WO2019066192A1 - 철도레일 결함 탐상을 위한 레일 위상배열 초음파탐촉자 - Google Patents

철도레일 결함 탐상을 위한 레일 위상배열 초음파탐촉자 Download PDF

Info

Publication number
WO2019066192A1
WO2019066192A1 PCT/KR2018/006615 KR2018006615W WO2019066192A1 WO 2019066192 A1 WO2019066192 A1 WO 2019066192A1 KR 2018006615 W KR2018006615 W KR 2018006615W WO 2019066192 A1 WO2019066192 A1 WO 2019066192A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
wedge
phased array
transducer
head
Prior art date
Application number
PCT/KR2018/006615
Other languages
English (en)
French (fr)
Inventor
김기복
권세곤
이영희
김영철
서종민
박상준
백광세
Original Assignee
한국표준과학연구원
한국철도공사
(주) 엘라켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원, 한국철도공사, (주) 엘라켐 filed Critical 한국표준과학연구원
Publication of WO2019066192A1 publication Critical patent/WO2019066192A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects

Definitions

  • the present invention relates to a technique for nondestructively detecting internal defects and breakage of a railway track using a phased array ultrasonic probe.
  • an ultrasonic wave is transmitted to the surface of a running wheel by using an Electro-Magnetic Acoustic Transducer (hereinafter referred to as EMAT) mounted on a rail of a train in Japanese Patent Application Laid-Open No. 10-2004-0103575
  • EMAT Electro-Magnetic Acoustic Transducer
  • a coil mounted on an upper portion of the EMAT is curved so as to correspond to the surface shape of the wheel so as to maintain a constant clearance with the surface of the wheel passing over the upper portion.
  • a technique relating to a defect inspection apparatus is proposed.
  • Patent Document 1 Published Unexamined Patent Application No. 10-2004-0103575
  • Patent Document 2 Published Utility Model Publication No. 20-2011-0000518
  • Patent Document 3 Published Japanese Patent Application No. 10-2012-0013113
  • Patent Document 4 Published Unexamined Patent Application No. 10-2010-0078441
  • Korea's railways are divided into high-speed, general, urban and metropolitan railways, consisting of 669 railway stations and more than 12,000 km of railway rails.
  • the average passenger transport capacity is about 1.26 billion people, and freight traffic is about 37 million tons.
  • the high-speed railway such as KTX has been rapidly growing at an annual average rate of 20 ⁇ 30% from 2005 to 2011, and the number of high-speed rail users is also steadily increasing.
  • High-speed rail is more susceptible to rail rail defects because the load is repeatedly applied to the rail as compared with the general rail, and these defects can also be rapidly propagated by small external stimuli, leading to railway accidents. It is reported that there are 13 train derailment accidents in Korea during the period of 2003 ⁇ 2012.
  • the railway rail has a large tofu shape, a rectangular shape, a narrow abdominal shape, and a wide bottom to support the pressure. It is difficult to search ultrasonically .
  • the present invention provides a railway phased array ultrasonic transducer capable of searching defects of a railway rail without a shadow area.
  • the present invention provides the following means for solving the above problems.
  • phased array ultrasonic transducer for ultrasonic nondestructive inspection for a railway rail, wherein the phased array ultrasonic transducer is divided into a head and abdomen, and a phased array ultrasonic probe for the rail rail defect inspection.
  • phased array ultrasonic probe may further include a wedge for the head and the abdomen to measure defects of the railway rail.
  • the present invention provides a phased array ultrasonic probe for defect inspection of a railway rail, wherein the wedge for the head and the abdomen is a composite wedge integrally formed.
  • the composite wedge is provided with a rail for the head and a rail for the abdomen, respectively, so that the phased array ultrasonic probe can move, and a phased array ultrasonic probe for the rail rail defect inspection is provided.
  • the phased array ultrasonic transducer for head is characterized in that sixteen ultrasonic probes are arranged in the width direction at intervals of 0.08 mm with a length of 3.6 mm and a width of 0.3 mm. In the phased array ultrasonic probe for the rail rail defect inspection, to provide.
  • the phantom array ultrasonic transducer for abdomen is provided with 32 ultrasonic probes arranged in the width direction at intervals of 0.08 mm with a length of 13 mm and a width of 0.8 mm to provide a phased array ultrasonic transducer do.
  • the present invention relates to a phase array ultrasonic transducer (PAUT) capable of measuring artificial defects of a rail through simulation, a wedge and a measurement frequency and a size shown in FIG. 2 used for measurement on a railroad rail
  • PAUT phase array ultrasonic transducer
  • a phased array ultrasonic probe capable of nondestructive inspection without shaded areas.
  • 1 is a cross-sectional view of a railway rail 60EI
  • Figure 2 is a cross-sectional view of a phased array ultrasound probe of the present invention and a wedge
  • Figure 3 shows a phased array ultrasound probe of the present invention and a wedge positioned on a rail
  • Fig. 5 is a graph showing the position on the rail of the artificial defect used in the simulation of the present invention
  • Figure 6 shows the shape of the wedge used in the present invention
  • Fig. 7 is a cross-sectional view showing the phase arrangement structure of the piezoelectric element used in the present invention
  • FIG. 8 is a graph showing the distribution of ultrasonic signals according to the angle of incidence of the head-measured phased array ultrasound signal of the present invention
  • FIG. 9 is a graph showing the distribution of ultrasonic signals according to the angle of incidence of the abdominal-phased arrayed ultrasonic signal of the present invention
  • Fig. 10 is a graph showing the results of the head simulation
  • Fig. 13 is a graph showing the results of simulation (a), phased array ultrasonic probe (b), conventional phased array ultrasonic probe (c)
  • Fig. 14 is a graph showing the results of simulation (a), phased array ultrasonic probe (b)
  • Fig. 14 is a graph showing the results of simulation (a), phased array ultrasonic probe (b)
  • FIG. 16 is a schematic diagram of a conventional phased array ultrasonic transducer (a), a phased array ultrasonic probe (b), a conventional phased array ultrasonic probe (c)
  • Fig. 17 is a graph showing the results of simulation (a), phased array ultrasonic probe (b), conventional phased array ultrasonic probe (c)
  • Figure 18 is a cross-sectional view of an integrated wedge incorporating a rail wedge wedge and a wedge wedge
  • FIG. 19 is a diagram illustrating a mode of PAUT
  • FIG. 20 is a cross-sectional view of the head wedge A and the abdomen wedge B of the present invention.
  • FIG. 21 shows the head PAUT unit A, abdominal PAUT unit B,
  • Figure 22 is a side view of a wedge with rails attached to the head and abdomen wedges of the present invention.
  • FIG. 23 shows the finished PAUT unit (A), abdominal PAUT unit (B) of the present invention
  • the phased array ultrasound transducer is divided into a head and abdomen,
  • phased array ultrasonic probe further comprises wedges for head and abdomen for measuring defects of the railway rail
  • the wedge for the head and abdomen is a composite wedge formed integrally with the wedge
  • the composite wedge is provided with a rail for the head and a rail for the abdomen so that the phased array ultrasonic probe can move.
  • a main feature of the phased array ultrasonic probe used in the present invention is that it can focus and steer the ultrasonic waves generated from a plurality of piezoelectric elements. That is, the focusing and steering of the ultrasonic waves generated from the piezoelectric element can be performed by changing the driving time difference, the focusing depth, the center frequency, the ultrasonic incident angle, the defect size, the shape of the piezoelectric element, and the like of the individual piezoelectric elements.
  • the center frequency of the phased array ultrasonic transducer optimized for standard artificial crack detection of 60EI railway rail used in high speed railway, the arrangement structure of piezoelectric elements, the size of each tine, the depth of convergence and the wedge shape to be used together were designed .
  • the 60EI rail rail was designed and experimented using the CIVA software, which is a simulation program in the shape shown in Fig.
  • the shape of the 60EI rail shown in FIG. 1 and the artificial defect of FIG. 4 and the artificial defect length and artificial defect length of FIG. 5 were selected as simulation conditions.
  • the wedge is required to transmit the ultrasound waves to the edge of the measurement object without the shadow, as in the measurement object of the present invention, which is formed of a relatively large toe and a small abdomen.
  • the wedge was designed as shown in Fig. 6 along the Snell's law of Equation (1) in order to obliquely inject the transverse wave generated from the piezoelectric element into the test body.
  • the refraction angles commonly used for non-destructive testing of railway rails are approximately 0, 45, and 70.
  • the detection range of the CIVA simulation is 30 ⁇ 70 and the detection interval is 0.5.
  • the refraction angle of the transverse wedge is expressed by equation 1) < / RTI > The second critical angle of the transverse waves under Respectively.
  • Table 1 shows the size of the wedge obtained as a result of the simulation. The size of the wedge was determined differently in the head and abdomen of the 60EI rails because there is a large difference in the shape of the head and abdomen. The head is long in the rectangle, and the abdomen is narrow in width and long in length. The shape of the wedge was determined differently by this type of difference.
  • the piezoelectric elements for phased array ultrasonic transducers are arranged as shown in Fig.
  • e is the width of the piezoelectric element
  • W is the length of the piezoelectric element
  • p is the distance between the center of the piezoelectric element and the adjacent piezoelectric element
  • g is the distance from the adjacent piezoelectric element
  • n is the number of piezoelectric elements
  • Active aperture is the total length of the piezoelectric elements arranged up to n channels, and can be expressed as Equation (2).
  • a (min) is the minimum length of A in the maximum refraction angle of the ultrasonic wave and is expressed by Equation (3).
  • Table 2 shows the parameters of the phased array ultrasonic transducer calculated by the CIVA simulation program for applying to head and probe of 60EI railway using equations (2) to (5).
  • Center frequency of piezoelectric element for head and abdomen inspection of railway rail was determined to be 5 MHz for the head and 2.25 MHz for the abdomen considering the minimum width of the artificial defect (2 mm) and the detectable width (21 mm) of the 60EI railway rail.
  • the focusing depth (F) was such that the sound field of the phased array ultrasonic transducer included up to the bottom of the 60EI rail.
  • Figures 8 and 9 are pulse echo signals of the head (5 MHz) and abdomen (2.35 MHz) and are determined to have a 65% bandwidth.
  • the tofu has a center frequency of 5 MHz, which is relatively well refracted for a wide range of exploration. A low frequency is selected to deeply penetrate the abdomen.
  • each ultrasonic probe is large and numerous.
  • . 8 and 9 show the distance, direction and intensity of the ultrasonic waves in the rails, so that it is possible to perform nondestructive inspection of the entire 60EI rails without shaded areas where the ultrasonic waves do not reach, .
  • Fig. 10 shows the reflection signals of each defect as a result of CIVA simulation of the 60EI rail standard artificial defect No. 5 (Fig. 5).
  • 2 and 3 are the inspection methods in Fig. 1, 4, and 5 proceeded with the method of FIG.
  • Artificial defect No. 1 is a penetration defect located under 19.3 mm of the surface of a 60EI railway rail head. 10, the maximum size of the defect-reflected signal is about 1.8 dB, and the position of the artificial defect of the s-scan is about 18 mm from the surface, and an error of about 1 mm occurs with the actual defect position .
  • Artificial defect No. 2 is an inclined defect with a depth of 13.5 mm at the side of the head of about 30 and a length of 15 mm.
  • the maximum size of the defect reflection signal is about 23 dB, and the size of the defect reflection signal at the beginning of the side opening is - 32 dB, and the difference is about 9 dB.
  • the defect location was about 12.5 mm in depth and 15.5 mm in length from the surface of the head. The difference between the defect position and depth was 1 mm and 0.5 mm.
  • Artificial defect No. 10 of Fig. 3 has a depth of 29 mm on the side of the head, a length of 15 mm, a slope of 30, and an artificial defect No. 3. 2 and the shape and the slope and the position are different. The maximum size of the defect reflection signal was about 32.3 dB.
  • Artificial defect No. 4 is 6 penetration defects which are located in the abdomen of 60EI railway specimen and are 11.9 mm in height and 25 mm in width. Artificial defect No.
  • the maximum size of the defect signal was 4.7, -2.8, -6.2, -2.6, -11.6, and -16.8 dB from the surface of the rail, respectively.
  • Artificial defect No. 5 is a penetration defect located at the connecting part of the abdominal part and the seat part of the rail rail specimen. The maximum defect reflection signal is about 4.5 dB, and the simulated and actual defect positions are almost the same.
  • phased array ultrasonic transducer The performance of the fabricated phased array ultrasonic transducer was evaluated by using a 60EI rail fabricated with artificial defects and a phased array ultrasonic probe (2.25L32A5, OLYMPUS Co. Ltd., Japan) and a phased array ultrasonic probe (DEEPSOUND S3, Sungsan Co. ltd., Korea) and the control computer to analyze the S-scan results. Experimental conditions are excitation pulse: bipolar pulse, pulse width 220 nsec, 100 V, Gain: 28 dB, wedge delay: 15 sec.
  • Fig. 1 is the result of the test.
  • the developed PAUT and the commercial PAUT have a magnitude of the reflected signal (red circle) in the defect of the developed PAUT of about 1.6 dB.
  • Artificial defect No. 2 is a commercial ultrasonic probe due to the geometrical characteristics of the 60EI rail.
  • the tip signal of the artificial defect and the reflection signal at the bottom of the rail head are detected, and the same reflected signal is detectable in the result (b) of the development PAUT.
  • Artificial defect No. 3 is no. 2, and the reflection signal (b) of the developed PAUT (Phase Array Ultrasonic Transducer) was about 6 dB larger than the defect reflection signal of the simulation (a).
  • the artificial defect No. of the manufactured phased array ultrasonic probe is shown.
  • 5 is the artificial defect No. 3.
  • the average of the reflected signals (No. The reason is that the focal depth of the designed phased array ultrasonic probe is about 70 mm. 5
  • the position of the artificial defect is located at about 150 mm from the phased array ultrasonic probe.
  • the reflected signal of the developed phased array ultrasonic probe is about 1.5 dB larger than the reflected signal of the commercial phased array ultrasonic probe (c).
  • a phased array transducer design and an ultrasonic inspection were performed through CIVA simulation for artificial defect inspection of a 60EI railway rail.
  • a phased array ultrasonic probe was manufactured using the phased array ultrasonic probe and the wedge obtained from the simulation results (KRS TR 0001) to a 60EI specimen and to detect artificial defects according to the geometrical characteristics of the artificial defects.
  • KRS TR 0001 the phased array ultrasonic probe
  • a phased array ultrasonic transducer The design parameters such as Table 1 and Table 2 can be found as a result of simulation with emphasis on the optimum specifications (piezoelectric element size, center frequency, bandwidth, refraction angle, etc.), wedge specifications and the method of flaw detection.
  • the performance evaluation compares the maximum reflection size of defects by comparing CIVA simulation, the phased array ultrasonic probe developed by the present invention, and the S-SCAN result of the commercial ultrasonic probe. From the performance evaluation results, it was confirmed that artificial defect inspection of 60EI rails is possible, and that the reflection signal of the artificial defect of the phased array ultrasonic probe developed by the present invention is 1.4dB higher than that of a commercial ultrasonic probe.
  • the center frequency was designed by using the PAUT for the head of the present invention at 5 MHz and the PAUT for the abdomen at 2.25 MHz.
  • the center frequency of the PAUT for the abdomen which needs to be measured at a relatively longer distance, is 2.25 MHz, which is lower than 5 MHz for the head.
  • 16 ultrasonic probes are arranged in the width direction at intervals of 0.08 mm with a length of 3.6 mm and a width of 0.3 mm, 23 (A), which is completed by putting it in a case so that it can be used for measurement.
  • the abdominal PAUT used in the present invention is also shown in Table 2 and FIG. 7, in which 32 ultrasonic probes are arranged at intervals of 0.08 mm with a length of 13 mm and a width of 0.8 mm,
  • Figure 23 (B) shows the result of the measurement in a case in which it can be measured.
  • the focal length (F) was designed to be suitable for the railway rail, with the head set to 30 mm and the abdomen set to 70 mm. And the measurement distance can be adjusted around the distance according to the measurement mode.
  • the measurement mode refers to one rule for determining the delay time of each of the 16 ultrasonic probes of the head and 32 of the abdomen, and is a control rule of the ultrasonic probe for the measurement.
  • FIG. 19 shows an example of the above mode.
  • the method of measurement of the phased array ultrasonic transducer (PAUT) that is, the types of scans are Electric Scan, Sectorial Scan and Depth Focusing, and Electric Scan is a set of multiple arrays having the same focal law. Means the measurement mode in which the focused scan area moves horizontally as the pattern moves to the lower yellow pattern.
  • PAUT phased array ultrasonic transducer
  • Sectorial Scan means the measurement mode in which the green Delay pattern at the center of the drawing changes from the right to the left with the nostril pattern at the bottom,
  • the present invention is not limited to the studies in which the number, size, arrangement, center frequency of the piezoelectric elements of the phased array ultrasonic transducer and the geometrical shape and physical properties of the object to be measured can not be considered in the conventional research, To provide a phased array ultrasonic transducer optimized for a railway rail.
  • the structure and shape of the wedge and phased array ultrasonic probe obtained in the simulation of the present invention are not simply determined by calculation equations and simulations, but a number of experiments are performed to optimize the simulation results shown in FIGS. 8 and 9,
  • designing the wedge angle of the toe and abdomen to match the wedge angle of the toe and the abdomen is designed to fix the design factors to use the wedge that can be used simultaneously in the head and abdomen.
  • the inclination angle of the wedge is 45 degrees, it can be confirmed that the ultrasonic waves reach the edge of the end of the wedge located at the center of the toe.
  • the wedge of the head and abdomen and the ultrasonic probe are integrally manufactured.
  • the manufactured transducer was designed so that the tofu ultrasonic transducer and the abdominal ultrasonic transducer do not interfere with each other.
  • the manufactured integrated wedge 550 can be seen in FIG.
  • the integrated wedge has both a PAUT rail for the head and a PAUT rail for the abdomen so that the PAUT unit of FIG. 20 can move along the rails on the wedge.
  • the PAUT rail for the head is made of the same material as the wedge so as not to interfere with the measurement of the abdominal PAUT rail.
  • the head wedge of the present invention is shown in Fig. 20 (A), and the abdomen wedge is shown in Fig. 20 (B).
  • the PAUT moving rail may be installed on the wedge so that the PAUT can be easily moved on the wedge when the head is scanned so that the scanning of the head can be easily performed only by moving the PAUT on the wedge without moving the wedge.
  • 22 is a wedge in which rails are added to the wedges of the head and abdomen, respectively.
  • an ultrasonic motor and a motor controller are provided on the rail, and the position of the PAUT is controlled by the control of the motor controller to automatically measure the position of the PAUT It is needless to say that the PAUT position control means can be additionally provided.
  • Fig. 21 shows a head unit (A) and an abdomen unit (B) among the PAUT units manufactured by the simulation result of the present invention. Since the abdomen unit must measure to a relatively far distance, there are various factors. Therefore, the size of each PAUT unit is long and large, and for the head measurement, It is characterized by narrow.
  • a marker for indicating the position of the defect on the rail rail is provided on the wedge when the defect is found as a result of the nondestructive inspection of the rail rail using the PAUT and the wedge.
  • the markers provided on the wedge may be in the form of punching to form grooves in the rail by spraying, choking, or physical impact, and electronic three-dimensional coordinates may be used electronically using GPS or DGPS.
  • PAUT for tofu 650 PAUT for abdomen
  • the present invention provides a phased array ultrasonic probe capable of nondestructive inspection without a shadow area in a railway rail, and is industrially applicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

본 발명은 철도레일의 레일의 비파괴 검사를 위한 위상배열 탐촉자 및 측정용 쐐기를 제공하는 것으로 시뮬레이션을 통하여 탐촉자의 크기와 배열 및 구조와 상기 쐐기의 형상 설계인자를 찾아내고, 이를 이용하여 탐촉자와 쐐기를 제작 비교 실험하여 그 성능을 입증하였다. 본 발명에서는 특히 두부와 복부를 따로 시뮬레이션하고 그 인자를 찾아내어, 음영 없이 레일 전체를 비파괴 검사할 수 있도록, 두부용 위상배열 탐촉자 및 쐐기와 복부용 위상배열 탐촉자 및 쐐기를 각각 개발하였으며, 두부와 복부 탐촉자를 하나의 쐐기에 결합된 통합 위상배열 탐촉자를 설계하였다.

Description

[규칙 제26조에 의한 보정 20.06.2018] 철도레일 결함 탐상을 위한 레일 위상배열 초음파탐촉자
본 발명은 위상배열 초음파 탐촉자를 이용하여 철도 철로의 내부결함 및 파손을 비파괴적으로 탐상하는 기술에 관한 것이다.
기존의 선행 기술로는 공개특허공보 제10-2004-0103575호에 기차의 레일 위에 장착된 전자기 음향 변환기(Electro-Magnetic Acoustic Transducer : 이하 EMAT라칭함)를 이용하여 주행 중인 차륜 표면에 초음파를 송신 및 수신함으로써 결함을 탐상하기 위한 것으로, 보다 상세하게는 EMAT의 상부에 장착되는 코일이 상기 차륜의 표면 형상에 대응되도록 만곡되어 상부를 지나가는 차륜의 표면과 일정한 간극을 유지하도록 구성한 주행중인 기차 차륜을 위한 결함 탐상장치에 관한 기술이 제시되어 있다.
또 다른 선행기술로는 공개실용신안공보 제20-2011-0000518호에 다수개의 탐촉자의 하부면에 소형바퀴를 장착한 다음 탐촉자가 레일표면으로부터 일정간극으로 부상한 후 이동하면서 레일을 검사하게 함으로써, 탐촉자가 레일표면에 직접 접촉되지 않기 때문에 탐촉자의 마모가 발생되지 않아 그에 따라 탐촉자의 교체비용을 상당히 저감시킬 수 있고, 탐촉자가 레일표면에 대해 일정간극으로 부상한 다음 앞으로 진행하여서 측정하기 하는 구성이 제시되어 있다.
또 다른 선행기술로는 공개특허공보 제10-2012-0013113호에 제1압전센서를 이용하여 어드미턴스 진단기법 또는 유도초음파 진단기법에 의해서 선로의 손상을 진단하는 진단부 등의 기술이 제시되어 있다.
또 다른 선행기술로는 공개특허공보 제10-2010-0078441호에 철도차량의 윤축에서 디스크허브, 기어 및 차륜 등을 해체하지 않고 초음파를 통해 윤축을 탐상하는 철도차량 윤축의 위상배열 초음파 탐상장치에 관한 발명이 제시되어 있다.
(특허문헌 1) 공개특허공보 제10-2004-0103575호
(특허문헌 2) 공개실용신안공보 제20-2011-0000518호
(특허문헌 3) 공개특허공보 제10-2012-0013113호
(특허문헌 4) 공개특허공보 제10-2010-0078441호
한국의 철도는 고속, 일반, 도시, 광역철도로 나뉘며 669개의 선별역과 약 12,000 ㎞ 이상의 철도 레일로 구성되어있다. 2015년 평균 여객 수송량인원은 약 12.6억 명, 화물 수송량은 약 3,700만 톤에 달한다. 또한 KTX와 같은 고속철도는 2005년부터 2011년까지 연평균 월별 증가율이 약 20 ~ 30% 수준으로 급성장 하여 고속 철도 이용객 또한 꾸준히 증가하고 있는 추세이다. 고속철도는 일반철도에 비해 선로에 더 큰 하중이 반복적으로 가해지기 때문에 철도 레일 결함이 더욱 발생하기 쉽고, 이러한 결함은 작은 외부 자극에 의해서도 빠르게 진전되어 철도 사고로 이어질 수 있다. 이러한 레일 내부 결함은 열차 탈선 사고의 주원인으로서, 우리나라의 경우 2003 ~ 2012년 기간 동안 열차 탈선 사고는 연 평균 약 13건이 발생하는 것으로 보고되고 있다. 미국의 경우 2001 ~ 2010년 동안 발생한 열차사고 중 23%가 레일 내부 결함 및 파손으로 인한 탈선사고 이었다. 미국과 유럽의 경우 2013년 도에는 동일한 원인으로 약 1,000명 및 2,200 명의 사상자가 발생하였다. 철도 레일의 내부 결함은 주로 레일의 두부(head)와 복부(web)에서 발생하고 있으며 외부 자극에 의해 쉽게 균열이 진전되기 때문에 조기에 결함을 발견하는 것이 매우 중요하다.
그러나, 도1에서 보는 바와 같이 철도레일은 그 형상이 두부가 크고 사각형에 가깝고, 복부는 가늘고 길며, 저부는 압력을 지지하기 위하여 넓게 구성되어, 막대 형태나 원기둥 형태와 비교하여 초음파로 탐색하기 곤란한 구조로 형성되어 있다.
본 발명에서는 철도레일의 결함을 음영지역 없이 탐색할 수 있는 철도레일 위상배열 초음파 탐촉자를 제공하고자 한다.
본 발명은 상기와 같은 문제를 해결하기 위하여 하기와 같은 과제해결 수단을 제공한다.
철도레일용 초음파 비파괴검사를 위한 위상배열초음파탐촉자에 있어서, 상기 위상배열초음파탐촉자는 두부용과 복부용으로 구분되는 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자를 제공한다.
또한, 상기 위상배열초음파탐촉자는 상기 철도레일의 결함 측정을 위하여 두부용 및 복부용 쐐기를 더 구비하는 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자를 제공하다.
또한, 상기 두부용 및 복부용 쐐기는 일체로 형성된 복합형 쐐기인 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자를 제공한다.
또한, 상기 복합형 쐐기는 상기 위상배열초음파탐촉자가 이동할 수 있도록 두부용 레일 및 복부용 레일을 각각 구비하는 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자를 제공한다.
또한, 상기 두부용 위상배열초음파탐촉자는 16개의 초음파 탐침을 3.6mm의 길이와 0.3mm의 폭으로 0.08mm의 간격으로 폭 방향으로 배열한 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자를 제공한다.
또한, 상기 복부용 위상배열초음파탐촉자는 32개의 초음파 탐침을 13mm의 길이와 0.8mm의 폭으로 0.08mm의 간격으로 폭 방향으로 배열한 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자를 제공한다.
본 발명은 시뮬레이션을 통하여 레일의 인공결함을 측정할 수 있는 위상배열 초음파 탐촉자(PAUT, Phase Array Ultrasonic Transducer)와 측정을 위하여 사용하는 도2에 제시된 쐐기(Wedge) 및 측정 주파수와 크기를 철도레일에서 음영지역 없이 비파괴검사를 할 수 있는 위상배열초음파탐촉자를 제공한다.
도 1은 본 발명의 철도레일 60EI
도 2은 본 발명의 위상배열 초음파 탐촉자와 쐐기
도 3은 본 발명의 위상배열 초음파 탐촉자와 쐐기를 레일에 위치한 모습
도 4는 본 발명의 시뮬레이션에 사용한 인공 결함의 형상
도 5는 본 발명의 시뮬레이션에 사용한 인공 결함의 레일상의 위치
도 6은 본 발명에 사용한 쐐기의 형상
도 7은 본 발명에 사용한 압전 소자의 위상배열 구조
도 8은 본 발명의 두부측정 위상배열 초음파 신호의 입사각에 따른 초음파신호 분포
도 9는 본 발명의 복부 측정 위상배열 초음파 신호의 입사각에 따른 초음파신호 분포
도 10은 본 발명의 두부 시뮬레이션 결과
도 11는 본 발명의 두부 주파수 5MHz에서의 측정전압
도 12는 본 발명의 복부 주파수 2.25MHz에서의 측정전압
도 13은 시뮬레이션(a), 본 발명의 위상배열 초음파 탐촉자(b), 기존의 위상배열 초음파 탐촉자(c)
도 14은 시뮬레이션(a), 본 발명의 위상배열 초음파 탐촉자(b)
도 14은 시뮬레이션(a), 본 발명의 위상배열 초음파 탐촉자(b)
도 16은 시뮬레이션(a), 본 발명의 위상배열 초음파 탐촉자(b), 기존의 위상배열 초음파 탐촉자(c)
도 17은 시뮬레이션(a), 본 발명의 위상배열 초음파 탐촉자(b), 기존의 위상배열 초음파 탐촉자(c)
도 18은 본 발명의 레일이 구비된 두부 쐐기와 레일이 구비된 복부쐐기를 결합한 통합쐐기
도 19는 PAUT의 모드 설명 그림
도 20은 본 발명의 두부 쐐기(A)와 복부 쐐기(B)
도 21은 본 발명의 두부 PAUT 유닛(A), 복부 PAUT 유닛(B)
도 22는 본 발명의 두부와 복부 쐐기에 각각 레일을 부가한 쐐기
도 23은 본 발명의 두부 PAUT 유닛(A), 복부 PAUT 유닛(B)의 완성된 모습
본 발명의 실시를 위한 최선의 실시예로,
철도레일 초음파 비파괴검사를 위한 위상배열초음파탐촉자에 있어서,
상기 위상배열초음파탐촉자는 두부용과 복부용으로 구분되며,
상기 위상배열초음파탐촉자는 상기 철도레일의 결함 측정을 위하여 두부용 및 복부용 쐐기를 더 구비하며,
상기 두부용 및 복부용 쐐기는 일체로 형성된 복합형 쐐기 이며,
상기 복합형 쐐기는 상기 위상배열초음파탐촉자가 이동할 수 있도록 두부용 레일 및 복부용 레일을 각각 구비하는 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자를 제공한다.
본 발명에 사용된 위상배열 초음파 탐촉자의 주요 특징은 여러 개의 압전소자에서 발생된 초음파를 집속 및 조향 할 수 있다는 것이다. 즉, 압전소자에서 발생된 초음파의 집속과 조향은 개별 압전소자의 구동 시간차, 집속 깊이, 중심 주파수, 초음파 입사각, 결함의 크기, 압전소자의 형상 값 등을 바꾸는 것으로 가능하다. 본 연구에서는 이러한 파라미터 중 고속철도에서 사용 중인 60EI 철도 레일의 표준 인공균열 탐상에 최적화된 위상배열초음파탐촉자의 중심주파수, 압전소자의 배열 구조, 각 조자의 크기, 집속깊이 및 함께 사용할 쐐기 형상을 설계하였다. 60EI 철도 레일은 도 1의 형상으로 시뮬레이션 프로그램인 CIVA software를 사용하여 설계인자 등을 찾아내고 실험하였다.
1. 시뮬레이션
시뮬레이션을 위하여 시뮬레이션 조건으로 도1에 제시된 상기 60EI 레일의 형상과 도4의 인공결함 도5의 인공결함의 위치와 인공결함의 길이가 선택되었다.
2. 쐐기의 설계
위상배열 탐촉자는 그냥 사용하는 것도 가능하지만, 쐐기를 사용하면 원하는 방향으로 초음파를 굴절시켜 측정하는 것도 가능하다. 본 발명의 측정대상과 같이 상대적으로 큰 두부와 작은 복부로 형성된 측정대상물은 음영 없이 초음파를 측정대상물의 모서리 부분까지 보내기 위해서는 쐐기의 구성이 필수적 이다.
쐐기는 압전소자에서 발생된 횡파를 시험체 내부로 경사 입사시키기 위해 식 (1)의 Snell's law 를 따라 도 6와 같이 설계하였다.
Figure PCTKR2018006615-appb-I000001
여기서,
Figure PCTKR2018006615-appb-I000002
는 입사각,
Figure PCTKR2018006615-appb-I000003
는 굴절각,
Figure PCTKR2018006615-appb-I000004
는 쐐기의 종파 속도(Rexolite, 2,360 ㎧),
Figure PCTKR2018006615-appb-I000005
은 60EI의 횡파 속도(鋼, 3,230 ㎧)이다. 철도 레일의 비파괴 탐상에 일반적으로 사용되는 굴절각은 약 0, 45 그리고 70가 주로 사용된다. 인공결함의 위치 및 크기를 고려하여 CIVA 시뮬레이션의 탐상 범위는 30 ~ 70, 탐상간격은 0.5 로 결정하였으며, 모드변환(mode conversion)으로 인한 종파 반사 신호를 최소화하기 위해서, 횡파 쐐기의 굴절각은 식 (1) 의 굴절 종파의 제1임계각
Figure PCTKR2018006615-appb-I000006
이상, 굴절횡파의 제2임계각
Figure PCTKR2018006615-appb-I000007
미만인
Figure PCTKR2018006615-appb-I000008
으로 결정되었다.
표 1과 도 6 는 각각 본 발명에 사용된 두부와 복부의 쐐기 제원과 개념도이며, 입사각은 최대 굴절각(
Figure PCTKR2018006615-appb-I000009
=70)이 포함되도록 약 45로 결정하였다. 표 1은 상기 시뮬레이션의 결과로 구해진 쐐기의 크기이다. 쐐기의 크기는 60EI 레일의 두부와 복부가 각각 다르게 결정되었으며, 이는 두부와 복부의 형상에 큰 차이가 있기 때문이다. 두부는 직사각형에 횡으로 길고, 복부는 폭이 좁고 세로로 긴 형태이다. 이러한 형태의 차이에 의하여 쐐기의 형상이 다르게 결정되었다.
a(mm) b(mm) c(mm) d(mm) Angle()
두부 10 15 20 15 45
복부 30 40 30 30
3. 위상배열 탐촉자용 압전소자 설계
위상배열 초음파 탐촉자용 압전소자는 표2의 제원으로 도 7과 같이 배열된다.
도 7에서, e 는 압전소자의 폭, W 는 압전소자의 길이, p 는 압전소자와 인접 압전소자의 중심간 거리, g는 인접 압전소자와의 거리, n은 압전소자의 개수이며 그리고 A (Active aperture)는 n채널까지 배열된 압전소자의 총 길이 이며, 식 (2)과 같이 나타낼 수 있다.
Figure PCTKR2018006615-appb-I000010
A(min)은 초음파 최대 굴절각에서 A의 최소길이 이며 식 (3)과 같이 표현된다.
Figure PCTKR2018006615-appb-I000011
여기서,
Figure PCTKR2018006615-appb-I000012
= 쐐기의 종파속도,
Figure PCTKR2018006615-appb-I000013
=철도레일의 횡파속도,
Figure PCTKR2018006615-appb-I000014
= 압전소자의 중심주파수, F= 굴절각의 최대 집속 깊이,
Figure PCTKR2018006615-appb-I000015
= 최대 굴절각이다. W = 위상배열초음파탐촉자의 폭이며 식 (4)와 같이 나타낸다.
Figure PCTKR2018006615-appb-I000016
Figure PCTKR2018006615-appb-I000017
는 개별 압전소자의 최대 폭이며 식 (5)와 같이 나타낸다.
Figure PCTKR2018006615-appb-I000018
식 (2) ~ (5)를 이용하여 60EI 철도 레일의 두부 및 탐상에 적용하기 위해 상기 CIVA 시뮬레이션 프로그램에 의하여 계산된 위상배열 초음파 탐촉자의 제원에 표 2에 나타내었다.
(표 2)
Figure PCTKR2018006615-appb-I000019
4.CIVA 시뮬레이션 결과
철도레일의 두부와 복부 탐상을 위한 압전소자의 중심주파수
Figure PCTKR2018006615-appb-I000020
는 식 (3), (4)와 60EI 철도레일의 탐상 가능 폭(21 ㎜) 그리고 인공결함의 최소 크기(2 ㎜)를 고려하여 각각 두부는 5 MHz로 복부는 2.25 MHz 로 결정하였다. 집속 깊이(F)는 위상배열 초음파 탐촉자의 음장이 60EI 레일의 저부까지 포함 되도록 하였다. 도 8과 9는 두부(5 MHz) 및 복부 (2.35 MHz)의 pulse-echo 신호이며 65% 대역폭을 갖도록 결정 하였다. 두부는 폭으로 넓은 탐사를 위하여 상대적으로 굴절이 잘되는 5 MHz의 중심주파수를 복부는 침투를 깊이할 수 있는 낮은 주파수가 선택되어 있으며, 깊은 침투를 위하여서는 개개의 초음파 탐촉자의 크기도 크고 개수도 많음을 알 수 있다. 또한, 도 8과 9에서는 초음파의 레일 내부에서의 도달 거리와 방향 및 세기를 보여주고 있어, 상기 표 2로 설계된 경우 초음파가 도달하지 않는 음영 영역이 없이 60EI 레일 전체를 비파괴 검사할 수 있음을 알 수 있다.
가. 인공결함의 검출 시물레이션
도 10는 60EI레일 표준인공결함 No.1 5 (도 5)의 CIVA 시뮬레이션 탐상 결과로서 각 결함의 반사신호를 나타내었다. 결함의 기하학적 특성을 고려하여, 두부 결함인 No. 2, 3 은 도 8의 탐상방법으로, 관통결함인 No. 1, 4, 5 는 도 9의 탐상방법으로 진행하였다.
인공결함 No.1은 60EI철도 레일 두부 표면 19.3 ㎜ 아래에 위치한 관통결함이다. 도 10의 No.1에서, 결함 반사 신호의 최대 크기는 약 1.8 ㏈로 나타났으며 s-scan의 인공결함의 위치는 표면으로부터 약 18 ㎜에서 나타나 실제 결함 위치와 약 1 ㎜의 오차가 발생하였다. 인공결함 No. 2는 두부 측면에서 13.5 ㎜ 깊이에 약 30, 길이 15 mm인 경사 결함이다. 결함 반사 신호의 최대 크기는 약 23 ㏈ 이며, 측면공 시작부의 결함 반사 신호의 크기는 -32 ㏈로서 차이는 약 9 dB 이다. 결함 위치는 두부 표면으로부터 깊이 약 12.5 ㎜, 길이 약 15.5 ㎜ 이며 실제 결함과 깊이 1 mm, 길이 0.5 mm 의 차이를 보였으며 철도 두부의 저면 신호도 획득 가능하였다. 도 10의 인공결함 No. 3 은 두부 측면에서 깊이 29 ㎜, 길이 15 ㎜, 기울기 30으로서, 인공결함 No. 2와 형상이 같고 기울기와 위치가 다른 결함이다. 결함 반사 신호는 최대 크기는 약 32.3 ㏈ 로 나타났다. 인공결함 No. 4는 60EI철도 레일 시편의 복부에 위치하여 세로 11.9 ㎜, 가로 25 ㎜ 간격으로 있는 6개의 관통결함이다. 인공결함 No. 4의 결함 반사 신호 최대 크기는 레일의 표면으로부터 각각 4.7, -2.8, -6.2, -2.6, -11.6, -16.8 ㏈ 로 나타났으며 결함의 위치는 실제 결함 위치와 거의 동일하게 나타났다. 인공결함 No. 5는 철도레일 시편의 복부와 좌면부의 연결부분에 위치한 관통 결함이며 최대 결함 반사 신호는 약 4.5 ㏈ 이며 시뮬레이션과 실제 결함 위치가 거의 같게 나타났다.
5.위상배열 초음파 탐촉자의 제작과 성능 평가
제작된 위상배열 초음파 탐촉자의 성능평가는 인공결함이 가공된 60EI 레일을 상용 위상배열 초음파 탐촉자(2.25L32A5. OLYMPUS Co. Ltd., Japan)와 제작 위상배열 초음파 탐촉자를 동일한 탐상실험 보드(DEEPSOUND S3, Sungsan Co. ltd., Korea)와 제어 컴퓨터에 연결하여 S-Scan결과를 분석하였다. 실험 조건은 exciting pulse : bipolar pulse, pulse width 220 nsec, 100 V, Gain : 28 dB, wedge delay : 15 sec 그리고 탐상각도 : 30 ~ 70 이다. 도 13은 인공결함 No. 1에 대한 탐상 실험 결과이다. 도 13에서, 개발된 PAUT와 상용 PAUT의 결함에서의 반사 신호 크기(빨간 동그라미)가 개발 PAUT가 약 1.6 dB 높은 것으로 나타났다. 도 14는 인공결함 No. 2의 탐상실험 결과이다.
인공결함 No. 2는 60EI 레일의 기하학적 특성 상 상용 초음파 탐촉자로 탐상이 불가하였다. 도 14의 CIVA 시뮬레이션(a)에서 인공결함의 팁 신호와 레일 두부 저면의 반사 신호가 탐상되으며, 개발 PAUT의 탐상결과(b)에서도 동일한 반사신호가 탐상가능하였다. 도 15은 인공결함 No. 3의 탐상실험 결과이다. 인공결함 No. 3는 No. 2와 같이 상용 PAUT 탐상이 불가능하였으며 개발 PAUT(Phase Array Ultrasonic Transducer)의 반사신호(b)가 시뮬레이션(a)의 결함 반사 신호보다 약 6 dB 정도 크게 나타났다. 도 16은 인공결함 No. 4의 탐상 결과이다. 도 16에서 개발 PAUT의 인공결함 No. 3의 반사신호는 상용 PAUT의 반사 신호보다 평균 1.5 dB가 높은 것으로 나타났다. 도 17은 인공결함 No. 5의 탐상결과이다.
도 17에서, 제작 위상배열 초음파 탐촉자의 인공결함 No. 5의 반사신호가 인공결함 No. 1 4 의 반사신호(No. 1 ~ 4)보다 평균 약 1.2 dB 작게 나타났다. 그 이유는 설계된 위상배열 초음파 탐촉자의 focal depth의 길이가 약 70 mm 이며, No. 5 인공결함의 위치는 위상배열 초음파 탐촉자로부터 약 150 mm 떨어진 지점에 위치하고 있기 때문이라 판단된다. 개발 위상배열 초음파 탐촉자의 반사신호는 상용 위상배열 초음파 탐촉자(c)와의 반사신호 보다 약 1.5 dB 크게 나타났다.
본 발명에서는 60EI 철도레일의 인공결함 탐상을 위해, CIVA시뮬레이션을 통한 위상배열 탐촉자 설계와 초음파 탐상을 실시하였으며, 상기 시뮬레이션 결과를 통하여 구해진 위상배열 초음파 탐촉자와 쐐기를 사용하여 위상배열 초음파 탐촉자를 제작하여 상용 위상배열초음파 탐촉자와 성능평가를 수행하였으며, 상기 CIVA 시뮬레이션 시에는 표준인공결함(KRS TR 0001)을 60EI 시편에 가공하여 인공결함의 기하학적 특성에 따라 인공결함을 탐상할 수 있는 위상배열 초음파 탐촉자의 최적 제원(압전소자 크기, 중심주파수, 대역폭, 굴절각 등), 쐐기 제원 그리고 탐상 방법에 중점을 두고 시뮬레이션 하였으며, 그 결과 상기 표1 및 표 2와 같은 설계인자를 찾아낼 수 있었다. 성능평가는 CIVA 시뮬레이션, 본 발명에 의하여 개발된 위상배열 초음파 탐촉자 및 상기 상용 초음파 탐촉자의 S-SCAN 결과를 비교하여 결함의 최대 반사 크기를 비교하였다. 성능평가 결과로부터 60EI 레일의 인공결함 탐상이 가능하며, 본 발명에서 개발한 상기 위상배열 초음파 탐촉자의 인공결함의 반사 신호가 상용 초음파 탐촉자보다 평균적으로 1.4 dB가 높음을 확인하였다.
상기의 시뮬레이션 결과와 실제측정 결과로부터 본 발명의 두부용 PAUT는 5MHz를 복부용 PAUT는 2.25MHz를 사용하는 것으로 중심주파수를 설계하였다. 초음파는 주파수가 작을수록 매질에서의 초음파 감쇄가 적기 때문에 상대적으로 먼 거리의 물성을 측정할 수 있다. 본 발명에서는 상대적으로 더 먼 거리를 측정해야하는 복부용 PAUT의 중심 주파수가 2.25MHz로 두부용 5MHz 보다 더 낮다. 또한 철도레일의 결함 측정을 위한 위상배열 어레이의 크기와 폭, 간격과 개수를 결정하였다.
본 발명에서는 두부용 PAUT는 표2와 도 7을 참고하여 살펴보면, 16개의 초음파 탐침을 3.6mm의 길이와 0.3mm의 폭으로 0.08mm의 간격으로 폭방향으로 배열한 것으로 도 21의 (A) 형상이고, 이를 측정에 사용할 수 있도록 케이스에 넣어 완성한 것이 도 23의(A)이다.
본 발명에서 사용된 복부용 PAUT 역시 표2와 도 7을 참고하여 살펴보면, 32개의 초음파 탐침을 13mm의 길이와 0.8mm의 폭으로 0.08mm의 간격으로 배열한 것으로 도 21의 (B) 형상이고, 이를 측정할 수 있는 형태로 케이스에 넣어 완성한 것이 도 23의 (B)이다.
또한, 표2에서 보듯이 촛점 길이(F)를 두부는 30mm, 복부는 70mm로 설정하여 철도레일에 적합하도록 설계하였다. 측정 모드에 따라 상기 거리를 중심으로 측정 거리를 조절할 수 있도록 설계한 것이다.
상기 측정모드는 상기 두부는 16개, 복부는 32개의 개개 초음파 탐침자의 딜레이 시간을 정하는 하나의 규칙을 말하는 것으로 측정을 위하여 만들어진 초음파 탐침자의 제어규칙이다.
도 19에서 상기 모드의 예를 보여주고 있다. 위상배열초음파트탐촉자(PAUT)의 측정방법 즉, 스캔의 종류는 Electric Scan과 Sectorial Scan 및 Depth Focusing이 있으며, Electric Scan은 동일한 Focal Law를 갖는 다수의 배열의 집합으로 도면의 맨 왼쪽 상단의 초록색 Delay 패턴이 아래쪽의 노란색 패턴으로 이동함에 따라 촛점이 맞아진 스캔 영역이 수평으로 이동하는 측정 모드를 의미한다.
Sectorial Scan은 도면 중앙의 초록색 Delay 패턴이 아래쪽의 노락색 패턴으로 변하면서 측정 각이 오른쪽에서 왼쪽으로 변하는 측정모드를 의미하며,
Depth Focusing 도면의 맨 오른쪽 초록색의 Delay 패턴이 아래쪽의 노란색 패턴으로 변하면서 측정 위치가 아래로 옮겨지는 모드를 의미한다.
따라서, 본 발명은 기존의 연구에서 위상배열 초음파 탐촉자의 압전소자의 개수, 크기, 배열, 중심주파수와 측정 대상의 기하학적 형상 및 물성을 고려하지 못한 연구에서 벗어나, 측정 대상의 기하학적 형상을 고려한 맞춤형 설계를 통하여 철도레일에 최적화된 위상배열 초음파 탐촉자를 제공하는 것이다.
또한, 본 발명의 시뮬레이션에서 구해진 쐐기와 위상배열 초음파 탐촉자의 구조와 형상은 단순히 계산식과 시뮬레이션에 의하여 결정된 것이 아니고, 도 8과 9에서 보여지는 시뮬레이션 결과를 최적화하기 위하여 수많은 실험을 실시하고, 결과를 분석하여 얻은 것이고, 특히, 두부와 복부의 쐐기 각도를 45도로 일치하여 설계한 것은 두부와 복부에 동시에 사용할 수 있는 쐐기를 이용할 수 있도록 설계 인자를 고정한 것으로, 다른 연구에서는 찾아볼 수 없는 부분이라 하겠다. 또한, 도 8에서 확인할 수 있는 바와 같이 쐐기의 경사각이 45도일 때 두부의 중심에 위치한 쐐기에서 가장 끝부분의 모서리에 초음파가 도달하는 것을 확인할 수 있었다.
또한, 본 발명은 상기 두부와 복부의 쐐기와 초음파 탐촉자를 일체형으로 제작하였다. 제작된 탐촉자는 두부 초음파 탐촉자와 복부 초음파 탐촉자가 서로 간섭 없도록 설계 제작되었다. 제작된 통합쐐기(550)는 도 18에서 확인할 수 있다. 상기 통합쐐기는 도 20의 PAUT 유닛이 쐐기상의 레일을 따라 움직일 수 있도록 두부용 PAUT 레일과 복부용 PAUT 레일을 모두 구비하였다. 상기 두부용 PAUT 레일은 상기 복부용 PAUT 레일의 측정에 방해되지 않도록, 쐐기의 재질과 같은 재질로 구비된다.
또한, 본 발명의 두부 쐐기를 도 20(A)에 도시하였으며, 복부 쐐기는 도 20(B)에 도시하였다. 상기 두부를 스캔함에 상기 쐐기 위에서 PAUT를 쉽게 움직일 수 있게 상기 쐐기에 PAUT 이동용 레일을 설치하여 두부의 스캔을 쐐기의 이동 없이 PAUT의 쐐기 상의 이동만으로 쉽게 할 수 있다. 도 22는 두부와 복부의 쐐기에 각각 레일을 부가한 쐐기이다.
본 발명에 도시되지 아니하였으나, 상기 레일에 초음파 모터와 모터제어기 등을 구비하여 상기 모터제어기의 제어에 의하여 PAUT의 위치를 제어함으로써, 상기 철도레일의 두부 또는 복부를 측정함에 자동으로 PAUT의 위치를 조절하여 측정할 수 있는 PAUT 위치제어 수단을 더 부가할 수 있음은 물론이다.
도 21에는 본 발명의 시뮬레이션 결과로 제작된 PAUT 유닛 중 두부유닛을 (A)에 복부 유닛을 (B)에 제시하였다. 여러 가지 요인이 있겠지만, 복부유닛은 상대적으로 먼 곳까지 측정하여야 하므로, PAUT 개개 소자의 크기가 길고 크며, 두부 측정용은 짧은 거리의 각도변화가 큰 부위를 측정하는 것이어서, PAUT 개개 유닛의 폭이 좁은 것이 특징이다.
상기 PAUT와 쐐기를 이용한 철도레일의 비파괴검사 결과 결함이 발견된 경우 결함의 위치를 철도 레일위에 표시하기 위한 마커를 상기 쐐기에 구비한다. 상기 쐐기에 구비되는 상기 마커는 스프레이 형태, 초크, 물리적인 충격에 의하여 레일에 홈을 만드는 펀칭 형태일 수 있으며, 전자적으로 GPS 또는 DGPS를 사용하여 전자적인 3차원 좌표를 이용할 수도 있다.
(부호의 설명)
10 : 60EI 레일
100 : 60EI 레일 두부 200 : 60EI 레일 복부
300 : 60EI 레일 저부 400 : 표준인공결함 형태
500 : 쐐기 510 : 두부용 쐐기
520 : 복부용 쐐기 530 : 두부용 복합쐐기
540 ; 쐐기에 형성된 레일 550 : 통합쐐기
600 : 압전 소자의 배열 610 : 두부용 압전소자 배열
620 : 복부용 압전소자 배열 630 : PAUT
640 : 두부용 PAUT 650 : 복부용 PAUT
본 발명은 철도레일에서 음영지역 없이 비파괴검사를 할 수 있는 위상배열초음파탐촉자를 제공하는 발명으로 산업상 이용가능성이 있습니다.

Claims (6)

  1. 철도레일 초음파 비파괴검사를 위한 위상배열초음파탐촉자에 있어서,
    상기 위상배열초음파탐촉자는 두부용과 복부용으로 구분되는 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자.
  2. 제1항에 있어서,
    상기 위상배열초음파탐촉자는 상기 철도레일의 결함 측정을 위하여 두부용 및 복부용 쐐기를 더 구비하는 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자.
  3. 제2항에 있어서,
    상기 두부용 및 복부용 쐐기는 일체로 형성된 복합형 쐐기인 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자.
  4. 제3항에 있어서,
    상기 복합형 쐐기는 상기 위상배열초음파탐촉자가 이동할 수 있도록 두부용 레일 및 복부용 레일을 각각 구비하는 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자.
  5. 제1항에 있어서,
    상기 두부용 위상배열초음파탐촉자는 16개의 초음파 탐침을 3.6mm의 길이와 0.3mm의 폭으로 0.08mm의 간격으로 폭 방향으로 배열한 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자.
  6. 제1항에 있어서,
    상기 복부용 위상배열초음파탐촉자는 32개의 초음파 탐침을 13mm의 길이와 0.8mm의 폭으로 0.08mm의 간격으로 폭 방향으로 배열한 것을 특징으로 하는 철도레일 결함 탐상을 위한 위상배열초음파탐촉자.
PCT/KR2018/006615 2017-09-27 2018-06-11 철도레일 결함 탐상을 위한 레일 위상배열 초음파탐촉자 WO2019066192A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0124802 2017-09-27
KR1020170124802A KR101936001B1 (ko) 2017-09-27 2017-09-27 철도레일 결함 탐상을 위한 레일 위상배열 초음파 탐촉자

Publications (1)

Publication Number Publication Date
WO2019066192A1 true WO2019066192A1 (ko) 2019-04-04

Family

ID=65016990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006615 WO2019066192A1 (ko) 2017-09-27 2018-06-11 철도레일 결함 탐상을 위한 레일 위상배열 초음파탐촉자

Country Status (2)

Country Link
KR (1) KR101936001B1 (ko)
WO (1) WO2019066192A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305070A (zh) * 2020-10-23 2021-02-02 中铁山桥集团有限公司 一种60at道岔尖轨横波超声检测对比试块及检测方法
CN112649513A (zh) * 2020-12-30 2021-04-13 天津精益铁安机电技术有限公司 一种基于图像识别的铁路人工智能判伤方法
CN115774051A (zh) * 2021-09-06 2023-03-10 核动力运行研究所 自聚焦相控阵探头、制造工艺及参数确定方法
CN116381052A (zh) * 2023-06-07 2023-07-04 中国空气动力研究与发展中心设备设计与测试技术研究所 一种tofd检测外筒内表面缺陷的探头参数确定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102357716B1 (ko) * 2020-01-17 2022-02-03 한국표준과학연구원 탄성파를 이용한 철도레일 좌굴 감지장치 및 이를 이용한 감지방법
KR102357725B1 (ko) * 2020-01-17 2022-02-03 한국표준과학연구원 탄성파를 이용한 철도레일 절손감지장치 및 이를 이용한 감지방법
KR102503031B1 (ko) 2021-05-04 2023-02-23 주식회사 삼영검사엔지니어링 위상배열 초음파 탐촉자의 진동소자 성능 측정장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118770A (ja) * 1997-10-20 1999-04-30 Tokimec Inc 超音波探傷方法及び装置
JPH11337529A (ja) * 1998-05-26 1999-12-10 Tokimec Inc 超音波探傷装置
JP2001305111A (ja) * 2000-04-20 2001-10-31 Tokimec Inc 超音波レール探傷装置
KR20100078441A (ko) * 2008-12-30 2010-07-08 주식회사 우진산전 철도차량 윤축의 위상배열 초음파 탐상장치
JP2011007702A (ja) * 2009-06-26 2011-01-13 Central Res Inst Of Electric Power Ind 超音波探傷法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118770A (ja) * 1997-10-20 1999-04-30 Tokimec Inc 超音波探傷方法及び装置
JPH11337529A (ja) * 1998-05-26 1999-12-10 Tokimec Inc 超音波探傷装置
JP2001305111A (ja) * 2000-04-20 2001-10-31 Tokimec Inc 超音波レール探傷装置
KR20100078441A (ko) * 2008-12-30 2010-07-08 주식회사 우진산전 철도차량 윤축의 위상배열 초음파 탐상장치
JP2011007702A (ja) * 2009-06-26 2011-01-13 Central Res Inst Of Electric Power Ind 超音波探傷法及び装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305070A (zh) * 2020-10-23 2021-02-02 中铁山桥集团有限公司 一种60at道岔尖轨横波超声检测对比试块及检测方法
CN112649513A (zh) * 2020-12-30 2021-04-13 天津精益铁安机电技术有限公司 一种基于图像识别的铁路人工智能判伤方法
CN115774051A (zh) * 2021-09-06 2023-03-10 核动力运行研究所 自聚焦相控阵探头、制造工艺及参数确定方法
CN116381052A (zh) * 2023-06-07 2023-07-04 中国空气动力研究与发展中心设备设计与测试技术研究所 一种tofd检测外筒内表面缺陷的探头参数确定方法
CN116381052B (zh) * 2023-06-07 2024-03-01 中国空气动力研究与发展中心设备设计与测试技术研究所 一种tofd检测外筒内表面缺陷的探头参数确定方法

Also Published As

Publication number Publication date
KR101936001B1 (ko) 2019-01-07

Similar Documents

Publication Publication Date Title
WO2019066192A1 (ko) 철도레일 결함 탐상을 위한 레일 위상배열 초음파탐촉자
CA2396572C (en) Automatic carriage alignment
CA1267214A (en) Ultrasonic detection method of the internal defects of a railroad track rail located in the sides of the head of said rail and device to carry it out
US5587534A (en) Wall thickness and flow detection apparatus and method for gas pipelines
WO2004048966A2 (en) Laser-air hybrid ultrasonic technique for non-contact testing of railroad tracks
US9816964B1 (en) Ultrasonic method and device for volumetric examination of aluminothermic rail welds
JP2008139304A (ja) 任意の表面輪郭を有する部材の超音波浸漬検査
WO1996013720A9 (en) Gas pipeline wall thickness and flaw detection
CN106770657A (zh) 用于地铁隧道道床脱空的检测方法
JP3049152B2 (ja) 鉄道レール用超音波検査装置
CN111307945B (zh) 一种基于超声阵列检测无砟轨道近表面缺陷的成像方法及装置
RU2652511C1 (ru) Способ ультразвукового обнаружения микротрещин на поверхности катания головки рельса
CN205982178U (zh) 一种基于双阵列探头的钢轨焊缝超声波成像检测系统
KR870001259B1 (ko) 전자주사를 이용하는 각 강편의 검사방법
Ling et al. Research on rail defect detection system based on FPGA
CN106323207A (zh) 一种复合坯焊缝熔深检测装置和方法
Chang et al. Development of non-contact air coupled ultrasonic testing system for reinforced concrete structure
JP4367121B2 (ja) レールの検査方法
Fitzgerald Inspection for rail defects by magnetic induction
CN218601221U (zh) 一种自动化铁轨探伤设备
RU2813672C1 (ru) Устройство для ультразвукового контроля локальных участков рельсов
Hesse et al. Excitation of surface wave modes in rails and their application for defect detection
CN220961383U (zh) 一种多探头的钢轨焊缝扫查装置的灵敏度校准试块
CN213633299U (zh) 一种用于检测钢轨核伤的一体式相控阵探头
CN218121864U (zh) 一种车轮探伤装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862945

Country of ref document: EP

Kind code of ref document: A1