WO2019066313A1 - Photopolymer composition - Google Patents

Photopolymer composition Download PDF

Info

Publication number
WO2019066313A1
WO2019066313A1 PCT/KR2018/010635 KR2018010635W WO2019066313A1 WO 2019066313 A1 WO2019066313 A1 WO 2019066313A1 KR 2018010635 W KR2018010635 W KR 2018010635W WO 2019066313 A1 WO2019066313 A1 WO 2019066313A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
weight
acrylate
monomer
meth
Prior art date
Application number
PCT/KR2018/010635
Other languages
French (fr)
Korean (ko)
Inventor
장석훈
김헌
허용준
권세현
장영래
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180107996A external-priority patent/KR102156872B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/343,153 priority Critical patent/US11079678B2/en
Priority to CN201880004036.3A priority patent/CN110114724B/en
Priority to JP2019520132A priority patent/JP6862012B2/en
Priority to EP18860372.4A priority patent/EP3514627B1/en
Publication of WO2019066313A1 publication Critical patent/WO2019066313A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • G03F7/0758Macromolecular compounds containing Si-O, Si-C or Si-N bonds with silicon- containing groups in the side chains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/12Photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/30Details of photosensitive recording material not otherwise provided for
    • G03H2260/31Ageing or resistance of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage

Definitions

  • the present invention relates to a photopolymer composition, a hologram recording medium, an optical element and a holographic recording method.
  • the hologram recording medium records information by changing the refractive index in the holographic recording layer in the medium through an exposure process, and reads the change of refraction in the thus recorded medium to reproduce the information.
  • the light interference pattern can be easily stored in the hologram by photopolymerization of the low molecular weight monomers. Therefore, it is possible to use an optical lens, a mirror, a deflection mirror, a filter, a diffusing screen, A holographic optical element having a function of a waveguide, a projection screen and / or a mask, a medium of an optical memory system and a light diffusing plate, an optical wavelength splitter, a reflection type, and a transmission type color filter.
  • the photopolymer composition for hologram production comprises a polymeric binder, a monomer, and a photoinitiator, and irradiates laser light to a photosensitive film produced from such a composition to induce photopolymerization of a local monomer.
  • the refractive index is high at a portion where a relatively large number of monomers exist, and at a portion where a polymer binder is relatively present, a refractive index is relatively low, thereby causing a refractive index modulation.
  • Such a refractive index modulation generates a diffraction grating .
  • the refractive index modulation value n is affected by the thickness of the photopolymer layer and the diffraction efficiency DE, and the angle selectivity becomes wider as the thickness becomes thinner.
  • the present invention is to provide a photopolymer composition which can more easily provide a photopolymer layer having a high refractive index modulation value and improved durability against temperature and humidity.
  • the present invention is to provide an optical element including a hologram recording medium.
  • the present invention also provides a holographic recording method comprising selectively polymerizing a photo-polymeric monomer contained in the photopolymer composition by a coherent laser.
  • a holographic recording medium manufactured from the photopolymer composition is provided.
  • an optical element including the hologram recording medium is provided.
  • Also disclosed herein is a holographic recording method comprising selectively polymerizing a photo-polymeric monomer contained in the photopolymer composition by a coherent laser.
  • (meth) acrylate means methacrylate or acrylate.
  • the (co) polymer refers to a homopolymer or copolymer (including random copolymers, block copolymers, and graft copolymers).
  • hologram means a recording medium in which optical information is recorded in the entire visible range and near-ultraviolet range (300-800 nm) through an exposure process, and for example, in- ("Gabor”) hologram, of-axi s hologram, full-lap prior hologram, white light transmission hologram ("rainbow hologram”), denisyuk hologram, biaxial hologram , And a visual hologram such as an edge-lterature hologram or a holographic stereogram.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a tert-butyl group, N-propyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, N-heptyl, n-heptyl, 1-methylnyl, cyclopentylmethyl, cyclohectylmethyl, octyl, n-octyl, , 2-dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylnucyl, 5-methylnucyl and the like.
  • the alkylene group is a divalent functional group derived from an alkene, for example, a straight chain, branched or cyclic group such as a methylene group, an ethylene group, a propylene group, an isobutylene group, a sec -Butylene group, tert-butylene group, pentylene group, nuclear siliconylene group and the like.
  • the present inventors have found that a photopolymer containing a polymer matrix using the (meth) acrylate-based (co) polymer wherein the silane-based functional group is located in the branch chain and the equivalence of the silane-based functional group is 300 g / eq to 2000 g /
  • the inventors have confirmed through experimentation that the hologram formed from the composition can realize the modulation value and the durability against the excellent temperature and humidity even when the thickness of the thinner layer is much higher than that of the hologram previously known.
  • the (meth) acrylate-based (co) polymer has a silane-based functional group located on the branch chain, and the equivalent of the silane-based functional group is regulated to 300 g / eq to 2000 g /
  • the cross-linking density with the cross-linking agent can be optimized to ensure excellent durability against temperature and humidity compared with the conventional matrix.
  • by optimizing the cross-linking density described above a photo- By increasing the mobility between the components, the recording characteristics can be improved by maximizing the refractive index modulation.
  • a cross-linking structure mediated by a siloxane bond is easily formed between a modified (meth) acrylate-based (co) polymer containing a silane functional group and a linear silane cross-linking agent containing a silane- , And this siloxane bond can provide excellent durability against temperature and humidity.
  • the fluorine-based compound or the phosphate-based compound may have a lower refractive index than that of the optically active monomer, so that the polymer matrix or the fluorine-based compound or the phosphate-
  • the refractive index of the photopolymer composition can be minimized and the refractive index modulation of the photopolymer composition can be maximized.
  • the phosphate-based compound acts as a plasticizer,
  • the glass transition temperature of the polymer matrix is lowered to increase the mobility of the photo-polymerizable monomer and the low refractive index, thereby contributing to the improvement of moldability of the photopolymer composition.
  • the polymer matrix may serve as a support for the final product such as the photopolymer composition and the film produced therefrom.
  • the refractive index may be improved by modifying the refractive index.
  • the precursor of the polymer matrix includes a monomer or an oligomer that forms the polymer matrix.
  • the silane-based functional group is located in the branch chain, and the equivalent of the silane-based functional group is 300 g / eq to 2000 g / (meth) acrylate-based (co) polymer, or a monomers or an oligomer of the monomers, and a linear silane crosslinking agent, or monomers thereof, or oligomers of the monomers.
  • the silane-based functional group may be located in the branch chain.
  • the silane-based functional group may include a silane functional group or an alkoxysilane functional group, and preferably a trimoxylsilane group may be used as an alkoxysilane functional group.
  • the silane-based functional group may form a siloxane bond through a sol-gel reaction with the silane-based container contained in the linear silane crosslinking agent to crosslink the (meth) acrylate-based (co) polymer and the linear silane crosslinking agent.
  • the (meth) acrylate-based (co) polymer may have a silane-based functional group equivalent of 300 g / eq to 2000 g / eq, or 500 g / eq to 2000 g / From 550 g / eq to 1800 g / eq, or from 580 g / eq to 1600 g / eq, or from 586 g / eq to 1562 g / eq.
  • the silane-based functional group equivalent is an equivalent (g / eq) to one silane-based functional group and is a value obtained by dividing the weight average molecular weight of the (meth) acrylate-based (co) polymer by the number of silane-based functional groups per molecule .
  • the (meth) acrylate-based (co) polymer of a linear and a silane cross-linking density is optimized between a relationship, it is possible to "ensure excellent durability compared to conventional matrix for temperature and humidity.
  • the recording property can be improved by maximizing the modulation of refraction by increasing the mobility between the photoreactive monomer having a high refraction and the component having a low refraction index.
  • the crosslinking density of the matrix becomes too high to inhibit the flowability of the components, May occur. Further, if the equivalent of the silane-based functional group contained in the (meth) acrylate-based (co) polymer is excessively increased to more than 2000 g / eq, the crosslinking density becomes too low to serve as a support, The refractive index modulation value may decrease over time as the interface of the diffraction gratings collapses.
  • the (meth) acrylate-based (co) polymer may include a (meth) acrylate repeating unit and a (meth) acrylate repeating unit in which the silane-based functional group is located in the branch chain.
  • Examples of the (meth) acrylate repeating unit in which the silane functional group is located in the branch chain include repeating units represented by the following formula (1).
  • R 1 to R 3 are each independently an alkyl group having 1 to 10 carbon atoms, 3 ⁇ 4 is hydrogen or an alkyl group having 1 to 10 carbon atoms, and R 5 is an alkylene group having 1 to 10 carbon atoms.
  • R 3 to R 3 are each independently a methyl group having 1 carbon atom
  • R 4 is a methyl group having 1 carbon atom
  • R 5 is a 3-methacryloxypropyl tr imethoxysilane (KBM-503 )
  • a repeating unit derived from R 3 to R 4 is independently a methyl group having 1 carbon atom
  • R 4 is hydrogen and 3 ⁇ 4 is a propylene group having 3 carbon atoms, or a repeating unit derived from 3-Acryloxypropyl tr imethoxysilane (KBM-5103).
  • Examples of the (meth) acrylate repeating unit include repeating units represented by the following formula (2).
  • 3 ⁇ 4 is an alkyl group having 1 to 20 carbon atoms
  • R 7 is hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • R 6 is a butyl group having 4 carbon atoms
  • R 7 is hydrogen Based repeating unit derived from butyl acrylate.
  • the molar ratio of the repeating unit of Formula 2 to the repeating unit of Formula 1 may be 0.5: 1 to 14: 1.
  • the cross-linking density of the matrix becomes excessively low and can not serve as a support, resulting in a decrease in recording characteristics after recording,
  • the crosslinking density of the matrix becomes too high and the fluidity of the respective components may be lowered, resulting in a decrease in the refractive index modulation value.
  • the weight average molecular weight (GPC measurement) of the (meth) acrylate-based (co) polymer may be 100000 g / mol to 5000000 g / mol or 300000 g / mol to 900000 g / ii).
  • the weight average molecular weight refers to the weight average molecular weight in terms of polystyrene measured by the GPC method.
  • a detector such as a known analyzer and a refractive index detector, and an analyzing column can be used. Temperature conditions, solvents, flow rates can be applied.
  • an evaluation temperature is 160 ° C using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 sleep length column, 1,2,4-trichlorobenzene is dissolved in a solvent , The flow rate was adjusted at a flow rate of 1 mL / min, the sample was adjusted to a concentration of 10 mg / 10 mL, and then supplied in an amount of 200, and the value of Mw was determined using a calibration curve formed using polystyrene standards.
  • the molecular weight of the polystyrene standards was 2,000 I 10,000 I 30,000 / 70,000 / 200,000 I 700,000 / 2,000,000 / 4,000,000 / 10, 000, 000.
  • the linear silane crosslinking agent may be a compound having an average of at least one silane-based container per molecule or a mixture thereof, and may be a compound containing at least one silane-based functional group.
  • the silane-based functional group may include a silane functional group or an alkoxysilane functional group, and preferably a trioxysilane group may be used as an alkoxysilane functional group.
  • the silane-based functional group forms a siloxane bond with a silane-based functional group contained in the (meth) acrylate-based (co) polymer to form a siloxane bond with the sol-gel to form a linear silane crosslinking agent Can be crosslinked.
  • the linear silane crosslinking agent has a silane-based functional group equivalent of 200 g / eq to 750 g / eq, or 447 g / eq to 747 g / eq, or from 300 g / eq to 900 g / eq, or from 400 g / / eq. Accordingly, the cross-linking density between the (meth) acrylate-based (co) polymer and the linear silane cross-linking agent is optimized, thereby ensuring excellent durability against temperature and humidity compared to the existing matrix.
  • the mobility between the optically protonic monomer having a high refractive index and the component having a low refractive index is increased, thereby maximizing the refractive index modulation and improving the recording characteristics.
  • the equivalent amount of the silane-based functional group contained in the linear silane crosslinking agent is excessively increased to 1000 g / eq or more, the diffraction grating interface after recording may be broken due to the reduction of the crosslinking density of the matrix, and the loose crosslink density and the low glass Transition silver may cause monomer and plasticizer components to leach to the surface and cause haze. If the equivalence of the silane-based functional groups contained in the linear silane crosslinking agent is excessively reduced to less than 200 g / eq, the crosslinking density becomes too high, which hinders the flowability of the monomer and the plasticizer components, May occur.
  • the equivalent ratio of the silane-based functional group located in the branch chain of the (meth) acrylate-based (co) polymer is from 22: 1 to 0.5: 1 or 0.5: 1, alternatively 15: 1 to 0.5: 1, alternatively 10: 1 to 0.5: 1, alternatively 5: 1 to 0.6: 1, alternatively 4: 1 to 0.7: Lt; / RTI > Accordingly, the cross-linking density between the (meth) acrylate-based (co) polymer and the linear silane cross-linking agent is optimized, thereby ensuring excellent durability against temperature and humidity compared to the conventional matrix.
  • the recording property can be improved by maximizing the refractive index modulation by increasing the mobility between the photoreactive monomer having a high refractive index and the component having a low refractive index.
  • the linear silane crosslinking agent is a linear polyether having a weight average molecular weight of 100 g / mol to 2000 g / mol, or 300 g / mol to 1000 g / mol, or 300 g / mol to 700 g / mol And may include a main chain and a silane-based functional group bound to the main chain by terminal or branch chains.
  • the linear polyether main chain having a weight average molecular weight of 100 g / mol to 2000 g / nl may include a repeating unit represented by the following formula (3).
  • R 3 is an alkylene group having 1 to 10 carbon atoms and n is an integer of 1 or more, or 1 to 50, or 5 to 20, or 8 to 10 in the general formula (3).
  • the fluidity of the components can be improved by controlling the glass transition temperature and the crosslinking density of the matrix.
  • the bond between the silane functional group and the polyether backbone may be mediated by a urethane bond.
  • the silane-based functional group and the polyether main chain may form a mutual bond through a urethane bond.
  • the silicon atom contained in the silane-based functional group may be bonded directly to the nitrogen atom of the urethane bond,
  • the R8 functional group contained in the polyether backbone may be directly bonded to the oxygen atom of the urethane bond.
  • the linear silane crosslinking agent is a mixture of the isocyanate compound containing a silane functional group and the isocyanate compound having a weight average molecular weight of 100 g / mol to 2000 g / Type polyether polyol compound, which is produced through the reaction between the polyether polyol compound.
  • the isocyanate compound is an aliphatic, cycloaliphatic, aromatic or aromatic aliphatic mono-isocyanate di-isocyanate, tri-isocyanate or poly-isocyanate; Or di- isocyanates having urea, urea, urea, carbodiimide, acyl urea, isocyanurate, allophanate, biuret, oxadiazinetrione, uretdione or iminooxyadinedione structures, or di An isocyanate or a polyisocyanate of a polyisocyanate.
  • isocyanate compound containing the silane functional group examples include 3-isocyanatopropyltriethoxysilane.
  • the polyether polyol includes, for example, styrene oxide, ethylene Obtained by the condensation of multiple adducts of ethylene oxide, propylene oxide, tetrahydrofuran, butylene oxide, epichlorohydrin with their adduct addition products and graft products, and polyhydric alcohols or their condensates, Ether polyols and polyhydric alcohols, amines and amino alcohols.
  • polyether poly examples include OH functionalities of 1.5 to 6 and number-average molecular weights of 200 g / mole to 18000 g / mole, OH functionalities of preferably 4.0 to 1.8 and 600 g / mole to 8000 g
  • Poly (propylene oxide) in the random or block copolymer form poly (propylene oxide) in the form of random or block copolymers having a number average molecular weight of from 0.5 to 10, preferably from 1.9 to 3.1, and a number average molecular weight from 650 g / mole to 4500 g / (Ethylene oxide) and combinations thereof, or poly (tetrahydrofuran) and mixtures thereof.
  • the linear silane crosslinking agent has a weight average molecular weight (GPC measurement) of 500 g / mol to 5000000 g / mol, or 600 g / mol to 10000 g / mol, or 700 g / / mol to 2000 g / mol, or from 900 g / mol to 1500 g / eta &ohgr;.
  • GPC measurement weight average molecular weight
  • the weight average molecular weight refers to the weight average molecular weight in terms of polystyrene measured by the GPC method.
  • a detector such as a known analytical device and a Refractive Index Detector and an analytical column may be used. And the solvent flow rate can be applied.
  • polystyrene standards For example, Polymer Laboratories PLgel MIX-B 300, manufactured by Waters PL-GPC220 instrument, using an osmolality column, the evaluation temperature is 160 ° C, 1,2,4-trichlorobenzene is dissolved in a solvent , The flow rate was adjusted at a flow rate of lmL / min, the sample was adjusted to a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 iiL, and the value of Mw was determined using a calibration curve formed using polystyrene standards. The molecular weight of the polystyrene standards is 2,000 I 10,000 I 30,000 I 70,000 I 200,000 I 700,000 / 2,000,000 / 4,000,000 / 10, 000, 000 Respectively.
  • (Meth) acrylate-based (co) polymer wherein the silane-based functional group is located in the branch chain and the equivalence of the silane-based container is 300 g / eq to 2000 g / Silane crosslinking agent, 10 to 90 parts by weight, or 20 to 70 parts by weight, or 22 to 70 parts by weight of the linear silane crosslinking agent, based on 100 parts by weight of the (meth) acrylate based (co) polymer, Weight to 65 parts by weight.
  • the curing rate of the matrix is remarkably slowed to lose its function as a support, (100) parts by weight of the (meth) acrylate-based (co) polymer is excessively increased, the curing rate of the matrix is increased or the curing speed of the Excessive increase of male silane content causes compatibility problems with other components and causes haze.
  • the modulus (storage elastic modulus) of the repellent product may be 0.01 MPa to 5 MPa.
  • a storage modulus (G ') value can be measured at a frequency of 1 Hz at room temperature (20 ° C to 25 ° C) using a TA Instruments di scrospective hybridometer (DHR) have.
  • the glass transition temperature of the reaction product may be -40 ° C to 10 ° C.
  • EMA dynami c mechani cal analysi s
  • the phase angle (loss modulus) of the film coated with the photopolymerizable composition in the " C " region is measured.
  • the photo-polymeric monomer may include a polyfunctional (meth) acrylate monomer or a monofunctional (meth) acrylate monomer.
  • the monomers are polymerized to increase the refractive index at the portion where the polymer is relatively present, and at the portion where the polymer binder is relatively present, the refractive index is relatively low, And the diffraction grating is generated by such refractive index modulation.
  • (Meth) acrylate, (meth) acrylonitrile, or (meth) acrylate for example, a (meth) acrylate, ) Acrylic acid, or a compound containing a vinyl group or a thiol group.
  • optically active monomer examples include polyfunctional (meth) acrylate monomers having a refractive index of 1.5 or more, 1.53 or more, or 1.5 to 1.7, and the refractive index is 1.5 or more, or 1.53 or more, or 1.5 to 1.7.
  • the functional (meth) acrylate monomers may include halogen atoms (bromine, iodine, etc.), sulfur (S), phosphorus (P), or aromatic rings.
  • polyfunctional (meth) acrylate monomers having a refractive index of 1.5 or more include bi sphenol A modi fi ed diery late series, f luorene acrylate series (HR 6022, etc.), bi sphenol fuorene epoxy acrylate series (HR6100, HR6060, HR6042, etc. - Miwon), Halogenated epoxy acrylate series (HR1139, HR3362, etc. - Miwon).
  • the optically active monomer is a monofunctional (meth) acrylate monomer.
  • the monofunctional (meth) acrylate monomer may include an ether bond and a fluorene functional group in the molecule.
  • Specific examples of the monofunctional (meth) acrylate monomer include phenoxybenzyl (meth) acrylate, 0-phenyl (Meth) acrylate, benzyl (meth) acrylate, 2- (phenylcyano) ethyl (meth) acrylate, or biphenylmethyl (meth) acrylate.
  • the optically active monomer may have a weight average molecular weight of 50 g / mol to 1000 g / mol, or 200 g / mol to 600 g / irol.
  • the weight average molecular weight refers to the weight average molecular weight in terms of polystyrene measured by the GPC method.
  • the photopolymer composition of this embodiment includes a photoinitiator.
  • the photoinitiator is a compound that is activated by light or actinic radiation and initiates polymerization of a compound containing a photoactive functional group, such as a photo-reactive monomer.
  • a photoactive functional group such as a photo-reactive monomer.
  • conventionally known photoinitiators can be used without any limitation, and specific examples thereof include photo radical polymerization initiators, photoinitiator polymerization initiators, and photoanion polymerization initiators.
  • photoradical polymerization initiator examples include imidazole derivatives, bisimidazole derivatives, N-arylglycine derivatives, organic azide compounds, titanocene, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, Derivatives, and amine derivatives.
  • examples of the photocatalytic polymerization initiator include 1,3-di (t-butyldioxycarbonyl) benzophenone, 3,3 ', 4,4'-tetrakis (t-butyldi oxycarbonyl) benzophenone, 2-mercapto benzimidazole, bis (2,4,5-trphenyl) imidazole, 2,2-dimethoxy-1,2-dihey lethane-1-one (product name: Irgacure 651 I, 1-hydr oxy-cyc 1 ohexy 1 -pheny 1 -ke t one (product name: Irgacure 184 I manufactured by BASF), 2-benzy 1 -2-di met hy 1 amino-1- bis (2,6-difluoro-3- (1H-pyrrolo 1 -yl) -benzonitrile (product name: Irgacure 369 I, 1-y 1) -pheny 1) titanim (trade name: Irgacure 3
  • Examples of the cationic ion polymerization initiator include diazonium salt, sulfofiium salt, and iodonium salt, and examples thereof include sulfonic acid ester, imidosulfonate, dialkyl-4 (6-benzene) ( ⁇ 5-cyclopentadienyl) iron (II), and the like can be given as examples of the arylsulfonic acid salt. Further, benzoin tosylate, 2,5-dinitrobenzyltosylate, N-tosylphthalic acid imide and the like are also exemplified.
  • cationic polymerization initiator examples include Cyracure UVI-6970, Cyracure UVI-6974 and Cyracure UVI-6990 (manufactured by Dow Chemical Co. in USA), Irgacure 264 and Irgacure 250 -1682 (Manufacturer: Nippon Soda) and the like.
  • photoanion polymerization initiator examples include a borate salt, such as butyrylchlorine butyl triphenyl borate (BUTYRYL CHOLINE BUTYL TRIPHENYLBORATE). More specific examples of the polymerization initiator in the above-mentioned sound signal include commercially available products such as Borate V (manufacturer: Spectra group).
  • the photopolymer composition of this embodiment may also employ one molecule (Type I) or this molecule (Type II) initiator.
  • (Type I) systems for the free radical photopolymerization can be carried out, for example, by reacting aromatic ketone compounds in combination with tertiary amines, such as benzophenone, alkylbenzophenone, 4,4'-bis (dimethylamino) benzophenone Michler's) ketone), anthrone and halogenated benzophenone or a mixture of this type.
  • the bis (type II) initiators include benzoin and derivatives thereof, benzylketal, acylphosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bisacylphosphine oxide, phenyl Alpha-aminoalkylacetophenone, 1- [4- (phenylthio) phenyl] octane-1,2-dione 2- (0-benzoyloxime) And alpha-hydroxyalkylphenones.
  • acylphosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • bisacylphosphine oxide bisacylphosphine oxide
  • phenyl Alpha-aminoalkylacetophenone 1- [4- (phenylthio) phenyl] octane-1,2-dione 2- (0-benzoyloxime)
  • alpha-hydroxyalkylphenones alpha-hydroxyalkylphenone
  • the photopolymer composition comprises 20 to 40% by weight of the polymer matrix or precursor thereof and 10 to 70% by weight of the photoactive monomer; And 0.1% by weight to 15% by weight of a photoinitiator.
  • the photopolymer composition further contains an organic solvent as described later, the content of the above-mentioned components is not more than the sum of these components (excluding the organic solvent) The sum of the components).
  • the photopolymer composition may further include a fluorine-based compound. Since the fluorine-based compound has little stability and is low in refractive index, the refractive index of the polymer matrix can be lowered when added to the photopolymer composition, thereby maximizing the refractive index modulation with the monomer.
  • the fluorine-based compound includes at least one functional group selected from the group consisting of an ether group, an ester group and an amide group, and at least two difluoromethylene groups can do. More specifically, the fluorine-based compound may have a structure represented by the following formula (4) in which a functional group including an ether group is bonded to both terminals of a central functional group including a direct bond or an ether bond in two difluoromethylene periods.
  • R u and R 12 are each independently a difluoromethylene group
  • 3 and R 6 are each independently a methylene group
  • R 14 and R 15 are each independently a difluoromethylene group
  • R 17 and R 18 are each independently a polyalkylene oxide group
  • m is an integer of 1 or more, or 1 to 10, or an integer of 1 to 3.
  • Rn and R 12 are each independently difluoro methylene group
  • R 13 and R 16 are each independently a methylene group
  • R 14 and R 15 is a group methylene-difluoro each independently
  • R 17 and R 18 each independently represent a 2-methoxyethoxy methoxy group
  • m is an integer of 2.
  • the fluorine-based compound may have a refractive index of less than 1.45, or more than 1.3 and less than 1.45. As described above, since the optically maleic monomer has a refractive index of 1.5 or more, the fluorine-based compound can lower the refractive index of the polymer matrix through the refractive index lower than that of the photo-polymeric monomer, have.
  • the content of the fluorine-based compound may be 30 parts by weight to 150 parts by weight, or 50 parts by weight to 110 parts by weight, and the refractive index of the polymer matrix may be 1.46 to 1.53 with respect to 100 parts by weight of the photoactive monomer.
  • the amount of the fluorine-based compound is greatly decreased with respect to 100 parts by weight of the photo-polymerizable monomer, the refractive index after recording decreases due to the lack of low refractive index, and the content of the fluorine- There may arise haze due to compatibility with other components or a problem that some fluorine-based compounds are eluted to the surface of the coating layer.
  • the blended compound has a weight average molecular weight (GPC measurement) of 300 g / mol or more, Or from 300 g / mol to 1000 g / nl.
  • GPC measurement weight average molecular weight
  • the photopolymer composition may further include a photo-sensitizing dye.
  • the photoengraving dye acts as a sensitizing dye for increasing or decreasing the photoinitiator. More specifically, the photoengraving dye is stimulated by the light irradiated to the photopolymer composition to function as an initiator for initiating polymerization of the monomer and the crosslinking monomer. You can do it together.
  • the photopolymer composition may contain 0.01 wt.% To 30 wt.%, Or 0.05 wt.% To 20 wt.
  • the examples of the photo-initiator dye are not limited to a wide variety, and various known compounds can be used.
  • Specific examples of the light-sensitive dye include sulfonium derivatives of ceramidonine, new methylene blue, thioerythrosine triethylammonium, 6-acetylamino-2-methylserine But are not limited to, 6-acetylamino_2-methylceramidonin, eosin, erythrosine, rose bengal, thionine, baseic yellow, pinacanol chloride, Rhodamine 6G, gallocyanine, ethyl violet, Victoria blue R, Celestine blue, QuinaldineRed, crystal violet, violet, Brilliant Green, Astrazon orange G, darrow red, pyronin Y, basic red 29, Kpyrylium iodide, , Saprinin O CSafranin 0), cyanine, methylene blue, Azure A, or a combination of two or more thereof
  • the photopolymer composition may further include an organic solvent.
  • organic solvent include, but are not limited to, ketones, alcohols, acetates and ethers, and mixtures of two or more thereof.
  • Such an organic solvent include ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone or isobutyl ketone; Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol or t-butanol; Ethylacetate, i-propyl acetate, or polyethylene glycol monomethyl ether Acetates and the like; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or a mixture of two or more of these.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone or isobutyl ketone
  • Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butan
  • the organic solvent may be added to the photopolymer composition at the time when the components contained in the photopolymer composition are mixed, or may be added to the photopolymer composition while the components are added or dispersed in an organic solvent. If the content of the organic solvent in the photopolymer composition is too small, the flowability of the photopolymer composition may be deteriorated, resulting in defects such as streaks in the finally produced film. In addition, when the organic solvent is added in an excess amount, the solid content is lowered and the coating and film formation are not sufficiently performed, so that the physical properties and surface characteristics of the film may be deteriorated, and defects may occur during the drying and curing process.
  • the photopolymer composition may include an organic solvent such that the concentration of the total solids of the components contained therein is 1 wt% to 70 wt%, or 2 wt% to 50 wt%.
  • the photopolymer composition may further include other additives, a catalyst, and the like.
  • the photopolymer composition may comprise a catalyst commonly known to promote polymerization of the polymer matrix or the photo-labile monomer.
  • the catalyst examples include tin octanoate, zinc octanoate, dibutyltin dilaurate, dimethylbis [(1-oxoneodecyl) oxy] stannane, dimethyltin dicarboxylate, zirconium bis Zirconium acetylacetonate, p-toluenesulphonic acid or a tertiary amine such as 1,4-diazabicyclo [2.2.2] octane, diazabicyclo-nonane, di 1-methyl-2H-pyrimido (1, 2-a) pyrimidine, etc. .
  • the other additives include a defoaming agent or a phosphate-based plasticizer.
  • a silicone-based anti-maleic additive may be used.
  • examples thereof include Tego Rad 2500.
  • An example of the plasticizer is a phosphate compound such as tributyl phosphate.
  • the plasticizer may be added at a weight ratio of 1: 5 to 5: 1 together with the above-described blend-based compound.
  • the plasticizer may have a refractive index of less than 1.5 and a molecular weight of 700 or less.
  • the photopolymer composition can be used for hologram recording applications. Meanwhile, according to another embodiment of the present invention, a hologram recording medium manufactured from a photopolymer composition can be provided.
  • the photopolymer composition of this embodiment it is possible to provide a hologram capable of achieving a significantly improved refractive index modulation value and a high diffraction efficiency compared to holograms previously known while having a thinner thickness.
  • the hologram recording medium can realize a refractive index modulation value of 0.015 or more, or 0.020 or more, or 0.015 to 0.050, or 0.015 to 0.040, or 0.020 to 0.030, even in the thickness of / m to 30 am.
  • the hologram recording medium may have a diffraction efficiency change value of 18% or less, or 17% or less, or 16% or less, or 0.01% to 18%, or 0.01% or less, % To 17%, or 0.01% to 16%.
  • Diffraction efficiency change value ( ⁇ ) [Diffraction efficiency (-) of sample stored in a dark room under constant temperature and humidity conditions of 20 to 25 ° C and 40 to 50% before recording - Constant temperature humidity of 40 ° C and 90 RH% (R * 100) of samples stored in a dark room under constant temperature and humidity conditions of 20 to 25 ° C and 40 to 50 H3 ⁇ 4 before recording.
  • the hologram recording medium may have a diffraction efficiency of 50% or more, or 85% or more at a thickness of 5 to 30 mm.
  • the polymer matrix or its precursor-forming component may first be homogeneously mixed, and the linear silane crosslinking agent may be added to the catalyst together with the catalyst to prepare a process for forming a hologram.
  • the photopolymer composition of this embodiment may comprise one or more of the components
  • the stirring may be carried out using a conventional stirrer, a stirrer, a mixer or the like without limitation, and the temperature in the stirring process is 0 ° C to 100 ° C, preferably 10 ° C to 80 ° C, It may be 20 ° C to 60 ° C.
  • the photopolymer composition at the time when the linear silane crosslinking agent is added is cured at a temperature of 20 ° C or higher ≪ / RTI >
  • the temperature of the curing may vary depending on the composition of the photopolymer and is promoted, for example, by heating to a temperature of 30 ° C to 180 ° C.
  • the photopolymer may be injected into a predetermined substrate or mold or coated.
  • a method of recording a visual hologram on a hologram recording medium manufactured from the photopolymer composition can be carried out without any limitations, and a method described in the holographic recording method of the embodiment to be described later is referred to as one It can be adopted as an example.
  • a holographic recording method can be provided, which comprises selectively enhancing a photo-polymeric monomer contained in the photopolymer composition by a coherent laser.
  • the visual hologram can be recorded on a medium provided through the process of shaking and curing the photopolymer composition using a known apparatus and method under a conventionally known condition.
  • an optical element including a hologram recording medium can be provided.
  • the optical element include a holographic optical element having a function of an optical lens, a mirror, a deflecting mirror, a filter, a diffusion screen, a diffraction member, a light guide, a waveguide, a projection screen and / A light diffusion plate, a light wavelength splitter, a reflection type, and a transmission type color filter.
  • An example of an optical element including the hologram recording medium is a hologram display device.
  • the hologram display device includes a light source unit, an input unit, an optical system, and a display unit.
  • the light source unit irradiates a laser beam used for providing, recording, and reproducing three-dimensional image information of an object in an input unit and a display unit.
  • the input unit is a part for inputting three-dimensional image information of an object to be recorded in the display unit in advance.
  • SLM electrically addressed lid crystal SLM
  • the optical system may include a mirror, a polarizer, a universal splitter, a beam shutter, and a lens.
  • the optical system includes an input unit for transmitting a laser beam emitted from a light source unit to an input unit, a recording beam transmitted to a display unit, Reading beams and so on.
  • the image display unit receives the three-dimensional image information of the object from the input unit, records the three-dimensional image information on the hologram plate composed of the optically driven SLM opU cal ly addressed SLM, and reproduces the three-dimensional image of the object.
  • the three-dimensional image information of the object can be recorded through the interference of the input beam and the reference beam.
  • the three-dimensional image information of the object recorded on the holographic plate is converted into a three- , And the canceller can be used to quickly remove the formed diffraction grating.
  • the hologram plate can be moved between a position at which the 3D image is input and a position at which the 3D image is reproduced.
  • a photopolymer composition capable of more easily providing a photopolymer layer having a high refractive index modulation value and improved durability against temperature and humidity, a hologram recording medium using the same, an optical element, and a holographic recording method .
  • KBE-9007 (3-isocyanatopropyltriethoxysilane)
  • the linear silane crosslinking agent obtained in Production Examples 4 to 5 was added to the above coating solution and further stirred for 5 to 10 minutes. Then, 0.02 g of DBTDL as a catalyst was added to the coating solution, stirred for about 1 minute, coated on a TAC substrate with a thickness of 6 / dish using a meyer bar, and dried at 40 ° C for 1 hour. The sample was allowed to stand for 24 hours or more in a dark room under constant temperature and humidity conditions of relative humidity of about 25 ° C and 50 RH%.
  • the photopolymer coated surface prepared in each of the above-described embodiment and comparative example was laminated to a glass, and the laser was fixed so as to pass through the glass surface in advance during recording.
  • a holographic recording was made through the interference of two interfering beams (reference beam and object beam), and the transmissive recording caused the two beams to be incident on the same side of the sample.
  • the diffraction efficiency varies with the incidence angle of the two beams, and becomes non-uniform if the incidence angles of the two beams are the same.
  • the diffraction grating is generated perpendicular to the film, since the incidence angle of the two beams is equal to the normal line.
  • the lossless dielectric grating of the transmission type hologram can calculate the refractive index modulation value (DELTA eta) from the following general formula (2).
  • d is the thickness of the photopolymer layer
  • DELTA eta is the refractive index modulation value
  • n (DE) is the diffraction efficiency
  • the laser loss amount (1 10 ) can be calculated from the following general formula (3).
  • Iioss [1 - KPD + P ⁇ ) I Io>] * 100
  • P D is output amount (mW / cin 2) of the diffracted beam in the sample after the recording
  • ⁇ ⁇ is the output quantity of the transmitted beam (mW / oif) of the recorded sample
  • 10 is a recording light intensity to be.
  • the photopolymer coated side prepared in each of the above-mentioned Examples and Comparative Examples was allowed to stand in a dark room under constant temperature and humidity conditions of 40 ° C and 90 RH% for 24 hours or more and then diffraction efficiency ( ') Were measured. (The sample was stored in a state in which the protective film was removed). Then, the moisture resistance characteristic (A) was determined through the diffraction efficiency change value according to the following general formula (4).
  • Diffraction efficiency change value ( ⁇ ) [Diffraction efficiency of the sample stored in the dark room under constant temperature and humidity conditions of 20 to 25 ° C, 40 to 50% before recording - 40 ° C before recording] (Ri ') of the sample stored in the dark room for more than 24 hours]
  • the photopolymer composition of the Example using the polymer matrix prepared in Preparative Examples 1 to 3 and the polymer matrix having the increased degree of crosslinking using the linear silane crosslinking agent prepared in Preparative Examples 4 to 5 It is possible to provide a hologram in which the loss loss is equal to that of the comparative example and the refractive index modulation value ⁇ of 0.020 to 0.030, which is larger than that of the comparative example, and the diffraction efficiency change rate is as low as 15% .
  • the polymers prepared in Preparations 1 to 3 were prepared in the same manner as in Examples 1 to 5 using the polymers prepared in Preparation Examples 1 to 3, as the equivalents of silane functional groups satisfied the range of 300 g / eq to 2000 g / Holographic recording media using a photopolymer composition were prepared by using Comparative Examples 1 and 2, in which the silane functional equivalent was outside the range of 300 g / eq to 2000 g / eq, It is confirmed that the optical modulator has a remarkably improved refractive index modulation value and anti-wet heat characteristics as compared with Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)

Abstract

The purpose of the present invention is to provide: a photopolymer composition capable of more readily providing a photopolymer layer having improved durability against temperature and humidity while having a large refractive index modulation value; a holographic recording medium using the same; an optical device; and a holographic recording method.

Description

【발명의 명칭】  Title of the Invention
포토폴리머 조성물  Photopolymer composition
【기술분야】  TECHNICAL FIELD
관련 출원 (들)과의 상호 인용 Cross-reference with related application (s)
본 출원은 2017년 9월 27일자 한국 특허 출원 제 10-2017-0125446호 및 2018년 9월 10일자 한국 특허 출원 게 10-2018-0107996호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0125446, dated September 27, 2017, and Korean Patent Application No. 10-2018-0107996, dated September 10, 2018, The entire contents of which are incorporated herein by reference.
본 발명은 포토폴리머 조성물, 홀로그램 기록 매체, 광학 소자 및 홀 로그래픽 기록 방법에 관한 것이다.  The present invention relates to a photopolymer composition, a hologram recording medium, an optical element and a holographic recording method.
【발명의 배경이 되는 기술】  TECHNICAL BACKGROUND OF THE INVENTION
홀로그램 (hologram) 기록 미디어는 노광 과정을 통하여 상기 미디어 내 홀로그래픽 기록층 내 굴절률을 변화시킴으로써 정보를 기록하고 이와 같이 기록된 미디어 내 굴절를의 변화를 판독하여 정보를 재생한다.  The hologram recording medium records information by changing the refractive index in the holographic recording layer in the medium through an exposure process, and reads the change of refraction in the thus recorded medium to reproduce the information.
포토폴리머 (감광성 수지, photopolymer )를 이용하는 경우 저분자 단 량체의 광중합에 의하여 광 간섭 패턴을 홀로그램으로 용이하게 저장할 수 있기 때문에, 광학 렌즈, 거울, 편향 거울, 필터, 확산 스크린, 회절 부재, 도광체, 도파관, 영사 스크린 및 /또는 마스크의 .기능을 갖는 홀로그래픽 광 학 소자, 광메모리 시스템의 매질과 광확산판, 광파장 분할기, 반사형, 투 과형 컬러필터 등 다양한 분야에 사용될 수 있다.  When a photopolymer is used, the light interference pattern can be easily stored in the hologram by photopolymerization of the low molecular weight monomers. Therefore, it is possible to use an optical lens, a mirror, a deflection mirror, a filter, a diffusing screen, A holographic optical element having a function of a waveguide, a projection screen and / or a mask, a medium of an optical memory system and a light diffusing plate, an optical wavelength splitter, a reflection type, and a transmission type color filter.
통상적으로 홀로그램 제조용 포토폴리머 조성물은 고분자 바인더, 단 량체 및 광개시제를 포함하며, 이러한 조성물로부터 제조된 감광성 필름에 대하여 레이저 간섭광을 조사하여 국부적인 단량체의 광중합을유도한다. 이러한 광중합 과정에서 단량체가 상대적으로 많이 존재하는 부분에 서는 굴절율이 높아자고, 고분자 바인더가 상대적으로 많이 존재하는 부분 에서는 굴절율이 상대적으로 낮아져서 굴절율 변조가 생기게 되며, 이러한 굴절율 변조에 의해서 회절 격자가 생성된다. 굴절율 변조값 n은 포토폴리 머층의 두께와 회절효율 (DE)에 영향을 받으며, 각도 선택성은 두께가 얇을 수록 넓어지게 된다.  Typically, the photopolymer composition for hologram production comprises a polymeric binder, a monomer, and a photoinitiator, and irradiates laser light to a photosensitive film produced from such a composition to induce photopolymerization of a local monomer. In such a photopolymerization process, the refractive index is high at a portion where a relatively large number of monomers exist, and at a portion where a polymer binder is relatively present, a refractive index is relatively low, thereby causing a refractive index modulation. Such a refractive index modulation generates a diffraction grating . The refractive index modulation value n is affected by the thickness of the photopolymer layer and the diffraction efficiency DE, and the angle selectivity becomes wider as the thickness becomes thinner.
최근에서는 높은 회절효율과 안정적으로 홀로그램을 유지할 수 있는 재료의 개발에 대한 요구와 함께, 얇은 두께를 가지면서도 굴절율 변조값이 큰 포토폴리머층의 제조를 위한 다양한 시도가 이루어지고 있다. In recent years, a high diffraction efficiency and a stable hologram With the demand for the development of materials, various attempts have been made to manufacture a photopolymer layer having a small thickness and a large refractive index modulation value.
【발명의 내용]  DISCLOSURE OF THE INVENTION
【해결하고자 하는 과제】  [Problem to be solved]
본 발명은 굴절율 변조값이 크면서도 온도 및 습도에 대한 내구성이 향상된 포토폴리머층을 보다 용이하게 제공할 수 있는 포토폴리머 조성물을 제공하기 위한 것이다.  The present invention is to provide a photopolymer composition which can more easily provide a photopolymer layer having a high refractive index modulation value and improved durability against temperature and humidity.
또한, 본 발명은 굴절율 변조값이 크면서도 온도 및 습도에 대한 내 구성이 향상된 포토폴리머층을 포함한 홀로그램 기록 매체를 제공하기 위한 것이다.  It is still another object of the present invention to provide a hologram recording medium including a photopolymer layer having a high refractive index modulation value and improved internal structure against temperature and humidity.
또한, 본 발명은 홀로그램 기록 매체를 포함한 광학 소자를 제공하기 위한 것이다.  Further, the present invention is to provide an optical element including a hologram recording medium.
또한, 본 발명은 가간섭성의 레이저에 의해 상기 포토폴리머 조성물 에 포함된 광반웅성 단량체를 선택적으로 중합시키는 단계를 포함하는, 홀 로그래픽 기록 방법을 제공하기 위한 것이다.  The present invention also provides a holographic recording method comprising selectively polymerizing a photo-polymeric monomer contained in the photopolymer composition by a coherent laser.
【과제의 해결 수단】  MEANS FOR SOLVING THE PROBLEMS
본 명세서에서는, ( i ) 실란계 작용기가 분지쇄에 위치하고, 상기 실 란계 작용기의 당량이 300 g/eq 내지 2000 g/eq인 (메트)아크릴레이트계 (공)중합체 및 ( i i ) 선형의 실란 가교제 간의 반웅 생성물을 포함하는 고분 자 매트릭스 또는 이의 전구체; 광반웅성 단량체; 및 광개시제를 포함하는, 포토폴리머 조성물이 제공된다.  (Meth) acrylate-based (co) polymer wherein the silane-based functional group is located in the branch chain and the equivalence of the silane-based functional group is 300 g / eq to 2000 g / eq, and (ii) A polymer matrix comprising a repellent agent or a precursor thereof; Optically active monomer; And a photoinitiator.
또한, 본 명세서에서는, 상기 포토폴리머 조성물로부터 제조된 홀로 그램 기록 매체가 제공된다.  Also, in this specification, a holographic recording medium manufactured from the photopolymer composition is provided.
또한, 본 명세서에서는, 상기 홀로그램 기록 매체를 포함한 광학 소 자가 제공된다.  Also, in this specification, an optical element including the hologram recording medium is provided.
또한, 본 명세서에서는, 가간섭성의 레이저에 의해 상기 포토폴리머 조성물에 포함된 광반웅성 단량체를 선택적으로 중합시키는 단계를 포함하 는, 홀로그래픽 기록 방법이 제공된다.  Also disclosed herein is a holographic recording method comprising selectively polymerizing a photo-polymeric monomer contained in the photopolymer composition by a coherent laser.
이하 발명의 구체적인 구현예에 따른 포토폴리머 조성물, 홀로그램 기록 매체, 광학 소자, 및 홀로그래픽 기톡 방법에 관하여 보다 상세하게 설명하기로 한다 . 본 명세서에서, (메트)아크릴레이트는 메타크릴레이트 또는 아크릴레 이트를 의미한다 . The details of the photopolymer composition, the hologram recording medium, the optical element, and the holographic recording method according to the specific embodiment of the present invention will be described in detail I will explain. In the present specification, (meth) acrylate means methacrylate or acrylate.
본 명세서에서, (공)중합체는 단독중합체 또는 공중합체 (랜덤공중합 체, 블록공중합체, 그라프트 공중합체를 포함)를 의미한다 .  As used herein, the (co) polymer refers to a homopolymer or copolymer (including random copolymers, block copolymers, and graft copolymers).
또한, 본 명세서에서, 홀로그램 (hologram)은 노광 과정을 통하여 전 체 가시 범위 및 근자외선 범위 (300-800 nm)에서 광학적 정보가 기록된 기 록 미디어를 의미하며, 예를 들어 인 -라인 (가버 (Gabor) ) 홀로그램, 이축 (of f-axi s) 홀로그램, 완전 -천공 ( ful l-aperture) 이전 홀로그램, 백색광 투 과 홀로그램 ( "무지개 홀로그램" ), 데니슈크 (Denisyuk) 홀로그램, 이축 반 사 홀로그램, 엣지 -리터러츄어 (edge-l i terature) 홀로그램 또는 홀로그래피 스테레오그램 (stereogram) 등의 시각적 홀로그램 (vi sual hologram)을 모두 포함한다.  In this specification, hologram means a recording medium in which optical information is recorded in the entire visible range and near-ultraviolet range (300-800 nm) through an exposure process, and for example, in- ("Gabor") hologram, of-axi s hologram, full-lap prior hologram, white light transmission hologram ("rainbow hologram"), denisyuk hologram, biaxial hologram , And a visual hologram such as an edge-lterature hologram or a holographic stereogram.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수 는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따 르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르 면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert—부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실, n-핵실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸 -2-펜틸, 3 , 3-디 메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸핵실, 시클로펜틸메틸, 시클로 핵틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸핵실, 2-프로필펜 틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1 , 1-디메틸-프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 알킬렌기는 알케인 lkane)으로부터 유래한 2가 의 작용기로, 예를 들어, 직쇄형, 분지형 또는 고리형으로서, 메틸렌기, 에 틸렌기, 프로필렌기, 이소부틸렌기, sec-부틸렌기, tert-부틸렌기, 펜틸렌 기, 핵실렌기 등이 될 수 있다. 발명의 일 구현예에 따르면, ( i ) 실란계 작용기가 분지쇄에 위치하 고, 상기 실란계 작용기의 당량이 300 g/eq 내지 2000 g/eq인 (메트)아크릴 레이트계 (공)중합체 및 ( i i ) 선형의 실란 가교제 간의 반웅 생성물을 포함 하는 고분자 매트릭스 또는 이의 전구체; 광반웅성 단량체; 및 광개시제를 포함하는, 포토폴리머 조성물이 제공될 수 있다. In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a tert-butyl group, N-propyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, N-heptyl, n-heptyl, 1-methylnyl, cyclopentylmethyl, cyclohectylmethyl, octyl, n-octyl, , 2-dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylnucyl, 5-methylnucyl and the like. In the present specification, the alkylene group is a divalent functional group derived from an alkene, for example, a straight chain, branched or cyclic group such as a methylene group, an ethylene group, a propylene group, an isobutylene group, a sec -Butylene group, tert-butylene group, pentylene group, nuclear siliconylene group and the like. (Meth) acrylate-based (co) polymer wherein the silane-based functional group is located in the branch chain and the equivalent of the silane-based functional group is 300 g / eq to 2000 g / eq, and (ii) a polymeric matrix or precursor thereof comprising a repellent of a linear silane crosslinker; Optically active monomer; And a photoinitiator, may be provided.
본 발명자들은, 상기 실란계 작용기가 분지쇄에 위치하고, 상기 실란 계 작용기의 당량이 300 g/eq 내지 2000 g/eq인 (메트)아크릴레이트계 (공) 증합체를 이용한 고분자 매트릭스를 포함한 포토폴리머 조성물로부터 형성 되는 홀로그램이 보다 얇은 두께 범위에서도 이전에 알려진 홀로그램에 비 하여 크게 향상된 굴절을 변조값 및 우수한 온도, 습도에 대한 내구성을 구 현할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.  The present inventors have found that a photopolymer containing a polymer matrix using the (meth) acrylate-based (co) polymer wherein the silane-based functional group is located in the branch chain and the equivalence of the silane-based functional group is 300 g / eq to 2000 g / The inventors have confirmed through experimentation that the hologram formed from the composition can realize the modulation value and the durability against the excellent temperature and humidity even when the thickness of the thinner layer is much higher than that of the hologram previously known.
보다 구체적으로, 상기 (메트)아크릴레이트계 (공)중합체는 분지쇄에 실란계 작용기가 위치하면서, 상기 실란계 작용기의 당량이 300 g/eq 내지 2000 g/eq로 조절됨에 따라, 선형의 실란 가교제와의 가교밀도가 최적화되 어 기존 매트릭스 대비 온도와 습도에 대해 우수한 내구성을 확보할 수 있 다ᅳ 뿐만 아니라, 상술한 가교밀도 최적화를 통해, 높은 굴절를을 갖는 광 반웅성 단량체와 낮은 굴절률을 갖는 성분간의 유동성 (mobi l i ty)을 높임으 로서 굴절률 변조를 극대화시켜 기록특성이 향상될 수 있다.  More specifically, the (meth) acrylate-based (co) polymer has a silane-based functional group located on the branch chain, and the equivalent of the silane-based functional group is regulated to 300 g / eq to 2000 g / The cross-linking density with the cross-linking agent can be optimized to ensure excellent durability against temperature and humidity compared with the conventional matrix. In addition, by optimizing the cross-linking density described above, a photo- By increasing the mobility between the components, the recording characteristics can be improved by maximizing the refractive index modulation.
특히, 실란계 작용기를 포함하는 변성 (메트)아크릴레이트계 (공)중 합체와 말단의 실란계 작용기를 포함하는 선형의 실란 가교제간에는 졸겔반 응을 통해 실록산 결합을 매개로하는 가교구조를 용이하게 도입할 수 있으 며, 이러한 실록산 결합을 통해 온도와 습도에 대해 우수한 내구성이 확보 될 수 있다.  Particularly, a cross-linking structure mediated by a siloxane bond is easily formed between a modified (meth) acrylate-based (co) polymer containing a silane functional group and a linear silane cross-linking agent containing a silane- , And this siloxane bond can provide excellent durability against temperature and humidity.
또한, 본 발명에서는 고분자 매트릭스 또는 이의 전구체의 성분으로 추가적으로 불소계 화합물 또는 포스페이트계 화합물 등을 더 포함할 수 있 으며, 상기 불소계 화합물이나 포스페이트계 화합물은 광반웅성 단량체에 비해 낮은 굴절를을 가지고 있어, 고분자 매트릭스의 굴절률을 낮추어 포토 폴리머 조성물의 굴절률 변조를 극대화시킬 수 있다.  The fluorine-based compound or the phosphate-based compound may have a lower refractive index than that of the optically active monomer, so that the polymer matrix or the fluorine-based compound or the phosphate- The refractive index of the photopolymer composition can be minimized and the refractive index modulation of the photopolymer composition can be maximized.
더구나, 상기 포스페이트계 화합물은 가소제의 역할을 수행하여, 상 기 고분자 매트릭스의 유리전이온도를 낮추어 광반웅성 단량체와 저굴절 성 분들의 유동성 (mobi l i ty)을 높이고, 포토폴리머 조성물의 성형성 향상에도 기여한다. 이하에서는 상기 일 구현예의 포토폴리머 조성물의 각 성분별로 보다 구체적으로 살펴보기로 한다. Furthermore, the phosphate-based compound acts as a plasticizer, The glass transition temperature of the polymer matrix is lowered to increase the mobility of the photo-polymerizable monomer and the low refractive index, thereby contributing to the improvement of moldability of the photopolymer composition. Hereinafter, the respective components of the photopolymer composition of one embodiment will be described in more detail.
( 1) 고분자 매트릭스 또는이의 전구체 (1) Polymer matrix or its precursor
상기 고분자 매트릭스는 상기 포토폴리머 조성물 및 이로부터 제조된 필름 등의 최종 제품의 지지체 역할을 할 수 있으며, 상기 포토폴리머 조성 물로부터 형성된 홀로그램에서는 굴절률이 상이한 부분으로써 굴절률 변조 를 높이는 역할을 할 수 있다.  The polymer matrix may serve as a support for the final product such as the photopolymer composition and the film produced therefrom. In the hologram formed from the photopolymer composition, the refractive index may be improved by modifying the refractive index.
상술한 바와 같이, 상기 고분자 매트릭스는 ( i ) 실란계 작용기가 분 지쇄에 위치하고, 상기 실란계 작용기의 당량이 300 g/eq 내지 2000 g/eq인 (메트)아크릴레이트계 (공)중합체 및 ( i i ) 선형의 실란 가교제 간의 반응 생성물을 포함할 수 있다. 이에 따라, 상기 고분자 매트릭스의 전구체는 상 기 고분자 매트릭스를 형성하는 단량체 또는 올리고머를 포함하고, 구체적 으로 상기 실란계 작용기가 분지쇄에 위치하고, 상기 실란계 작용기의 당량 이 300 g/eq 내지 2000 g/eq인 (메트)아크릴레이트계 (공)중합체, 또는 이 의 단량체 또는 상기 단량체의 을리고머, 그리고 선형의 실란 가교제, 또는 이의 단량체 또는 상기 단량체의 올리고머를 포함할수 있다.  (I) a (meth) acrylate-based (co) polymer in which the silane-based functional group is located in the branch chain and the equivalent of the silane-based functional group is 300 g / eq to 2000 g / ii) a linear silane crosslinking agent. Accordingly, the precursor of the polymer matrix includes a monomer or an oligomer that forms the polymer matrix. Specifically, the silane-based functional group is located in the branch chain, and the equivalent of the silane-based functional group is 300 g / eq to 2000 g / (meth) acrylate-based (co) polymer, or a monomers or an oligomer of the monomers, and a linear silane crosslinking agent, or monomers thereof, or oligomers of the monomers.
상기 (메트)아크릴레이트계 (공)중합체는 실란계 작용기가 분지쇄에 위치할 수 있다. 상기 실란계 작용기는 실란 작용기 또는 알콕시 실란 작용 기를 포함할 수 있으며, 바람직하게는 알콕시 실란 작용기로 트리메록시실 란기를 사용할 수 있다.  In the (meth) acrylate-based (co) polymer, the silane-based functional group may be located in the branch chain. The silane-based functional group may include a silane functional group or an alkoxysilane functional group, and preferably a trimoxylsilane group may be used as an alkoxysilane functional group.
상기 실란계 작용기는 상기 선형의 실란 가교제에 포함된 실란계 작 용기와 졸겔반응을 통해 실록산 결합을 형성하여 상기 (메트)아크릴레이트 계 (공)중합체와 선형의 실란 가교제를 가교시킬 수 있다.  The silane-based functional group may form a siloxane bond through a sol-gel reaction with the silane-based container contained in the linear silane crosslinking agent to crosslink the (meth) acrylate-based (co) polymer and the linear silane crosslinking agent.
이때, 상기 (메트)아크릴레이트계 (공)중합체는 상기 실란계 작용기 의 당량이 300 g/eq 내지 2000 g/eq, 또는 500 g/eq 내지 2000 g/eq , 또는 550 g/eq 내지 1800 g/eq, 또는 580 g/eq 내지 1600 g/eq, 또는 586 g/eq 내지 1562 g/eq일 수 있다. 상기 실란계 작용기 당량이란 실란계 작용기기 한 개에 대한 당량 (g/eq)이며, 상기 (메트)아크릴레이트계 (공)중합체의 중 량평균 분자량을 1 분자당 실란계 작용기의 수로 나눈 값이다. 상기 실란계 작용기 당량값이 작을수록 작용기의 밀도가 높으며, 상기 당량값이 클수록 작용기 밀도가 작아진다. The (meth) acrylate-based (co) polymer may have a silane-based functional group equivalent of 300 g / eq to 2000 g / eq, or 500 g / eq to 2000 g / From 550 g / eq to 1800 g / eq, or from 580 g / eq to 1600 g / eq, or from 586 g / eq to 1562 g / eq. The silane-based functional group equivalent is an equivalent (g / eq) to one silane-based functional group and is a value obtained by dividing the weight average molecular weight of the (meth) acrylate-based (co) polymer by the number of silane-based functional groups per molecule . The smaller the silane-based functional equivalent value, the higher the functional group density, and the larger the equivalent value, the smaller the functional group density.
이에 따라, 상기 (메트)아크릴레이트계 (공)중합체와 선형의 실란 가 교제간의 가교밀도가 최적화되어, 기존 매트릭스 대비 온도와 습도에 대해' 우수한 내구성을 확보할 수 있다. 뿐만 아니라, 상술한 가교밀도 최적화를 통해, 높은 굴절를을 갖는 광반응성 단량체와 낮은 굴절률을 갖는 성분간의 유동성 (mobi l i ty)을 높임으로서 굴절를 변조를 극대화시켜 기록특성이 향상 될 수 있다. Accordingly, the (meth) acrylate-based (co) polymer of a linear and a silane cross-linking density is optimized between a relationship, it is possible to "ensure excellent durability compared to conventional matrix for temperature and humidity. In addition, through the above-mentioned cross-link density optimization, the recording property can be improved by maximizing the modulation of refraction by increasing the mobility between the photoreactive monomer having a high refraction and the component having a low refraction index.
상기 (메트)아크릴레이트계 (공)중합체에 포함된 상기 실란계 작용기 의 당량이 300 g/eq 미만으로 지나치게 감소하게 되면, 매트릭스의 가교밀 도가 너무 높아져 성분들의 유동성을 저해하고, 그로 인해 기록특성의 감소 가 발생할 수 있다. 또한, 상기 (메트)아크릴레이트계 (공)중합체에 포함된 상기 실란계 작용기의 당량이 2000 g/eq 초과로 지나치게 증가하게 되면, 가교밀도가 너무 낮아 지지체로써의 역할을 못하게 되어 기록 후 생성된 회 절격자들의 경계면이 무너져 굴절률 변조값이 시간이 경과하면서 감소할 수 있다.  If the equivalence of the silane-based functional group contained in the (meth) acrylate-based (co) polymer is excessively reduced to less than 300 g / eq, the crosslinking density of the matrix becomes too high to inhibit the flowability of the components, May occur. Further, if the equivalent of the silane-based functional group contained in the (meth) acrylate-based (co) polymer is excessively increased to more than 2000 g / eq, the crosslinking density becomes too low to serve as a support, The refractive index modulation value may decrease over time as the interface of the diffraction gratings collapses.
보다 구체적으로, 상기 (메트)아크릴레이트계 (공)중합체는 실란계 작용기가 분지쇄에 위치하는 (메트)아크릴레이트 반복단위 및 (메트)아크릴 레이트 반복단위를 포함할 수 있다.  More specifically, the (meth) acrylate-based (co) polymer may include a (meth) acrylate repeating unit and a (meth) acrylate repeating unit in which the silane-based functional group is located in the branch chain.
실관계 작용기가 분지쇄에 위치하는 (메트)아크릴레이트 반복단위의 예로는 하기 화학식 1로 표시되는 반복단위를 들 수 있다.  Examples of the (meth) acrylate repeating unit in which the silane functional group is located in the branch chain include repeating units represented by the following formula (1).
[화학식 1] O [Chemical Formula 1] O
/  /
Si— OR3 Si - OR 3
/ \  / \
RtO OR2 상기 화학식 1에서, Ri 내지 R3은 각각 독립적으로 탄소수 1 내지 10 의 알킬기이고, ¾는 수소 또는 탄소수 1 내지 10의 알킬기이고, R5는 탄소 수 1 내지 10의 알킬렌기이다. RtO OR 2 In the above formula (1), R 1 to R 3 are each independently an alkyl group having 1 to 10 carbon atoms, ¾ is hydrogen or an alkyl group having 1 to 10 carbon atoms, and R 5 is an alkylene group having 1 to 10 carbon atoms.
바람직하게는 상기 화학식 1에서, ¾ 내지 R3은 각각 독립적으로 탄소 수 1의 메틸기이고, R4는 탄소수 1의 메틸기이고, R5는 탄소수 3의 프로필렌 기인, 3-Methacryloxypropyl tr imethoxysi lane(KBM-503) 유래 반복단위 또는 Ri 내지 ¾은 각각 독립적으로 탄소수 1의 메틸기이고, R4는 수소이고, ¾는 탄소수 3의 프로필렌기인, 3-Acryloxypropyl tr imethoxysi lane(KBM-5103) 유 래 반복단위일 수 있다. Preferably, in the above formula (1), R 3 to R 3 are each independently a methyl group having 1 carbon atom, R 4 is a methyl group having 1 carbon atom and R 5 is a 3-methacryloxypropyl tr imethoxysilane (KBM-503 ) Or a repeating unit derived from R 3 to R 4 is independently a methyl group having 1 carbon atom, R 4 is hydrogen and ¾ is a propylene group having 3 carbon atoms, or a repeating unit derived from 3-Acryloxypropyl tr imethoxysilane (KBM-5103).
또한, 상기 (메트)아크릴레이트 반복단위의 예로는 하기 화학식 2로 표시되는 반복단위를 들 수 있다.  Examples of the (meth) acrylate repeating unit include repeating units represented by the following formula (2).
2]  2]
Figure imgf000008_0001
Figure imgf000008_0001
상기 화학식 2에서, ¾은 탄소수 1 내지 20의 알킬기이고, R7은 수소 또는 탄소수 1 내지 10의 알킬기이고, 바람직하게는 상기 화학식 2에서, R6은 탄소수 4의 부틸기이고, R7는 수소인, 부틸 아크릴레이트 유래 반복단위일 수 있다. In Formula 2, ¾ is an alkyl group having 1 to 20 carbon atoms, and R 7 is hydrogen or an alkyl group having 1 to 10 carbon atoms. Preferably, R 6 is a butyl group having 4 carbon atoms, and R 7 is hydrogen Based repeating unit derived from butyl acrylate.
상기 화학식 2의 반복단위 : 상기 화학식 1의 반복단위간 몰비율은 0.5 : 1 내지 14 : 1 일 수 있다. 상기 화학식 1의 반복단위 몰비율이 지나 치게 감소하게 되면, 매트릭스의 가교밀도가 지나치게 낮아져 지지체로써의 역할을 할 수 없어 기록후 기록특성의 감소가 발생할 수 있고, 상기 화학식The molar ratio of the repeating unit of Formula 2 to the repeating unit of Formula 1 may be 0.5: 1 to 14: 1. When the molar ratio of repeating units of the above formula (1) The cross-linking density of the matrix becomes excessively low and can not serve as a support, resulting in a decrease in recording characteristics after recording,
1의 반복단위 몰비율이 지나치게 증가하게 되면, 매트릭스의 가교밀도가 너 무 높아져 각 성분들의 유동성이 떨어짐으로 인해 굴절률 변조값의 감소가 발생할 수 있다. If the molar ratio of the repeating units of 1 is excessively increased, the crosslinking density of the matrix becomes too high and the fluidity of the respective components may be lowered, resulting in a decrease in the refractive index modulation value.
상기 (메트)아크릴레이트계 (공)중합체의 중량평균 분자량 (GPC측정) 은 100000 g/mol 내지 5000000 g/mol, 또는 300000 g/mol 내지 900000 g/ii )l일 수 있다. 본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정 한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으 로 알려진 분석 장치와 시차 굴절 검출기 (Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조 건, 용매, flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예를 들면, Polymer Laboratories PLgel MIX-B 300睡 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여, 평가 온도는 160 °C이며, 1,2,4-트리클 로로벤젠을 용매로서 사용하였으며 유속은 lmL/min의 속도로, 샘플은 10mg/10mL의 농도로 조제한 다음, 200 의 양으로 공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 의 값을 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 I 10,000 I 30,000 / 70,000 / 200,000 I 700,000 / 2,000,000 / 4,000,000 / 10, 000 ,000의 9종을 사용하 였다. The weight average molecular weight (GPC measurement) of the (meth) acrylate-based (co) polymer may be 100000 g / mol to 5000000 g / mol or 300000 g / mol to 900000 g / ii). In the present specification, the weight average molecular weight refers to the weight average molecular weight in terms of polystyrene measured by the GPC method. In the process of measuring the weight average molecular weight in terms of polystyrene measured by the GPC method, a detector such as a known analyzer and a refractive index detector, and an analyzing column can be used. Temperature conditions, solvents, flow rates can be applied. As a specific example of the above measurement conditions, an evaluation temperature is 160 ° C using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 sleep length column, 1,2,4-trichlorobenzene is dissolved in a solvent , The flow rate was adjusted at a flow rate of 1 mL / min, the sample was adjusted to a concentration of 10 mg / 10 mL, and then supplied in an amount of 200, and the value of Mw was determined using a calibration curve formed using polystyrene standards. The molecular weight of the polystyrene standards was 2,000 I 10,000 I 30,000 / 70,000 / 200,000 I 700,000 / 2,000,000 / 4,000,000 / 10, 000, 000.
한편, 상기 선형의 실란 가교제는 분자당 평균 1개 이상의 실란계 작 용기를 갖는 화합물 또는 그의 흔합물일 수 있으며, 상기 1이상의 실란계 작용기를 포함한 화합물일 수 있다. 상기 실란계 작용기는 실란 작용기 또 는 알콕시 실란 작용기를 포함할 수 있으며, 바람직하게는 알콕시 실란 작 용기로 트리에록시실란기를 사용할 수 있다. 상기 실란계 작용기는 상기 (메트)아크릴레이트계 (공)중합체에 포함된 실란계 작용기와 졸겔반웅올 통 해 실록산 결합을 형성하여 상기 (메트)아크릴레이트계 (공)중합체와 선형 의 실란 가교제를 가교시킬 수 있다.  On the other hand, the linear silane crosslinking agent may be a compound having an average of at least one silane-based container per molecule or a mixture thereof, and may be a compound containing at least one silane-based functional group. The silane-based functional group may include a silane functional group or an alkoxysilane functional group, and preferably a trioxysilane group may be used as an alkoxysilane functional group. The silane-based functional group forms a siloxane bond with a silane-based functional group contained in the (meth) acrylate-based (co) polymer to form a siloxane bond with the sol-gel to form a linear silane crosslinking agent Can be crosslinked.
이때, 상기 선형의 실란 가교제는 상기 실란계 작용기의 당량이 200 g/eq 내지 1000 g/eq, 또는 300 g/eq 내지 900 g/eq, 또는 400 g/eq 내지 800 g/eq, 또는 440 g/eq 내지 750 g/eq, 또는 447 g/eq 내지 747 g/eq 일 수 있다. 이에 따라, 상기 (메트)아크릴레이트계 (공)중합체와 선형의 실란 가교제간의 가교밀도가 최적화되어, 기존 매트릭스 대비 온도와 습도에 대 해 우수한 내구성을 확보할 수 있다. 뿐만 아니라, 상술한 가교밀도 최적화 를 통해, 높은 굴절률을 갖는 광반웅성 단량체와 낮은 굴절률을 갖는 성분 간의 유동성 (mobility)을 높임으로서 굴절률 변조를 극대화시켜 기록특성이 향상될 수 있다. At this time, the linear silane crosslinking agent has a silane-based functional group equivalent of 200 g / eq to 750 g / eq, or 447 g / eq to 747 g / eq, or from 300 g / eq to 900 g / eq, or from 400 g / / eq. Accordingly, the cross-linking density between the (meth) acrylate-based (co) polymer and the linear silane cross-linking agent is optimized, thereby ensuring excellent durability against temperature and humidity compared to the existing matrix. In addition, through the above-mentioned optimization of the cross-linking density, the mobility between the optically protonic monomer having a high refractive index and the component having a low refractive index is increased, thereby maximizing the refractive index modulation and improving the recording characteristics.
상기 선형의 실란 가교제에 포함된 상기 실란계 작용기의 당량이 1000 g/eq 이상으로 지나치게 증가하게 되면, 매트릭스의 가교 밀도 저하로 인해 기록후의 회절격자 경계면이 무너질 수 있고, 느슨한 가교밀도 및 낮 은 유리전이 은도로 인해 단량체 및 가소제 성분들이 표면으로 용출되어 헤 이즈를 발생시킬 수 있다. 상기 선형의 실란 가교제에 포함된 상기 실란계 작용기의 당량이 200 g/eq 미만으로 지나치게 감소하게 되면, 가교밀도가 너무 높아져 모노머와 가소제 성분들의 유동성을 저해하고 그로 인해 기록 특성이 현저하게 낮아지는 문제가 발생할 수 있다.  If the equivalent amount of the silane-based functional group contained in the linear silane crosslinking agent is excessively increased to 1000 g / eq or more, the diffraction grating interface after recording may be broken due to the reduction of the crosslinking density of the matrix, and the loose crosslink density and the low glass Transition silver may cause monomer and plasticizer components to leach to the surface and cause haze. If the equivalence of the silane-based functional groups contained in the linear silane crosslinking agent is excessively reduced to less than 200 g / eq, the crosslinking density becomes too high, which hinders the flowability of the monomer and the plasticizer components, May occur.
한편, 상기 (메트)아크릴레이트계 (공)중합체의 분지쇄에 위치한 실 란계 작용기의 당량 : 선형의 실란 가교제에 포함된 실란계 작용기의 당량 의 비율이 22 : 1 내지 0.5 : 1, 또는 20:1 내지 0.5:1, 또는 15:1 내지 0.5:1, 또는 10:1 내지 0.5:1, 또는 5:1 내지 0.6:1, 또는 4:1 내지 0.7:1, 또는 3.5:1 내지 0.78:1일 수 있다. 이에 따라, 상기 (메트)아크릴레이트계 (공)중합체와 선형의 실란 가교제간의 가교밀도가 최적화되어, 기존 매트릭 스 대비 온도와 습도에 대해 우수한 내구성을 확보할 수 있다. 뿐만 아니라, 상술한 가교밀도 최적화를 통해, 높은 굴절률을 갖는 광반응성 단량체와 낮 은 굴절를을 갖는 성분간의 유동성 (mobility)을 높임으로서 굴절률 변조를 극대화시켜 기록특성이 향상될 수 있다.  On the other hand, the equivalent ratio of the silane-based functional group located in the branch chain of the (meth) acrylate-based (co) polymer: the ratio of the equivalent amount of the silane-based functional group contained in the linear silane crosslinking agent is from 22: 1 to 0.5: 1 or 0.5: 1, alternatively 15: 1 to 0.5: 1, alternatively 10: 1 to 0.5: 1, alternatively 5: 1 to 0.6: 1, alternatively 4: 1 to 0.7: Lt; / RTI > Accordingly, the cross-linking density between the (meth) acrylate-based (co) polymer and the linear silane cross-linking agent is optimized, thereby ensuring excellent durability against temperature and humidity compared to the conventional matrix. In addition, through the above-mentioned crosslinking density optimization, the recording property can be improved by maximizing the refractive index modulation by increasing the mobility between the photoreactive monomer having a high refractive index and the component having a low refractive index.
보다 구체적으로, 상기 선형의 실란 가교제는 중량평균 분자량이 100 g/mol 내지 2000 g/mol, 또는 300 g/mol 내지 1000 g/mol, 또는 300 g/mol 내지 700 g/mol인 선형의 폴리에테르 주쇄 및 상기 주쇄의 말단 또는 분지 쇄로 결합한실란계 작용기를 포함할 수 있다. 상기 중량평균 분자량이 100 g/mol 내지 2000 g/n l인 선형의 폴리에 테르 주쇄는 하기 화학식 3으로 표시되는 반복단위를 포함할 수 있다. More specifically, the linear silane crosslinking agent is a linear polyether having a weight average molecular weight of 100 g / mol to 2000 g / mol, or 300 g / mol to 1000 g / mol, or 300 g / mol to 700 g / mol And may include a main chain and a silane-based functional group bound to the main chain by terminal or branch chains. The linear polyether main chain having a weight average molecular weight of 100 g / mol to 2000 g / nl may include a repeating unit represented by the following formula (3).
[화학식 3]  (3)
-(R80)n-¾- 상기 화학식 3에서 ¾은 탄소수 1 내지 10의 알킬렌기이고, n은 1이상, 또는 1 내지 50, 또는 5 내지 20, 또는 8 내지 10의 정수이다. - (R 80 ) n- ¾- wherein R 3 is an alkylene group having 1 to 10 carbon atoms and n is an integer of 1 or more, or 1 to 50, or 5 to 20, or 8 to 10 in the general formula (3).
상기 선형의 실란 가교제가 유연한 폴리 에테르 폴리올을 주쇄로 도 입함으로써 매트릭스의 유리전이온도 및 가교 밀도 조절을 통해 성분들의 유동성을 향상시킬 수 있다.  By introducing the linear silane crosslinking agent into the main chain of the flexible polyether polyol, the fluidity of the components can be improved by controlling the glass transition temperature and the crosslinking density of the matrix.
한편, 상기 실란계 작용기와 폴리에테르 주쇄의 결합은 우레탄 결합 을 매개로 할 수 있다. 구체적으로, 상기 실란계 작용기와 폴리에테르 주쇄 는 우레탄 결합을 통해 상호간 결합을 형성할 수 있으며, 보다 구체적으로 는 상기 실란계 작용기에 포함된 규소 원자가 우레탄 결합의 질소원자와 직 접 또는 탄소수 1 내지 10의 알킬렌기를 매개로 결합하며, 상기 폴리에테르 주쇄에 포함된 R8 작용기가 우레탄 결합의 산소원자와 직접 결합할 수 있다. 이처럼 상기 실란계 작용기와 폴리에테르 주쇄가 우레탄 결합을 매개 로 결합하는 것은, 상기 선형의 실란 가교제가 실란계 작용기를 포함한 이 소시아네이트 화합물과 중량평균 분자량이 100 g/mol 내지 2000 g/m 인 선 형의 폴리에테르 폴리올 화합물간의 반웅을 통해 제조된 반웅생성물이기 때 문이다.  On the other hand, the bond between the silane functional group and the polyether backbone may be mediated by a urethane bond. Specifically, the silane-based functional group and the polyether main chain may form a mutual bond through a urethane bond. More specifically, the silicon atom contained in the silane-based functional group may be bonded directly to the nitrogen atom of the urethane bond, , And the R8 functional group contained in the polyether backbone may be directly bonded to the oxygen atom of the urethane bond. The reason why the silane-based functional group and the polyether main chain are bonded through the urethane bond is that the linear silane crosslinking agent is a mixture of the isocyanate compound containing a silane functional group and the isocyanate compound having a weight average molecular weight of 100 g / mol to 2000 g / Type polyether polyol compound, which is produced through the reaction between the polyether polyol compound.
보다 구체적으로, 상기 이소시아네이트 화합물은 지방족, 고리지방족, 방향족 또는 방향지방족의 모노- 이소시아네이트 디- 이소시아네이트, 트리 - 이소시아네이트 또는 폴리 -이소시아네이트; 또는 우레탄, 요소, 카르보디 이미드, 아실요소, 이소시아누레이트, 알로파네이트, 뷰렛, 옥사디아진트리 온, 우레트디온 또는 이미노옥사디아진디온 구조를 가지는 디 -이소시아네이 트 또는 트리이소시아네이트의 을리고-이소시아네이트 또는 폴리-이소시아 네이트;를 포함할 수 있다.  More specifically, the isocyanate compound is an aliphatic, cycloaliphatic, aromatic or aromatic aliphatic mono-isocyanate di-isocyanate, tri-isocyanate or poly-isocyanate; Or di- isocyanates having urea, urea, urea, carbodiimide, acyl urea, isocyanurate, allophanate, biuret, oxadiazinetrione, uretdione or iminooxyadinedione structures, or di An isocyanate or a polyisocyanate of a polyisocyanate.
상기 실란계 작용기를 포함한 이소시아네이트 화합물의 구체적인 예 로는, 3-이소시아네이토프로필트리에록시실란을 들 수 있다.  Specific examples of the isocyanate compound containing the silane functional group include 3-isocyanatopropyltriethoxysilane.
또한, 상기 폴리에테르 폴리올은 예를 들면 스티렌 옥시드, 에틸렌 옥시드, 프로필렌 옥시드, 테트라히드로퓨란, 부틸렌 옥시드, 에피클로로히 드린의 다중첨가 생성물과 이들의 흔합 첨가생성물 및 그라프트 생성물, 그 리고 다가 알콜 또는 이들의 흔합물의 축합에 의해 수득되는 폴리에테르 폴 리올 및 다가 알콜, 아민 및 아미노 알콜의 알콕시화에 의해 수득되는 것들 이다. The polyether polyol includes, for example, styrene oxide, ethylene Obtained by the condensation of multiple adducts of ethylene oxide, propylene oxide, tetrahydrofuran, butylene oxide, epichlorohydrin with their adduct addition products and graft products, and polyhydric alcohols or their condensates, Ether polyols and polyhydric alcohols, amines and amino alcohols.
상기 폴리에테르 폴리을의 구체적인 예로는 1.5 내지 6의 0H 관능도 및 200 g/몰 내지 18000 g/몰 사이의 수 평균 분자량, 바람직하게는 1.8 내 지 4.0의 0H 관능도 및 600 g/몰 내지 8000 g/몰의 수 평균 분자량, 특히 바람직하게는 1.9 내지 3.1의 0H 관능도 및 650 g/몰 내지 4500 g/몰의 수 평균 분자량을 가지는, 랜덤 또는 블록 공중합체 형태의 폴리 (프로필렌 옥 시드), 폴리 (에틸렌 옥시드) 및 이들의 조합, 또는 폴리 (테트라히드로퓨란) 및 이들의 흔합물이다.  Specific examples of the polyether poly include OH functionalities of 1.5 to 6 and number-average molecular weights of 200 g / mole to 18000 g / mole, OH functionalities of preferably 4.0 to 1.8 and 600 g / mole to 8000 g Poly (propylene oxide) in the random or block copolymer form, poly (propylene oxide) in the form of random or block copolymers having a number average molecular weight of from 0.5 to 10, preferably from 1.9 to 3.1, and a number average molecular weight from 650 g / mole to 4500 g / (Ethylene oxide) and combinations thereof, or poly (tetrahydrofuran) and mixtures thereof.
이처럼, 상기 실란계 작용기와 폴리에테르 주쇄가 우레탄 결합을 매 개로 결합하는 경우, 보다 용이하게 선형의 실란 가교제를 합성할 수 있다. 상기 선형의 실란 가교제의 중량평균 분자량 (GPC측정)은 500 g/mol 내지 5000000 g/mol, 또는 600 g/mol 내지 10000 g/mol, 또는 700 g/mol 내 지 5000 g/mol, 또는 800 g/mol 내지 2000 g/mol, 또는 900 g/mol 내지 1500 g/ηωΐ일 수 있다. 본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의 해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는ᅳ 통 상적으로 알려진 분석 장치와 시차 굴절 검출기 (Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온 도 조건, 용매 flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예를 들면, Polymer Laboratories PLgel MIX-B 300隱 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여, 평가 온도는 160 °C이며, 1,2,4-트리클 로로벤젠을 용매로서 사용하였으며 유속은 lmL/min의 속도로, 샘플은 lOmg/lOmL의 농도로 조제한 다음, 200 iiL 의 양으로 공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 의 값을 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 I 10,000 I 30,000 I 70,000 I 200,000 I 700,000 / 2,000,000 / 4,000,000 / 10 ,000, 000의 9종을 사용하 였다. As described above, when the silane-based functional group and the polyether backbone each have a urethane bond, a linear silane crosslinking agent can be more easily synthesized. The linear silane crosslinking agent has a weight average molecular weight (GPC measurement) of 500 g / mol to 5000000 g / mol, or 600 g / mol to 10000 g / mol, or 700 g / / mol to 2000 g / mol, or from 900 g / mol to 1500 g / eta &ohgr;. In the present specification, the weight average molecular weight refers to the weight average molecular weight in terms of polystyrene measured by the GPC method. In the process of measuring the weight average molecular weight in terms of polystyrene measured by the GPC method, a detector such as a known analytical device and a Refractive Index Detector and an analytical column may be used. And the solvent flow rate can be applied. For example, Polymer Laboratories PLgel MIX-B 300, manufactured by Waters PL-GPC220 instrument, using an osmolality column, the evaluation temperature is 160 ° C, 1,2,4-trichlorobenzene is dissolved in a solvent , The flow rate was adjusted at a flow rate of lmL / min, the sample was adjusted to a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 iiL, and the value of Mw was determined using a calibration curve formed using polystyrene standards. The molecular weight of the polystyrene standards is 2,000 I 10,000 I 30,000 I 70,000 I 200,000 I 700,000 / 2,000,000 / 4,000,000 / 10, 000, 000 Respectively.
한편, 상기 ( i ) 실란계 작용기가 분지쇄에 위치하고, 상기 실란계 작 용기의 당량이 300 g/eq 내지 2000 g/eq인 (메트)아크릴레이트계 (공)중합 체 및 ( i i ) 선형의 실란 가교제 간의 반웅 생성물에서, 상기 (메트)아크릴 레이트계 (공)중합체 100 중량부에 대하여, 상기 선형의 실란 가교제 함량 이 10 중량부 내지 90 중량부, 또는 20 중량부 내지 70 중량부, 또는 22 중 량부 내지 65 중량부일 수 있다.  (Meth) acrylate-based (co) polymer (i) wherein the silane-based functional group is located in the branch chain and the equivalence of the silane-based container is 300 g / eq to 2000 g / Silane crosslinking agent, 10 to 90 parts by weight, or 20 to 70 parts by weight, or 22 to 70 parts by weight of the linear silane crosslinking agent, based on 100 parts by weight of the (meth) acrylate based (co) polymer, Weight to 65 parts by weight.
상기 반웅 생성물에서, 상기 (메트)아크릴레이트계 (공)중합체 100 중량부에 대하여, 상기 선형의 실란 가교제 함량이 지나치게 감소하게 되면, 매트릭스의 경화속도가 현저히 느려져 지지체로써의 기능을 잃고 기록후의 회절격자 경계면이 쉽게 무너질 수 있으며, 상기 반웅 생성물에서, 상기 (메트)아크릴레이트계 (공)중합체 100 중량부에 대하여, 상기 선형의 실란 가교제 함량이 지나치게 증가하게 되면, 매트릭스의 경화속도는 빨라지나 반웅성 실란기 함량의 과도한 증가로 다른 성분들과의 상용성 문제가 발생 하여 헤이즈가 발생하게 된다.  If the content of the linear silane crosslinker is excessively decreased with respect to 100 parts by weight of the (meth) acrylate-based (co) polymer in the antistatic product, the curing rate of the matrix is remarkably slowed to lose its function as a support, (100) parts by weight of the (meth) acrylate-based (co) polymer is excessively increased, the curing rate of the matrix is increased or the curing speed of the Excessive increase of male silane content causes compatibility problems with other components and causes haze.
또한, 상기 반웅 생성물의 모들러스 (저장탄성률)가 0.01 MPa 내지 5 MPa 일 수 있다. 상기 모들러스 측정 방법의 구체적인 예로, TA Instruments의 DHR( di scovery hybr id rheometer ) 장비를 이용하여 상온 (20 °C 내지 25 °C )에서 1Hz의 frequency에서 storage modulus(G' ) 값을 측정할 수 있다. In addition, the modulus (storage elastic modulus) of the repellent product may be 0.01 MPa to 5 MPa. As a specific example of the above modulus measurement method, a storage modulus (G ') value can be measured at a frequency of 1 Hz at room temperature (20 ° C to 25 ° C) using a TA Instruments di scrospective hybridometer (DHR) have.
또한, 상기 반응 생성물의 유리전이온도가 -40 °C 내지 10 °C일 수 있다. 상기 유리전이온도 측정 방법의 구체적인 예로, EMA(dynami c mechani cal analysi s) 즉정장비를 이용하여 strain 0. 1%, frequency 1Hz , 승온속도 5°C /min의 셋팅 조건으로 -80 °C ~ 30 °C 영역에서 광중합 조성물 이 코팅된 필름의 phase angle(Loss modulus) 변화를 측정하는 방법을 들 수 있다. Further, the glass transition temperature of the reaction product may be -40 ° C to 10 ° C. Examples of the glass transition temperature measuring method specific, EMA (dynami c mechani cal analysi s) using the equipment jeukjeong strain 0. 1%, frequency 1Hz, a setting condition of a temperature rising rate 5 ° C / min -80 ° C ~ 30 And the phase angle (loss modulus) of the film coated with the photopolymerizable composition in the " C " region is measured.
(2) 광반응성 단량체 (2) The photoreactive monomer
한편, 상기 광반웅성 단량체는 다관능 (메트)아크릴레이트 단량체 또 는 단관능 (메트)아크릴레이트 단량체를 포함할 수 있다. 상술한 바와 같이, 상기 포토폴리머 조성물의 광중합 과정에서 단량 체가 중합되어 폴리머가 상대적으로 많이 존재하는 부분에서는 굴절율이 높 아지고, 고분자 바인더가 상대적으로 많이 존재하는 부분에서는 굴절율이 상대적으로 낮아져서 굴절율 변조가 생기게 되며, 이러한 굴절율 변조에 의 해서 회절 격자가 생성된다. On the other hand, the photo-polymeric monomer may include a polyfunctional (meth) acrylate monomer or a monofunctional (meth) acrylate monomer. As described above, in the photopolymerization of the photopolymer composition, the monomers are polymerized to increase the refractive index at the portion where the polymer is relatively present, and at the portion where the polymer binder is relatively present, the refractive index is relatively low, And the diffraction grating is generated by such refractive index modulation.
구체적으로, 상기 광반웅성 단량체의 일 예로는 (메트)아크릴레이트 계 α , β -불포화 카르복실산 유도체, 예컨대 (메트)아크릴레이트, (메트)아 크릴아미드, (메트)아크릴로니트릴 또는 (메트)아크릴산 등이나, 또는 비닐 기 (vinyl ) 또는 씨을기 (thiol )를 포함한 화합물을 들 수 있다.  (Meth) acrylate, (meth) acrylonitrile, or (meth) acrylate, for example, a (meth) acrylate, ) Acrylic acid, or a compound containing a vinyl group or a thiol group.
상기 광반웅성 단량체의 일 예로 굴절율이 1.5 이상, 또는 1.53이상, 또는 1.5 내지 1.7인 다관능 (메트)아크릴레이트 단량체를 들 수 있으며, 이러한 굴절율이 1.5 이상, 또는 1.53이상, 또는 1.5 내지 1.7인 다관능 (메트)아크릴레이트 단량체는 Halogen 원자 (bromine , iodine 등) , 황 (S) , 인 (P) , 또는 방향족 고리 (aromat i c r ing)을 포함할수 있다.  Examples of the optically active monomer include polyfunctional (meth) acrylate monomers having a refractive index of 1.5 or more, 1.53 or more, or 1.5 to 1.7, and the refractive index is 1.5 or more, or 1.53 or more, or 1.5 to 1.7. The functional (meth) acrylate monomers may include halogen atoms (bromine, iodine, etc.), sulfur (S), phosphorus (P), or aromatic rings.
상기 굴절율이 1.5 이상인 다관능 (메트)아크릴레이트 단량체의 보다 구체적인 예로는 bi sphenol A modi f i ed di aery late계열, f luorene acrylate 계열 (HR6022 등 - Mi\ron社), bi sphenol f luorene epoxy acrylate계열 (HR6100 , HR6060 , HR6042 등 - Miwon社), Halogenated epoxy acrylate계열 (HR1139 , HR3362 등 - Mi won社) 등을 들 수 있다.  More specific examples of the polyfunctional (meth) acrylate monomers having a refractive index of 1.5 or more include bi sphenol A modi fi ed diery late series, f luorene acrylate series (HR 6022, etc.), bi sphenol fuorene epoxy acrylate series (HR6100, HR6060, HR6042, etc. - Miwon), Halogenated epoxy acrylate series (HR1139, HR3362, etc. - Miwon).
상기 광반웅성 단량체의 다른 일 예로 단관능 (메트)아크릴레이트 단 량체를 들 수 있다. 상기 단관능 (메트)아크릴레이트 단량체는 분자 내부에 에테르 결합 및 플루오렌 작용기를 포함할 수 있으며, 이러한 단관능 (메트) 아크릴레이트 단량체의 구체적인 예로는 페녹시 벤질 (메트)아크릴레이트, 0-페닐페놀 에틸렌 옥사이드 (메트)아크릴레이트, 벤질 (메트)아크릴레이트, 2- (페닐사이오)에틸 (메트)아크릴레이트, 또는 바이페닐메틸 (메트)아크릴 레이트 등을 들 수 있다.  Another example of the optically active monomer is a monofunctional (meth) acrylate monomer. The monofunctional (meth) acrylate monomer may include an ether bond and a fluorene functional group in the molecule. Specific examples of the monofunctional (meth) acrylate monomer include phenoxybenzyl (meth) acrylate, 0-phenyl (Meth) acrylate, benzyl (meth) acrylate, 2- (phenylcyano) ethyl (meth) acrylate, or biphenylmethyl (meth) acrylate.
한편, 상기 광반웅성 단량체로는 50 g/mol 내지 1000 g/mol , 또는 200 g/mol 내지 600 g/irol의 중량평균분자량을 가질 수 있다. 상기 중량평 균분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의 미한다 . (3) 광개시제 The optically active monomer may have a weight average molecular weight of 50 g / mol to 1000 g / mol, or 200 g / mol to 600 g / irol. The weight average molecular weight refers to the weight average molecular weight in terms of polystyrene measured by the GPC method. (3) Photo initiators
한편, 상기 구현예의 포토폴리머 조성물은 광개시제를 포함한다. 상 기 광개시제는 빛 또는 화학방사선에 의해 활성화되는 화합물이며, 상기 광 반웅성 단량체 등 광반웅성 작용기를 함유한 화합물의 중합을 개시한다 . 상기 광개시제로는 통상적으로 알려진 광개시제를 큰 제한 없이 사용 할 수 있으나, 이의 구체적인 예로는 광 라디칼 중합 개시제, 광양이온 중 합 개시제, 또는 광음이온 중합 개시제를 들 수 있다.  On the other hand, the photopolymer composition of this embodiment includes a photoinitiator. The photoinitiator is a compound that is activated by light or actinic radiation and initiates polymerization of a compound containing a photoactive functional group, such as a photo-reactive monomer. As the photoinitiator, conventionally known photoinitiators can be used without any limitation, and specific examples thereof include photo radical polymerization initiators, photoinitiator polymerization initiators, and photoanion polymerization initiators.
상기 광 라디칼 중합 개시제의 구체적인 예로는, 이미다졸 유도체, 비스이미 다졸 유도체, N-아릴 글리신 유도체, 유기 아지드 화합물, 티타노 센, 알루미네이트 착물, 유기 과산화물, N- 알콕시 피리디늄 염, 티옥산톤 유도체, 아민 유도체 등을 들 수 있다. 보다 구체적으로, 상기 광 라디칼 중합 개시제로는 1,3-di (t-butyldioxycarbonyl )benzophenone, 3,3' ,4,4' '- tetrakis(t -butyl d i oxycarbony 1 ) benzophenone , 3一 pheny 1 _5_ i soxazo 1 one , 2_ mercapto benzimidazole, bis(2,4,5-tr iphenyl ) imidazole, 2,2-dimethoxy- 1,2-di heny lethane-l-one (제품명: Irgacure 651 I 제조사: BASF), 1- hydr oxy-cyc 1 ohexy 1 -pheny 1 -ke t one (제품명: Irgacure 184 I 제조사: BASF), 2-benzy 1 -2-d i met hy 1 am i no-1- ( 4-mor pho 1 inophenyl )_butanone— 1 (제품명: Irgacure 369 I 제조사: BASF), 및 bis( n_5-2,4-cyclopentadiene— 1-yl )- bis(2,6-difluoro-3-( ΙΗ-py r r o 1 e- 1-y 1 ) -pheny 1 ) t i t an i um (제품명: Irgacure 784 제조사: BASF) , Ebecryl P-115(제조사 : SK entis)등을 들 수 있다. 상기 광양이온 중합 개시제로는, 디아조늄염 (diazonium salt), 설포 늄염 (sulfofiium salt), 또는 요오드늄 (iodonium salt)을 들 수 있고, 예를 들면 술폰산 에스테르, 이미드 술포 네이트, 디알킬 -4ᅳ히드록시 술포늄 염, 아릴 술폰산 -P-니트로 벤질 에스테르, 실라놀-알루미늄 착물, ( 6- 벤젠) (ιχ5-시클로 펜타디에닐)철 (II) 등을 들 수 있다. 또한, 벤조인 토실레이 트, 2,5-디니트로 벤질 토실레이트, N- 토실프탈산 이미드 등도 들 수 있다. 상기 광양이온 중합 개시제의 보다 구체적인 예로는, Cy.racure UVI-6970, Cyracure UVI-6974 및 Cyracure UVI-6990 (제조사: Dow Chemical Co. in USA)이나 Irgacure 264 및 Irgacure 250 (제조사: BASF) 또는 CIT-1682 (제조사: Nippon Soda) 등의 시판 제품을 들 수 있다. Specific examples of the photoradical polymerization initiator include imidazole derivatives, bisimidazole derivatives, N-arylglycine derivatives, organic azide compounds, titanocene, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, Derivatives, and amine derivatives. More specifically, examples of the photocatalytic polymerization initiator include 1,3-di (t-butyldioxycarbonyl) benzophenone, 3,3 ', 4,4'-tetrakis (t-butyldi oxycarbonyl) benzophenone, 2-mercapto benzimidazole, bis (2,4,5-trphenyl) imidazole, 2,2-dimethoxy-1,2-dihey lethane-1-one (product name: Irgacure 651 I, 1-hydr oxy-cyc 1 ohexy 1 -pheny 1 -ke t one (product name: Irgacure 184 I manufactured by BASF), 2-benzy 1 -2-di met hy 1 amino-1- bis (2,6-difluoro-3- (1H-pyrrolo 1 -yl) -benzonitrile (product name: Irgacure 369 I, 1-y 1) -pheny 1) titanim (trade name: Irgacure 784 manufactured by BASF) and Ebecryl P-115 (manufactured by SK entis). Examples of the cationic ion polymerization initiator include diazonium salt, sulfofiium salt, and iodonium salt, and examples thereof include sulfonic acid ester, imidosulfonate, dialkyl-4 (6-benzene) (ιχ5-cyclopentadienyl) iron (II), and the like can be given as examples of the arylsulfonic acid salt. Further, benzoin tosylate, 2,5-dinitrobenzyltosylate, N-tosylphthalic acid imide and the like are also exemplified. More specific examples of the cationic polymerization initiator include Cyracure UVI-6970, Cyracure UVI-6974 and Cyracure UVI-6990 (manufactured by Dow Chemical Co. in USA), Irgacure 264 and Irgacure 250 -1682 (Manufacturer: Nippon Soda) and the like.
상기 광음이온 중합 개시제로는, 보레이트염 (Borate salt)을 들 수 있고, 예를 들면 부티릴 클로린 부틸트리페닐보레이트 (BUTYRYL CHOLINE BUTYLTRIPHENYLBORATE) 등을 들 수 있다. 상기 광음이은 중합 개시제의 보 다 구체적인 예로는, Borate V (제조사: Spectra group) 등의 시판 제품을 들 수 있다.  Examples of the photoanion polymerization initiator include a borate salt, such as butyrylchlorine butyl triphenyl borate (BUTYRYL CHOLINE BUTYL TRIPHENYLBORATE). More specific examples of the polymerization initiator in the above-mentioned sound signal include commercially available products such as Borate V (manufacturer: Spectra group).
또한, 상기 구현예의 포토폴리머 조성물은 일분자 (유형 I) 또는 이 분자 (유형 II) 개시제를 사용할 수도 있다. 상기 자유 라디칼 광중합을 위 한 (유형 I) 시스템은 예를 들면 3차 아민과 조합된 방향족 케톤 화합물, 예컨대 벤조페논, 알킬벤조페논, 4,4'-비스 (디메틸아미노)벤조페논 (미힐러 (Michler's) 케톤), 안트론 및 할로겐화 벤조페논 또는 상기 유형의 흔합물 이다. 상기 이분자 (유형 II) 개시제로는 벤조인 및 그의 유도체, 벤질 케 탈, 아실포스파인 옥시드, 예컨대 2, 4, 6-트리메틸벤조일디페닐포스파인 옥 시드, 비스아실로포스파인 옥시드, 페닐글리옥실 에스테르, 캄포퀴논, 알파 -아미노알킬페논, 알파-,알파-디알콕시아세토페논, 1-[4- (페닐티오)페닐]옥 탄 -1,2-디온 2-(0-벤조일옥심) 및 알파 -히드록시알킬페논 등을 들 수 있다.  The photopolymer composition of this embodiment may also employ one molecule (Type I) or this molecule (Type II) initiator. (Type I) systems for the free radical photopolymerization can be carried out, for example, by reacting aromatic ketone compounds in combination with tertiary amines, such as benzophenone, alkylbenzophenone, 4,4'-bis (dimethylamino) benzophenone Michler's) ketone), anthrone and halogenated benzophenone or a mixture of this type. The bis (type II) initiators include benzoin and derivatives thereof, benzylketal, acylphosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bisacylphosphine oxide, phenyl Alpha-aminoalkylacetophenone, 1- [4- (phenylthio) phenyl] octane-1,2-dione 2- (0-benzoyloxime) And alpha-hydroxyalkylphenones.
(4) 포토폴리머 조성물 (4) Photopolymer composition
상기 포토폴리머 조성물은 상기 고분자 매트릭스 또는 이의 전구체 20 중량 ¾내지 80중량 상기 광반웅성 단량체 10 중량 % 내지 70중량 %; 및 광개시제 0.1 중량 % 내지 15중량 %;를 포함할 수 있으며, 후술하는 바와 같 이, 상기 포토폴리머 조성물이 유기 용매를 더 포함하는 경우, 상술한 성분 들의 함량은 이들 성분의 총합 (유기 용매를 제외한 성분의 총합)을 기준으 로 한다.  Wherein the photopolymer composition comprises 20 to 40% by weight of the polymer matrix or precursor thereof and 10 to 70% by weight of the photoactive monomer; And 0.1% by weight to 15% by weight of a photoinitiator. When the photopolymer composition further contains an organic solvent as described later, the content of the above-mentioned components is not more than the sum of these components (excluding the organic solvent) The sum of the components).
상기 포토폴리머 조성물은 불소계 화합물을 더 포함할 수 있다. 상기 불소계 화합물은 반웅성이 거의 없는 안정성을 가지며, 저굴절특성을 가지 므로, 상기 포토폴리머 조성물 내에 첨가시 고분자 매트릭스의 굴절률을 보 다 낮출 수 있어, 모노머와의 굴절률 변조를 극대화시킬 수 있다.  The photopolymer composition may further include a fluorine-based compound. Since the fluorine-based compound has little stability and is low in refractive index, the refractive index of the polymer matrix can be lowered when added to the photopolymer composition, thereby maximizing the refractive index modulation with the monomer.
상기 불소계 화합물은 에테르기, 에스터기 및 아마이드기로 이루어진 군에서 선택된 1종 이상의 작용기 및 2이상의 다이플루오로메틸렌기를 포함 할 수 있다. 보다 구체적으로, 상기 불소계 화합물은 2개의 다이플루오로메 틸렌기간의 직접결합 또는 에테르 결합을 포함한 중심 작용기의 양말단에 에테르기를 포함한 작용기가 결합한 하기 화학식 4 구조를가질 수 있다. The fluorine-based compound includes at least one functional group selected from the group consisting of an ether group, an ester group and an amide group, and at least two difluoromethylene groups can do. More specifically, the fluorine-based compound may have a structure represented by the following formula (4) in which a functional group including an ether group is bonded to both terminals of a central functional group including a direct bond or an ether bond in two difluoromethylene periods.
[화학식 4]
Figure imgf000017_0001
상기 화학식 4에서, Ru 및 R12는 각각 독립적으로 다이플루오로메틸렌 기이며, 3 및 Ri6은 각각 독립적으로 메틸렌기이고, R14 및 R15는 각각 독립 적으로 다이플루오로메틸렌기이며, R17 및 R18은 각각 독립적으로 폴리알킬렌 옥사이드기이고, m은 1이상, 또는 1 내지 10 , 또는 1 내지 3의 정수이다. 바람직하게는 상기 화학식 4에서, Rn 및 R12는 각각 독립적으로 다이 플루오로메틸렌기이며, R13 및 R16은 각각 독립적으로 메틸렌기이고, R14 및 R15는 각각 독립적으로 다이플루오로메틸렌기이며, R17 및 R18은 각각 독립적 으로 2-메톡시에톡시메특시기이고, m은 2의 정수이다.
[Chemical Formula 4]
Figure imgf000017_0001
In the formula (4), R u and R 12 are each independently a difluoromethylene group, 3 and R 6 are each independently a methylene group, R 14 and R 15 are each independently a difluoromethylene group, R 17 and R 18 are each independently a polyalkylene oxide group, and m is an integer of 1 or more, or 1 to 10, or an integer of 1 to 3. Preferably in Formula 4, Rn and R 12 are each independently difluoro methylene group, R 13 and R 16 are each independently a methylene group, R 14 and R 15 is a group methylene-difluoro each independently , R 17 and R 18 each independently represent a 2-methoxyethoxy methoxy group, and m is an integer of 2.
상기 불소계 화합물은 굴절률이 1.45미만, 또는 1.3 이상 1.45미만일 수 있다. 상술한 바와 같이 광반웅성 단량체가 1.5이상의 굴절률을 가지므 로, 상기 불소계 화합물은 광반웅성 단량체 보다 낮은 굴절률을 통해, 고분 자 매트릭스의 굴절를을 보다 낮출 수 있어, 모노머와의 굴절률 변조를 극 대화시킬 수 있다.  The fluorine-based compound may have a refractive index of less than 1.45, or more than 1.3 and less than 1.45. As described above, since the optically maleic monomer has a refractive index of 1.5 or more, the fluorine-based compound can lower the refractive index of the polymer matrix through the refractive index lower than that of the photo-polymeric monomer, have.
구체적으로, 상기 불소계 화합물 함량은 광반웅성 단량체 100 중량부 에 대하여, 30 중량부 내지 150 중량부, 또는 50 중량부 내지 110 중량부일 수 있고, 상기 고분자 매트릭스의 굴절률이 1.46 내지 1.53일 수 있다. 상기 불소계 화합물 함량은 광반웅성 단량체 100 중량부에 대하여 지 나치게 감소하게 되면, 저굴절 성분의 부족으로 인해 기록 후의 굴절률 변 조값이 낮아지고, 상기 불소계 화합물 함량이 광반웅성 단량체 100 중량부 에 대하여 지나치게 증가하게 되면, 기타 성분들과의 상용성 문제로 헤이즈 가 발생하거나 일부 불소계 화합물이 코팅층의 표면으로 용출되는 문제가 발생 할 수 있다.  Specifically, the content of the fluorine-based compound may be 30 parts by weight to 150 parts by weight, or 50 parts by weight to 110 parts by weight, and the refractive index of the polymer matrix may be 1.46 to 1.53 with respect to 100 parts by weight of the photoactive monomer. When the amount of the fluorine-based compound is greatly decreased with respect to 100 parts by weight of the photo-polymerizable monomer, the refractive index after recording decreases due to the lack of low refractive index, and the content of the fluorine- There may arise haze due to compatibility with other components or a problem that some fluorine-based compounds are eluted to the surface of the coating layer.
상기 블소계 화합물은 중량평균분자량 (GPC측정)이 300 g/mol 이상, 또는 300 g/mol 내지 1000 g/n l일 수 있다. 중량평균분자량 측정의 구체적 인 방법은 상술한 바와 같다. The blended compound has a weight average molecular weight (GPC measurement) of 300 g / mol or more, Or from 300 g / mol to 1000 g / nl. A specific method of measuring the weight average molecular weight is as described above.
한편, 상기 포토폴리머 조성물은 광감웅 염료를 더 포함할 수 있다. 상기 광감웅 염료는 상기 광개시제를 증감시키는 증감 색소의 역할을 하는 데 , 보다 구체적으로 상기 광감웅 염료는 광중합체 조성물에 조사된 빛에 의하여 자극되어 모노머 및 가교 모노머의 중합을 개시하는 개시제의 역할 도 함께 할 수 있다. 상기 포토폴리머 조성물은 광감웅 염료 0.01 중량 % 내 지 30 중량 %, 또는 0.05 중량 % 내지 20 중량 ¾>포함할 수 있다.  On the other hand, the photopolymer composition may further include a photo-sensitizing dye. The photoengraving dye acts as a sensitizing dye for increasing or decreasing the photoinitiator. More specifically, the photoengraving dye is stimulated by the light irradiated to the photopolymer composition to function as an initiator for initiating polymerization of the monomer and the crosslinking monomer. You can do it together. The photopolymer composition may contain 0.01 wt.% To 30 wt.%, Or 0.05 wt.% To 20 wt.
상기 광감웅 염료의 예가 크게 한정되는 것은 아니며, 통상적으로 알 려진 다양한 화합물을 사용할 수 있다. 상기 광감웅 염료의 구체적인 예로 는, 세라미도닌의 술포늄 유도체 (sulfonium derivative), 뉴 메틸렌 블루 (new methylene blue), 티오에리트로신 트리에틸암모늄 (thioerythrosine triethylammonium), 6-아세틸아미노 -2-메틸세라미도닌 (6-acetylamino_2- methylceramidonin) , 에오신 (eosin), 에리트로신 (erythrosine), 로즈 벵갈 (rose bengal), 티오닌 (thionine), 베이직 엘로우 (baseic yellow), 피나시 놀 클로라이드 (Pinacyanol chloride), 로다민 6G(rhodamine 6G), 갈로시아 닌 (gallocyanine), 에틸 바이올렛 (ethyl violet), 빅토리아 블루 R(Victoria blue R), 셀레스틴 블루 (Celestine blue), 퀴날딘 레드 (QuinaldineRed), 크리스탈 바이올렛 (crystal violet), 브릴리언트 그린 (Brilliant Green) , 아스트라존 오렌지 G(Astrazon orange G), 다로우 레드 (darrow red), 피로닌 Y(pyronin Y), 베이직 레드 29(basic red 29), 피릴 륨 Kpyrylium iodide), 사프라닌 OCSafranin 0), 시아닌, 메틸렌 블루, 아 주레 A(Azure A), 또는 이들의 2이상의 조합을 들 수 있다.  The examples of the photo-initiator dye are not limited to a wide variety, and various known compounds can be used. Specific examples of the light-sensitive dye include sulfonium derivatives of ceramidonine, new methylene blue, thioerythrosine triethylammonium, 6-acetylamino-2-methylserine But are not limited to, 6-acetylamino_2-methylceramidonin, eosin, erythrosine, rose bengal, thionine, baseic yellow, pinacanol chloride, Rhodamine 6G, gallocyanine, ethyl violet, Victoria blue R, Celestine blue, QuinaldineRed, crystal violet, violet, Brilliant Green, Astrazon orange G, darrow red, pyronin Y, basic red 29, Kpyrylium iodide, , Saprinin O CSafranin 0), cyanine, methylene blue, Azure A, or a combination of two or more thereof.
상기 포토폴리머 조성물은 유기 용매를 더 포함할 수 있다. 상기 유 기 용매의 비제한적인 예를 들면 케톤류, 알코올류 아세테이트류 및 에테 르류, 또는 이들의 2종 이상의 흔합물을 들 수.있다.  The photopolymer composition may further include an organic solvent. Examples of the organic solvent include, but are not limited to, ketones, alcohols, acetates and ethers, and mixtures of two or more thereof.
이러한 유기 용매의 구체적인 예로는, 메틸에틸케논, 메틸이소부틸케 톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, n-프로 판올, i-프로판올, nᅳ부탄올, i-부탄올, 또는 t-부탄올 등의 알코올류; 에 틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2종 이상의 흔합물을 들 수 있 다. Specific examples of such an organic solvent include ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone or isobutyl ketone; Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol or t-butanol; Ethylacetate, i-propyl acetate, or polyethylene glycol monomethyl ether Acetates and the like; Ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or a mixture of two or more of these.
상기 유기 용매는 상기 포토폴리머 조성물에 포함되는 각 성분들을 흔합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 흔합된 상 태로 첨가되면서 상기 포토폴리머 조성물에 포함될 수 있다. 상기 포토폴리 머 조성물 중 유기 용매의 함량이 너무 작으면, 상기 포토폴리머 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생 할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 충분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 포토폴리머 조성물은 포함되는 성분들의 전체 고형분의 농도가 1중량 % 내지 70중량 ¾>, 또는 2 중량 % 내지 50중량%가 되도록 유기 용매를 포함할 수 있다. 상기 포토폴리머 조성물은 기타의 첨가제, 촉매 등을 더 포함할 수 있다. 예를 들어, 상기 포토폴리머 조성물은 상기 고분자 매트릭스나 광반 웅성 단량체의 중합을 촉진하기 위하여 통상적으로 알려진 촉매를 포함할 수 있다. 상기 촉매의 예로는, 주석 옥타노에이트, 아연 옥타노에이트, 디 부틸주석 디라우레이트, 디메틸비스 [ ( 1-옥소네오데실)옥시]스타난, 디메틸 주석 디카르복실레이트, 지르코늄 비스 (에틸핵사노에이트), 지르코늄 아세 틸아세토네이트, p-를루엔설폰산 (p-toluenesul foni c acid) 또는 3차 아민, 예컨대 1, 4-디아자비씨클로 [2.2.2]옥탄, 디아자비씨클로노난, 디아자비씨클 로운데칸, 1,1,3,3-테트라메틸구아니딘, 1,3,4,6,7 , 8-핵사히드로 -1-메틸- 2H-피리미도 ( 1 , 2-a)피리미딘 등을 들 수 있다. 상기 기타의 첨가제의 예로 는 소포제 또는 포스페이트계 가소제를 들 수 있고, 상기 소포제로는 실리 콘계 반웅성 첨가제를 사용할 수 있으며, 이의 예로 Tego Rad 2500을 들 수 있다. 상기 가소제의 예로는 트리부틸 포스페이트와 같은 포스페이트 화합 물을 들 수 있으며, 상기 가소제는 상술한 블소계 화합물과 함께 1 : 5 내지 5 : 1의 중량비율로 첨가될 수 있다. 상기 가소제는 굴절률이 1.5미만이며, 분자량이 700이하일 수 있다.  The organic solvent may be added to the photopolymer composition at the time when the components contained in the photopolymer composition are mixed, or may be added to the photopolymer composition while the components are added or dispersed in an organic solvent. If the content of the organic solvent in the photopolymer composition is too small, the flowability of the photopolymer composition may be deteriorated, resulting in defects such as streaks in the finally produced film. In addition, when the organic solvent is added in an excess amount, the solid content is lowered and the coating and film formation are not sufficiently performed, so that the physical properties and surface characteristics of the film may be deteriorated, and defects may occur during the drying and curing process. Accordingly, the photopolymer composition may include an organic solvent such that the concentration of the total solids of the components contained therein is 1 wt% to 70 wt%, or 2 wt% to 50 wt%. The photopolymer composition may further include other additives, a catalyst, and the like. For example, the photopolymer composition may comprise a catalyst commonly known to promote polymerization of the polymer matrix or the photo-labile monomer. Examples of the catalyst include tin octanoate, zinc octanoate, dibutyltin dilaurate, dimethylbis [(1-oxoneodecyl) oxy] stannane, dimethyltin dicarboxylate, zirconium bis Zirconium acetylacetonate, p-toluenesulphonic acid or a tertiary amine such as 1,4-diazabicyclo [2.2.2] octane, diazabicyclo-nonane, di 1-methyl-2H-pyrimido (1, 2-a) pyrimidine, etc. . Examples of the other additives include a defoaming agent or a phosphate-based plasticizer. As the defoaming agent, a silicone-based anti-maleic additive may be used. Examples thereof include Tego Rad 2500. An example of the plasticizer is a phosphate compound such as tributyl phosphate. The plasticizer may be added at a weight ratio of 1: 5 to 5: 1 together with the above-described blend-based compound. The plasticizer may have a refractive index of less than 1.5 and a molecular weight of 700 or less.
상기 포토폴리머 조성물은 홀로그램기록 용도로사용될 수 있다. 한편, 발명의 다른 구현예에 따르면, 포토폴리머 조성물로부터 제조 된 홀로그램 기록 매체가 제공될 수 있다. The photopolymer composition can be used for hologram recording applications. Meanwhile, according to another embodiment of the present invention, a hologram recording medium manufactured from a photopolymer composition can be provided.
상술한 바와 같이 , 상기 일 구현예의 포토폴리머 조성물을 사용하면, 보다 얇은 두께를 가지면서도 이전에 알려진 홀로그램에 비하여 크게 향상 된 굴절율 변조값 및 높은 회절 효율을 구현할 수 있는 홀로그램이 제공될 수 있다.  As described above, by using the photopolymer composition of this embodiment, it is possible to provide a hologram capable of achieving a significantly improved refractive index modulation value and a high diffraction efficiency compared to holograms previously known while having a thinner thickness.
상기 홀로그램 기록 매체는 /m 내지 30 ; am의 두께에서도 0.015 이상 또는 또는 0.020 이상, 또는 0.015 내지 0.050, 또는 0.015 내지 0.040, 또 는 0.020 내지 0.030의 굴절율 변조값을 구현할 수 있다.  The hologram recording medium can realize a refractive index modulation value of 0.015 or more, or 0.020 or more, or 0.015 to 0.050, or 0.015 to 0.040, or 0.020 to 0.030, even in the thickness of / m to 30 am.
또한, 상기 홀로그램 기록 매체는 5//m 내지 30 의 두께에서도 하기 일반식 4에 의한 회절효율 변화값이 18 % 이하, 또는 17% 이하, 또는 16 % 이하, 또는 0.01 % 내지 18%, 또는 0.01 % 내지 17%, 또는 0.01 % 내지 16% 일 수 있다.  The hologram recording medium may have a diffraction efficiency change value of 18% or less, or 17% or less, or 16% or less, or 0.01% to 18%, or 0.01% or less, % To 17%, or 0.01% to 16%.
[일반식 4]  [Formula 4]
회절효율 변화값 ( Δ ) = [기록전 20~25°C , 40-50 1 %의 항온 항습 조건의 암실에서 보관된 샘플의 회절 효율 ( ) - 기록전 40 °C , 90 RH%의 항온 항습 조건의 암실에서 24시간 이상 보관된 샘플의 회절 효율 ( ' ) ] I 기록전 20~25°C , 40-50 H¾)의 항온 항습 조건의 암실에서 보관된 샘플의 회 절 효율 ( r *100 Diffraction efficiency change value (Δ) = [Diffraction efficiency (-) of sample stored in a dark room under constant temperature and humidity conditions of 20 to 25 ° C and 40 to 50% before recording - Constant temperature humidity of 40 ° C and 90 RH% (R * 100) of samples stored in a dark room under constant temperature and humidity conditions of 20 to 25 ° C and 40 to 50 H¾ before recording.
또한, 상기 홀로그램 기록 매체는 5卿 내지 30 의 두께에서 50% 이 상, 또는 85% 이상의 회절 효율을 구현할 수 있다.  Further, the hologram recording medium may have a diffraction efficiency of 50% or more, or 85% or more at a thickness of 5 to 30 mm.
상기 일 구현예의 포토폴리머 조성물은 이에 포함되는 각각의 성분을 균일하게 흔합하고 20 °C 이상의 온도에서 건조 및 경화를 한 이후에, 소정 의 노광 과정을 거쳐서 전체 가시 범위 및 근자외선 영역 (300 내지 800 nm) 에서의 광학적 적용을 위한 홀로그램으로 제조될 수 있다. The photopolymer composition of this embodiment is prepared by uniformly mixing each component contained therein and drying and curing at a temperature of 20 ° C or higher, followed by a predetermined exposure process to expose the entire visible and near ultraviolet regions 300 to 800 lt; RTI ID = 0.0 > nm) < / RTI >
상기 일 구현예의 포토폴리머 조성물 중 고분자 매트릭스 또는 이의 전구체를 형성하는 성분을 우선 균질하게 흔합하고, 선형 실란 가교제를 추 후에 촉매와 함께 흔합하여 홀로그램의 형성 과정을 준비할 수 있다.  In the photopolymer composition of the embodiment, the polymer matrix or its precursor-forming component may first be homogeneously mixed, and the linear silane crosslinking agent may be added to the catalyst together with the catalyst to prepare a process for forming a hologram.
상기 일 구현예의 포토폴리머 조성물은 이에 포함되는 각각의 성분의 흔합에는 통상적으로 알려진 흔합기, 교반기 또는 믹서 등을 별 다른 제한 없이 사용할 수 있으며, 상기 흔합 과정에서의 온도는 0 °C 내지 100 °c , 바람직하게는 10 °C 내지 80 °C , 특히 바람직하게는 20 °C 내지 60 °C일 수 있다. The photopolymer composition of this embodiment may comprise one or more of the components The stirring may be carried out using a conventional stirrer, a stirrer, a mixer or the like without limitation, and the temperature in the stirring process is 0 ° C to 100 ° C, preferably 10 ° C to 80 ° C, It may be 20 ° C to 60 ° C.
한편, 상기 일 구현예의 포토폴리머 조성물 중 고분자 매트릭스 또는 이의 전구체를 형성하는 성분을 우선 균질하고 흔합한 이후, 선형 실란 가 교제를 첨가하는 시점에서 상기 포토폴리머 조성물은 20 °C이상의 온도에서 경화되는 액체 배합물이 될 수 있다. On the other hand, after the polymer matrix or the precursor-forming components thereof in the photopolymer composition of this embodiment are homogenized and homogeneously mixed, the photopolymer composition at the time when the linear silane crosslinking agent is added is cured at a temperature of 20 ° C or higher ≪ / RTI >
상기 경화의 온도는 상기 포토폴리머의 조성에 따라 달라질 수 있으 며, 예를 들어 30 °C 내지 180 °C의 온도로 가열함으로써 촉진된다. The temperature of the curing may vary depending on the composition of the photopolymer and is promoted, for example, by heating to a temperature of 30 ° C to 180 ° C.
상기 경화시에는 상기 포토폴리머가 소정의 기판이나 몰드에 주입되 거나 코팅이 된 상태일 수 있다.  During the curing, the photopolymer may be injected into a predetermined substrate or mold or coated.
한편, 상기 포토플리머 조성 로부터 제조된 홀로그램 기록 매체에 시각적 홀로그램의 기록하는 방법은 통상적으로 알려진 방법을 큰 제한 없 이 사용할 수 있으며, 후술하는 구현예의 홀로그래픽 기록 방법에서 설명하 는 방법을 하나의 예로 채용할 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 가간섭성의 레이저에 의해 상기 포토폴리머 조성물에 포함된 광반웅성 단량체를 선택적으로 증합시키 는 단계를 포함하는, 홀로그래픽 기록 방법이 제공될 수 있다.  Meanwhile, a method of recording a visual hologram on a hologram recording medium manufactured from the photopolymer composition can be carried out without any limitations, and a method described in the holographic recording method of the embodiment to be described later is referred to as one It can be adopted as an example. On the other hand, according to another embodiment of the invention, a holographic recording method can be provided, which comprises selectively enhancing a photo-polymeric monomer contained in the photopolymer composition by a coherent laser.
상술한 바와 같이, 상기 포토폴리머 조성물을 흔합 및 경화하는 과정 을 통해서 시각적 홀로그램이 기록되지 않는 상태의 매체를 제조할 수 있으 며 , 소정의 노출 과정을 통해서 상기 매체 상에 시각적 홀로그램를 기록할 수 있다. ' As described above, it is possible to produce a medium in which the visual hologram is not recorded through the process of shaking and curing the photopolymer composition, and the visual hologram can be recorded on the medium through a predetermined exposure process. '
상기 포토폴리머 조성물을 흔합 및 경화하는 과정을 통하여 제공되는 매체에, 통상적으로 알려진 조건 하에 공지의 장치 및 방법을 이용하여 시 각적 홀로그램을 기록할 수 있다. 한편, 발명의 또 다른 구현예에 따르면, 홀로그램 기록 매체를 포함 한 광학소자가 제공될 수 있다. 상기 광학 소자의 구체적인 예로는 광학 렌즈, 거울, 편향 거울, 필 터, 확산 스크린, 회절 부재, 도광체, 도파관, 영사 스크린 및 /또는 마스크 의 기능을 갖는 홀로그래픽 광학 소자, 광메모리 시스템의 매질과 광확산판, 광파장분할기, 반사형, 투과형 컬러필터 등을 들수 있다. The visual hologram can be recorded on a medium provided through the process of shaking and curing the photopolymer composition using a known apparatus and method under a conventionally known condition. On the other hand, according to another embodiment of the invention, an optical element including a hologram recording medium can be provided. Specific examples of the optical element include a holographic optical element having a function of an optical lens, a mirror, a deflecting mirror, a filter, a diffusion screen, a diffraction member, a light guide, a waveguide, a projection screen and / A light diffusion plate, a light wavelength splitter, a reflection type, and a transmission type color filter.
상기 홀로그램 기록 매체를 포함한 광학 소자의 일 예로 홀로그램 디 스플레이 장치를 들 수 있다.  An example of an optical element including the hologram recording medium is a hologram display device.
상기 홀로그램 디스플레이 장치는 광원부, 입력부, 광학계 및 표시부 를 포함한다. 상기 광원부는 입력부 및 표시부에서 물체의 3차원 영상 정보 를 제공, 기록 및 재생하는데 사용되는 레이저빔을 조사하는 부분이다. 또 한, 상기 입력부는 표시부에 기록할 물체의 3차원 영상 정보를 미리 입력하 는 부분이며, 예를 들어, 전기 구동 액정 SLM(electrical ly addressed l iquid crystal SLM) 에 공간별 빛의 세기와 위상과 같은 물체의 3차원 정 보를 입력할 수 있고, 이때 입력빔이 사용될 수 있다. 상기 광학계는 미러, 편광기, 범스플리터, 빔셔터, 렌즈 둥으로 구성될 수 있으며, 상기 광학계 는 광원부에서 방출되는 레이저빔을 입력부로 보내는 입력범, 표시부로 보 내는 기록빔, 기준범, 소거빔, 독출빔 등으로 분배할 수 있다.  The hologram display device includes a light source unit, an input unit, an optical system, and a display unit. The light source unit irradiates a laser beam used for providing, recording, and reproducing three-dimensional image information of an object in an input unit and a display unit. In addition, the input unit is a part for inputting three-dimensional image information of an object to be recorded in the display unit in advance. For example, in an electrical ly addressed lid crystal SLM (SLM) Three-dimensional information of the same object can be input, and the input beam can be used at this time. The optical system may include a mirror, a polarizer, a universal splitter, a beam shutter, and a lens. The optical system includes an input unit for transmitting a laser beam emitted from a light source unit to an input unit, a recording beam transmitted to a display unit, Reading beams and so on.
상가 표시부는 입력부로부터 물체의 3차원 영상 정보를 전달받아서 광학 구동 SLM opU cal ly addressed SLM)으로 이루어진 홀로그램 플레이트 에 기록하고, 물체의 3차원 영상을 재생할 수 있다. 이때, 입력빔과 기준빔 의 간섭을 통하여 물체의 3차원 영상 정보를 기록할 수 있다/상기 홀로그 램 플레이트에 기록된 물체의 3차원 영상 정보는 독출빔이 생성하는 회절 패턴에 의해 3차원 영상으로 재생될 수 있고, 소거범은 형성된 회절 꽤턴을 빠르게 제거하기 위해 사용될 수 있다. 한편, 상기 홀로그램 플레이트는 3 차원 영상을 입력하는 위치와 재생하는 위치 사이에서 이동될 수 있다.  The image display unit receives the three-dimensional image information of the object from the input unit, records the three-dimensional image information on the hologram plate composed of the optically driven SLM opU cal ly addressed SLM, and reproduces the three-dimensional image of the object. At this time, the three-dimensional image information of the object can be recorded through the interference of the input beam and the reference beam. The three-dimensional image information of the object recorded on the holographic plate is converted into a three- , And the canceller can be used to quickly remove the formed diffraction grating. On the other hand, the hologram plate can be moved between a position at which the 3D image is input and a position at which the 3D image is reproduced.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 굴절율 변조값이 크면서도 온도 및 습도에 대한 내구성이 향상된 포토폴리머층을 보다 용이하게 제공할 수 있는 포토폴리머 조성물, 이를 이용한 홀로그램 기톡 매체, 광학 소자, 및 홀로그래픽 기록 방법이 제공될 수 있다.  According to the present invention, there is provided a photopolymer composition capable of more easily providing a photopolymer layer having a high refractive index modulation value and improved durability against temperature and humidity, a hologram recording medium using the same, an optical element, and a holographic recording method .
【발명을 실시하기 위한 구체적인 내용】 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시 예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하 여 한정되는 것은 아니다. [제조예 1 : 실란중합체의 제조방법] DETAILED DESCRIPTION OF THE INVENTION The invention will be described in more detail in the following examples. It should be noted, however, that the following examples are illustrative of the present invention and are not intended to limit the scope of the present invention. [Preparation Example 1: Preparation of silane polymer]
2L 자켓 반웅기에 부틸 아크릴레이트 154g, KBM-503(3-메타크릴옥시 프로필트리메특시실란) 46g을 넣고, 에틸아세테이트 800g으로 희석하였다. 60-70 °C로 반웅온도를 셋팅하고, 30분~1시간 정도 교반을 진행하였다. n- 도데실 머갑탄 0.02g을 추가로 넣고, 30분 정도 더 교반을 진행하였다. 이 후, 중합개시제인 AIBN 0.06g을 넣고, 반웅온도에서 4시간 이상 중합을 진 행하여 잔류 아크릴레이트 함량이 미만이 될때까지 유지하여 실란 중합 체 (중량평균분자량 Mw=50만〜 60만 g/mol , _Si (0R)3 당량 =1019g/eq)를 제조하 였다. [제조예 2 : 실란중합체의 제조방법] 154 g of butyl acrylate and 46 g of KBM-503 (3-methacryloxypropyltrimethylcisilane) were added to a 2 L jacket and diluted with 800 g of ethyl acetate. The reaction temperature was set at 60-70 ° C and stirring was continued for 30 minutes to 1 hour. 0.02 g of n-dodecylmercaptan was further added, and stirring was further continued for about 30 minutes. Thereafter, 0.06 g of AIBN, which is a polymerization initiator, was added, and the polymerization was carried out for 4 hours or more at the reaction temperature, and the polymerization was continued until the residual acrylate content became less than that of the silane polymer (weight average molecular weight Mw = 500,000 to 600,000 g / mol , _Si (0R) 3 equivalent = 1019 g / eq). [Preparation Example 2: Preparation of silane polymer]
2L 자켓 반웅기에 부틸 아크릴레이트 180g, KBM-503(3-메타크릴옥시 프로필트리메록시실란) 120g을 넣고, 에틸아세테이트 700g으로 회석하였다. 60-70 °C로 반응온도를 셋팅하고, 30분~1시간 정도 교반을 진행하였다. n- 도데실 머캅탄 0.03g을 추가로 넣고, 30분 정도 더 교반을 진행하였다. 이 후, 중합개시제인 AIBN 0.09g을 넣고, 반웅은도에서 4시간 이상 중합을 진 행하여 잔류 아크릴레이트 함량이 1% 미만이 될때까지 유지하여 실란 중합 체 (중량평균분자량 ¾^=50만~60만 g/mol , -Si (0R)3 당량 =586g/eq)를 제조하였 다. [제조예 3 : 실란중합체의 제조방법] 180 g of butyl acrylate and 120 g of KBM-503 (3-methacryloxypropyltrimeroxysilane) were added to a 2 L jacket and the mixture was pale-kneaded with 700 g of ethyl acetate. The reaction temperature was set at 60-70 ° C and stirring was continued for 30 minutes to 1 hour. 0.03 g of n-dodecyl mercaptan was further added, and stirring was further continued for about 30 minutes. Thereafter, 0.09 g of AIBN, which is a polymerization initiator, was added and the polymerization was continued for 4 hours or more in the degree of polymerization. The polymerization was continued until the residual acrylate content became less than 1% to obtain a silane polymer (weight average molecular weight: (G / mol), -Si (0R) 3 equivalent = 586 g / eq). [Preparation Example 3: Preparation of silane polymer]
2L 자켓 반웅기에 부틸 아크릴레이트 255g, KBM-503(3-메타크릴옥시 프로필트리메록시실란) 45g을 넣고, 에틸아세테이트 700g으로 회석하였다. 60-70 °C로 반웅온도를 셋팅하고, 30분 ~1시간 정도 교반을 진행하였다. n- 도데실 머캅탄 0.03g을 추가로 넣고, 30분 정도 더 교반을 진행하였다. 이 후, 중합개시제인 AIBN 0.09g을 넣고, 반응온도에서 4시간 이상 중합을 진 행하여 잔류 아크릴레이트 함량이 미만이 될때까지 유지하여 실란 중합 체 (중량평균분자량 Mw=50만 ~60만 g/mol, _Si(0R)3 당량 =1562g/eq)를 제조하 였다. [제조예 4 : 선형 실란가교제의 제조방법] 255 g of butyl acrylate and 45 g of KBM-503 (3-methacryloxypropyltrimeroxysilane) were added to a 2 L jacket and the mixture was pale-kneaded with 700 g of ethyl acetate. The reaction temperature was set at 60-70 ° C and stirring was continued for 30 minutes to 1 hour. 0.03 g of n-dodecyl mercaptan was further added, and stirring was further continued for about 30 minutes. Thereafter, 0.09 g of AIBN as a polymerization initiator was added, and polymerization was carried out at a reaction temperature for 4 hours or more (Weight average molecular weight Mw = 500,000 to 600,000 g / mol, _Si (0R) 3 equivalent = 1562 g / eq) was maintained until the residual acrylate content became less than that of the silane polymer. [Preparation Example 4: Preparation of linear silane crosslinking agent]
1000 ml 플라스크에 KBE-9007(3-이소시아네이토프로필트리에록시실란) 19.79 g, PEG-400 12.80 g과 DBTDL 0.57 g을 넣고, 테트라하이드로퓨란 300g으로 회석하였다. TLC로 반웅물이 모두 소모된 것이 확인될 때까지 상 온에서 교반한후, 감압하여 반웅용매를 모두 제거하였다. 다이클로로메테 인 : 메틸알코올 = 30 : 1의 전개액 조건 하에서 컬럼 크로마토그래피를 통 해 순도 95 % 이상의 액상 생성물 28 g을 91%의 수율로 수득하였다. (중량 평균분자량 Mw=900 g/mol, -Si(0R)3 당량 =447 g/eq) In a 1000 ml flask, 19.79 g of KBE-9007 (3-isocyanatopropyltriethoxysilane), 12.80 g of PEG-400 and 0.57 g of DBTDL were added and the mixture was paleogeographed with 300 g of tetrahydrofuran. The mixture was stirred at room temperature until it was confirmed that all of the water was consumed by TLC, and then the reaction solution was decompressed to remove all the unreacted solvent. 28 g of a liquid product with a purity of 95% or more was obtained in a yield of 91% by column chromatography under a developing solution of dichloromethane: methyl alcohol = methyl alcohol = 30: 1. (Weight average molecular weight Mw = 900 g / mol, -Si (OR) 3 equivalent = 447 g / eq)
[제조예 5 : 선형 실란가교제의 제조방법] [Preparation Example 5: Preparation method of linear silane crosslinking agent]
1000ml 플라스크에 KBE-9007(3-이소시아네이토프로필트리에톡시실란) In a 1000 ml flask, KBE-9007 (3-isocyanatopropyltriethoxysilane)
12.37g, PEG-1000 20 g과 DBTDL 0.38 g을 넣고, 테트라하이드로퓨란 200g으 로 희석하였다. TLC로 반응물이 모두 소모된 것이 확인될 때까지 상온에서 교반한후, 감압하여 반웅용매를 모두 제거하였다. 다이클로로메테인 : 메틸 알코을 = 30 : 1의 전개액 조건 하에서 컬럼 크로마토그래피를 통해 순도 90 % 이상의 액상 생성물 26 g을 84%의 수율로 수득하였다. (중량평균분자 량 Mw=1500 g/mol, -Si(0R)3 당량 =747 g/eq) 20 g of PEG-1000 and 0.38 g of DBTDL were added, and the mixture was diluted with 200 g of tetrahydrofuran. After stirring at room temperature until all of the reactants were confirmed to be consumed by TLC, the reaction mixture was reduced in pressure to remove all of the unreacted solvent. 26 g of a liquid product with a purity of 90% or more was obtained through column chromatography under a developing solution of dichloromethane: methyl alcohol = 30: 1 in a yield of 84%. (Weight average molecular weight Mw = 1500 g / mol, -Si (0R) 3 equivalent = 747 g / eq)
[제조예 6 : 비반웅성 저굴절 물질의 제조방법] [Preparation Example 6: Preparation of bipartite low refractive material]
1000ml 플라스크에 2,2'-((oxybis(l,l,2,2-tetrafluoroethane-2,l- diyl))bis(oxy))bis(2,2-difluoroethan-l-ol) 20.51 g을 넣어준 후, 테트라 하이드로퓨란 500g에 녹여 0 °C에서 교반하면서 sodium hydride (60 % dispersion in mineral oil) 4.40 g을 여러 차례에 걸쳐 조심스럽게 첨가하 였다. 0 °C에서 20분 교반한 후, 2-methoxyethoxymethyl chloride 12.50 ml 를 천천히 dropping 하였다. ¾ NMR로 반웅물이 모두 소모된 것이 확인되면, 감압하여 반웅용매를 모두 제거하였다. 다이클로로메테인 300g으로 3회 추 출하여 유기층을 모은 후 magnesium sul fate로 필터한 후 감압하여 다이클 로로메테인을 모두 제거하여 순도 95 % 이상의 액상 생성물 29 g을 98 %의 수율로 수득하였다. [비교제조예 1 : 실란중합체의 제조방법] Add 20.51 g of 2,2 '- ((oxybis (1,1,2,2-tetrafluoroethane-2,1-diyl) bis (oxy)) bis (2,2-difluoroethan-1-ol) After dissolving in 500 g of tetrahydrofuran, 4.40 g of sodium hydride (60% dispersion in mineral oil) was carefully added several times while stirring at 0 ° C. After stirring at 0 ° C for 20 minutes, 12.50 ml of 2-methoxyethoxymethyl chloride was slowly dropped. When it was confirmed that all of the water was consumed by ¾ NMR, all of the unreactive solvents were removed by decompression. Three times with 300 g of dichloromethane The organic layer was collected, filtered with magnesium sulphate, and then decompressed to remove all dichloromethane to obtain 29 g of a liquid product having a purity of 95% or more at a yield of 98%. [Comparative Preparation Example 1: Production of silane polymer]
2L 자켓 반응기에 부틸 아크릴레이트 180g, KBM-503(3-메타크릴옥시 프로필트리메톡시실란) 20g을 넣고, 에틸아세테이트 800g으로 희석하였다. 60-70 °C로 반웅온도를 셋팅하고, 30분 ~1시간 정도 교반을 진행하였다. n- 도데실 머캅탄 0.02g을 추가로 넣고, 30분 정도 더 교반을 진행하였다. 이 후, 중합개시제인 AIBN 0.06g을 넣고, 반응온도에서 4시간 이상 중합을 진 행하여 잔류 아크릴레이트 함량이 1% 미만이 될때까지 유지하여 실란 중합 체 (중량평균분자량 =50만~60만, Si-(0R)3 당량 =2343g/eq)를 제조하였다. 180 g of butyl acrylate and 20 g of KBM-503 (3-methacryloxypropyltrimethoxysilane) were added to a 2 L jacket reactor and diluted with 800 g of ethyl acetate. The reaction temperature was set at 60-70 ° C and stirring was continued for 30 minutes to 1 hour. 0.02 g of n-dodecyl mercaptan was further added, and stirring was further continued for about 30 minutes. Thereafter, 0.06 g of AIBN, which is a polymerization initiator, was added and the polymerization was carried out at the reaction temperature for 4 hours or longer to maintain the residual acrylate content until the residual acrylate content became less than 1% to obtain a silane polymer (weight average molecular weight = 500,000 to 600,000, Si - (0R) 3 equivalent = 2343 g / eq).
[비교제조예 2 : 실란중합체의 제조방법] [Comparative Preparation Example 2: Method for producing silane polymer]
2L자켓 반웅기에 부틸 아크릴레이트 20g, KBM-503(3-메타크릴옥시프 로필트리메록시실란) 180g을 넣고, 에틸아세테이트 800g으로 희석하였다. 60-70 °C로 반웅온도를 셋팅하고, 30분〜 1시간 정도 교반을 진행하였다. n- 도데실 머캅탄 0.02g을 추가로 넣고, 30분 정도 더 교반을 진행하였다. 이 후, 중합개시제인 AIBN 0.06g을 넣고, 반응온도에서 4시간 이상 중합을 진 행하여 잔류 아크릴레이트 함량이 1% 미만이 될때까지 유지하여 실란 중합 체 (중량평균분자량 ¾½=50만~60만, Si-(0R)3 당량 =260g/eq)를 제조하였다. 20 g of butyl acrylate and 180 g of KBM-503 (3-methacryloxypropyltrimeroxysilane) were added to a 2 L jacket, and diluted with 800 g of ethyl acetate. The reaction temperature was set at 60-70 ° C and stirring was continued for 30 minutes to 1 hour. 0.02 g of n-dodecyl mercaptan was further added, and stirring was further continued for about 30 minutes. Thereafter, 0.06 g of AIBN, which is a polymerization initiator, was added and the polymerization was carried out at the reaction temperature for 4 hours or longer to maintain the residual acrylate content until the residual acrylate content became less than 1% to obtain a silane polymer (weight average molecular weight = Si- (OH) 3 equivalent = 260 g / eq).
[실시예 및 비교예: 포토폴리머 조성물의 제조] [Examples and Comparative Examples: Production of photopolymer composition]
하기 표 1 또는 표 2에 기재된 바와 같이, 상기 제조예 1 내지 3 또는 비교제조예 1 내지 2에서 얻은 실란 중합체, 광반응성 단량체 (고굴절 아크 릴레이트, 굴절률 1.600 , HR6022 [미원] ), 제조예 6의 비반옹성 저굴절 물질, 트리부틸 포스페이트 (Tr ibutyl phosphate [TBP] , 분자량 266.31, 굴절률 1.424, 시그마 알드리치사 제품), safranin 0 (염료, 시그마 알드리치사 제 품) , Ebecryl P-115 (SK ent i s) , Borate V (Spectra group) , Irgacure 250 (BASF) , 실리콘계 반웅성 첨가제 (Tego Rad 2500) 및 메틸아이소뷰틸케톤 (MIBK)을 빛을 차단한 상태에서 흔합하고, Paste 믹서로 약 3~10분간 교반 하여 투명한 코팅액을 수득하였다. (High refractive index acrylate, refractive index: 1.600, HR6022 [trade name], manufactured by Production Examples 1 to 3 or Comparative Production Examples 1 to 2), Production Example 6 (Dibutylglycine), Ebecryl P-115 (SK is isocyanate), tributyl phosphate (TBI), molecular weight 266.31, refractive index 1.424, manufactured by Sigma Aldrich) ), Borate V (Spectra group), Irgacure 250 (BASF), silicone-based antirust additives (Tego Rad 2500) and methyl isobutyl ketone (MIBK) were mixed in a state of blocking light, and stirred with a Paste mixer for about 3 to 10 minutes to obtain a transparent coating liquid.
상기 코팅액에 상기 제조예 4 내지 5에서 얻은 선형 실란 가교제를 첨가하여' 5~10분간 더 교반하였다. 이후, 상기 코팅액에 촉매인 DBTDL 0.02g 를 넣고 약 1분간 교반한 후, meyer bar를 이용하여, 80 두께의 TAC기재에 6 /皿 두께로 코팅하여 , 40 °C에서 1시간 건조시켰다. 그리고, 약 25 °C 및 50RH%의 상대 습도의 항온 항습 조건의 암실에서 샘플을 24시간 이상 방치하였다. [실험예: 홀로그래픽 기록] The linear silane crosslinking agent obtained in Production Examples 4 to 5 was added to the above coating solution and further stirred for 5 to 10 minutes. Then, 0.02 g of DBTDL as a catalyst was added to the coating solution, stirred for about 1 minute, coated on a TAC substrate with a thickness of 6 / dish using a meyer bar, and dried at 40 ° C for 1 hour. The sample was allowed to stand for 24 hours or more in a dark room under constant temperature and humidity conditions of relative humidity of about 25 ° C and 50 RH%. [Experimental Example: Holographic Recording]
( 1) 상기 실시에 및 비교예 각각에서 제조된 포토폴리머 코팅면을 s l i de 글라스에 라미네이트 하고, 기록시 레이저가 유리면을 먼저 통과하도 록 고정하였다.  (1) The photopolymer coated surface prepared in each of the above-described embodiment and comparative example was laminated to a glass, and the laser was fixed so as to pass through the glass surface in advance during recording.
(2) 회절 효율 ( ) 측정  (2) Diffraction efficiency () measurement
두 간섭광 (참조광 및 물체광)의 간섭을 통해서 홀로그래픽을 기록하 며, 투과형 기록은 두 빔을 샘플의 동일면에 입사하였다. 두 빔의 입사각에 따라 회절 효율은 변하게 되며, 두 빔의 입사각이 동일한 경우 non-s l anted 가 된다. non-s lanted 기록은 두빔의 입사각이 법선 기준으로 동일하므로, 회절 격자는 필름에 수직하게 생성된다.  A holographic recording was made through the interference of two interfering beams (reference beam and object beam), and the transmissive recording caused the two beams to be incident on the same side of the sample. The diffraction efficiency varies with the incidence angle of the two beams, and becomes non-uniform if the incidence angles of the two beams are the same. The diffraction grating is generated perpendicular to the film, since the incidence angle of the two beams is equal to the normal line.
532nm 파장의 레이저를 사용하여 투과형 non-s l anted 방식으로 기록 Recording in transmission type non-linear method using laser of 532nm wavelength
(2 Θ =45° ;)하며, 하기 일반식 1로 회절 효율 ( r 을 계산하였다. (2 Θ = 45 ° ;), and the diffraction efficiency (r) was calculated by the following general formula (1).
[일반식 1]
Figure imgf000026_0001
상기 일반식 1에서, II은 회절 효율이고, PD는 기록후 샘플의 회절된 빔의 출력량 (mW/cuf)이고, ΡΤ는 기록한 샘플의 투과된 빔의 출력량 (mW/cuO이 다.
[Formula 1]
Figure imgf000026_0001
In the formula 1, II is the diffraction efficiency, PD is the output quantity (mW / cuf) of the diffracted beam in the sample after the recording, Ρ Τ is the output quantity (mW / cuO of the transmitted beam of the recorded sample.
(3) 굴절률 변조값 측정 투과형 홀로그램의 Lossless Dielectric grating은 하기 일반식 2로부 터 굴절율 변조값 (Δη)을 계산할 수 있다. (3) Measurement of refractive index modulation value The lossless dielectric grating of the transmission type hologram can calculate the refractive index modulation value (DELTA eta) from the following general formula (2).
[일반식 2]
Figure imgf000027_0001
상기 일반식 2에서, d는 포토폴리머층의 두께이고, Δη은 굴절율 변조 값이며, n(DE)은 회절 효율이고, λ는 기톡 파장이다.
[Formula 2]
Figure imgf000027_0001
In the general formula (2), d is the thickness of the photopolymer layer, DELTA eta is the refractive index modulation value, n (DE) is the diffraction efficiency, and?
(4) 레이저 손실량 (Iloss) 측정 (4) Measurement of laser loss (I loss )
하기 일반식 3으로부터 레이저 손실량 (110 )을 계산할 수 있다. The laser loss amount (1 10 ) can be calculated from the following general formula (3).
[일반식 3]  [Formula 3]
Iioss = [1 - KPD + Ρτ) I Io>] * 100  Iioss = [1 - KPD + Pτ) I Io>] * 100
상기 일반식 3에서, PD는 기록후 샘플의 회절된 빔의 출력량 (mW/cin2) 이고, Ρτ는 기록한 샘플의 투과된 빔의 출력량 (mW/oif)이고, 10는 기록광의 세기이다. Wherein in formula 3, P D is output amount (mW / cin 2) of the diffracted beam in the sample after the recording, Ρ τ is the output quantity of the transmitted beam (mW / oif) of the recorded sample, 10 is a recording light intensity to be.
(5) 내습열 특성 측정 (5) Measurement of moisture heat resistance
상기 실시에 및 비교예 각각에서 제조된 포토폴리머 코팅면을 40 °C, 90 RH%의 항온 항습 조건의 암실에서 24시간 이상 방치한 뒤에, 상기 실험 예 (2)에서와 동일한 방법으로 회절 효율 ( ')을 측정하였다. (샘플은 보호 필름 제거 상태로 보관) 그리고, 하기 일반식 4에 의한 회절효율 변화값을 통해 내습열 특성 (A )을 파악하였다. The photopolymer coated side prepared in each of the above-mentioned Examples and Comparative Examples was allowed to stand in a dark room under constant temperature and humidity conditions of 40 ° C and 90 RH% for 24 hours or more and then diffraction efficiency ( ') Were measured. (The sample was stored in a state in which the protective film was removed). Then, the moisture resistance characteristic (A) was determined through the diffraction efficiency change value according to the following general formula (4).
[일반식 4]  [Formula 4]
회절효율 변화값 (Δ ) = [기록전 20~25°C, 40-50 1 %의 항온 항습 조건의 암실에서 보관된 샘플의 회절 효율 ( ) - 기록전 40 °C' 90 Rffi의 항온 항습 조건의 암실에서 24시간 이상 보관된 샘플의 회절 효율 (ri')] I 기록전 20~25°C, 40-50 H%의 항온 항습 조건의 암실에서 보관된 샘플의 회 절 효율 (H) *100 【표 1】 Diffraction efficiency change value (Δ) = [Diffraction efficiency of the sample stored in the dark room under constant temperature and humidity conditions of 20 to 25 ° C, 40 to 50% before recording - 40 ° C before recording] (Ri ') of the sample stored in the dark room for more than 24 hours] I Shape efficiency (H) of the sample stored in the dark room at 20 to 25 ° C and 40 to 50 H% [Table 1]
실시예의 포토폴리머 조성물 및 이로부터 제조된 홀로그래픽 기록 매체의 실험예 측정 결과 Experimental Example Measurement Results of Photopolymer Composition of Example and Holographic Recording Medium Prepared Therefrom
Figure imgf000028_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000029_0001
【표 2】  [Table 2]
비교예의 포토폴리머 조성물 및 이로부터 제조된 홀로그래픽 기록 매체의 실험예 측정 결과  Experimental Example Measurement Results of Photopolymer Composition of Comparative Example and Holographic Recording Medium Prepared Therefrom
Figure imgf000029_0002
Figure imgf000029_0002
Figure imgf000030_0001
Figure imgf000030_0001
상기 표 1 및 표 2에 나타난 바와 같이, 제조예 1 내지 3에서 제조된 중합체와 함께 제조예 4 내지 5에서 제조된 선형 실란 가교제를 사용하여 가교도를 높인 고분자 매트릭스를 사용한 실시예의 포토폴리머 조성물은 레 이저 손실량은 비교예와 동등 수준으로 나타나면서도, 비교예 대비 큰 0.020 내지 0.030의 굴절율 변조값 ( Δη)과 함께 내습열 조건에서도 회절 효 율 변화율이 15 %이하로 낮게 나타나는 홀로그램을 제공할 수 있다는 점이 확인되었다.  As shown in Tables 1 and 2, the photopolymer composition of the Example using the polymer matrix prepared in Preparative Examples 1 to 3 and the polymer matrix having the increased degree of crosslinking using the linear silane crosslinking agent prepared in Preparative Examples 4 to 5, It is possible to provide a hologram in which the loss loss is equal to that of the comparative example and the refractive index modulation value Δη of 0.020 to 0.030, which is larger than that of the comparative example, and the diffraction efficiency change rate is as low as 15% .
특히, 제조예 1 내지 3에서 제조된 중합체는 실란 작용기의 당량이 300 g/eq 내지 2000 g/eq 범위를 만족함에 따라, 상기 제조예 1 내지 3에서 제조된 중합체를 사용한 실시예 1 내지 5의 포토폴리머 조성물을 이용한 홀 로그래픽 기톡 매체는, 실란 작용기 당량이 300 g/eq 내지 2000 g/eq 범위 를 벗어나는 비교제조예 1 및 비교제조예 2에서 얻어진 중합체를 사용한 비교 예 1, 2와 비교하여, 현저히 향상된 굴절율 변조값 및 내습열 특성을 갖는 다는 점이 확인되었다. In particular, the polymers prepared in Preparations 1 to 3 were prepared in the same manner as in Examples 1 to 5 using the polymers prepared in Preparation Examples 1 to 3, as the equivalents of silane functional groups satisfied the range of 300 g / eq to 2000 g / Holographic recording media using a photopolymer composition were prepared by using Comparative Examples 1 and 2, in which the silane functional equivalent was outside the range of 300 g / eq to 2000 g / eq, It is confirmed that the optical modulator has a remarkably improved refractive index modulation value and anti-wet heat characteristics as compared with Examples 1 and 2.

Claims

【청구범위] Claims:
【청구항 1】  [Claim 1]
( i ) 실란계 작용기가 분지쇄에 위치하고, 상기 실란계 작용기의 당량 이 300 g/eq 내지 2000 g/eq인 (메트)아크릴레이트계 (공)중합체 및 ( i i ) 선형의 실란 가교제 간의 반웅 생성물을 포함하는 고분자 매트릭스 또는 이 의 전구체 ;  (i) a (meth) acrylate-based (co) polymer wherein the silane-based functional group is located in the branch chain and the equivalent of the silane-based functional group is 300 g / eq to 2000 g / A polymer matrix or a precursor thereof;
광반웅성 단량체 ; 및  Optically active monomer; And
광개시제를 포함하는, 포토폴리머 조성물.  A photopolymer composition comprising a photoinitiator.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 (메트)아크릴레이트계 (공)중합체 100 중량부에 대하여, 상기 선형의 실란 가교제 함량이 10 중량부 내지 90 중량부인, 포토폴리머 조성 물  Wherein the linear silane crosslinking agent content is 10 parts by weight to 90 parts by weight based on 100 parts by weight of the (meth) acrylate based (co) polymer,
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method according to claim 1,
상기 반웅 생성물의 모들러스 (저장 탄성률, G' )가 DHR 장비 (TA Instrument )로 상온에서 1Hz의 frequency로 측정시 0.01 MPa 내지 5 MPa인 포토폴리머 조성물.  Wherein the modulus (storage modulus, G ') of the repellent product is from 0.01 MPa to 5 MPa as measured by a TA Instrument at a frequency of 1 Hz at room temperature.
【청구항 4】 Claim 4
제 1항에 있어서,  The method according to claim 1,
상기 선형의 실란 가교제는 중량평균 분자량이 100 내지 2000인 선형 의 폴리에테르 주쇄 및 상기 주쇄의 말단 또는 분지쇄로 결합한 실란계 작 용기를 포함하는, 포토폴리머 조성물.  Wherein the linear silane crosslinking agent comprises a linear polyether backbone having a weight average molecular weight of 100 to 2000 and a silane-based container bound to the main chain by a terminal or branch chain.
【청구항 5] [Claim 5]
제 4항에 있어서,  5. The method of claim 4,
상기 실란계 작용기와 폴리에테르 주쇄의 결합은 우레탄 결합을 매개 로 하는, 포토폴리머 조성물. The bond between the silane-based functional group and the polyether backbone is preferably a urethane bond- . ≪ / RTI >
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method according to claim 1,
상기 선형의 실란 가교제에 포함된 실란계 작용기의 당량이 200 g/eq 내지 1000 g/eq인, 포토폴리머 조성물.  And the equivalent of the silane-based functional group contained in the linear silane crosslinking agent is 200 g / eq to 1000 g / eq.
【청구항 7】 7.
거 U항에 있어서,  In the above,
상기 (메트)아크릴레이트계 (공)중합체의 분지쇄에 위치한 실란계 작 용기의 당량 : 선형의 실란 가교제에 포함된 실란계 작용기의 당량의 비율 이 22 : 1 내지 0.5 : 1인, 포토폴리머 조성물.  Wherein the equivalent ratio of the silane-based container located on the branch chain of the (meth) acrylate-based (co) polymer: the ratio of the equivalents of the silane-based functional groups contained in the linear silane crosslinking agent is from 22: 1 to 0.5: .
【청구항 8] [8]
게 1항에 있어서,  In Item 1,
상기 광반웅성 단량체는 다관능 (메트)아크릴레이트 단량체 또는 단 관능 (메트)아크릴레이트 단량체를 포함하는, 포토폴리머 조성물.  Wherein the photo-polymeric monomer comprises a polyfunctional (meth) acrylate monomer or a monofunctional (meth) acrylate monomer.
【청구항 9】 [Claim 9]
게 1항에 있어서,  In Item 1,
상기 광반웅성 단량체의 굴절률이 1.5 이상인, 포토폴리머 조성물.  Wherein the refractive index of the photo-polymerizable monomer is 1.5 or more.
【청구항 10] [Claim 10]
겨 U항에 있어서,  In addition,
상기 고분자 매트릭스 또는 이의 전구체 20 중량 %내지 80중량 상기 광반응성 단량체 10 중량 %내지 70중량 %; 및  20 to 80% by weight of the polymer matrix or precursor thereof; 10 to 70% by weight of the photoreactive monomer; And
광개시제 0. 1 중량 % 내지 15중량 %;를 포함하는, 포토폴리머 조성물.  0.1 to 15% by weight of a photoinitiator.
【청구항 11] [Claim 11]
계 1항에 있어서, 상기 포토폴리머 조성물은 불소계 화합물을 더 포함하는, 포토폴리머 조성물. In the first aspect, Wherein the photopolymer composition further comprises a fluorine-based compound.
【청구항 12] [12]
제 11항에 있어서,  12. The method of claim 11,
상기 불소계 화합물은 에테르기, 에스터기 및 아마이드기로 이루어진 군에서 선택된 1종 이상의 작용기 및 2이상의 다이플루오로메틸렌기를 포함 하는, 포토폴리머 조성물.  Wherein the fluorine-based compound comprises at least one functional group selected from the group consisting of an ether group, an ester group and an amide group, and at least two difluoromethylene groups.
【청구항 13】 Claim 13
제 11항에 있어서,  12. The method of claim 11,
상기 불소계 화합물은 굴절률이 1.45미만인, 포토폴리머 조성물.  Wherein the fluorine-based compound has a refractive index of less than 1.45.
【청구항 14】 14.
제 11항에 있어서,  12. The method of claim 11,
상기 불소계 화합물 함량이 광반웅성 단량체 100 중량부에 대하여 , 30 중량부 내지 150 중량부인, 포토폴리머 조성물.  Wherein the content of the fluorine-based compound is 30 parts by weight to 150 parts by weight based on 100 parts by weight of the photo-amplifying monomer.
【청구항 15] [15]
게 1항에 있어서,  In Item 1,
상기 고분자 매트릭스의 굴절률이 1.46 내지 1.53인, 포토폴리머 조 성물.  Wherein the polymer matrix has a refractive index of 1.46 to 1.53.
【청구항 16] 16. The method of claim 16,
게 1항에 있어서,  In Item 1,
상기 포토폴리머 조성물은 광감웅 염료, 또는 기타 첨가제를 더 포함 하는, 포토폴리머 조성물.  Wherein the photopolymer composition further comprises a photoprotective dye, or other additives.
【청구항 17】 17.
게 1항의 포토폴리머 조성물로부터 제조된 홀로그램 기록 매체. 【청구항 18】 A hologram recording medium produced from the photopolymer composition of claim 1. Claim 18
제 17항의 홀로그램 기록 매체를 포함한 광학 소자. 【청구항 191  An optical element including the hologram recording medium of claim 17. [191]
가간섭성 레이저에 의해 제 1항의 포토폴리머 조성물에 포함된 광반웅 성 단량체를 선택적으로 중합시키는 단계를 포함하는, 홀로그래픽 기록 방 법.  Selectively polymerizing the photochromic monomer contained in the photopolymer composition of claim 1 by a coherent laser.
PCT/KR2018/010635 2017-09-27 2018-09-11 Photopolymer composition WO2019066313A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/343,153 US11079678B2 (en) 2017-09-27 2018-09-11 Photopolymer composition
CN201880004036.3A CN110114724B (en) 2017-09-27 2018-09-11 Photopolymer composition
JP2019520132A JP6862012B2 (en) 2017-09-27 2018-09-11 Photopolymer composition
EP18860372.4A EP3514627B1 (en) 2017-09-27 2018-09-11 Photopolymer composition, hologram recording medium, optical element and holographic recording method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0125446 2017-09-27
KR20170125446 2017-09-27
KR10-2018-0107996 2018-09-10
KR1020180107996A KR102156872B1 (en) 2017-09-27 2018-09-10 Photopolymer composition

Publications (1)

Publication Number Publication Date
WO2019066313A1 true WO2019066313A1 (en) 2019-04-04

Family

ID=65903049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010635 WO2019066313A1 (en) 2017-09-27 2018-09-11 Photopolymer composition

Country Status (1)

Country Link
WO (1) WO2019066313A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210003919A1 (en) * 2018-06-01 2021-01-07 Lg Chem, Ltd. Photopolymer composition
US20210239894A1 (en) * 2018-09-27 2021-08-05 Lg Chem, Ltd. Hologram medium
US11307494B2 (en) * 2018-09-14 2022-04-19 Lg Chem, Ltd. Hologram medium and optical element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333849A (en) * 1994-06-08 1995-12-22 Mitsubishi Electric Corp Photosensitive resin composition
JP2981567B2 (en) * 1990-06-12 1999-11-22 関西ペイント株式会社 Corrosion resistant resin
KR20040031137A (en) * 2002-10-04 2004-04-13 삼성전자주식회사 Photosensitive resin composition controling solubility and pattern formation method of double-layer structure using the same
KR20050027567A (en) * 2003-09-15 2005-03-21 최동훈 Hologram recording photopolymer manufacturing method using a medium prepared by the sol-gel method as a binder
KR100680264B1 (en) * 2006-03-30 2007-02-07 한국화학연구원 Crosslinkable phosphineoxide compound and its photopolymer composite and photopolymer film using them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981567B2 (en) * 1990-06-12 1999-11-22 関西ペイント株式会社 Corrosion resistant resin
JPH07333849A (en) * 1994-06-08 1995-12-22 Mitsubishi Electric Corp Photosensitive resin composition
KR20040031137A (en) * 2002-10-04 2004-04-13 삼성전자주식회사 Photosensitive resin composition controling solubility and pattern formation method of double-layer structure using the same
KR20050027567A (en) * 2003-09-15 2005-03-21 최동훈 Hologram recording photopolymer manufacturing method using a medium prepared by the sol-gel method as a binder
KR100680264B1 (en) * 2006-03-30 2007-02-07 한국화학연구원 Crosslinkable phosphineoxide compound and its photopolymer composite and photopolymer film using them

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210003919A1 (en) * 2018-06-01 2021-01-07 Lg Chem, Ltd. Photopolymer composition
US12001141B2 (en) * 2018-06-01 2024-06-04 Lg Chem Ltd. Photopolymer composition
US11307494B2 (en) * 2018-09-14 2022-04-19 Lg Chem, Ltd. Hologram medium and optical element
US20210239894A1 (en) * 2018-09-27 2021-08-05 Lg Chem, Ltd. Hologram medium
US11994704B2 (en) * 2018-09-27 2024-05-28 Lg Chem, Ltd. Hologram medium

Similar Documents

Publication Publication Date Title
US11126082B2 (en) Photopolymer composition
CN110114724B (en) Photopolymer composition
US11307494B2 (en) Hologram medium and optical element
US11226557B2 (en) Photopolymer composition
US11851515B2 (en) Photopolymer composition
US11994704B2 (en) Hologram medium
WO2019066313A1 (en) Photopolymer composition
WO2019117540A1 (en) Photopolymer composition
KR102106544B1 (en) Photopolymer composition
WO2019112358A1 (en) Photopolymer composition
KR20230006301A (en) Photopolymer composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019520132

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018860372

Country of ref document: EP

Effective date: 20190417

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE