WO2019066151A1 - Refractory composition and submerged entry nozzle - Google Patents

Refractory composition and submerged entry nozzle Download PDF

Info

Publication number
WO2019066151A1
WO2019066151A1 PCT/KR2018/000428 KR2018000428W WO2019066151A1 WO 2019066151 A1 WO2019066151 A1 WO 2019066151A1 KR 2018000428 W KR2018000428 W KR 2018000428W WO 2019066151 A1 WO2019066151 A1 WO 2019066151A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon monoxide
molten steel
silica
refractory composition
refractory
Prior art date
Application number
PCT/KR2018/000428
Other languages
French (fr)
Korean (ko)
Inventor
강윤배
이주혁
이우진
김성광
강명훈
Original Assignee
주식회사 포스코
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 포항공과대학교 산학협력단 filed Critical 주식회사 포스코
Publication of WO2019066151A1 publication Critical patent/WO2019066151A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Definitions

  • a dipping nozzle formed of a refractory composition and a refractory composition capable of preventing nozzle clogging by suppressing the formation of the nozzle.
  • Continuous casting equipment consists of ladle, tundish, mold, secondary angle.
  • the molten steel in the ladle is injected into the mold via the tundish. All the molten steel produced is moved from the tundish to the mold through the immersion nozzle. Therefore, when the flow of the immersion nozzle or the molten steel is not smooth, It will be strongly influenced by steel production.
  • a representative problem that occurs with immersion nozzles is nozzle clogging.
  • Nozzle clogging is the residual non-metallic inclusions within the molten steel that is attached to the inner wall of the nozzle portion, and the discharge by reducing my studies and the discharge portion and the inner diameter occurs, by inhibiting the flow of molten steel.
  • iron and iron oxide components adhere to form adherent forms in a more rigid form.
  • the nozzle clogging is significantly different depending on the presence or absence of Ti, and the shape of the nozzle attachment is not composed of only nonmetallic inclusions, and is observed as a mixture between a large amount of adhering type and nonmetallic inclusions. This phenomenon has a limit in solving the above-mentioned conventional methods. There is a need for a new method capable of reducing the influence of Ti on the clogging of the nozzle and the occurrence of the present-type deposit.
  • the present invention provides an immersion nozzle formed of a refractory composition and a refractory composition capable of preventing nozzle clogging by trapping carbon monoxide generated from refractory materials and suppressing the formation of carbon monoxide.
  • the refractory composition according to one embodiment of the present invention comprises, in weight percent, 15 to 30% of carbon, 5 to 15% of silica, 3 to 10% of carbon monoxide collecting agent, and the balance alumina, Metal carbide.
  • the carbon monoxide scavenger may have a negative Gibbs free energy change value (AG) at 1500 to 1550 ° C due to reaction with CO (g).
  • AG negative Gibbs free energy change value
  • the carbon monoxide collecting agent may include at least one of B 4 C, AI 4 C 3, SiC, and CaC 2 .
  • the carbon monoxide collecting agent is B 4 C, and may contain 3 to 10%.
  • the following expression (1) can be satisfied.
  • [silica] and [carbon monoxide collecting agent] represent amounts of silica and carbon monoxide collecting agent (% increase), respectively.
  • an immersion nozzle in which molten steel is moved from a tundish to a mold, wherein at least a portion of the immersion nozzle in contact with the molten steel includes a nozzle body,
  • the carbon monoxide trapping agent comprises 15 to 30% of carbon, 5 to 15% of silica, 3 to 10% of carbon monoxide collecting agent, and the balance alumina, Carbide.
  • the carbon monoxide collecting agent may include at least one of B 4 C, AI 4 C 3, SiC and CaC 2 .
  • the molten steel may include at least one of A 1 and Ti.
  • the nozzle body is in contact with the molten steel, and the inner body is made of the refractory composition; And a discharging portion made of the refractory composition, in which the molten steel is discharged.
  • a concentration gradient may be formed in the nozzle body such that the concentration of the carbon monoxide trapping agent increases toward the contact interface where the molten steel is brought into contact with the molten steel.
  • FIG. 1 is a view showing a process of generating gaseous carbon monoxide in a refractory and a deoxidation process by a carbon monoxide scavenger (B 4 C) in a refractory composition according to an embodiment of the present invention.
  • FIG. 2 is a graph showing various types of oxides produced according to changes in the content of Al and Ti contained in molten steel.
  • Fig. 3 is a photograph now showing at the contact interface between the molten steel containing Al and Ti and the refractory.
  • FIG. 5 is a cross-sectional view of an immersion nozzle according to an embodiment of the present invention.
  • Fig. 6 is a graph showing the correlation between the compositional change of carbon monoxide scavenger (B 4 C) and the present average thickness.
  • FIG. 7 is a photograph showing the reactant produced in the contact interface according to the immersion rotation reaction result of Comparative Example 1.
  • Fig. FIG. 8 is a photograph showing reactants produced in the contact interface according to the immersion rotation reaction result of Example 1.
  • first, second, and third, etc. are used to describe various portions, components, regions, layers, and / or sections, but are not limited thereto. These terms are used interchangeably with any part, element, region, layer or section of a section, element, or region. It is used only to distinguish it from layers or sections. Accordingly, a first portion, component, region, layer or section described in the sub-section may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
  • the meaning of further including additional elements means that alumina is replaced by an additional amount of additional elements.
  • the refractory composition according to one embodiment of the present invention contains 15 to 30% of carbon, 5 to 15% of silica, 3 to 10% of carbon monoxide scavenger, and the balance alumina,
  • the carbon monoxide scavenger includes a metal carbide.
  • the carbon monoxide collecting agent may include at least one of B 4 C, AL, SiC, and CaC 2 .
  • Carbon can improve refractory corrosion resistance and invasiveness (resistance to permeation) of molten steel and can reduce thermal damage. If the content of carbon is too low, the effect of improving corrosion resistance and invasiveness may be insignificant. On the other hand, if the content is too high, the modulus of elasticity of the refractory may be increased and the resistance of the heat resistant layer may be deteriorated. Therefore, the content of carbon is controlled to 15 to 30 wt%.
  • the carbon may include at least one of flaky graphite, carbon black, and pitch.
  • the impression roll can reduce the wettability of the refractory to molten steel and slag, and increase the invasiveness and corrosion resistance.
  • Carbon black can be contained in the refractory composition to increase the strength of the refractory.
  • the pitch could be contained in the composition as well as carbon black to increase the strength of the refractory.
  • Silica can impart fluidity to the refractory composition and improve bond strength.
  • the content of silica is too low, the effect of imparting fluidity and improving the strength may be insignificant.
  • the content is too high, the flowability of the refractory composition may be deteriorated.
  • Alumina-silica-based A low melting point material could be generated and the hot strength could be lowered. Therefore, the content of silica is controlled to 5 to 15% by weight.
  • Carbon monoxide collecting agent 3 to 10 wt%
  • the carbon monoxide collecting agent is a material for trapping carbon monoxide (CO) generated by the reaction of carbon and silica contained in the refractory composition when the refractory material is attached to the inner wall of the immersion nozzle for moving molten steel.
  • CO carbon monoxide
  • FIG. 1 carbon monoxide generated in the refractory moves through the pores in the refractory to the interface between the molten steel and the refractory, and then oxidizes Al by countering with the A1 contained in the molten steel.
  • the oxidized A1 may form now, such as network alumina, and may adhere to the refractory surface to cause nozzle clogging. This can be explained by the following Equation 1 and Equation 2.
  • collecting carbon monoxide moving to the contact interface between the molten steel and the refractory may be a method for preventing nozzle clogging.
  • the carbon monoxide scavenger is deoxidized with carbon monoxide as shown in Reaction Scheme 3 below, so that only carbon remains.
  • the carbon monoxide collecting agent includes a metal carbide.
  • the carbon monoxide collecting agent may include at least one of B 4 C, ALA, SiC, and Ca. In addition, it may further include Al, Si, Mg, Al-Si alloy, Al-Mg alloy, and the like.
  • the content of the carbon monoxide capturing agent is too low, the carbon monoxide is not sufficiently collected and it is difficult to prevent the formation of the carbon monoxide present.
  • the content of the carbon monoxide scavenger is too high, the resistance of the heat resistant layer may deteriorate or the corrosion resistance may deteriorate. Therefore, the content of the carbon monoxide trapping agent is controlled to 3 to 10 wt%. This can be confirmed from FIG.
  • the remainder can be made of alumina (alumina oxide). It is a refractory material to increase corrosion resistance to molten steel and slag. Specifically, fused alumina can be used.
  • zirconia 10 to 20% by weight of zirconia (zirconia).
  • the calcia can form a liquid oxide having a low melting point by bonding with alumina in the molten steel adhering to the inner part of the nozzle and the discharge part.
  • Zirconia increases the corrosion resistance to slag, and is combined with calcia, which is essential for self-cleaning material refractory materials, to be present in refractory materials in CaZrO 3 form.
  • the carbon monoxide trapping agent may have a negative Gibbs energy change value (AG) at 1500 to 1550 ° C due to reaction with carbon monoxide in a gas state.
  • AG negative Gibbs energy change value
  • the temperature of the refractory attached to the inner wall of the immersion nozzle converged to the temperature of the molten steel.
  • the temperature of the refractory could therefore be between 1500 and 1550 ° C.
  • 155 (which may be in the TC B 4 C, AI4C3 and CaC 2 are both free energy change value (AG) cast is shown the negative seen that suitable as a carbon monoxide scavenger under the atmosphere, while, in the case of SiC, 1500 to 1550 ° At lower temperatures than C, the Gibbs free energy change value (AG) is negative, but since it has a positive value at 1500 to 1550 ° C, the carbon monoxide capture ability is lower than that of B 4 C, AI 4 C3 and CaC 2 .
  • [silica] and [carbon monoxide collecting agent] represent amounts of silica and carbon monoxide collecting agent (% increase), respectively.
  • Equation 1 one carbon monoxide molecule per one silica molecule is formed. Six molecules of the carbon monoxide thus formed are trapped in a single carbon monoxide trapping molecule as shown in the following Equations 4 and 5. In this case, four metal atoms contained in the carbon monoxide trapping agent in the form of metal carbide are separated from six carbon monoxide Lt; / RTI >
  • composition so as to have an optimum composition ratio of silica and carbon monoxide scavenger by controlling the ratio of the content of the carbon monoxide scavenger to the silica content through the formula 1.
  • An organic binder is added to the refractory composition composed of the above-mentioned components and used.
  • the organic binder to be added at the time of use may be a thermosetting resin have.
  • the immersion nozzle according to an embodiment of the present invention is an immersion nozzle in which molten steel is moved from a tundish to a mold with reference to FIG.
  • at least the portion in contact with the molten steel comprises a nozzle body (100) made of a refractory composition, and the refractory composition is in an increased percentage. 15 to 30% of carbon, 5 to 15% of silica, 3 to 10% of carbon monoxide scavenger, and the remaining alumina, and the carbon monoxide scavenger includes metal carbide (carba i de).
  • the carbon monoxide collecting agent is C.I. AI 4 may include C3, C Si and one or more of CaC 2.
  • molten steel supplied to the mold through the nozzle body 100 is formed on the tundish bottom. At least a portion of the nozzle body 100 in contact with molten steel is made of a refractory composition having the above composition.
  • a CaZr combined with calcia and zirconia is present in the nozzle body 100 made of the refractory composition.
  • Molten steel could contain A1 and Ti. Since C0 (g) can be continuously supplied to the contact interface 200 between the molten steel and the refractory by the above reaction formula 1, the oxygen concentration of the contact interface 200 may increase to 500 ppm. Al and Ti coexist in the steel. As shown in FIG. Various types of oxides can be formed, and if the oxygen concentration is high, a liquid oxide composed of Fe t 0 -Ti () x -Al 2 O 3 is formed. This liquid oxide can now act as a product cause.
  • the nozzle body 100 may be in contact with molten steel, and may include an inner rim 110 made of a refractory composition and a discharging part 120 made of a refractory composition through which molten steel is discharged.
  • the inner layer 110 and the discharging part 120 in which the nozzle clogging phenomenon frequently occurs are made of a refractory composition containing a carbon monoxide capturing agent, so that carbon monoxide capture can be actively performed.
  • the concentration of the carbon monoxide capturing agent may be increased toward the contact interface 200 where the nozzle body 100 is in contact with molten steel.
  • Carbon monoxide generated in the nozzle body 100 composed of the refractory composition reaches the interface 200 with the molten steel along the pores, causing a problematic problem. Therefore, it is advantageous to collect carbon monoxide moving in the direction of the contact interface 200 when the density of the trapping agent increases toward the contact interface 200 of the nozzle body 100. That is, even when the same amount of carbon monoxide capturing agent is applied, the density of the carbon monoxide capturing agent near the contact interface 200 is relatively high, thereby effectively preventing the occurrence of the present.
  • the refractory compositions of Comparative Example 1, Comparative Example 2, Example 1 and Example 2 having the composition shown in the following Table 1 were prepared and sintered in the form of pellets, then placed in an alumina crucible, and an alloy containing Al and Ti .
  • the crucible containing the sample was heated at 1560 ° C using an induction furnace in a refined argon atmosphere, and then cooled for 2 hours and then cooled. Di were measured for the refractory surface and the average thickness banung water formed between the molten steel is made in contact with molten steel,. The results are shown in Table 2.
  • the refractory compositions of Comparative Examples 3 and 3 having the compositions shown in Table 1 were prepared and subjected to an immersion rotation reaction with molten steel containing Al and Ti.
  • the molten steel contains 500 ppm of Ti, 800 ppm of Al, 400 ppm of O, the balance Fe, Impurities.
  • Comparative Example 3 it was confirmed that the sample including the metal oxide such as alumina is present because of the magnetism due to the adhesion of the metallic substance by the interface reaction as a result of the rotational immersion test of the specimen processed with the immersion nozzle. As in Fig. 7, in the case of Comparative Example 3, now including the metal oxide at the contact interface was observed. On the other hand, in the case of Example 3, as shown in FIG. 8, the water was observed, but it was found that it contained only a trace amount of metal oxide or not to be attached to the magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is a refractory composition comprising, by wt%, 15-30% of carbon, 5-15% of silica, 3-10% of a carbon monoxide scavenger and the balance of alumina, wherein the carbon monoxide scavenger comprises a metal carbide.

Description

【명세서】  【Specification】
[발명의 명칭】  [Title of the invention]
내화 조성물 및 침지 노즐  Refractory composition and immersion nozzle
【기술분야】  TECHNICAL FIELD
지금의 형성을 억제함으로써 노즐 막힘 현상을 방지할 수 있는 내화 조성물 및 내화 조성물로 형성된 침지 노즐에 관한 것이다.  And to a dipping nozzle formed of a refractory composition and a refractory composition capable of preventing nozzle clogging by suppressing the formation of the nozzle.
【배경기술]  BACKGROUND ART [0002]
연속 주조 설비는 레이들, 턴디쉬, 몰드, 2차 넁각대로 이루어져 있다. 레이들 내 용강은 턴디쉬를 거쳐 주형으로 투입되는데 생산된 모든 용강은 침지 노즐을 통해 턴디쉬에서 주형으로 이동하므로 침지 노즐 나 1ᅳ 용강의 흐름이 원활하지 않을 경우, 연소 주조 공정은 물론이고 전체 철강 생산에 지대한 영향을 받게 된다.  Continuous casting equipment consists of ladle, tundish, mold, secondary angle. The molten steel in the ladle is injected into the mold via the tundish. All the molten steel produced is moved from the tundish to the mold through the immersion nozzle. Therefore, when the flow of the immersion nozzle or the molten steel is not smooth, It will be strongly influenced by steel production.
침지 노즐과 관련하여 발생하는 대표적 문제는 노즐 막힘이다. 노즐 막힘은 용강 내 잔류하는 비금속 개재물이 노즐 내벽 '및 토출부에 부착되어 내공부 및 토출부 내경을 감소시켜 용강의 흐름을 방해함으로써 발、생한다. 한편, Ti을 함유한 극저탄소강의 경우, 비금속 개재물 외에도, 철 및 철 산화물 성분이 부착하여 보다 단단한 형태의 부착물을 형성한다. A representative problem that occurs with immersion nozzles is nozzle clogging. Nozzle clogging is the residual non-metallic inclusions within the molten steel that is attached to the inner wall of the nozzle portion, and the discharge by reducing my studies and the discharge portion and the inner diameter occurs, by inhibiting the flow of molten steel. On the other hand, in the case of extremely low carbon steels containing Ti, in addition to non-metallic inclusions, iron and iron oxide components adhere to form adherent forms in a more rigid form.
기존의 노즐 막힘 현상을 해결하기 위해 여러 방안이 제시되었다. 첫번째로, 용강 내 잔류 비금속 개재물의 절대량을 낮추어 연속 주조 시, 침지 노즐 내벽에 부착할 개재물을 원천 저감하는 방법이다. 청정강 생산 기술이 발전한 현재 용강 내 잔류 개재물 제거는 원활하게 수행되고 있다. 두번째로, 잔류 비금속 개재물, 특히 .알루미나성 개재물이 노즐 내벽에 부착하게 되면 높은 온도로 인해 내화재 및 다른 부착 개재물과 신속하게 소결하여 노즐 내벽에 부착물 층을 형성하게 되는데 이를 방지하기 위하여 부착 알루미나성 개재물을 액상으로 하여 씻겨 내려가도록 한디- .  Several methods have been proposed to solve the existing nozzle clogging phenomenon. First, the absolute amount of the residual nonmetallic inclusions in the molten steel is lowered to reduce the inclusions to be adhered to the inner wall of the immersion nozzle at the time of continuous casting. With the development of clean steel production technology, removal of residual inclusions in the molten steel has been smoothly carried out. Secondly, when the residual nonmetallic inclusions, especially the alumina inclusions, adhere to the inner wall of the nozzle, they rapidly sinter with the refractory material and other inclusions due to the high temperature to form the deposit layer on the inner wall of the nozzle. To wash it down in liquid form.
세번째로. 침지 노즐 상부로부터 침지 노즐 내부로 아르곤 가스를 투입하여 노즐 내벽과 용강 사이 아르곤 가스층을 형성 유도함으로써 잔류 개재물이 노즐 내벽에 접촉하지 못하도록 하는 방법이디- .  Third. A method of injecting argon gas into the immersion nozzle from the upper part of the immersion nozzle to induce an argon gas layer between the inner wall of the nozzle and the molten steel to prevent the residual inclusion from contacting the inner wall of the nozzle.
그러나 용강 청정도를 극도로 향상시킨 현대식 제강 정련 공정 후에도 노즐 막힘은 빈번히 발생하고 있디- . 특히, 극저탄소강의 경우, 강 증However, the modern steelmaking process After that, nozzle clogging occurred frequently. In particular, in the case of ultra low carbon steel,
Ti의 유무에 따라 노즐 막힘 현상이 현저히 차이가 나며, 노즐 부착물의 형태가 비금속 개재물만으로 이루어져 있지 않고, 다량의 지금 형태의 부착물과 비금속 개재물간의 흔합물로 관찰된다. 이러한현상은 상기 언급된 기존에 제시된 방안으로 해결하는데 한계가 있다. Ti이 노즐 막힘에 미치는 영향 및 발생하는 지금형 부착물의 저감이 가능한 새로운 방안이 필요하다.The nozzle clogging is significantly different depending on the presence or absence of Ti, and the shape of the nozzle attachment is not composed of only nonmetallic inclusions, and is observed as a mixture between a large amount of adhering type and nonmetallic inclusions. This phenomenon has a limit in solving the above-mentioned conventional methods. There is a need for a new method capable of reducing the influence of Ti on the clogging of the nozzle and the occurrence of the present-type deposit.
【발명의 상세한 설명】 DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
내화물에서 발생되는 일산화탄소를 포집하여 지금의 형성을 억제함으로써 노즐 막힘 현상을 방지할 수 있는 내화 조성물 및 내화 조성물로 형성된 침지 노즐을 제공한다.  The present invention provides an immersion nozzle formed of a refractory composition and a refractory composition capable of preventing nozzle clogging by trapping carbon monoxide generated from refractory materials and suppressing the formation of carbon monoxide.
【기술적 해결방법】  [Technical Solution]
본 발명의 일 실시예에 의한 내화 조성물은 증량 ¾로, 카본: 15 내지 30%,실리카: 5내지 15%, 일산화탄소 포집제, : 3내지 10%및 잔부 알루미나를 포함하고, 상기 일산화탄소 포집제는 금속 카바이드를 포함한다.  The refractory composition according to one embodiment of the present invention comprises, in weight percent, 15 to 30% of carbon, 5 to 15% of silica, 3 to 10% of carbon monoxide collecting agent, and the balance alumina, Metal carbide.
상기 일산화탄소 포집제는, C0(g)와의 반웅에 따른 1500 내지 1550°C에서의 깁스 자유 에너지 변화 값 ( AG)이 음수일 수 있다. The carbon monoxide scavenger may have a negative Gibbs free energy change value (AG) at 1500 to 1550 ° C due to reaction with CO (g).
상기 일산화탄소 포집제는, B4C , AI4C3 , SiC및 CaC2중에서 1종 이상을 포함할 수 있다. The carbon monoxide collecting agent may include at least one of B 4 C, AI 4 C 3, SiC, and CaC 2 .
상기 일산화탄소 포집제는, B4C이고, 3 내지 10%를 포함할 수 있다. 하기 식 1을 만족할 수 있다. The carbon monoxide collecting agent is B 4 C, and may contain 3 to 10%. The following expression (1) can be satisfied.
[식 1]  [Formula 1]
0.23 < [일산화탄소 포집제 ] / [실리카] ≤ 1  0.23 < [carbon monoxide scavenger] / [silica] 1
(식 1에서, [실리카] 및 [일산화탄소 포집제]는 각각 실리카 및 일산화탄소 포집제의 함량 (증량 %)를 나타낸다. )  (In the formula (1), [silica] and [carbon monoxide collecting agent] represent amounts of silica and carbon monoxide collecting agent (% increase), respectively.
본 발명의 일 실시예에 의한 침지 노즐은 턴디쉬로부터 몰드로 용강의 이동이 이루어지는 침지 노즐로서, 적어도 상기 용강과 접촉되는 부분이 내화 조성물로 이루어진 노즐 본체;를 포함하고, 싱-기 내화 조성물은 증량 %로, 카본: 15내지 30%, 실리카: 5내지 15%, 일산화탄소 포집제: 3내지 10% 및 잔부 알루미나를 포함하고, 상기 일산화탄소 포집제는 금속 카바이드를 포함한다. According to an embodiment of the present invention, there is provided an immersion nozzle in which molten steel is moved from a tundish to a mold, wherein at least a portion of the immersion nozzle in contact with the molten steel includes a nozzle body, Wherein the carbon monoxide trapping agent comprises 15 to 30% of carbon, 5 to 15% of silica, 3 to 10% of carbon monoxide collecting agent, and the balance alumina, Carbide.
상기 일산화탄소 포집제는, B4C , AI4C3 , S iC및 CaC2중에서 1종 이상을 포함할 수 있다. The carbon monoxide collecting agent may include at least one of B 4 C, AI 4 C 3, SiC and CaC 2 .
상기 용강은, A 1 및 Ti 중에서 1종 이상을 포함할 수 있다.  The molten steel may include at least one of A 1 and Ti.
상기 노즐 본체는, 상기 용강과 접촉이 이루어지며, 상기 내화 조성물로 이루어진 내공부; 및 상기 용강의 토출이 이루어지고, 상기 내화 조성물로 이루어진 토출부;를 포함할 수 있다.  Wherein the nozzle body is in contact with the molten steel, and the inner body is made of the refractory composition; And a discharging portion made of the refractory composition, in which the molten steel is discharged.
상기 노즐 본체는, 상기 용강과 접촉이 이루어지는 접촉 계면으로 갈수록 상기 일산화탄소 포집제의 농도가 높아지는 농도 구배가 형성될 수 있다.  A concentration gradient may be formed in the nozzle body such that the concentration of the carbon monoxide trapping agent increases toward the contact interface where the molten steel is brought into contact with the molten steel.
【발명의 효과】  【Effects of the Invention】
금속 카바이드와 같은 일산화 탄소 포집제를 통해 내화물에서 발생되는 일산화탄소를 포집하여 지금의 형성을 억제함으로써 노즐 막힘 현상을 방지할 수 있다.  It is possible to prevent the clogging of the nozzle by trapping the carbon monoxide generated in the refractory through the carbon monoxide capturing agent such as metal carbide and suppressing the formation of the carbon monoxide.
【도면의 간단한 설명】  BRIEF DESCRIPTION OF THE DRAWINGS
도 1은 내화물 내에서 기체 상태의 일산화탄소 발생 과정 및 본 발명의 일 실시예에 의한 내화 조성물에서 일산화탄소 포집제 (B4C)에 의한 탈산 과정을 나타낸 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a process of generating gaseous carbon monoxide in a refractory and a deoxidation process by a carbon monoxide scavenger (B 4 C) in a refractory composition according to an embodiment of the present invention.
도 2는 용강에 포함된 A1 및 Ti의 함량 변화에 따라 생성되는 다양한 형태의 산화물을 나타낸 그래프이다.  FIG. 2 is a graph showing various types of oxides produced according to changes in the content of Al and Ti contained in molten steel.
도 3은 A1 및 Ti를 포함하는 용강과 내화물의 접촉 계면에서 생성되는 지금을 나타낸 사진이다.  Fig. 3 is a photograph now showing at the contact interface between the molten steel containing Al and Ti and the refractory.
도 4는 ¾C , AI4C3 및 CaC2의 온도에 따른 ¾스 자유 에너지 변화 값을 나타낸 그래프이다. 4 is a graph showing values of change in free energy according to temperatures of ¾C, AI4C3 and CaC 2 .
도 5는 본 발명의 일 실시예에 의한 침지 노즐의 단면의 모습을 나타낸 도면이디- .  5 is a cross-sectional view of an immersion nozzle according to an embodiment of the present invention.
도 6은 일산화탄소 포집제 (B4C)의 조성 변화와 지금의 평균 두께 간의 상관관계를 나타낸 그래프이다. Fig. 6 is a graph showing the correlation between the compositional change of carbon monoxide scavenger (B 4 C) and the present average thickness.
도 7은 비교예 1의 침지 회전 반웅 결과에 따른 접촉 계면에 생성된 반응물을 나타낸 사진이디- . 도 8은 실시예 1의 침지 회전 반웅 결과에 따른 접촉 계면에 생성된 반응물을 나타낸 사진이다. 7 is a photograph showing the reactant produced in the contact interface according to the immersion rotation reaction result of Comparative Example 1. Fig. FIG. 8 is a photograph showing reactants produced in the contact interface according to the immersion rotation reaction result of Example 1. FIG.
【발명의 실시를 위한 최선의 형태】  BEST MODE FOR CARRYING OUT THE INVENTION
제 1, 제 2 및 게 3 등의 용어들은 다양한 부분, 성분, 영역, 층 및 /또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역. 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 아하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.  The terms first, second, and third, etc. are used to describe various portions, components, regions, layers, and / or sections, but are not limited thereto. These terms are used interchangeably with any part, element, region, layer or section of a section, element, or region. It is used only to distinguish it from layers or sections. Accordingly, a first portion, component, region, layer or section described in the sub-section may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는" 의 의미는 특정 특성,. 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특성, 영역, 정수. 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다.  The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the invention. The singular forms as used herein include plural forms as long as the phrases do not expressly express the opposite meaning thereto. As used herein, the term " comprising " Integers, regions, integers, steps, operations, elements, and / or components; Steps, operations, elements and / or components.
어느 부분이 다른 부분의 "위에'' 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 우 1에1' 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다. When referring to a portion as being "on" or "on" another portion, it may be directly on or over another portion, or may involve another portion therebetween. By contrast, Quot; 1 " to " 1 & quot ;, no other part is interposed therebetween.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를.포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.  Although not defined differently, all terms including technical terms and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. Commonly used predefined terms are further interpreted as having a meaning consistent with the relevant technical literature and the present disclosure, and are not to be construed as ideal or very formal meanings unless defined otherwise.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며 , lppm 은  Unless otherwise noted,% means weight%, and lppm means
0.00이중량 %이디- . 0.00 Duality% Idy -.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 알루미나를 대체하여 포함하는 것을 의미한다. 이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. In an embodiment of the present invention, the meaning of further including additional elements means that alumina is replaced by an additional amount of additional elements. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
내화조성물  Refractory composition
본 발명의 일 실시예에 의한 내화 조성물은 중량 %로, 카본: 15 내지 30%, 실리카: 5내지 15%, 일산화탄소 포집제: 3내지 10%및 잔부 알루미나를 포함하고,  The refractory composition according to one embodiment of the present invention contains 15 to 30% of carbon, 5 to 15% of silica, 3 to 10% of carbon monoxide scavenger, and the balance alumina,
일산화탄소 포집제는 금속 카바이드 (carbide)를 포함한다.  The carbon monoxide scavenger includes a metal carbide.
구체적으로, 일산화탄소 포집제는 B4C, AL , SiC 및 CaC2중에서 1종 이상을 포함할 수 있다. Specifically, the carbon monoxide collecting agent may include at least one of B 4 C, AL, SiC, and CaC 2 .
먼저, 하기에서는 내화 조성물의 성분 한정 이유를 설명한다.  First, the reason for limiting the components of the refractory composition will be described below.
카본: 15 내지 30 중량 %  Carbon: 15 to 30 wt%
카본 (carbon)은 용강에 대한 내화물의 내식성 및 내침윤성 (내침투성)이 향상되도록 할 수 있으며, 열층격 손상을 감소시킬 수 있다. 카본의 함량이 너무 낮을 경우, 내식성 및 내침윤성의 향상 효과가 미미할 수 있다. 반면, 함량이 너무 높을 경우, 내화물의 탄성율이 높아질 수 있어 내열 층격성이 저하될 수 있다. 따라서 카본의 함량을 15 내지 30 중량 %로 제어한다.  Carbon can improve refractory corrosion resistance and invasiveness (resistance to permeation) of molten steel and can reduce thermal damage. If the content of carbon is too low, the effect of improving corrosion resistance and invasiveness may be insignificant. On the other hand, if the content is too high, the modulus of elasticity of the refractory may be increased and the resistance of the heat resistant layer may be deteriorated. Therefore, the content of carbon is controlled to 15 to 30 wt%.
구체적으로, 카본은 인상혹연 (flaky graphite), 카본불랙 (carbon black) 및 피치 (pitch) 중에서 1종 이상을 포함할 수 있다.  Specifically, the carbon may include at least one of flaky graphite, carbon black, and pitch.
인상혹연은 용강 및 슬래그에 대한 내화물의 젖음성을 낮추고, 내침윤성과 내식성을 증가시킬 수 있다. 카본블랙은 내화 조성물에 함유되어 내화물의 강도를 증가시킬 수 있다. 피치는 카본블랙과 마찬가지로 조성물에 함유되어 내화물의 강도를 증가시킬 수 있디-.  The impression roll can reduce the wettability of the refractory to molten steel and slag, and increase the invasiveness and corrosion resistance. Carbon black can be contained in the refractory composition to increase the strength of the refractory. The pitch could be contained in the composition as well as carbon black to increase the strength of the refractory.
실리카: 5 내지 15 중량 %  Silica: 5-15 wt%
실리카 (silica, silicon oxide)는 내화 조성물에 유동성을 부여하고, 결합강도를 향상시킬 수 있다. 실리카의 함량이 너무 낮을 경우, 유동성 부여 및 강도 향상 효과가 미미할 수 있다. 반면, 함량이 너무 높을 경우, 오히려 내화 조성물의 유동성이 저하될 수 있으며. 알루미나 -실리카계의 저융점 물질이 생성될 수 있어 열간강도가 저하될 수 있디- . 따라서 실리카의 함량을 5 내지 15 중량 %로 제어한다. Silica (silica) can impart fluidity to the refractory composition and improve bond strength. When the content of silica is too low, the effect of imparting fluidity and improving the strength may be insignificant. On the other hand, if the content is too high, the flowability of the refractory composition may be deteriorated. Alumina-silica-based A low melting point material could be generated and the hot strength could be lowered. Therefore, the content of silica is controlled to 5 to 15% by weight.
일산화탄소 포집제: 3 내지 10 중량 %  Carbon monoxide collecting agent: 3 to 10 wt%
일산화탄소 포집제는 내화 조성물에 의한 내화물이 용강을 이동시키는 침지 노즐 내벽에 부착될 경우, 내화 조성물에 포함되는 카본과 실리카의 반응에 의해 발생되는 일산화탄소 (CO)를 포집하기 위한 재료이다. 도 1을 통해 확인할 수 있는 것과 같이, 내화물 내에서 발생되는 일산화탄소는 내화물 내의 기공을 통해 용강과 내화물의 접촉 계면으로 이동한 다음, 용강 내에 포함되는 A1과 반웅하여 A1을 산화시킨다. 산화된 A1은 네트워크 알루미나 (network al umina) 등과 같은 지금을 형성하고, 내화물 상에 부착되어 노즐 막힘 현상을 유발할 수 있다. 이는 하기의 반웅식 1 및 반웅식 2로 설명할 수 있다.  The carbon monoxide collecting agent is a material for trapping carbon monoxide (CO) generated by the reaction of carbon and silica contained in the refractory composition when the refractory material is attached to the inner wall of the immersion nozzle for moving molten steel. As can be seen from FIG. 1, carbon monoxide generated in the refractory moves through the pores in the refractory to the interface between the molten steel and the refractory, and then oxidizes Al by countering with the A1 contained in the molten steel. The oxidized A1 may form now, such as network alumina, and may adhere to the refractory surface to cause nozzle clogging. This can be explained by the following Equation 1 and Equation 2.
[반웅식 1]  However,
Si02(s) + C(s) = SiO(g) + C0(g) Si0 2 (s) + C ( s) = SiO (g) + C0 (g)
[반웅식 2] · [HanWoong2] ·
2A1 + 3C0(g) = Al203(s) + 3C 2A1 + 3C0 (g) = Al 2 0 3 (s) + 3C
일산화탄소에 의한 A1의 산화를 방지하기 위해 용강과 내화물의 접촉 계면으로 이동하는 일산화탄소를 포집하는 것이 노즐 막힘 현상을 방지하기 위한 방안이 될 수 있다.  In order to prevent oxidation of Al by carbon monoxide, collecting carbon monoxide moving to the contact interface between the molten steel and the refractory may be a method for preventing nozzle clogging.
용강에 A1 뿐만 아니라 Ti도 포함될 경우, 도 2에서 확인할 수 있는 것과 같이, 다양한 형태의 산화물이 형성될 수 있는데, 산소 농도가 높은 상황이라면 도 3에서 확인할 수 있는 것과 같이, FetO-l'iOx-Al203로 구성된 액상 산화물이 형성된다. 이 액상 산화물은 지금 생성물 원인으로 작용할 수 있다. When the molten steel contains Al as well as Ti, various types of oxides can be formed as shown in FIG. 2. If the oxygen concentration is high, as shown in FIG. 3, Fe t Ol ' iO x -Al 2 O 3 is formed. This liquid oxide can now act as a product cause.
따라서 내화물에 포함된 일산화탄소 포집제의 존재로 인해 용강과 내화물의 접촉 계면으로 이동하는 일산화탄소를 포집하여 지금 생성을 방지할 수 있디- .  Therefore, due to the presence of the carbon monoxide trapping agent contained in the refractory, carbon monoxide moving to the contact interface between the molten steel and the refractory material can be trapped and prevented from being generated.
일산화탄소 포집제는 하기의 반응식 3과 같이 , 일산화탄소와 반웅하여 탈산시키고, 탄소만이 남도록 한디- . 、  The carbon monoxide scavenger is deoxidized with carbon monoxide as shown in Reaction Scheme 3 below, so that only carbon remains. ,
[반웅식 3] MC(s) + C0(g) = M0(s or 1) + C(s) [Hanwoong 3] MC (s) + C0 (g) = M0 (s or 1) + C (s)
일산화탄소 포집제는 금속 카바이드를 포함한다. 구체적으로, 일산화탄소 포집제는 B4C, ALA, SiC 및 Ca 중에서 1종 이상을 포함할 수 있다. 이외에 Al, Si, Mg, Al-Si 합금, Al-Mg 합금 등을 더 포함할 수 있다. 일산화탄소 포집제의 함량이 너무 낮을 경우, 일산화탄소의 포집이 충분히 이루어지지 않아 지금의 형성을 방지하기 어렵다. 반면, 일산화탄소 포집제의 함량이 너무 높을 경우, 내열층격성이 악화되거나 내식성이 열화 될 수 있다. 따라서 일산화탄소 포집제의 함량을 3 내지 10 중량 %으로 제어힌 -다. 도 6을 통해 확인할 수 있다. The carbon monoxide collecting agent includes a metal carbide. Specifically, the carbon monoxide collecting agent may include at least one of B 4 C, ALA, SiC, and Ca. In addition, it may further include Al, Si, Mg, Al-Si alloy, Al-Mg alloy, and the like. When the content of the carbon monoxide capturing agent is too low, the carbon monoxide is not sufficiently collected and it is difficult to prevent the formation of the carbon monoxide present. On the other hand, if the content of the carbon monoxide scavenger is too high, the resistance of the heat resistant layer may deteriorate or the corrosion resistance may deteriorate. Therefore, the content of the carbon monoxide trapping agent is controlled to 3 to 10 wt%. This can be confirmed from FIG.
잔부는 알루미나 (alumina, aluminium oxide)로 이루어질 수 있다.용강 및 슬래그에 대한 내식성을 증가시키기 위한 내화 재료이다. 구체적으로, 전융 알루미나가 이용될 수 있다.  The remainder can be made of alumina (alumina oxide). It is a refractory material to increase corrosion resistance to molten steel and slag. Specifically, fused alumina can be used.
알루미나 외에도 10내지 20중량? ¾의 칼시아 (calcia, calcium oxide)및 In addition to alumina, ¾ of calcia (calcium oxide) and
10 내지 20 중량 %의 지르코니아 (zirconia, zircon oxide)를 더 포함할 수 있다. 10 to 20% by weight of zirconia (zirconia).
칼시아는 노즐 내공부 및 토출부에 부착하는 용강 중 알루미나와 결합하여 저융점의 액상 산화물을 형성할 수 있다.  The calcia can form a liquid oxide having a low melting point by bonding with alumina in the molten steel adhering to the inner part of the nozzle and the discharge part.
지르코니아는 슬래그에 대한 내식성을 증가시키며, self-cleaning 재질 내화재에 필수적인 칼시아와 결합하여 CaZr03형태로 내화재에 존재하게 된다. Zirconia increases the corrosion resistance to slag, and is combined with calcia, which is essential for self-cleaning material refractory materials, to be present in refractory materials in CaZrO 3 form.
일산화탄소 포집제와 관련하여 구체적으로, 일산화탄소 포집제는 가스 (gas) 상태의 일산화탄소와의 반응에 따른 1500 내지 1550°C에서의 깁스 에너지 변화 값 (AG)이 음수일 수 있다. Specifically, regarding the carbon monoxide trapping agent, the carbon monoxide trapping agent may have a negative Gibbs energy change value (AG) at 1500 to 1550 ° C due to reaction with carbon monoxide in a gas state.
침지 노즐 내벽에 부착된 내화물의 온도는 용강의 온도에 수렴하게 된디-. 따라서 내화물의 온도는 1500 내지 1550°C일 수 있디-. The temperature of the refractory attached to the inner wall of the immersion nozzle converged to the temperature of the molten steel. The temperature of the refractory could therefore be between 1500 and 1550 ° C.
이와 같은 온도 분위기 하에서 일산화탄소 포집제가 내화물로부터 발생되는 가스 상태의 '일산화탄소와 반웅하여 효과적으로 일산화탄소를 포집시키기 위해서는 깁스 자유 에너지 변화 값 (AG)이 음수일 필요가 있다. In this same temperature under an atmosphere of carbon monoxide trapping agent banung and 'carbon monoxide in the gaseous phase resulting from the refractory material in order to effectively collect the carbon monoxide has to be a Gibbs free energy change value (AG) is negative.
도 4의 그래프를 통해 확인할 수 있는 바와 같이, 1500 내지 155(TC에서 B4C, AI4C3 및 CaC2는 모두 깁스 자유 에너지 변화 값 (AG)이 음수를 나타내어 해당 분위기 하에서 일산화탄소 포집제로서 적합함을 알 수 있다. 반면, SiC의 경우, 1500 내지 1550°C보다 저온에서는 깁스 자유 에너지 변화 값 (AG)이 음수를 갖지만 1500 내지 1550°C에서는 양수를 가지므로 해딩- 분위기 하에서 B4C, AI4C3 및 CaC2에 비해 상대적으로 일산화탄소의 포집 능력이 떨어질 수 있다. As can be seen from the graph of FIG. 4, 155 (which may be in the TC B 4 C, AI4C3 and CaC 2 are both free energy change value (AG) cast is shown the negative seen that suitable as a carbon monoxide scavenger under the atmosphere, while, in the case of SiC, 1500 to 1550 ° At lower temperatures than C, the Gibbs free energy change value (AG) is negative, but since it has a positive value at 1500 to 1550 ° C, the carbon monoxide capture ability is lower than that of B 4 C, AI 4 C3 and CaC 2 .
본 발명의 일 실시예에 의한 내화 조성물의 조성과 관련하여 구체적으로, 하기 식 1을 만족할 수 있다.  Concretely, regarding the composition of the refractory composition according to one embodiment of the present invention, the following formula 1 can be satisfied.
[식 1]  [Formula 1]
0.23 < [일산화탄소 포집제 ]/ [실리카] ≤ 1  0.23 < [carbon monoxide scavenger] / [silica] 1
(식 1에서, [실리카] 및 [일산화탄소 포집제]는 각각 실리카 및 일산화탄소 포집제의 함량 (증량 %)를 나타낸다.)  (In the formula (1), [silica] and [carbon monoxide collecting agent] represent amounts of silica and carbon monoxide collecting agent (% increase), respectively.
상기 반웅식 1과 같이, 실리카 분자 하나당 하나의 일산화탄소 분자가 형성된다. 이렇게 형성된 일산화탄소 여섯 개의 분자가 하기의 반웅식 4 및 반응식 5와 같이, 하나의 일산화탄소 포집제 분자에 포집되는데, 이때, 금속 탄화물 형태의 일산화탄소 포집제에 포함된 금속 원자 네 개가 여섯 개의 일산화탄소로부터 산소 원자를 탈산시킨다.  As shown in Equation 1, one carbon monoxide molecule per one silica molecule is formed. Six molecules of the carbon monoxide thus formed are trapped in a single carbon monoxide trapping molecule as shown in the following Equations 4 and 5. In this case, four metal atoms contained in the carbon monoxide trapping agent in the form of metal carbide are separated from six carbon monoxide Lt; / RTI &gt;
[반웅식 4]  However,
B4C(s) + 6C0(g) = 2B203(1) + 7C(s) B 4 C (s) + 6C0 (g) = 2B 2 0 3 (1) + 7C (s)
[반웅식 5]  [Hanwoong 5]
A14C3(S) + 6C0(g) = 2Al203(s) + 9C(s) A1 4 C 3 (S) + 6C0 (g) = 2Al 2 O 3 (s) + 9C (s)
따라서 실리카 함량에 대한 일산화탄소 포집제의 함량 비를 제어할 수 있도록 식 1을 통해 이를 제어하여 실리카와 일산화탄소 포집제의 최적의 성분 비를 갖도록 조성을 제어하는 것이 가능하다.  Therefore, it is possible to control the composition so as to have an optimum composition ratio of silica and carbon monoxide scavenger by controlling the ratio of the content of the carbon monoxide scavenger to the silica content through the formula 1.
[일산화탄소 포집제 ]/ [실리카]가 0.23 미만일 경우, 내화물로부터 발생되는 일산화탄소의 포집이 층분히 이루어지지 않아 지금의 형성을 방지하기 어렵다-. 반면, 1을 초과할 경우, 내열충격성이 악화되거나 내식성이 열화 될 수 있다.  When [carbon monoxide trapping agent] / [silica] is less than 0.23, it is difficult to prevent the formation of carbon monoxide from the refuse so that the formation of carbon monoxide is not carried out. On the other hand, if it exceeds 1, the thermal shock resistance may deteriorate or the corrosion resistance may deteriorate.
상기의 성분으로 이루어지는 내화 조성물에 유기 바인더를 첨가하여 흔련한다. 흔련 시에 첨가하는 유기 바인더는 열경화성 수지가 사용될 수 있다. An organic binder is added to the refractory composition composed of the above-mentioned components and used. The organic binder to be added at the time of use may be a thermosetting resin have.
침지 노즐 ' 본 발명의 일 실시예에 의한 침지 노즐은 도 5를 참조할 때, 턴디쉬로부터 몰드로 용강의 이동이 이루어지는 침지 노즐로서. 적어도 용강과 접촉되는 부분이 내화 조성물로 이루어진 노즐 본체 ( 100)를 포함하고, 내화 조성물은 증량 %로. 카본: 15 내지 30% , 실리카: 5 내지 15%, 일산화탄소 포집제: 3 내지 10% 및 잔부 알투미나를 포함하고, 일산화탄소 포집제는 금속 카바이드 (carba i de)를 포함한다.  The immersion nozzle according to an embodiment of the present invention is an immersion nozzle in which molten steel is moved from a tundish to a mold with reference to FIG. Wherein at least the portion in contact with the molten steel comprises a nozzle body (100) made of a refractory composition, and the refractory composition is in an increased percentage. 15 to 30% of carbon, 5 to 15% of silica, 3 to 10% of carbon monoxide scavenger, and the remaining alumina, and the carbon monoxide scavenger includes metal carbide (carba i de).
구체적으로, 일산화탄소 포집제는 C . AI4C3 , Si C 및 CaC2중에서 1종 이상을 포함할 수 있다. Specifically, the carbon monoxide collecting agent is C.I. AI 4 may include C3, C Si and one or more of CaC 2.
레이들에서 공급된 용강을 수용하는 턴디쉬로부터 연속 주조를 '위한 몰드로 용강이 이동되는 과정에서, 턴디쉬 하부에 형성된 노즐 본체 ( 100)를 통해 몰드로 용강의 공급이 이루어진다. 이와 같은 노즐 본체 ( 100) 중에서 적어도 용강과 접촉이 이루어지는 부분은 상기 조성을 갖는 내화 조성물로 이루어진다. In the process of moving the molten steel to the mold for continuous casting, from a tundish for receiving molten steel from the ladle is supplied, is made of molten steel supplied to the mold through the nozzle body 100 is formed on the tundish bottom. At least a portion of the nozzle body 100 in contact with molten steel is made of a refractory composition having the above composition.
내화 조성불의 조성은 상기의 내화 조성물과 동일하므로 반복되는 설명은 생략하기로 한다.  Since the composition of the refractory composition fire is the same as that of the above-mentioned refractory composition, repeated description will be omitted.
내화 조성물에 칼시아 및 지르코니아가 더 포함될 경우, 내화 조성물로 이루어진 노즐 본체 ( 100) 내에는 칼시아와 지르코니가가 결합된 CaZr 가 존재하게 된다.  When the refractory composition further contains calcia and zirconia, a CaZr combined with calcia and zirconia is present in the nozzle body 100 made of the refractory composition.
용강에는 A1 및 Ti이 포함될 수 있디- . 상기 반응식 1에 의해 지속적으로 용강과 내화물의 접촉 계면 (200)에 C0(g)가 공급될 수 있는 상황이므로 접촉 계면 (200)의 산소 농도는 500ppm수준까지 상승할 수 있다. 강 중에 A1과 Ti이 공존할 경우. 도 2와 같이. 다양한 형태의 산화물이 형성될 수 있는데, 산소 농도가 높은 상황이라면 Fet0-Ti()x-Al 203로 구성된 액상 산화물이 형성된다. 이 액상 산화물은 지금 생성물 원인으로 작용할 수 있다. Molten steel could contain A1 and Ti. Since C0 (g) can be continuously supplied to the contact interface 200 between the molten steel and the refractory by the above reaction formula 1, the oxygen concentration of the contact interface 200 may increase to 500 ppm. Al and Ti coexist in the steel. As shown in FIG. Various types of oxides can be formed, and if the oxygen concentration is high, a liquid oxide composed of Fe t 0 -Ti () x -Al 2 O 3 is formed. This liquid oxide can now act as a product cause.
따라서 내화 조성물에 포함된 일산화탄소 포집제의 존재로 인해 용강과의 접촉 계면 (200 )으로 이동하는 일산화탄소를 포집하여 지금의 생성을 방지할 수 있다. 구체적으로, 노즐 본체 ( 100)는 용강과 접촉이 이루어지며, 내화 조성물로 이루어진 내공부 ( 110) 및 용강의 토출이 이루어지고, 내화 조성물로 이루어진 토출부 ( 120)를 포함할 수 있다. Therefore, due to the presence of the carbon monoxide capturing agent contained in the refractory composition, carbon monoxide moving to the interface 200 with the molten steel can be trapped to prevent the present generation. Specifically, the nozzle body 100 may be in contact with molten steel, and may include an inner rim 110 made of a refractory composition and a discharging part 120 made of a refractory composition through which molten steel is discharged.
지금에 의한 노즐 막힘 현상이 빈번하게 발생되는 내공부 ( 110) 및 토출부 ( 120)가 일산화탄소 포집제가 포함된 내화 조성물로 이루어짐으로써 일산화탄소 포집이 활발하게 이루어지도록 할 수 있다.  The inner layer 110 and the discharging part 120 in which the nozzle clogging phenomenon frequently occurs are made of a refractory composition containing a carbon monoxide capturing agent, so that carbon monoxide capture can be actively performed.
한편, 노즐 본체 ( 100)는 용강과 접촉이 이루어지는 접촉 계면 (200)으로 갈수록 일산화탄소 포집제의 농도가 높아지질 수 있다.  On the other hand, the concentration of the carbon monoxide capturing agent may be increased toward the contact interface 200 where the nozzle body 100 is in contact with molten steel.
도 1에서 확인할 수 있는 바와 같이. 내화 조성물로 이루어진 노즐 본체 ( 100) 내에서 발생한 가스 상태의 일산화탄소가 기공을 따라 용강과의 ¾촉 계면 (200)에 도달함으로써 문제의 원인이 발생하는 것이다. 따라서 노즐 본체 ( 100)의 접촉 계면 (200)으로 갈수록 포집제의 밀도가 높아지는 것이 접촉 계면 (200) 방향으로 이동하는 일산화탄소를 포집하기에 유리하다. 즉, 동일한 양의 일산화탄소 포집제를 적용하더라도 접촉 계면 (200) 부근의 일산화탄소 포집제의 밀도가 상대적으로 높게 형성됨으로써 효과적으로 지금의 발생을 방지할 수 있다.  As can be seen in Fig. Carbon monoxide generated in the nozzle body 100 composed of the refractory composition reaches the interface 200 with the molten steel along the pores, causing a problematic problem. Therefore, it is advantageous to collect carbon monoxide moving in the direction of the contact interface 200 when the density of the trapping agent increases toward the contact interface 200 of the nozzle body 100. That is, even when the same amount of carbon monoxide capturing agent is applied, the density of the carbon monoxide capturing agent near the contact interface 200 is relatively high, thereby effectively preventing the occurrence of the present.
이하, 본 발명의 구체적인 실시예를 기재한다. 그러나 하기 실시예는 본 발명의 구체적인 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.  Hereinafter, specific examples of the present invention will be described. However, the following examples are only a concrete example of the present invention, and the present invention is not limited to the following examples.
실시예  Example
하기 표 1의 조성을 갖는 비교예 1, 비교예 2 , 실시예 1및 실시예 2의 내화 조성물을 마련하여 펠렛 형태로 성형 및 소결한 뒤 알루미나 도가니에 위치시키고, 그 위에 A1 및 Ti을 함유한 합금을 위치시켰다. 상기 시료가 든 도가니를 정제된 아르곤 분위기의 유도 가열로를 이용하여 1560 °C 에서 가열한 뒤, 2시간 반웅 후, 수냉하였디- . 용강과 접촉이 이루어진 내화재 표면과 용강 사이에 형성된 반웅물의 평균 두께를 측정하였디 · . 이에 따른 결과를 표 2에 나타내었디- . The refractory compositions of Comparative Example 1, Comparative Example 2, Example 1 and Example 2 having the composition shown in the following Table 1 were prepared and sintered in the form of pellets, then placed in an alumina crucible, and an alloy containing Al and Ti . The crucible containing the sample was heated at 1560 ° C using an induction furnace in a refined argon atmosphere, and then cooled for 2 hours and then cooled. Di were measured for the refractory surface and the average thickness banung water formed between the molten steel is made in contact with molten steel,. The results are shown in Table 2.
또한, 하기 표 1의 조성을 갖는 비교예 3 및 실시예 3의 내화 조성물을 마련하여 A1 및 Ti를 함유한 용강과 침지 회전 반응을 수행하였디- . 용강은 500ppm의 Ti , 800ppm의 A1, 400ppm의 0, 잔부 Fe 및 불가피한 불순물을 포함하였다. In addition, the refractory compositions of Comparative Examples 3 and 3 having the compositions shown in Table 1 were prepared and subjected to an immersion rotation reaction with molten steel containing Al and Ti. The molten steel contains 500 ppm of Ti, 800 ppm of Al, 400 ppm of O, the balance Fe, Impurities.
회전 반응 후, 용강과 접촉이 이루어진 내화물 표면, 즉 접촉 계면에 형성된 지금의 평균 두께를 측정하였다. 또한, 자석 부착 실험을 통해. 반웅물에 자성이 존재하는지 여부를 확인하였다. 이에 따른 결과를 표 3에 나타내었다.  After the rotation reaction, the average thickness formed on the refractory surface, that is, the contact interface, which was in contact with the molten steel, was measured. Also, through experiments with magnet attachment. It was confirmed whether or not magnetism was present in the water. The results are shown in Table 3.
[표 1]  [Table 1]
Figure imgf000013_0001
[표 3]
Figure imgf000013_0001
[Table 3]
Figure imgf000013_0002
Figure imgf000013_0002
. 상기 표 2 및 도 6을 통해 확인할 수 있는 바와 같이, 비교예 1 및 비교예 2의 경우, 일산화탄소의 포집이 이루어지지 않거나 충분히 포집되지 않아 반응물의 생성량이 많은 것을 확인할 수 있디- . 반면, 실시예 1 및 실시예 2의 경우, 일산화탄소를 층분히 포집하여 반응물의 생성량이 상대적으로 적었다. 상기 비교예 1 , 비교예 2, 실시예 1및 실시예 2만으로는 지금 부착 여부는 확인할 수 없으므로 조업에 사용하는 노즐을 이용하여 회전 침지 실험을 진행하였다ᅳ . . As can be seen from Table 2 and FIG. 6, in the case of Comparative Example 1 and Comparative Example 2, it was confirmed that the carbon monoxide was not collected or collected sufficiently, and the amount of reactant was large. On the other hand, in the case of Example 1 and Example 2, carbon monoxide was collectively collected and the amount of reactant produced was relatively small. Since it is impossible to confirm whether or not it is attached only by the above Comparative Example 1, Comparative Example 2, Example 1 and Example 2, The rotation immersion experiment was carried out.
비교예 3은 침지 노즐을 가공한 시편의 용강 내 회전 침지 실험 결과로 계면 반웅에 의한 금속성 물질 부착에 의해 자성을 띄므로 알루미나 등의 금속 산화물을 포함하는 지금임을 확인할 수 있었다. 도 7에서와 같이, 비교예 3의 경우, 접촉 계면에서 금속 산화물을 포함하는 지금이 관찰되었다. 반면, 실시예 3의 경우, 도 8에서와 같이, 반웅물은 관찰되었으나 이는.금속 산화물을 포함하지 않거나 자석에 부착되지 않을 정도로 미량만을 포함하는 것을 알 수 있었다.  In Comparative Example 3, it was confirmed that the sample including the metal oxide such as alumina is present because of the magnetism due to the adhesion of the metallic substance by the interface reaction as a result of the rotational immersion test of the specimen processed with the immersion nozzle. As in Fig. 7, in the case of Comparative Example 3, now including the metal oxide at the contact interface was observed. On the other hand, in the case of Example 3, as shown in FIG. 8, the water was observed, but it was found that it contained only a trace amount of metal oxide or not to be attached to the magnet.
본 발명은 상기 구현예 및 /또는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 구현예 및 /또는 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.  It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims and their equivalents. It will be understood that the invention may be embodied in other specific forms without departing from the spirit or scope of the invention. It is therefore to be understood that the embodiments and / or the examples described above are illustrative in all aspects and not restrictive.
[부호의 설명] [Description of Symbols]
100: 노즐 본체  100: nozzle body
110: 내공부  110: My study
120: 토출부  120:
200: 접촉 계면  200: contact interface

Claims

【청구범위】 Claims:
【청구항 1】  [Claim 1]
중량 %로, 카본: 15내지 30%, 실리카: 5내지 15%, 일산화탄소 포집제: 3 내지 10% 및 잔부 알루미나를 포함하고,  By weight, carbon: 15 to 30%, silica: 5 to 15%, carbon monoxide scavenger: 3 to 10%, and the balance alumina,
상기 일산화탄소 포집제는 금속 카바이드를 포함하는 내화 조성물. Wherein the carbon monoxide trapping agent comprises a metal carbide.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 일산화탄소 포집제는.  The carbon monoxide collecting agent is:
C0(g)와의 반웅에 따른 1500 내지 1550 °C에서의 깁스 자유 에너지 변화 값 ( AG)이 음수인 내화 조성물. Wherein the Gibbs free energy change value (AG) at 1500 to 1550 ° C according to reaction with C0 (g) is negative.
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method according to claim 1,
상기 일산화탄소 포집제는.  The carbon monoxide collecting agent is:
B4C , AI C , Si C 및 CaC2중에서 1종 이상을 Ϊ함하는 내화 조성물. B 4 C, AI C, Si C, and CaC 2 .
【청구항 4】 Claim 4
제 3항에 있어서,  The method of claim 3,
상기 일산화탄소 포집제는,  The above-
B4C이고, 3 내지 10%를 포함하는 내화 조성물. B 4 C, and 3 to 10%.
【청구항 5]  [Claim 5]
제 1항에 있어서,  The method according to claim 1,
하기 식 1을 만족하는 내화 조성물.  Wherein the refractory composition satisfies the following formula (1).
[식 1]  [Formula 1]
0.23 < [일산화탄소 포집제 ] / [실리카] < 1  0.23 <[carbon monoxide scavenger] / [silica] <1
(식 1에서, [실리카] 및 [일산화탄소 포집제]는 각긱ᅳ 실리카 및 일산화탄소 포집제의 함량 (중량 %)를 나타낸다. )  (In the formula (1), [silica] and [carbon monoxide collecting agent] represent the content (weight%) of each silica fine silica and carbon monoxide collecting agent.
【청구항 6】  [Claim 6]
턴디쉬로부터 몰드로 용강의 이동이 이루어지는 침지 노즐로서, 적어도 상기 용강과 접촉되는 부분이 내화 조성물로 이루어진 노즐 본체;를 포함하고,  An immersion nozzle in which molten steel is moved from a tundish to a mold, wherein at least a portion of the molten steel in contact with the molten steel is a refractory composition,
상기 내화 조성물은, 중량 %로, 카본: 15내지 30%, 실리카: 5내지 15% , 일산화탄소 포집제: 3 내지 10% 및 잔부 알루미나를 포함하고, The refractory composition, By weight, carbon: 15 to 30%, silica: 5 to 15%, carbon monoxide scavenger: 3 to 10%, and the balance alumina,
상기 일산화탄소 포집제는 금속 카바이드를 포함하는 침지 노즐.  Wherein the carbon monoxide trapping agent comprises metal carbide.
【청구항 7】  7.
제 6항에 있어서,  The method according to claim 6,
상기 일산화탄소 포집제는.  The carbon monoxide collecting agent is:
B4C , Al4C:i , Si C 및 CaC2중에서 1종 이상을 포함하는 침지 노즐. B 4 C, Al 4 C : i , at least one of SiC and CaC 2 .
【청구항 8]  [8]
제 6항에 있어서,.  7. The method of claim 6, wherein.
상기 용강은,  Wherein,
A1 및 Ti 중에서 1종 이상을 포함하는 침지 노즐.  A1, and Ti.
【청구항 9】  [Claim 9]
제 6항에 있어서,  The method according to claim 6,
상기 노즐 본체는,  The nozzle body includes:
상기 용강과 접촉이 이루어지며, 상기 내화 조성물로 이루어진 내공부: 및  Wherein the refractory composition is in contact with the molten steel,
상기 용강의 토출이 이루어지고, 상기 내화 조성물로 이루어진 토출부;를 포함하는 침지 노즐.  And a discharge part made of the molten steel and made of the refractory composition.
【청구항 10】  Claim 10
. 제 6항에 있어서,  . The method according to claim 6,
상기 노즐 본체는,  The nozzle body includes:
상기 용강과 ¾촉이 이루어지는 ¾촉 계면으로 갈수록 상기 일산화탄소 포집제의 농도가 높아지는 농도 구배가 형성된 침지 노즐.  Wherein the molten steel has a concentration gradient such that the concentration of the carbon monoxide capturing agent becomes higher toward the catalyst interface at which the molten steel is supplied.
PCT/KR2018/000428 2017-09-28 2018-01-09 Refractory composition and submerged entry nozzle WO2019066151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170125790 2017-09-28
KR10-2017-0125790 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019066151A1 true WO2019066151A1 (en) 2019-04-04

Family

ID=65902740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000428 WO2019066151A1 (en) 2017-09-28 2018-01-09 Refractory composition and submerged entry nozzle

Country Status (1)

Country Link
WO (1) WO2019066151A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871698A (en) * 1987-11-09 1989-10-03 Vesuvius Crucible Company Carbon bonded refractory bodies
US4913408A (en) * 1988-09-06 1990-04-03 Vesuvius Crucible Company Refractory liner compositions
JPH0859337A (en) * 1994-08-11 1996-03-05 Toshiba Ceramics Co Ltd Casting refractory and casting nozzle
KR20030059081A (en) * 2000-08-31 2003-07-07 호세코 인터내셔널 리미티드 Refractory articles
US20160084576A1 (en) * 2013-04-19 2016-03-24 Calderys France Methods for producing silicon carbide whisker-reinforced refractory composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871698A (en) * 1987-11-09 1989-10-03 Vesuvius Crucible Company Carbon bonded refractory bodies
US4913408A (en) * 1988-09-06 1990-04-03 Vesuvius Crucible Company Refractory liner compositions
JPH0859337A (en) * 1994-08-11 1996-03-05 Toshiba Ceramics Co Ltd Casting refractory and casting nozzle
KR20030059081A (en) * 2000-08-31 2003-07-07 호세코 인터내셔널 리미티드 Refractory articles
US20160084576A1 (en) * 2013-04-19 2016-03-24 Calderys France Methods for producing silicon carbide whisker-reinforced refractory composition

Similar Documents

Publication Publication Date Title
Dudczig et al. Characterization of carbon-bonded alumina filters with active or reactive coatings in a steel casting simulator
Tehovnik et al. Submerged entry nozzle clogging during continuous casting of Al-killed steel
Cui et al. Clogging behavior of submerged entry nozzles for Ti-bearing IF steel
Basu et al. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel
Fruhstorfer et al. Erosion and corrosion of alumina refractory by ingot casting steels
RU2760223C1 (en) Oxidation-resistant heat-resistant alloy and method for its production
Zheng et al. Effect of Al content on the characteristics of inclusions in Al–Ti complex deoxidized steel with calcium treatment
Basak et al. Efficacy and recovery of calcium during CaSi cored wire injection in steel melts
Storti et al. Short-time performance of MWCNTs-coated Al2O3-C filters in a steel melt
KR20200011589A (en) Metal-coated steel strip
Shi et al. Non-metallic inclusions in electroslag remelting: A review
WO2001074738A1 (en) Carbonaceous refractory and method for preparing the same
Zhang et al. Formation mechanism of interface reaction layer between microporous magnesia refractories and molten steel and its effect on steel cleanliness
Yang et al. Formation and Prevention of Nozzle Clogging during the Continuous Casting of Steels: A Review
JP4296787B2 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel
WO2019066151A1 (en) Refractory composition and submerged entry nozzle
Bernhard et al. Investigating the influence of Ti and P on the clogging of ULC steels in the continuous casting process
Schramm et al. Interface reactions of differently coated carbon-bonded alumina filters with an AZ91 magnesium alloy melt
Nomura et al. Removal of nitrogen from steel using novel fluxes
KR20190038523A (en) Refractory composition and submerged entry nozzle
EP3650560A1 (en) Oxidation-resistant heat-resistant alloy and preparing method
JP5564496B2 (en) Steel continuous casting method and refractory used in steel continuous casting
Bernhard et al. Experimental investigation into the influence of Ti on the clogging of ULC steels in continuous casting
Gao et al. Effect of Al content in molten steel on interaction between MgO–C refractory and SPHC steel
Biswas et al. Modern refractory practice for clean steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861532

Country of ref document: EP

Kind code of ref document: A1