらに備え、
     前記高度差算出部は、
     前記基準位置差圧をさらに用いて前記基準位置と前記物体との高度差を算出する
     請求項1に記載の計測システム。
    Reference position differential pressure storage for storing a reference position differential pressure which is a difference between measured values of barometric pressure measured by the object barometric pressure sensor and the reference barometric pressure sensor when the object is disposed at a preset reference position Further equipped with
    The height difference calculation unit
    The measurement system according to claim 1, wherein the difference in altitude between the reference position and the object is calculated by further using the reference differential pressure.
  5.  前記高度差を通知する通知部をさらに備える
     請求項1に記載の計測システム。
    The measurement system according to claim 1, further comprising a notification unit that notifies the height difference.
  6.  請求項1に記載の計測システムと、
     前記物体を移動させる駆動部と、
     前記高度差を、前記高度差の目標値である目標高度差に近づくように制御する制御部と、
     を備える制御システム。
    A measurement system according to claim 1;
    A drive unit for moving the object;
    A control unit that controls the height difference to approach a target height difference that is a target value of the height difference;
    Control system comprising:
  7.  所定の高度に設置された参照気圧センサと、移動可能な物体に取り付けられた物体気圧センサとによってそれぞれ気圧の計測を行う第1ステップと、
     前記参照気圧センサと前記物体気圧センサとが同時に計測した気圧の計測値に基づいて、前記物体気圧センサの高度と前記参照気圧センサの高度との高度差を算出する第2ステップと、
     を有する計測方法。
     
    A first step of measuring the air pressure with a reference air pressure sensor installed at a predetermined height and an object air pressure sensor attached to a movable object;
    A second step of calculating an altitude difference between the height of the object barometric pressure sensor and the height of the reference barometric pressure sensor based on measurement values of the barometric pressure simultaneously measured by the reference barometric pressure sensor and the object barometric pressure sensor;
    Measuring method with.
PCT/JP2018/034258 2017-10-02 2018-09-14 Measurement system, control system, and measurement method WO2019069665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-192801 2017-10-02
JP2017192801A JP2019066347A (en) 2017-10-02 2017-10-02 Measurement system, control system and measurement method

Publications (1)

Publication Number Publication Date
WO2019069665A1 true WO2019069665A1 (en) 2019-04-11

Family

ID=65994895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034258 WO2019069665A1 (en) 2017-10-02 2018-09-14 Measurement system, control system, and measurement method

Country Status (2)

Country Link
JP (1) JP2019066347A (en)
WO (1) WO2019069665A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4046737A1 (en) * 2021-02-18 2022-08-24 FRONIUS INTERNATIONAL GmbH Welding device and welding method for performing a welding process
JPWO2022269769A1 (en) * 2021-06-22 2022-12-29

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187081A (en) * 2019-05-17 2020-11-19 パナソニックIpマネジメント株式会社 Gas safety device
JP2021056164A (en) * 2019-10-01 2021-04-08 富士ゼロックス株式会社 Information processing device, light emission device, information processing system, and program
JP7216676B2 (en) * 2020-01-17 2023-02-01 Kddi株式会社 Measurement system, measurement control device, measurement control method and computer program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279841A (en) * 2002-03-22 2003-10-02 Ricoh Co Ltd Image device
JP2011117818A (en) * 2009-12-03 2011-06-16 National Institute Of Advanced Industrial Science & Technology Altitude measuring device of moving body
JP2014019545A (en) * 2012-07-19 2014-02-03 Ihi Transport Machinery Co Ltd Hoisted cargo elevation detection device of crane
JP2014164623A (en) * 2013-02-26 2014-09-08 Sinfonia Technology Co Ltd Management system of work vehicle
JP2014222156A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Thickness inspection method and thickness inspection device
WO2017141321A1 (en) * 2016-02-15 2017-08-24 株式会社マリタイムイノベーションジャパン Instructing device, program and recording medium for supporting crane operation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107409B2 (en) * 2013-05-21 2017-04-05 富士ゼロックス株式会社 Position specifying processing apparatus and position specifying processing program
JP2015135303A (en) * 2014-01-20 2015-07-27 学校法人幾徳学園 Floor number estimation system using portable terminal, portable terminal and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279841A (en) * 2002-03-22 2003-10-02 Ricoh Co Ltd Image device
JP2011117818A (en) * 2009-12-03 2011-06-16 National Institute Of Advanced Industrial Science & Technology Altitude measuring device of moving body
JP2014019545A (en) * 2012-07-19 2014-02-03 Ihi Transport Machinery Co Ltd Hoisted cargo elevation detection device of crane
JP2014164623A (en) * 2013-02-26 2014-09-08 Sinfonia Technology Co Ltd Management system of work vehicle
JP2014222156A (en) * 2013-05-13 2014-11-27 パナソニック株式会社 Thickness inspection method and thickness inspection device
WO2017141321A1 (en) * 2016-02-15 2017-08-24 株式会社マリタイムイノベーションジャパン Instructing device, program and recording medium for supporting crane operation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4046737A1 (en) * 2021-02-18 2022-08-24 FRONIUS INTERNATIONAL GmbH Welding device and welding method for performing a welding process
WO2022175353A1 (en) * 2021-02-18 2022-08-25 Fronius International Gmbh Welding device and welding method for carrying out a welding process
JPWO2022269769A1 (en) * 2021-06-22 2022-12-29
WO2022269769A1 (en) * 2021-06-22 2022-12-29 三菱電機ビルソリューションズ株式会社 Worker position measurement system
JP7338815B2 (en) 2021-06-22 2023-09-05 三菱電機ビルソリューションズ株式会社 Worker positioning system

Also Published As

Publication number Publication date
JP2019066347A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2019069665A1 (en) Measurement system, control system, and measurement method
EP3173191B1 (en) Method for estimating posture of robotic walking aid
US9168420B1 (en) Force measurement system
US8201999B2 (en) Radiation imaging apparatus
KR101732835B1 (en) Inertial device, method, and program
US11774318B2 (en) Force and inclination monitoring system with self-position recognition
CN112368229B (en) Crane with a movable crane
JP5554366B2 (en) Top end surface leveling method, submarine foundation construction method, and top end surface leveling system
US10225629B2 (en) System for monitoring condition of adjustable construction temporary supports
JP2008220517A (en) Calorie consumption calculation method and portable calorie consumption measuring instrument
EP2910911A1 (en) Improved measurement system for a material transfer vehicle
US11858784B2 (en) Crane and control system for crane
WO2012161086A1 (en) Altitude measurement device, altitude measurement method, altitude measurement program
JP2011027669A (en) Device and method for testing vibration
JP2008189401A (en) Tower crane with method and device for displaying position of hoisted load in tower crane
CN108529455A (en) A kind of construction crane machine is caved in alarm system with GNSS
US20120128448A1 (en) Lifting device with distributed-sensing scale
JPWO2020080434A1 (en) Crane equipment
CN111606209B (en) Method for positioning lifting hook by utilizing GNSS
EP4082957A1 (en) Work machine control system and crane
JP2016026892A (en) Machine tool adjustment system, machine tool adjustment method, program, and machine tool
TWM499888U (en) Postural stability evaluation and rehabilitation system
JP6573536B2 (en) Inspection robot and structure inspection method
JP2016176761A (en) Hanger
WO2009098087A1 (en) Load indicating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864550

Country of ref document: EP

Kind code of ref document: A1