WO2019066437A1 - Soluble modified respiratory syncytial virus (rsv) f protein antigen - Google Patents

Soluble modified respiratory syncytial virus (rsv) f protein antigen Download PDF

Info

Publication number
WO2019066437A1
WO2019066437A1 PCT/KR2018/011324 KR2018011324W WO2019066437A1 WO 2019066437 A1 WO2019066437 A1 WO 2019066437A1 KR 2018011324 W KR2018011324 W KR 2018011324W WO 2019066437 A1 WO2019066437 A1 WO 2019066437A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
rsv
amino acid
protein
protein antigen
Prior art date
Application number
PCT/KR2018/011324
Other languages
French (fr)
Korean (ko)
Inventor
김은솜
권태우
김학
서기원
이수진
김진설
김창신
함동수
김훈
Original Assignee
에스케이바이오사이언스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180113291A external-priority patent/KR20190038358A/en
Application filed by 에스케이바이오사이언스 주식회사 filed Critical 에스케이바이오사이언스 주식회사
Publication of WO2019066437A1 publication Critical patent/WO2019066437A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses

Definitions

  • the present invention relates to RSV protein antigens and / or RSV immunostimulatory compositions for the treatment and / or prevention of respiratory syncytial virus (RSV) infections. More particularly, the present invention relates to a soluble RSV F protein antigen, an RSV immunogenic composition comprising the same, a RSV vaccine, and a method for inducing RSV immunity using the same.
  • RSV respiratory syncytial virus
  • Respiratory syncytial virus is a worldwide prevalent virus that causes respiratory illnesses and is a major cause of serious respiratory infections in infants and young children. Nearly all infants (> 95%) are infected within 2 years of age. In the United States, infections cause infections close to 100% in 2-3 year-old infants, and there are hundreds of direct signs / indirect signs associated with RSV, Was reportedly dead. It is also known that infants are the main infections, but infect respiratory diseases of patients with weakened immune system and elderly people and cause fatal respiratory diseases. It is the second most common cause of respiratory illness after influenza, but the annual death rate from RSV per 100,000 children under 1 year of age is 1.3 to 2.5 times higher than that of influenza. In 2002, WHO reported that 64,000 people were infected with RSV every year, of which 160,000 died.
  • RSV is resistant to external environments such as telephone and door knockers, which survive for six hours on a hard surface, which makes it possible to continuously infect and spread rapidly, which is very likely to outbreak in hospitals and community settings .
  • Symptoms develop from about 4-6 days after exposure to RSV virus.
  • Symptoms such as fever, cough, and wheezing develop from about 3 days after the onset of the first symptom, starting with runny nose and anorexia.
  • Clinical manifestations range from relatively mild symptoms to otitis media, apnea of premature infants, asthma, pneumonia, and bronchiolitis.
  • RSV belongs to the order of Mononegavirales, Orthopneumovirus (genus) of Pneumoviridae (family). Viruses similar to RSV include measles virus, mumps virus causing parotitis, and parainfluenza types 1, 2, and 3.
  • RSV is a medium-sized virus of the order of 120-200 nm, and has a genome of linear, negative strand RNA consisting of about 15,000 nucleotides.
  • RSV is divided into serotypes A and B by G proteins.
  • the RSV genome encodes 10 proteins and is composed of non-structural proteins and structural proteins.
  • Nonstructural proteins are nonstructural (NS) 1, nonstructural (NS) 2, nucleocapsid (N), phosphoprotein (P) and viral polymerase (L).
  • NS nonstructural
  • N nucleocapsid
  • P phosphoprotein
  • L viral polymerase
  • matrix (M) protein, fusion (F) protein and glyco (G) protein form the envelope of the virus.
  • F protein and G protein form a spike.
  • RSV F protein is an important component that fuses with cell membrane at the early stage of virus entry and is known to be a major target of vaccine and antiviral drug due to its high antigenicity.
  • the F protein of RSV changes its structure from "pre-fusion" type to "post-fusion” type during entry into cells during the infection process.
  • the F protein consists of about 574 amino acids and can be divided into F2 (about 20 kDa) and F1 (about 50 kDa) subunits, where the total F protein is F0.
  • Subunit Furin cleavage between F2 and F1 is cleaved by F2 and F1 by furin protease.
  • furin cleavage recognizes the amino acid sequences of the two sites "RARR” and “KKRKRR", and Arginine (R) acts as an important core amino acid.
  • the F1 subunit is called the HRA (fusion domain) at the N-terminal side and the trans-membrane domain (HRB) at the C-terminal side. Two or more heptad in the HRA and HRB regions, It is confirmed that it forms. Fusion of the F protein and cell-virus fusion occurs when the hinge portion of the curved HRA is expanded. It has also been found that trimer formation is induced by purine cleavage with removal of the p27 portion.
  • RSV is widely prevalent in many parts of the world and is a particularly dangerous virus for infants and young children, but there is no vaccine available.
  • the soluble RSV F protein obtainable with the present invention can provide the immunogen that is required for this requirement.
  • the present invention is directed to providing recombinant soluble respiratory cell fusion virus (RSV) fusion (F) polypeptides.
  • RSV soluble respiratory cell fusion virus
  • F fusion
  • the soluble RSV F polypeptides of the present invention comprise at least one epitope specific for the RSV F protein.
  • the polypeptide is a modified form of the fusion peptide region.
  • the polypeptide comprises one or two or more amino acid modifications.
  • the present invention also relates to the use of a soluble RSV F polypeptide, a nucleic acid molecule and / or a composition for inducing immunogenicity, and its use in inducing an animal and human immunological response to a soluble RSV F protein, particularly its use as a vaccine .
  • the present invention also relates to a nucleic acid molecule encoding the RSV F polypeptide and / or a vector comprising the nucleic acid molecule and / or a polypeptide transcribed from the nucleic acid molecule in a specific context for use as a vaccine, ≪ / RTI >
  • the present invention relates to a method of inducing a neutralizing anti-respiratory cell fusion virus (RSV) F protein antibody in a subject, comprising the step of administering to the subject a nucleic acid molecule encoding the RSV F polypeptide, and / A vector comprising a nucleic acid molecule, and / or a polypeptide transcribed from a nucleic acid molecule.
  • RSV neutralizing anti-respiratory cell fusion virus
  • protein or " polypeptide " used herein refers to a collection of amino acids that are encoded and generated in a particular nucleic acid. Here, the aggregate means a unit consisting of two, three, four, or more amino acids.
  • protein or “ polypeptide " may be understood as meaning "antigen” or "immunogen”.
  • antigen refers to any substance that induces immunogenicity.
  • antigen includes macromolecular molecules composed of proteins or proteins.
  • a large protein refers to a large number of protein sequences and protein aggregates, including polymer antigens and virus-like particles (VLPs).
  • immunogenicity induction refers to both cellular immunity and humoral immunity.
  • antigen includes, for example, all and some foreign material that has penetrated into the body, and induction of cellular immunity by the term “ antigen " may mean generation of antigen-specific antibodies.
  • Antigen-specific antibodies include neutralizing antibodies that neutralize re-infiltrated foreign material.
  • mutated refers to any nucleic acid and / or polypeptide that forms a modified nucleic acid or polypeptide Lt; / RTI > Mutations may include, for example, point mutations, deletions or insertions of single or multiple residues in a polynucleotide, and include changes in the protein-coding region of the gene as well as changes in the protein, such as but not limited to control or promoter sequences - Contains changes in the outer region of the coding sequence.
  • the genetic change may be any form of mutation.
  • a mutation can constitute a point mutation, a frame-shifting mutation, an insertion or deletion of all or part of a gene.
  • the mutation occurs naturally.
  • the mutation is the result of an artificial mutation pressure.
  • the term " vaccine” refers to a preparation of an induced antigenic determinant used to induce the formation of antibodies or immunity against dead or weakened pathogen or pathogen. Vaccines are given to provide immunity against diseases caused by various kinds of viruses, for example, influenza and the like.
  • the term " vaccine” also refers to a suspension or solution of an immunogen (e. G., A modified or mutated RSV F protein) administered to a vertebrate animal to cause protective immunity, i. E. it means.
  • the present invention provides vaccine compositions that are immunogenic and capable of providing protection against diseases associated with infection.
  • mutations in RSV F proteins are the result of genetic engineering.
  • &Quot about “ includes all values that provide the same effect and result as a reference value. However, “ about “ gives meaning only to the reference value. Also, the scope encompassed by the term “ about “ may vary depending on the scope or characteristics of the content (reference value) in which the term is included. Thus, depending on the context, “ about “ means, for example, ⁇ 15%, ⁇ 10%, ⁇ 5%, ⁇ 4%, ⁇ 3%, ⁇ 2%, ⁇ 1%, or less than 1% .
  • the present invention provides recombinant RSV F proteins containing the amino acid sequence that has been modified compared to the wild-type RSV F protein.
  • the inventors of the present invention found that the modified RSV F proteins of the present invention increase expression of RSV F proteins and improve immunogenicity compared to wild type RSV F proteins.
  • the RSV F proteins are human RSV F proteins.
  • the recombinant respiratory syncytial virus (RSV) F protein antigen provides a RSV F protein antigen wherein the 525-574 position of the amino acid sequence of SEQ ID NO: 1 is deleted.
  • the RSV F protein antigen comprises SEQ ID NO: 2.
  • the RSV F protein antigen may further comprise at least one amino acid substitution at the fusion peptide position of the amino acid sequence of SEQ ID NO: 2.
  • the RSV F protein antigen may be substituted with a hydrophilic amino acid at amino acid positions 137-145 of SEQ ID NO: 2, and preferably the hydrophobic amino acid may be substituted with an amino acid " A ". That is, the RSV F protein antigen may be a RSV F protein antigen modified with AAGAAAGAG amino acid sequence FLGFLLGVG at amino acid sequence 137-145 of SEQ ID NO: 2.
  • the RSV F protein antigen may be substituted with a non-polar amino acid at one or more polar amino acids at amino acid positions 137-145 of SEQ ID NO: 2.
  • the RSV F protein antigen may be an RSV F protein antigen modified from the amino acid sequence FLGFLLGVG of amino acid sequence 137-145 of SEQ ID NO: 2 by QNGQNNGSG.
  • the RSV F protein antigen may be a RSV F protein antigen modified from the amino acid sequence FLGFLLGVG at position 137-145 of SEQ ID NO: 2 by NSGNSSGGG.
  • the RSV F protein antigen may be a RSV F protein antigen modified with the amino acid sequence FLGFLLGVG of amino acid sequence 137-145 of SEQ ID NO: 2 by TLSKKRKRR.
  • the present invention provides recombinant soluble respiratory syncytial virus (RSV) fusion (F) polypeptides comprising a mutated or modified amino acid sequence compared to the wild type RSV F protein.
  • RSV respiratory syncytial virus
  • F fusion polypeptides comprising a mutated or modified amino acid sequence compared to the wild type RSV F protein.
  • the present invention specifically provides the use of a novel recombinant RSV F protein obtained as a RSV immunogen, obtained through mutation or modification of one or more amino acid sequences of the wild-type RSV F protein.
  • the present invention provides an immunogen for new forms of RSV infection.
  • the inventors of the present invention have confirmed that the amino acid sequence of a specific region of the F protein among the RSV structural proteins can be modified to provide excellent immunogenicity, thus completing the present invention.
  • the RSV F protein in which a part of the fusion peptide (F protein) of the wild-type respiratory syncytial virus (RSV) comprising SEQ ID NO: 1 is deleted can be represented by SEQ ID NO: 2,
  • the RSV F protein of SEQ ID NO: 2 may be provided as an RSV immunogen in the body or as an antigen for RSV immunization.
  • the RSV F protein of SEQ ID NO: 2 comprises a deletion of amino acid sequence positions 525-574 of the wild-type RSV F protein of SEQ ID NO: 1.
  • the amino acid sequence position 525-574 of SEQ ID NO: 2 can be understood as a site including a transmembrane domain and a cytosol region of the F protein.
  • RSV immunogens of the present invention are those in which the RSV F protein of SEQ ID NO: 2, in which the amino acid sequence positions 525-574 of the wild type RSV F protein of SEQ ID NO: 1 is deleted, undergoes one or more sequence variations (amino acids or nucleic acids) , Excellent immunogenicity (i.e., high antibody affinity), and can provide body stability.
  • the RSV immunogen is capable of providing a soluble F protein when the amino acid sequence positions 525-574 of the wild-type RSV F protein of SEQ ID NO: 1 are deleted.
  • the RSV immunogen comprises an RSV F protein of SEQ ID NO: 2 in which the amino acid sequence positions 525-574 of the wild-type RSV F protein of SEQ ID NO: 1 are deleted is one or more sequence variants (amino acids or nucleic acids) When present, soluble F protein can be provided.
  • the position at which the RSV F protein of SEQ ID NO: 2 undergoes one or more sequence variations can be understood as the fusion peptide region of the RSV F protein. Mutations in the fusion peptide region have confirmed that the recombinant RSV F protein can work with excellent immunogenicity.
  • the fusion peptide moiety is at position 137-145 of SEQ ID NO: 2, more preferably at position 137-144 of SEQ ID NO: 2.
  • the inventors of the present invention confirmed that the deletion at positions 137-144 of SEQ ID NO: 2 may contribute to the stabilization of the RSV F protein, but the synergistic effect of the antibody may be insignificant.
  • the amino acid of the fusion peptide was replaced with another amino acid (substitution)
  • substitution there was a difference in the immune response, and it was confirmed that it could act as an immunity of excellent effect.
  • the inventors of the present invention have developed a recombinant RSV F protein immunogen that can provide excellent antibody titer through one or more sequence variations of the fusion peptide of the RSV F protein through long term studies.
  • the RSV F protein immunogen can be used for prevention and treatment of RSV infection, and can be preferably provided as a vaccine for prevention of RSV infection.
  • one embodiment of the present invention provides a RSV immunogen that mutates or modifies a partial sequence of a fusion peptide of RSV F protein.
  • One embodiment of the present invention is a method for the production of a RSV F protein of SEQ ID NO: 2 wherein the RSV F protein comprises one or more mutations in the amino acid sequence positions 137-145 and / or the RSV F protein of SEQ ID NO: 2 corresponding to the amino acid sequence at positions 137-145 , A recombinant soluble RSV F protein immunogen comprising one or more mutations in the nucleotide sequence of SEQ ID NO: 24.
  • soluble respiratory cell fusion virus (RSV) fusion (F) polypeptide More specifically, it is intended to provide a recombinant soluble respiratory cell fusion virus (RSV) fusion (F) polypeptide.
  • the soluble RSV F polypeptides of one embodiment of the invention comprise at least one epitope specific for the RSV F protein.
  • the polypeptide is a modified form of the fusion peptide region.
  • the polypeptide comprises one or two or more amino acid modifications.
  • the present invention also relates to the use of a soluble RSV F polypeptide, a nucleic acid molecule and / or a composition for inducing immunogenicity, and its use in inducing an animal and human immunological response to a soluble RSV F protein, particularly its use as a vaccine .
  • the present invention also relates to a nucleic acid molecule encoding the RSV F polypeptide and / or a vector comprising the nucleic acid molecule and / or a polypeptide transcribed from the nucleic acid molecule in a specific context for use as a vaccine, ≪ / RTI >
  • the present invention relates to a method of inducing a neutralizing anti-respiratory cell fusion virus (RSV) F protein antibody in a subject, comprising the step of administering to the subject a nucleic acid molecule encoding the RSV F polypeptide, and / A vector comprising a nucleic acid molecule, and / or a polypeptide transcribed from a nucleic acid molecule.
  • RSV neutralizing anti-respiratory cell fusion virus
  • the variant in which the amino acid sequence positions 525-574 of the wild-type RSV F protein is deleted can be understood as an RSV F protein consisting of SEQ ID NO: 2.
  • the inventors of the present invention have confirmed that a fusion peptide of the RSV F protein of SEQ ID NO: 2, specifically a mutation at an amino acid position of 137-145 can increase antibody titer.
  • repeated infections can be reduced and the number of inoculations can be reduced.
  • the inventors of the present invention have found that a mutation or mutation induced at the RSV F protein antigen and the specific amino acid position of the antigen of SEQ ID NO: 2 increases the expression of RSV F protein in the host cell and significantly increases immunogenicity Respectively.
  • the RSV F protein antigen may comprise a fusion peptide of SEQ ID NO: 2, more preferably at least one amino acid substituted at amino acid positions 137-145 of SEQ ID NO: 2.
  • the amino acid sequence 137-145 of SEQ ID NO: 2 can be understood as a fusion peptide portion of the RSV F protein.
  • the amino acid substitution at amino acid positions 137-145 of SEQ ID NO: 2 may include one or more mutations or mutations of the amino acids corresponding to the position.
  • the RSV F proteins may comprise three or more modifications or mutations in the amino acids corresponding to that position.
  • substitution can be understood as meaning a modification or mutation of an amino acid. That is, the substitution may be understood to include all cases in which a part of the amino acid sequence of SEQ ID NO: 2 is changed. For example, all cases in which one or more amino acid sequences of the amino acid sequence of SEQ ID NO: 2 are altered.
  • At least one hydrophobic amino acid at amino acid positions 137-145 of SEQ ID NO: 2 may be substituted with a hydrophilic amino acid.
  • the RSV F protein of SEQ ID NO: 2 is a variation of one or more hydrophobic portions of the fusion peptide portion into hydrophilic portions.
  • the invention comprises a RSV F protein antigen (SEQ ID NO: 3, FP1) modified with AAGAAAGAG by substituting A with the hydrophobic portion of the FLGFLLGVG sequence at positions 137-145 of SEQ ID NO:
  • the RSV F protein of SEQ ID NO: 2 is a mutation in which the polar portion of the fusion peptide portion is transformed into a nonpolar side chain. More specifically, the present invention encompasses a RSV F protein antigen (SEQ ID NO: 4, FP3) that has been modified from the FLGFLLGVG sequence at positions 137-145 of SEQ ID NO: 2 to QNGQNNGSG. In another embodiment, the RSV F protein antigen (SEQ ID NO: 5, FP4) is obtained by modifying the FLGFLLGVG sequence of amino acid sequence 137-145 of SEQ ID NO: 2 with NSGNSSGGG.
  • the inventors of the present invention have found that the RSV F protein mutated at amino acid positions 137-145 of SEQ ID No. 2, preferably FP1 (SEQ ID No. 3), FP3 (SEQ ID No. 4) and FP4 (SEQ ID No. 5) Can serve as an excellent immunogen for the purpose of Mutations may occur in the amino acid sequence at positions 137-145 of SEQ ID NO: 2, but as known to those of ordinary skill in the art, substitution, deletion, and insertion of amino acids constituting the protein may result in completely different functions and effects of the protein .
  • the present invention provides an optimized recombinant RSV F protein that is expected to have the best immunogenicity among the mutations induced particularly at positions 137-145 of SEQ ID NO: 2.
  • the RSV F protein antigen according to an embodiment of the present invention is a soluble protein, and in one embodiment of the present invention, provides a soluble RSV F protein antigen and / or an immunogenic composition comprising the RSV F protein antigen.
  • the RSV F protein antigen is selected from the group consisting of SEQ ID NO: 3, 4, 5, 6, 7, 8, 9, 10, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: Or more of the above protein antigens.
  • the RSV F protein antigen may comprise at least one protein antigen selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: More preferably, in one embodiment, the RSV F protein antigen may comprise at least one protein antigen selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5.
  • the RSV F protein antigen is selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: Or a protein antigen encoded by the above base sequence.
  • the RSV F protein antigen may be a protein antigen encoded by any one or more of the nucleotide sequences selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27 and SEQ ID NO: More preferably, the RSV F protein antigen may be a protein antigen encoded by at least one base sequence selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, and SEQ ID NO: 27.
  • Additional mutations that maintain the stabilization of the F1 portion of the wild RSV F protein further include at least one additional mutation selected from the group consisting of (a) to (g) based on SEQ ID NO: 2.
  • RSV F protein antigens of the present invention are based on SEQ ID NO: 2
  • the RSV F protein antigen is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, the amino acid corresponding to 163 is substituted with Q, the amino acid corresponding to 188 is substituted with Q, the amino acid corresponding to 189 is substituted with L No. 15);
  • amino acid corresponding to position 163 of SEQ ID NO: 2 is substituted with Q, the amino acid corresponding to 505 is replaced with W (SEQ ID NO: 20);
  • An amino acid corresponding to position 188 of SEQ ID NO: 2 is substituted with Q, an amino acid corresponding to 189 is substituted with L, and an amino acid corresponding to 505 is substituted with W (SEQ ID NO: 21);
  • amino acid corresponding to position 163 of SEQ ID NO: 2 may be substituted with Q and the amino acid corresponding to 487 may be substituted with L (SEQ ID NO: 22).
  • the present invention provides a RSV immunogenic composition and / or vaccine comprising said RSV F protein.
  • RSV F proteins other than the human RSV F protein (SEQ ID NO: 1), including variants corresponding to those described above.
  • RSV F proteins may include, but are not limited to, A strains of human RSV, B strains of human RSV, strains of bovine RSV, and RSV F proteins from strains of avian RSV.
  • this includes using known methods of protein processing and recombinant DNA technology to enhance or modify the properties of the mutated RSV F proteins mentioned above.
  • Genes that encode the proteins are modified by codonification, and modifications of the nucleotides are known to those skilled in the art.
  • Various forms of mutagenesis can be used to produce and / or isolate variant nucleic acids encoding the protein molecules and / or further modify / mutate the proteins of the invention.
  • mutagenesis include, but are not limited to, site-specific mutagenesis, random point mutagenesis, homologous recombination (DNA shuffling), mutagenesis using uracil containing template, oligonucleotide-induced mutagenesis, phosphorothioate-modified DNA mutagenesis, DNA (gapped-duplex DNA), and the like.
  • Other suitable methods include point mismatch repair, repair-deficient host strains, restriction-selection and restriction-mutagenesis using purification, deletion mutagenesis, total gene synthesis, double-strand breakage Recovery, and the like.
  • mutagenesis involving a chimeric structure is also encompassed by the present invention.
  • mutagenesis can be guided by known information, such as sequences, sequence comparisons, physical properties, crystal structures, etc., of molecules that have been generated pre-existing or of naturally occurring molecules with acquired or mutated.
  • the present invention provides a pharmaceutical pack or kit comprising one or more containers filled with one or more components of the vaccine formulations of the present invention.
  • the invention provides a vaccine or antigenic composition that induces an immunity to an infection or at least one disease symptom thereof in a mammal, comprising the step of adding an effective dose of a modified or mutated RSV F protein to the agent Thereby providing a method of preparing the composition.
  • the infection is a RSV infection.
  • the modified or mutated RSV F protein of the present invention is useful for producing compositions that stimulate an immune response that provides immunity or substantial immunity to an infectious agent.
  • the invention provides a method of inducing immunity against a subject's infection or at least one disease symptom thereof, comprising administering at least one effective dose of a modified or mutated RSV F protein.
  • the invention provides a method of inducing substantial immunity to a subject's RSV viral infection or at least one disease symptom, comprising administering at least one effective dose of a modified or mutated RSV F protein.
  • compositions of the present invention can induce substantial immunity in a vertebrate animal (e.g., a human) when administered to a vertebrate animal.
  • a vertebrate animal e.g., a human
  • the invention provides a method of inducing a substantial immunity to a subject ' s RSV viral infection or at least one disease symptom, comprising administering at least one effective dose of a modified or mutated RSV F protein do.
  • the method may further comprise purifying the expressed RSV F protein or fragment thereof.
  • the recombinant viral vector may be, for example, a phage, a plasmid, a virus or a retroviral vector, and preferably a viral vector may be used.
  • the vector is a recombinant baculovirus vector.
  • the expression constructs will further include a ribosome binding site for translation, at the site for transcription initiation, for termination and at the transcribed region.
  • the coding portion of the transcripts expressed by the constructs will preferably initially contain a translation initiation codon and a termination codon appropriately located at the end of the polypeptide to be translated.
  • the expression vectors comprise at least one selectable marker. These markers include neomycin resistance genes for dihydrofolate reductase, G418 or eukaryotic cell cultures, and tetracycline, kanamycin, or resistance genes for E. coli and other bacterial cultures .
  • Baculoviridae for example, Virus-Autographa californica nucleopolyhedrovirus
  • Adenoviridae e.g., canine adenovirus-canine adenovirus
  • Hepadnaviridae E.g., Hepadnaviridae, e.g., aviepadnavirus
  • Vacciniaviridae e.g., modified vaccinia Ankara virus
  • Parvoviridae e. G.
  • a virus vector selected from the group consisting of a virus, a virus, an autonomous parvovirus, and the like.
  • the baculovirus is selected from the group consisting of Autographa californica nucleoside varicella virus or a modified virus strain; Or a Bombyx mori nucleoside viral virus strain or a modified viral strain thereof.
  • Bacterial vectors may also be used.
  • Exemplary bacterial vectors include pQE70, pQE60 and pQE-9, p BlueScript vector, phage script vector, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5.
  • pFastBacl pWINEO pSV2CAT, pOG44, pXTl, pSG, pSVK3, pBPV, pMSG, and pSVL are preferred.
  • Eukaryotic host cells may include yeast, insect, avian, plant, small nematode (or nematode), and mammalian host cells.
  • Non-limiting examples of insect cells are, for example, Trichoplusiani cells such as Spodoptera frugiperda (Sf) cells such as Sf9, Sf21, and High Five cells, and Drosophila S2 cells.
  • yeast Trichoplusiani cells
  • Sf Spodoptera frugiperda
  • fungal (including yeast) host cells include S. cerevisiae, Kluyveromyces lactis (K. lactis), C. albicans and C.
  • mammalian cells include human embryonic kidney lineage, Chinese hamster ovary cell lineage, Vero cell line (African green monkey lineage), MRC cell line (human lung fibroblast cell lineage), and MDCK cells (Madin-darby canine kidney cell lineage). Other cells of the African claw frog (Xenopus laevis oocyte) or amphibians can also be used.
  • Prokaryotic host cells include, for example, bacterial cells such as E. coli, B. subtilis and mycobacteria.
  • An embodiment of the present invention is a method for producing a protein having the amino acid sequence of SEQ ID NO: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, RSV comprising at least one protein selected from the group consisting of SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: Provide a preventive vaccine.
  • RSV preventive vaccine comprising any one or more proteins selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO:
  • One embodiment of the present invention is directed to an isolated nucleic acid molecule comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 25, 26, 27, 28, 29, 30, 31, 32, , SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43 and SEQ ID NO: Protein-containing RSV vaccine.
  • one embodiment of the present invention provides a RSV preventive vaccine comprising a protein encoded by any one or more nucleic acids selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27 and SEQ ID NO: More preferably, an embodiment of the present invention provides a RSV preventive vaccine comprising a protein encoded by any one or more nucleic acids selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26 and SEQ ID NO: 27.
  • the vaccine may further comprise adjuvants or immunostimulants.
  • adjuvants or immunostimulants for example, an aluminum adjuvant.
  • the immunogenic compositions of the present invention include any pharmaceutical material that does not itself induce a harmful immune response to the vertebrate to which the composition is administered and may be any suitable diluent that can be administered with the RSV F polypeptide Or a pharmaceutically acceptable carrier comprising an excipient.
  • pharmaceutically acceptable refers to those listed in the United States Pharmacopoeia, European Pharmacopoeia, or other commonly recognized pharmacopoeia for use in vertebrates and more specifically in humans.
  • the RSV F immunogen of the invention is administered in an effective amount or amount (as defined above) sufficient to stimulate an immune response against one or more strains of the RSV virus.
  • Such compositions can be used as vaccine and / or immunogenic compositions for inducing a protective immune response in vertebrates.
  • the composition may contain other RSV F proteins or fragments thereof.
  • the concentration of the immunogen is at least about 10 ⁇ g / mL, about 20 ⁇ g / mL, about 30 ⁇ g / mL, about 40 ⁇ g / mL, about 50 ⁇ g / mL, About 100 ⁇ g / mL, about 200 ⁇ g / mL, or about 500 ⁇ g / mL.
  • the concentration of the immunogen is from about 10 ⁇ g / mL to about 1 mg / mL, or from about 20 ⁇ g / mL to about 500 ⁇ g / mL, or from about 30 ⁇ g / mL to about 100 ⁇ g / mL, To about 50 [mu] g / mL.
  • the concentration of the immunogen may be comprised between 10 ⁇ g / mL and 200 ⁇ g / mL.
  • the pharmaceutical formulations disclosed herein comprise a RSV F protein, predominantly a spike protein; And a pharmaceutically acceptable carrier or excipient.
  • the pharmaceutical agent comprises a purified, high affinity antibody produced in an animal to which the immunogen is administered.
  • Pharmaceutically acceptable carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, sterile isotonic aqueous buffer and combinations thereof.
  • Pharmaceutically acceptable carriers, diluents and other excipients are provided in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. current edition).
  • the formulation should be appropriate for the mode of administration.
  • the formulation is suitable for administration to humans, preferably sterile, not particulate and / or pyrogenic. If desired, the composition may contain minor amounts of wetting or emulsifying agents or pH buffering agents.
  • the composition may be in the form of a solid, liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release preparation or powder, such as a lyophilized powder suitable for recombination.
  • Oral preparations may include standard carriers such as mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like.
  • the invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the components of the immunogenic vaccine formulations.
  • the kit comprises two containers, one comprising an RSV F immunogen and the other comprising an antigen adjuvant.
  • Announcements in the form prescribed by governmental bodies governing the manufacture, use or sale of medicinal or biological products may be incorporated into such container (s), and such announcements may be made by the institution of manufacture, use or sale for human administration Indicates approval.
  • the agent may be packaged in a sealed container such as an ampoule or sachette indicating the amount of the composition.
  • the composition is supplied as a liquid, and in another embodiment, is supplied as a dry sterile lyophilized powder or water-removing concentrate in a sealed container, for administration to a subject, for example, with water or saline It can be reconstituted to an appropriate concentration.
  • the composition will preferably contain about 1 ⁇ g, about 5 ⁇ g, about 10 ⁇ g, about 20 ⁇ g, about 25 ⁇ g, about 30 ⁇ g, about 50 ⁇ g, about 100 ⁇ g, about 125 ⁇ g, about 150 ⁇ g, As a dry sterile lyophilized powder in an airtight container at a unit dose of about 200 ⁇ g.
  • the unit dose of the composition may be about 1 microgram (e.g., about 0.08 microgram, about 0.04 microgram, about 0.2 microgram, about 0.4 microgram, about 0.8 microgram, about 0.5 microgram, about 0.25 microgram, ) Or greater than about 125 ⁇ g (eg, greater than about 150 ⁇ g, greater than about 250 ⁇ g, or greater than about 500 ⁇ g).
  • Such doses can be measured as [mu] g of total RSV F protein (e.g., spike protein or fragment thereof).
  • the immunogen of the present invention should be administered within about 12 hours, preferably within about 6 hours, within about 5 hours, within about 3 hours, or within about 1 hour after reconstitution with lyophilized powder.
  • the RSV F protein immunogenic composition is supplied in liquid form in a sealed container representing the amount and concentration of the RSV F protein composition.
  • the liquid form of the immunogenic composition of the invention is at least about 50 ⁇ g / ml, more preferably at least about 100 ⁇ g / ml, at least about 200 ⁇ g / ml, at least 500 ⁇ g / ml, or at least 1 mg / ml And is supplied to the sealed container.
  • the vaccine or immunogenic composition of the invention may be administered to an animal to induce an immune response against RSV.
  • the animal is vulnerable to RSV infection.
  • the animal is a human.
  • administration of the immunogen induces substantial immunity against at least one RSV strain, isolate, clade and / or species.
  • administration of an immunogen induces substantial immunity against at least two RSV strains, isolates, clades and / or species.
  • the dosage can be adjusted within this range based on, for example, age, physical condition, body weight, age, food, time of administration, and other clinical factors.
  • the invention includes a method of formulating a vaccine or immunogenic composition that results in substantial immunity to an infection of the subject or at least one symptom thereof, including the step of adding an effective amount of an immunogen to the formulation.
  • Stimulation of substantial immunity by a single dose is preferred, but additional doses may be administered via the same or different routes to achieve the desired effect. In neonates and infants, for example, multiple administrations may be necessary to induce a sufficient level of immunity. Administration can be continued at intervals over the childhood period if necessary to maintain adequate protection against infection.
  • a method of inducing substantial immunity against a viral infection or at least one symptom thereof in a subject comprises administering at least one effective amount of an RSV F protein, or fragment or aggregate thereof.
  • Methods of administering the vaccine and / or immunogenic agent include parenteral administration (e.g., endothelium, intramuscular, intravenous and subcutaneous), epidural and mucosal (e.g., nasal and oral or pulmonary routes or suppositories) But is not limited thereto.
  • parenteral administration e.g., endothelium, intramuscular, intravenous and subcutaneous
  • epidural and mucosal e.g., nasal and oral or pulmonary routes or suppositories
  • the composition is administered intramuscularly, intravenously, subcutaneously, orally or intradermally.
  • the composition may be administered orally or parenterally by absorption through, for example, injection or transient injection, epithelium or mucosal (e.g., oral mucosa, colon, conjunctiva, nasopharyngeal, pharyngeal, vaginal, urinary, bladder, May be administered by any convenient route and may be administered with other biologically active substances.
  • administration via the nasal passage or other mucosal route may result in a substantially higher antibody or other immune response than other routes of administration.
  • the nasal or other mucosal pathways of administration of the immunogenic composition and / or vaccine may induce antibodies or other immune responses that will induce cross protection against other strains of the virus. Administration may be systemic or local.
  • the prophylactic vaccine preparation is administered systemically by subcutaneous or intramuscular injection using a needle and injection or by a needle-free injection device.
  • the vaccine preparation is administered into the nasal cavity by drops, large particle aerosols (greater than about 10 microns), or by injection into the conduit. Any of the above pathways of delivery may cause an immune response while nasal administration provides an increased effect of inducing mucosal immunity at the site of penetration of the virus.
  • the vaccine and / or immunogenic agent is administered in a manner that targets mucosal tissue to cause an immune response to the site of immunization.
  • mucosal tissues such as gut associated lymphoid tissue (GALT) may be targets for immunization by using oral administration of a composition containing an immunogen adjuvant with specific targeting properties.
  • Other mucosal tissues such as nasopharyngeal lymphoid tissue (NALT) and bronchial-associated lymphoid tissue (BALT) may also be targets.
  • the vaccine and / or immunogenic agent may be administered according to a dosing schedule such as administration of the initial vaccine composition followed by intensification of the administration.
  • the second dose of the composition is administered at any time between two weeks to one year after the initial administration, preferably about 1, about 2, about 3, about 4, about 5 to about 6 months.
  • the third dose may also be administered after the second dose and after about 3 months to about 2 years, preferably about 4, about 5, or about 6 months, or about 7 months to about 1 year after the first dose.
  • the third dose may be administered orally when there is no specific immunoglobulin in the subject's serum and / or urine or mucosal secretions after a second dose, or when a small amount of specific immunoglobulin is detected.
  • the second dose is administered about one month after the first dose and the third dose is administered about six months after the first dose.
  • the second dose is administered about 6 months after the first dose.
  • an immunogen comprising a RSV F protein can be administered as part of a combination therapy.
  • the RSV F protein or fragment thereof or a collection thereof may be formulated with other immunogenic compositions and / or antiviral agents.
  • Dosages of the pharmaceutical preparations can be determined, for example, by first determining the effective dose to induce a prophylactic or therapeutic immune response by measuring the serum titer of a virus-specific immunoglobulin or by measuring the inhibition rate of antibodies in serum samples or urine samples or mucosal secretions Can be easily determined by those skilled in the art.
  • human clinical studies can be performed by those skilled in the art to determine a desirable effective amount for humans. These clinical studies are routine and well known in the art. The exact dose to be used will depend on the route of administration.
  • an effective amount can be estimated from a dose-response curve derived from an in vitro or animal testing system.
  • the immunity of certain compositions can be improved by using nonspecific stimulators of the immune response, known as antigen-adjuvants.
  • Antigen adjuvants have been used to experimentally improve the general increase in immunity against unknown immunogens (e. G., U.S. Patent No. 4,877,611).
  • Immunization protocols have used antigenic adjuvants to stimulate responses for many years, and antigenic adjuvants are well known to those skilled in the art.
  • Some antagonists affect the way antigens are present. For example, an immune response increases when protein antigens are immersed in alum. Emulsification of the antigen prolongs the antigen delivery period.
  • Antigen adjuvants may be included. Suitable antigenic adjuvants include those described in Vogel et al., &Quot; A Compendium of Vaccine Adjuvants and Excipients (2nd Edition), which are incorporated by reference in their entirety for all purposes. Other exemplary antigenic adjuvants include the complete Freund ' (Non-specific irritant of immune response containing dead Mycobacterium tuberculosis), incomplete Freund's adjuvant and aluminum hydroxide adjuvant. Other antagonists include GMCSP, BCG, aluminum hydroxide, thur-MDP and nor- (MDP), CGP (MTP-PE), lipid A, montanide ISA 206 and monophosphoryl lipid A (MPL).
  • Bacteria, MPL, trehalulose dimycolate (TDM) and (CWS) RIBI is considered to contain three components extracted from the cell wall skeleton (CWS) in a 2% squalene / tween 80 emulsion.
  • MF-59, Novasom®, and MHC antigens may also be used.
  • an adjuvant is a pouch sila melanoma lipid vesicles (paucilamellar lipid vesicle) substantially with a two to ten bilayers arranged in a rectangular cover type separated by aqueous layers surrounding a large amorphous central cavity of the lipid bilayer is removed.
  • the adjuvant effect is achieved by the use of a material such as alum, and is used as a 0.05 to about 0.1% solution in phosphate buffered saline.
  • the immunogen may be prepared with a linear mixture of a synthetic polymer of sugars (Carbopol®) used in about 0.25% solution.
  • An example is the muramyldipeptide (N-acetylmuramyl-L-alanyl-D-isoglutamine [MDP]), a bacterial peptidoglycan.
  • MDP muramyldipeptide
  • hemocyanin and hemoeryritin can be used.
  • Hemostatic from the keyhole limpet (KLH) is preferred in certain embodiments, although mollusks and arthropod hemoshihenian and hemoeryritin can be used.
  • a variety of polysaccharide adjuvants may be used.
  • the use of pneumococcal polysaccharide antigen adjuvants for antibody responses in mice has been disclosed (Yin et al, 1989).
  • Doses that do not produce an optimal response or inhibition should be used as directed (Yin et al, 1989).
  • Polyamine modifications of the polysaccharides are particularly like chitin and chitosan, including chitin and deacetylated chitin.
  • the muramyldipeptide lipophilic daiskaride-tripeptide derivatives disclosed for use in artificial liposomes have been formed from phosphatidyl choline and phosphatidyl glycerol.
  • suitable adjuvants include bipolar surface active agents, such as saponin and derivatives such as QS21 (Cambridge Biotech).
  • Saponin-based antigen adjuvants include those which contain substrate A and substrate C alone and in combination. Nonionic block copolymer surfactants (Rabinovich et al, 1994) can be used. Oligonucleotides are another useful group of adjuvants (Yamamoto et al, 1988).
  • Another group of antigen adjuvants are the decrypted endotoxins such as the purified decoded endotoxin of U.S. Patent No. 4,866,034. These purified endotoxins are effective in causing an adjuvant response in vertebrates.
  • the detoxified endotoxin can bind other antagonists to produce a multivalent-antigen adjuvant preparation.
  • Alkyl lysophospholipids ALP
  • BCG BCG
  • antigen-adjuvant that can be conjugated to a vaccine comprising biotin (including biotinylated derivatives).
  • biotin including biotinylated derivatives.
  • One particular antigen-reinforcing agent that specifically contemplates use is teichoic acid derived from gram-cells. This includes lipoteichoic acid (LTA), ribitol teico acids (RTA) and glycerol teico acids (GTA). Active forms of such synthetic counterparts can also be used (Takada et al, 1995).
  • antigen adjuvants that are not conventionally used in humans can still be used in other vertebrates, for example, when it is desired to generate antibodies or subsequently to obtain active T cells.
  • the toxicity or other adverse effects that may arise from cells such as those that can occur using an antigen reinforcement or, for example, non-irradiated tumor cells, are independent of this environment.
  • Other methods of inducing an immune response can be accomplished by formulating the immunogen of the invention with an " immunostimulant ". These are the body's own chemical messengers (cytokines) to increase the response of the immune system.
  • Immunostimulants are immunosuppressive, immune-enhancing and inflammatory cytokines, such as interleukins (e.g., IL-1, IL-2, IL-3, IL-4, IL- Cain, lymphokine and chemokine; Other immune stimuli such as growth factors (e.g., granulocyte-macrophage (GM) -colony stimulating factor (CSF)) and macrophage inflammatory factors, Flt3 ligand, B7.1, B7.2, The immunostimulatory molecules may be administered to the same formulation as an immunogen or may be administered separately. [0064] Expression vectors encoding proteins or proteins may be administered to produce an immunostimulatory effect.
  • interleukins e.g., interleukins (e.g., IL-1, IL-2, IL-3, IL-4, IL- Cain, lymphokine and chemokine
  • Other immune stimuli such as growth factors (e.g., granulocyte-macrophage (GM)
  • the saponin-based antigen adjuvant may be present in a range with the following lower limits: about 0.2 ⁇ g, about 0.4 ⁇ g, about 0.6 ⁇ g, about 0.8 ⁇ g, about 1 ⁇ g, about 2 ⁇ g, about 3 ⁇ g Saponin-based antigen-adjuvant is administered at a dosage of at least about 1 mg / kg, preferably at least about 10 mg / kg, about 4 mg / kg, about 5 mg / About 15 ⁇ g, about 20 ⁇ g, about 25 ⁇
  • the saponin-based adjuvant is from about 5 ⁇ g to about 20 ⁇ g or from about 1 ⁇ g to about 10 ⁇ g.
  • Such doses are particularly suitable in mice and can be adjusted for human use based on a typical mouse weight of 20 g versus a human body weight of about 60 kg.
  • the RSV F protein, fragment or aggregate thereof more preferably SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 6, SEQ ID No. 7, SEQ ID No. 8, SEQ ID No. 9, SEQ ID NO: 11, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: , And SEQ ID NO: 23, or a vaccine comprising the RSV F immunoconjugate composition, wherein the RSV F immunogenic composition comprises at least one protein selected from the group consisting of SEQ ID NO: 23 and SEQ ID NO: 23.
  • the method comprises administering a RSV F immunogenic composition comprising a protein selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5 or a vaccine comprising the same , A method of inducing preventive immunity against RSV F infection.
  • a method of inducing an immune response to RSV comprising administering to a subject a composition comprising the RSV F protein antigen.
  • the method can reduce or prevent RSV infection.
  • the present invention provides immunogenic compositions for the prevention and / or treatment of RSV infection.
  • the present invention is able to achieve a more improved RSV F protein expression in the host cell than the wild-type RSV F protein through mutation of the RSV F protein.
  • the present invention can achieve high immunogenicity of the RSV F protein. That is, an antigen prepared through the sequence variation of the RSV F protein of the present invention (and / or the RSV F protein expression base sequence variation) can provide excellent neutralizing antibody titer and achieve excellent immunogenicity.
  • the present invention can provide a stabilized and soluble RSV F protein.
  • the present invention is applicable to a variety of cell lines and can provide a safe RSV immunogenic composition, more preferably a vaccine.
  • the RSV immunogen completed through the variation of the present invention can achieve a long duration of immune maintenance in the human body.
  • the RSV immunogen completed through the variation of the present invention is less likely to cause repeated infections.
  • the RSV immunogen which is completed through the mutation of the present invention, can induce excellent immunogenicity due to low interference with blood antibodies in the body.
  • FIG. 1 is a schematic diagram showing the variation of the RSV F protein mainly performed in the present invention.
  • FIG. 1 is a schematic diagram showing the variation of the RSV F protein mainly performed in the present invention.
  • FIG. 2 is an experiment for confirming the expression amount of the RSV F protein mutation performed in the present invention. This experiment measured the reactivity with palivizumab binding to the site II epitope. It was confirmed that the mutations tried in the present invention are superior to the mutation forms known in the art.
  • Fig. 3 shows results of western blotting and coomassie staining of the proteins expressed and purified through the mutations performed in the present invention.
  • 3-a is the result of confirming F0 and F1 using ⁇ ME.
  • 3-b is the result of confirming FP1 and FP4 among the final purified mutant proteins.
  • FIG. 4 is a transmission electron microscopy photograph of RSV F protein prepared according to the present invention.
  • FIGS. 5A and 5B are graphs showing the results of measurement of total antibody titers to examine the induction of the mouse immunogenicity of the RSV F protein prepared according to the present invention.
  • the total antibody titers are the values determined by ELISA analysis.
  • GMT is the Geometric Mean Titer.
  • 1ug + Adjuvant " 10ug + Adjuvant”
  • 30ug + Adjuvant are substances adsorbed to 1ug, 10ug and 30ug of RSV F protein, respectively, in aluminum adjuvant.
  • the PBS treatment time was 1.
  • FIG. 6 is a schematic diagram of an experimental result for confirming the concentration of a specific antibody capable of competing with palivizumab binding to a site II epitope in mouse serum in which immunity was induced by the RSV F protein prepared in the present invention.
  • FIGS. 7A and 7B are graphs showing experimental results for confirming the concentration of a specific antibody capable of competing with palivizumab binding to a site II epitope in a mouse serum immunized with the RSV F protein prepared according to the present invention.
  • FIG. The result value means a GMT value which suppresses 50% of palivizumab.
  • FIGS. 8A and 8B are experiments to confirm the inhibition of the infection of the wild-type RSV virus in the mouse serum in which immunity was induced by the RSV F protein prepared according to the present invention.
  • the wild-type virus used here is RSV A2 (ATCC. VR-1540). Through the neutralizing immunity test, it was confirmed that the RSV F protein produced by the present invention inhibited the infection of the wild-type RSV A2.
  • FIG. 9 shows the screening results of soluble F protein of FP1, 3, 4, and 6.
  • Variations in the position of the fusion peptide of the present invention may serve as excellent RSV immunogen, Respectively.
  • the mutation mutated the fusion peptide portion (amino acid sequence 137-145).
  • the RSV F protein is a mutation that transforms the hydrophobic portion of the fusion peptide portion into a hydrophilic portion. Specifically, the hydrophobic part of the sequence FLGFLLGVG of the fusion peptide was substituted with A and transformed into AAGAAAGAG (SEQ ID NO: 3). For the purpose of the present invention, the optimum effect can be obtained as a result of substitution with A among hydrophilic amino acids.
  • the polar portion of FLGFLLGVG in the fusion peptide portion was modified to a nonpolar side chain, and the modified fusion peptide portion was modified to QNGQNNGSG and NSGNSSGGG (SEQ ID NO: 4 and SEQ ID NO: 5, respectively).
  • the FLGFLLGVG portion of the fusion peptide portion was modified to TLSKKRKRR (SEQ ID NO: 6).
  • Additional mutations that maintain the stabilization of the F1 portion of the wild RSV F protein further include at least one additional mutation selected from the group consisting of (a) to (g) based on SEQ ID NO: 2.
  • RSV F protein antigens of the present invention are based on SEQ ID NO: 2
  • the RSV F protein antigen is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, the amino acid corresponding to 163 is substituted with Q, the amino acid corresponding to 188 is substituted with Q, the amino acid corresponding to 189 is substituted with L No. 15);
  • amino acid corresponding to position 163 of SEQ ID NO: 2 is substituted with Q, the amino acid corresponding to 505 is replaced with W (SEQ ID NO: 20);
  • An amino acid corresponding to position 188 of SEQ ID NO: 2 is substituted with Q, an amino acid corresponding to 189 is substituted with L, and an amino acid corresponding to 505 is substituted with W (SEQ ID NO: 21);
  • amino acid corresponding to position 163 of SEQ ID NO: 2 may be substituted with Q and the amino acid corresponding to 487 may be substituted with L (SEQ ID NO: 22).
  • this includes using known methods of protein processing and recombinant DNA technology to enhance or modify the properties of the mutated RSV F proteins mentioned above.
  • Genes that encode the proteins are modified by codonification, and modifications of the nucleotides are known to those skilled in the art.
  • Various forms of mutagenesis can be used to produce and / or isolate variant nucleic acids encoding the protein molecules and / or further modify / mutate the proteins of the invention.
  • mutagenesis include, but are not limited to, site-specific mutagenesis, random point mutagenesis, homologous recombination (DNA shuffling), mutagenesis using uracil containing template, oligonucleotide-induced mutagenesis, phosphorothioate-modified DNA mutagenesis, DNA (gapped-duplex DNA), and the like.
  • Other suitable methods include point mismatch repair, repair-deficient host strains, restriction-selection and restriction-mutagenesis using purification, deletion mutagenesis, total gene synthesis, double-strand breakage Recovery, and the like.
  • mutagenesis involving a chimeric structure is also encompassed by the present invention.
  • mutagenesis can be guided by known information, such as sequences, sequence comparisons, physical properties, crystal structures, etc., of molecules that have been generated pre-existing or of naturally occurring molecules with acquired or mutated.
  • the gene mutation for the F protein described in the previous example was confirmed by expressing the protein using 293FT cells.
  • the candidate substance plasmid to which each mutation was applied was inserted into a vector containing a eukaryotic promoter (promoter) and the degree of expression was confirmed.
  • the vector used in one embodiment is pcDNA3.1. It will be appreciated by those skilled in the art that not only pcDNA3.1 but also other eukaryotic expression vectors can be used as the vector.
  • ELISA was used for the evaluation of the expression level.
  • the antibody used was palivizumab, which binds to RSV site II. As can be seen in FIG. 2, the screening results of the expressed proteins for the applied mutations showed a higher level of expression than the mutations of the known patents.
  • lysis Medium & Pellet
  • lysis Medium
  • lysis Medium
  • TMB acts as an electron donor to reduce hydrogen peroxide and the like by peroxidase such as horseradish peroxidase (HRP).
  • HRP horseradish peroxidase
  • RSV-B F (SEQ ID NO: 1) The codons of the proteins were optimized and the antigens obtained through the gene mutation described above were prepared.
  • the described RSV F gene was cloned into RSV F protein recombinant baculovirus (AcMNPV) and then inoculated into insect cells, Sf9.
  • Sf9 insect cells The normal cell concentration of Sf9 insect cells should not exceed 3.00E6 / ml.
  • Sf9 insect cells are cultured in sterile 125ml / 250ml / 500ml / 1L spinner flask or 5L / 50L / 100L bioreactor.
  • serum-free serum-insect cell-specific medium containing no serum was used for the culture.
  • the serum-free insect cell-specific medium may include Insect Express (Lonza).
  • the RSV F recombinant baculovirus for RSV F protein production is inoculated between 0.01-0.8 MOI (multiplicity of infection), wherein the concentration of Sf9 insect cells is in the range of 5.00E5-1.50E6, the initial stage of the exponential phase Lt; / RTI >
  • the RSV F recombinant baculovirus used in this example harvests at 60-90 hours after inoculation, with viability between 75-98%.
  • the reason why low-level viruses are inoculated to low-growth cells and harvested at relatively high viability is to minimize the target protein cleavage by proteases exiting the cells in the apoptosis stage and to reduce the amount of virus inoculum used It is to minimize.
  • the Sf9 insect cells obtained after the inoculation of the recombinant baculovirus of Example 3 are centrifuged at 3000-8000xg for 1-50 minutes to separate the cell sedimentation layer and the media supernatant. Remove the separated cell sedimentation layer and secure media supernatant. Infection of the recombinant baculovirus can occur effectively when the cells are in the early-log phase of growth and are in the 1.0E5-7.0E6 cell / ml concentration, preferably 5.00E5-2.50E6 cells / ml concentration.
  • RSV F RSV F
  • affinity chromatography affinity chromatography
  • affinity chromatography affinity chromatography
  • the crude extract was further purified by passing it through anion exchange chromatography, lentile lectin affinity and cation exchange chromatography.
  • RSV F RSV F
  • affinity chromatography affinity chromatography
  • affinity chromatography as known in the art.
  • the crude extract was further purified by passing it through anion exchange chromatography, lentile lectin affinity and cation exchange chromatography
  • a sample of the same volume of each purification step was diluted with 2xSDS sample buffer containing ⁇ ME (beta-mercaptoethanol), filled with 15-20 ⁇ l of each SDS-gel, electrophoresed, and stained with Coomassie stain Lt; / RTI > to stain whole proteins.
  • SDS-gel was transferred to the membrane and further analyzed by WB (Western blot) using anti-single or multiple RSV F-specific antibodies.
  • mice Animal experiments using mouse as the antigen obtained in this example were carried out.
  • the mouse used in the experiment can be used as an antigen used in the animal experiment itself and can also be used in combination with an immunostimulant such as an aluminum adjuvant.
  • the adjuvant may include, for example, aluminum or calcium salts, in particular inorganic salts such as hydroxide, phosphoric acid, calcium phosphate and the like.
  • Aluminum or Alum-based adjuvants are currently the most commonly used adjuvants in human vaccines. Therefore, adjuvants, which are proven to be stable and effective enough to be used as a standard for developing and evaluating new adjuvants, to be.
  • alum adjuvants aluminum hydroxide (Al (OH) 3 ) and aluminum phosphate (AlPO4) are typical examples. These two alum adjuvants exhibit different physical and adjuvant properties.
  • aluminum hydroxide is most widely used in aluminum adsorption vaccine. In this example, aluminum hydroxide was used as an immunity enhancer, and aluminum hydroxide was used at a level of 180 ug / once administration.
  • the concentration of RSV F antigen administered in this example was administered at different concentrations of 1 ug / ml, 10 ug / ml and 30 ug / ml, and the administration frequency was administered twice.
  • the dosing schedules in this example were administered 2 times after 2 weeks of the first administration, and blood sampling was performed at 2 weeks and 4 weeks after the first administration.
  • the immunogenicity inducing effect of the RSV F antigen obtained in this example was confirmed. Identification of the immunogenicity induced in this example was performed by total antibody measurement, PCA measurement, and neutralizing antibody measurement.
  • total antibody titers to identify antigen-specific IgG antibody titers were determined using ELISA.
  • 100 ng of RSV F antigen was coated on a 96-well plate and incubated overnight at 4 ° C.
  • the incubated plate is washed three times with buffer containing 0.05% tween 20, then incubated with buffer solution containing 5% skim milk for 2 hours and washed again with buffer solution containing 0.05% tween 20.
  • the obtained mouse blood is centrifuged to obtain a serum sample, the prepared serum sample is diluted to 1/20 of the original concentration, and then serial dilution is performed four times to make the final concentration 1/327680 times.
  • Diluted serum samples are plated on 100 ⁇ l / well plates, incubated at room temperature for 2 hours, and washed three times with buffer containing 0.05% tween 20.
  • 100 ⁇ l of goat anti-mouse IgG antibody (Invitrogen, US) combined with 1: 5000 diluted HRP-conjugated goat anti-mouse IgG was added to the washed plate, incubated at room temperature for 1 hour, Wash three times with the solution.
  • TMB substrate 3,3A, 5,5A-tetramethylbenzidine supra
  • KPL TMB stop solution
  • a competitive ELISA was performed using the palivizumab antigen that binds to the site II epitope to confirm that the expressed / purified RSV F immunogen induces a neutralizing antibody corresponding to the site II epitope of the RSV F protein .
  • 200 ng of RSV F antigen was coated on a 96-well plate and incubated overnight at 4 ° C. The incubated plate is washed three times with buffer containing 0.05% tween20, incubated with buffer solution containing 5% skim milk for 2 hours, and washed again with buffer solution containing 0.05% tween20.
  • the obtained mouse blood is centrifuged to obtain a serum sample, the prepared serum sample is diluted to 1/10 of the original concentration, and then serial dilution is performed twice to make the final concentration 1/1280 times.
  • Biotin-conjugated paribizumab is diluted to 50 ng per well and serial dilutions are performed in duplicate to achieve a final concentration of 390 pg per well. Diluted serum samples and biotin-conjugated paribisuram are incubated for 2 hours and washed three times with buffer containing 0.05% tween20.
  • Hep2 cells were seeded in a 24-well plate at a rate of 3.5E5 per well and cultured at 37 ° C in 5% CO 2 for one day. Serum samples from animal studies are diluted to 1/20 of the original concentration and serial dilutions are performed in triplicate to make the final concentration 1/4860. 50 ⁇ l of the diluted serum sample and 50 ⁇ l of RSV virus (40 pfu) are mixed and incubated at room temperature for 1 hour, then inoculated onto Hep2 cells of the plate seeded the day before. After 5 days of inoculation, the cells are cultured at 37 ° C and 5% CO 2 . After incubation, the plates are stained with neutral red and neutralized. The neutralization value was calculated to provide a value (ND50) that protects 50% of the virus. (Fig. 8)
  • the present invention provides a soluble RSV.
  • the soluble RSV may be provided as a vaccine composition capable of preventing RSV infection.

Abstract

The present invention relates to a soluble respiratory syncytial virus (RSV) F protein and comprises immunogenic compositions such as vaccines for treatment and/or prevention of RSV infection.

Description

가용성 변형 호흡기 융합세포 바이러스 (RSV) F 단백질 항원Soluble strain Respiratory syncytial virus (RSV) F Protein antigen
본 출원은 2017년 9월 29일에 출원된 한국출원 제10-2017-0128003호 및 2018년 9월 20일에 출원된 한국출원 제10-2018-0113291호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다. 본 발명은 호흡기 세포 융합 바이러스(RSV) 감염증을 치료 및/또는 예방하기 위한 RSV 단백질 항원, 및/또는 RSV 면역유발 조성물에 관한 것이다. 더 구체적으로 가용성 RSV F 단백질 항원, 이를 포함하는 RSV 면역 유발 조성물, RSV 백신, 이를 이용한 RSV 면역 유발 방법에 관한 것이다. This application claims the benefit of Korean Application No. 10-2017-0128003, filed on September 29, 2017, and Korean Application No. 10-2018-0113291, filed on September 20, 2018, The specification and drawings are incorporated herein by reference in its entirety. The present invention relates to RSV protein antigens and / or RSV immunostimulatory compositions for the treatment and / or prevention of respiratory syncytial virus (RSV) infections. More particularly, the present invention relates to a soluble RSV F protein antigen, an RSV immunogenic composition comprising the same, a RSV vaccine, and a method for inducing RSV immunity using the same.
호흡기세포융합바이러스 (RSV)는 전 세계적으로 널리 유행하는 바이러스로, 호흡기 병증을 유발하며 특히 영유아의 중증 호흡기감염 사망의 주 원인이 되는 바이러스이다. 거의 모든 영유아 (95%이상)가 생후 2년 이내에 감염되며, 미국의 경우 2-3살의 영아에서 100%에 육박하는 감염 유발하고, 직접적인 사인으로 수백 명 / RSV와 연관된 간접적인 사인으로 수천 명의 영유아가 사망한다고 알려졌다. 또한, 영유아가 주 감염 대상이지만, 면역력이 약화된 환자와 노인의 호흡기 질환에 감염을 유발하여 치명적인 호흡기 질병을 일으킨다고 알려졌다. 호흡기 병증 유발 원인으로는 인플루엔자에 이어 두 번째로 높지만, 1세 미만 유아에서 10만 명당 RSV로 인한 연간 사망률이 인플루엔자에 비해 약 1.3~2.5배 높은 것으로 알려졌다. 2002년 WHO의 보고에 따르면 매년 RSV에 감염되는 사람이 6천4백만 명이며, 이중 16만 명이 사망한다고 보고하였다. Respiratory syncytial virus (RSV) is a worldwide prevalent virus that causes respiratory illnesses and is a major cause of serious respiratory infections in infants and young children. Nearly all infants (> 95%) are infected within 2 years of age. In the United States, infections cause infections close to 100% in 2-3 year-old infants, and there are hundreds of direct signs / indirect signs associated with RSV, Was reportedly dead. It is also known that infants are the main infections, but infect respiratory diseases of patients with weakened immune system and elderly people and cause fatal respiratory diseases. It is the second most common cause of respiratory illness after influenza, but the annual death rate from RSV per 100,000 children under 1 year of age is 1.3 to 2.5 times higher than that of influenza. In 2002, WHO reported that 64,000 people were infected with RSV every year, of which 160,000 died.
특히, RSV는 전화기, 문고리 등 단단한 표면에서 6시간 생존하는 등의 외부 환경에 강하며, 이로 인해 지속 감염과 빠른 전파가 가능하여 병원 및 집단생활을 하는 장소에서 유행(outbreak)할 가능성이 매우 크다. RSV 바이러스에 노출된 후 약 4-6일 후부터 증상이 발현되며, 콧물과 식욕부진을 시작으로 첫 증상 발현 후 약 3일 후부터 발열, 기침, 천명 (wheezing)등의 증상이 발현된다. 임상양상은 비교적 약한 증상부터 중이염, 미숙아의 무호흡증, 천식, 폐렴, 모세 기관지염까지 매우 다양하게 나타난다.In particular, RSV is resistant to external environments such as telephone and door knockers, which survive for six hours on a hard surface, which makes it possible to continuously infect and spread rapidly, which is very likely to outbreak in hospitals and community settings . Symptoms develop from about 4-6 days after exposure to RSV virus. Symptoms such as fever, cough, and wheezing develop from about 3 days after the onset of the first symptom, starting with runny nose and anorexia. Clinical manifestations range from relatively mild symptoms to otitis media, apnea of premature infants, asthma, pneumonia, and bronchiolitis.
RSV는 Mononegavirales 목(order), Pneumoviridae(family)의 Orthopneumovirus(genus)에 속해 있다. RSV와 유사한 바이러스로는 홍역 바이러스 (measles virus), 이하선염을 유발하는 멈스 바이러스 (mumps virus), 파라인플루엔자 바이러스 (parainfluenza types 1, 2, and 3) 등이 있다. RSV는 120-200nm 정도의 중간 크기의 바이러스로, 약 15,000개의 nucleotide로 이루어진 선형의 음성 가닥 RNA를 게놈(genome)으로 가지고 있다. RSV는 G 단백질에 의해 A, B의 혈청형으로 나누어 진다. RSV의 게놈은 10개의 단백질을 암호화(coding)하고 있으며, 비-구조 단백질(non-structural protein)과 구조 단백질 (structural protein)을 암호화 하는 부분 등으로 구성되어 있다. 비구조 단백질은 Nonstructural (NS)1, Nonstructural (NS)2, nucleocapsid (N) protein, phosphoprotein (P), viral polymerase (L)이며, 이 단백질들은 virus의 복제에 중요한 역할을 한다. 구조 단백질 중 matrix (M) protein과 fusion (F) protein, glyco (G) protein 등은 바이러스의 외피를 이루고 있으며, 이 중 F protein과 G protein이 spike를 구성한다.RSV belongs to the order of Mononegavirales, Orthopneumovirus (genus) of Pneumoviridae (family). Viruses similar to RSV include measles virus, mumps virus causing parotitis, and parainfluenza types 1, 2, and 3. RSV is a medium-sized virus of the order of 120-200 nm, and has a genome of linear, negative strand RNA consisting of about 15,000 nucleotides. RSV is divided into serotypes A and B by G proteins. The RSV genome encodes 10 proteins and is composed of non-structural proteins and structural proteins. Nonstructural proteins are nonstructural (NS) 1, nonstructural (NS) 2, nucleocapsid (N), phosphoprotein (P) and viral polymerase (L). Among the structural proteins, matrix (M) protein, fusion (F) protein and glyco (G) protein form the envelope of the virus. Among them, F protein and G protein form a spike.
RSV F 단백질은 virus entry 초기 및 cell membrane과의 융합 작용을 하는 중요한 구성요소로 항원성이 높아 vaccine과 antiviral drug의 주요 대상으로 알려져 있다. RSV의 F 단백질은 감염과정 중 세포로 entry하는 과정에서 "pre-fusion"형에서 "post-fusion"형으로 구조가 바뀐다. F 단백질은 약 574개의 아미노산으로 구성되어 있으며, 전체 F 단백질을 F0라고 했을 때, F2(약 20kDa)와 F1(약 50kDa) subunit으로 나눌 수 있다. subunit F2와 F1 사이에는 furin cleavage 부분이 존재하며, furin계열의 protease에 의해서 F2와 F1으로 절단된다. furin cleavage는 두 부분(site) "RARR"과 "KKRKRR"의 아미노산 서열을 인식하며, 이 중 Arginine(R)이 중요한 core 아미노산으로 작용한다. F1 subunit은 N-terminal 쪽을 HRA (fusion domain), C-terminal쪽을 HRB (trans-membrane domain)로 명명하며 post-fusion 형이 될 때 HRA 부분과 HRB 부분에서 2개 이상의 헵태드(heptad) 형태를 이루는 것이 확인되었다. F 단백질의 transform과 cell-virus fusion은 구부러진 형태의 HRA의 hinge부분이 펴지는 형태가 되면서 발생한다. 또한, 퓨린 절단에 의해 p27 부분이 제거되면서 trimer 형성이 유도되는 것이 밝혀졌다.RSV F protein is an important component that fuses with cell membrane at the early stage of virus entry and is known to be a major target of vaccine and antiviral drug due to its high antigenicity. The F protein of RSV changes its structure from "pre-fusion" type to "post-fusion" type during entry into cells during the infection process. The F protein consists of about 574 amino acids and can be divided into F2 (about 20 kDa) and F1 (about 50 kDa) subunits, where the total F protein is F0. Subunit Furin cleavage between F2 and F1 is cleaved by F2 and F1 by furin protease. furin cleavage recognizes the amino acid sequences of the two sites "RARR" and "KKRKRR", and Arginine (R) acts as an important core amino acid. The F1 subunit is called the HRA (fusion domain) at the N-terminal side and the trans-membrane domain (HRB) at the C-terminal side. Two or more heptad in the HRA and HRB regions, It is confirmed that it forms. Fusion of the F protein and cell-virus fusion occurs when the hinge portion of the curved HRA is expanded. It has also been found that trimer formation is induced by purine cleavage with removal of the p27 portion.
전술한 바와 같이, RSV는 세계 여러 나라에서 널리 유행하며 영유아 및 면역 저하자들에게 특히 위험한 바이러스이지만 사용 가능한 예방 백신이 없다. 따라서, 본 발명으로 획득할 수 있는 가용성 RSV F 단백질은 이러한 요구에 필요한 면역 유발 물질을 제공할 수 있으리라 생각된다..As mentioned earlier, RSV is widely prevalent in many parts of the world and is a particularly dangerous virus for infants and young children, but there is no vaccine available. Thus, it is believed that the soluble RSV F protein obtainable with the present invention can provide the immunogen that is required for this requirement.
본 발명은 재조합된 가용성 호흡기 세포융합 바이러스(RSV) 융합(F) 폴리펩타이드를 제공하고자 한다. 본 발명의 가용성 RSV F 폴리펩타이드는 RSV F 단백질에 특이적인 적어도 하나의 에피토프를 포함한다. 특정 구현예에서, 폴리펩타이드는 융합 펩타이드 영역이 변형된 형태이다. 특정 구현예에서, 폴리펩타이드에 하나 또는 둘, 또는 그 이상의 아미노산 변형을 포함한다.The present invention is directed to providing recombinant soluble respiratory cell fusion virus (RSV) fusion (F) polypeptides. The soluble RSV F polypeptides of the present invention comprise at least one epitope specific for the RSV F protein. In certain embodiments, the polypeptide is a modified form of the fusion peptide region. In certain embodiments, the polypeptide comprises one or two or more amino acid modifications.
본 발명은 또한, 가용성 RSV F 폴리펩타이드, 핵산 분자 및/또는 면역원성을 유발하는 조성물, 및 가용성 RSV F 단백질에 대한 동물 및 인체에 면역 반응을 유도하는 데 있어서 이의 용도, 특히 백신으로서의 이의 용도를 제공하고자 한다. 본 발명은 또한, 백신으로의 용도에 대한 특정한 내용으로 상기 RSV F 폴리펩타이드를 인코딩하는 핵산 분자, 및/또는 상기 핵산 분자를 포함하는 벡터, 및/또는 핵산 분자로부터 전사되는 폴리펩타이드를 대상에게 유효량을 투여하는 단계를 포함한다. 특정한 측면에서, 본 발명은 대상에서 중화성 항-호흡기 세포융합 바이러스(RSV) F 단백질 항체를 유도하는 방법에 관한 것으로서, 이 방법은, 상기 RSV F 폴리펩타이드를 인코딩하는 핵산 분자, 및/또는 상기 핵산 분자를 포함하는 벡터, 및/또는 핵산 분자로부터 전사되는 폴리펩타이드를 대상에게 유효량을 투여하는 단계를 포함한다.The present invention also relates to the use of a soluble RSV F polypeptide, a nucleic acid molecule and / or a composition for inducing immunogenicity, and its use in inducing an animal and human immunological response to a soluble RSV F protein, particularly its use as a vaccine . The present invention also relates to a nucleic acid molecule encoding the RSV F polypeptide and / or a vector comprising the nucleic acid molecule and / or a polypeptide transcribed from the nucleic acid molecule in a specific context for use as a vaccine, ≪ / RTI > In particular aspects, the present invention relates to a method of inducing a neutralizing anti-respiratory cell fusion virus (RSV) F protein antibody in a subject, comprising the step of administering to the subject a nucleic acid molecule encoding the RSV F polypeptide, and / A vector comprising a nucleic acid molecule, and / or a polypeptide transcribed from a nucleic acid molecule.
일반적인 용어의 정의Definition of common terms
본 원에 사용한 용어 "단백질" 또는 "폴리펩티드"는 특정 핵산에 암호화되어 생성되는 아미노산의 집합체를 의미한다. 여기서 집합체는 두 개, 세 개, 네 개, 혹은 그 이상의 아미노산으로 이루어진 단위체를 의미한다. 여기서 "단백질" 또는 "폴리펩티드"는 "항원" 또는 "면역원"을 의미하는 것으로 업계에서 이해될 수 있다. The term " protein " or " polypeptide " used herein refers to a collection of amino acids that are encoded and generated in a particular nucleic acid. Here, the aggregate means a unit consisting of two, three, four, or more amino acids. Herein, " protein " or " polypeptide " may be understood as meaning "antigen" or "immunogen".
본 원에 사용한 용어 "항원"은 면역원성을 유발하는 모든 물질을 의미한다. 용어 "항원"은 단백질 또는 단백질이 모여 구성된 거대 단백질 분자를 포함한다. 거대 단백질은 다수의 단백질 배열 및 단백질 집합을 의미하며, 폴리머 항원 및 VLP(바이러스 유사 입자, Virus-like particle)가 포함되어 있다. 여기서 면역원성 유발은 세포성 면역 및 체액성 면역 모두를 의미한다. 용어 "항원"은, 예를 들어 체내에 침투한 외부물질 전체 및 일부가 포함되며, 용어 "항원"에 의한 세포성 면역 유도는 항원 특이 항체 생성을 의미할 수도 있다. 항원 특이 항체 중에는 재 침투한 외부물질을 방어하고 중화 작용을 하는 중화 항체가 포함되어 있다. The term " antigen ", as used herein, refers to any substance that induces immunogenicity. The term " antigen " includes macromolecular molecules composed of proteins or proteins. A large protein refers to a large number of protein sequences and protein aggregates, including polymer antigens and virus-like particles (VLPs). Here, immunogenicity induction refers to both cellular immunity and humoral immunity. The term " antigen " includes, for example, all and some foreign material that has penetrated into the body, and induction of cellular immunity by the term " antigen " may mean generation of antigen-specific antibodies. Antigen-specific antibodies include neutralizing antibodies that neutralize re-infiltrated foreign material.
본 명세서에서 사용된, "돌연변이된", "변이된", "변형된", "돌연변이" 또는 "변형"이란 용어는 변형된 핵산 또는 폴리펩타이드를 형성하는, 핵산 및/또는 폴리펩타이드의 임의의 변형을 나타낸다. 돌연변이는, 예를 들어, 폴리뉴클레오티드에서 단일 또는 여러 잔기의 점 돌연변이, 결실 또는 삽입을 포함하며, 유전자의 단백질-암호화 영역 내에서 발생하는 변화뿐만 아니라 제어 또는 프로모터 서열들과 같으나 이에 제한되지 않는 단백질-암호화 서열의 바깥 영역에서 변화를 포함한다. 유전적 변화는 임의의 형태의 돌연변이일 수 있다. 예를 들어, 돌연변이는 유전자의 전부 또는 일부의 점 돌연변이, 프레임-이동 돌연변이, 삽입 또는 결실을 구성할 수 있다. 일부 실시예들에서, 돌연변이는 자연적으로 발생한다. 다른 실시예들에서, 돌연변이는 인공적 돌연변이 압력의 결과이다. The term "mutated", "mutated", "modified", "mutated" or "modified" as used herein refers to any nucleic acid and / or polypeptide that forms a modified nucleic acid or polypeptide Lt; / RTI > Mutations may include, for example, point mutations, deletions or insertions of single or multiple residues in a polynucleotide, and include changes in the protein-coding region of the gene as well as changes in the protein, such as but not limited to control or promoter sequences - Contains changes in the outer region of the coding sequence. The genetic change may be any form of mutation. For example, a mutation can constitute a point mutation, a frame-shifting mutation, an insertion or deletion of all or part of a gene. In some embodiments, the mutation occurs naturally. In other embodiments, the mutation is the result of an artificial mutation pressure.
본 명세서에서 사용된, "백신"이라는 용어는 죽거나 약해진 병원체 또는 병원체에 대항해 항체 또는 면역의 형성을 유도하는데 사용되는 유도된 항원 결정자의 조제품을 의미한다. 백신은 다양한 종류의 바이러스에 의해 발생하는 질환, 예를 들어, 인플루엔자 등에 대해 면역을 제공하도록 주어진다. 또한, "백신"이라는 용어는 보호면역, 즉 감염과 관련된 질환의 심각함을 예방 또는 감소시키는 면역을 일으키기 위해 척추동물에 투여되는 면역원(예를 들어, 변형 또는 돌연변이 RSV F 단백질)의 현탁액 또는 용액을 의미한다. 본 발명은 면역원성이고 감염과 관련된 질환에 대항하여 보호를 제공할 수 있는 백신 조성물을 제공한다. As used herein, the term " vaccine " refers to a preparation of an induced antigenic determinant used to induce the formation of antibodies or immunity against dead or weakened pathogen or pathogen. Vaccines are given to provide immunity against diseases caused by various kinds of viruses, for example, influenza and the like. The term " vaccine " also refers to a suspension or solution of an immunogen (e. G., A modified or mutated RSV F protein) administered to a vertebrate animal to cause protective immunity, i. E. it means. The present invention provides vaccine compositions that are immunogenic and capable of providing protection against diseases associated with infection.
또 다른 실시예들에서, RSV F 단백질들에서 돌연변이들은 유전 공학의 결과이다.In yet another embodiment, mutations in RSV F proteins are the result of genetic engineering.
본 원에 표현되어 있는 "포함"은 이라는 용어는, 해당 내용 및 내용물이 함께 있음을 의미한다. 용어 "포함"은 내용 및 내용물의 첨가 또는 함유를 의미하기도 한다. 하지만, 용어 "포함"은 해당 내용 및 내용물이 독립적, 단독적으로도 사용될 수 있다는 사실에 유의해야 한다.The term " including ", as used herein, means that the content and content are together. The term " comprising " may also mean addition or content of the content and contents. It should be borne in mind, however, that the term " comprising " means that the contents and contents may be used independently or singly.
"약"은 참조 값으로서 동일한 효과 및 결과를 제공하는 값들이 모두 포함된다. 하지만, "약"은 참조 값에 대해서만 의미를 부여한다. 또한, 용어 "약"에 의해 포함된 범위는 용어가 포함되는 내용(참조 값)의 범위나 특성에 따라 변할 수 있다. 따라서, 내용에 따라, "약"은, 예를 들어, ±15%, ±10%, ±5%, ±4%, ±3%, ±2%, ±1%, 또는 1% 미만을 의미할 수 있다.&Quot; about " includes all values that provide the same effect and result as a reference value. However, " about " gives meaning only to the reference value. Also, the scope encompassed by the term " about " may vary depending on the scope or characteristics of the content (reference value) in which the term is included. Thus, depending on the context, " about " means, for example, ± 15%, ± 10%, ± 5%, ± 4%, ± 3%, ± 2%, ± 1%, or less than 1% .
본 원에 기재된 모든 수치 범위는 수치 범위 값 내에 있는 모든 수치 값을 포함 하고 있다. 예를 들어 "1000-3000"의 수치 범위는 1000 이상 3000 이하의 수치를 모두 포함하고 있음을 이해해야 한다. 또한, 본 원에 기재되어 있는 모든 수치는 독립적 수치 범위로 인정될 수도 있으며, 각 수치 값 간의 연결-복합적인 범위들로도 인정될 수 있다.All numerical ranges recited herein include all numerical values falling within numerical range values. For example, it should be understood that the numerical range of " 1000-3000 " In addition, all numerical values recited in this specification may be considered to be independent numerical ranges, and may also be accepted as a combination of numerical values - multiple ranges.
본 발명의 구체적인 내용Specific details of the present invention
상기와 같은 문제점을 해결하기 위하여 본 발명은 야생형 RSV F 단백질과 비교하여 변형이 일어난 아미노산 서열을 포함하는 재조합 RSV F 단백질들을 제공한다. 본 발명의 발명자들은 본 발명의 변형된 RSV F 단백질들은 야생형 RSV F 단백질들과 비교해서 RSV F 단백질들의 발현을 증가시키고, 면역원성을 향상시킨다. 특정 실시예에서 RSV F 단백질들은 인간 RSV F 단백질들이다.In order to solve the above-mentioned problems, the present invention provides recombinant RSV F proteins containing the amino acid sequence that has been modified compared to the wild-type RSV F protein. The inventors of the present invention found that the modified RSV F proteins of the present invention increase expression of RSV F proteins and improve immunogenicity compared to wild type RSV F proteins. In certain embodiments, the RSV F proteins are human RSV F proteins.
본 발명의 일 실시예에서 재조합 호흡기 세포융합 바이러스(RSV) F 단백질 항원이며, 상기 단백질 항원은 서열번호 1의 아미노산 서열의 525-574 위치가 결실된, RSV F 단백질 항원을 제공한다. In one embodiment of the present invention, the recombinant respiratory syncytial virus (RSV) F protein antigen provides a RSV F protein antigen wherein the 525-574 position of the amino acid sequence of SEQ ID NO: 1 is deleted.
상기 RSV F 단백질 항원은 서열번호 2로 이루어진다. The RSV F protein antigen comprises SEQ ID NO: 2.
상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열의 융합 펩타이드 (fusion peptide) 위치에서 하나 이상의 아미노산 치환을 더 포함할 수 있다. The RSV F protein antigen may further comprise at least one amino acid substitution at the fusion peptide position of the amino acid sequence of SEQ ID NO: 2.
상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열 137-145 위치에서 하나 이상의 소수성 아미노산을 친수성 아미노산으로 치환할 수 있으며, 바람직하게 상기 소수성 아미노산은 아미노산 "A"로 치환될 수 있다. 즉, 상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열 137-145 위치 아미노산 서열 FLGFLLGVG을 AAGAAAGAG로 변형한 RSV F 단백질 항원일 수 있다. In the RSV F protein antigen, at least one hydrophobic amino acid may be substituted with a hydrophilic amino acid at amino acid positions 137-145 of SEQ ID NO: 2, and preferably the hydrophobic amino acid may be substituted with an amino acid " A ". That is, the RSV F protein antigen may be a RSV F protein antigen modified with AAGAAAGAG amino acid sequence FLGFLLGVG at amino acid sequence 137-145 of SEQ ID NO: 2.
상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열 137-145 위치에서 하나 이상의 극성 아미노산을 무극성 아미노산으로 치환될 수 있다. The RSV F protein antigen may be substituted with a non-polar amino acid at one or more polar amino acids at amino acid positions 137-145 of SEQ ID NO: 2.
상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열 137-145 위치 아미노산 서열 FLGFLLGVG을 QNGQNNGSG로 변형한 RSV F 단백질 항원일 수 있다. The RSV F protein antigen may be an RSV F protein antigen modified from the amino acid sequence FLGFLLGVG of amino acid sequence 137-145 of SEQ ID NO: 2 by QNGQNNGSG.
상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열 137-145 위치 아미노산 서열 FLGFLLGVG을 NSGNSSGGG로 변형한 RSV F 단백질 항원일 수 있다.The RSV F protein antigen may be a RSV F protein antigen modified from the amino acid sequence FLGFLLGVG at position 137-145 of SEQ ID NO: 2 by NSGNSSGGG.
상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열 137-145 위치의 아미노산 서열 FLGFLLGVG을 TLSKKRKRR로 변형한 RSV F 단백질 항원일 수 있다. The RSV F protein antigen may be a RSV F protein antigen modified with the amino acid sequence FLGFLLGVG of amino acid sequence 137-145 of SEQ ID NO: 2 by TLSKKRKRR.
본 발명은 야생형 RSV F 단백질과 비교하여 변이가 유발된, 또는 변형된 아미노산 서열을 포함하는 재조합 가용성 호흡기 세포융합 바이러스 (RSV) 융합(F) 폴리펩타이드를 제공하고자 한다. 본 발명은 구체적으로 야생형 RSV F 단백질의 하나 또는 둘 이상의 아미노산 서열의 변이 또는 변형을 통해 얻어진 새로운 재조합 RSV F 단백질의 RSV 면역원으로서의 용도를 제공한다. 본 발명은 새로운 형태의 RSV 감염에 대한 면역 유발원을 제공한다.The present invention provides recombinant soluble respiratory syncytial virus (RSV) fusion (F) polypeptides comprising a mutated or modified amino acid sequence compared to the wild type RSV F protein. The present invention specifically provides the use of a novel recombinant RSV F protein obtained as a RSV immunogen, obtained through mutation or modification of one or more amino acid sequences of the wild-type RSV F protein. The present invention provides an immunogen for new forms of RSV infection.
본 발명의 발명자들은 RSV 구조 단백질 중 F 단백질의 특정 영역의 아미노산 서열을 변형시켜 뛰어난 면역원성을 제공할 수 있다는 점을 확인하고 본 발명을 완성하게 되었다. The inventors of the present invention have confirmed that the amino acid sequence of a specific region of the F protein among the RSV structural proteins can be modified to provide excellent immunogenicity, thus completing the present invention.
본 발명의 일 실시예에서 서열번호 1로 이루어진 야생형 호흡기 세포융합 바이러스 (RSV)의 융합 단백질(fusion peptide(F protein))의 일부가 결실된 형태의 RSV F 단백질은 서열번호 2로 나타낼 수 있고, 상기 서열번호 2의 RSV F 단백질은 체내에서 RSV 면역원, 또는 RSV 면역 유발을 위한 항원으로 제공될 수 있다. In one embodiment of the present invention, the RSV F protein in which a part of the fusion peptide (F protein) of the wild-type respiratory syncytial virus (RSV) comprising SEQ ID NO: 1 is deleted can be represented by SEQ ID NO: 2, The RSV F protein of SEQ ID NO: 2 may be provided as an RSV immunogen in the body or as an antigen for RSV immunization.
바람직하게 서열번호 2의 RSV F 단백질은 서열번호 1의 야생형 RSV F 단백질의 아미노산 서열 위치 525-574이 결실된 형태를 포함한다. 상기 서열번호 2의 아미노산 서열 위치 525-574는 F 단백질의 막 횡단 도메인(transmembrane domain)과 싸이토졸 부분 (Cytosol region)이 포함된 부위로 이해될 수 있다.Preferably, the RSV F protein of SEQ ID NO: 2 comprises a deletion of amino acid sequence positions 525-574 of the wild-type RSV F protein of SEQ ID NO: 1. The amino acid sequence position 525-574 of SEQ ID NO: 2 can be understood as a site including a transmembrane domain and a cytosol region of the F protein.
본 발명의 RSV 면역원은 서열번호 1의 야생형 RSV F 단백질의 아미노산 서열 위치 525-574가 결실된 형태인, 서열번호 2의 RSV F 단백질이 하나 또는 둘 이상의 서열변이(아미노산 또는 핵산)를 겪었을 때, 뛰어난 면역원성(즉, 높은 항체가)을 제공하고, 체내 안정성을 제공할 수 있다. RSV immunogens of the present invention are those in which the RSV F protein of SEQ ID NO: 2, in which the amino acid sequence positions 525-574 of the wild type RSV F protein of SEQ ID NO: 1 is deleted, undergoes one or more sequence variations (amino acids or nucleic acids) , Excellent immunogenicity (i.e., high antibody affinity), and can provide body stability.
본 발명의 일 실시예에서 RSV 면역원은 서열번호 1의 야생형 RSV F 단백질의 아미노산 서열 위치 525-574가 결실된 형태일 때, 가용성 F 단백질을 제공할 수 있다. In one embodiment of the invention, the RSV immunogen is capable of providing a soluble F protein when the amino acid sequence positions 525-574 of the wild-type RSV F protein of SEQ ID NO: 1 are deleted.
본 발명의 일 실시예에서 RSV 면역원은 서열번호 1의 야생형 RSV F 단백질의 아미노산 서열 위치 525-574가 결실된 형태인 서열번호 2의 RSV F 단백질이 하나 또는 둘 이상의 서열변이(아미노산 또는 핵산)를 겪었을 때, 가용성 F 단백질을 제공할 수 있다.In one embodiment of the invention, the RSV immunogen comprises an RSV F protein of SEQ ID NO: 2 in which the amino acid sequence positions 525-574 of the wild-type RSV F protein of SEQ ID NO: 1 are deleted is one or more sequence variants (amino acids or nucleic acids) When present, soluble F protein can be provided.
바람직하게 상기 서열번호 2의 RSV F 단백질이 하나 또는 둘 이상의 서열변이를 겪는 위치는 RSV F 단백질의 융합 펩타이드(fusion peptide) 부위로 이해될 수 있다. 상기 융합 펩타이드 부위의 돌연변이는 재조합된 RSV F 단백질이 뛰어난 면역원성으로 작용할 수 있다는 점을 확인시켜 주었다. 바람직하게 상기 융합 펩타이드 부위는 서열번호 2의 137-145 위치이며, 더 바람직하게 서열번호 2의 137-144 위치이다. Preferably, the position at which the RSV F protein of SEQ ID NO: 2 undergoes one or more sequence variations can be understood as the fusion peptide region of the RSV F protein. Mutations in the fusion peptide region have confirmed that the recombinant RSV F protein can work with excellent immunogenicity. Preferably, the fusion peptide moiety is at position 137-145 of SEQ ID NO: 2, more preferably at position 137-144 of SEQ ID NO: 2.
본 발명의 발명자들은 상기 서열번호 2의 137-144 위치의 결손(deletion)은 RSV F 단백질의 안정화에는 기여할 수 있지만, 항체가 상승 효과가 미미할 수 있음을 확인하였다. 또한, 융합 펩타이드의 아미노산이 다른 아미노산으로 대체(치환)될 때 면역 반응에 차이가 있었고, 뛰어난 효과의 면역으로 작용할 수 있음을 확인하였다.The inventors of the present invention confirmed that the deletion at positions 137-144 of SEQ ID NO: 2 may contribute to the stabilization of the RSV F protein, but the synergistic effect of the antibody may be insignificant. In addition, when the amino acid of the fusion peptide was replaced with another amino acid (substitution), there was a difference in the immune response, and it was confirmed that it could act as an immunity of excellent effect.
본 발명의 발명자들은 오랜 기간 연구를 통하여 RSV F 단백질의 융합 펩타이드의 하나 또는 둘 이상의 서열 변이를 통해 뛰어난 항체가를 제공할 수 있는 재조합된 RSV F 단백질 면역원을 개발하게 되었다. The inventors of the present invention have developed a recombinant RSV F protein immunogen that can provide excellent antibody titer through one or more sequence variations of the fusion peptide of the RSV F protein through long term studies.
본 발명의 일실시예에서 RSV F 단백질 면역원은 RSV 감염에 대한 예방, 치료 등의 용도로 사용될 수 있으며, 바람직하게 RSV 감염 예방을 위한 백신으로 제공될 수 있다. In one embodiment of the present invention, the RSV F protein immunogen can be used for prevention and treatment of RSV infection, and can be preferably provided as a vaccine for prevention of RSV infection.
구체적으로 본 발명의 일실시예는 RSV F 단백질의 융합 펩타이드의 일부 서열을 변이 또는 변형시킨 RSV 면역원을 제공한다. 본 발명의 일실시예는 서열번호 2의 RSV F 단백질의 서열 위치 137-145의 아미노산에서 하나 또는 둘 이상의 돌연변이 및/또는 서열번호 2의 RSV F 단백질의 서열 위치 137-145의 아미노산 서열에 대응하는, 서열번호 24의 핵산 염기서열에서 하나 또는 둘 이상의 돌연변이를 포함하는 재조합된 가용성 RSV F 단백질 면역원을 제공한다. 보다 구체적으로, 재조합된 가용성 호흡기 세포융합 바이러스(RSV) 융합(F) 폴리펩타이드를 제공하고자 한다. 본 발명의 일실시예의 가용성 RSV F 폴리펩타이드는 RSV F 단백질에 특이적인 적어도 하나의 에피토프를 포함한다. 특정 구현예에서, 폴리펩타이드는 융합 펩타이드 영역이 변형된 형태이다. 특정 구현예에서, 폴리펩타이드에 하나 또는 둘, 또는 그 이상의 아미노산 변형을 포함한다.Specifically, one embodiment of the present invention provides a RSV immunogen that mutates or modifies a partial sequence of a fusion peptide of RSV F protein. One embodiment of the present invention is a method for the production of a RSV F protein of SEQ ID NO: 2 wherein the RSV F protein comprises one or more mutations in the amino acid sequence positions 137-145 and / or the RSV F protein of SEQ ID NO: 2 corresponding to the amino acid sequence at positions 137-145 , A recombinant soluble RSV F protein immunogen comprising one or more mutations in the nucleotide sequence of SEQ ID NO: 24. More specifically, it is intended to provide a recombinant soluble respiratory cell fusion virus (RSV) fusion (F) polypeptide. The soluble RSV F polypeptides of one embodiment of the invention comprise at least one epitope specific for the RSV F protein. In certain embodiments, the polypeptide is a modified form of the fusion peptide region. In certain embodiments, the polypeptide comprises one or two or more amino acid modifications.
본 발명은 또한, 가용성 RSV F 폴리펩타이드, 핵산 분자 및/또는 면역원성을 유발하는 조성물, 및 가용성 RSV F 단백질에 대한 동물 및 인체에 면역 반응을 유도하는 데 있어서 이의 용도, 특히 백신으로서의 이의 용도를 제공하고자 한다. 본 발명은 또한, 백신으로의 용도에 대한 특정한 내용으로 상기 RSV F 폴리펩타이드를 인코딩하는 핵산 분자, 및/또는 상기 핵산 분자를 포함하는 벡터, 및/또는 핵산 분자로부터 전사되는 폴리펩타이드를 대상에게 유효량을 투여하는 단계를 포함한다. 특정한 측면에서, 본 발명은 대상에서 중화성 항-호흡기 세포융합 바이러스(RSV) F 단백질 항체를 유도하는 방법에 관한 것으로서, 이 방법은, 상기 RSV F 폴리펩타이드를 인코딩하는 핵산 분자, 및/또는 상기 핵산 분자를 포함하는 벡터, 및/또는 핵산 분자로부터 전사되는 폴리펩타이드를 대상에게 유효량을 투여하는 단계를 포함한다.The present invention also relates to the use of a soluble RSV F polypeptide, a nucleic acid molecule and / or a composition for inducing immunogenicity, and its use in inducing an animal and human immunological response to a soluble RSV F protein, particularly its use as a vaccine . The present invention also relates to a nucleic acid molecule encoding the RSV F polypeptide and / or a vector comprising the nucleic acid molecule and / or a polypeptide transcribed from the nucleic acid molecule in a specific context for use as a vaccine, ≪ / RTI > In particular aspects, the present invention relates to a method of inducing a neutralizing anti-respiratory cell fusion virus (RSV) F protein antibody in a subject, comprising the step of administering to the subject a nucleic acid molecule encoding the RSV F polypeptide, and / A vector comprising a nucleic acid molecule, and / or a polypeptide transcribed from a nucleic acid molecule.
일 실시예에서 상기 야생형 RSV F 단백질의 아미노산 서열 위치 525-574가 결실된 변형은 서열번호 2로 이루어진 RSV F 단백질로 이해될 수 있다. In one embodiment, the variant in which the amino acid sequence positions 525-574 of the wild-type RSV F protein is deleted can be understood as an RSV F protein consisting of SEQ ID NO: 2.
본 발명의 발명자들은 상기 서열번호 2로 이루어진 RSV F 단백질의 융합 펩타이드, 구체적으로 아미노산 위치 137-145의 돌연변이가 항체가를 높일 수 있음을 확인하였다. 뿐만 아니라 반복감염을 줄여줄 수 있고, 접종 횟수를 감소시킬 수 있다. The inventors of the present invention have confirmed that a fusion peptide of the RSV F protein of SEQ ID NO: 2, specifically a mutation at an amino acid position of 137-145 can increase antibody titer. In addition, repeated infections can be reduced and the number of inoculations can be reduced.
본 발명의 발명자들은 상기 서열번호 2로 이루어진 RSV F 단백질 항원 및 상기 항원의 특정한 아미노산 위치에서 유발된 변형 또는 돌연변이는 숙주 세포 내에서 RSV F 단백질의 발현을 증가시키고, 면역원성을 현저히 증가시킨다는 것을 확인하였다. The inventors of the present invention have found that a mutation or mutation induced at the RSV F protein antigen and the specific amino acid position of the antigen of SEQ ID NO: 2 increases the expression of RSV F protein in the host cell and significantly increases immunogenicity Respectively.
일 실시예에서 RSV F 단백질 항원은 서열번호 2의 융합 펩타이드, 더 바람직하게 서열번호 2의 아미노산 서열 137-145 위치에서 하나 이상의 아미노산이 치환된 형태를 포함할 수 있다. 상기 서열번호 2의 아미노산 서열 137-145 위치는 RSV F 단백질의 융합 펩타이드 (fusion peptide)부분으로 이해될 수 있다. 일 실시예에서 상기 서열번호 2의 아미노산 서열 137-145 위치에서 아미노산의 치환은 상기 위치에 해당하는 아미노산들의 하나 또는 둘 이상의 변형 또는 돌연변이를 포함할 수 있다. 일 실시예에서 RSV F 단백질들은 상기 위치에 해당하는 아미노산들에서 세 개 이상의 변형 또는 돌연변이를 포함할 수 있다. In one embodiment, the RSV F protein antigen may comprise a fusion peptide of SEQ ID NO: 2, more preferably at least one amino acid substituted at amino acid positions 137-145 of SEQ ID NO: 2. The amino acid sequence 137-145 of SEQ ID NO: 2 can be understood as a fusion peptide portion of the RSV F protein. In one embodiment, the amino acid substitution at amino acid positions 137-145 of SEQ ID NO: 2 may include one or more mutations or mutations of the amino acids corresponding to the position. In one embodiment, the RSV F proteins may comprise three or more modifications or mutations in the amino acids corresponding to that position.
상기 치환은 아미노산의 변형 또는 돌연변이를 의미하는 것으로 이해될 수 있다. 즉, 상기 치환은 서열번호 2의 아미노산 서열의 일부가 변경되는 모든 경우를 포함하는 의미로 이해될 수 있다. 예를 들어 서열번호 2의 아미노산 서열의 하나 또는 그 이상의 아미노산 서열이 변경되는 모든 경우를 포함할 수 있다. Such substitution can be understood as meaning a modification or mutation of an amino acid. That is, the substitution may be understood to include all cases in which a part of the amino acid sequence of SEQ ID NO: 2 is changed. For example, all cases in which one or more amino acid sequences of the amino acid sequence of SEQ ID NO: 2 are altered.
일 실시예에서 상기 서열번호 2의 아미노산 서열 137-145 위치에서 하나 이상의 소수성 아미노산은 친수성 아미노산으로 치환될 수 있다. 더욱 구체적으로 서열번호 2의 RSV F 단백질은 융합 펩타이드 부분의 하나 이상의 소수성 부분을 친수성 부분으로 변형한 변이이다. 더욱 구체적으로 본 발명은 서열번호 2의 137-145 위치의 FLGFLLGVG 서열의 소수성 부분을 A로 치환하여 AAGAAAGAG으로 변형된 RSV F 단백질 항원 (서열번호 3, FP1)을 포함한다. In one embodiment, at least one hydrophobic amino acid at amino acid positions 137-145 of SEQ ID NO: 2 may be substituted with a hydrophilic amino acid. More specifically, the RSV F protein of SEQ ID NO: 2 is a variation of one or more hydrophobic portions of the fusion peptide portion into hydrophilic portions. More specifically, the invention comprises a RSV F protein antigen (SEQ ID NO: 3, FP1) modified with AAGAAAGAG by substituting A with the hydrophobic portion of the FLGFLLGVG sequence at positions 137-145 of SEQ ID NO:
일 실시예에서 상기 서열번호 2의 아미노산 서열 137-145 위치에서 하나 이상의 극성 아미노산은 무극성 아미노산으로 치환될 수 있다. 더욱 구체적으로 서열번호 2의 RSV F 단백질은 융합 펩타이드 부분의 극성 부분을 무극성 곁사슬로 변형한 변이이다. 더욱 구체적으로 본 발명은 서열번호 2의 137-145 위치의 FLGFLLGVG 서열을 QNGQNNGSG로 변형한 RSV F 단백질 항원 (서열번호 4, FP3)을 포함한다. 또 다른 실시예에서 상기 서열번호 2의 아미노산 서열 137-145 위치의 FLGFLLGVG 서열을 NSGNSSGGG로 변형한 RSV F 단백질 항원 (서열번호 5, FP4)을 포함한다.In one embodiment, at least one of the polar amino acids at amino acid positions 137-145 of SEQ ID NO: 2 may be substituted with a non-polar amino acid. More specifically, the RSV F protein of SEQ ID NO: 2 is a mutation in which the polar portion of the fusion peptide portion is transformed into a nonpolar side chain. More specifically, the present invention encompasses a RSV F protein antigen (SEQ ID NO: 4, FP3) that has been modified from the FLGFLLGVG sequence at positions 137-145 of SEQ ID NO: 2 to QNGQNNGSG. In another embodiment, the RSV F protein antigen (SEQ ID NO: 5, FP4) is obtained by modifying the FLGFLLGVG sequence of amino acid sequence 137-145 of SEQ ID NO: 2 with NSGNSSGGG.
본 발명의 발명자들은 상기 서열번호 2의 137-145 위치의 아미노산 서열이 돌연변이된 RSV F 단백질, 바람직하게 상기 FP1(서열번호 3), FP3(서열번호 4) 및 FP4(서열번호 5)는 본 발명의 목적상 뛰어난 면역원으로서의 역할을 할 수 있다. 서열번호 2의 137-145 위치의 아미노산 서열에서 돌연변이가 일어날 수 있지만, 업계의 통상의 기술자가 익히 알고 있는 바와 같이 단백질을 구성하는 아미노산의 치환, 결실, 삽입으로 단백질의 기능 및 효과가 전혀 다르게 나타날 수 있다. The inventors of the present invention have found that the RSV F protein mutated at amino acid positions 137-145 of SEQ ID No. 2, preferably FP1 (SEQ ID No. 3), FP3 (SEQ ID No. 4) and FP4 (SEQ ID No. 5) Can serve as an excellent immunogen for the purpose of Mutations may occur in the amino acid sequence at positions 137-145 of SEQ ID NO: 2, but as known to those of ordinary skill in the art, substitution, deletion, and insertion of amino acids constituting the protein may result in completely different functions and effects of the protein .
본 발명은 특히 서열번호 2의 137-145 위치에서 유발된 돌연변이 중 가장 뛰어난 면역원성을 기대할 수 있는 최적화된 재조합 RSV F 단백질을 제공한다. The present invention provides an optimized recombinant RSV F protein that is expected to have the best immunogenicity among the mutations induced particularly at positions 137-145 of SEQ ID NO: 2.
본 발명의 일 실시예에 따른 RSV F 단백질 항원은 가용성 단백질이며, 본 발명의 일 실시예에서 상기 RSV F 단백질 항원을 포함하는 가용성 RSV F 단백질 항원 및/또는 면역원성 조성물을 제공한다. The RSV F protein antigen according to an embodiment of the present invention is a soluble protein, and in one embodiment of the present invention, provides a soluble RSV F protein antigen and / or an immunogenic composition comprising the RSV F protein antigen.
본 발명의 일 실시예에서 상기 RSV F 단백질 항원은 서열번호 3, 서열번호 4, 서열번호 5, 서열번호 6, 서열번호 7, 서열번호 8, 서열번호 9, 서열번호 10, 서열번호 11, 서열번호 12, 서열번호 13, 서열번호 14, 서열번호 15, 서열번호 16, 서열번호 17, 서열번호 18, 서열번호 19, 서열번호 20, 서열번호 21, 및 서열번호 22로 이루어진 군에서 선택된 어느 하나 이상의 단백질 항원을 포함할 수 있다. 바람직하게 일 실시예에서 상기 RSV F 단백질 항원은 서열번호 3, 서열번호 4, 서열번호 5, 및 서열번호 6으로 이루어진 군에서 선택된 어느 하나 이상의 단백질 항원을 포함할 수 있다. 더 바람직하게 일 실시예에서 상기 RSV F 단백질 항원은 서열번호 3, 서열번호 4, 및 서열번호 5로 이루어진 군에서 선택된 어느 하나 이상의 단백질 항원을 포함할 수 있다.In one embodiment of the present invention, the RSV F protein antigen is selected from the group consisting of SEQ ID NO: 3, 4, 5, 6, 7, 8, 9, 10, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: Or more of the above protein antigens. In one embodiment, the RSV F protein antigen may comprise at least one protein antigen selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: More preferably, in one embodiment, the RSV F protein antigen may comprise at least one protein antigen selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5.
본 발명의 일 실시예에서 상기 RSV F 단백질 항원은 서열번호 25, 서열번호 26, 서열번호 27, 서열번호 28, 서열번호 29, 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 33, 서열번호 34, 서열번호 35, 서열번호 36, 서열번호 37, 서열번호 38, 서열번호 39, 서열번호 40, 서열번호 41, 서열번호 42, 서열번호 43, 및 서열번호 44로 이루어진 군에서 선택된 어느 하나 이상의 염기서열에 의해 암호화된 단백질 항원일 수 있다. 바람직하게 상기 RSV F 단백질 항원은 서열번호 25, 서열번호 26, 서열번호 27, 및 서열번호 28로 이루어진 군에서 선택된 어느 하나 이상의 염기서열에 의해 암호화된 단백질 항원일 수 있다. 더 바람직하게 상기 RSV F 단백질 항원은 서열번호 25, 서열번호 26, 및 서열번호 27로 이루어진 군에서 선택된 어느 하나 이상의 염기서열에 의해 암호화된 단백질 항원일 수 있다. In one embodiment of the present invention, the RSV F protein antigen is selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: Or a protein antigen encoded by the above base sequence. Preferably, the RSV F protein antigen may be a protein antigen encoded by any one or more of the nucleotide sequences selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27 and SEQ ID NO: More preferably, the RSV F protein antigen may be a protein antigen encoded by at least one base sequence selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, and SEQ ID NO: 27.
본 발명의 일 실시예에서 야생 RSV F 단백질의 F1 부분의 안정화를 유지 시켜주는 추가 변이를 포함하고 있다. 안정화와 관련된 추가적인 돌연변이는 서열번호 2를 기준으로 하기 (a) 내지 (g)로 이루어진 군으로부터 선택되는 적어도 하나의 추가적인 돌연변이를 더 포함한다. In one embodiment of the invention, additional mutations that maintain the stabilization of the F1 portion of the wild RSV F protein. Additional mutations associated with stabilization further include at least one additional mutation selected from the group consisting of (a) to (g) based on SEQ ID NO: 2.
(a) 140번째 위치에서 아미노산 잔기의 돌연변이; (a) a mutation of the amino acid residue at the 140th position;
(b) 163번째 위치에서 아미노산 잔기의 돌연변이; (b) a mutation of the amino acid residue at position 163;
(c) 179번째 위치에서 아미노산 잔기의 돌연변이;(c) a mutation of the amino acid residue at position 179;
(d) 188번째 위치에서 아미노산 잔기의 돌연변이; (d) a mutation of the amino acid residue at position 188;
(e) 189번째 위치에서 아미노산 잔기의 돌연변이;(e) a mutation of the amino acid residue at position 189;
(f) 487번째 위치에서 아미노산 잔기의 돌연변이; 및(f) a mutation of an amino acid residue at position 487; And
(g) 505번째 위치에서 아미노산 잔기의 돌연변이.(g) Mutation of amino acid residues at position 505.
더 구체적으로, 본 발명의 RSV F 단백질 항원은 서열번호 2를 기준으로 More specifically, the RSV F protein antigens of the present invention are based on SEQ ID NO: 2
(a) 140번째 위치에서 아미노산 잔기 F에서 W의 돌연변이(서열번호 7); (a) a mutation of W at the amino acid residue F at position 140 (SEQ ID NO: 7);
(b) 163번째 위치에서 아미노산 잔기 E에서 Q의 돌연변이(서열번호 8); (b) a mutation of Q at amino acid residue E at position 163 (SEQ ID NO: 8);
(c) 179번째 위치에서 아미노산 잔기 V에서 L의 돌연변이(서열번호 9);(c) a mutation of L at amino acid residue V at position 179 (SEQ ID NO: 9);
(d) 188번째 위치에서 아미노산 잔기 L에서 Q의 돌연변이(서열번호 10); (d) a mutation of Q at the amino acid residue L at position 188 (SEQ ID NO: 10);
(e) 189번째 위치에서 아미노산 잔기 T에서 L의 돌연변이(서열번호 11);(e) a mutation in the amino acid residue T at position 189 (SEQ ID NO: 11);
(f) 487번째 위치에서 아미노산 잔기 E에서 L의 돌연변이(서열번호 12); 및(f) a mutation of the amino acid residue E at position 487 (SEQ ID NO: 12); And
(g) 505번째 위치에서 아미노산 잔기 F에서 W의 돌연변이(서열번호 13)로 이루어진 군에서 선택된 어느 하나 이상의 돌연변이를 포함한다. (g) a mutation at position 505 of the amino acid residue F to W (SEQ ID NO: 13).
다른 실시예에서 상기 RSV F 단백질 항원은 In another embodiment, the RSV F protein antigen is
서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 163에 상응하는 아미노산이 Q로 치환되거나(서열번호 14); An amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, an amino acid corresponding to 163 is substituted with Q (SEQ ID NO: 14);
서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 163에 상응하는 아미노산이 Q로 치환되고, 188에 상응하는 아미노산이 Q로 치환되고, 189에 상응하는 아미노산이 L로 치환되거나(서열번호 15);The amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, the amino acid corresponding to 163 is substituted with Q, the amino acid corresponding to 188 is substituted with Q, the amino acid corresponding to 189 is substituted with L No. 15);
서열번호 2의 위치 488에 상응하는 아미노산이 W로 치환되고, 163에 상응하는 아미노산이 Q로 치환되거나(서열번호 16); An amino acid corresponding to position 488 of SEQ ID NO: 2 is substituted with W, an amino acid corresponding to 163 is substituted with Q (SEQ ID NO: 16);
서열번호 2의 위치 488에 상응하는 아미노산이 W로 치환되고, 179에 상응하는 아미노산이 L로 치환되거나(서열번호 17); An amino acid corresponding to position 488 of SEQ ID NO: 2 is substituted with W, an amino acid corresponding to 179 is substituted with L (SEQ ID NO: 17);
서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나(서열번호 18); An amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, an amino acid corresponding to 505 is substituted with W (SEQ ID NO: 18);
서열번호 2의 위치 487에 상응하는 아미노산이 L로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나(서열번호 19); An amino acid corresponding to position 487 of SEQ ID NO: 2 is substituted with L, an amino acid corresponding to 505 is substituted with W (SEQ ID NO: 19);
서열번호 2의 위치 163에 상응하는 아미노산이 Q로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나(서열번호 20); The amino acid corresponding to position 163 of SEQ ID NO: 2 is substituted with Q, the amino acid corresponding to 505 is replaced with W (SEQ ID NO: 20);
서열번호 2의 위치 188에 상응하는 아미노산이 Q로 치환되고, 189에 상응하는 아미노산이 L로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나(서열번호 21);An amino acid corresponding to position 188 of SEQ ID NO: 2 is substituted with Q, an amino acid corresponding to 189 is substituted with L, and an amino acid corresponding to 505 is substituted with W (SEQ ID NO: 21);
서열번호 2의 위치 163에 상응하는 아미노산이 Q로 치환되고, 487에 상응하는 아미노산이 L로 치환(서열번호 22)될 수 있다.The amino acid corresponding to position 163 of SEQ ID NO: 2 may be substituted with Q and the amino acid corresponding to 487 may be substituted with L (SEQ ID NO: 22).
본 발명은 상기 RSV F 단백질이 포함된 RSV 면역원성 조성물 및/또는 백신을 제공한다. The present invention provides a RSV immunogenic composition and / or vaccine comprising said RSV F protein.
본 발명의 범위 내에 추가로 포함되는 것은 상기한 것에 해당하는 변형을 포함하는 인간 RSV F 단백질(서열번호 1) 이외의 RSV F 단백질들이다. 이런 RSV F 단백질들은 인간 RSV의 A 균주, 인간 RSV의 B 균주, 소 RSV의 균주들 및 조류 RSV의 균주들로부터의 RSV F 단백질들을 포함할 수 있으나 이에 제한되지 않는다.Further included within the scope of the present invention are RSV F proteins other than the human RSV F protein (SEQ ID NO: 1), including variants corresponding to those described above. Such RSV F proteins may include, but are not limited to, A strains of human RSV, B strains of human RSV, strains of bovine RSV, and RSV F proteins from strains of avian RSV.
일부 실시예에서, 상기에서 언급한 변이된 RSV F 단백질들의 특성을 향상 또는 변형하는 단백질 가공 및 재조합 DNA 기술의 공지된 방법을 사용하는 것을 포함한다. 해당 단백질들을 암호화하는 유전자는 코돈 적합화를 실시하여 변형 하였으며, 해당 뉴클레오타이드의 변형은 당업자들이 인지하고 있는 사항이다. 다양한 형태의 돌연변이유발은 단백질 분자들을 암호화하는 변형체 핵산들을 생산 및/또는 분리 및/또는 본 발명의 단백질들을 추가로 변형/돌연변이 하는데 사용될 수 있다. 이들은 특정부위 돌연변이유발, 무작위 지점 돌연변이유발, 동형 재조합(DNA 셔플링), 주형을 함유하는 우라실을 사용하는 돌연변이유발, 올리고뉴클레오티드-유도 돌연변이유발, 포스포로티오에이트-변형 DNA 돌연변이유발, 간격-이중 DNA(gapped-duplex DNA)등을 사용하는 돌연변이유발을 포함하나 이에 한정되지 않는다. 다른 적절한 방법은 점 불일치 회복(point mismatch repair), 회복-부족 숙주(repair-deficient host strains), 제한-선택 및 제한-정제를 사용하는 돌연변이유발, 결실 돌연변이유발, 전체 유전자 합성, 이중-가닥 파괴 회복 등에 의한 돌연변이유발을 포함한다. 예를 들어, 키메릭 구조체가 관여하는 돌연변이유발도 본 발명에 포함된다. 한 실시예에서, 돌연변이유발은 선척적으로 발생한 분자 또는 후천성 또는 돌연변이로 자연적으로 발생하는 분자의 공지된 정보, 예를 들어, 서열, 서열 비교, 물리적 특성, 결정 구조 등에 의해 안내될 수 있다.In some embodiments, this includes using known methods of protein processing and recombinant DNA technology to enhance or modify the properties of the mutated RSV F proteins mentioned above. Genes that encode the proteins are modified by codonification, and modifications of the nucleotides are known to those skilled in the art. Various forms of mutagenesis can be used to produce and / or isolate variant nucleic acids encoding the protein molecules and / or further modify / mutate the proteins of the invention. These include, but are not limited to, site-specific mutagenesis, random point mutagenesis, homologous recombination (DNA shuffling), mutagenesis using uracil containing template, oligonucleotide-induced mutagenesis, phosphorothioate-modified DNA mutagenesis, DNA (gapped-duplex DNA), and the like. Other suitable methods include point mismatch repair, repair-deficient host strains, restriction-selection and restriction-mutagenesis using purification, deletion mutagenesis, total gene synthesis, double-strand breakage Recovery, and the like. For example, mutagenesis involving a chimeric structure is also encompassed by the present invention. In one embodiment, mutagenesis can be guided by known information, such as sequences, sequence comparisons, physical properties, crystal structures, etc., of molecules that have been generated pre-existing or of naturally occurring molecules with acquired or mutated.
또 다른 실시예에서, 본 발명은 본 발명의 백신 제제들의 하나 이상의 성분으로 채워진 하나 이상의 용기를 포함하는 약학적 팩 또는 키트를 제공한다.In another embodiment, the present invention provides a pharmaceutical pack or kit comprising one or more containers filled with one or more components of the vaccine formulations of the present invention.
다른 실시예에서, 본 발명은 상기 제제에 유효 복용량의 변형 또는 돌연변이 RSV F 단백질을 첨가하는 단계를 포함하여, 포유류에 대한 감염 또는 이의 적어도 하나의 질환 증상에 대한 면역성을 유도하는 백신 또는 항원 조성물을 제제화하는 방법을 제공한다. 한 바람직한 실시예에서, 감염은 RSV 감염이다.In another embodiment, the invention provides a vaccine or antigenic composition that induces an immunity to an infection or at least one disease symptom thereof in a mammal, comprising the step of adding an effective dose of a modified or mutated RSV F protein to the agent Thereby providing a method of preparing the composition. In one preferred embodiment, the infection is a RSV infection.
본 발명의 변형 또는 돌연변이 RSV F 단백질은 감염체에 대한 면역성 또는 실질적인 면역성을 제공하는 면역 반응을 자극하는 조성물들을 제조하는데 유용하다. 따라서, 한 실시예에서, 본 발명은 적어도 1회 유효 복용량의 변형 또는 돌연변이 RSV F 단백질을 투여하는 단계를 포함하여 피험자의 감염 또는 이의 적어도 하나의 질환 증상에 대해 면역성을 유도하는 방법을 제공한다.The modified or mutated RSV F protein of the present invention is useful for producing compositions that stimulate an immune response that provides immunity or substantial immunity to an infectious agent. Thus, in one embodiment, the invention provides a method of inducing immunity against a subject's infection or at least one disease symptom thereof, comprising administering at least one effective dose of a modified or mutated RSV F protein.
또 다른 태양에서, 본 발명은 적어도 1회 유효 복용량의 변형 또는 돌연변이 RSV F 단백질 투여하는 단계를 포함하여 피험자의 RSV 바이러스 감염 또는 적어도 하나의 질환 증상에 대해 실질적인 면역성을 유도하는 방법을 제공한다.In another aspect, the invention provides a method of inducing substantial immunity to a subject's RSV viral infection or at least one disease symptom, comprising administering at least one effective dose of a modified or mutated RSV F protein.
본 발명의 조성물들은 척추동물에 투여될 때 척추동물(예를 들어, 인간)에서 실질적인 면역성을 유도할 수 있다. 따라서, 한 실시예에서, 본 발명은 적어도 1회 유효 복용량의 변형 또는 돌연변이 RSV F 단백질을 투여하는 단계를 포함하여 피험자의 RSV 바이러스 감염 또는 적어도 하나의 질환 증상에 대해 실질적인 면역성을 유도하는 방법을 제공한다. The compositions of the present invention can induce substantial immunity in a vertebrate animal (e.g., a human) when administered to a vertebrate animal. Thus, in one embodiment, the invention provides a method of inducing a substantial immunity to a subject ' s RSV viral infection or at least one disease symptom, comprising administering at least one effective dose of a modified or mutated RSV F protein do.
RSVRSV F 유전자 도입 재조합  F-gene recombinant baculovirus의baculovirus 생산 production
본 발명의 일 실시예에서, (a) 서열번호 25 내지 서열번호 44로 이루어진 군에서 선택된 어느 하나 이상의 RSV F 단백질 암호화 유전자를 도입하여 재조합 바이러스 벡터를 제작하는 단계, 및 (b) 상기 재조합 바이러스 벡터를 숙주 세포에 접종시켜 상기 숙주 세포를 배양하여 RSV F 단백질 항원이 발현되는 배양물을 얻는 단계를 포함하는 RSV F 단백질 항원을 제조하는 방법을 제공한다. (A) preparing a recombinant viral vector by introducing at least one RSV F protein coding gene selected from the group consisting of SEQ ID NO: 25 to SEQ ID NO: 44, and (b) And culturing the host cell to obtain a culture in which the RSV F protein antigen is expressed, thereby providing a method for producing the RSV F protein antigen.
상기 방법은 발현된 RSV F 단백질 또는 이의 단편을 정제하는 단계를 더 포함할 수 있다. The method may further comprise purifying the expressed RSV F protein or fragment thereof.
상기 재조합 바이러스 벡터는 예를 들어, 파아지, 플라스미드, 바이러스 또는 레트로바이러스 벡터일 수 있으며, 바람직하게 바이러스 벡터를 사용할 수 있다. The recombinant viral vector may be, for example, a phage, a plasmid, a virus or a retroviral vector, and preferably a viral vector may be used.
일 실시태양에서, 벡터는 재조합 바큘로바이러스 벡터이다. 유전자를 암호화하는 구조체 및/또는 벡터는 AcMNPV 폴리헤드린 프로모터(또는 다른 바큘로바이러스), 파이지 람바다 PL 프로모터, E.coli lac, phoA 및 tac 프로모터와 같은 적절한 프로모터에 작동가능하게 연결되어야 하며, 바람직하게는 폴리헤드린 (polyhedrin) 프로모터에 의해 과 발현 될 수 있다. In one embodiment, the vector is a recombinant baculovirus vector. The construct encoding the gene and / or the vector should be operably linked to a suitable promoter such as the AcMNPV polyhedrin promoter (or other baculovirus), the Pigilambada PL promoter, the E. coli lac, the phoA and the tac promoter, Lt; RTI ID = 0.0 > polyhedrin < / RTI > promoter.
발현 구조체들은 전사 개시, 종결을 위한 부위 및 전사된 영역에, 번역을 위한 리보솜 결합 부위를 더 포함할 것이다. 구조체들에 의해 발현된 전사체들의 암호 부분은 초기에 번역 개시 코돈 및 번역될 폴리펩타이드의 단부에 적절하게 위치한 종결 코돈을 포함하는 것이 바람직할 것이다. 발현 벡터들은 적어도 하나의 선택가능한 마커를 포함하는 것이 바람직할 것이다. 이런 마커들은 다이하이드로 폴레이트 환원효소, G418 또는 진핵세포 배양을 위한 네오미신 저항 유전자(neomycin resistance gene) 및 E.coli 및 다른 박테리아 배양을 위한 테트라사이클린, 카나미신, 또는 임피실린 저항 유전자를 포함한다. 벡터들 중에서 배큘로바이러스과(Baculoviridae, 예를 들어, 오토그라파 캘리포니카 뉴클레오폴리헤드로 바이러스-Autographa californica nucleopolyhedrovirus), 아데노바이러스과(Adenoviridae, 예를 들어, 카닌 아데노 바이러스-canine adenovirus), 헤파드나바이러스과(Hepadnaviridae, 예를 들어, 아비 헤파드나 바이러스-avihepadnavirus), 백시니아바이러스과(Vacciniaviridae, 예를 들어, 변형 백시니아 안카라 바이러스-modified vaccinia Ankara virus), 및 파보바이러스과(Parvoviridae, 예를 들어, 오토노머스 파보바이러스- Autonomous Parvovirus)로 이루어진 군에서 선택된 어느 하나 이상의 바이러스 벡터가 바람직하다. 상기 배큘로바이러스는 오토그라파 캘리포니카(Autographa californica) 핵다각체 병 바이러스 주 또는 그 변형된 바이러스 주; 또는 몸빅스 모리(Bombyx mori) 핵다각체 병 바이러스 주 또는 그 변형된 바이러스 주를 포함할 수 있다. 박테리아 벡터가 또한 사용될 수 있다. 예시적 박테리아 벡터는 pQE70, pQE60 및 pQE-9, p블루스크립트 벡터, 파아지스크립트 벡터, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5를 포함한다. 진핵 벡터들 중에서 pFastBac1 pWINEO, pSV2CAT, pOG44, pXTl, pSG, pSVK3, pBPV, pMSG, 및 pSVL 등이 바람직하다. The expression constructs will further include a ribosome binding site for translation, at the site for transcription initiation, for termination and at the transcribed region. The coding portion of the transcripts expressed by the constructs will preferably initially contain a translation initiation codon and a termination codon appropriately located at the end of the polypeptide to be translated. Preferably, the expression vectors comprise at least one selectable marker. These markers include neomycin resistance genes for dihydrofolate reductase, G418 or eukaryotic cell cultures, and tetracycline, kanamycin, or resistance genes for E. coli and other bacterial cultures . Among the vectors are Baculoviridae (for example, Virus-Autographa californica nucleopolyhedrovirus), Adenoviridae (e.g., canine adenovirus-canine adenovirus), Hepadnaviridae (E.g., Hepadnaviridae, e.g., aviepadnavirus), Vacciniaviridae (e.g., modified vaccinia Ankara virus), and Parvoviridae (e. G. And a virus vector selected from the group consisting of a virus, a virus, an autonomous parvovirus, and the like. Wherein the baculovirus is selected from the group consisting of Autographa californica nucleoside varicella virus or a modified virus strain; Or a Bombyx mori nucleoside viral virus strain or a modified viral strain thereof. Bacterial vectors may also be used. Exemplary bacterial vectors include pQE70, pQE60 and pQE-9, p BlueScript vector, phage script vector, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5. Of the eukaryotic vectors, pFastBacl pWINEO, pSV2CAT, pOG44, pXTl, pSG, pSVK3, pBPV, pMSG, and pSVL are preferred.
상기한 것과 같은 재조합 벡터는 형질감염, 감염 또는 형질전환하는데 사용될 수 있고 진핵 세포 및/또는 원핵 세포에서 단백질을 발현시킬 수 있다. 진핵 숙주 세포들은 효모, 곤충, 조류, 식물, 꼬마선충(또는 선충) 및 포유류 숙주 세포를 포함할 수 있다. 곤충 세포의 비제한적인 예는 예를 들어, Sf9, Sf21과 같은 Spodoptera frugiperda (Sf) 세포, 하이 파이브 세포와 같은 Trichoplusiani 세포 및 Drosophila S2 세포들이다. 곰팡이(효모 포함) 숙주 세포들의 예는 S. cerevisiae, Kluyveromyces lactis(K. lactis), C. albicans 및 C. glabrata, Aspergillus nidulans, Schizosaccharomyces pombe(S. pombe), Pichia pastoris, 및 Yarrowia lipolytica를 포함하는 칸디다균의 종들이다. 포유류 세포들의 예는 293세포 계열(human embryonic kidney lineage), CHO세포 계열 (Chinese hamster ovary cell lineage), Vero세포 계열 (African green monkey lineage), MRC세포 계열 (human lung fibroblast cell lineage), 및 MDCK 세포 계열 (madin-darby canine kidney cell lineage)세포들이다. 아프리카발톱개구리(Xenopus laevis oocyte) 또는 양서류 출처의 다른 세포들도 사용될 수 있다. 원핵 숙주 세포들은, 예를 들어, 대장균(E. coli), 바실러스 서브틸리스(B. subtilis) 및 마이코박테리아와 같은 박테리아 세포를 포함한다.Such recombinant vectors as described above may be used for transfection, infection or transformation and may express proteins in eukaryotic and / or prokaryotic cells. Eukaryotic host cells may include yeast, insect, avian, plant, small nematode (or nematode), and mammalian host cells. Non-limiting examples of insect cells are, for example, Trichoplusiani cells such as Spodoptera frugiperda (Sf) cells such as Sf9, Sf21, and High Five cells, and Drosophila S2 cells. Examples of fungal (including yeast) host cells include S. cerevisiae, Kluyveromyces lactis (K. lactis), C. albicans and C. glabrata, Aspergillus nidulans, Schizosaccharomyces pombe (S. pombe), Pichia pastoris, and Yarrowia lipolytica Candida species. Examples of mammalian cells include human embryonic kidney lineage, Chinese hamster ovary cell lineage, Vero cell line (African green monkey lineage), MRC cell line (human lung fibroblast cell lineage), and MDCK cells (Madin-darby canine kidney cell lineage). Other cells of the African claw frog (Xenopus laevis oocyte) or amphibians can also be used. Prokaryotic host cells include, for example, bacterial cells such as E. coli, B. subtilis and mycobacteria.
약학적 또는 백신 제제 및 투여Pharmaceutical or vaccine preparation and administration
본 발명의 일 실시예는 서열번호 3, 서열번호 4, 서열번호 5, 서열번호 6, 서열번호 7, 서열번호 8, 서열번호 9, 서열번호 10, 서열번호 11, 서열번호 12, 서열번호 13, 서열번호 14, 서열번호 15, 서열번호 16, 서열번호 17, 서열번호 18, 서열번호 19, 서열번호 20, 서열번호 21, 및 서열번호 22로 이루어진 군에서 선택된 어느 하나 이상의 단백질이 포함된 RSV 예방 백신을 제공한다. 바람직하게 본 발명의 일 실시예는 서열번호 3, 서열번호 4, 서열번호 5, 및 서열번호 6으로 이루어진 군에서 선택된 어느 하나 이상의 단백질이 포함된 RSV 예방 백신을 제공한다.An embodiment of the present invention is a method for producing a protein having the amino acid sequence of SEQ ID NO: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, RSV comprising at least one protein selected from the group consisting of SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: Provide a preventive vaccine. Preferably, one embodiment of the present invention provides a RSV preventive vaccine comprising any one or more proteins selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO:
본 발명의 일 실시예는 서열번호 25, 서열번호 26, 서열번호 27, 서열번호 28, 서열번호 29, 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 33, 서열번호 34, 서열번호 35, 서열번호 36, 서열번호 37, 서열번호 38, 서열번호 39, 서열번호 40, 서열번호 41, 서열번호 42, 서열번호 43, 및 서열번호 44로 이루어진 군에서 선택된 어느 하나 이상의 핵산에 의해 암호화되는 단백질이 포함된 RSV 예방 백신을 제공한다. 바람직하게 본 발명의 일 실시예는 서열번호 25, 서열번호 26, 서열번호 27, 및 서열번호 28로 이루어진 군에서 선택된 어느 하나 이상의 핵산에 의해 암호화되는 단백질이 포함된 RSV 예방 백신을 제공한다. 더 바람직하게 본 발명의 일 실시예는 서열번호 25, 서열번호 26, 및 서열번호 27로 이루어진 군에서 선택된 어느 하나 이상의 핵산에 의해 암호화되는 단백질이 포함된 RSV 예방 백신을 제공한다.One embodiment of the present invention is directed to an isolated nucleic acid molecule comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 25, 26, 27, 28, 29, 30, 31, 32, , SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43 and SEQ ID NO: Protein-containing RSV vaccine. Preferably, one embodiment of the present invention provides a RSV preventive vaccine comprising a protein encoded by any one or more nucleic acids selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27 and SEQ ID NO: More preferably, an embodiment of the present invention provides a RSV preventive vaccine comprising a protein encoded by any one or more nucleic acids selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26 and SEQ ID NO: 27.
상기 백신은 보조제 또는 면역 증강제가 더 포함될 수 있다. 예를 들어, 알루미늄 애쥬반트를 포함할 수 있다. The vaccine may further comprise adjuvants or immunostimulants. For example, an aluminum adjuvant.
본 발명의 면역원성 조성물은 이 조성물을 투여받는 척추동물에 해로운 면역 반응을 자체로 유발하지 않는 임의의 약학적 물질을 포함하고, RSV F 폴리펩타이드와 함께 과도한 독성 없이 투여될 수 있는 임의의 적절한 희석제 또는 부형제를 포함하는 약학적으로 허용 가능한 운반자를 포함한다. 본 발명에서 사용된 대로, "약학적으로 허용 가능한"이란 용어는 미국 약전, 유럽 약전 또는 척추동물 및 더욱 구체적으로 인간에 사용하기 위한 다른 일반적으로 인식된 약전에 나열되는 것을 의미한다. 본 발명의 RSV F 면역원은 RSV 바이러스의 하나 이상의 균주에 대항하여 면역 반응을 자극하는데 충분한 유효량 또는 양(위에서 정의함)으로 투여된다. 이런 조성물은 척추동물에서 보호성 면역반응을 유도하기 위한 백신 및/또는 면역원 조성물로서 사용될 수 있다. 조성물은 다른 RSV F 단백질 또는 이의 단편을 함유할 수 있다. The immunogenic compositions of the present invention include any pharmaceutical material that does not itself induce a harmful immune response to the vertebrate to which the composition is administered and may be any suitable diluent that can be administered with the RSV F polypeptide Or a pharmaceutically acceptable carrier comprising an excipient. As used herein, the term " pharmaceutically acceptable " refers to those listed in the United States Pharmacopoeia, European Pharmacopoeia, or other commonly recognized pharmacopoeia for use in vertebrates and more specifically in humans. The RSV F immunogen of the invention is administered in an effective amount or amount (as defined above) sufficient to stimulate an immune response against one or more strains of the RSV virus. Such compositions can be used as vaccine and / or immunogenic compositions for inducing a protective immune response in vertebrates. The composition may contain other RSV F proteins or fragments thereof.
한 비-제한적인 실시태양에서, 면역원의 농도는 적어도 약 10㎍/mL, 약 20㎍/mL, 약 30㎍/mL, 약 40㎍/mL, 약 50㎍/mL, 약 60㎍/mL, 약 100㎍/mL, 약 200㎍/mL, 또는 약 500㎍/mL이다. 특정 양태에서, 면역원의 농도는 약 10㎍/mL 내지 약 1mg/mL, 또는 약 20㎍/mL 내지 약 500㎍/mL, 또는 약 30㎍/mL 내지 약 100㎍/mL 또는 약 30㎍/mL 내지 약 50㎍/mL이다. 다른 실시태양에서 면역원의 농도는 10㎍/mL 내지 200㎍/mL 포함될 수 있다. In one non-limiting embodiment, the concentration of the immunogen is at least about 10 μg / mL, about 20 μg / mL, about 30 μg / mL, about 40 μg / mL, about 50 μg / mL, About 100 μg / mL, about 200 μg / mL, or about 500 μg / mL. In certain embodiments, the concentration of the immunogen is from about 10 μg / mL to about 1 mg / mL, or from about 20 μg / mL to about 500 μg / mL, or from about 30 μg / mL to about 100 μg / mL, To about 50 [mu] g / mL. In another embodiment, the concentration of the immunogen may be comprised between 10 μg / mL and 200 μg / mL.
한 실시태양에서, 본 발명에 개시된 약학적 제제는 RSV F 단백질, 주로 스파이크 단백질; 및 약학적으로 허용 가능한 담체 또는 부형제를 포함할 수 있다.In one embodiment, the pharmaceutical formulations disclosed herein comprise a RSV F protein, predominantly a spike protein; And a pharmaceutically acceptable carrier or excipient.
다른 실시태양에서, 약학적 제제는 면역원이 투여된 동물에서 생산된 정제된, 고 친화력 항체를 포함한다. 약학적으로 허용 가능한 담체들은 식염수, 버퍼 식염수, 덱스트로스, 물, 글리세롤, 살균 등장성 수성 버퍼 및 이의 조합을 포함하나 이에 한정되지 않는다. 약학적으로 허용 가능한 담체들, 희석제들 및 다른 부형제들은 Remington's Pharmaceutical Sciences(Mack Pub. Co. N.J. current edition)에 제공된다. 상기 제제는 투여 방식에 적합해야 한다. 바람직한 실시태양에서, 상기 제제는 인간에 대한 투여에 적합한데, 바람직하게는 살균되고, 미립자가 아니고 및/또는 발열성이 아니다. 원한다면, 상기 조성물은 소량의 습윤제 또는 유화제 또는 pH 완충제를 함유할 수 있다. 상기 조성물은 재조합에 적합한 동결건조 분말과 같은 고체 형태, 액체 용액, 서스펜션, 에멀션, 정제, 알약, 캡슐, 서방성 제제 또는 분말일 수 있다. 경구 제제는 만니톨, 락토오스, 전분, 스테아르산 마그네슘, 사카린 나트륨, 셀룰로오스, 탄산마그네슘 등과 같은 표준 담체들을 포함할 수 있다. 또한 본 발명은 면역원성 백신 제제들의 성분들의 하나 이상으로 채워진 하나 이상의 용기를 포함하는 약학적 팩 또는 키트를 제공한다. 바람직한 실시태양에서, 상기 키트는 2개의 용기를 포함하며, 하나는 RSV F 면역원을 포함하고, 다른 하나는 항원 보강제를 포함한다. 의약 또는 생물학적 제품의 제조, 사용 또는 판매를 규율하는 정부 기관에 의해 처방된 형태의 공지는 이런 용기(들)에 결합될 수 있고, 상기 공지는 인간 투여를 위한 제조, 사용 또는 판매의 기관에 의해 승인을 나타낸다. 제제는 조성물의 양을 나타내는 앰플(ampoule) 또는 사체트(sachette)와 같은 밀봉된 용기에 포장될 수 있다. 한 실시태양에서, 조성물은 액체로 공급되고, 다른 실시태양에서는, 밀봉된 용기에 있는 건조 살균된 동결건조 분말 또는 물 제거 농축물로 공급되며, 예를 들어, 물 또는 식염수로 피험자에게 투여하기 위해 적절한 농도로 재구성될 수 있다. 바람직하게는, 조성물은 바람직하게는 약 1㎍, 약 5㎍, 약 10㎍, 약 20㎍, 약 25㎍, 약 30㎍, 약 50㎍, 약 100㎍, 약 125㎍, 약 150㎍, 또는 약 200㎍의 단위 복용량에 기밀한 용기에서 건조 살균 동결건조 분말로서 공급된다. 선택적으로, 조성물의 단위 복용량은 약 1㎍(예를 들어, 약 0.08㎍, 약 0.04㎍, 약 0.2㎍, 약 0.4㎍, 약 0.8㎍, 약 0.5㎍ 이하, 약 0.25㎍ 이하 또는 약 0.1㎍ 이하) 또는 약 125㎍ 초과(예를 들 어, 약 150㎍ 이상, 약 250㎍ 이상 또는 약 500㎍ 이상)이다. 이런 복용량은 전체 RSV F 단백질(예를 들어, 스파이크 단백질 또는 이의 단편)의 ㎍로서 측정될 수 있다. 본 발명의 면역원은 동결건조 분말로 재구성된 후 약 12시간 내에, 바람직하게는 약 6시간 내에, 약 5시간 내에, 약 3시간 내에, 또는 약 1시간 내에 투여되어야 한다. 다른 실시태양에서, RSV F 단백질 면역원성 조성물은 RSV F 단백질 조성물의 양과 농도를 나타내는 밀봉된 용기에 액체 형태로 공급된다. 바람직하게는, 본 발명의 면역원 조성물의 액체 형태는 적어도 약 50㎍/ml, 더욱 바람직하게는 적어도 약 100㎍ /ml, 적어도 약 200㎍/ml, 적어도 500㎍/ml, 또는 적어도 1mg/ml로 밀봉된 용기에 공급된다. In another embodiment, the pharmaceutical agent comprises a purified, high affinity antibody produced in an animal to which the immunogen is administered. Pharmaceutically acceptable carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, sterile isotonic aqueous buffer and combinations thereof. Pharmaceutically acceptable carriers, diluents and other excipients are provided in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. current edition). The formulation should be appropriate for the mode of administration. In a preferred embodiment, the formulation is suitable for administration to humans, preferably sterile, not particulate and / or pyrogenic. If desired, the composition may contain minor amounts of wetting or emulsifying agents or pH buffering agents. The composition may be in the form of a solid, liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release preparation or powder, such as a lyophilized powder suitable for recombination. Oral preparations may include standard carriers such as mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like. The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the components of the immunogenic vaccine formulations. In a preferred embodiment, the kit comprises two containers, one comprising an RSV F immunogen and the other comprising an antigen adjuvant. Announcements in the form prescribed by governmental bodies governing the manufacture, use or sale of medicinal or biological products may be incorporated into such container (s), and such announcements may be made by the institution of manufacture, use or sale for human administration Indicates approval. The agent may be packaged in a sealed container such as an ampoule or sachette indicating the amount of the composition. In one embodiment, the composition is supplied as a liquid, and in another embodiment, is supplied as a dry sterile lyophilized powder or water-removing concentrate in a sealed container, for administration to a subject, for example, with water or saline It can be reconstituted to an appropriate concentration. Preferably, the composition will preferably contain about 1 μg, about 5 μg, about 10 μg, about 20 μg, about 25 μg, about 30 μg, about 50 μg, about 100 μg, about 125 μg, about 150 μg, As a dry sterile lyophilized powder in an airtight container at a unit dose of about 200 μg. Alternatively, the unit dose of the composition may be about 1 microgram (e.g., about 0.08 microgram, about 0.04 microgram, about 0.2 microgram, about 0.4 microgram, about 0.8 microgram, about 0.5 microgram, about 0.25 microgram, ) Or greater than about 125 μg (eg, greater than about 150 μg, greater than about 250 μg, or greater than about 500 μg). Such doses can be measured as [mu] g of total RSV F protein (e.g., spike protein or fragment thereof). The immunogen of the present invention should be administered within about 12 hours, preferably within about 6 hours, within about 5 hours, within about 3 hours, or within about 1 hour after reconstitution with lyophilized powder. In another embodiment, the RSV F protein immunogenic composition is supplied in liquid form in a sealed container representing the amount and concentration of the RSV F protein composition. Preferably, the liquid form of the immunogenic composition of the invention is at least about 50 μg / ml, more preferably at least about 100 μg / ml, at least about 200 μg / ml, at least 500 μg / ml, or at least 1 mg / ml And is supplied to the sealed container.
본 발명의 백신 또는 면역원 조성물은 RSV 에 대항하여 면역 반응을 유도하도록 동물에게 투여될 수 있다. 한 실시태양에서, 동물은 RSV 감염에 취약하다. 한 실시태양에서, 동물은 인간이다. 바람직하게는, 면역원의 투여는 적어도 하나의 RSV 균주, 분리물, 클레이드 및/또는 종에 대항하여 실질적 면역성을 유도한다. 한 실시태양에서, 면역원의 투여는 적어도 2개 이상의 RSV 균주, 분리물, 클레이드 및/또는 종에 대항하여 실질적 면역성을 유도한다. 통상적으로, 복용량은, 예를 들어, 나이, 신체 조건, 체중, 나이, 식품, 투여 시간 및 다른 임상적 인자를 기초로 이 범위 내에서 조절될 수 있다. 따라서, 본 발명은 유효량의 면역원을 상기 제제에 첨가하는 단계를 포함하여, 피험자의 감염 또는 이의 적어도 하나의 증상에 대해 실질적 면역성을 유발하는 백신 또는 면역원 조성물을 제제화하는 방법을 포함한다. 1회 복용량에 의한 실질적 면역성의 자극이 바람직하지만, 원하는 효과를 얻기 위해서, 동일하거나 다른 경로를 통해 추가 복용량이 투여될 수 있다. 신생아 및 유아에서, 예를 들어, 충분한 수준의 면역을 유발하기 위해 복수의 투여가 필요할 수 있다. 투여는 감염에 대항하는 충분한 수준의 보호를 유지하기 위해 필요한 경우, 유년 시기에 걸쳐 간격을 주고 계속될 수 있다. 이와 유사하게, 예를 들어, 보건 요원, 어린이집 교사, 어린이들의 가족 구성원, 노인 및 손상된 심폐소생 기능을 가진 개인들과 같이 반복되거나 심각한 인플루엔자 감염에 특히 영향받기 쉬운 어른들은 보호 면역 반응을 일으키고 및/또는 유지하기 위해 다수의 면역이 필요할 수 있다. 유도된 면역성의 수준은 보호의 원하는 수준을 유발하고 유지하기 위해 필요한 것과 같이, 예들 들어, 중화 분비선 및 혈청 항체 및 조절된 복용량 또는 반복된 백신 접종의 양을 측정함으로써 관찰될 수 있다. 따라서, 한 실시태양에서, 피험자에서 바이러스 감염 또는 이의 적어도 하나의 증상에 대해 실질적 면역성을 유도하는 방법은 적어도 1회 유효량의 RSV F 단백질 또는 이의 단편 또는 집합체를 투여하는 단계를 포함한다. 백신 및/또는 면역원 제제를 투여하는 방법은 비경구 투여(예를 들어, 내피, 근육내, 정맥 및 피하), 경막외 및 점막(예를 들어, 비강 및 경구 또는 폐 경로 또는 좌약)을 포함하나 이에 한정되지 않는다. 특정 실시태양에서, 상기 조성물은 근육내, 정맥, 피하, 경구 또는 피내로 투여된다. 상기 조성물은, 예를 들어, 주입 또는 일시 주사, 상피 또는 점막 안쪽(예를 들어, 구강 점막, 결장, 결막, 비인 강, 인두중앙부, 질, 요로, 방광, 장 점막 등)을 통한 흡수에 의해 임의의 편리한 경로에 의해 투여될 수 있고 다른 생물학적으로 활성인 물질과 함께 투여될 수 있다. 일부 실시태양에서, 비강 또는 다른 점막 경로를 통한 투여는 다른 투여 경로보다 실질적으로 높은 항체 또는 다른 면역 반응을 유도할 수 있다. 다른 실시태양에서, 면역원성 조성물 및/또는 백신의 투여의 비강 또는 다른 점막 경로는 바이러스의 다른 균주들에 대항하여 교차 보호를 유도할 항체 또는 다른 면역 반응을 유도할 수 있다. 투여는 전신 또는 국부적 일 수 있다. 예방 백신 제제는 바늘 및 주사를 사용하여 피하 또는 근육내 주사 또는 바늘 없는 주사 장치에 의 해 전신으로 투여된다. 선택적으로, 백신 제제는 상기도 속으로의 방울, 큰 입자 에어로졸(약 10 마이크론보다 큼) 또는 분사에 의해 비강으로 투여된다. 전달의 상기 경로 중 임의의 것은 면역 반응을 일으키는 반면에, 비강 투여는 바이러스의 침투 위치에서 점막 면역성을 유발하는 증가된 효과를 제공한다. 또 다른 실시태양에서, 백신 및/또는 면역원성 제제는 면역화의 부위에 면역 반응을 유발하도록 점막 조직을 표적으로 하는 방식으로 투여된다. 예를 들어, 장 관련 림프양 조직(gut associated lymphoid tissue)(GALT)과 같은 점막 조직은 특정 표적화 특성들을 가진 면역원 보강제를 함유하는 조성물의 경구 투여를 사용함으로써 면역화를 위한 표적이 될 수 있다. 비인두 림프양 조직(nasopharyngeal lymphoid tissue(NALT)) 및 기관지 관련 림프 양 조직(bronchial-associated lymphoid tissue(BALT))과 같은 다른 점막 조직도 표적이 될 수 있다. 백신 및/또는 면역원성 제제는 최초 백신 조성물을 투여하고 뒤이어 투여를 강화하는 것과 같은 복용 계획에 따라 투여될 수 있다. 특정한 실시태양에서, 조성물의 두 번째 복용은 최초 투여 후 2주 내지 1년 중 어느 때, 바람 직하게는 약 1, 약 2, 약 3, 약 4, 약 5 내지 약 6개월에 투여된다. 또한, 세 번째 복용은 두 번째 복용 후 및 최초 투여 후 약 3개월 내지 약 2년 이상, 바람직하게는 약 4, 약 5, 또는 약 6개월 또는 약 7개월 내지 약 1년 에 투여될 수 있다. 세 번째 복용은 두 번째 복용 후 피험자의 혈청 및/또는 소변 또는 점막 분비물에 특정 면역글로블린이 없거나 적은 양의 특정 면역글로블린이 탐지될 때 경구로 투여될 수 있다. 바람직한 실시태양에서, 제 2 복용은 제 1 투여 후 약 1달에 투여되고 세 번째 복용은 제 1 투여 후 약 6개월에 투여된다. 다른 실시태양에서, 제 2 복용은 제 1 투여 후 약 6개월에 투여된다. 다른 실시태양에서, RSV F 단백질을 포함하는 면역원은 조합 치료의 일부로서 투여될 수 있다. 예를 들어, RSV F 단백질 또는 이의 단편 또는 이의 집합체는 다른 면역원성 조성물 및/또는 항바이러스제로 제제화될 수 있다. 약학적 제제의 복용량은, 예를 들어, 바이러스 특이적 면역글로블린의 혈청 역가를 측정하거나 혈청 샘플 또는 소변 샘플 또는 점막 분비물에서 항체들의 억제 비율을 측정함으로써 예방 또는 치료 면역 반응을 유발하는데 효과적인 복용량을 먼저 확인함으로써 당업자가 쉽게 결정할 수 있다. 또한, 인간 임상 연구들은 당업자에 의해 인간에 대한 바람직한 유효량을 결정하는데 수행될 수 있다. 이런 임상 연구들은 일상적이고 당업계에 주지되어 있다. 사용될 정확한 복용량은 투여 경로에 의존할 것이다. 유효량은 생체 외 또는 동물 검사 시스템으로부터 유도된 복용량-반응 곡선으로부터 추정될 수 있다. 당업계에 주지된 것과 같이, 특정 조성물의 면역성은 항원 보강제로 알려진, 면역 반응의 비특이적 자극제를 사용함으로써 향상될 수 있다. 항원 보강제는 알려지지 않은 면역원들에 대항하는 면역의 일반적인 증가를 실험적으로 향상시키기 위해 사용되었다(예를 들어, 미국특허 No. 4,877,611). 면역화 프로토콜은 수년 동안 반응들을 자극하는 항원 보강제를 사용하였고, 항원 보강제는 당업자에게 주지되어 있다. 일부 항원 보강제는 항원들이 존재하는 방식에 영향을 준다. 예를 들어, 면역 반응은 단백질 항원들이 명반에 의해 침지될 때 증가한다. 항원의 에멀션화는 항원 제공 기간을 연장한다. 항원 보강제가 포함될 수 있다. 적절한 항원 보강제는 모든 목적을 위해 전문이 참조로 포함된 보겔 등.,"A Compendium of Vaccine Adjuvants and Excipients (2 nd Edition)에 기 술된 것들을 포함한다. 다른 예시적인, 항원 보강제는 완전한 프로인트 항원 보강제(죽은 마이코박테리아 결핵균(Mycobacterium tuberculosis)을 함유하는 면역 반응의 비특이적 자극제), 불완전 프로인트 항원 보강제 및 수산화알루미늄 항원 보강제를 포함한다. 다른 항원 보강제들은 GMCSP, BCG, 수산화알루미늄, thur-MDP 및 nor-MDP와 같은 MDP 화합물, CGP (MTP-PE), 지질 A, 몬타니드 ISA 206 및 모노포스포릴 지질 A(MPL)를 포함한다. 박테리아, MPL, 트 레할로스 다이마이콜레이트(TDM) 및(CWS) 2% 스쿠알렌/트윈 80 에멀션 속의 세포벽 골격(CWS)으로부터 추출된 3 개 구성요소를 함유하는 RIBI가 고려된다. MF-59, 노바솜 ®, MHC 항원도 사용될 수 있다. 예를 들어, 항원 보강제는 지질 이중층이 제거된 큰 비결정 중앙 공동을 둘러싸는 수성층에 의해 분리된 실질적으로 구형 덮개 형태로 배열된 2개 내지 10개 이중층을 가진 파우실라멜라 지질소포(paucilamellar lipid vesicle)이다. The vaccine or immunogenic composition of the invention may be administered to an animal to induce an immune response against RSV. In one embodiment, the animal is vulnerable to RSV infection. In one embodiment, the animal is a human. Preferably, administration of the immunogen induces substantial immunity against at least one RSV strain, isolate, clade and / or species. In one embodiment, administration of an immunogen induces substantial immunity against at least two RSV strains, isolates, clades and / or species. Typically, the dosage can be adjusted within this range based on, for example, age, physical condition, body weight, age, food, time of administration, and other clinical factors. Accordingly, the invention includes a method of formulating a vaccine or immunogenic composition that results in substantial immunity to an infection of the subject or at least one symptom thereof, including the step of adding an effective amount of an immunogen to the formulation. Stimulation of substantial immunity by a single dose is preferred, but additional doses may be administered via the same or different routes to achieve the desired effect. In neonates and infants, for example, multiple administrations may be necessary to induce a sufficient level of immunity. Administration can be continued at intervals over the childhood period if necessary to maintain adequate protection against infection. Similarly, adults who are particularly susceptible to repeated or severe influenza infections, such as health workers, daycare teachers, family members of children, the elderly, and individuals with impaired cardiopulmonary function, may develop a protective immune response and / Or may require multiple immunizations to maintain. The level of induced immunity can be observed, for example, by measuring the amount of neutralizing gland and serum antibody and the adjusted dose or repeated vaccination, as is necessary to induce and maintain the desired level of protection. Thus, in one embodiment, a method of inducing substantial immunity against a viral infection or at least one symptom thereof in a subject comprises administering at least one effective amount of an RSV F protein, or fragment or aggregate thereof. Methods of administering the vaccine and / or immunogenic agent include parenteral administration (e.g., endothelium, intramuscular, intravenous and subcutaneous), epidural and mucosal (e.g., nasal and oral or pulmonary routes or suppositories) But is not limited thereto. In certain embodiments, the composition is administered intramuscularly, intravenously, subcutaneously, orally or intradermally. The composition may be administered orally or parenterally by absorption through, for example, injection or transient injection, epithelium or mucosal (e.g., oral mucosa, colon, conjunctiva, nasopharyngeal, pharyngeal, vaginal, urinary, bladder, May be administered by any convenient route and may be administered with other biologically active substances. In some embodiments, administration via the nasal passage or other mucosal route may result in a substantially higher antibody or other immune response than other routes of administration. In other embodiments, the nasal or other mucosal pathways of administration of the immunogenic composition and / or vaccine may induce antibodies or other immune responses that will induce cross protection against other strains of the virus. Administration may be systemic or local. The prophylactic vaccine preparation is administered systemically by subcutaneous or intramuscular injection using a needle and injection or by a needle-free injection device. Alternatively, the vaccine preparation is administered into the nasal cavity by drops, large particle aerosols (greater than about 10 microns), or by injection into the conduit. Any of the above pathways of delivery may cause an immune response while nasal administration provides an increased effect of inducing mucosal immunity at the site of penetration of the virus. In another embodiment, the vaccine and / or immunogenic agent is administered in a manner that targets mucosal tissue to cause an immune response to the site of immunization. For example, mucosal tissues such as gut associated lymphoid tissue (GALT) may be targets for immunization by using oral administration of a composition containing an immunogen adjuvant with specific targeting properties. Other mucosal tissues such as nasopharyngeal lymphoid tissue (NALT) and bronchial-associated lymphoid tissue (BALT) may also be targets. The vaccine and / or immunogenic agent may be administered according to a dosing schedule such as administration of the initial vaccine composition followed by intensification of the administration. In certain embodiments, the second dose of the composition is administered at any time between two weeks to one year after the initial administration, preferably about 1, about 2, about 3, about 4, about 5 to about 6 months. The third dose may also be administered after the second dose and after about 3 months to about 2 years, preferably about 4, about 5, or about 6 months, or about 7 months to about 1 year after the first dose. The third dose may be administered orally when there is no specific immunoglobulin in the subject's serum and / or urine or mucosal secretions after a second dose, or when a small amount of specific immunoglobulin is detected. In a preferred embodiment, the second dose is administered about one month after the first dose and the third dose is administered about six months after the first dose. In another embodiment, the second dose is administered about 6 months after the first dose. In another embodiment, an immunogen comprising a RSV F protein can be administered as part of a combination therapy. For example, the RSV F protein or fragment thereof or a collection thereof may be formulated with other immunogenic compositions and / or antiviral agents. Dosages of the pharmaceutical preparations can be determined, for example, by first determining the effective dose to induce a prophylactic or therapeutic immune response by measuring the serum titer of a virus-specific immunoglobulin or by measuring the inhibition rate of antibodies in serum samples or urine samples or mucosal secretions Can be easily determined by those skilled in the art. In addition, human clinical studies can be performed by those skilled in the art to determine a desirable effective amount for humans. These clinical studies are routine and well known in the art. The exact dose to be used will depend on the route of administration. An effective amount can be estimated from a dose-response curve derived from an in vitro or animal testing system. As is well known in the art, the immunity of certain compositions can be improved by using nonspecific stimulators of the immune response, known as antigen-adjuvants. Antigen adjuvants have been used to experimentally improve the general increase in immunity against unknown immunogens (e. G., U.S. Patent No. 4,877,611). Immunization protocols have used antigenic adjuvants to stimulate responses for many years, and antigenic adjuvants are well known to those skilled in the art. Some antagonists affect the way antigens are present. For example, an immune response increases when protein antigens are immersed in alum. Emulsification of the antigen prolongs the antigen delivery period. Antigen adjuvants may be included. Suitable antigenic adjuvants include those described in Vogel et al., &Quot; A Compendium of Vaccine Adjuvants and Excipients (2nd Edition), which are incorporated by reference in their entirety for all purposes. Other exemplary antigenic adjuvants include the complete Freund ' (Non-specific irritant of immune response containing dead Mycobacterium tuberculosis), incomplete Freund's adjuvant and aluminum hydroxide adjuvant. Other antagonists include GMCSP, BCG, aluminum hydroxide, thur-MDP and nor- (MDP), CGP (MTP-PE), lipid A, montanide ISA 206 and monophosphoryl lipid A (MPL). Bacteria, MPL, trehalulose dimycolate (TDM) and (CWS) RIBI is considered to contain three components extracted from the cell wall skeleton (CWS) in a 2% squalene / tween 80 emulsion. MF-59, Novasom®, and MHC antigens may also be used. Well, an adjuvant is a pouch sila melanoma lipid vesicles (paucilamellar lipid vesicle) substantially with a two to ten bilayers arranged in a rectangular cover type separated by aqueous layers surrounding a large amorphous central cavity of the lipid bilayer is removed.
한 태양에서, 항원 보강제 효과는 명반과 같은 물질의 사용에 의해 성취되고, 인산염 버퍼 식염수 속에 약 0.05 내지 약 0.1% 용액으로 사용된다. 선택적으로, 면역원은 약 0.25% 용액으로 사용된 설탕의 합성 고분자(카보폴®)과의 선혼합물로 제조될 수 있다. 일부 항원 보강제, 예를 들어, 박테리아로부터 얻은 특정 유기 분자는 항원보다 숙주에 작용한다. 예는 뮤라밀 다이펩티드(N-아세틸무라밀-L-알라닐-D-아이소글루타민[MDP]), 박테리아 펩티도글리칸이다. 다른 실시예에서, 헤모시아닌 및 헤모에리트린이 사용될 수 있다. 비록 연체동물문 및 절 지동물 헤모시아닌 및 헤모에리트린이 사용될 수 있지만, 열쇠구멍(keyhole limpet)(KLH)으로부터의 헤모시아닌은 특정 실시예에서 바람직하다. 다양한 폴리사카라이드 항원 보강제가 사용될 수 있다. 예를 들어, 생쥐의 항체 반응에 대한 폐렴구균성 폴리사 카라이드 항원 보강제의 용도는 개시되어 있다(Yin et al, 1989). 최적 반응을 일으키거나 억제를 일으키지 않는 복용량은 지시한 대로 사용되어야 한다(Yin et al, 1989). 폴리사카라이드의 폴리아민 변형체들은 특히 바람 직하고, 탈아세틸화된 키틴을 포함하는 키틴 및 키토산과 같다. 다른 실시예에서, 인공 리포솜에서의 용도에 대해 개시된 무라밀 다이펩타이드 친유성 다이사카라이드-트라이펩티드 유도체는 포스파티딜 콜린(phosphatidyl choline) 및 포스파티딜 글리세롤(phosphatidyl glycerol)로부터 형성되었다. 다른 적절한 항원 보강제는 양극성인 표면 활성제, 예를 들어, 사포닌 및 QS21(캠브리지 바이오텍)와 같은 유도체를 포함한다. 사포닌-기반 항원 보강제는 기질 A 및 기질 C을 단독으로 및 조합으로 함유하는 것들을 포함한다. 비이온성 블럭 공중합체 계면활성제(Rabinovich et al, 1994)가 사용될 수 있다. 올리고뉴클레오티드는 항원 보강제의 다른 유용한 그룹이다(Yamamoto et al, 1988). 다른 그룹의 항원 보강제는 미국특허 제4,866,034호의 정제된 해독된 엔도톡신과 같은 해독된 엔도톡신이다. 이런 정제 해독된 엔도톡신은 척추 동물에서 항원 보강제 반응을 일으키는데 효과적이다. 물론, 해독된 엔도톡신은 다가-항원 보강제 제제를 제조하기 위해 다른 항원 보강제와 결합할 수 있다. 예를 들어, 해독된 엔도톡신과 트레할로스 다이마이콜레이트의 결합은 미국특허 No. 4,435,386에 개시된 것과 같이, 특히 고려된다. 해독된 엔도톡신과 트레할로스 다이마이콜레이트 및 엔도톡신 당지질의 결합도 고려되고(미국특허 제4,505,899호), 해독 된 엔도톡신과 세포벽 골격(CWS) 또는 CWS 및 트레할로스 다이마이콜레이트의 결합은 미국특허 No. 4,436,727, 4,436,728 및 4,505,900에 개시된 것과 같이 고려된다. 해독된 엔도톡신 없이, CWS와 트레할로스 다이마이콜레 이트의 결합도 미국특허 No. 4,520,019에 개시된 것과 같이 효과적인 것으로 생각된다. 알킬 리소인지질(ALP); BCG; 및 비오틴(비오티닐화된 유도체 포함)을 포함하는 백신 과 접합할 수 있는 다른 종류의 항원 보강제를 더 고려할 수 있다. 사용을 특히 고려하는 소정의 항원 보강제는 그람 세포로부터 유래하는 테이코산(teichoic acid)이다. 이것은 리포테이코산(LTA), 리비톨 테이코산(RTA) 및 글리세롤 테이 코산(GTA)을 포함한다. 이런 합성 대응체의 활성 형태가 또한 사용될 수 있다(Takada et al, 1995).In one embodiment, the adjuvant effect is achieved by the use of a material such as alum, and is used as a 0.05 to about 0.1% solution in phosphate buffered saline. Alternatively, the immunogen may be prepared with a linear mixture of a synthetic polymer of sugars (Carbopol®) used in about 0.25% solution. Certain organic molecules from some antagonists, such as bacteria, act on the host rather than the antigen. An example is the muramyldipeptide (N-acetylmuramyl-L-alanyl-D-isoglutamine [MDP]), a bacterial peptidoglycan. In other embodiments, hemocyanin and hemoeryritin can be used. Hemostatic from the keyhole limpet (KLH) is preferred in certain embodiments, although mollusks and arthropod hemoshihenian and hemoeryritin can be used. A variety of polysaccharide adjuvants may be used. For example, the use of pneumococcal polysaccharide antigen adjuvants for antibody responses in mice has been disclosed (Yin et al, 1989). Doses that do not produce an optimal response or inhibition should be used as directed (Yin et al, 1989). Polyamine modifications of the polysaccharides are particularly like chitin and chitosan, including chitin and deacetylated chitin. In another embodiment, the muramyldipeptide lipophilic daiskaride-tripeptide derivatives disclosed for use in artificial liposomes have been formed from phosphatidyl choline and phosphatidyl glycerol. Other suitable adjuvants include bipolar surface active agents, such as saponin and derivatives such as QS21 (Cambridge Biotech). Saponin-based antigen adjuvants include those which contain substrate A and substrate C alone and in combination. Nonionic block copolymer surfactants (Rabinovich et al, 1994) can be used. Oligonucleotides are another useful group of adjuvants (Yamamoto et al, 1988). Another group of antigen adjuvants are the decrypted endotoxins such as the purified decoded endotoxin of U.S. Patent No. 4,866,034. These purified endotoxins are effective in causing an adjuvant response in vertebrates. Of course, the detoxified endotoxin can bind other antagonists to produce a multivalent-antigen adjuvant preparation. For example, the binding of the decoded endotoxin to trehalose dimethicolate is disclosed in U.S. Pat. 4,435, < RTI ID = 0.0 > 386. < / RTI > The binding of the decoded endotoxin to the trehalose dimethicolate and endotoxin glycolipids is also considered (U.S. Patent No. 4,505,899) and the binding of the decoded endotoxin to the cell wall skeleton (CWS) or CWS and trehalose dimacholate is disclosed in U.S. 4,436,727, 4,436,728, and 4,505,900. Without decoded endotoxin, the binding of CWS to trehalose dimycolyte is also disclosed in U.S. Pat. It is believed to be effective as disclosed in U.S. Pat. No. 4,520,019. Alkyl lysophospholipids (ALP); BCG; And other types of antigen-adjuvant that can be conjugated to a vaccine comprising biotin (including biotinylated derivatives). One particular antigen-reinforcing agent that specifically contemplates use is teichoic acid derived from gram-cells. This includes lipoteichoic acid (LTA), ribitol teico acids (RTA) and glycerol teico acids (GTA). Active forms of such synthetic counterparts can also be used (Takada et al, 1995).
인간에서 통상적으로 사용되지 않는 다양한 항원 보강제는 예를 들어, 항체를 생성하거나 뒤이어 활성 T 세포를 얻기 원하는 경우에, 다른 척추동물에서 여전히 사용될 수 있다. 항원 보강제 또는 예를 들어, 방사선 조사되지 않은 종양 세포를 사용하여 발생할 수 있는 것과 같은 세포로부터 발생할 수 있는 독성 또는 다른 역효과는 이런 환경과 무관하다. 면역 반응을 유도하는 다른 방법은 "면역 증강제"와 함께 본 발명의 면역원을 제제화함으로써 완성될 수 있다. 이들은 면역 시스템의 반응을 증가시키기 위한 신체 자신의 화학적 메신저(사이토카인)이다. 면역 증강제들은 인터루킨 (예를 들어, IL-1, IL-2, IL-3, IL-4, IL-12, IL-13)과 같은 면역 자극 활성, 면역 증강 활성 및 염증 유발 활성을 가진 다양한 사이토카인, 림포카인 및 케모카인; 성장 인자(예를 들어, 과립구 대식세포 콜로니 자극인자 (granulocyte-macrophage(GM)-colony stimulating factor(CSF)); 및 대식세포 염증 인자, Flt3 리간드, B7.1, B7.2 등과 같은 다른 면역자극분자를 포함하나 이에 제한되지 않는다. 면역 자극 분자들은 면역원으로서 동일한 제제에 투여될 수 있거나 개별적으로 투여될 수 있다. 단백질 또는 단백질을 암호화하는 발현 벡터는 면역자극 효과를 일으키기 위해 투여될 수 있다. 명반은 다음 하한을 가진 범위로 존재할 수 있다: 약 0.2㎍, 약 0.4㎍, 약 0.6㎍, 약 0.8㎍, 약 1㎍, 약 2㎍, 약 3㎍, 약 4㎍, 약 5㎍, 약 6㎍, 약 7㎍, 약 9㎍, 약 10㎍, 약 15㎍, 약 20㎍, 약 25㎍, 약 30㎍, 약 35㎍, 약 40㎍, 약 45㎍, 약 50㎍, 약 60㎍, 약 70㎍, 약 80㎍, 약 90㎍, 약 100㎍, 약 110㎍, 약 120㎍, 약 130㎍, 약 140㎍, 또는 약 150㎍. 명반은 다음 상한을 가진 범위로 존재할 수 있다: 약 10㎍, 약 15㎍, 약 20㎍, 약 25 ㎍, 약 30㎍, 약 35㎍, 약 40㎍, 약 45㎍, 약 50㎍, 약 60㎍, 약 70㎍, 약 80㎍, 약 90㎍, 약 100㎍, 약 110㎍, 약 120㎍, 약 130㎍, 약 140㎍, 약 150㎍ 또는 약 200㎍. 특정 양태에서, 명반 범위는 약 80㎍ 내지 약 120㎍ 또는 약 100㎍ 내지 약 120㎍이다. 사포닌-기반 항원 보강제는 다음 하한을 가진 범위로 존재할 수 있다: 약 0.2㎍, 약 0.4㎍, 약 0.6㎍, 약 0.8㎍, 약 1㎍, 약 2㎍, 약 3㎍, 약 4㎍, 약 5㎍, 약 6㎍, 약 7㎍, 약 9㎍, 약 10㎍, 약 15㎍, 약 20㎍, 약 25 ㎍, 약 30㎍. 사포닌-기반 항원 보강제는 다음 상한을 가진 범위로 존재할 수 있다: 약 10㎍, 약 15㎍, 약 20㎍, 약 25㎍, 약 30㎍, 약 35㎍, 약 40㎍, 약 45㎍, 약 50㎍, 약 60㎍, 약 70㎍, 약 80㎍, 약 90㎍, 약 100 ㎍, 약 110㎍, 약 120㎍, 약 130㎍, 약 140㎍, 약 150㎍ 또는 약 200㎍. 특정 양태에서, 사포닌-기반 항원 보강제는 약 5㎍ 내지 약 20㎍ 또는 약 1㎍ 내지 약 10㎍이다. 이런 복용량은 생쥐에서 특히 적절하며 20g의 통상적인 생쥐 체중 대 약 60kg의 인간 체중을 기반으로 인간 사용에 대해 조절될 수 있다. A variety of antigen adjuvants that are not conventionally used in humans can still be used in other vertebrates, for example, when it is desired to generate antibodies or subsequently to obtain active T cells. The toxicity or other adverse effects that may arise from cells such as those that can occur using an antigen reinforcement or, for example, non-irradiated tumor cells, are independent of this environment. Other methods of inducing an immune response can be accomplished by formulating the immunogen of the invention with an " immunostimulant ". These are the body's own chemical messengers (cytokines) to increase the response of the immune system. Immunostimulants are immunosuppressive, immune-enhancing and inflammatory cytokines, such as interleukins (e.g., IL-1, IL-2, IL-3, IL-4, IL- Cain, lymphokine and chemokine; Other immune stimuli such as growth factors (e.g., granulocyte-macrophage (GM) -colony stimulating factor (CSF)) and macrophage inflammatory factors, Flt3 ligand, B7.1, B7.2, The immunostimulatory molecules may be administered to the same formulation as an immunogen or may be administered separately. [0064] Expression vectors encoding proteins or proteins may be administered to produce an immunostimulatory effect. Can be in the range of the following lower limits: about 0.2 μg, about 0.4 μg, about 0.6 μg, about 0.8 μg, about 1 μg, about 2 μg, about 3 μg, about 4 μg, about 5 μg, about 6 μg , About 7 μg, about 9 μg, about 10 μg, about 15 μg, about 20 μg, about 25 μg, about 30 μg, about 35 μg, about 40 μg, about 45 μg, about 50 μg, About 70 μg, about 80 μg, about 90 μg, about 100 μg, about 110 μg, about 120 μg, about 130 μg, about 140 μg, or about 150 μg. Approximately 10 μg, about 15 μg, about 20 μg, about 25 μg, about 30 μg, about 35 μg, about 40 μg, about 45 μg, about 50 μg, about 60 μg, about 70 μg, about 80 Mu] g, about 90 [mu] g, about 100 mu g, about 110 mu g, about 120 mu g, about 130 mu g, about 140 mu g, about 150 mu g, The saponin-based antigen adjuvant may be present in a range with the following lower limits: about 0.2 μg, about 0.4 μg, about 0.6 μg, about 0.8 μg, about 1 μg, about 2 μg, about 3 μg Saponin-based antigen-adjuvant is administered at a dosage of at least about 1 mg / kg, preferably at least about 10 mg / kg, about 4 mg / kg, about 5 mg / About 15 μg, about 20 μg, about 25 μg, about 30 μg, about 35 μg, about 40 μg, about 45 μg, about 50 μg, about 60 μg, about 70 μg About 80 μg, about 90 μg, about 100 μg, about 110 μg, about 120 μg, about 130 μg, about 140 μg, about 150 μg, or about 200 μg. In certain embodiments, the saponin-based adjuvant is from about 5 μg to about 20 μg or from about 1 μg to about 10 μg. Such doses are particularly suitable in mice and can be adjusted for human use based on a typical mouse weight of 20 g versus a human body weight of about 60 kg.
본 발명의 일 실시 태양에서, RSV F 단백질, 이의 단편, 또는 집합체, 더 바람직하게 서열번호 3, 서열번호 4, 서열번호 5, 서열번호 6, 서열번호 7, 서열번호 8, 서열번호 9, 서열번호 10, 서열번호 11, 서열번호 12, 서열번호 13, 서열번호 14, 서열번호 15, 서열번호 16, 서열번호 17, 서열번호 18, 서열번호 19, 서열번호 20, 서열번호 21, 서열번호 22, 및 서열번호 23 으로 이루어진 군에서 선택된 어느 하나 이상의 단백질이 포함된 RSV F 면역원성 조성물 또는 이를 포함하는 백신을 투여하는 것을 포함하는, RSV F 감염에 대한 예방 면역을 유도하는 방법을 제공한다. In one embodiment of the invention, the RSV F protein, fragment or aggregate thereof, more preferably SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 6, SEQ ID No. 7, SEQ ID No. 8, SEQ ID No. 9, SEQ ID NO: 11, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: , And SEQ ID NO: 23, or a vaccine comprising the RSV F immunoconjugate composition, wherein the RSV F immunogenic composition comprises at least one protein selected from the group consisting of SEQ ID NO: 23 and SEQ ID NO: 23.
바람직하게 본 발명의 일 실시 태양에서, 서열번호 3, 서열번호 4, 및 서열번호 5로 이루어진 군에서 선택된 어느 하나 이상의 단백질이 포함된 RSV F 면역원성 조성물 또는 이를 포함하는 백신을 투여하는 것을 포함하는, RSV F 감염에 대한 예방 면역을 유도하는 방법을 제공한다. Preferably, in one embodiment of the present invention, the method comprises administering a RSV F immunogenic composition comprising a protein selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5 or a vaccine comprising the same , A method of inducing preventive immunity against RSV F infection.
본 발명의 일 실시예에서 상기 RSV F 단백질 항원을 포함하는 조성물을 개체에 투여하는 것을 포함하는, RSV에 대한 면역 반응을 유도하는 방법을 제공한다. In one embodiment of the present invention, there is provided a method of inducing an immune response to RSV comprising administering to a subject a composition comprising the RSV F protein antigen.
상기 방법은 RSV 감염을 감소시키거나 예방할 수 있다.The method can reduce or prevent RSV infection.
본 발명은 RSV 감염 예방 및/또는 치료를 위한 면역원성 조성물을 제공한다. The present invention provides immunogenic compositions for the prevention and / or treatment of RSV infection.
본 발명은 RSV F 단백질의 변이를 통해 야생형 RSV F 단백질보다 숙주 세포 내에서 더욱 향상된 RSV F 단백질 발현율을 달성할 수 있다. The present invention is able to achieve a more improved RSV F protein expression in the host cell than the wild-type RSV F protein through mutation of the RSV F protein.
본 발명은 RSV F 단백질의 높은 면역원성을 달성할 수 있다. 즉, 본 발명의 RSV F 단백질의 서열 변이(및/또는 RSV F 단백질 발현 염기 서열 변이)를 통해 완성된 항원은 뛰어난 중화항체가를 제공하여 뛰어난 면역원성을 달성할 수 있다. The present invention can achieve high immunogenicity of the RSV F protein. That is, an antigen prepared through the sequence variation of the RSV F protein of the present invention (and / or the RSV F protein expression base sequence variation) can provide excellent neutralizing antibody titer and achieve excellent immunogenicity.
본 발명은 안정화되고 가용성을 가진 RSV F 단백질을 제공할 수 있다. The present invention can provide a stabilized and soluble RSV F protein.
본 발명은 다양한 세포주에 적용할 수 있고, 안전한 RSV 면역원성 조성물, 더 바람직하게 백신을 제공할 수 있다. The present invention is applicable to a variety of cell lines and can provide a safe RSV immunogenic composition, more preferably a vaccine.
본 발명의 변이를 통해 완성된 RSV 면역원은 인체 내 오랜 면역유지기간을 달성할 수 있다. 본 발명의 변이를 통해 완성된 RSV 면역원은 반복감염의 우려가 적다.The RSV immunogen completed through the variation of the present invention can achieve a long duration of immune maintenance in the human body. The RSV immunogen completed through the variation of the present invention is less likely to cause repeated infections.
본 발명의 변이를 통해 완성된 RSV 면역원은 체내 혈중 항체에 의한 간섭이 적어 뛰어난 면역 발생을 유도할 수 있다. The RSV immunogen, which is completed through the mutation of the present invention, can induce excellent immunogenicity due to low interference with blood antibodies in the body.
도 1은 본 발명에서 주요하게 실시한 RSV F 단백질의 변이 모식도이다. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the variation of the RSV F protein mainly performed in the present invention. FIG.
도 2는 본 발명에서 실시한 RSV F 단백질 변이의 발현량을 확인한 실험이다. 본 실험은 site II 에피토프에 결합하는 팔리비주맙(palivizumab)과의 반응력을 측정하였다. 본 발명에서 시도한 변이들이 기존에 알려진 변이 형태보다 발현율이 우수함을 확인 하였다.FIG. 2 is an experiment for confirming the expression amount of the RSV F protein mutation performed in the present invention. This experiment measured the reactivity with palivizumab binding to the site II epitope. It was confirmed that the mutations tried in the present invention are superior to the mutation forms known in the art.
도 3은 본 발명에서 실시한 변이를 통해 발현 및 정제한 단백질의 웨스턴 블랏 및 쿠마시염색결과이다. 3-a는 F0와 F1을 βME를 이용하여 확인한 결과이다. 3-b는 최종 정제된 변이 단백질 중 FP1과 FP4를 확인한 결과이다. Fig. 3 shows results of western blotting and coomassie staining of the proteins expressed and purified through the mutations performed in the present invention. 3-a is the result of confirming F0 and F1 using βME. 3-b is the result of confirming FP1 and FP4 among the final purified mutant proteins.
도 4는 본 발명으로 제작된 RSV F 단백질의 투과 전자 현미경(transmission electron microscopy) 사진이다.FIG. 4 is a transmission electron microscopy photograph of RSV F protein prepared according to the present invention.
도 5A 및 5B는 본 발명으로 제작된 RSV F 단백질의 마우스 면역원성 유도를 알아보기 위한 총항체 역가 측정 실험 결과 그래프이다. 여기서 총항체 역가는 일라이쟈 (ELISA)분석을 통해 확인된 값이다. 여기서 GMT는 Geometric Mean Titer (기하평균 값)이다. 여기서 "1ug+Adjuvant", "10ug+Adjuvant" 및 "30ug+Adjuvant" 는 RSV F 단백질 1ug, 10ug, 30ug을 각각 알루미늄 어쥬번트에 흡착한 물질들이다. PBS 처리시를 1로 보았다.FIGS. 5A and 5B are graphs showing the results of measurement of total antibody titers to examine the induction of the mouse immunogenicity of the RSV F protein prepared according to the present invention. The total antibody titers are the values determined by ELISA analysis. Where GMT is the Geometric Mean Titer. Here, " 1ug + Adjuvant ", " 10ug + Adjuvant ", and " 30ug + Adjuvant " are substances adsorbed to 1ug, 10ug and 30ug of RSV F protein, respectively, in aluminum adjuvant. The PBS treatment time was 1.
도 6은 본 발명으로 제작된 RSV F 단백질로 면역이 유도된 마우스 혈청에서 site II 에피토프와 결합하는 팔리비주맙과 경쟁할 수 있는 특이 항체의 농도를 확인 하는 실험 결과 모식도 이다. FIG. 6 is a schematic diagram of an experimental result for confirming the concentration of a specific antibody capable of competing with palivizumab binding to a site II epitope in mouse serum in which immunity was induced by the RSV F protein prepared in the present invention.
도 7A 및 7B는 본 발명으로 제작된 RSV F 단백질로 면역이 유도된 마우스 혈청에서 site II 에피토프와 결합하는 팔리비주맙과 경쟁할 수 있는 특이 항체의 농도를 확인 하는 실험 결과 그래프이다. 결과값은 팔리비주맙을 50% 억제하는 GMT값을 의미한다. FIGS. 7A and 7B are graphs showing experimental results for confirming the concentration of a specific antibody capable of competing with palivizumab binding to a site II epitope in a mouse serum immunized with the RSV F protein prepared according to the present invention. FIG. The result value means a GMT value which suppresses 50% of palivizumab.
도 8A 및 8B는 본 발명으로 제작된 RSV F 단백질로 면역이 유도된 마우스 혈청에서 야생형 RSV 바이러스의 감염을 억제하는 것을 확인하는 실험이다. 여기서 사용되는 야생형 바이러스는 RSV A2 (ATCC. VR-1540)이다. 중화면역 반응 실험을 통해, 본 발명으로 제작된 RSV F 단백질이 야생형 RSV A2의 감염을 억제하는 것을 확인하였다..FIGS. 8A and 8B are experiments to confirm the inhibition of the infection of the wild-type RSV virus in the mouse serum in which immunity was induced by the RSV F protein prepared according to the present invention. The wild-type virus used here is RSV A2 (ATCC. VR-1540). Through the neutralizing immunity test, it was confirmed that the RSV F protein produced by the present invention inhibited the infection of the wild-type RSV A2.
도 9는 FP1, 3, 4, 및 6의 soluble F 단백질 발현 screening 결과를 보여준다. FIG. 9 shows the screening results of soluble F protein of FP1, 3, 4, and 6.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail to facilitate understanding of the present invention. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the following embodiments. Embodiments of the invention are provided to more fully describe the present invention to those skilled in the art.
실시예Example 1.  One. RSVRSV F 유전자 변이 F gene mutation
본 발명에서 안정화되며 가용성을 가진 RSV F 단백질을 얻기 위해 몇 종류의 아미노산 서열의 변이를 실시하였다. 해당 변이가 야생 RSV-A2 과 RSV-B, 또한 RSV-A long 를 포함한 모든 RSV subtype에 적용된다는 것은 당업자가 주지하고 있는 사실이다. In the present invention, several kinds of amino acid sequences were mutated to obtain a stable and soluble RSV F protein. It is well known to those skilled in the art that the mutation applies to all RSV subtypes including wild RSV-A2 and RSV-B, as well as RSV-A long.
먼저, 야생 RSV-B (SEQ ID No. 1)에 대한 변이를 실시하였다. 상기 변이는 막 횡단 도메인 (transmembrane domain)을 제거 하였다. 상기 제거된 막 횡단 도메인의 아미노산 서열은 서열번호 2의 525-574위치의 아미노산이다 (SEQ ID No. 2). First, mutations were made to wild RSV-B (SEQ ID No. 1). The mutation removed the transmembrane domain. The amino acid sequence of the removed transmembrane domain is the amino acid at position 525-574 of SEQ ID NO: 2 (SEQ ID No. 2).
본 발명의 융합 펩타이드 위치(서열번호 2의 137-145 위치)의 변이, 더 바람직하게 FP1, FP3, FP4, 및 FP6으로 돌연변이된 아미노산이 뛰어난 RSV 면역 유발원으로 작용할 수 있다는 것을 확인하기 위해 구체적인 실험을 실시하였다. Variations in the position of the fusion peptide of the present invention (positions 137-145 of SEQ ID NO: 2), more preferably amino acids mutated to FP1, FP3, FP4, and FP6, may serve as excellent RSV immunogen, Respectively.
한 실시예에서 상기 변이는 융합 펩타이드 (fusion peptide)부분을 (아미노산 서열 137-145) 변이하였다. 한 실시예에서 구체적으로 RSV F 단백질은 융합 펩타이드 부분의 소수성 부분을 친수성 부분으로 변형한 변이이다. 구체적으로, 융합 펩타이드의 서열 FLGFLLGVG중 소수성 부분을 A로 치환하여 AAGAAAGAG으로 변형하였다 (서열번호 3). 본 발명의 목적상 친수성 아미노산 중에서 특히 A로 치환한 결과 최적의 효과를 얻을 수 있다.In one embodiment, the mutation mutated the fusion peptide portion (amino acid sequence 137-145). In one embodiment, specifically, the RSV F protein is a mutation that transforms the hydrophobic portion of the fusion peptide portion into a hydrophilic portion. Specifically, the hydrophobic part of the sequence FLGFLLGVG of the fusion peptide was substituted with A and transformed into AAGAAAGAG (SEQ ID NO: 3). For the purpose of the present invention, the optimum effect can be obtained as a result of substitution with A among hydrophilic amino acids.
또, 한 실시예에서 융합 펩타이드부분 중 FLGFLLGVG의 극성 부분을 무극성 곁사슬로 변형 하였고, 변경된 융합 펩타이드 부분은 QNGQNNGSG과 NSGNSSGGG로 변형 하였다 (각각 서열번호 4, 및 서열번호 5). 다른 실시예에서는 융합 펩타이트부분 중 FLGFLLGVG부분을 TLSKKRKRR로 변형하였다 (서열번호 6). In one embodiment, the polar portion of FLGFLLGVG in the fusion peptide portion was modified to a nonpolar side chain, and the modified fusion peptide portion was modified to QNGQNNGSG and NSGNSSGGG (SEQ ID NO: 4 and SEQ ID NO: 5, respectively). In another embodiment, the FLGFLLGVG portion of the fusion peptide portion was modified to TLSKKRKRR (SEQ ID NO: 6).
본 발명의 일 실시예에서 야생 RSV F 단백질의 F1 부분의 안정화를 유지 시켜주는 추가 변이를 포함하고 있다. 안정화와 관련된 추가적인 돌연변이는 서열번호 2를 기준으로 하기 (a) 내지 (g)로 이루어진 군으로부터 선택되는 적어도 하나의 추가적인 돌연변이를 더 포함한다. In one embodiment of the invention, additional mutations that maintain the stabilization of the F1 portion of the wild RSV F protein. Additional mutations associated with stabilization further include at least one additional mutation selected from the group consisting of (a) to (g) based on SEQ ID NO: 2.
(a) 140번째 위치에서 아미노산 잔기의 돌연변이; (a) a mutation of the amino acid residue at the 140th position;
(b) 163번째 위치에서 아미노산 잔기의 돌연변이; (b) a mutation of the amino acid residue at position 163;
(c) 179번째 위치에서 아미노산 잔기의 돌연변이;(c) a mutation of the amino acid residue at position 179;
(d) 188번째 위치에서 아미노산 잔기의 돌연변이; (d) a mutation of the amino acid residue at position 188;
(e) 189번째 위치에서 아미노산 잔기의 돌연변이;(e) a mutation of the amino acid residue at position 189;
(f) 487번째 위치에서 아미노산 잔기의 돌연변이;(f) a mutation of an amino acid residue at position 487;
(g) 505번째 위치에서 아미노산 잔기의 돌연변이.(g) Mutation of amino acid residues at position 505.
더 구체적으로, 본 발명의 RSV F 단백질 항원은 서열번호 2를 기준으로 More specifically, the RSV F protein antigens of the present invention are based on SEQ ID NO: 2
(a) 140번째 위치에서 아미노산 잔기 F에서 W의 돌연변이(서열번호 7); (a) a mutation of W at the amino acid residue F at position 140 (SEQ ID NO: 7);
(b) 163번째 위치에서 아미노산 잔기 E에서 Q의 돌연변이(서열번호 8); (b) a mutation of Q at amino acid residue E at position 163 (SEQ ID NO: 8);
(c) 179번째 위치에서 아미노산 잔기 V에서 L의 돌연변이(서열번호 9);(c) a mutation of L at amino acid residue V at position 179 (SEQ ID NO: 9);
(d) 188번째 위치에서 아미노산 잔기 L에서 Q의 돌연변이(서열번호 10); (d) a mutation of Q at the amino acid residue L at position 188 (SEQ ID NO: 10);
(e) 189번째 위치에서 아미노산 잔기 T에서 L의 돌연변이(서열번호 11);(e) a mutation in the amino acid residue T at position 189 (SEQ ID NO: 11);
(f) 487번째 위치에서 아미노산 잔기 E에서 L의 돌연변이(서열번호 12); 및(f) a mutation of the amino acid residue E at position 487 (SEQ ID NO: 12); And
(g) 505번째 위치에서 아미노산 잔기 F에서 W의 돌연변이(서열번호 13)로 이루어진 군에서 선택된 어느 하나 이상의 돌연변이를 포함한다. (g) a mutation at position 505 of the amino acid residue F to W (SEQ ID NO: 13).
다른 실시예에서 상기 RSV F 단백질 항원은 In another embodiment, the RSV F protein antigen is
서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 163에 상응하는 아미노산이 Q로 치환되거나(서열번호 14); An amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, an amino acid corresponding to 163 is substituted with Q (SEQ ID NO: 14);
서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 163에 상응하는 아미노산이 Q로 치환되고, 188에 상응하는 아미노산이 Q로 치환되고, 189에 상응하는 아미노산이 L로 치환되거나(서열번호 15);The amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, the amino acid corresponding to 163 is substituted with Q, the amino acid corresponding to 188 is substituted with Q, the amino acid corresponding to 189 is substituted with L No. 15);
서열번호 2의 위치 488에 상응하는 아미노산이 W로 치환되고, 163에 상응하는 아미노산이 Q로 치환되거나(서열번호 16); An amino acid corresponding to position 488 of SEQ ID NO: 2 is substituted with W, an amino acid corresponding to 163 is substituted with Q (SEQ ID NO: 16);
서열번호 2의 위치 488에 상응하는 아미노산이 W로 치환되고, 179에 상응하는 아미노산이 L로 치환되거나(서열번호 17); An amino acid corresponding to position 488 of SEQ ID NO: 2 is substituted with W, an amino acid corresponding to 179 is substituted with L (SEQ ID NO: 17);
서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나(서열번호 18); An amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, an amino acid corresponding to 505 is substituted with W (SEQ ID NO: 18);
서열번호 2의 위치 487에 상응하는 아미노산이 L로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나(서열번호 19); An amino acid corresponding to position 487 of SEQ ID NO: 2 is substituted with L, an amino acid corresponding to 505 is substituted with W (SEQ ID NO: 19);
서열번호 2의 위치 163에 상응하는 아미노산이 Q로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나(서열번호 20); The amino acid corresponding to position 163 of SEQ ID NO: 2 is substituted with Q, the amino acid corresponding to 505 is replaced with W (SEQ ID NO: 20);
서열번호 2의 위치 188에 상응하는 아미노산이 Q로 치환되고, 189에 상응하는 아미노산이 L로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나(서열번호 21);An amino acid corresponding to position 188 of SEQ ID NO: 2 is substituted with Q, an amino acid corresponding to 189 is substituted with L, and an amino acid corresponding to 505 is substituted with W (SEQ ID NO: 21);
서열번호 2의 위치 163에 상응하는 아미노산이 Q로 치환되고, 487에 상응하는 아미노산이 L로 치환(서열번호 22)될 수 있다.The amino acid corresponding to position 163 of SEQ ID NO: 2 may be substituted with Q and the amino acid corresponding to 487 may be substituted with L (SEQ ID NO: 22).
일부 실시예에서, 상기에서 언급한 변이된 RSV F 단백질들의 특성을 향상 또는 변형하는 단백질 가공 및 재조합 DNA 기술의 공지된 방법을 사용하는 것을 포함한다. 해당 단백질들을 암호화하는 유전자는 코돈 적합화를 실시하여 변형 하였으며, 해당 뉴클레오타이드의 변형은 당업자들이 인지하고 있는 사항이다. 다양한 형태의 돌연변이유발은 단백질 분자들을 암호화하는 변형체 핵산들을 생산 및/또는 분리 및/또는 본 발명의 단백질들을 추가로 변형/돌연변이 하는데 사용될 수 있다. 이들은 특정부위 돌연변이유발, 무작위 지점 돌연변이유발, 동형 재조합(DNA 셔플링), 주형을 함유하는 우라실을 사용하는 돌연변이유발, 올리고뉴클레오티드-유도 돌연변이유발, 포스포로티오에이트-변형 DNA 돌연변이유발, 간격-이중 DNA(gapped-duplex DNA)등을 사용하는 돌연변이유발을 포함하나 이에 한정되지 않는다. 다른 적절한 방법은 점 불일치 회복(point mismatch repair), 회복-부족 숙주(repair-deficient host strains), 제한-선택 및 제한-정제를 사용하는 돌연변이유발, 결실 돌연변이유발, 전체 유전자 합성, 이중-가닥 파괴 회복 등에 의한 돌연변이유발을 포함한다. 예를 들어, 키메릭 구조체가 관여하는 돌연변이유발도 본 발명에 포함된다. 한 실시예에서, 돌연변이유발은 선척적으로 발생한 분자 또는 후천성 또는 돌연변이로 자연적으로 발생하는 분자의 공지된 정보, 예를 들어, 서열, 서열 비교, 물리적 특성, 결정 구조 등에 의해 안내될 수 있다. In some embodiments, this includes using known methods of protein processing and recombinant DNA technology to enhance or modify the properties of the mutated RSV F proteins mentioned above. Genes that encode the proteins are modified by codonification, and modifications of the nucleotides are known to those skilled in the art. Various forms of mutagenesis can be used to produce and / or isolate variant nucleic acids encoding the protein molecules and / or further modify / mutate the proteins of the invention. These include, but are not limited to, site-specific mutagenesis, random point mutagenesis, homologous recombination (DNA shuffling), mutagenesis using uracil containing template, oligonucleotide-induced mutagenesis, phosphorothioate-modified DNA mutagenesis, DNA (gapped-duplex DNA), and the like. Other suitable methods include point mismatch repair, repair-deficient host strains, restriction-selection and restriction-mutagenesis using purification, deletion mutagenesis, total gene synthesis, double-strand breakage Recovery, and the like. For example, mutagenesis involving a chimeric structure is also encompassed by the present invention. In one embodiment, mutagenesis can be guided by known information, such as sequences, sequence comparisons, physical properties, crystal structures, etc., of molecules that have been generated pre-existing or of naturally occurring molecules with acquired or mutated.
실시예Example 2.  2. RSVRSV F 유전자  F gene 변이에 대한 발현 단백질Expression proteins for mutations 스크리닝 Screening
이전 실시예에서 기술된 F 단백질에 대한 유전자 변이는 293FT 세포를 이용한 단백질 발현시험을 거쳐 발현량을 확인하였다. 각각의 변이가 적용된 후보 물질 plasmid를 진핵세포 프로모터(promoter)를 포함하는 벡터에 삽입하고 발현정도를 확인하였다. 한 실시예에서 사용한 벡터는 pcDNA3.1 이다. 이때 사용 가능한 벡터는 pcDNA3.1 뿐만 아니라, 다른 진핵 세포 발현 벡터를 사용할 수 있음을 당업자는 주지하고 있는 사실이다. 발현 정도평가로 ELISA 법을 사용하였으며, 이때 사용한 항체는 RSV site II에 결합하는 팔리비주맙 (palivizumab)을 이용하였다. 도 2에서 확인할 수 있듯이, 적용한 변이에 대한 발현 단백질의 스크리닝 결과는 이미 알려진 특허의 변이 보다 더 높은 수준의 발현율을 보여주었다. The gene mutation for the F protein described in the previous example was confirmed by expressing the protein using 293FT cells. The candidate substance plasmid to which each mutation was applied was inserted into a vector containing a eukaryotic promoter (promoter) and the degree of expression was confirmed. The vector used in one embodiment is pcDNA3.1. It will be appreciated by those skilled in the art that not only pcDNA3.1 but also other eukaryotic expression vectors can be used as the vector. ELISA was used for the evaluation of the expression level. The antibody used was palivizumab, which binds to RSV site II. As can be seen in FIG. 2, the screening results of the expressed proteins for the applied mutations showed a higher level of expression than the mutations of the known patents.
FP1, 3, 4 및 6의 가용성 F 단백질 발현 screening 결과Soluble F protein expression screening results of FP1, 3, 4 and 6
Transfection 후 5일 뒤 sample을 harvest 하였다. Sample은 lysis (Medium & Pellet)와 lysis (Medium) 하지 않는 두 가지 방법으로 harvest 하였다. 먼저 lysis 시키지 않는 경우, transfection 한 well 에서 supernatant만을 harvest 하였다. lysis 시키는 경우, 96 well 배양액 (약 100ul)에 10% Triton-X 100을 10μl씩 넣어준 후 4˚C 에서 30분간 rocking 하고, 1분간 spin-down 하여 debris를 가라 앉힌 후, clear한 lysate를 harvest 하였다.Five days after transfection, samples were harvested. The samples were harvested in two ways: lysis (Medium & Pellet) and lysis (Medium). In the absence of lysis, only the supernatant was harvested from transfected wells. For lysis, 10 μl of 10% Triton-X 100 was added to a 96-well culture (approximately 100 μl), rocked at 4 ° C for 30 minutes, and spun down for 1 minute to settle the debris. Respectively.
Nickel-coated plate에 PBS를 50μl씩 넣어준 후, lysis 시킨 sample 과 lysis 시키지 않은 sample을 50μl씩 넣어주고 상온에서 한시간 incubation 하였다. 1차 항체로는 시나지스주를 사용하였다. 2차 항체로는 polyclonal rabbit anti-human IgG/HRP를 사용하였다. TMB는 horseradish peroxidase(HRP)와 같은 peroxidase에 의해 hydrogen peroxide 등을 환원시키는 electron donor로 작용한다. HRP 효소가 작용하면 TMB는 650nm 파장대에서 파란빛을 나타내게 되고 stop reagent은 sulfuric acid를 첨가하면 450nm 파장대의 노란색으로 변하게 된다. 두 파장 값의 차이 (450nm - 650nm)를 측정하여 발현이 잘 되는 construct를 선별하였다.After adding 50 μl of PBS to the nickel-coated plate, 50 μl of the lysed sample and the non-lysed sample were added and incubated at room temperature for one hour. The primary antibody used was Sinagris sp. The secondary antibody was polyclonal rabbit anti-human IgG / HRP. TMB acts as an electron donor to reduce hydrogen peroxide and the like by peroxidase such as horseradish peroxidase (HRP). When the HRP enzyme is activated, the TMB will show blue light at 650 nm wavelength and the stop reagent will turn yellow at 450 nm when sulfuric acid is added. The difference between the two wavelengths (450nm - 650nm) was measured and the constructs that were well expressed were selected.
Figure PCTKR2018011324-appb-T000001
Figure PCTKR2018011324-appb-T000001
STDEV : standard deviationSTDEV: standard deviation
%CV : the percent coefficient of Variation% CV: the percent coefficient of Variation
상기 표 1 및 도 9에서 확인할 수 있듯이, 본 발명의 FP1, FP3, FP4 및 FP6의 발현율이 우수하다는 것을 확인하였고, 항원으로 이용될 수 있음을 알 수 있었다. As shown in Table 1 and FIG. 9, it was confirmed that the expression ratios of FP1, FP3, FP4 and FP6 of the present invention were excellent, and it could be used as an antigen.
실시예Example 3.  3. RSVRSV F 유전자 도입 재조합  F-gene recombinant baculovirus의baculovirus 생산 production
RSV-B F (SEQ ID NO:1,) 단백질의 코돈을 최적화시키고, 전술했던 유전자 변이를 통해 얻어진 항원을 준비하였다. 기술된 RSV F 유전자는 cloning을 거쳐 RSV F 단백질 재조합 baculovirus (AcMNPV)를 만든 후 곤충세포, Sf9에 접종하였다.RSV-B F (SEQ ID NO: 1) The codons of the proteins were optimized and the antigens obtained through the gene mutation described above were prepared. The described RSV F gene was cloned into RSV F protein recombinant baculovirus (AcMNPV) and then inoculated into insect cells, Sf9.
Sf9 곤충세포의 평소 세포 농도는 3.00E6/ml을 넘지 않아야 한다. Sf9 곤충세포는 멸균된 125ml / 250ml / 500ml / 1L spinner flask 또는 5L / 50L /100L bioreactor 에서 배양을 한다. 본 예시에서 배양에 사용한 배지는 혈청이 함유되지 않은 무혈청 곤충 세포 특화 배지를 사용하였다. 여기서 무혈청 곤충 세포 특화 배지는 Insect Express (Lonza) 등이 포함될 수 있다. 본 예시에서 RSV F 단백질 생산을 위한 RSV F 재조합 baculovirus는 0.01-0.8 MOI (Multiplicity Of Infection) 사이로 접종을 하고 이때 Sf9 곤충세포의 농도는 성장 단계가 exponential phase의 초기단계인 5.00E5-1.50E6의 농도를 사용한다. 본 예시에서 사용한 RSV F 재조합 baculovirus는 접종 후 60-90시간이 되었을 때 harvest를 하며, 이때 viability는 75-98% 사이에 있어야 한다. 본 예시에서 낮은 성장단계의 세포에 낮은 농도의 바이러스를 접종하고 비교적 높은 viability에서 harvest하는 이유는, 사멸 단계의 세포에서 유출되는 protease 들에 의한 타겟 단백질 절단을 최소화하고, 사용되는 바이러스 접종물의 양을 최소화하기 위함이다.The normal cell concentration of Sf9 insect cells should not exceed 3.00E6 / ml. Sf9 insect cells are cultured in sterile 125ml / 250ml / 500ml / 1L spinner flask or 5L / 50L / 100L bioreactor. In this example, serum-free serum-insect cell-specific medium containing no serum was used for the culture. Here, the serum-free insect cell-specific medium may include Insect Express (Lonza). In this example, the RSV F recombinant baculovirus for RSV F protein production is inoculated between 0.01-0.8 MOI (multiplicity of infection), wherein the concentration of Sf9 insect cells is in the range of 5.00E5-1.50E6, the initial stage of the exponential phase Lt; / RTI > The RSV F recombinant baculovirus used in this example harvests at 60-90 hours after inoculation, with viability between 75-98%. In this example, the reason why low-level viruses are inoculated to low-growth cells and harvested at relatively high viability is to minimize the target protein cleavage by proteases exiting the cells in the apoptosis stage and to reduce the amount of virus inoculum used It is to minimize.
실시예Example 4.  4. RSVRSV F 항원의 발현, 정제, 분석 F antigen expression, purification, and analysis
먼저 실시예 3의 재조합 baculovirus 접종 후 확보된 Sf9 곤충세포를 3000-8000xg에서 1-50분간 원심 하여 cell 침강층과 media 상청액을 분리한다. 분리된 cell 침강층은 제거하고, media 상청액을 확보한다. 상기 재조합 배큘로바이러스의 감염은 세포들이 성장의 초기-로그 단계에 있고 1.0E5-7.0E6 cell/ml 농도, 바람직하게 5.00E5-2.50E6 cells/ml 농도 범위에 있을 때 효과적으로 일어날 수 있다. First, the Sf9 insect cells obtained after the inoculation of the recombinant baculovirus of Example 3 are centrifuged at 3000-8000xg for 1-50 minutes to separate the cell sedimentation layer and the media supernatant. Remove the separated cell sedimentation layer and secure media supernatant. Infection of the recombinant baculovirus can occur effectively when the cells are in the early-log phase of growth and are in the 1.0E5-7.0E6 cell / ml concentration, preferably 5.00E5-2.50E6 cells / ml concentration.
RSV F의 추가 정제는 당업계에서 공지된 이온 교환, 친화성 크로마토그래피에 의해 성취될 수 있다. 한 실시예에서 미정제 추출물을 음이온 교환 크로마토그래피, 렌틸 렉틴 친화성 및 양이온 교환 크로마토그래피를 통과시킴으로써 추가로 정제하였다. Additional purification of RSV F can be accomplished by affinity chromatography, affinity chromatography, as known in the art. In one embodiment, the crude extract was further purified by passing it through anion exchange chromatography, lentile lectin affinity and cation exchange chromatography.
RSV F의 추가 정제는 당업계에서 공지된 이온 교환, 친화성 크로마토그래피에 의해 성취될 수 있다. 한 실시예에서 미정제 추출물을 음이온 교환 크로마토그래피, 렌틸 렉틴 친화성 및 양이온 교환 크로마토그래피를 통과시킴으로써 추가로 정제하였다Additional purification of RSV F can be accomplished by affinity chromatography, affinity chromatography, as known in the art. In one example, the crude extract was further purified by passing it through anion exchange chromatography, lentile lectin affinity and cation exchange chromatography
한 실시에서 단백질은 각 정제과정의 동일한 부피의 샘플을 βME(베타-머캡토에탄올)을 포함하는 2xSDS 샘플 버퍼로 희석하여 SDS-gel의 각 well 당 15-20㎕ 채운 후 전기영동 하여 쿠마시 염색법에 의해 전체 단백질들을 염색하였다. 또한, SDS-gel을 membrane에 transfer 하여 항-단일 혹은 복합 RSV F 특이 항체를 이용하여 WB (웨스턴 블랏)법으로 추가 분석하였다. WB은 단백질이 전이된 membrane을 5% skim milk(Sigma)가 포함된 완충용액(PBS)으로 4℃에서 4-24시간 동안 인큐베이션 하고 완충용액으로 세척 후 1:2000으로 희석한 RSV F 특이 항체를 첨가하여 4℃에서 4-24시간 동안 인큐베이션 한다. 인큐베이션 후 0.1% tween20이 포함된 완충용액으로 3회 세척하고, 1:5000으로 희석된 겨자무과산화효소(HRP) 결합 2차 항체를 첨가하고 상온에서 1-2시간 동안 인큐베이션 한다. 인큐베이션이 끝난 membrane은 0.1% tween 20이 포함된 완충용액으로 3회 세척하고 ECL detection reagent (Amersham) 으로 발색하여 film으로 찍어 현상한다. (도3)In one embodiment, a sample of the same volume of each purification step was diluted with 2xSDS sample buffer containing βME (beta-mercaptoethanol), filled with 15-20 μl of each SDS-gel, electrophoresed, and stained with Coomassie stain Lt; / RTI > to stain whole proteins. In addition, SDS-gel was transferred to the membrane and further analyzed by WB (Western blot) using anti-single or multiple RSV F-specific antibodies. WB incubated for 4-24 hours at 4 ° C in buffer solution (PBS) containing 5% skim milk (Sigma), washed with buffer solution and then diluted 1: 2000 with RSV F-specific antibody Lt; RTI ID = 0.0 > 4 C < / RTI > for 4-24 hours. After incubation, wash three times with buffer containing 0.1% tween20, add the secondary antibody with mustard-free peroxidase (HRP) diluted 1: 5000 and incubate at room temperature for 1-2 hours. The incubated membrane is washed three times with buffer containing 0.1% tween 20, developed with ECL detection reagent (Amersham), and developed with a film. (Fig. 3)
RSVRSV F 항원을 이용한 동물 투여/면역 유도 Animal administration with F antigen / induction of immunity
본 예시에서 확보된 항원으로 mouse를 이용한 동물실험을 수행하였다. 실험에 사용한 mouse는 동물실험에 사용된 항원은 그 자체로도 사용을 할 수 있으며, 면역 증강제-예를 들어 알루미늄 어쥬번트와 함께 사용할 수도 있다. 어쥬번트는 예를 들어 알루미늄 또는 칼슘 염, 자세하게는 수산화, 인산, 인산 칼슘 등의 무기 염을 포함할 수 있다. Animal experiments using mouse as the antigen obtained in this example were carried out. The mouse used in the experiment can be used as an antigen used in the animal experiment itself and can also be used in combination with an immunostimulant such as an aluminum adjuvant. The adjuvant may include, for example, aluminum or calcium salts, in particular inorganic salts such as hydroxide, phosphoric acid, calcium phosphate and the like.
알루미늄 (Aluminum 또는 Alum) 계열의 어쥬번트는 현재 사람을 대상으로 하는 백신에서 가장 보편적으로 사용하는 어쥬번트이기 때문에 새로운 어쥬번트를 개발하고 평가하는데 필요한 standard로 사용할 정도로 안정성과 효과가 입증 되어 있는 어쥬번트이다. Alum 어쥬번트 중 대표적으로 사용하는 것이 aluminum hydroxide(Al(OH)3)와 aluminum phosphate(AlPO4)이며, 이 두 alum 어쥬번트는 각각 상이한 물리적 특성과 어쥬번트 특성을 나타낸다. 특히 aluminum hydroxide가 aluminum 흡착 백신에서 가장 널리 사용하고 있고, 본 예시에서 aluminum hydroxide를 면역 증강제로 사용하였으며, 이때 aluminum hydroxide는 180ug/1회 투여 의 수준으로 사용하였다.Aluminum or Alum-based adjuvants are currently the most commonly used adjuvants in human vaccines. Therefore, adjuvants, which are proven to be stable and effective enough to be used as a standard for developing and evaluating new adjuvants, to be. Among the alum adjuvants, aluminum hydroxide (Al (OH) 3 ) and aluminum phosphate (AlPO4) are typical examples. These two alum adjuvants exhibit different physical and adjuvant properties. Especially, aluminum hydroxide is most widely used in aluminum adsorption vaccine. In this example, aluminum hydroxide was used as an immunity enhancer, and aluminum hydroxide was used at a level of 180 ug / once administration.
본 예시에서 투여하는 RSV F 항원의 농도는 1ug/ml, 10ug/ml, 30ug/ml의 각기 다른 농도를 투여하였고, 투여 횟수는 2회 투여하였다. 본 예시에서의 투여 일정은 최초 투여 2주 후 2회 투여하였으며, 채혈은 최초 투여 후 2주, 4주 간격으로 실시하였다.. The concentration of RSV F antigen administered in this example was administered at different concentrations of 1 ug / ml, 10 ug / ml and 30 ug / ml, and the administration frequency was administered twice. The dosing schedules in this example were administered 2 times after 2 weeks of the first administration, and blood sampling was performed at 2 weeks and 4 weeks after the first administration.
RSVRSV F 항원을 투여한 동물의 면역원성 확인 Identification of immunogenicity of animals administered F antigen
본 예시에서 확보된 RSV F 항원의 면역원성 유도 효과를 확인 하였다. 본 예시에서 유도된 면역원성의 확인은 총항체가 측정, PCA 측정, 중화항체 측정을 통해 실시하였다.The immunogenicity inducing effect of the RSV F antigen obtained in this example was confirmed. Identification of the immunogenicity induced in this example was performed by total antibody measurement, PCA measurement, and neutralizing antibody measurement.
본 예시에서 항원-특이적 IgG항체역가를 확인하기 위한 총항체가 측정은 ELISA법을 사용하여 수행하였다. 96-well plate에 RSV F 항원을 well 당 100ng씩 coating 하고 4℃에서 밤새 인큐베이션 하였다. 인큐베이션이 끝난 plate는 0.05% tween20이 포함된 완충용액으로 3회 세척한 후 5% skim milk가 포함된 완충용액으로 2시간 동안 인큐베이션 하고 0.05% tween 20이 포함된 완충용액으로 다시 3회 세척한다. 확보된 mouse 혈액은 원심하여 혈청 샘플을 확보하고, 준비된 혈청 샘플을 최초 농도 1/20으로 희석한 후 4배씩 연속 희석을 수행하여 마지막 농도를 1/327680배로 만든다. 희석된 혈청 샘플을 well당 100ul씩 coating된 plate에 넣어 준 후 상온에서 2시간 인큐베이션 하고, 0.05% tween 20이 포함된 완충용액으로 3회 세척한다. 세척이 끝난 plate에 1:5000으로 희석된 겨자무과산화효소(HRP) 결합 Goat anti-mouse IgG 항체(Invitrogen, US)를 well당 100㎕ 넣은 후 상온에서 1시간 인큐베이션 하고 0.05% tween20이 포함된 완충용액으로 3회 세척한다. 세척이 끝난 plate의 각 well에 3,3A,5,5A-테트라메틸벤지딘 섭스트레이트(TMB substrate, KPL)를 첨가하여 HRP와 10분간 반응시킨 후, TMB stop solution (KPL)을 넣어 반응을 중지시켰다.. 각 웰에 대한 흡광도 450nm값을 Microtiter plate reader (Molecular Devices) 를 사용하여 측정하였고, 본 예시에서 측정된 결과는 발현/정제된 RSV F 면역원이 mouse에서 높은 항체가를 유도하는 것을 알려주는 결과이다. (도5) In this example, total antibody titers to identify antigen-specific IgG antibody titers were determined using ELISA. 100 ng of RSV F antigen was coated on a 96-well plate and incubated overnight at 4 ° C. The incubated plate is washed three times with buffer containing 0.05% tween 20, then incubated with buffer solution containing 5% skim milk for 2 hours and washed again with buffer solution containing 0.05% tween 20. The obtained mouse blood is centrifuged to obtain a serum sample, the prepared serum sample is diluted to 1/20 of the original concentration, and then serial dilution is performed four times to make the final concentration 1/327680 times. Diluted serum samples are plated on 100 μl / well plates, incubated at room temperature for 2 hours, and washed three times with buffer containing 0.05% tween 20. 100 μl of goat anti-mouse IgG antibody (Invitrogen, US) combined with 1: 5000 diluted HRP-conjugated goat anti-mouse IgG was added to the washed plate, incubated at room temperature for 1 hour, Wash three times with the solution. 3,3A, 5,5A-tetramethylbenzidine supra (TMB substrate, KPL) was added to each well of the washed plate for 10 minutes, and TMB stop solution (KPL) was added to stop the reaction The absorbance 450 nm values for each well were measured using a Microtiter plate reader (Molecular Devices) and the results measured in this example show that the expressed / purified RSV F immunogen induces high antibody titers in mice to be. (Fig. 5)
본 예시에서 발현/정제된 RSV F 면역원이 RSV F 단백질의 site II 에피토프에 대응하는 중화항체를 유도하는지 확인하기 위해 site II 에피토프와 결합 하는 팔리비주맙 (palivizumab) 항원을 이용하여 Competitive ELISA를 수행하였다. 96-well plate에 RSV F 항원을 well 당 200ng씩 coating 하고 4℃에서 밤새 인큐베이션 하였다. 인큐베이션이 끝난 plate는 0.05% tween20이 포함된 완충용액으로 3회 세척한 후 5% skim milk가 포함된 완충용액으로 2시간 동안 인큐베이션 하고 0.05% tween20이 포함된 완충용액으로 다시 3회 세척한다. 확보된 mouse 혈액은 원심하여 혈청 샘플을 확보하고, 준비된 혈청 샘플을 최초 농도 1/10으로 희석한 후 2배씩 연속 희석을 수행하여 마지막 농도를 1/1280배로 만든다. Biotin이 결합된 팔리비주맙을 well당 50 ng이 들어가도록 희석한 후 2배씩 연속 희석을 수행하여 마지막 농도를 well 당 390 pg으로 만든다. 희석된 혈청 샘플들과 biotin이 결합된 팔리비주맙을 2시간 동안 인큐베이션 하고, 0.05% tween20이 포함된 완충용액으로 3회 세척한다. 세척이 끝난 plate에 1:8000 희석된 겨자무과산화효소(HRP) 결합 streptavidin을 1시간 인큐베이션 하고 0.05% tween20이 포함된 완충용액으로 3회 세척한다. 세척이 끝난 plate의 각 well에 3,3A,5,5A-테트라메틸벤지딘 섭스트레이트(TMB substrate, KPL)를 첨가하여 HRP와 2분간 반응 시킨 후, TMB stop solution (KPL)을 넣어 반응을 중지시켰다. 각 웰에 대한 흡광도 450nm값을 Microtiter plate reader (Molecular Devices) 를 사용하여 측정하였다. 본 예시에서 측정된 팔리비주맙 대응 항체가는 발현/정제된 RSV F 항원의 중화 에피토프인 siteII에 대응하는 항체를 유도하고 있음을 확인하였다. (도6, 도7)In this example, a competitive ELISA was performed using the palivizumab antigen that binds to the site II epitope to confirm that the expressed / purified RSV F immunogen induces a neutralizing antibody corresponding to the site II epitope of the RSV F protein . 200 ng of RSV F antigen was coated on a 96-well plate and incubated overnight at 4 ° C. The incubated plate is washed three times with buffer containing 0.05% tween20, incubated with buffer solution containing 5% skim milk for 2 hours, and washed again with buffer solution containing 0.05% tween20. The obtained mouse blood is centrifuged to obtain a serum sample, the prepared serum sample is diluted to 1/10 of the original concentration, and then serial dilution is performed twice to make the final concentration 1/1280 times. Biotin-conjugated paribizumab is diluted to 50 ng per well and serial dilutions are performed in duplicate to achieve a final concentration of 390 pg per well. Diluted serum samples and biotin-conjugated paribisuram are incubated for 2 hours and washed three times with buffer containing 0.05% tween20. Incubate the washed plate with 1: 8000 diluted mustard radish peroxidase (HRP) conjugated streptavidin for 1 hour and wash 3 times with buffer containing 0.05% tween20. 3,3A, 5,5A-tetramethylbenzidine supra (TMB substrate, KPL) was added to each well of the washed plate, and HRP was allowed to react for 2 minutes. Then, TMB stop solution (KPL) was added to stop the reaction . The absorbance 450 nm for each well was measured using a Microtiter plate reader (Molecular Devices). It was confirmed that the palivizumab-responsive antibody measured in this example induced an antibody corresponding to site II, a neutralizing epitope of the expressed / purified RSV F antigen. (Figs. 6 and 7)
본 예시에서 중화 면역반응을 일으키는 항체역가의 측정을 수행하였다. 24 well plate에 Hep2 세포를 well당 3.5E5의 수로 seeding 한 후 37℃, 5% CO2 상태에서 하루 동안 배양한다. 동물실험에서 채취한 혈청 샘플을 최초 농도 1/20으로 희석한 후 3배씩 연속 희석을 수행하여 마지막 농도를 1/4860배로 만든다. 희석된 혈청 샘플 50㎕와 RSV 바이러스 50㎕ (40 pfu)를 섞어 준 뒤 1시간 동안 상온 인큐베이션 한 후, 전날 seeding 해 놓은 plate의 Hep2 세포에 접종 한다. 접종 후 5일 동안 후 37℃, 5% CO2 상태에서 배양한다. 배양이 끝난 plate는 neutral red로 염색하여 중화 값을 측정한다. 중화값은 바이러스의 50%를 보호하는 값(ND50)을 계산 하였다. (도8)In this example, measurements of antibody titers causing a neutralizing immune response were performed. Hep2 cells were seeded in a 24-well plate at a rate of 3.5E5 per well and cultured at 37 ° C in 5% CO 2 for one day. Serum samples from animal studies are diluted to 1/20 of the original concentration and serial dilutions are performed in triplicate to make the final concentration 1/4860. 50 μl of the diluted serum sample and 50 μl of RSV virus (40 pfu) are mixed and incubated at room temperature for 1 hour, then inoculated onto Hep2 cells of the plate seeded the day before. After 5 days of inoculation, the cells are cultured at 37 ° C and 5% CO 2 . After incubation, the plates are stained with neutral red and neutralized. The neutralization value was calculated to provide a value (ND50) that protects 50% of the virus. (Fig. 8)
본 발명은 가용성 RSV를 제공한다. 상기 가용성 RSV는 RSV 감염을 예방할 수 있는 백신 조성물로 제공될 수 있다. The present invention provides a soluble RSV. The soluble RSV may be provided as a vaccine composition capable of preventing RSV infection.
아미노산서열Amino acid sequence 목록  List
1.One. SK-SK- Seq Seq 1 aa 서열 (JN032120) 1 aa sequence (JN032120)
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNIMITAIIIVIIVVLLSLIAIGLLLYCKAKNTPVTLSKDQLSGINNIAFSK.MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNIMITAIIIVIIVVLLSLIAIGLLLYCKAKNTPVTLSKDQLSGINNIAFSK.
2.2. SK-SK- SeqSeq 1_ One_ dTMdTM (transmembrane deletion_1-524  (transmembrane deletion_1-524 aa서열aa sequence ))
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
3.3. SK-FP1 aaSK-FP1 aa
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRAAGAAAGAGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRAAGAAAGAGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
4.4. SK-FP3 aaSK-FP3 aa
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRQNGQNNGSGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRQNGQNNGSGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
5.5. SK-FP4 aaSK-FP4 aa
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRNSGNSSGGGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRNSGNSSGGGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
6.6. SK-FP6 aaSK-FP6 aa
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRR1SAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRR1SAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
7.7. SK-SK- SeqSeq 1_ One_ dTMdTM __ F140WF140W
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGWLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGWLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
8.8. SK-SK- SeqSeq 1_ One_ dTMdTM __ E163QE163Q
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
9.9. SK-SK- SeqSeq 1_ One_ dTMdTM __ V179LV179L
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVLSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVLSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
10.10. SK-SK- SeqSeq 1_ One_ dTMdTM __ L188QL188Q
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVQTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVQTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
11.11. SK-SK- SeqSeq 1_ One_ dTMdTM __ T189LT189L
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLLSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLLSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
12.12. SK-SK- SeqSeq 1_ One_ dTMdTM __ E487LE487L
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDLFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDLFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
13.13. SK-SK- SeqSeq 1_ One_ dTMdTM __ F505WF505W
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTN
14.14. SK-SK- SeqSeq 1_ One_ dTMdTM __ F140WF140W __ E163QE163Q
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGWLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGWLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
15.15. SK-SK- SeqSeq 1_ One_ dTMdTM __ F140WF140W __ E163QE163Q __ L188QL188Q __ T189LT189L
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGWLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVQLSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGWLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVQLSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
16.16. SK-SK- SeqSeq 1_ One_ dTMdTM __ F488WF488W __ E163QE163Q
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEWDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEWDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
17.17. SK-SK- SeqSeq 1_ One_ dTMdTM __ F488WF488W __ V179LV179L
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVLSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEWDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVLSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEWDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
18.18. SK-SK- SeqSeq 1_ One_ dTMdTM __ F505WF505W __ F140WF140W
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGWLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGWLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTN
19.19. SK-SK- SeqSeq 1_ One_ dTMdTM __ E487LE487L __ F505WF505W
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDLFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDLFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTN
20.20. SK-SK- SeqSeq 1_ One_ dTMdTM _ _ F505WF505W __ E163QE163Q
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTN
21.21. SK-SK- SeqSeq 1_ One_ dTMdTM __ L188QL188Q __ T189LT189L _ _ F505WF505W
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVQLSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVSLSNGVSVQLSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDEFDASISQVNEKINQSLAWIRRSDELLHNVNTGKSTTN
22.22. SK-SK- SeqSeq 1_ One_ dTMdTM __ E487LE487L __ E163QE163Q
MELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDLFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNMELLIHRSSAIFLTLAINAFYLTSSQNITEEFYQSTCSAVSRGYLSALRTGWYTSVITIELSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTINTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGQVNKIKNALLSTNKAVVSLSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVNAGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVVQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDPLVFPSDLFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTN
염기서열 목록 Base sequence listing
23.23. Wild type nt 서열 (JN032120)Wild type nt sequence (JN032120)
GGTACTGTGATAATGCAGGATCAGTATCCTTCTTTCCACAGGCTGACACTTGTAAAGTACAGTCCAATCGAGTATTTTGTGACACCATGAACAGTTTGACATTACCAAGTGAAGTCAGCCTTTGTAACACTGACATATTCAATTCCAAGTATGACTGCAAAATTATGACATCAAAAACAGACATAAGCAGCTCAGTAATTACTTCTCTAGGAGCTATAGTGTCATGCTATGGTAAAACTAAATGCACTGCATCCAACAAAAATCGTGGAATTATAAAGACATTTTCTAATGGTTGTGATTATGTGTCAAACAAAGGAGTAGATACTGTATCAGTGGGCAACACTTTATACTATGTCAACAAGCTGGAAGGCAAAAACCTTTATGTAAAAGGGGAACCTATAATAAATTACTATGACCCTCTAGTGTTTCCTTCTGATGAGTTTGATGCATCAATATCTCAAGTCAATGAAAAAATTAATCAAAGTTTAGCTTTTATTCGTAGATCCGATGAATTATTACATAATGTAAATACTGGAAAATCTACTACAAATATTATGATAACTGCAATTATTATAGTAATCATTGTAGTATTGTTATCATTAATAGCTATTGGTTTACTGTTGTATTGCAAAGCCAAAAACACACCAGTTACACTAAGCAAAGACCAACTAAGTGGAATCAATAATATTGCATTCAGCAAATAGGGTACTGTGATAATGCAGGATCAGTATCCTTCTTTCCACAGGCTGACACTTGTAAAGTACAGTCCAATCGAGTATTTTGTGACACCATGAACAGTTTGACATTACCAAGTGAAGTCAGCCTTTGTAACACTGACATATTCAATTCCAAGTATGACTGCAAAATTATGACATCAAAAACAGACATAAGCAGCTCAGTAATTACTTCTCTAGGAGCTATAGTGTCATGCTATGGTAAAACTAAATGCACTGCATCCAACAAAAATCGTGGAATTATAAAGACATTTTCTAATGGTTGTGATTATGTGTCAAACAAAGGAGTAGATACTGTATCAGTGGGCAACACTTTATACTATGTCAACAAGCTGGAAGGCAAAAACCTTTATGTAAAAGGGGAACCTATAATAAATTACTATGACCCTCTAGTGTTTCCTTCTGATGAGTTTGATGCATCAATATCTCAAGTCAATGAAAAAATTAATCAAAGTTTAGCTTTTATTCGTAGATCCGATGAATTATTACATAATGTAAATACTGGAAAATCTACTACAAATATTATGATAACTGCAATTATTATAGTAATCATTGTAGTATTGTTATCATTAATAGCTATTGGTTTACTGTTGTATTGCAAAGCCAAAAACACACCAGTTACACTAAGCAAAGACCAACTAAGTGGAATCAATAATATTGCATTCAGCAAATAG
24.24. SK-SK- SeqSeq 1_ One_ dTMdTM (transmembrane deletion_1- (transmembrane deletion_1- 524aa의524aa nt서열nt sequence ))
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
25.25. SK-FP1 ntSK-FP1 nt
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
26.26. SK-FP3 ntSK-FP3 nt
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
27.27. SK-FP4 ntSK-FP4 nt
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
28.28. SK-FP6 ntSK-FP6 nt
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
29.29. SK-SK- SeqSeq 1_ One_ dTMdTM __ F140WF140W
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
30.30. SK-SK- SeqSeq 1_ One_ dTMdTM __ E163QE163Q
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
31.31. SK-SK- SeqSeq 1_ One_ dTMdTM __ V179LV179L
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
32.32. SK-SK- SeqSeq 1_ One_ dTMdTM __ L188QL188Q
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
33.33. SK-SK- SeqSeq 1_ One_ dTMdTM __ T189LT189L
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
34.34. SK-SK- SeqSeq 1_ One_ dTMdTM __ E487LE487L
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATCTGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATCTGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
35.35. SK-SK- SeqSeq 1_ One_ dTMdTM __ F505WF505W
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
36.36. SK-SK- SeqSeq 1_ One_ dTMdTM __ F140WF140W __ E163QE163Q
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
37.37. SK-SK- SeqSeq 1_ One_ dTMdTM __ F140WF140W __ E163QE163Q __ L188QL188Q __ T189LT189L
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
38.38. SK-SK- SeqSeq 1_ One_ dTMdTM __ F488WF488W __ E163QE163Q
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTGGGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTGGGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
39.39. SK-SK- SeqSeq 1_ One_ dTMdTM __ F488WF488W __ V179LV179L
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTGGGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTGGGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
40.40. SK-SK- SeqSeq 1_ One_ dTMdTM __ F505WF505W __ F140WF140W
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
41.41. SK-SK- SeqSeq 1_ One_ dTMdTM __ E487LE487L __ F505WF505W
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATCTGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATCTGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
42.42. SK-SK- SeqSeq 1_ One_ dTMdTM _ _ F505WF505W __ E163QE163Q
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
43.43. SK-SK- SeqSeq 1_ One_ dTMdTM __ L188QL188Q __ T189LT189L _ _ F505WF505W
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATGAGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTGGATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC
44.44. SK-SK- SeqSeq 1_ One_ dTMdTM __ E487LE487L __ E163QE163Q
GGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATCTGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAACGGTACTGTGACAATGCCGGTTCCGTCTCCTTCTTTCCCCAGGCTGACACCTGCAAAGTGCAGTCCAACCGTGTGTTCTGTGACACCATGAACTCCCTCACTCTGCCCTCCGAAGTGTCCCTGTGCAACACCGACATTTTCAATTCCAAGTATGACTGCAAGATCATGACCTCTAAAACCGACATCTCCTCCTCCGTGATTACCTCCCTGGGCGCTATTGTGTCCTGCTATGGTAAAACTAAGTGCACCGCCTCCAACAAAAATCGTGGTATCATTAAGACCTTTTCCAATGGTTGTGATTACGTGTCCAACAAAGGTGTCGATACCGTCTCCGTGGGTAACACTCTCTACTATGTGAACAAGCTGGAGGGCAAGAACCTCTACGTGAAAGGTGAACCTATCATTAACTACTATGACCCCCTGGTGTTTCCCTCTGATCTGTTTGACGCTTCCATTTCCCAAGTGAATGAGAAAATCAATCAAAGCCTGGCTTTCATTCGTCGTTCCGATGAACTGCTCCATAACGTGAATACTGGTAAATCCACCACCAAC

Claims (20)

  1. 재조합 호흡기 세포융합 바이러스(RSV) F 단백질 항원이며,Recombinant respiratory syncytial virus (RSV) F protein antigen,
    상기 단백질 항원은 서열번호 1의 아미노산 서열의 525-574 위치가 결실된, RSV F 단백질 항원.Wherein the protein antigen is a RSV F protein antigen, wherein the 525-574 position of the amino acid sequence of SEQ ID NO: 1 is deleted.
  2. 제1항에 있어서, 상기 RSV F 단백질 항원은 서열번호 2로 이루어진 것을 특징으로 하는, RSV F 단백질 항원. The RSV F protein antigen according to claim 1, wherein the RSV F protein antigen is SEQ ID NO: 2.
  3. 제2항에 있어서, 상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열의 융합 펩타이드 (fusion peptide) 위치에서 하나 이상의 아미노산 치환을 더 포함하는 것을 특징으로 하는, RSV F 단백질 항원.3. The RSV F protein antigen according to claim 2, wherein the RSV F protein antigen further comprises at least one amino acid substitution at the fusion peptide position of the amino acid sequence of SEQ ID NO: 2.
  4. 제3항에 있어서, 상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열 137-145 위치에서 하나 이상의 소수성 아미노산을 친수성 아미노산으로 치환한 것을 특징으로 하는, RSV F 단백질 항원.4. The RSV F protein antigen according to claim 3, wherein the RSV F protein antigen is characterized in that at least one hydrophobic amino acid is substituted with a hydrophilic amino acid at amino acid positions 137-145 of SEQ ID NO: 2.
  5. 제3항에 있어서, 상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열 137-145 위치에서 하나 이상의 극성 아미노산을 무극성 아미노산으로 치환한 것을 특징으로 하는, RSV F 단백질 항원.4. The RSV F protein antigen according to claim 3, wherein the RSV F protein antigen is characterized in that at least one polar amino acid is substituted with a nonpolar amino acid at amino acid positions 137-145 of SEQ ID NO: 2.
  6. 제4항에 있어서, 상기 RSV F 단백질 항원은 서열번호 3으로 이루어진 아미노산 서열을 갖는 것을 특징으로 하는 RSV F 단백질 항원. 5. The RSV F protein antigen according to claim 4, wherein the RSV F protein antigen has the amino acid sequence of SEQ ID NO: 3.
  7. 제5항에 있어서, 상기 RSV F 단백질 항원은 서열번호 4로 이루어진 아미노산 서열을 갖는 것을 특징으로 하는 RSV F 단백질 항원. The RSV F protein antigen according to claim 5, wherein the RSV F protein antigen has the amino acid sequence of SEQ ID NO: 4.
  8. 제5항에 있어서, 상기 RSV F 단백질 항원은 서열번호 5로 이루어진 아미노산 서열을 갖는 것을 특징으로 하는 RSV F 단백질 항원. The RSV F protein antigen according to claim 5, wherein the RSV F protein antigen has the amino acid sequence of SEQ ID NO: 5.
  9. 제2항에 있어서, 상기 RSV F 단백질 항원은 서열번호 2의 아미노산 서열 137-145 위치의 아미노산 서열 FLGFLLGVG을 TLSKKRKRR로 변형하여 서열번호 6의 아미노산 서열을 갖는 RSV F 단백질 항원인 것을 특징으로 하는, RSV F 단백질 항원.3. The RSV F protein antigen according to claim 2, wherein the RSV F protein antigen is RSV F protein antigen having the amino acid sequence of SEQ ID NO: 6 by modifying the amino acid sequence FLGFLLGVG at amino acid sequence 137-145 of SEQ ID NO: 2 with TLSKKRKRR. F protein antigen.
  10. 제2항에 있어서, 상기 RSV F 단백질 항원은 서열번호 2를 기준으로 하기의 (a) 내지 (g)로 이루어진 군으로부터 선택되는 적어도 하나의 추가적인 돌연변이를 더 포함하는, RSV F 단백질 항원. 3. The RSV F protein antigen according to claim 2, wherein the RSV F protein antigen further comprises at least one additional mutation selected from the group consisting of (a) to (g) according to SEQ ID NO: 2.
    (a) 140번째 위치에서 아미노산 잔기의 돌연변이; (a) a mutation of the amino acid residue at the 140th position;
    (b) 163번째 위치에서 아미노산 잔기의 돌연변이; (b) a mutation of the amino acid residue at position 163;
    (c) 179번째 위치에서 아미노산 잔기의 돌연변이;(c) a mutation of the amino acid residue at position 179;
    (d) 188번째 위치에서 아미노산 잔기의 돌연변이; (d) a mutation of the amino acid residue at position 188;
    (e) 189번째 위치에서 아미노산 잔기의 돌연변이;(e) a mutation of the amino acid residue at position 189;
    (f) 487번째 위치에서 아미노산 잔기의 돌연변이; 및(f) a mutation of an amino acid residue at position 487; And
    (g) 505번째 위치에서 아미노산 잔기의 돌연변이.(g) Mutation of amino acid residues at position 505.
  11. 제10항에 있어서, 상기 RSV F 단백질 항원은 서열번호 2를 기준으로 하기의 (a) 내지 (g)로 이루어진 군으로부터 선택되는 적어도 하나의 추가적인 돌연변이를 더 포함하는, RSV F 단백질 항원: 11. The RSV F protein antigen according to claim 10, wherein the RSV F protein antigen further comprises at least one additional mutation selected from the group consisting of (a) to (g)
    (a) 140번째 위치에서 아미노산 잔기 F에서 W의 돌연변이; (a) a mutation of W at the amino acid residue F at the 140th position;
    (b) 163번째 위치에서 아미노산 잔기 E에서 Q의 돌연변이; (b) a mutation of Q at the amino acid residue E at position 163;
    (c) 179번째 위치에서 아미노산 잔기 V에서 L의 돌연변이;(c) mutation of L at amino acid residue V at position 179;
    (d) 188번째 위치에서 아미노산 잔기 L에서 Q의 돌연변이; (d) a mutation of Q at amino acid residue L in the 188th position;
    (e) 189번째 위치에서 아미노산 잔기 T에서 L의 돌연변이;(e) a mutation of L at amino acid residue T at position 189;
    (f) 487번째 위치에서 아미노산 잔기 E에서 L의 돌연변이; 및(f) a mutation of L at amino acid residue E at position 487; And
    (g) 505번째 위치에서 아미노산 잔기 F에서 W의 돌연변이.(g) Mutation of W at amino acid residue F at position 505.
  12. 제2항에 있어서, 상기 RSV F 단백질 항원은 3. The method of claim 2, wherein the RSV F protein antigen is selected from the group consisting of
    서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 163에 상응하는 아미노산이 Q로 치환되거나; An amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, and an amino acid corresponding to 163 is substituted with Q;
    서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 163에 상응하는 아미노산이 Q로 치환되고, 188에 상응하는 아미노산이 Q로 치환되고, 189에 상응하는 아미노산이 L로 치환되거나;An amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, an amino acid corresponding to 163 is substituted with Q, an amino acid corresponding to 188 is substituted with Q, and an amino acid corresponding to 189 is substituted with L;
    서열번호 2의 위치 488에 상응하는 아미노산이 W로 치환되고, 163에 상응하는 아미노산이 Q로 치환되거나; An amino acid corresponding to position 488 of SEQ ID NO: 2 is substituted with W, and an amino acid corresponding to 163 is substituted with Q;
    서열번호 2의 위치 488에 상응하는 아미노산이 W로 치환되고, 179에 상응하는 아미노산이 L로 치환되거나; An amino acid corresponding to position 488 of SEQ ID NO: 2 is substituted with W, and an amino acid corresponding to 179 is substituted with L;
    서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나; An amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, and an amino acid corresponding to 505 is substituted with W;
    서열번호 2의 위치 487에 상응하는 아미노산이 L로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나; An amino acid corresponding to position 487 of SEQ ID NO: 2 is substituted with L, and an amino acid corresponding to 505 is replaced with W;
    서열번호 2의 위치 140에 상응하는 아미노산이 W로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나; An amino acid corresponding to position 140 of SEQ ID NO: 2 is substituted with W, and an amino acid corresponding to 505 is substituted with W;
    서열번호 2의 위치 163에 상응하는 아미노산이 Q로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나; An amino acid corresponding to position 163 of SEQ ID NO: 2 is substituted with Q, and an amino acid corresponding to 505 is replaced with W;
    서열번호 2의 위치 188에 상응하는 아미노산이 Q로 치환되고, 189에 상응하는 아미노산이 L로 치환되고, 505에 상응하는 아미노산이 W로 치환되거나;An amino acid corresponding to position 188 of SEQ ID NO: 2 is substituted with Q, an amino acid corresponding to 189 is substituted with L, and an amino acid corresponding to 505 is substituted with W;
    서열번호 2의 위치 163에 상응하는 아미노산이 Q로 치환되고, 487에 상응하는 아미노산이 L로 치환되는 것을 특징으로 하는 RSV F 단백질 항원. Wherein the amino acid corresponding to position 163 of SEQ ID NO: 2 is substituted with Q, and the amino acid corresponding to 487 is substituted with L.
  13. 제1항에 있어서, 상기 RSV F 단백질 항원은 서열번호 25, 서열번호 26, 서열번호 27, 서열번호 28, 서열번호 29, 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 33, 서열번호 34, 서열번호 35, 서열번호 36, 서열번호 37, 서열번호 38, 서열번호 39, 서열번호 40, 서열번호 41, 서열번호 42, 서열번호 43, 및 서열번호 44로 이루어진 군에서 선택된 어느 하나 이상의 핵산에 의해 암호화된 것을 특징으로 하는 RSV F 단백질 항원. The method of claim 1, wherein the RSV F protein antigen is selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: RSV F protein antigen characterized by being encoded by a nucleic acid.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 상기 RSV F 단백질은 가용성 단백질인 것을 특징으로 하는 RSV F 단백질 항원. 14. The RSV F protein antigen according to any one of claims 1 to 13, wherein the RSV F protein is a soluble protein.
  15. 제1항 내지 제13항 중 어느 한 항의 RSV F 단백질 항원을 포함하는 면역원성 조성물.14. An immunogenic composition comprising the RSV F protein antigen of any one of claims 1 to 13.
  16. 제1항 내지 제13항 중 어느 한 항의 RSV F 단백질 항원 및 약학적으로 허용가능한 담체를 포함하는 약학적으로 허용가능한 백신 조성물로, 상기 RSV F 단백질은 숙주에서 면역 반응을 유발할 수 있는 약학적으로 허용가능한 백신 조성물.14. A pharmaceutically acceptable vaccine composition comprising a RSV F protein antigen according to any one of claims 1 to 13 and a pharmaceutically acceptable carrier, wherein said RSV F protein is a pharmaceutical composition capable of eliciting an immune response in a host Acceptable vaccine composition.
  17. 제16항에 있어서, 항원 보강제를 더 포함하는 백신 조성물.17. The vaccine composition of claim 16, further comprising an antigen adjuvant.
  18. 제17항에 있어서, 상기 항원 보강제는 알루미늄인 백신 조성물.18. The vaccine composition of claim 17, wherein the antigen adjuvant is aluminum.
  19. 제15항의 RSV F 단백질 항원을 포함하는 면역원성 조성물을 개체에 투여하는 것을 포함하는, RSV에 대한 면역 반응을 유도하는 방법. 16. A method of inducing an immune response to RSV comprising administering to an individual an immunogenic composition comprising an RSV F protein antigen of claim 15.
  20. 제19항에 있어서, 상기 방법은 RSV 감염을 감소시키거나 예방하는 것을 특징으로 하는 RSV에 대한 면역 반응을 유도하는 방법. 20. The method of claim 19, wherein said method reduces or prevents RSV infection.
PCT/KR2018/011324 2017-09-29 2018-09-21 Soluble modified respiratory syncytial virus (rsv) f protein antigen WO2019066437A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170128003 2017-09-29
KR10-2017-0128003 2017-09-29
KR10-2018-0113291 2018-09-20
KR1020180113291A KR20190038358A (en) 2017-09-29 2018-09-20 Modified soluble RSV F protein antigen

Publications (1)

Publication Number Publication Date
WO2019066437A1 true WO2019066437A1 (en) 2019-04-04

Family

ID=65901591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011324 WO2019066437A1 (en) 2017-09-29 2018-09-21 Soluble modified respiratory syncytial virus (rsv) f protein antigen

Country Status (1)

Country Link
WO (1) WO2019066437A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875471A4 (en) * 2018-11-01 2022-06-01 SK Bioscience Co., Ltd. Respiratory syncytial virus recombinant f protein and vaccine composition containing same
CN115850396A (en) * 2022-12-22 2023-03-28 北京吉诺卫生物科技有限公司 RSV (respiratory syncytial virus) nanoparticle vaccine as well as preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128951A2 (en) * 2008-04-18 2009-10-22 Vaxinnate Corporation Compositions of respiratory synctial virus proteins and methods of use
US20140024076A1 (en) * 2011-01-28 2014-01-23 Medimmune, Llc. Expression Of Soluble Viral Fusion Glycoproteins In Mammalian Cells
US20140271699A1 (en) * 2013-03-13 2014-09-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Prefusion rsv f proteins and their use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128951A2 (en) * 2008-04-18 2009-10-22 Vaxinnate Corporation Compositions of respiratory synctial virus proteins and methods of use
US20140024076A1 (en) * 2011-01-28 2014-01-23 Medimmune, Llc. Expression Of Soluble Viral Fusion Glycoproteins In Mammalian Cells
US20140271699A1 (en) * 2013-03-13 2014-09-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Prefusion rsv f proteins and their use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MCLELLAN, JASON S. ET AL.: "Structure-based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus", SCIENCE, vol. 342, 1 November 2013 (2013-11-01), pages 592 - 598, XP055391357 *
PIERANTONI, ANGIOLO ET AL.: "Mucosal Delivery of a Vectored RSV Vaccine Is Safe and Elicits Protective Immunity in Rodents and Nonhuman Primates", MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, vol. 2, no. 15018, 2015, pages 1 - 11, XP055524844 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875471A4 (en) * 2018-11-01 2022-06-01 SK Bioscience Co., Ltd. Respiratory syncytial virus recombinant f protein and vaccine composition containing same
CN115850396A (en) * 2022-12-22 2023-03-28 北京吉诺卫生物科技有限公司 RSV (respiratory syncytial virus) nanoparticle vaccine as well as preparation method and application thereof
CN115850396B (en) * 2022-12-22 2024-02-06 北京吉诺卫生物科技有限公司 RSV nanoparticle vaccine and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2019209079A1 (en) Nucleic acid molecules inserted expression regulation sequences, expression vector comprising nucleic acid moleclues and pharmaceutical use thereof
WO2018074884A1 (en) Recombinant protein and use thereof
WO2019039891A1 (en) Monoclonal antibody for spike protein of middle east respiratory syndrome coronavirus, and use thereof
WO2010147268A1 (en) Vaccine for cervical cancer
WO2019066437A1 (en) Soluble modified respiratory syncytial virus (rsv) f protein antigen
WO2019203599A1 (en) Streptococcus pneumoniae capsular polysaccharides and immunogenic conjugate thereof
WO2021158073A1 (en) Fusion antibody for presenting antigen-derived t cell antigen epitope or peptide containing same on cell surface, and composition comprising same
WO2017003267A1 (en) Peptide having anti-viral effect and composition containing same
KR20180058206A (en) Immunogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) S protein composition and producing method thereof
WO2020005028A1 (en) Vaccine composition for preventing or treating diseases caused by severe fever with thrombocytopenia syndrome (sfts) viral infection
WO2020091529A1 (en) Respiratory syncytial virus recombinant f protein and vaccine composition containing same
WO2019182417A1 (en) Ns1 protein derived from yellow fever virus, monoclonal antibody specifically binding thereto, and use thereof
WO2022065913A1 (en) Uricase-albumin conjugate, preparation method therefor, and use thereof
WO2020251284A1 (en) P72, p104, p205 protein fragments derived from african swine fever virus, and use thereof
WO2019212312A1 (en) Chimeric zika virus vaccine
WO2014142515A1 (en) Porcine circovirus (pcv2) subunit vaccine using recombinant yeast whole cells and method for manufacturing same
WO2020246750A2 (en) Pharmaceutical composition containing stabilized nucleic acid adjuvant
WO2019194393A1 (en) Nanoparticles in which antigen peptide and adjuvant are bound to ferritin self assembly, and use thereof
WO2022119380A1 (en) Novel ace2 variant and use thereof
WO2022019665A1 (en) Peptide for immunotherapeutic agent
WO2023055154A1 (en) Recombinant live attenuated rsv vaccine strain and production method therefor
WO2022050521A1 (en) Coronavirus-derived receptor binding domain variant with reduced ace2 binding capacity, and vaccine composition comprising same
WO2020197346A2 (en) Virus vaccine adjuvant composition containing green tea-derived component
WO2024014943A1 (en) Sars-cov-2 vaccine booster composition
WO2023101381A1 (en) Vaccine platform for producing foot and mouth disease virus-like particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862512

Country of ref document: EP

Kind code of ref document: A1