WO2019069396A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2019069396A1
WO2019069396A1 PCT/JP2017/036129 JP2017036129W WO2019069396A1 WO 2019069396 A1 WO2019069396 A1 WO 2019069396A1 JP 2017036129 W JP2017036129 W JP 2017036129W WO 2019069396 A1 WO2019069396 A1 WO 2019069396A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
wiring member
frame
cell panel
edge
Prior art date
Application number
PCT/JP2017/036129
Other languages
French (fr)
Japanese (ja)
Inventor
裕幸 神納
淳 赤司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2017/036129 priority Critical patent/WO2019069396A1/en
Publication of WO2019069396A1 publication Critical patent/WO2019069396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, and more particularly, to a solar cell module in which a frame is attached to a solar cell panel.
  • a frame is attached to the edge of the solar cell panel, and a terminal box is installed on the edge of the solar cell panel on the back side of the solar cell panel.
  • the hollow body is disposed below the recess for fitting the edge of the solar cell panel.
  • the overhang on the light receiving surface side of the recess is a ridge, and the ridge covers the light receiving surface of the solar cell panel located on the terminal box (see, for example, Patent Document 1).
  • a plurality of solar cell strings in which a plurality of solar cells are arranged in one direction and connected in series are arranged in another direction.
  • Wiring members for connecting the solar cell strings and extending in a direction in which the solar cell strings are arranged are disposed on both end sides of the plurality of solar cell strings.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for suppressing a decrease in design of a solar cell module.
  • a plurality of solar cell strings are arranged side by side, and a direction in which the plurality of solar cell strings are arranged at one end side of the plurality of solar cell strings And a frame attached to an end edge of the solar cell panel on the side where the wiring material is disposed.
  • frame has a collar part which covers the wiring material of a solar cell panel from the light-receiving surface side.
  • FIGS. 4 (a) to 4 (c) are diagrams showing the structures of the first long frame, the first short frame, and the second short frame of FIG. It is another sectional view which shows the structure of the solar cell module of FIG.
  • An embodiment of the present invention relates to a solar cell module in which a frame is attached to each side of a solar cell panel.
  • a solar cell string is formed by connecting a plurality of solar cells arranged in the first direction in series.
  • the plurality of solar cell strings may be arranged in a second direction different from the first direction.
  • a wiring material extending in a second direction to connect the solar cell strings on both ends of the plurality of solar cell strings hereinafter referred to as “cross wiring material ) are arranged.
  • a ridge portion (hereinafter referred to as “upper ridge portion”) that is a protrusion on the light receiving surface side among fitting portions into which the edge of the solar cell panel is fitted Is extended to a position covering the crossover wiring material of the solar cell panel from the light receiving surface side. Therefore, in the solar cell module in which the frame is attached to the solar cell panel, the upper wiring portion hides the crossover wiring material.
  • parallel includes not only perfect parallel but also cases of deviation from parallel in the range of errors.
  • “approximately” means that they are the same within the approximate range.
  • FIG. 1 shows the structure of a solar cell module 100 according to an embodiment, in particular, the structure when the solar cell module 100 is viewed from the light receiving surface side.
  • 2 (a) and 2 (b) are diagrams showing a partial structure of the solar cell panel 110.
  • FIG. 1 and FIGS. 2 (a) and 2 (b) an orthogonal coordinate system including x-axis, y-axis and z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z-axis is perpendicular to the x-axis and the y-axis, and extends in the thickness direction of the solar cell module 100.
  • the positive direction of each of the x-axis, y-axis and z-axis is defined in the direction of the arrow in FIG. 1 and FIGS. 2 (a)-(b), and the negative direction is in the direction opposite to the arrow It is prescribed.
  • the main plane disposed on the positive direction side of the z axis is the light receiving surface 112
  • z The main plane disposed on the negative direction side of the axis is the back surface 114.
  • the positive direction side of the z axis may be referred to as the “light receiving surface side”
  • the negative direction side of the z axis may be referred to as the “back side”.
  • the y-axis direction corresponds to the first direction described above
  • the x-axis direction corresponds to the second direction described above.
  • the solar cell module 100 includes a first short frame 10a collectively referred to as a short frame 10, a second short frame 10b, a first long frame 12a collectively referred to as a long frame 12, a second long frame 12b, and a solar cell panel 110.
  • the solar cell panel 110 is generically referred to as 1-1 solar cell cells 20aa collectively referred to as solar cell cells 20, ..., 8-12 solar battery cells 20hl, inter-cell wiring material 24, and crossover wiring material 26.
  • an eighth transition wiring member 26h, a ninth transition wiring member 26i, and a cell end wiring member 28 is an eighth transition wiring member 26h, a ninth transition wiring member 26i, and a cell end wiring member 28.
  • the solar battery cell 20 is formed of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs) or indium phosphide (InP). Although the structure of the photovoltaic cell 20 is mentioned later, it is supposed that it is a heterojunction-type photovoltaic cell here, for example. Although not shown in FIGS.
  • each solar battery cell 20 on the light receiving surface and the back surface of each solar battery cell 20, a plurality of finger electrodes extending in the x-axis direction parallel to each other and a plurality of finger electrodes And a plurality of, for example, three bus bar electrodes extending in the y-axis direction so as to be orthogonal to the direction.
  • the bus bar electrode connects each of the plurality of finger electrodes.
  • the bus bar electrodes and the finger electrodes are formed of, for example, silver paste or the like. In addition, the structure which makes the whole back surface an electrode may be sufficient.
  • the plurality of solar cells 20 are arranged in a matrix on the xy plane.
  • eight solar battery cells 20 are arranged in the x-axis direction
  • twelve solar battery cells 20 are arranged in the y-axis direction.
  • the number of solar cells 20 arranged in the x-axis direction and the number of solar cells 20 arranged in the y-axis direction are not limited to this.
  • Twelve solar cells 20 arranged side by side in the y-axis direction are connected in series by inter-cell wiring members 24 to form one solar cell string 22.
  • the first solar cell string 22a is formed by connecting the 1-1 solar cell 20aa to the 1-12 solar cell 20al, and the 4-1 solar cell 20da to the 4-12 solar cell 20dl. Are connected to form a fourth solar cell string 22d.
  • Other solar cell strings 22 are similarly formed. As a result, eight solar cell strings 22 are aligned in the x-axis direction.
  • the inter-cell wiring member 24 connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 20 and the bus bar electrode on the other back surface side.
  • the three inter-cell wiring members 24 for connecting the 4-1st photovoltaic cell 20da and the 4-2nd photovoltaic cell 20db are bus bar electrodes on the light receiving surface side of the 4-1rd photovoltaic cell 20da. It electrically connects with the bus-bar electrode of the back side of the 4th-2nd photovoltaic cell 20db.
  • region 30 is arrange
  • the second non-power generation region 32 is arranged on the negative direction side of the y axis with respect to the plurality of solar cells 20.
  • the solar battery cell 20 is not disposed in the first non-power generation region 30 and the second non-power generation region 32.
  • the first crossover wiring member 26a to the fifth crossover wiring member 26e are disposed, and in the second non-power generation region 32, the sixth crossover wiring member 26f to the ninth crossover wiring member 26i are disposed. Be done.
  • the first transition wiring member 26 a is connected to the 1-1st solar cell 20 aa of the first solar cell string 22 a via the cell end wiring member 28.
  • the cell end wiring member 28 is a wiring member for connecting the solar battery cell 20 disposed at the end of the solar cell string 22 and the crossover wiring member 26, and the light receiving surface or the back surface of the solar battery cell 20 , And the inter-cell wiring member 24.
  • the first crossover wiring member 26 a extends from the connecting portion with the cell end wiring member 28 in the positive direction of the x-axis, reaches around the center of the solar cell module 100 in the x-axis direction, and is connected to a terminal box not shown.
  • the second transition wiring member 26 b is connected to the 2-1 solar cell 20 ba of the second solar cell string 22 b via the cell end wiring member 28.
  • the second transition wiring member 26 b is also connected to the 3-1st solar cell 20 ca of the third solar cell string 22 c via another cell end wiring member 28.
  • the second transition wiring member 26 b electrically connects the second solar cell string 22 b and the third solar cell string 22 c.
  • the second crossover wiring member 26b also extends in the x-axis direction, reaches around the center of the solar cell module 100 in the x-axis direction, and is connected to a terminal box (not shown).
  • the third transition wiring member 26c is connected to the fourth-1 solar cell 20da of the fourth solar cell string 22d via the cell end wiring member 28.
  • the third transition wiring member 26c is also connected to the 5-1st solar cell 20ea of the fifth solar cell string 22e via another cell end wiring member 28.
  • the third transition wiring member 26c electrically connects the fourth solar cell string 22d and the fifth solar cell string 22e.
  • the third crossover wiring member 26c extends in the x-axis direction while crossing the vicinity of the center of the solar cell module 100 in the x-axis direction.
  • the third crossover wiring member 26c is also connected to the terminal box.
  • the fourth crossover wiring member 26d and the fifth crossover wiring member 26e are arranged so as to be reversed in the x-axis direction with respect to the second crossover wiring member 26b and the first crossover wiring member 26a.
  • Each of the sixth crossover wiring 26f to the ninth crossover wiring 26i extends in the x-axis direction, and is electrically connected to the two adjacent solar cell strings 22 via the cell end wiring 28.
  • the sixth transition wiring member 26f is connected to the (1-12) solar cells 20al of the first solar cell string 22a and the 2-12th solar cells 20bl of the second solar cell string 22b.
  • the first solar cell string 22a to the eighth solar cell string 22h are electrically connected in series.
  • the sixth connection wiring member 26f to the ninth connection wiring member 26i are arranged side by side in the x-axis direction. From the point of view, only one row of crossover wiring members 26 is disposed.
  • the third crossover wiring member 26c is disposed closest to the plurality of solar cells 20.
  • the second crossover wiring member 26b and the fourth inter-cell wiring member 24d are disposed on the positive direction side of the y axis thereof, and the first crossover wiring member 26a and the fifth crossover wiring member are arranged on the positive direction side of the y axis thereof. 26e is placed.
  • the number of rows of the crossover wiring members 26 in the second non-power generation region 32 is smaller than the number of rows of the crossover wiring members 26 in the first non-power generation region 30.
  • the distance between the second end 116b and the sixth connecting member 26f is shorter than the distance between the first end 116a and the third connecting member 26c.
  • the former indicates the distance between the crossover wiring member 26 farthest from the second edge 116 b of the second non-power generation region 32 and the second edge 116 b, and the latter indicates the distance of the first non-power generation region 30.
  • the distance between the interconnect material 26 farthest from the first end edge 116a thereof and the first end edge 116a is shown.
  • the number of rows of the crossover wiring members 26 in the second non-power generation region 32 and the number of rows of the crossover wiring members 26 in the first non-power generation region 30 are not limited to “1” and “3”.
  • the solar cell panel 110 is surrounded by four edges 116 generally referred to as a first edge 116 a, a second edge 116 b, a third edge 116 c, and a fourth edge 116 d.
  • a short frame 10 extending in the x-axis direction is attached to the first edge 116 a and the second edge 116 b at both ends of the solar cell panel 110 in the y-axis direction.
  • a long frame 12 extending in the y-axis direction is attached to the third edge 116c and the fourth edge 116d at both ends of the solar cell panel 110 in the x-axis direction.
  • the adjacent short frame 10 and the long frame 12 are connected to each other, so that the two short frames 10 and the two long frames 12 are arranged in a frame shape surrounding the solar cell panel 110.
  • the short frame 10 and the long frame 12 are formed of, for example, aluminum or an aluminum alloy in order to protect the solar cell panel 110.
  • the structures of the short frame 10 and the long frame 12 will be described later.
  • FIG. 3 is a cross-sectional view showing the structure of the solar cell module 100, and is a cross-sectional view taken along the line A-A 'of FIG.
  • the solar cell module 100 includes a first short frame 10 a, a second short frame 10 b, a terminal box 14, and a solar cell panel 110.
  • the solar cell panel 110 is generally referred to as solar cell 20.
  • the upper side of FIG. 3 corresponds to the light receiving surface side, and the lower side corresponds to the back surface side.
  • the first protective member 40 a is disposed on the light receiving surface side of the solar cell panel 110 and protects the surface of the solar cell panel 110.
  • glass having a light transmitting property and a water shielding property, a light transmitting plastic, or the like is used, and is formed in a rectangular plate shape.
  • glass is used as an example.
  • the sealing member 42 is stacked on the back surface side of the first protection member 40 a.
  • the sealing member 42 is disposed between the first protective member 40 a and a second protective member 40 b described later to bond them.
  • the sealing member 42 seals the plurality of solar cells 20, the inter-cell wiring member 24, and the like.
  • the sealing member 42 for example, a thermoplastic resin such as a resin film such as polyolefin, EVA (ethylene-vinyl acetate copolymer), PVB (polyvinyl butyral), or polyimide is used. In addition, thermosetting resin may be used.
  • the sealing member 42 is formed of a rectangular sheet material having translucency and having a surface substantially the same size as the xy plane of the first protective member 40a.
  • the second protective member 40 b is stacked on the back surface side of the sealing member 42.
  • the second protective member 40 b protects the back side of the solar cell panel 110 as a back sheet.
  • resin films such as PET (polyethylene terephthalate)
  • PET polyethylene terephthalate
  • interposed Al foil with the resin film may be used as the 2nd protection member 40b, and glass may be used.
  • a terminal box 14 is disposed on the back side of the solar cell panel 110. Further, one end side of each of two cables (not shown) is connected to the terminal box 14, and a connector is connected to the other end side of each of the two cables. The terminal box 14, the cable, and the connector are electrically connected to the solar cell panel 110 and draw power from the solar cell panel.
  • the short frame 10 which collectively refers to the first short frame 10a and the second short frame 10b, includes a fitting portion 50, a main body portion 52, and a lower collar portion 54.
  • the fitting portion 50 includes the upper collar portion 56
  • the main body portion 52 includes the top surface portion 58, the hollow portion 60, the bottom surface portion 62, and the lower surface portion 64.
  • the fitting portion 50, the main body portion 52, and the lower collar portion 54 are integrally formed by extrusion molding.
  • the first short frame 10a is attached to the first edge 116a of the solar cell panel 110 on the side where the first transition wiring member 26a to the fifth transition wiring member 26e are disposed.
  • the fitting portion 50 is disposed on the light receiving surface side of the main body portion 52 described later and combined with the top surface portion 58 of the main body portion 52 to have a cross section depressed in the positive direction side of the y axis, that is, a concave cross section. .
  • the first end 116a of the solar cell panel 110 is fitted into the fitting portion 50 from the negative direction side of the y axis, and the light receiving surface 112 and the back surface 114 of the solar cell panel 110 are sandwiched.
  • the fitting portion 50 and the top surface portion 58 and the solar cell panel 110 are fixed by a butyl-based sealing material or a silicon-based adhesive.
  • the overhang on the light receiving surface side is the upper collar portion 56
  • the overhang on the back surface side is the top surface portion 58.
  • the upper collar portion 56 extends in the negative direction side of the y-axis from the positive direction side end of the y-axis of the fitting portion 50 to the position between the third connecting member 26c and the fourth-1 solar cell 20da. That is, the upper collar portion 56 covers the first crossover wiring member 26 a to the fifth crossover wiring member 26 e of the solar cell panel 110 from the light receiving surface side, and receives at least a part of the cell end wiring member 28 of the solar cell panel 110. It has a shape that covers from the surface side.
  • the upper ridge portion 56 has a shape that does not cover the four-first photovoltaic cell 20da from the light receiving surface side.
  • the top surface portion 58 extends in the negative direction side of the y axis from the positive direction side end of the y axis of the fitting portion 50, but has a length that does not reach the first crossover wiring member 26a.
  • the first crossover wiring member 26 a to the fifth crossover wiring member 26 e of the solar cell panel 110 are not sandwiched by the upper collar portion 56 and the top surface portion 58. This is because the first crossover wiring member 26 a to the fifth crossover wiring member 26 e are degraded when the insulation performance is lowered due to the deterioration of the protective member 40 and the sealing member 42 due to the hydrolysis by the moisture entering the fitting portion 50. Is to prevent the top surface portion 58 from contacting.
  • the main body portion 52 is disposed on the back side of the fitting portion 50.
  • a top surface portion 58 is disposed on the light receiving surface side of the main body portion 52 so as to face the upper collar portion 56.
  • the lower surface 64 is disposed on the back surface side of the top surface 58 on the negative side of the top surface 58 in the negative y-axis direction.
  • the lower surface portion 64 faces the first crossover wiring member 26 a in the z-axis direction, but is separated from the second protective member 40 b of the solar cell panel 110 in the z-axis direction. Therefore, the influence of the aforementioned hydrolysis is reduced.
  • the main body portion 52 extends from the top surface portion 58 to the back surface side, and includes the hollow portion 60 with a hollow structure.
  • a bottom surface 62 is disposed on the back surface side of the main body 52. In the bottom portion 62, a lower collar portion 54 extending in the negative direction of the y axis is disposed
  • the second short frame 10b is attached to the second edge 116b of the solar cell panel 110 on the side where the sixth connection wiring member 26f to the ninth connection wiring member 26i are disposed. Since the second short frame 10b has a structure similar to the first short frame 10a, the difference will be mainly described here. As shown in FIG. 3, the second short frame 10 b faces the first short frame 10 a in the y-axis direction in the opposite direction. The upper ridge portion 56 of the second short frame 10 b extends from the negative side end of the fitting portion 50 in the y direction to the position between the seventh connecting member 26 g and the 4-12 solar cell 20 dl in the positive direction of the y axis Extend to the side.
  • the upper collar portion 56 covers the sixth transition wiring member 26f of the solar cell panel 110 to the ninth transition wiring member 26i from the light receiving surface side, and receives at least a part of the cell end wiring member 28 of the solar cell panel 110 It has a shape that covers from the surface side.
  • the upper ridge portion 56 has a shape that does not cover the fourth to twelfth solar battery cells 20dl from the light receiving surface side.
  • the length of the upper collar portion 56 in the second short frame 10b is shorter than the length of the upper collar portion 56 in the first short frame 10a. This is because, as described above, the distance from the second end 116b to the sixth connection wiring 26f and the like is shorter than the distance from the first end 116a to the third connection wiring 26c.
  • FIG. 4A shows the first long frame 12a, but the second long frame 12b has a similar structure.
  • 4 (b) shows the first short frame 10a
  • FIG. 4 (c) shows the second short frame 10b, which are identical to FIG.
  • the first long frame 12a is attached to the third edge 116c of the solar cell panel 110 on which the transition wiring member 26 is not disposed.
  • the fitting portion 70, the main body portion 72, the lower collar portion 74, the upper collar portion 76, the top surface portion 78, the hollow portion 80, the bottom portion 82 and the lower surface portion 84 in the first long frame 12a The main body 52, the lower collar 54, the upper collar 56, the top surface 58, the hollow 60, the bottom 62, and the lower surface 64 correspond to each other.
  • the upper ridge portion 76 of the first long frame 12 a covers the solar cell panel 110 from the light receiving surface side.
  • the upper ridge portion 76 of the first long frame 12a does not cover the first solar cell string 22a from the light receiving surface side.
  • the length of the upper collar portion 76 of the first long frame 12 a in the x-axis direction is shorter than the length of the upper collar portion 56 of the short frame 10 in the y-axis direction. This is because the crossover wiring member 26 is not disposed at the third end 116c to which the first long frame 12a is attached.
  • the terminal box 14 is disposed at a position different from the position covered by the upper collar portion 56 of the short frame 10 and the upper collar portion 76 of the long frame 12.
  • FIG. 5 is another cross-sectional view showing the structure of the solar cell module 100, and is a cross-sectional view taken along the line A-A 'of FIG.
  • the main body 52 has a rectangular cross section, and includes a hollow portion 60.
  • the crossover wiring member 26 is noticeable when the solar cell module 100 is viewed from the light receiving surface side. It can be lost. Further, when the solar cell module 100 is viewed from the light receiving surface side, the wiring member 26 does not stand out, so that it is possible to suppress a decrease in design of the solar cell module 100.
  • the crossover wiring member 26 is hidden according to the layout of the crossover wiring member 26. be able to.
  • the length of the upper collar portion 56 in the second short frame 10b is shorter than the length of the upper collar portion 56 in the first short frame 10a, it is possible to prevent the solar battery cell 20 from being hidden. Further, since the length of the upper ridge portion 76 in the long frame 12 is shorter than the length of the upper ridge portion 56 in the short frame 10, it is possible to prevent the solar battery cell 20 from being hidden.
  • the terminal box 14 is disposed at a position different from the position covered by the upper collar portion 56 of the short frame 10 and the upper collar portion 76 of the long frame 12, the terminal box 14 is separated from the short frame 10 and the long frame 12. Can be placed.
  • the upper collar portion 56 of the short frame 10 covers at least a part of the cell end wiring member 28 of the solar cell panel 110 from the light receiving surface side, the cell end wiring when the solar cell module 100 is viewed from the light receiving surface side
  • the material 28 can be made inconspicuous.
  • the cell end wiring member 28 becomes inconspicuous when the solar cell module 100 is viewed from the light receiving surface side, it is possible to suppress a decrease in design of the solar cell module 100.
  • the top surface portion 58 is disposed so as not to reach the crossover wiring member 26 of the solar cell panel 110, insulation can be ensured even when hydrolysis occurs.
  • the solar cell module 100 has a plurality of solar cell strings 22 arranged side by side, and at one end of the plurality of solar cell strings 22, a crossover wiring extending in the direction in which the plurality of solar cell strings 22 are arranged.
  • the short frame 10 has an upper collar portion 56 that covers the crossover wiring member 26 of the solar cell panel 110 from the light receiving surface side.
  • a cell end wiring member 28 for connecting the solar cells 20 on one end side of the plurality of solar cell strings 22 and the crossover wiring member 26 is disposed, and the upper ridge portion 56 of the short frame 10 At least a part of the cell end wiring member 28 of the battery panel 110 may be covered from the light receiving surface side.
  • the upper ridge portion 56 of the short frame 10 may not cover the solar cells 20 on one end side of the plurality of solar cell strings 22 from the light receiving surface side.
  • another crossover wiring member 26 extending in the direction in which the plurality of solar cell strings 22 are arranged is also arranged on the other end side of the plurality of solar cell strings 22.
  • the distance between the other edge 116 on the side on which the other crossover wiring material 26 is disposed and the other crossover wiring material 26 farthest from the other edge 116 is the crossover wiring Unlike the distance between the edge 116 on the side where the material 26 is disposed and the crossover wiring material 26 farthest from the edge 116, the solar cell module 100 is disposed on the side on which the other crossover wiring material 26 is disposed. It may further comprise another short frame 10 attached to another edge 116 of the solar cell panel 110 of FIG.
  • Another short frame 10 may have an upper collar portion 56 that covers another crossover wiring member 26 of the solar cell panel 110 from the light receiving surface side.
  • the length of the upper collar portion 56 in the direction from the other edge 116 of the solar cell panel 110 to the other transition wiring member 26 is the edge of the solar cell panel 110 in the short frame 10. It may be different from the length of the upper collar portion 56 in the direction from the wiring 116 to the crossover wiring member 26.
  • the long frame 12 may further include a long frame 12 attached to the other edge 116 of the solar cell panel 110 on the side where the crossover wiring 26 and the other crossover wiring 26 are not disposed.
  • the long frame 12 may have an upper collar portion 76 that covers the solar cell panel 110 from the light receiving surface side.
  • the length of the upper ridge portion 76 in the direction from the other edge 116 of the solar cell panel 110 toward the solar cell string 22 is the solar cell panel 110 in the short frame 10 and the other short frame 10.
  • the length of the upper ridge portion 56 in the direction from the end edge 116 or the other end edge 116 to the crossover wiring member 26 or the other crossover wiring member 26 is shorter.
  • the terminal box 14 may further include a terminal box 14 disposed on the back side of the solar cell panel 110.
  • the terminal box 14 may be disposed at a position different from the position covered by the upper hook portion 56 of the short frame 10, the upper hook portion 56 of another short frame 10, and the upper hook portion 76 of the long frame 12.
  • the short frame 10 may include a fitting portion 50 that sandwiches the light receiving surface side and the back surface side of the solar cell panel 110.
  • the overhang on the light receiving surface side of the fitting portion 50 may be the upper collar portion 56, and the overhang on the back surface side of the fitting portion 50 may not reach the crossover wiring member 26 of the solar cell panel 110.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

In the present invention, in a solar cell panel 110, a plurality of solar cell strings are arranged side by side, and on one end side of the plurality of solar cell strings, a first bridging wiring member 26a to a third bridging wiring member 26c, all extending in the direction in which the plurality of solar cell strings are arranged side by side, are disposed. A first short frame 10a is attached to a first end edge 116a of the solar cell panel 110 on the side on which the first bridging wiring member 26a to the third bridging wiring member 26c are disposed. The short frame 10a has an upper flange section 56 that covers the first bridging wiring member 26a to the third bridging wiring member 26c of the solar cell panel 110 from a light-receiving surface side.

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュール、特に太陽電池パネルにフレームが取り付けられ太陽電池モジュールに関する。 The present invention relates to a solar cell module, and more particularly, to a solar cell module in which a frame is attached to a solar cell panel.
 太陽電池モジュールでは、太陽電池パネルの端縁にフレームが取り付けられるとともに、太陽電池パネルの裏面側における太陽電池パネルの端縁に端子ボックスが設置される。フレームでは、太陽電池パネルの端縁を嵌め込むための凹部の下方に中空構造の本体部が配置される。凹部の受光面側の張出が鍔部であり、鍔部は、端子ボックス上に位置する太陽電池パネルの受光面を覆う(例えば、特許文献1参照)。 In the solar cell module, a frame is attached to the edge of the solar cell panel, and a terminal box is installed on the edge of the solar cell panel on the back side of the solar cell panel. In the frame, the hollow body is disposed below the recess for fitting the edge of the solar cell panel. The overhang on the light receiving surface side of the recess is a ridge, and the ridge covers the light receiving surface of the solar cell panel located on the terminal box (see, for example, Patent Document 1).
国際公開第14/076952号International Publication No. 14/076952
 太陽電池パネルでは、複数の太陽電池セルを一方向に並べて直列に接続した太陽電池ストリングが別の方向に複数並べられる。複数の太陽電池ストリングの両端側には、太陽電池ストリング間を接続するための配線材であって、かつ太陽電池ストリングが並べられる方向に延びる配線材が配置される。このような太陽電池パネルを受光面側から見た場合、配線材が見えてしまうことによって意匠性が低下する。 In a solar cell panel, a plurality of solar cell strings in which a plurality of solar cells are arranged in one direction and connected in series are arranged in another direction. Wiring members for connecting the solar cell strings and extending in a direction in which the solar cell strings are arranged are disposed on both end sides of the plurality of solar cell strings. When such a solar cell panel is viewed from the light receiving surface side, the designability is lowered by the fact that the wiring material is visible.
 本発明はこうした状況に鑑みなされたものであり、その目的は、太陽電池モジュールの意匠性の低下を抑制する技術を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is to provide a technique for suppressing a decrease in design of a solar cell module.
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、複数の太陽電池ストリングが並べて配置されるとともに、複数の太陽電池ストリングの一端側において、複数の太陽電池ストリングを並べた方向に延びる配線材が配置される太陽電池パネルと、配線材が配置される側の太陽電池パネルの端縁に取り付けられるフレームとを備える。フレームは、太陽電池パネルの配線材を受光面側から覆う鍔部を有する。 In order to solve the above problems, in the solar cell module according to an aspect of the present invention, a plurality of solar cell strings are arranged side by side, and a direction in which the plurality of solar cell strings are arranged at one end side of the plurality of solar cell strings And a frame attached to an end edge of the solar cell panel on the side where the wiring material is disposed. A flame | frame has a collar part which covers the wiring material of a solar cell panel from the light-receiving surface side.
 本発明によれば、太陽電池モジュールの意匠性の低下を抑制できる。 ADVANTAGE OF THE INVENTION According to this invention, the fall of the designability of a solar cell module can be suppressed.
実施例に係る太陽電池モジュールの構造を示す図である。It is a figure which shows the structure of the solar cell module which concerns on an Example. 図2(a)-(b)は、図1の太陽電池パネルの部分構造を示す図である。2 (a)-(b) are diagrams showing a partial structure of the solar cell panel of FIG. 図1の太陽電池モジュールの構造を示す断面図である。It is sectional drawing which shows the structure of the solar cell module of FIG. 図4(a)-(c)は、図1の第1長フレーム、第1短フレーム、第2短フレームの構造を示す図である。FIGS. 4 (a) to 4 (c) are diagrams showing the structures of the first long frame, the first short frame, and the second short frame of FIG. 図1の太陽電池モジュールの構造を示す別の断面図である。It is another sectional view which shows the structure of the solar cell module of FIG.
 本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、太陽電池パネルの各辺にフレームが取り付けられる太陽電池モジュールに関する。太陽電池パネルでは、第1方向に並べられた複数の太陽電池セルが直列に接続されることによって、太陽電池ストリングが形成される。また、複数の太陽電池ストリングは、第1方向とは異なった第2方向に並べられる。このような複数の太陽電池ストリングを直列に接続するために、複数の太陽電池ストリングの両端側には、太陽電池ストリング間を接続するために第2方向に延びる配線材(以下、「渡り配線材」という)が複数配置される。太陽電池パネルを受光面側から見た場合、渡り配線材が見えてしまうので、意匠性が低下する。 Before specifically explaining the present invention, an outline will be given. An embodiment of the present invention relates to a solar cell module in which a frame is attached to each side of a solar cell panel. In the solar cell panel, a solar cell string is formed by connecting a plurality of solar cells arranged in the first direction in series. Also, the plurality of solar cell strings may be arranged in a second direction different from the first direction. In order to connect such a plurality of solar cell strings in series, a wiring material extending in a second direction to connect the solar cell strings on both ends of the plurality of solar cell strings (hereinafter referred to as “cross wiring material ) Are arranged. When the solar cell panel is viewed from the light receiving surface side, since the crossover wiring material can be seen, the designability is reduced.
 意匠性の低下を抑制するために、本実施例に係るフレームにおいて、太陽電池パネルの端縁を嵌め込む嵌合部のうち、受光面側の張出である鍔部(以下、「上鍔部」という)は、太陽電池パネルの渡り配線材を受光面側から覆う位置まで延びる。そのため、フレームを太陽電池パネルに取り付けた太陽電池モジュールでは、上鍔部によって渡り配線材が隠される。なお、以下の説明において、「平行」は、完全な平行だけではなく、誤差の範囲で平行からずれている場合も含むものとする。また、「略」は、おおよその範囲で同一であるという意味である。 In the frame according to the present embodiment, in the frame according to the present embodiment to suppress a decrease in designability, a ridge portion (hereinafter referred to as “upper ridge portion”) that is a protrusion on the light receiving surface side among fitting portions into which the edge of the solar cell panel is fitted Is extended to a position covering the crossover wiring material of the solar cell panel from the light receiving surface side. Therefore, in the solar cell module in which the frame is attached to the solar cell panel, the upper wiring portion hides the crossover wiring material. In the following description, "parallel" includes not only perfect parallel but also cases of deviation from parallel in the range of errors. In addition, “approximately” means that they are the same within the approximate range.
 図1は、実施例に係る太陽電池モジュール100の構造、特に太陽電池モジュール100を受光面側から見た場合の構造を示す。図2(a)-(b)は、太陽電池パネル110の部分構造を示す図である。図1、図2(a)-(b)に示すように、x軸、y軸、z軸からなる直交座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1、図2(a)-(b)における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx-y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が受光面112であり、z軸の負方向側に配置される主平面が裏面114である。以下では、z軸の正方向側を「受光面側」と呼び、z軸の負方向側を「裏面側」と呼ぶこともある。また、y軸方向が前述の第1方向に相当し、x軸方向が前述の第2方向に相当する。 FIG. 1 shows the structure of a solar cell module 100 according to an embodiment, in particular, the structure when the solar cell module 100 is viewed from the light receiving surface side. 2 (a) and 2 (b) are diagrams showing a partial structure of the solar cell panel 110. FIG. As shown in FIG. 1 and FIGS. 2 (a) and 2 (b), an orthogonal coordinate system including x-axis, y-axis and z-axis is defined. The x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100. The z-axis is perpendicular to the x-axis and the y-axis, and extends in the thickness direction of the solar cell module 100. In addition, the positive direction of each of the x-axis, y-axis and z-axis is defined in the direction of the arrow in FIG. 1 and FIGS. 2 (a)-(b), and the negative direction is in the direction opposite to the arrow It is prescribed. Of the two main surfaces forming the solar cell module 100 and parallel to the xy plane, the main plane disposed on the positive direction side of the z axis is the light receiving surface 112, and z The main plane disposed on the negative direction side of the axis is the back surface 114. Hereinafter, the positive direction side of the z axis may be referred to as the “light receiving surface side”, and the negative direction side of the z axis may be referred to as the “back side”. Also, the y-axis direction corresponds to the first direction described above, and the x-axis direction corresponds to the second direction described above.
 太陽電池モジュール100は、短フレーム10と総称される第1短フレーム10a、第2短フレーム10b、長フレーム12と総称される第1長フレーム12a、第2長フレーム12b、太陽電池パネル110を含む。また、太陽電池パネル110は、太陽電池セル20と総称される第1-1太陽電池セル20aa、・・・、第8-12太陽電池セル20hl、セル間配線材24、渡り配線材26と総称される第1渡り配線材26a、第2渡り配線材26b、第3渡り配線材26c、第4渡り配線材26d、第5渡り配線材26e、第6渡り配線材26f、第7渡り配線材26g、第8渡り配線材26h、第9渡り配線材26i、セル端配線材28を含む。 The solar cell module 100 includes a first short frame 10a collectively referred to as a short frame 10, a second short frame 10b, a first long frame 12a collectively referred to as a long frame 12, a second long frame 12b, and a solar cell panel 110. . Further, the solar cell panel 110 is generically referred to as 1-1 solar cell cells 20aa collectively referred to as solar cell cells 20, ..., 8-12 solar battery cells 20hl, inter-cell wiring material 24, and crossover wiring material 26. First connecting wire 26a, second connecting wire 26b, third connecting wire 26c, fourth connecting wire 26d, fifth connecting wire 26e, sixth connecting wire 26f, seventh connecting wire 26g And an eighth transition wiring member 26h, a ninth transition wiring member 26i, and a cell end wiring member 28.
 複数の太陽電池セル20のそれぞれは、入射する光を吸収して光起電力を発生する。太陽電池セル20は、例えば、結晶シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル20の構造は後述するが、ここでは例えばヘテロ接合型太陽電池セルであるとする。図1、図2(a)-(b)では省略しているが、各太陽電池セル20の受光面および裏面には、互いに平行にx軸方向に延びる複数のフィンガー電極と、複数のフィンガー電極に直交するようにy軸方向に延びる複数、例えば3本のバスバー電極とが備えられる。バスバー電極は、複数のフィンガー電極のそれぞれを接続する。また、バスバー電極およびフィンガー電極は、例えば、銀ペースト等により形成される。なお、裏面全体を電極とする構造であってもよい。 Each of the plurality of solar cells 20 absorbs incident light to generate photovoltaic power. The solar battery cell 20 is formed of, for example, a semiconductor material such as crystalline silicon, gallium arsenide (GaAs) or indium phosphide (InP). Although the structure of the photovoltaic cell 20 is mentioned later, it is supposed that it is a heterojunction-type photovoltaic cell here, for example. Although not shown in FIGS. 1 and 2 (a)-(b), on the light receiving surface and the back surface of each solar battery cell 20, a plurality of finger electrodes extending in the x-axis direction parallel to each other and a plurality of finger electrodes And a plurality of, for example, three bus bar electrodes extending in the y-axis direction so as to be orthogonal to the direction. The bus bar electrode connects each of the plurality of finger electrodes. The bus bar electrodes and the finger electrodes are formed of, for example, silver paste or the like. In addition, the structure which makes the whole back surface an electrode may be sufficient.
 複数の太陽電池セル20は、x-y平面上にマトリクス状に配列される。ここでは、一例として、x軸方向に8つの太陽電池セル20が並べられ、y軸方向に12の太陽電池セル20が並べられる。なお、x軸方向に並べられる太陽電池セル20の数と、y軸方向に並べられる太陽電池セル20の数は、これに限定されない。y軸方向に並んで配置される12の太陽電池セル20は、セル間配線材24によって直列に接続され、1つの太陽電池ストリング22が形成される。例えば、第1-1太陽電池セル20aaから第1-12太陽電池セル20alが接続されて第1太陽電池ストリング22aが形成され、第4-1太陽電池セル20daから第4-12太陽電池セル20dlが接続されて第4太陽電池ストリング22dが形成される。他の太陽電池ストリング22も同様に形成される。その結果、8つの太陽電池ストリング22がx軸方向に並べられる。 The plurality of solar cells 20 are arranged in a matrix on the xy plane. Here, as an example, eight solar battery cells 20 are arranged in the x-axis direction, and twelve solar battery cells 20 are arranged in the y-axis direction. The number of solar cells 20 arranged in the x-axis direction and the number of solar cells 20 arranged in the y-axis direction are not limited to this. Twelve solar cells 20 arranged side by side in the y-axis direction are connected in series by inter-cell wiring members 24 to form one solar cell string 22. For example, the first solar cell string 22a is formed by connecting the 1-1 solar cell 20aa to the 1-12 solar cell 20al, and the 4-1 solar cell 20da to the 4-12 solar cell 20dl. Are connected to form a fourth solar cell string 22d. Other solar cell strings 22 are similarly formed. As a result, eight solar cell strings 22 are aligned in the x-axis direction.
 太陽電池ストリング22を形成するために、セル間配線材24は、隣接した太陽電池セル20のうちの一方の受光面側のバスバー電極と、他方の裏面側のバスバー電極とを接続する。例えば、第4-1太陽電池セル20daと第4-2太陽電池セル20dbとを接続するための3つのセル間配線材24は、第4-1太陽電池セル20daの受光面側のバスバー電極と第4-2太陽電池セル20dbの裏面側のバスバー電極とを電気的に接続する。 In order to form the solar cell string 22, the inter-cell wiring member 24 connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 20 and the bus bar electrode on the other back surface side. For example, the three inter-cell wiring members 24 for connecting the 4-1st photovoltaic cell 20da and the 4-2nd photovoltaic cell 20db are bus bar electrodes on the light receiving surface side of the 4-1rd photovoltaic cell 20da. It electrically connects with the bus-bar electrode of the back side of the 4th-2nd photovoltaic cell 20db.
 図2(a)に示すように、太陽電池パネル110において、複数の太陽電池セル20よりもy軸の正方向側には第1非発電領域30が配置される。また、図2(b)に示すように、太陽電池パネル110において、複数の太陽電池セル20よりもy軸の負方向側には第2非発電領域32が配置される。第1非発電領域30および第2非発電領域32には、太陽電池セル20が配置されない。第1非発電領域30には、第1渡り配線材26aから第5渡り配線材26eが配置され、第2非発電領域32には、第6渡り配線材26fから第9渡り配線材26iが配置される。第1渡り配線材26aは、セル端配線材28を介して第1太陽電池ストリング22aの第1-1太陽電池セル20aaに接続される。ここで、セル端配線材28は、太陽電池ストリング22の端に配置される太陽電池セル20と渡り配線材26とを接続するための配線材であり、太陽電池セル20の受光面あるいは裏面において、セル間配線材24と同様に配置される。第1渡り配線材26aは、セル端配線材28との接続部分からx軸の正方向に延びて、太陽電池モジュール100のx軸方向の中央付近に達し、図示しない端子ボックスに接続される。 As shown to Fig.2 (a), in the solar cell panel 110, the 1st non electric power generation area | region 30 is arrange | positioned rather than the some photovoltaic cell 20 in the positive direction side of the y-axis. Further, as shown in FIG. 2 (b), in the solar cell panel 110, the second non-power generation region 32 is arranged on the negative direction side of the y axis with respect to the plurality of solar cells 20. The solar battery cell 20 is not disposed in the first non-power generation region 30 and the second non-power generation region 32. In the first non-power generation region 30, the first crossover wiring member 26a to the fifth crossover wiring member 26e are disposed, and in the second non-power generation region 32, the sixth crossover wiring member 26f to the ninth crossover wiring member 26i are disposed. Be done. The first transition wiring member 26 a is connected to the 1-1st solar cell 20 aa of the first solar cell string 22 a via the cell end wiring member 28. Here, the cell end wiring member 28 is a wiring member for connecting the solar battery cell 20 disposed at the end of the solar cell string 22 and the crossover wiring member 26, and the light receiving surface or the back surface of the solar battery cell 20 , And the inter-cell wiring member 24. The first crossover wiring member 26 a extends from the connecting portion with the cell end wiring member 28 in the positive direction of the x-axis, reaches around the center of the solar cell module 100 in the x-axis direction, and is connected to a terminal box not shown.
 第2渡り配線材26bは、セル端配線材28を介して第2太陽電池ストリング22bの第2-1太陽電池セル20baに接続される。また、第2渡り配線材26bは、別のセル端配線材28を介して第3太陽電池ストリング22cの第3-1太陽電池セル20caにも接続される。これらの接続により、第2渡り配線材26bは、第2太陽電池ストリング22bと第3太陽電池ストリング22cとを電気的に接続する。また、第2渡り配線材26bも、x軸方向に延びて、太陽電池モジュール100のx軸方向の中央付近に達し、図示しない端子ボックスに接続される。 The second transition wiring member 26 b is connected to the 2-1 solar cell 20 ba of the second solar cell string 22 b via the cell end wiring member 28. In addition, the second transition wiring member 26 b is also connected to the 3-1st solar cell 20 ca of the third solar cell string 22 c via another cell end wiring member 28. By these connections, the second transition wiring member 26 b electrically connects the second solar cell string 22 b and the third solar cell string 22 c. The second crossover wiring member 26b also extends in the x-axis direction, reaches around the center of the solar cell module 100 in the x-axis direction, and is connected to a terminal box (not shown).
 第3渡り配線材26cは、セル端配線材28を介して第4太陽電池ストリング22dの第4-1太陽電池セル20daに接続される。また、第3渡り配線材26cは、別のセル端配線材28を介して第5太陽電池ストリング22eの第5-1太陽電池セル20eaにも接続される。これらの接続により、第3渡り配線材26cは、第4太陽電池ストリング22dと第5太陽電池ストリング22eとを電気的に接続する。このように、第3渡り配線材26cは、太陽電池モジュール100のx軸方向の中央付近をまたぎながらx軸方向に延びる。なお、第3渡り配線材26cも端子ボックスに接続される。第4渡り配線材26d、第5渡り配線材26eは、第2渡り配線材26b、第1渡り配線材26aに対してx軸方向に反転して配置される。 The third transition wiring member 26c is connected to the fourth-1 solar cell 20da of the fourth solar cell string 22d via the cell end wiring member 28. In addition, the third transition wiring member 26c is also connected to the 5-1st solar cell 20ea of the fifth solar cell string 22e via another cell end wiring member 28. By these connections, the third transition wiring member 26c electrically connects the fourth solar cell string 22d and the fifth solar cell string 22e. Thus, the third crossover wiring member 26c extends in the x-axis direction while crossing the vicinity of the center of the solar cell module 100 in the x-axis direction. The third crossover wiring member 26c is also connected to the terminal box. The fourth crossover wiring member 26d and the fifth crossover wiring member 26e are arranged so as to be reversed in the x-axis direction with respect to the second crossover wiring member 26b and the first crossover wiring member 26a.
 第6渡り配線材26fから第9渡り配線材26iのそれぞれは、x軸方向に延びて、セル端配線材28を介して互いに隣接する2つの太陽電池ストリング22に電気的に接続される。例えば、第6渡り配線材26fは、第1太陽電池ストリング22aにおける第1-12太陽電池セル20alと、第2太陽電池ストリング22bにおける第2-12太陽電池セル20blとに接続される。これらのような渡り配線材26を使用することによって、第1太陽電池ストリング22aから第8太陽電池ストリング22hは、電気的に直列に接続される。 Each of the sixth crossover wiring 26f to the ninth crossover wiring 26i extends in the x-axis direction, and is electrically connected to the two adjacent solar cell strings 22 via the cell end wiring 28. For example, the sixth transition wiring member 26f is connected to the (1-12) solar cells 20al of the first solar cell string 22a and the 2-12th solar cells 20bl of the second solar cell string 22b. By using such transition wiring members 26, the first solar cell string 22a to the eighth solar cell string 22h are electrically connected in series.
 図2(b)に示されるように、第2非発電領域32には、第6渡り配線材26fから第9渡り配線材26iがx軸方向に並んで配置されるので、これらをy軸方向から見ると、1列の渡り配線材26のみが配置される。一方、図2(a)に示されるように、第1非発電領域30において、複数の太陽電池セル20の最も近くに第3渡り配線材26cが配置される。また、それのy軸の正方向側に第2渡り配線材26b、第4セル間配線材24dが配置され、それらのy軸の正方向側に第1渡り配線材26a、第5渡り配線材26eが配置される。これらをy軸方向から見ると、3列の渡り配線材26が並べられる。そのため、第2非発電領域32における渡り配線材26の列数は、第1非発電領域30における渡り配線材26の列数よりも小さい。これによって、第2端縁116bと第6渡り配線材26f等との間の距離は、第1端縁116aと第3渡り配線材26cとの間の距離よりも短くなる。前者は、第2非発電領域32のうちの第2端縁116bから最も離れた渡り配線材26と、第2端縁116bとの間の距離を示し、後者は、第1非発電領域30のうちの第1端縁116aから最も離れた渡り配線材26と、第1端縁116aとの間の距離を示す。なお、第2非発電領域32における渡り配線材26の列数と、第1非発電領域30における渡り配線材26の列数は、「1」と「3」に限定されない。 As shown in FIG. 2B, in the second non-power generation region 32, the sixth connection wiring member 26f to the ninth connection wiring member 26i are arranged side by side in the x-axis direction. From the point of view, only one row of crossover wiring members 26 is disposed. On the other hand, as shown in FIG. 2A, in the first non-power generation region 30, the third crossover wiring member 26c is disposed closest to the plurality of solar cells 20. Further, the second crossover wiring member 26b and the fourth inter-cell wiring member 24d are disposed on the positive direction side of the y axis thereof, and the first crossover wiring member 26a and the fifth crossover wiring member are arranged on the positive direction side of the y axis thereof. 26e is placed. When these are viewed in the y-axis direction, three rows of connecting members 26 are arranged. Therefore, the number of rows of the crossover wiring members 26 in the second non-power generation region 32 is smaller than the number of rows of the crossover wiring members 26 in the first non-power generation region 30. As a result, the distance between the second end 116b and the sixth connecting member 26f is shorter than the distance between the first end 116a and the third connecting member 26c. The former indicates the distance between the crossover wiring member 26 farthest from the second edge 116 b of the second non-power generation region 32 and the second edge 116 b, and the latter indicates the distance of the first non-power generation region 30. The distance between the interconnect material 26 farthest from the first end edge 116a thereof and the first end edge 116a is shown. The number of rows of the crossover wiring members 26 in the second non-power generation region 32 and the number of rows of the crossover wiring members 26 in the first non-power generation region 30 are not limited to “1” and “3”.
 太陽電池パネル110は、第1端縁116a、第2端縁116b、第3端縁116c、第4端縁116dと総称される4つの端縁116に囲まれる。太陽電池パネル110のy軸方向の両端の第1端縁116aと第2端縁116bには、x軸方向に延びる短フレーム10が取り付けられる。太陽電池パネル110のx軸方向の両端の第3端縁116cと第4端縁116dには、y軸方向に延びる長フレーム12が取り付けられる。隣接した短フレーム10と長フレーム12は互いに連結されることによって、2つの短フレーム10と2つの長フレーム12は、太陽電池パネル110を囲むような枠形状に配置される。短フレーム10と長フレーム12は、太陽電池パネル110を保護するために、例えば、アルミニウム、あるいはアルミニウム合金で形成される。短フレーム10と長フレーム12の構造は後述する。 The solar cell panel 110 is surrounded by four edges 116 generally referred to as a first edge 116 a, a second edge 116 b, a third edge 116 c, and a fourth edge 116 d. A short frame 10 extending in the x-axis direction is attached to the first edge 116 a and the second edge 116 b at both ends of the solar cell panel 110 in the y-axis direction. A long frame 12 extending in the y-axis direction is attached to the third edge 116c and the fourth edge 116d at both ends of the solar cell panel 110 in the x-axis direction. The adjacent short frame 10 and the long frame 12 are connected to each other, so that the two short frames 10 and the two long frames 12 are arranged in a frame shape surrounding the solar cell panel 110. The short frame 10 and the long frame 12 are formed of, for example, aluminum or an aluminum alloy in order to protect the solar cell panel 110. The structures of the short frame 10 and the long frame 12 will be described later.
 図3は、太陽電池モジュール100の構造を示す断面図であり、図1のA-A’断面図である。太陽電池モジュール100は、第1短フレーム10a、第2短フレーム10b、端子ボックス14、太陽電池パネル110を含む。太陽電池パネル110は、太陽電池セル20と総称される第4-1太陽電池セル20da、第4-2太陽電池セル20db、第4-12太陽電池セル20dl、セル間配線材24、第1渡り配線材26a、第2渡り配線材26b、第3渡り配線材26c、第7渡り配線材26g、セル端配線材28、保護部材40と総称される第1保護部材40a、第2保護部材40b、封止部材42を含む。図3の上側が受光面側に相当し、下側が裏面側に相当する。 FIG. 3 is a cross-sectional view showing the structure of the solar cell module 100, and is a cross-sectional view taken along the line A-A 'of FIG. The solar cell module 100 includes a first short frame 10 a, a second short frame 10 b, a terminal box 14, and a solar cell panel 110. The solar cell panel 110 is generally referred to as solar cell 20. The fourth solar cell 20da, the fourth solar cell 20db, the fourth 4-12 solar cell 20dl, the inter-cell wiring member 24, the first crossover Wiring member 26a, second crossover wiring member 26b, third crossover wiring member 26c, seventh crossover wiring member 26g, cell end wiring member 28, first protective member 40a collectively referred to as protective member 40, second protective member 40b, A sealing member 42 is included. The upper side of FIG. 3 corresponds to the light receiving surface side, and the lower side corresponds to the back surface side.
 第1保護部材40aは、太陽電池パネル110の受光面側に配置されており、太陽電池パネル110の表面を保護する。第1保護部材40aには、透光性および遮水性を有するガラス、透光性プラスチック等が使用され、矩形板状に形成される。ここでは、一例としてガラスが使用されるとする。封止部材42は、第1保護部材40aの裏面側に積層される。封止部材42は、第1保護部材40aと後述の第2保護部材40bとの間に配置されて、これらを接着する。また、封止部材42は、複数の太陽電池セル20、セル間配線材24等を封止する。 The first protective member 40 a is disposed on the light receiving surface side of the solar cell panel 110 and protects the surface of the solar cell panel 110. For the first protective member 40a, glass having a light transmitting property and a water shielding property, a light transmitting plastic, or the like is used, and is formed in a rectangular plate shape. Here, it is assumed that glass is used as an example. The sealing member 42 is stacked on the back surface side of the first protection member 40 a. The sealing member 42 is disposed between the first protective member 40 a and a second protective member 40 b described later to bond them. In addition, the sealing member 42 seals the plurality of solar cells 20, the inter-cell wiring member 24, and the like.
 封止部材42として、例えば、ポリオレフィン、EVA(エチレン酢酸ビニル共重合体)、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、熱硬化性樹脂が使用されてもよい。封止部材42は、透光性を有するとともに、第1保護部材40aにおけるx-y平面と略同一寸法の面を有する矩形状のシート材によって形成される。 As the sealing member 42, for example, a thermoplastic resin such as a resin film such as polyolefin, EVA (ethylene-vinyl acetate copolymer), PVB (polyvinyl butyral), or polyimide is used. In addition, thermosetting resin may be used. The sealing member 42 is formed of a rectangular sheet material having translucency and having a surface substantially the same size as the xy plane of the first protective member 40a.
 第2保護部材40bは、封止部材42の裏面側に積層される。第2保護部材40bは、バックシートとして太陽電池パネル110の裏面側を保護する。第2保護部材40bとしては、例えば、PET(ポリエチレンテレフタラート)等の樹脂フィルムが使用される。なお、第2保護部材40bとして、Al箔を樹脂フィルムで挟んだ構造を有する積層フィルムなどが使用されてもよく、ガラスが使用されてもよい。 The second protective member 40 b is stacked on the back surface side of the sealing member 42. The second protective member 40 b protects the back side of the solar cell panel 110 as a back sheet. As the 2nd protection member 40b, resin films, such as PET (polyethylene terephthalate), are used, for example. In addition, the laminated film etc. which have a structure which pinched | interposed Al foil with the resin film may be used as the 2nd protection member 40b, and glass may be used.
 太陽電池パネル110の裏面側には、端子ボックス14が配置される。また、端子ボックス14には、図示しない2本のケーブルのそれぞれの一端側が接続され、2本のケーブルのそれぞれの他端側には、コネクタが接続される。端子ボックス14、ケーブル、コネクタは、太陽電池パネル110に電気的に接続され、太陽電池パネルから電力を取り出す。 A terminal box 14 is disposed on the back side of the solar cell panel 110. Further, one end side of each of two cables (not shown) is connected to the terminal box 14, and a connector is connected to the other end side of each of the two cables. The terminal box 14, the cable, and the connector are electrically connected to the solar cell panel 110 and draw power from the solar cell panel.
 第1短フレーム10a、第2短フレーム10bを総称する短フレーム10は、嵌合部50、本体部52、下鍔部54を含む。嵌合部50は、上鍔部56を含み、本体部52は、天面部58、中空部60、底面部62、下段面部64を含む。ここで、嵌合部50、本体部52、下鍔部54は、押出成形によって一体的に形成される。以下では、第1短フレーム10aの構造を説明してから、第2短フレーム10bの構造を説明する。第1短フレーム10aは、第1渡り配線材26aから第5渡り配線材26eが配置される側の太陽電池パネル110の第1端縁116aに取り付けられる。 The short frame 10, which collectively refers to the first short frame 10a and the second short frame 10b, includes a fitting portion 50, a main body portion 52, and a lower collar portion 54. The fitting portion 50 includes the upper collar portion 56, and the main body portion 52 includes the top surface portion 58, the hollow portion 60, the bottom surface portion 62, and the lower surface portion 64. Here, the fitting portion 50, the main body portion 52, and the lower collar portion 54 are integrally formed by extrusion molding. Hereinafter, the structure of the first short frame 10a will be described, and then the structure of the second short frame 10b will be described. The first short frame 10a is attached to the first edge 116a of the solar cell panel 110 on the side where the first transition wiring member 26a to the fifth transition wiring member 26e are disposed.
 嵌合部50は、後述の本体部52の受光面側に配置され、本体部52の天面部58と組み合わされることによって、y軸の正方向側に窪んだ断面、つまり凹形の断面を有する。このような形状によって、嵌合部50には、y軸の負方向側から太陽電池パネル110の第1端縁116aが嵌め込まれ、太陽電池パネル110の受光面112と裏面114とが挟み込まれる。なお、嵌合部50および天面部58と、太陽電池パネル110とは、ブチル系の封止材またはシリコン系の接着剤などによって固定される。 The fitting portion 50 is disposed on the light receiving surface side of the main body portion 52 described later and combined with the top surface portion 58 of the main body portion 52 to have a cross section depressed in the positive direction side of the y axis, that is, a concave cross section. . With such a shape, the first end 116a of the solar cell panel 110 is fitted into the fitting portion 50 from the negative direction side of the y axis, and the light receiving surface 112 and the back surface 114 of the solar cell panel 110 are sandwiched. The fitting portion 50 and the top surface portion 58 and the solar cell panel 110 are fixed by a butyl-based sealing material or a silicon-based adhesive.
 ここで、嵌合部50における凹形の断面を形成する2つの張出のうち、受光面側の張出が上鍔部56であり、裏面側の張出が天面部58である。上鍔部56は、嵌合部50のy軸の正方向側端から、第3渡り配線材26cと第4-1太陽電池セル20daの間まで、y軸の負方向側に延びる。つまり、上鍔部56は、太陽電池パネル110の第1渡り配線材26aから第5渡り配線材26eを受光面側から覆うとともに、太陽電池パネル110のセル端配線材28の少なくとも一部を受光面側から覆う形状を有する。一方、上鍔部56は、第4-1太陽電池セル20daを受光面側から覆わない形状を有する。 Here, among the two overhangs forming the concave cross section in the fitting portion 50, the overhang on the light receiving surface side is the upper collar portion 56, and the overhang on the back surface side is the top surface portion 58. The upper collar portion 56 extends in the negative direction side of the y-axis from the positive direction side end of the y-axis of the fitting portion 50 to the position between the third connecting member 26c and the fourth-1 solar cell 20da. That is, the upper collar portion 56 covers the first crossover wiring member 26 a to the fifth crossover wiring member 26 e of the solar cell panel 110 from the light receiving surface side, and receives at least a part of the cell end wiring member 28 of the solar cell panel 110. It has a shape that covers from the surface side. On the other hand, the upper ridge portion 56 has a shape that does not cover the four-first photovoltaic cell 20da from the light receiving surface side.
 一方、天面部58は、嵌合部50のy軸の正方向側端からy軸の負方向側に延びるが、第1渡り配線材26aに到達しない長さを有する。このような構造によって、太陽電池パネル110の第1渡り配線材26aから第5渡り配線材26eは、上鍔部56と天面部58によって挟まれない。これは、嵌合部50への水分の侵入による加水分解で保護部材40および封止部材42が劣化することによって絶縁性能が低下した場合に、第1渡り配線材26aから第5渡り配線材26eが天面部58に接触することを防止するためである。 On the other hand, the top surface portion 58 extends in the negative direction side of the y axis from the positive direction side end of the y axis of the fitting portion 50, but has a length that does not reach the first crossover wiring member 26a. With such a structure, the first crossover wiring member 26 a to the fifth crossover wiring member 26 e of the solar cell panel 110 are not sandwiched by the upper collar portion 56 and the top surface portion 58. This is because the first crossover wiring member 26 a to the fifth crossover wiring member 26 e are degraded when the insulation performance is lowered due to the deterioration of the protective member 40 and the sealing member 42 due to the hydrolysis by the moisture entering the fitting portion 50. Is to prevent the top surface portion 58 from contacting.
 本体部52は、嵌合部50の裏面側に配置される。本体部52の受光面側には、上鍔部56と対向するように天面部58が配置される。天面部58のy軸の負方向側には、天面部58よりも裏面側に下段面部64が配置される。下段面部64は、z軸方向において第1渡り配線材26aに対向するが、太陽電池パネル110の第2保護部材40bとはz軸方向に離間する。そのため、前述の加水分解による影響が低減される。また、本体部52は、天面部58から裏面側に延びるとともに、中空構造によって中空部60を備える。本体部52の裏面側には底面部62が配置される。底面部62には、y軸の負方向側に延びる下鍔部54が配置される The main body portion 52 is disposed on the back side of the fitting portion 50. A top surface portion 58 is disposed on the light receiving surface side of the main body portion 52 so as to face the upper collar portion 56. The lower surface 64 is disposed on the back surface side of the top surface 58 on the negative side of the top surface 58 in the negative y-axis direction. The lower surface portion 64 faces the first crossover wiring member 26 a in the z-axis direction, but is separated from the second protective member 40 b of the solar cell panel 110 in the z-axis direction. Therefore, the influence of the aforementioned hydrolysis is reduced. Further, the main body portion 52 extends from the top surface portion 58 to the back surface side, and includes the hollow portion 60 with a hollow structure. A bottom surface 62 is disposed on the back surface side of the main body 52. In the bottom portion 62, a lower collar portion 54 extending in the negative direction of the y axis is disposed
 次に、第2短フレーム10bの構造を説明する。第2短フレーム10bは、第6渡り配線材26fから第9渡り配線材26iが配置される側の太陽電池パネル110の第2端縁116bに取り付けられる。第2短フレーム10bは、第1短フレーム10aに似た構造を有するので、ここでは差異を中心に説明する。なお、図3に示されるように、第2短フレーム10bは、第1短フレーム10aとy軸方向において反対を向く。第2短フレーム10bの上鍔部56は、嵌合部50のy軸の負方向側端から、第7渡り配線材26gと第4-12太陽電池セル20dlの間まで、y軸の正方向側に延びる。つまり、上鍔部56は、太陽電池パネル110の第6渡り配線材26fから第9渡り配線材26iを受光面側から覆うとともに、太陽電池パネル110のセル端配線材28の少なくとも一部を受光面側から覆う形状を有する。一方、上鍔部56は、第4-12太陽電池セル20dlを受光面側から覆わない形状を有する。ここで、y軸方向において、第2短フレーム10bにおける上鍔部56の長さは、第1短フレーム10aにおける上鍔部56の長さよりも短くされる。これは、前述のごとく、第2端縁116bから第6渡り配線材26f等までの距離は、第1端縁116aから第3渡り配線材26cまでの距離よりも短いからである。 Next, the structure of the second short frame 10b will be described. The second short frame 10b is attached to the second edge 116b of the solar cell panel 110 on the side where the sixth connection wiring member 26f to the ninth connection wiring member 26i are disposed. Since the second short frame 10b has a structure similar to the first short frame 10a, the difference will be mainly described here. As shown in FIG. 3, the second short frame 10 b faces the first short frame 10 a in the y-axis direction in the opposite direction. The upper ridge portion 56 of the second short frame 10 b extends from the negative side end of the fitting portion 50 in the y direction to the position between the seventh connecting member 26 g and the 4-12 solar cell 20 dl in the positive direction of the y axis Extend to the side. That is, the upper collar portion 56 covers the sixth transition wiring member 26f of the solar cell panel 110 to the ninth transition wiring member 26i from the light receiving surface side, and receives at least a part of the cell end wiring member 28 of the solar cell panel 110 It has a shape that covers from the surface side. On the other hand, the upper ridge portion 56 has a shape that does not cover the fourth to twelfth solar battery cells 20dl from the light receiving surface side. Here, in the y-axis direction, the length of the upper collar portion 56 in the second short frame 10b is shorter than the length of the upper collar portion 56 in the first short frame 10a. This is because, as described above, the distance from the second end 116b to the sixth connection wiring 26f and the like is shorter than the distance from the first end 116a to the third connection wiring 26c.
 ここでは、このような第1短フレーム10a、第2短フレーム10bと比較しながら、長フレーム12の構造を説明する。図4(a)-(c)は、図1の第1長フレーム12a、第1短フレーム10a、第2短フレーム10bの構造を示す。図4(a)は第1長フレーム12aを示すが、第2長フレーム12bも同様の構造を有する。また、図4(b)は第1短フレーム10aを示し、図4(c)は第2短フレーム10bを示すが、これらは図3と同一である。 Here, the structure of the long frame 12 will be described in comparison with such a first short frame 10a and a second short frame 10b. 4 (a) to 4 (c) show the structures of the first long frame 12a, the first short frame 10a, and the second short frame 10b of FIG. FIG. 4A shows the first long frame 12a, but the second long frame 12b has a similar structure. 4 (b) shows the first short frame 10a, and FIG. 4 (c) shows the second short frame 10b, which are identical to FIG.
 図1、図2(a)-(b)に示されるように、第1長フレーム12aは、渡り配線材26が配置されていない側の太陽電池パネル110の第3端縁116cに取り付けられる。第1長フレーム12aにおける嵌合部70、本体部72、下鍔部74、上鍔部76、天面部78、中空部80、底面部82、下段面部84は、短フレーム10における嵌合部50、本体部52、下鍔部54、上鍔部56、天面部58、中空部60、底面部62、下段面部64に対応する。第1長フレーム12aの上鍔部76は、太陽電池パネル110を受光面側から覆う。一方、第1長フレーム12aの上鍔部76は、第1太陽電池ストリング22aを受光面側から覆わない。ここで、x軸方向における第1長フレーム12aの上鍔部76の長さは、y軸方向における短フレーム10の上鍔部56の長さよりも短い。これは、第1長フレーム12aが取り付けられる第3端縁116cには、渡り配線材26が配置されていないからである。なお、端子ボックス14は、短フレーム10の上鍔部56、長フレーム12の上鍔部76によって覆われる位置とは別の位置に配置される。 As shown in FIGS. 1 and 2 (a)-(b), the first long frame 12a is attached to the third edge 116c of the solar cell panel 110 on which the transition wiring member 26 is not disposed. The fitting portion 70, the main body portion 72, the lower collar portion 74, the upper collar portion 76, the top surface portion 78, the hollow portion 80, the bottom portion 82 and the lower surface portion 84 in the first long frame 12a The main body 52, the lower collar 54, the upper collar 56, the top surface 58, the hollow 60, the bottom 62, and the lower surface 64 correspond to each other. The upper ridge portion 76 of the first long frame 12 a covers the solar cell panel 110 from the light receiving surface side. On the other hand, the upper ridge portion 76 of the first long frame 12a does not cover the first solar cell string 22a from the light receiving surface side. Here, the length of the upper collar portion 76 of the first long frame 12 a in the x-axis direction is shorter than the length of the upper collar portion 56 of the short frame 10 in the y-axis direction. This is because the crossover wiring member 26 is not disposed at the third end 116c to which the first long frame 12a is attached. The terminal box 14 is disposed at a position different from the position covered by the upper collar portion 56 of the short frame 10 and the upper collar portion 76 of the long frame 12.
 図5は、太陽電池モジュール100の構造を示す別の断面図であり、図1のA-A’断面図である。ここでは、図3と比較して第1短フレーム10aの本体部52と、第2短フレーム10bの本体部52の形状が異なる。本体部52は、矩形状の断面を有し、中空部60を備える。 FIG. 5 is another cross-sectional view showing the structure of the solar cell module 100, and is a cross-sectional view taken along the line A-A 'of FIG. Here, the shapes of the main body portion 52 of the first short frame 10a and the main body portion 52 of the second short frame 10b are different compared to FIG. The main body 52 has a rectangular cross section, and includes a hollow portion 60.
 本発明の実施例によれば、上鍔部56が太陽電池パネル110の渡り配線材26を受光面側から覆うので、太陽電池モジュール100を受光面側から見た場合に渡り配線材26を目立たなくできる。また、太陽電池モジュール100を受光面側から見た場合に渡り配線材26が目立たなくなるので、太陽電池モジュール100の意匠性の低下を抑制できる。また、第2短フレーム10bにおける上鍔部56の長さを、第1短フレーム10aにおける上鍔部56の長さよりも短くするので、渡り配線材26の配置に応じて渡り配線材26を隠すことができる。また、第2短フレーム10bにおける上鍔部56の長さを、第1短フレーム10aにおける上鍔部56の長さよりも短くするので、太陽電池セル20を隠すことを防止できる。また、長フレーム12における上鍔部76の長さを、短フレーム10における上鍔部56の長さよりも短くするので、太陽電池セル20を隠すことを防止できる。 According to the embodiment of the present invention, since the upper collar portion 56 covers the crossover wiring member 26 of the solar cell panel 110 from the light receiving surface side, the crossover wiring member 26 is noticeable when the solar cell module 100 is viewed from the light receiving surface side. It can be lost. Further, when the solar cell module 100 is viewed from the light receiving surface side, the wiring member 26 does not stand out, so that it is possible to suppress a decrease in design of the solar cell module 100. In addition, since the length of the upper collar portion 56 in the second short frame 10b is shorter than the length of the upper collar portion 56 in the first short frame 10a, the crossover wiring member 26 is hidden according to the layout of the crossover wiring member 26. be able to. In addition, since the length of the upper collar portion 56 in the second short frame 10b is shorter than the length of the upper collar portion 56 in the first short frame 10a, it is possible to prevent the solar battery cell 20 from being hidden. Further, since the length of the upper ridge portion 76 in the long frame 12 is shorter than the length of the upper ridge portion 56 in the short frame 10, it is possible to prevent the solar battery cell 20 from being hidden.
 また、短フレーム10の上鍔部56、長フレーム12の上鍔部76によって覆われる位置とは別の位置に端子ボックス14を配置するので、短フレーム10および長フレーム12から離して端子ボックス14を配置できる。また、短フレーム10の上鍔部56が、太陽電池パネル110のセル端配線材28の少なくとも一部を受光面側から覆うので、太陽電池モジュール100を受光面側から見た場合にセル端配線材28を目立たなくできる。また、太陽電池モジュール100を受光面側から見た場合にセル端配線材28が目立たなくなるので、太陽電池モジュール100の意匠性の低下を抑制できる。また、太陽電池パネル110の渡り配線材26に非到達であるように天面部58が配置されるので、加水分解が生じた場合においても絶縁性を確保できる。 Further, since the terminal box 14 is disposed at a position different from the position covered by the upper collar portion 56 of the short frame 10 and the upper collar portion 76 of the long frame 12, the terminal box 14 is separated from the short frame 10 and the long frame 12. Can be placed. In addition, since the upper collar portion 56 of the short frame 10 covers at least a part of the cell end wiring member 28 of the solar cell panel 110 from the light receiving surface side, the cell end wiring when the solar cell module 100 is viewed from the light receiving surface side The material 28 can be made inconspicuous. In addition, since the cell end wiring member 28 becomes inconspicuous when the solar cell module 100 is viewed from the light receiving surface side, it is possible to suppress a decrease in design of the solar cell module 100. In addition, since the top surface portion 58 is disposed so as not to reach the crossover wiring member 26 of the solar cell panel 110, insulation can be ensured even when hydrolysis occurs.
 本実施例の概要は、次の通りである。本発明のある態様の太陽電池モジュール100は、複数の太陽電池ストリング22が並べて配置されるとともに、複数の太陽電池ストリング22の一端側において、複数の太陽電池ストリング22を並べた方向に延びる渡り配線材26が配置される太陽電池パネル110と、渡り配線材26が配置される側の太陽電池パネル110の端縁116に取り付けられる短フレーム10とを備える。短フレーム10は、太陽電池パネル110の渡り配線材26を受光面側から覆う上鍔部56を有する。 The outline of this embodiment is as follows. The solar cell module 100 according to an aspect of the present invention has a plurality of solar cell strings 22 arranged side by side, and at one end of the plurality of solar cell strings 22, a crossover wiring extending in the direction in which the plurality of solar cell strings 22 are arranged. The solar cell panel 110 on which the material 26 is disposed, and the short frame 10 attached to the edge 116 of the solar cell panel 110 on the side on which the crossover wiring material 26 is disposed. The short frame 10 has an upper collar portion 56 that covers the crossover wiring member 26 of the solar cell panel 110 from the light receiving surface side.
 太陽電池パネル110には、複数の太陽電池ストリング22の一端側の太陽電池セル20と渡り配線材26とを接続するセル端配線材28が配置され、短フレーム10の上鍔部56は、太陽電池パネル110のセル端配線材28の少なくとも一部を受光面側から覆ってもよい。 In the solar cell panel 110, a cell end wiring member 28 for connecting the solar cells 20 on one end side of the plurality of solar cell strings 22 and the crossover wiring member 26 is disposed, and the upper ridge portion 56 of the short frame 10 At least a part of the cell end wiring member 28 of the battery panel 110 may be covered from the light receiving surface side.
 短フレーム10の上鍔部56は、複数の太陽電池ストリング22の一端側の太陽電池セル20を受光面側から覆わなくてもよい。 The upper ridge portion 56 of the short frame 10 may not cover the solar cells 20 on one end side of the plurality of solar cell strings 22 from the light receiving surface side.
 太陽電池パネル110では、複数の太陽電池ストリング22の他端側においても、複数の太陽電池ストリング22を並べた方向に延びる別の渡り配線材26が配置される。太陽電池パネル110において、別の渡り配線材26が配置される側の別の端縁116と、当該別の端縁116から最も離れた別の渡り配線材26との間の距離は、渡り配線材26が配置される側の端縁116と、当該端縁116から最も離れた渡り配線材26との間の距離と異なり、太陽電池モジュール100は、別の渡り配線材26が配置される側の太陽電池パネル110の別の端縁116に取り付けられる別の短フレーム10をさらに備えてもよい。別の短フレーム10は、太陽電池パネル110の別の渡り配線材26を受光面側から覆う上鍔部56を有してもよい。別の短フレーム10において、太陽電池パネル110の別の端縁116から別の渡り配線材26に向かう方向への上鍔部56の長さは、短フレーム10において、太陽電池パネル110の端縁116から渡り配線材26に向かう方向への上鍔部56の長さと異なってもよい。 In the solar cell panel 110, another crossover wiring member 26 extending in the direction in which the plurality of solar cell strings 22 are arranged is also arranged on the other end side of the plurality of solar cell strings 22. In the solar cell panel 110, the distance between the other edge 116 on the side on which the other crossover wiring material 26 is disposed and the other crossover wiring material 26 farthest from the other edge 116 is the crossover wiring Unlike the distance between the edge 116 on the side where the material 26 is disposed and the crossover wiring material 26 farthest from the edge 116, the solar cell module 100 is disposed on the side on which the other crossover wiring material 26 is disposed. It may further comprise another short frame 10 attached to another edge 116 of the solar cell panel 110 of FIG. Another short frame 10 may have an upper collar portion 56 that covers another crossover wiring member 26 of the solar cell panel 110 from the light receiving surface side. In the other short frame 10, the length of the upper collar portion 56 in the direction from the other edge 116 of the solar cell panel 110 to the other transition wiring member 26 is the edge of the solar cell panel 110 in the short frame 10. It may be different from the length of the upper collar portion 56 in the direction from the wiring 116 to the crossover wiring member 26.
 渡り配線材26および別の渡り配線材26が非配置である側の太陽電池パネル110のさらに別の端縁116に取り付けられる長フレーム12をさらに備えてもよい。長フレーム12は、太陽電池パネル110を受光面側から覆う上鍔部76を有してもよい。長フレーム12において、太陽電池パネル110のさらに別の端縁116から太陽電池ストリング22に向かう方向への上鍔部76の長さは、短フレーム10および別の短フレーム10において、太陽電池パネル110の端縁116あるいは別の端縁116から渡り配線材26あるいは別の渡り配線材26に向かう方向への上鍔部56の長さよりも短い。 It may further include a long frame 12 attached to the other edge 116 of the solar cell panel 110 on the side where the crossover wiring 26 and the other crossover wiring 26 are not disposed. The long frame 12 may have an upper collar portion 76 that covers the solar cell panel 110 from the light receiving surface side. In the long frame 12, the length of the upper ridge portion 76 in the direction from the other edge 116 of the solar cell panel 110 toward the solar cell string 22 is the solar cell panel 110 in the short frame 10 and the other short frame 10. The length of the upper ridge portion 56 in the direction from the end edge 116 or the other end edge 116 to the crossover wiring member 26 or the other crossover wiring member 26 is shorter.
 太陽電池パネル110の裏面側に配置される端子ボックス14をさらに備えてもよい。端子ボックス14は、短フレーム10の上鍔部56、別の短フレーム10の上鍔部56、長フレーム12の上鍔部76によって覆われる位置とは別の位置に配置されてもよい。 It may further include a terminal box 14 disposed on the back side of the solar cell panel 110. The terminal box 14 may be disposed at a position different from the position covered by the upper hook portion 56 of the short frame 10, the upper hook portion 56 of another short frame 10, and the upper hook portion 76 of the long frame 12.
 短フレーム10は、太陽電池パネル110の受光面側と裏面側とを挟み込む嵌合部50を備えてもよい。嵌合部50における受光面側の張出が上鍔部56であり、嵌合部50における裏面側の張出は、太陽電池パネル110の渡り配線材26に非到達であってもよい。 The short frame 10 may include a fitting portion 50 that sandwiches the light receiving surface side and the back surface side of the solar cell panel 110. The overhang on the light receiving surface side of the fitting portion 50 may be the upper collar portion 56, and the overhang on the back surface side of the fitting portion 50 may not reach the crossover wiring member 26 of the solar cell panel 110.
 以上、本発明について実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. It is understood by those skilled in the art that this embodiment is an exemplification, and that various modifications can be made to their respective components or combinations of processing processes, and such modifications are also within the scope of the present invention. .
 10 短フレーム(フレーム、別のフレーム)、 12 長フレーム(さらに別のフレーム)、 14 端子ボックス、 20 太陽電池セル、 22 太陽電池ストリング、 24 セル間配線材、 26 渡り配線材(配線材)、 28 セル端配線材、 40 保護部材、 42 封止部材、 50 嵌合部、 52 本体部、 54 下鍔部、 56 上鍔部(鍔部)、 58 天面部、 60 中空部、 62 底面部、 64 下段面部、 70 嵌合部、 72 本体部、 74 下鍔部、 76 上鍔部(鍔部)、 100 太陽電池モジュール、 110 太陽電池パネル、 116 端縁。 10 short frame (frame, another frame), 12 long frame (still another frame), 14 terminal box, 20 solar cells, 22 solar cell strings, 24 inter-cell wiring material, 26 crossover wiring material (wiring material), 28 cell end wiring material, 40 protective members, 42 sealing members, 50 fitting parts, 52 main body parts, 54 lower collar parts, 56 upper collar parts (barbed parts), 58 top surface parts, 60 hollow parts, 62 bottom parts, 64 lower surface part, 70 fitting part, 72 main body part, 74 lower ridge part, 76 upper ridge part (hatched part), 100 solar cell module, 110 solar cell panel, 116 edge.
 本発明によれば、太陽電池モジュールの意匠性の低下を抑制できる。 ADVANTAGE OF THE INVENTION According to this invention, the fall of the designability of a solar cell module can be suppressed.

Claims (7)

  1.  複数の太陽電池ストリングが並べて配置されるとともに、前記複数の太陽電池ストリングの一端側において、前記複数の太陽電池ストリングを並べた方向に延びる配線材が配置される太陽電池パネルと、
     前記配線材が配置される側の前記太陽電池パネルの端縁に取り付けられるフレームとを備え、
     前記フレームは、前記太陽電池パネルの前記配線材を受光面側から覆う鍔部を有することを特徴とする太陽電池モジュール。
    A solar cell panel in which a plurality of solar cell strings are arranged side by side, and a wiring member extending in a direction in which the plurality of solar cell strings are arranged is arranged on one end side of the plurality of solar cell strings;
    And a frame attached to an edge of the solar cell panel on the side where the wiring material is disposed,
    The solar cell module, wherein the frame has a ridge portion covering the wiring member of the solar cell panel from the light receiving surface side.
  2.  前記太陽電池パネルには、前記複数の太陽電池ストリングの一端側の太陽電池セルと前記配線材とを接続するセル端配線材が配置され、
     前記フレームの前記鍔部は、前記太陽電池パネルの前記セル端配線材の少なくとも一部を受光面側から覆うことを特徴とする請求項1に記載の太陽電池モジュール。
    In the solar cell panel, a cell end wiring member for connecting the solar cells on one end side of the plurality of solar cell strings and the wiring member is disposed.
    The solar cell module according to claim 1, wherein the ridge portion of the frame covers at least a part of the cell end wiring member of the solar cell panel from a light receiving surface side.
  3.  前記フレームの前記鍔部は、前記複数の太陽電池ストリングの一端側の太陽電池セルを受光面側から覆わないことを特徴とする請求項1または2に記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein the ridge portion of the frame does not cover the solar cells on one end side of the plurality of solar cell strings from the light receiving surface side.
  4.  前記太陽電池パネルでは、前記複数の太陽電池ストリングの他端側においても、前記複数の太陽電池ストリングを並べた方向に延びる別の配線材が配置され、
     前記太陽電池パネルにおいて、前記別の配線材が配置される側の別の端縁と、当該別の端縁から最も離れた前記別の配線材との間の距離は、前記配線材が配置される側の端縁と、当該端縁から最も離れた前記配線材との間の距離と異なり、
     本太陽電池モジュールは、前記別の配線材が配置される側の前記太陽電池パネルの別の端縁に取り付けられる別のフレームをさらに備え、
     前記別のフレームは、前記太陽電池パネルの前記別の配線材を受光面側から覆う鍔部を有し、
     前記別のフレームにおいて、前記太陽電池パネルの別の端縁から前記別の配線材に向かう方向への前記鍔部の長さは、前記フレームにおいて、前記太陽電池パネルの端縁から前記配線材に向かう方向への前記鍔部の長さと異なることを特徴とする請求項1から3のいずれか1項に記載の太陽電池モジュール。
    In the solar cell panel, another wiring member extending in the direction in which the plurality of solar cell strings are arranged is disposed also on the other end side of the plurality of solar cell strings,
    In the solar cell panel, the wiring material is disposed at a distance between the other edge on the side where the other wiring material is disposed and the other wiring material farthest from the other edge. Different from the distance between the edge on the side and the wiring material farthest from the edge,
    The solar cell module further comprises another frame attached to another edge of the solar cell panel on the side where the other wiring member is disposed,
    The another frame has a ridge portion covering the other wiring member of the solar cell panel from the light receiving surface side,
    In the other frame, the length of the ridge in the direction from the other edge of the solar cell panel to the other wiring member is the same as the distance from the edge of the solar cell panel to the wiring material in the frame The solar cell module according to any one of claims 1 to 3, which is different from the length of the ridge in the heading direction.
  5.  前記配線材および前記別の配線材が非配置である側の前記太陽電池パネルのさらに別の端縁に取り付けられるさらに別のフレームをさらに備え、
     前記さらに別のフレームは、前記太陽電池パネルを受光面側から覆う鍔部を有し、
     前記さらに別のフレームにおいて、前記太陽電池パネルのさらに別の端縁から太陽電池ストリングに向かう方向への前記鍔部の長さは、前記フレームおよび前記別のフレームにおいて、前記太陽電池パネルの端縁あるいは別の端縁から前記配線材あるいは前記別の配線材に向かう方向への前記鍔部の長さよりも短いことを特徴とする請求項4に記載の太陽電池モジュール。
    It further comprises a further frame attached to the other edge of the solar cell panel on the side where the wiring material and the other wiring material are not disposed,
    The still another frame has a ridge portion covering the solar cell panel from the light receiving surface side,
    In the still another frame, the length of the ridge in the direction from the still another edge of the solar panel to the solar cell string is the edge of the solar panel in the frame and the further frame Alternatively, the solar cell module according to claim 4, characterized in that the length of the ridge portion in the direction from the other edge toward the wiring material or the other wiring material is shorter.
  6.  前記太陽電池パネルの裏面側に配置される端子ボックスをさらに備え、
     前記端子ボックスは、前記フレームの前記鍔部、前記別のフレームの前記鍔部、前記さらに別のフレームの前記鍔部によって覆われる位置とは別の位置に配置されることを特徴とする請求項5に記載の太陽電池モジュール。
    It further comprises a terminal box disposed on the back side of the solar cell panel,
    The terminal box is disposed at a position different from the position covered by the ridges of the frame, the ridges of the another frame, and the ridges of the further frame. The solar cell module according to 5.
  7.  前記フレームは、前記太陽電池パネルの受光面側と裏面側とを挟み込む嵌合部を備え、
     前記嵌合部における受光面側の張出が前記鍔部であり、前記嵌合部における裏面側の張出は、前記太陽電池パネルの前記配線材に非到達であることを特徴とする請求項1に記載の太陽電池モジュール。
    The frame includes a fitting portion sandwiching the light receiving surface side and the back surface side of the solar cell panel,
    An overhang on the light receiving surface side in the fitting portion is the ridge portion, and an overhang on the back surface side in the fitting portion is not reaching the wiring member of the solar cell panel. The solar cell module according to 1.
PCT/JP2017/036129 2017-10-04 2017-10-04 Solar cell module WO2019069396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036129 WO2019069396A1 (en) 2017-10-04 2017-10-04 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036129 WO2019069396A1 (en) 2017-10-04 2017-10-04 Solar cell module

Publications (1)

Publication Number Publication Date
WO2019069396A1 true WO2019069396A1 (en) 2019-04-11

Family

ID=65995312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036129 WO2019069396A1 (en) 2017-10-04 2017-10-04 Solar cell module

Country Status (1)

Country Link
WO (1) WO2019069396A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345990A (en) * 1998-06-02 1999-12-14 Sanyo Electric Co Ltd Solar battery module
JP2009246208A (en) * 2008-03-31 2009-10-22 Kyocera Corp Solar cell module, and method for manufacturing the same
WO2012128342A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Solar cell panel, solar cell module and method for producing solar cell module
WO2012140236A2 (en) * 2011-04-14 2012-10-18 Asola Automotive Solar Deutschland Gmbh Component with solar cells for vehicle roofs and buildings
WO2014076952A1 (en) * 2012-11-14 2014-05-22 三洋電機株式会社 Solar cell module
JP2015002318A (en) * 2013-06-18 2015-01-05 三菱電機株式会社 Solar cell module and manufacturing method thereof
JP2016012724A (en) * 2014-06-26 2016-01-21 エルジー エレクトロニクス インコーポレイティド Solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345990A (en) * 1998-06-02 1999-12-14 Sanyo Electric Co Ltd Solar battery module
JP2009246208A (en) * 2008-03-31 2009-10-22 Kyocera Corp Solar cell module, and method for manufacturing the same
WO2012128342A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Solar cell panel, solar cell module and method for producing solar cell module
WO2012140236A2 (en) * 2011-04-14 2012-10-18 Asola Automotive Solar Deutschland Gmbh Component with solar cells for vehicle roofs and buildings
WO2014076952A1 (en) * 2012-11-14 2014-05-22 三洋電機株式会社 Solar cell module
JP2015002318A (en) * 2013-06-18 2015-01-05 三菱電機株式会社 Solar cell module and manufacturing method thereof
JP2016012724A (en) * 2014-06-26 2016-01-21 エルジー エレクトロニクス インコーポレイティド Solar cell module

Similar Documents

Publication Publication Date Title
US10439085B2 (en) Manufacturing method for solar cell module provided with multiple solar cells connected by tab lines and solar cell module manufactured by same
US8952240B2 (en) Solar cell module
WO2012176516A1 (en) Solar battery module
US20140130848A1 (en) Solar cell module
JP5598003B2 (en) Solar cell module
WO2014050087A1 (en) Solar cell module, and production method for solar cell module
WO2012014922A1 (en) Solar cell module
US10741711B2 (en) Solar cell module including plurality of solar cells
WO2018051658A1 (en) Solar cell module
US9369084B2 (en) Solar cell module
JP2017112175A (en) Solar cell module
TWI678067B (en) Half-cut solar cell module
WO2019069396A1 (en) Solar cell module
US20170148929A1 (en) Solar cell module
US11075312B2 (en) Solar cell module and method for manufacturing solar cell module
US20180097135A1 (en) Solar cell module and solar cell in which wiring member is connected to surface
WO2017154826A1 (en) Stand, solar cell module, and solar cell system
KR20190126515A (en) Solar cell module
EP3200239B1 (en) Solar cell module and method for manufacturing solar cell module
US20200168755A1 (en) Solar cell module including a plurality of solar cells
JP6624535B2 (en) Solar cell module
JP6761958B2 (en) Solar cell module and solar cell
JP2017135244A (en) Solar cell module and solar power generation system
JP2019102601A (en) Solar cell module and solar cell system
WO2014050078A1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP